1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 #include <string>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 
50 //===--------------------------------------------------------------------===//
51 //                        Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53 
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55   unsigned addressSpace =
56       cast<llvm::PointerType>(value->getType())->getAddressSpace();
57 
58   llvm::PointerType *destType = Int8PtrTy;
59   if (addressSpace)
60     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61 
62   if (value->getType() == destType) return value;
63   return Builder.CreateBitCast(value, destType);
64 }
65 
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                      CharUnits Align,
70                                                      const Twine &Name,
71                                                      llvm::Value *ArraySize) {
72   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73   Alloca->setAlignment(Align.getAsAlign());
74   return Address(Alloca, Ty, Align);
75 }
76 
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                           const Twine &Name,
81                                           llvm::Value *ArraySize,
82                                           Address *AllocaAddr) {
83   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84   if (AllocaAddr)
85     *AllocaAddr = Alloca;
86   llvm::Value *V = Alloca.getPointer();
87   // Alloca always returns a pointer in alloca address space, which may
88   // be different from the type defined by the language. For example,
89   // in C++ the auto variables are in the default address space. Therefore
90   // cast alloca to the default address space when necessary.
91   if (getASTAllocaAddressSpace() != LangAS::Default) {
92     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95     // otherwise alloca is inserted at the current insertion point of the
96     // builder.
97     if (!ArraySize)
98       Builder.SetInsertPoint(getPostAllocaInsertPoint());
99     V = getTargetHooks().performAddrSpaceCast(
100         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102   }
103 
104   return Address(V, Ty, Align);
105 }
106 
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                     const Twine &Name,
112                                                     llvm::Value *ArraySize) {
113   if (ArraySize)
114     return Builder.CreateAlloca(Ty, ArraySize, Name);
115   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                               ArraySize, Name, AllocaInsertPt);
117 }
118 
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                       const Twine &Name) {
125   CharUnits Align =
126       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127   return CreateTempAlloca(Ty, Align, Name);
128 }
129 
130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131   CharUnits Align = getContext().getTypeAlignInChars(Ty);
132   return CreateTempAlloca(ConvertType(Ty), Align, Name);
133 }
134 
135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136                                        Address *Alloca) {
137   // FIXME: Should we prefer the preferred type alignment here?
138   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139 }
140 
141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142                                        const Twine &Name, Address *Alloca) {
143   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144                                     /*ArraySize=*/nullptr, Alloca);
145 
146   if (Ty->isConstantMatrixType()) {
147     auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
148     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149                                                 ArrayTy->getNumElements());
150 
151     Result = Address(
152         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153         VectorTy, Result.getAlignment());
154   }
155   return Result;
156 }
157 
158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159                                                   const Twine &Name) {
160   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164                                                   const Twine &Name) {
165   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166                                   Name);
167 }
168 
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172   PGO.setCurrentStmt(E);
173   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174     llvm::Value *MemPtr = EmitScalarExpr(E);
175     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176   }
177 
178   QualType BoolTy = getContext().BoolTy;
179   SourceLocation Loc = E->getExprLoc();
180   CGFPOptionsRAII FPOptsRAII(*this, E);
181   if (!E->getType()->isAnyComplexType())
182     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
183 
184   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185                                        Loc);
186 }
187 
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191   if (E->isPRValue())
192     return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
193 
194   // if this is a bitfield-resulting conditional operator, we can special case
195   // emit this. The normal 'EmitLValue' version of this is particularly
196   // difficult to codegen for, since creating a single "LValue" for two
197   // different sized arguments here is not particularly doable.
198   if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
199           E->IgnoreParenNoopCasts(getContext()))) {
200     if (CondOp->getObjectKind() == OK_BitField)
201       return EmitIgnoredConditionalOperator(CondOp);
202   }
203 
204   // Just emit it as an l-value and drop the result.
205   EmitLValue(E);
206 }
207 
208 /// EmitAnyExpr - Emit code to compute the specified expression which
209 /// can have any type.  The result is returned as an RValue struct.
210 /// If this is an aggregate expression, AggSlot indicates where the
211 /// result should be returned.
212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
213                                     AggValueSlot aggSlot,
214                                     bool ignoreResult) {
215   switch (getEvaluationKind(E->getType())) {
216   case TEK_Scalar:
217     return RValue::get(EmitScalarExpr(E, ignoreResult));
218   case TEK_Complex:
219     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
220   case TEK_Aggregate:
221     if (!ignoreResult && aggSlot.isIgnored())
222       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
223     EmitAggExpr(E, aggSlot);
224     return aggSlot.asRValue();
225   }
226   llvm_unreachable("bad evaluation kind");
227 }
228 
229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
230 /// always be accessible even if no aggregate location is provided.
231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
232   AggValueSlot AggSlot = AggValueSlot::ignored();
233 
234   if (hasAggregateEvaluationKind(E->getType()))
235     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
236   return EmitAnyExpr(E, AggSlot);
237 }
238 
239 /// EmitAnyExprToMem - Evaluate an expression into a given memory
240 /// location.
241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
242                                        Address Location,
243                                        Qualifiers Quals,
244                                        bool IsInit) {
245   // FIXME: This function should take an LValue as an argument.
246   switch (getEvaluationKind(E->getType())) {
247   case TEK_Complex:
248     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
249                               /*isInit*/ false);
250     return;
251 
252   case TEK_Aggregate: {
253     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
254                                          AggValueSlot::IsDestructed_t(IsInit),
255                                          AggValueSlot::DoesNotNeedGCBarriers,
256                                          AggValueSlot::IsAliased_t(!IsInit),
257                                          AggValueSlot::MayOverlap));
258     return;
259   }
260 
261   case TEK_Scalar: {
262     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
263     LValue LV = MakeAddrLValue(Location, E->getType());
264     EmitStoreThroughLValue(RV, LV);
265     return;
266   }
267   }
268   llvm_unreachable("bad evaluation kind");
269 }
270 
271 static void
272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
273                      const Expr *E, Address ReferenceTemporary) {
274   // Objective-C++ ARC:
275   //   If we are binding a reference to a temporary that has ownership, we
276   //   need to perform retain/release operations on the temporary.
277   //
278   // FIXME: This should be looking at E, not M.
279   if (auto Lifetime = M->getType().getObjCLifetime()) {
280     switch (Lifetime) {
281     case Qualifiers::OCL_None:
282     case Qualifiers::OCL_ExplicitNone:
283       // Carry on to normal cleanup handling.
284       break;
285 
286     case Qualifiers::OCL_Autoreleasing:
287       // Nothing to do; cleaned up by an autorelease pool.
288       return;
289 
290     case Qualifiers::OCL_Strong:
291     case Qualifiers::OCL_Weak:
292       switch (StorageDuration Duration = M->getStorageDuration()) {
293       case SD_Static:
294         // Note: we intentionally do not register a cleanup to release
295         // the object on program termination.
296         return;
297 
298       case SD_Thread:
299         // FIXME: We should probably register a cleanup in this case.
300         return;
301 
302       case SD_Automatic:
303       case SD_FullExpression:
304         CodeGenFunction::Destroyer *Destroy;
305         CleanupKind CleanupKind;
306         if (Lifetime == Qualifiers::OCL_Strong) {
307           const ValueDecl *VD = M->getExtendingDecl();
308           bool Precise =
309               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
310           CleanupKind = CGF.getARCCleanupKind();
311           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
312                             : &CodeGenFunction::destroyARCStrongImprecise;
313         } else {
314           // __weak objects always get EH cleanups; otherwise, exceptions
315           // could cause really nasty crashes instead of mere leaks.
316           CleanupKind = NormalAndEHCleanup;
317           Destroy = &CodeGenFunction::destroyARCWeak;
318         }
319         if (Duration == SD_FullExpression)
320           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
321                           M->getType(), *Destroy,
322                           CleanupKind & EHCleanup);
323         else
324           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
325                                           M->getType(),
326                                           *Destroy, CleanupKind & EHCleanup);
327         return;
328 
329       case SD_Dynamic:
330         llvm_unreachable("temporary cannot have dynamic storage duration");
331       }
332       llvm_unreachable("unknown storage duration");
333     }
334   }
335 
336   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
337   if (const RecordType *RT =
338           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
339     // Get the destructor for the reference temporary.
340     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
341     if (!ClassDecl->hasTrivialDestructor())
342       ReferenceTemporaryDtor = ClassDecl->getDestructor();
343   }
344 
345   if (!ReferenceTemporaryDtor)
346     return;
347 
348   // Call the destructor for the temporary.
349   switch (M->getStorageDuration()) {
350   case SD_Static:
351   case SD_Thread: {
352     llvm::FunctionCallee CleanupFn;
353     llvm::Constant *CleanupArg;
354     if (E->getType()->isArrayType()) {
355       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
356           ReferenceTemporary, E->getType(),
357           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
358           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
359       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
360     } else {
361       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
362           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
363       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
364     }
365     CGF.CGM.getCXXABI().registerGlobalDtor(
366         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
367     break;
368   }
369 
370   case SD_FullExpression:
371     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
372                     CodeGenFunction::destroyCXXObject,
373                     CGF.getLangOpts().Exceptions);
374     break;
375 
376   case SD_Automatic:
377     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
378                                     ReferenceTemporary, E->getType(),
379                                     CodeGenFunction::destroyCXXObject,
380                                     CGF.getLangOpts().Exceptions);
381     break;
382 
383   case SD_Dynamic:
384     llvm_unreachable("temporary cannot have dynamic storage duration");
385   }
386 }
387 
388 static Address createReferenceTemporary(CodeGenFunction &CGF,
389                                         const MaterializeTemporaryExpr *M,
390                                         const Expr *Inner,
391                                         Address *Alloca = nullptr) {
392   auto &TCG = CGF.getTargetHooks();
393   switch (M->getStorageDuration()) {
394   case SD_FullExpression:
395   case SD_Automatic: {
396     // If we have a constant temporary array or record try to promote it into a
397     // constant global under the same rules a normal constant would've been
398     // promoted. This is easier on the optimizer and generally emits fewer
399     // instructions.
400     QualType Ty = Inner->getType();
401     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
402         (Ty->isArrayType() || Ty->isRecordType()) &&
403         CGF.CGM.isTypeConstant(Ty, true))
404       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
405         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
406         auto *GV = new llvm::GlobalVariable(
407             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
408             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
409             llvm::GlobalValue::NotThreadLocal,
410             CGF.getContext().getTargetAddressSpace(AS));
411         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
412         GV->setAlignment(alignment.getAsAlign());
413         llvm::Constant *C = GV;
414         if (AS != LangAS::Default)
415           C = TCG.performAddrSpaceCast(
416               CGF.CGM, GV, AS, LangAS::Default,
417               GV->getValueType()->getPointerTo(
418                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
419         // FIXME: Should we put the new global into a COMDAT?
420         return Address(C, GV->getValueType(), alignment);
421       }
422     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
423   }
424   case SD_Thread:
425   case SD_Static:
426     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
427 
428   case SD_Dynamic:
429     llvm_unreachable("temporary can't have dynamic storage duration");
430   }
431   llvm_unreachable("unknown storage duration");
432 }
433 
434 /// Helper method to check if the underlying ABI is AAPCS
435 static bool isAAPCS(const TargetInfo &TargetInfo) {
436   return TargetInfo.getABI().startswith("aapcs");
437 }
438 
439 LValue CodeGenFunction::
440 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
441   const Expr *E = M->getSubExpr();
442 
443   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
444           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
445          "Reference should never be pseudo-strong!");
446 
447   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
448   // as that will cause the lifetime adjustment to be lost for ARC
449   auto ownership = M->getType().getObjCLifetime();
450   if (ownership != Qualifiers::OCL_None &&
451       ownership != Qualifiers::OCL_ExplicitNone) {
452     Address Object = createReferenceTemporary(*this, M, E);
453     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
454       llvm::Type *Ty = ConvertTypeForMem(E->getType());
455       Object = Address(llvm::ConstantExpr::getBitCast(
456                            Var, Ty->getPointerTo(Object.getAddressSpace())),
457                        Ty, Object.getAlignment());
458 
459       // createReferenceTemporary will promote the temporary to a global with a
460       // constant initializer if it can.  It can only do this to a value of
461       // ARC-manageable type if the value is global and therefore "immune" to
462       // ref-counting operations.  Therefore we have no need to emit either a
463       // dynamic initialization or a cleanup and we can just return the address
464       // of the temporary.
465       if (Var->hasInitializer())
466         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
467 
468       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
469     }
470     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
471                                        AlignmentSource::Decl);
472 
473     switch (getEvaluationKind(E->getType())) {
474     default: llvm_unreachable("expected scalar or aggregate expression");
475     case TEK_Scalar:
476       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
477       break;
478     case TEK_Aggregate: {
479       EmitAggExpr(E, AggValueSlot::forAddr(Object,
480                                            E->getType().getQualifiers(),
481                                            AggValueSlot::IsDestructed,
482                                            AggValueSlot::DoesNotNeedGCBarriers,
483                                            AggValueSlot::IsNotAliased,
484                                            AggValueSlot::DoesNotOverlap));
485       break;
486     }
487     }
488 
489     pushTemporaryCleanup(*this, M, E, Object);
490     return RefTempDst;
491   }
492 
493   SmallVector<const Expr *, 2> CommaLHSs;
494   SmallVector<SubobjectAdjustment, 2> Adjustments;
495   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
496 
497   for (const auto &Ignored : CommaLHSs)
498     EmitIgnoredExpr(Ignored);
499 
500   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
501     if (opaque->getType()->isRecordType()) {
502       assert(Adjustments.empty());
503       return EmitOpaqueValueLValue(opaque);
504     }
505   }
506 
507   // Create and initialize the reference temporary.
508   Address Alloca = Address::invalid();
509   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
510   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
511           Object.getPointer()->stripPointerCasts())) {
512     llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
513     Object = Address(llvm::ConstantExpr::getBitCast(
514                          cast<llvm::Constant>(Object.getPointer()),
515                          TemporaryType->getPointerTo()),
516                      TemporaryType,
517                      Object.getAlignment());
518     // If the temporary is a global and has a constant initializer or is a
519     // constant temporary that we promoted to a global, we may have already
520     // initialized it.
521     if (!Var->hasInitializer()) {
522       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
523       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
524     }
525   } else {
526     switch (M->getStorageDuration()) {
527     case SD_Automatic:
528       if (auto *Size = EmitLifetimeStart(
529               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
530               Alloca.getPointer())) {
531         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
532                                                   Alloca, Size);
533       }
534       break;
535 
536     case SD_FullExpression: {
537       if (!ShouldEmitLifetimeMarkers)
538         break;
539 
540       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
541       // marker. Instead, start the lifetime of a conditional temporary earlier
542       // so that it's unconditional. Don't do this with sanitizers which need
543       // more precise lifetime marks.
544       ConditionalEvaluation *OldConditional = nullptr;
545       CGBuilderTy::InsertPoint OldIP;
546       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
547           !SanOpts.has(SanitizerKind::HWAddress) &&
548           !SanOpts.has(SanitizerKind::Memory) &&
549           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
550         OldConditional = OutermostConditional;
551         OutermostConditional = nullptr;
552 
553         OldIP = Builder.saveIP();
554         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
555         Builder.restoreIP(CGBuilderTy::InsertPoint(
556             Block, llvm::BasicBlock::iterator(Block->back())));
557       }
558 
559       if (auto *Size = EmitLifetimeStart(
560               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
561               Alloca.getPointer())) {
562         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
563                                              Size);
564       }
565 
566       if (OldConditional) {
567         OutermostConditional = OldConditional;
568         Builder.restoreIP(OldIP);
569       }
570       break;
571     }
572 
573     default:
574       break;
575     }
576     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
577   }
578   pushTemporaryCleanup(*this, M, E, Object);
579 
580   // Perform derived-to-base casts and/or field accesses, to get from the
581   // temporary object we created (and, potentially, for which we extended
582   // the lifetime) to the subobject we're binding the reference to.
583   for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
584     switch (Adjustment.Kind) {
585     case SubobjectAdjustment::DerivedToBaseAdjustment:
586       Object =
587           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
588                                 Adjustment.DerivedToBase.BasePath->path_begin(),
589                                 Adjustment.DerivedToBase.BasePath->path_end(),
590                                 /*NullCheckValue=*/ false, E->getExprLoc());
591       break;
592 
593     case SubobjectAdjustment::FieldAdjustment: {
594       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
595       LV = EmitLValueForField(LV, Adjustment.Field);
596       assert(LV.isSimple() &&
597              "materialized temporary field is not a simple lvalue");
598       Object = LV.getAddress(*this);
599       break;
600     }
601 
602     case SubobjectAdjustment::MemberPointerAdjustment: {
603       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
604       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
605                                                Adjustment.Ptr.MPT);
606       break;
607     }
608     }
609   }
610 
611   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
612 }
613 
614 RValue
615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
616   // Emit the expression as an lvalue.
617   LValue LV = EmitLValue(E);
618   assert(LV.isSimple());
619   llvm::Value *Value = LV.getPointer(*this);
620 
621   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
622     // C++11 [dcl.ref]p5 (as amended by core issue 453):
623     //   If a glvalue to which a reference is directly bound designates neither
624     //   an existing object or function of an appropriate type nor a region of
625     //   storage of suitable size and alignment to contain an object of the
626     //   reference's type, the behavior is undefined.
627     QualType Ty = E->getType();
628     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
629   }
630 
631   return RValue::get(Value);
632 }
633 
634 
635 /// getAccessedFieldNo - Given an encoded value and a result number, return the
636 /// input field number being accessed.
637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
638                                              const llvm::Constant *Elts) {
639   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
640       ->getZExtValue();
641 }
642 
643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
645                                     llvm::Value *High) {
646   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
647   llvm::Value *K47 = Builder.getInt64(47);
648   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
649   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
650   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
651   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
652   return Builder.CreateMul(B1, KMul);
653 }
654 
655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
656   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
657          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
658 }
659 
660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
661   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
662   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
663          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
664           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
665           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
666 }
667 
668 bool CodeGenFunction::sanitizePerformTypeCheck() const {
669   return SanOpts.has(SanitizerKind::Null) ||
670          SanOpts.has(SanitizerKind::Alignment) ||
671          SanOpts.has(SanitizerKind::ObjectSize) ||
672          SanOpts.has(SanitizerKind::Vptr);
673 }
674 
675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
676                                     llvm::Value *Ptr, QualType Ty,
677                                     CharUnits Alignment,
678                                     SanitizerSet SkippedChecks,
679                                     llvm::Value *ArraySize) {
680   if (!sanitizePerformTypeCheck())
681     return;
682 
683   // Don't check pointers outside the default address space. The null check
684   // isn't correct, the object-size check isn't supported by LLVM, and we can't
685   // communicate the addresses to the runtime handler for the vptr check.
686   if (Ptr->getType()->getPointerAddressSpace())
687     return;
688 
689   // Don't check pointers to volatile data. The behavior here is implementation-
690   // defined.
691   if (Ty.isVolatileQualified())
692     return;
693 
694   SanitizerScope SanScope(this);
695 
696   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
697   llvm::BasicBlock *Done = nullptr;
698 
699   // Quickly determine whether we have a pointer to an alloca. It's possible
700   // to skip null checks, and some alignment checks, for these pointers. This
701   // can reduce compile-time significantly.
702   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
703 
704   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
705   llvm::Value *IsNonNull = nullptr;
706   bool IsGuaranteedNonNull =
707       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
708   bool AllowNullPointers = isNullPointerAllowed(TCK);
709   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
710       !IsGuaranteedNonNull) {
711     // The glvalue must not be an empty glvalue.
712     IsNonNull = Builder.CreateIsNotNull(Ptr);
713 
714     // The IR builder can constant-fold the null check if the pointer points to
715     // a constant.
716     IsGuaranteedNonNull = IsNonNull == True;
717 
718     // Skip the null check if the pointer is known to be non-null.
719     if (!IsGuaranteedNonNull) {
720       if (AllowNullPointers) {
721         // When performing pointer casts, it's OK if the value is null.
722         // Skip the remaining checks in that case.
723         Done = createBasicBlock("null");
724         llvm::BasicBlock *Rest = createBasicBlock("not.null");
725         Builder.CreateCondBr(IsNonNull, Rest, Done);
726         EmitBlock(Rest);
727       } else {
728         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
729       }
730     }
731   }
732 
733   if (SanOpts.has(SanitizerKind::ObjectSize) &&
734       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
735       !Ty->isIncompleteType()) {
736     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
737     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
738     if (ArraySize)
739       Size = Builder.CreateMul(Size, ArraySize);
740 
741     // Degenerate case: new X[0] does not need an objectsize check.
742     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
743     if (!ConstantSize || !ConstantSize->isNullValue()) {
744       // The glvalue must refer to a large enough storage region.
745       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
746       //        to check this.
747       // FIXME: Get object address space
748       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
749       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
750       llvm::Value *Min = Builder.getFalse();
751       llvm::Value *NullIsUnknown = Builder.getFalse();
752       llvm::Value *Dynamic = Builder.getFalse();
753       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
754       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
755           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
756       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
757     }
758   }
759 
760   uint64_t AlignVal = 0;
761   llvm::Value *PtrAsInt = nullptr;
762 
763   if (SanOpts.has(SanitizerKind::Alignment) &&
764       !SkippedChecks.has(SanitizerKind::Alignment)) {
765     AlignVal = Alignment.getQuantity();
766     if (!Ty->isIncompleteType() && !AlignVal)
767       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
768                                              /*ForPointeeType=*/true)
769                      .getQuantity();
770 
771     // The glvalue must be suitably aligned.
772     if (AlignVal > 1 &&
773         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
774       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
775       llvm::Value *Align = Builder.CreateAnd(
776           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
777       llvm::Value *Aligned =
778           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
779       if (Aligned != True)
780         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
781     }
782   }
783 
784   if (Checks.size() > 0) {
785     // Make sure we're not losing information. Alignment needs to be a power of
786     // 2
787     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
788     llvm::Constant *StaticData[] = {
789         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
790         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
791         llvm::ConstantInt::get(Int8Ty, TCK)};
792     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
793               PtrAsInt ? PtrAsInt : Ptr);
794   }
795 
796   // If possible, check that the vptr indicates that there is a subobject of
797   // type Ty at offset zero within this object.
798   //
799   // C++11 [basic.life]p5,6:
800   //   [For storage which does not refer to an object within its lifetime]
801   //   The program has undefined behavior if:
802   //    -- the [pointer or glvalue] is used to access a non-static data member
803   //       or call a non-static member function
804   if (SanOpts.has(SanitizerKind::Vptr) &&
805       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
806     // Ensure that the pointer is non-null before loading it. If there is no
807     // compile-time guarantee, reuse the run-time null check or emit a new one.
808     if (!IsGuaranteedNonNull) {
809       if (!IsNonNull)
810         IsNonNull = Builder.CreateIsNotNull(Ptr);
811       if (!Done)
812         Done = createBasicBlock("vptr.null");
813       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
814       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
815       EmitBlock(VptrNotNull);
816     }
817 
818     // Compute a hash of the mangled name of the type.
819     //
820     // FIXME: This is not guaranteed to be deterministic! Move to a
821     //        fingerprinting mechanism once LLVM provides one. For the time
822     //        being the implementation happens to be deterministic.
823     SmallString<64> MangledName;
824     llvm::raw_svector_ostream Out(MangledName);
825     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
826                                                      Out);
827 
828     // Contained in NoSanitizeList based on the mangled type.
829     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
830                                                            Out.str())) {
831       llvm::hash_code TypeHash = hash_value(Out.str());
832 
833       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
834       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
835       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
836       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy,
837                        getPointerAlign());
838       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
839       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
840 
841       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
842       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
843 
844       // Look the hash up in our cache.
845       const int CacheSize = 128;
846       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
847       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
848                                                      "__ubsan_vptr_type_cache");
849       llvm::Value *Slot = Builder.CreateAnd(Hash,
850                                             llvm::ConstantInt::get(IntPtrTy,
851                                                                    CacheSize-1));
852       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
853       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
854           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
855           getPointerAlign());
856 
857       // If the hash isn't in the cache, call a runtime handler to perform the
858       // hard work of checking whether the vptr is for an object of the right
859       // type. This will either fill in the cache and return, or produce a
860       // diagnostic.
861       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
862       llvm::Constant *StaticData[] = {
863         EmitCheckSourceLocation(Loc),
864         EmitCheckTypeDescriptor(Ty),
865         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
866         llvm::ConstantInt::get(Int8Ty, TCK)
867       };
868       llvm::Value *DynamicData[] = { Ptr, Hash };
869       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
870                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
871                 DynamicData);
872     }
873   }
874 
875   if (Done) {
876     Builder.CreateBr(Done);
877     EmitBlock(Done);
878   }
879 }
880 
881 /// Determine whether this expression refers to a flexible array member in a
882 /// struct. We disable array bounds checks for such members.
883 static bool isFlexibleArrayMemberExpr(const Expr *E) {
884   // For compatibility with existing code, we treat arrays of length 0 or
885   // 1 as flexible array members.
886   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
887   // the two mechanisms.
888   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
889   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
890     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
891     // was produced by macro expansion.
892     if (CAT->getSize().ugt(1))
893       return false;
894   } else if (!isa<IncompleteArrayType>(AT))
895     return false;
896 
897   E = E->IgnoreParens();
898 
899   // A flexible array member must be the last member in the class.
900   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
901     // FIXME: If the base type of the member expr is not FD->getParent(),
902     // this should not be treated as a flexible array member access.
903     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
904       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
905       // member, only a T[0] or T[] member gets that treatment.
906       if (FD->getParent()->isUnion())
907         return true;
908       RecordDecl::field_iterator FI(
909           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
910       return ++FI == FD->getParent()->field_end();
911     }
912   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
913     return IRE->getDecl()->getNextIvar() == nullptr;
914   }
915 
916   return false;
917 }
918 
919 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
920                                                    QualType EltTy) {
921   ASTContext &C = getContext();
922   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
923   if (!EltSize)
924     return nullptr;
925 
926   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
927   if (!ArrayDeclRef)
928     return nullptr;
929 
930   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
931   if (!ParamDecl)
932     return nullptr;
933 
934   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
935   if (!POSAttr)
936     return nullptr;
937 
938   // Don't load the size if it's a lower bound.
939   int POSType = POSAttr->getType();
940   if (POSType != 0 && POSType != 1)
941     return nullptr;
942 
943   // Find the implicit size parameter.
944   auto PassedSizeIt = SizeArguments.find(ParamDecl);
945   if (PassedSizeIt == SizeArguments.end())
946     return nullptr;
947 
948   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
949   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
950   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
951   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
952                                               C.getSizeType(), E->getExprLoc());
953   llvm::Value *SizeOfElement =
954       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
955   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
956 }
957 
958 /// If Base is known to point to the start of an array, return the length of
959 /// that array. Return 0 if the length cannot be determined.
960 static llvm::Value *getArrayIndexingBound(
961     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
962   // For the vector indexing extension, the bound is the number of elements.
963   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
964     IndexedType = Base->getType();
965     return CGF.Builder.getInt32(VT->getNumElements());
966   }
967 
968   Base = Base->IgnoreParens();
969 
970   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
971     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
972         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
973       IndexedType = CE->getSubExpr()->getType();
974       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
975       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
976         return CGF.Builder.getInt(CAT->getSize());
977       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
978         return CGF.getVLASize(VAT).NumElts;
979       // Ignore pass_object_size here. It's not applicable on decayed pointers.
980     }
981   }
982 
983   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
984   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
985     IndexedType = Base->getType();
986     return POS;
987   }
988 
989   return nullptr;
990 }
991 
992 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
993                                       llvm::Value *Index, QualType IndexType,
994                                       bool Accessed) {
995   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
996          "should not be called unless adding bounds checks");
997   SanitizerScope SanScope(this);
998 
999   QualType IndexedType;
1000   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1001   if (!Bound)
1002     return;
1003 
1004   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1005   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1006   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1007 
1008   llvm::Constant *StaticData[] = {
1009     EmitCheckSourceLocation(E->getExprLoc()),
1010     EmitCheckTypeDescriptor(IndexedType),
1011     EmitCheckTypeDescriptor(IndexType)
1012   };
1013   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1014                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1015   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1016             SanitizerHandler::OutOfBounds, StaticData, Index);
1017 }
1018 
1019 
1020 CodeGenFunction::ComplexPairTy CodeGenFunction::
1021 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1022                          bool isInc, bool isPre) {
1023   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1024 
1025   llvm::Value *NextVal;
1026   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1027     uint64_t AmountVal = isInc ? 1 : -1;
1028     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1029 
1030     // Add the inc/dec to the real part.
1031     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1032   } else {
1033     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1034     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1035     if (!isInc)
1036       FVal.changeSign();
1037     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1038 
1039     // Add the inc/dec to the real part.
1040     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1041   }
1042 
1043   ComplexPairTy IncVal(NextVal, InVal.second);
1044 
1045   // Store the updated result through the lvalue.
1046   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1047   if (getLangOpts().OpenMP)
1048     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1049                                                               E->getSubExpr());
1050 
1051   // If this is a postinc, return the value read from memory, otherwise use the
1052   // updated value.
1053   return isPre ? IncVal : InVal;
1054 }
1055 
1056 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1057                                              CodeGenFunction *CGF) {
1058   // Bind VLAs in the cast type.
1059   if (CGF && E->getType()->isVariablyModifiedType())
1060     CGF->EmitVariablyModifiedType(E->getType());
1061 
1062   if (CGDebugInfo *DI = getModuleDebugInfo())
1063     DI->EmitExplicitCastType(E->getType());
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                         LValue Expression Emission
1068 //===----------------------------------------------------------------------===//
1069 
1070 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1071 /// derive a more accurate bound on the alignment of the pointer.
1072 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1073                                                   LValueBaseInfo *BaseInfo,
1074                                                   TBAAAccessInfo *TBAAInfo) {
1075   // We allow this with ObjC object pointers because of fragile ABIs.
1076   assert(E->getType()->isPointerType() ||
1077          E->getType()->isObjCObjectPointerType());
1078   E = E->IgnoreParens();
1079 
1080   // Casts:
1081   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1082     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1083       CGM.EmitExplicitCastExprType(ECE, this);
1084 
1085     switch (CE->getCastKind()) {
1086     // Non-converting casts (but not C's implicit conversion from void*).
1087     case CK_BitCast:
1088     case CK_NoOp:
1089     case CK_AddressSpaceConversion:
1090       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1091         if (PtrTy->getPointeeType()->isVoidType())
1092           break;
1093 
1094         LValueBaseInfo InnerBaseInfo;
1095         TBAAAccessInfo InnerTBAAInfo;
1096         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1097                                                 &InnerBaseInfo,
1098                                                 &InnerTBAAInfo);
1099         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1100         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1101 
1102         if (isa<ExplicitCastExpr>(CE)) {
1103           LValueBaseInfo TargetTypeBaseInfo;
1104           TBAAAccessInfo TargetTypeTBAAInfo;
1105           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1106               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1107           if (TBAAInfo)
1108             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1109                                                  TargetTypeTBAAInfo);
1110           // If the source l-value is opaque, honor the alignment of the
1111           // casted-to type.
1112           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1113             if (BaseInfo)
1114               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1115             Addr = Address(Addr.getPointer(), Addr.getElementType(), Align);
1116           }
1117         }
1118 
1119         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1120             CE->getCastKind() == CK_BitCast) {
1121           if (auto PT = E->getType()->getAs<PointerType>())
1122             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1123                                       /*MayBeNull=*/true,
1124                                       CodeGenFunction::CFITCK_UnrelatedCast,
1125                                       CE->getBeginLoc());
1126         }
1127 
1128         llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1129         Addr = Builder.CreateElementBitCast(Addr, ElemTy);
1130         if (CE->getCastKind() == CK_AddressSpaceConversion)
1131           Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType()));
1132         return Addr;
1133       }
1134       break;
1135 
1136     // Array-to-pointer decay.
1137     case CK_ArrayToPointerDecay:
1138       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1139 
1140     // Derived-to-base conversions.
1141     case CK_UncheckedDerivedToBase:
1142     case CK_DerivedToBase: {
1143       // TODO: Support accesses to members of base classes in TBAA. For now, we
1144       // conservatively pretend that the complete object is of the base class
1145       // type.
1146       if (TBAAInfo)
1147         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1148       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1149       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1150       return GetAddressOfBaseClass(Addr, Derived,
1151                                    CE->path_begin(), CE->path_end(),
1152                                    ShouldNullCheckClassCastValue(CE),
1153                                    CE->getExprLoc());
1154     }
1155 
1156     // TODO: Is there any reason to treat base-to-derived conversions
1157     // specially?
1158     default:
1159       break;
1160     }
1161   }
1162 
1163   // Unary &.
1164   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1165     if (UO->getOpcode() == UO_AddrOf) {
1166       LValue LV = EmitLValue(UO->getSubExpr());
1167       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1168       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1169       return LV.getAddress(*this);
1170     }
1171   }
1172 
1173   // std::addressof and variants.
1174   if (auto *Call = dyn_cast<CallExpr>(E)) {
1175     switch (Call->getBuiltinCallee()) {
1176     default:
1177       break;
1178     case Builtin::BIaddressof:
1179     case Builtin::BI__addressof:
1180     case Builtin::BI__builtin_addressof: {
1181       LValue LV = EmitLValue(Call->getArg(0));
1182       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1183       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1184       return LV.getAddress(*this);
1185     }
1186     }
1187   }
1188 
1189   // TODO: conditional operators, comma.
1190 
1191   // Otherwise, use the alignment of the type.
1192   CharUnits Align =
1193       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1194   llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1195   return Address(EmitScalarExpr(E), ElemTy, Align);
1196 }
1197 
1198 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1199   llvm::Value *V = RV.getScalarVal();
1200   if (auto MPT = T->getAs<MemberPointerType>())
1201     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1202   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1203 }
1204 
1205 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1206   if (Ty->isVoidType())
1207     return RValue::get(nullptr);
1208 
1209   switch (getEvaluationKind(Ty)) {
1210   case TEK_Complex: {
1211     llvm::Type *EltTy =
1212       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1213     llvm::Value *U = llvm::UndefValue::get(EltTy);
1214     return RValue::getComplex(std::make_pair(U, U));
1215   }
1216 
1217   // If this is a use of an undefined aggregate type, the aggregate must have an
1218   // identifiable address.  Just because the contents of the value are undefined
1219   // doesn't mean that the address can't be taken and compared.
1220   case TEK_Aggregate: {
1221     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1222     return RValue::getAggregate(DestPtr);
1223   }
1224 
1225   case TEK_Scalar:
1226     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1227   }
1228   llvm_unreachable("bad evaluation kind");
1229 }
1230 
1231 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1232                                               const char *Name) {
1233   ErrorUnsupported(E, Name);
1234   return GetUndefRValue(E->getType());
1235 }
1236 
1237 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1238                                               const char *Name) {
1239   ErrorUnsupported(E, Name);
1240   llvm::Type *ElTy = ConvertType(E->getType());
1241   llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy);
1242   return MakeAddrLValue(
1243       Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1244 }
1245 
1246 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1247   const Expr *Base = Obj;
1248   while (!isa<CXXThisExpr>(Base)) {
1249     // The result of a dynamic_cast can be null.
1250     if (isa<CXXDynamicCastExpr>(Base))
1251       return false;
1252 
1253     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1254       Base = CE->getSubExpr();
1255     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1256       Base = PE->getSubExpr();
1257     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1258       if (UO->getOpcode() == UO_Extension)
1259         Base = UO->getSubExpr();
1260       else
1261         return false;
1262     } else {
1263       return false;
1264     }
1265   }
1266   return true;
1267 }
1268 
1269 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1270   LValue LV;
1271   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1272     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1273   else
1274     LV = EmitLValue(E);
1275   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1276     SanitizerSet SkippedChecks;
1277     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1278       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1279       if (IsBaseCXXThis)
1280         SkippedChecks.set(SanitizerKind::Alignment, true);
1281       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1282         SkippedChecks.set(SanitizerKind::Null, true);
1283     }
1284     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1285                   LV.getAlignment(), SkippedChecks);
1286   }
1287   return LV;
1288 }
1289 
1290 /// EmitLValue - Emit code to compute a designator that specifies the location
1291 /// of the expression.
1292 ///
1293 /// This can return one of two things: a simple address or a bitfield reference.
1294 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1295 /// an LLVM pointer type.
1296 ///
1297 /// If this returns a bitfield reference, nothing about the pointee type of the
1298 /// LLVM value is known: For example, it may not be a pointer to an integer.
1299 ///
1300 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1301 /// this method guarantees that the returned pointer type will point to an LLVM
1302 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1303 /// length type, this is not possible.
1304 ///
1305 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1306   ApplyDebugLocation DL(*this, E);
1307   switch (E->getStmtClass()) {
1308   default: return EmitUnsupportedLValue(E, "l-value expression");
1309 
1310   case Expr::ObjCPropertyRefExprClass:
1311     llvm_unreachable("cannot emit a property reference directly");
1312 
1313   case Expr::ObjCSelectorExprClass:
1314     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1315   case Expr::ObjCIsaExprClass:
1316     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1317   case Expr::BinaryOperatorClass:
1318     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1319   case Expr::CompoundAssignOperatorClass: {
1320     QualType Ty = E->getType();
1321     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1322       Ty = AT->getValueType();
1323     if (!Ty->isAnyComplexType())
1324       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1325     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1326   }
1327   case Expr::CallExprClass:
1328   case Expr::CXXMemberCallExprClass:
1329   case Expr::CXXOperatorCallExprClass:
1330   case Expr::UserDefinedLiteralClass:
1331     return EmitCallExprLValue(cast<CallExpr>(E));
1332   case Expr::CXXRewrittenBinaryOperatorClass:
1333     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1334   case Expr::VAArgExprClass:
1335     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1336   case Expr::DeclRefExprClass:
1337     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1338   case Expr::ConstantExprClass: {
1339     const ConstantExpr *CE = cast<ConstantExpr>(E);
1340     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1341       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1342                              ->getCallReturnType(getContext())
1343                              ->getPointeeType();
1344       return MakeNaturalAlignAddrLValue(Result, RetType);
1345     }
1346     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1347   }
1348   case Expr::ParenExprClass:
1349     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1350   case Expr::GenericSelectionExprClass:
1351     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1352   case Expr::PredefinedExprClass:
1353     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1354   case Expr::StringLiteralClass:
1355     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1356   case Expr::ObjCEncodeExprClass:
1357     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1358   case Expr::PseudoObjectExprClass:
1359     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1360   case Expr::InitListExprClass:
1361     return EmitInitListLValue(cast<InitListExpr>(E));
1362   case Expr::CXXTemporaryObjectExprClass:
1363   case Expr::CXXConstructExprClass:
1364     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1365   case Expr::CXXBindTemporaryExprClass:
1366     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1367   case Expr::CXXUuidofExprClass:
1368     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1369   case Expr::LambdaExprClass:
1370     return EmitAggExprToLValue(E);
1371 
1372   case Expr::ExprWithCleanupsClass: {
1373     const auto *cleanups = cast<ExprWithCleanups>(E);
1374     RunCleanupsScope Scope(*this);
1375     LValue LV = EmitLValue(cleanups->getSubExpr());
1376     if (LV.isSimple()) {
1377       // Defend against branches out of gnu statement expressions surrounded by
1378       // cleanups.
1379       Address Addr = LV.getAddress(*this);
1380       llvm::Value *V = Addr.getPointer();
1381       Scope.ForceCleanup({&V});
1382       return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(),
1383                               LV.getBaseInfo(), LV.getTBAAInfo());
1384     }
1385     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1386     // bitfield lvalue or some other non-simple lvalue?
1387     return LV;
1388   }
1389 
1390   case Expr::CXXDefaultArgExprClass: {
1391     auto *DAE = cast<CXXDefaultArgExpr>(E);
1392     CXXDefaultArgExprScope Scope(*this, DAE);
1393     return EmitLValue(DAE->getExpr());
1394   }
1395   case Expr::CXXDefaultInitExprClass: {
1396     auto *DIE = cast<CXXDefaultInitExpr>(E);
1397     CXXDefaultInitExprScope Scope(*this, DIE);
1398     return EmitLValue(DIE->getExpr());
1399   }
1400   case Expr::CXXTypeidExprClass:
1401     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1402 
1403   case Expr::ObjCMessageExprClass:
1404     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1405   case Expr::ObjCIvarRefExprClass:
1406     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1407   case Expr::StmtExprClass:
1408     return EmitStmtExprLValue(cast<StmtExpr>(E));
1409   case Expr::UnaryOperatorClass:
1410     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1411   case Expr::ArraySubscriptExprClass:
1412     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1413   case Expr::MatrixSubscriptExprClass:
1414     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1415   case Expr::OMPArraySectionExprClass:
1416     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1417   case Expr::ExtVectorElementExprClass:
1418     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1419   case Expr::MemberExprClass:
1420     return EmitMemberExpr(cast<MemberExpr>(E));
1421   case Expr::CompoundLiteralExprClass:
1422     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1423   case Expr::ConditionalOperatorClass:
1424     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1425   case Expr::BinaryConditionalOperatorClass:
1426     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1427   case Expr::ChooseExprClass:
1428     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1429   case Expr::OpaqueValueExprClass:
1430     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1431   case Expr::SubstNonTypeTemplateParmExprClass:
1432     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1433   case Expr::ImplicitCastExprClass:
1434   case Expr::CStyleCastExprClass:
1435   case Expr::CXXFunctionalCastExprClass:
1436   case Expr::CXXStaticCastExprClass:
1437   case Expr::CXXDynamicCastExprClass:
1438   case Expr::CXXReinterpretCastExprClass:
1439   case Expr::CXXConstCastExprClass:
1440   case Expr::CXXAddrspaceCastExprClass:
1441   case Expr::ObjCBridgedCastExprClass:
1442     return EmitCastLValue(cast<CastExpr>(E));
1443 
1444   case Expr::MaterializeTemporaryExprClass:
1445     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1446 
1447   case Expr::CoawaitExprClass:
1448     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1449   case Expr::CoyieldExprClass:
1450     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1451   }
1452 }
1453 
1454 /// Given an object of the given canonical type, can we safely copy a
1455 /// value out of it based on its initializer?
1456 static bool isConstantEmittableObjectType(QualType type) {
1457   assert(type.isCanonical());
1458   assert(!type->isReferenceType());
1459 
1460   // Must be const-qualified but non-volatile.
1461   Qualifiers qs = type.getLocalQualifiers();
1462   if (!qs.hasConst() || qs.hasVolatile()) return false;
1463 
1464   // Otherwise, all object types satisfy this except C++ classes with
1465   // mutable subobjects or non-trivial copy/destroy behavior.
1466   if (const auto *RT = dyn_cast<RecordType>(type))
1467     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1468       if (RD->hasMutableFields() || !RD->isTrivial())
1469         return false;
1470 
1471   return true;
1472 }
1473 
1474 /// Can we constant-emit a load of a reference to a variable of the
1475 /// given type?  This is different from predicates like
1476 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1477 /// in situations that don't necessarily satisfy the language's rules
1478 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1479 /// to do this with const float variables even if those variables
1480 /// aren't marked 'constexpr'.
1481 enum ConstantEmissionKind {
1482   CEK_None,
1483   CEK_AsReferenceOnly,
1484   CEK_AsValueOrReference,
1485   CEK_AsValueOnly
1486 };
1487 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1488   type = type.getCanonicalType();
1489   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1490     if (isConstantEmittableObjectType(ref->getPointeeType()))
1491       return CEK_AsValueOrReference;
1492     return CEK_AsReferenceOnly;
1493   }
1494   if (isConstantEmittableObjectType(type))
1495     return CEK_AsValueOnly;
1496   return CEK_None;
1497 }
1498 
1499 /// Try to emit a reference to the given value without producing it as
1500 /// an l-value.  This is just an optimization, but it avoids us needing
1501 /// to emit global copies of variables if they're named without triggering
1502 /// a formal use in a context where we can't emit a direct reference to them,
1503 /// for instance if a block or lambda or a member of a local class uses a
1504 /// const int variable or constexpr variable from an enclosing function.
1505 CodeGenFunction::ConstantEmission
1506 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1507   ValueDecl *value = refExpr->getDecl();
1508 
1509   // The value needs to be an enum constant or a constant variable.
1510   ConstantEmissionKind CEK;
1511   if (isa<ParmVarDecl>(value)) {
1512     CEK = CEK_None;
1513   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1514     CEK = checkVarTypeForConstantEmission(var->getType());
1515   } else if (isa<EnumConstantDecl>(value)) {
1516     CEK = CEK_AsValueOnly;
1517   } else {
1518     CEK = CEK_None;
1519   }
1520   if (CEK == CEK_None) return ConstantEmission();
1521 
1522   Expr::EvalResult result;
1523   bool resultIsReference;
1524   QualType resultType;
1525 
1526   // It's best to evaluate all the way as an r-value if that's permitted.
1527   if (CEK != CEK_AsReferenceOnly &&
1528       refExpr->EvaluateAsRValue(result, getContext())) {
1529     resultIsReference = false;
1530     resultType = refExpr->getType();
1531 
1532   // Otherwise, try to evaluate as an l-value.
1533   } else if (CEK != CEK_AsValueOnly &&
1534              refExpr->EvaluateAsLValue(result, getContext())) {
1535     resultIsReference = true;
1536     resultType = value->getType();
1537 
1538   // Failure.
1539   } else {
1540     return ConstantEmission();
1541   }
1542 
1543   // In any case, if the initializer has side-effects, abandon ship.
1544   if (result.HasSideEffects)
1545     return ConstantEmission();
1546 
1547   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1548   // referencing a global host variable by copy. In this case the lambda should
1549   // make a copy of the value of the global host variable. The DRE of the
1550   // captured reference variable cannot be emitted as load from the host
1551   // global variable as compile time constant, since the host variable is not
1552   // accessible on device. The DRE of the captured reference variable has to be
1553   // loaded from captures.
1554   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1555       refExpr->refersToEnclosingVariableOrCapture()) {
1556     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1557     if (MD && MD->getParent()->isLambda() &&
1558         MD->getOverloadedOperator() == OO_Call) {
1559       const APValue::LValueBase &base = result.Val.getLValueBase();
1560       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1561         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1562           if (!VD->hasAttr<CUDADeviceAttr>()) {
1563             return ConstantEmission();
1564           }
1565         }
1566       }
1567     }
1568   }
1569 
1570   // Emit as a constant.
1571   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1572                                                result.Val, resultType);
1573 
1574   // Make sure we emit a debug reference to the global variable.
1575   // This should probably fire even for
1576   if (isa<VarDecl>(value)) {
1577     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1578       EmitDeclRefExprDbgValue(refExpr, result.Val);
1579   } else {
1580     assert(isa<EnumConstantDecl>(value));
1581     EmitDeclRefExprDbgValue(refExpr, result.Val);
1582   }
1583 
1584   // If we emitted a reference constant, we need to dereference that.
1585   if (resultIsReference)
1586     return ConstantEmission::forReference(C);
1587 
1588   return ConstantEmission::forValue(C);
1589 }
1590 
1591 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1592                                                         const MemberExpr *ME) {
1593   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1594     // Try to emit static variable member expressions as DREs.
1595     return DeclRefExpr::Create(
1596         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1597         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1598         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1599   }
1600   return nullptr;
1601 }
1602 
1603 CodeGenFunction::ConstantEmission
1604 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1605   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1606     return tryEmitAsConstant(DRE);
1607   return ConstantEmission();
1608 }
1609 
1610 llvm::Value *CodeGenFunction::emitScalarConstant(
1611     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1612   assert(Constant && "not a constant");
1613   if (Constant.isReference())
1614     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1615                             E->getExprLoc())
1616         .getScalarVal();
1617   return Constant.getValue();
1618 }
1619 
1620 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1621                                                SourceLocation Loc) {
1622   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1623                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1624                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1625 }
1626 
1627 static bool hasBooleanRepresentation(QualType Ty) {
1628   if (Ty->isBooleanType())
1629     return true;
1630 
1631   if (const EnumType *ET = Ty->getAs<EnumType>())
1632     return ET->getDecl()->getIntegerType()->isBooleanType();
1633 
1634   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1635     return hasBooleanRepresentation(AT->getValueType());
1636 
1637   return false;
1638 }
1639 
1640 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1641                             llvm::APInt &Min, llvm::APInt &End,
1642                             bool StrictEnums, bool IsBool) {
1643   const EnumType *ET = Ty->getAs<EnumType>();
1644   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1645                                 ET && !ET->getDecl()->isFixed();
1646   if (!IsBool && !IsRegularCPlusPlusEnum)
1647     return false;
1648 
1649   if (IsBool) {
1650     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1651     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1652   } else {
1653     const EnumDecl *ED = ET->getDecl();
1654     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1655     unsigned Bitwidth = LTy->getScalarSizeInBits();
1656     unsigned NumNegativeBits = ED->getNumNegativeBits();
1657     unsigned NumPositiveBits = ED->getNumPositiveBits();
1658 
1659     if (NumNegativeBits) {
1660       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1661       assert(NumBits <= Bitwidth);
1662       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1663       Min = -End;
1664     } else {
1665       assert(NumPositiveBits <= Bitwidth);
1666       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1667       Min = llvm::APInt::getZero(Bitwidth);
1668     }
1669   }
1670   return true;
1671 }
1672 
1673 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1674   llvm::APInt Min, End;
1675   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1676                        hasBooleanRepresentation(Ty)))
1677     return nullptr;
1678 
1679   llvm::MDBuilder MDHelper(getLLVMContext());
1680   return MDHelper.createRange(Min, End);
1681 }
1682 
1683 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1684                                            SourceLocation Loc) {
1685   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1686   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1687   if (!HasBoolCheck && !HasEnumCheck)
1688     return false;
1689 
1690   bool IsBool = hasBooleanRepresentation(Ty) ||
1691                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1692   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1693   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1694   if (!NeedsBoolCheck && !NeedsEnumCheck)
1695     return false;
1696 
1697   // Single-bit booleans don't need to be checked. Special-case this to avoid
1698   // a bit width mismatch when handling bitfield values. This is handled by
1699   // EmitFromMemory for the non-bitfield case.
1700   if (IsBool &&
1701       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1702     return false;
1703 
1704   llvm::APInt Min, End;
1705   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1706     return true;
1707 
1708   auto &Ctx = getLLVMContext();
1709   SanitizerScope SanScope(this);
1710   llvm::Value *Check;
1711   --End;
1712   if (!Min) {
1713     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1714   } else {
1715     llvm::Value *Upper =
1716         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1717     llvm::Value *Lower =
1718         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1719     Check = Builder.CreateAnd(Upper, Lower);
1720   }
1721   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1722                                   EmitCheckTypeDescriptor(Ty)};
1723   SanitizerMask Kind =
1724       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1725   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1726             StaticArgs, EmitCheckValue(Value));
1727   return true;
1728 }
1729 
1730 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1731                                                QualType Ty,
1732                                                SourceLocation Loc,
1733                                                LValueBaseInfo BaseInfo,
1734                                                TBAAAccessInfo TBAAInfo,
1735                                                bool isNontemporal) {
1736   if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1737     // Boolean vectors use `iN` as storage type.
1738     if (ClangVecTy->isExtVectorBoolType()) {
1739       llvm::Type *ValTy = ConvertType(Ty);
1740       unsigned ValNumElems =
1741           cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1742       // Load the `iP` storage object (P is the padded vector size).
1743       auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1744       const auto *RawIntTy = RawIntV->getType();
1745       assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1746       // Bitcast iP --> <P x i1>.
1747       auto *PaddedVecTy = llvm::FixedVectorType::get(
1748           Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1749       llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1750       // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1751       V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1752 
1753       return EmitFromMemory(V, Ty);
1754     }
1755 
1756     // Handle vectors of size 3 like size 4 for better performance.
1757     const llvm::Type *EltTy = Addr.getElementType();
1758     const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1759 
1760     if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1761 
1762       // Bitcast to vec4 type.
1763       llvm::VectorType *vec4Ty =
1764           llvm::FixedVectorType::get(VTy->getElementType(), 4);
1765       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1766       // Now load value.
1767       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1768 
1769       // Shuffle vector to get vec3.
1770       V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1771       return EmitFromMemory(V, Ty);
1772     }
1773   }
1774 
1775   // Atomic operations have to be done on integral types.
1776   LValue AtomicLValue =
1777       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1778   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1779     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1780   }
1781 
1782   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1783   if (isNontemporal) {
1784     llvm::MDNode *Node = llvm::MDNode::get(
1785         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1786     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1787   }
1788 
1789   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1790 
1791   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1792     // In order to prevent the optimizer from throwing away the check, don't
1793     // attach range metadata to the load.
1794   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1795     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1796       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1797 
1798   return EmitFromMemory(Load, Ty);
1799 }
1800 
1801 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1802   // Bool has a different representation in memory than in registers.
1803   if (hasBooleanRepresentation(Ty)) {
1804     // This should really always be an i1, but sometimes it's already
1805     // an i8, and it's awkward to track those cases down.
1806     if (Value->getType()->isIntegerTy(1))
1807       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1808     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1809            "wrong value rep of bool");
1810   }
1811 
1812   return Value;
1813 }
1814 
1815 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1816   // Bool has a different representation in memory than in registers.
1817   if (hasBooleanRepresentation(Ty)) {
1818     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1819            "wrong value rep of bool");
1820     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1821   }
1822   if (Ty->isExtVectorBoolType()) {
1823     const auto *RawIntTy = Value->getType();
1824     // Bitcast iP --> <P x i1>.
1825     auto *PaddedVecTy = llvm::FixedVectorType::get(
1826         Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1827     auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
1828     // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1829     llvm::Type *ValTy = ConvertType(Ty);
1830     unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1831     return emitBoolVecConversion(V, ValNumElems, "extractvec");
1832   }
1833 
1834   return Value;
1835 }
1836 
1837 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1838 // MatrixType), if it points to a array (the memory type of MatrixType).
1839 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1840                                          bool IsVector = true) {
1841   auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1842   if (ArrayTy && IsVector) {
1843     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1844                                                 ArrayTy->getNumElements());
1845 
1846     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1847   }
1848   auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1849   if (VectorTy && !IsVector) {
1850     auto *ArrayTy = llvm::ArrayType::get(
1851         VectorTy->getElementType(),
1852         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1853 
1854     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1855   }
1856 
1857   return Addr;
1858 }
1859 
1860 // Emit a store of a matrix LValue. This may require casting the original
1861 // pointer to memory address (ArrayType) to a pointer to the value type
1862 // (VectorType).
1863 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1864                                     bool isInit, CodeGenFunction &CGF) {
1865   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1866                                            value->getType()->isVectorTy());
1867   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1868                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1869                         lvalue.isNontemporal());
1870 }
1871 
1872 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1873                                         bool Volatile, QualType Ty,
1874                                         LValueBaseInfo BaseInfo,
1875                                         TBAAAccessInfo TBAAInfo,
1876                                         bool isInit, bool isNontemporal) {
1877   llvm::Type *SrcTy = Value->getType();
1878   if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1879     auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
1880     if (VecTy && ClangVecTy->isExtVectorBoolType()) {
1881       auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType());
1882       // Expand to the memory bit width.
1883       unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits();
1884       // <N x i1> --> <P x i1>.
1885       Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
1886       // <P x i1> --> iP.
1887       Value = Builder.CreateBitCast(Value, MemIntTy);
1888     } else if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1889       // Handle vec3 special.
1890       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1891         // Our source is a vec3, do a shuffle vector to make it a vec4.
1892         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1893                                             "extractVec");
1894         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1895       }
1896       if (Addr.getElementType() != SrcTy) {
1897         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1898       }
1899     }
1900   }
1901 
1902   Value = EmitToMemory(Value, Ty);
1903 
1904   LValue AtomicLValue =
1905       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1906   if (Ty->isAtomicType() ||
1907       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1908     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1909     return;
1910   }
1911 
1912   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1913   if (isNontemporal) {
1914     llvm::MDNode *Node =
1915         llvm::MDNode::get(Store->getContext(),
1916                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1917     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1918   }
1919 
1920   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1921 }
1922 
1923 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1924                                         bool isInit) {
1925   if (lvalue.getType()->isConstantMatrixType()) {
1926     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1927     return;
1928   }
1929 
1930   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1931                     lvalue.getType(), lvalue.getBaseInfo(),
1932                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1933 }
1934 
1935 // Emit a load of a LValue of matrix type. This may require casting the pointer
1936 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1937 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1938                                      CodeGenFunction &CGF) {
1939   assert(LV.getType()->isConstantMatrixType());
1940   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1941   LV.setAddress(Addr);
1942   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1943 }
1944 
1945 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1946 /// method emits the address of the lvalue, then loads the result as an rvalue,
1947 /// returning the rvalue.
1948 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1949   if (LV.isObjCWeak()) {
1950     // load of a __weak object.
1951     Address AddrWeakObj = LV.getAddress(*this);
1952     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1953                                                              AddrWeakObj));
1954   }
1955   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1956     // In MRC mode, we do a load+autorelease.
1957     if (!getLangOpts().ObjCAutoRefCount) {
1958       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1959     }
1960 
1961     // In ARC mode, we load retained and then consume the value.
1962     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1963     Object = EmitObjCConsumeObject(LV.getType(), Object);
1964     return RValue::get(Object);
1965   }
1966 
1967   if (LV.isSimple()) {
1968     assert(!LV.getType()->isFunctionType());
1969 
1970     if (LV.getType()->isConstantMatrixType())
1971       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1972 
1973     // Everything needs a load.
1974     return RValue::get(EmitLoadOfScalar(LV, Loc));
1975   }
1976 
1977   if (LV.isVectorElt()) {
1978     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1979                                               LV.isVolatileQualified());
1980     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1981                                                     "vecext"));
1982   }
1983 
1984   // If this is a reference to a subset of the elements of a vector, either
1985   // shuffle the input or extract/insert them as appropriate.
1986   if (LV.isExtVectorElt()) {
1987     return EmitLoadOfExtVectorElementLValue(LV);
1988   }
1989 
1990   // Global Register variables always invoke intrinsics
1991   if (LV.isGlobalReg())
1992     return EmitLoadOfGlobalRegLValue(LV);
1993 
1994   if (LV.isMatrixElt()) {
1995     llvm::Value *Idx = LV.getMatrixIdx();
1996     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1997       const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
1998       llvm::MatrixBuilder MB(Builder);
1999       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2000     }
2001     llvm::LoadInst *Load =
2002         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
2003     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
2004   }
2005 
2006   assert(LV.isBitField() && "Unknown LValue type!");
2007   return EmitLoadOfBitfieldLValue(LV, Loc);
2008 }
2009 
2010 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
2011                                                  SourceLocation Loc) {
2012   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
2013 
2014   // Get the output type.
2015   llvm::Type *ResLTy = ConvertType(LV.getType());
2016 
2017   Address Ptr = LV.getBitFieldAddress();
2018   llvm::Value *Val =
2019       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
2020 
2021   bool UseVolatile = LV.isVolatileQualified() &&
2022                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2023   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2024   const unsigned StorageSize =
2025       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2026   if (Info.IsSigned) {
2027     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
2028     unsigned HighBits = StorageSize - Offset - Info.Size;
2029     if (HighBits)
2030       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
2031     if (Offset + HighBits)
2032       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2033   } else {
2034     if (Offset)
2035       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2036     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2037       Val = Builder.CreateAnd(
2038           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2039   }
2040   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2041   EmitScalarRangeCheck(Val, LV.getType(), Loc);
2042   return RValue::get(Val);
2043 }
2044 
2045 // If this is a reference to a subset of the elements of a vector, create an
2046 // appropriate shufflevector.
2047 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2048   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2049                                         LV.isVolatileQualified());
2050 
2051   const llvm::Constant *Elts = LV.getExtVectorElts();
2052 
2053   // If the result of the expression is a non-vector type, we must be extracting
2054   // a single element.  Just codegen as an extractelement.
2055   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2056   if (!ExprVT) {
2057     unsigned InIdx = getAccessedFieldNo(0, Elts);
2058     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2059     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2060   }
2061 
2062   // Always use shuffle vector to try to retain the original program structure
2063   unsigned NumResultElts = ExprVT->getNumElements();
2064 
2065   SmallVector<int, 4> Mask;
2066   for (unsigned i = 0; i != NumResultElts; ++i)
2067     Mask.push_back(getAccessedFieldNo(i, Elts));
2068 
2069   Vec = Builder.CreateShuffleVector(Vec, Mask);
2070   return RValue::get(Vec);
2071 }
2072 
2073 /// Generates lvalue for partial ext_vector access.
2074 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2075   Address VectorAddress = LV.getExtVectorAddress();
2076   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2077   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2078 
2079   Address CastToPointerElement =
2080     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2081                                  "conv.ptr.element");
2082 
2083   const llvm::Constant *Elts = LV.getExtVectorElts();
2084   unsigned ix = getAccessedFieldNo(0, Elts);
2085 
2086   Address VectorBasePtrPlusIx =
2087     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2088                                    "vector.elt");
2089 
2090   return VectorBasePtrPlusIx;
2091 }
2092 
2093 /// Load of global gamed gegisters are always calls to intrinsics.
2094 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2095   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2096          "Bad type for register variable");
2097   llvm::MDNode *RegName = cast<llvm::MDNode>(
2098       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2099 
2100   // We accept integer and pointer types only
2101   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2102   llvm::Type *Ty = OrigTy;
2103   if (OrigTy->isPointerTy())
2104     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2105   llvm::Type *Types[] = { Ty };
2106 
2107   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2108   llvm::Value *Call = Builder.CreateCall(
2109       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2110   if (OrigTy->isPointerTy())
2111     Call = Builder.CreateIntToPtr(Call, OrigTy);
2112   return RValue::get(Call);
2113 }
2114 
2115 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2116 /// lvalue, where both are guaranteed to the have the same type, and that type
2117 /// is 'Ty'.
2118 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2119                                              bool isInit) {
2120   if (!Dst.isSimple()) {
2121     if (Dst.isVectorElt()) {
2122       // Read/modify/write the vector, inserting the new element.
2123       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2124                                             Dst.isVolatileQualified());
2125       auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2126       if (IRStoreTy) {
2127         auto *IRVecTy = llvm::FixedVectorType::get(
2128             Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2129         Vec = Builder.CreateBitCast(Vec, IRVecTy);
2130         // iN --> <N x i1>.
2131       }
2132       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2133                                         Dst.getVectorIdx(), "vecins");
2134       if (IRStoreTy) {
2135         // <N x i1> --> <iN>.
2136         Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2137       }
2138       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2139                           Dst.isVolatileQualified());
2140       return;
2141     }
2142 
2143     // If this is an update of extended vector elements, insert them as
2144     // appropriate.
2145     if (Dst.isExtVectorElt())
2146       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2147 
2148     if (Dst.isGlobalReg())
2149       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2150 
2151     if (Dst.isMatrixElt()) {
2152       llvm::Value *Idx = Dst.getMatrixIdx();
2153       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2154         const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2155         llvm::MatrixBuilder MB(Builder);
2156         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2157       }
2158       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2159       llvm::Value *Vec =
2160           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2161       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2162                           Dst.isVolatileQualified());
2163       return;
2164     }
2165 
2166     assert(Dst.isBitField() && "Unknown LValue type");
2167     return EmitStoreThroughBitfieldLValue(Src, Dst);
2168   }
2169 
2170   // There's special magic for assigning into an ARC-qualified l-value.
2171   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2172     switch (Lifetime) {
2173     case Qualifiers::OCL_None:
2174       llvm_unreachable("present but none");
2175 
2176     case Qualifiers::OCL_ExplicitNone:
2177       // nothing special
2178       break;
2179 
2180     case Qualifiers::OCL_Strong:
2181       if (isInit) {
2182         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2183         break;
2184       }
2185       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2186       return;
2187 
2188     case Qualifiers::OCL_Weak:
2189       if (isInit)
2190         // Initialize and then skip the primitive store.
2191         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2192       else
2193         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2194                          /*ignore*/ true);
2195       return;
2196 
2197     case Qualifiers::OCL_Autoreleasing:
2198       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2199                                                      Src.getScalarVal()));
2200       // fall into the normal path
2201       break;
2202     }
2203   }
2204 
2205   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2206     // load of a __weak object.
2207     Address LvalueDst = Dst.getAddress(*this);
2208     llvm::Value *src = Src.getScalarVal();
2209      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2210     return;
2211   }
2212 
2213   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2214     // load of a __strong object.
2215     Address LvalueDst = Dst.getAddress(*this);
2216     llvm::Value *src = Src.getScalarVal();
2217     if (Dst.isObjCIvar()) {
2218       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2219       llvm::Type *ResultType = IntPtrTy;
2220       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2221       llvm::Value *RHS = dst.getPointer();
2222       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2223       llvm::Value *LHS =
2224         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2225                                "sub.ptr.lhs.cast");
2226       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2227       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2228                                               BytesBetween);
2229     } else if (Dst.isGlobalObjCRef()) {
2230       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2231                                                 Dst.isThreadLocalRef());
2232     }
2233     else
2234       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2235     return;
2236   }
2237 
2238   assert(Src.isScalar() && "Can't emit an agg store with this method");
2239   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2240 }
2241 
2242 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2243                                                      llvm::Value **Result) {
2244   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2245   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2246   Address Ptr = Dst.getBitFieldAddress();
2247 
2248   // Get the source value, truncated to the width of the bit-field.
2249   llvm::Value *SrcVal = Src.getScalarVal();
2250 
2251   // Cast the source to the storage type and shift it into place.
2252   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2253                                  /*isSigned=*/false);
2254   llvm::Value *MaskedVal = SrcVal;
2255 
2256   const bool UseVolatile =
2257       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2258       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2259   const unsigned StorageSize =
2260       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2261   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2262   // See if there are other bits in the bitfield's storage we'll need to load
2263   // and mask together with source before storing.
2264   if (StorageSize != Info.Size) {
2265     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2266     llvm::Value *Val =
2267         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2268 
2269     // Mask the source value as needed.
2270     if (!hasBooleanRepresentation(Dst.getType()))
2271       SrcVal = Builder.CreateAnd(
2272           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2273           "bf.value");
2274     MaskedVal = SrcVal;
2275     if (Offset)
2276       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2277 
2278     // Mask out the original value.
2279     Val = Builder.CreateAnd(
2280         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2281         "bf.clear");
2282 
2283     // Or together the unchanged values and the source value.
2284     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2285   } else {
2286     assert(Offset == 0);
2287     // According to the AACPS:
2288     // When a volatile bit-field is written, and its container does not overlap
2289     // with any non-bit-field member, its container must be read exactly once
2290     // and written exactly once using the access width appropriate to the type
2291     // of the container. The two accesses are not atomic.
2292     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2293         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2294       Builder.CreateLoad(Ptr, true, "bf.load");
2295   }
2296 
2297   // Write the new value back out.
2298   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2299 
2300   // Return the new value of the bit-field, if requested.
2301   if (Result) {
2302     llvm::Value *ResultVal = MaskedVal;
2303 
2304     // Sign extend the value if needed.
2305     if (Info.IsSigned) {
2306       assert(Info.Size <= StorageSize);
2307       unsigned HighBits = StorageSize - Info.Size;
2308       if (HighBits) {
2309         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2310         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2311       }
2312     }
2313 
2314     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2315                                       "bf.result.cast");
2316     *Result = EmitFromMemory(ResultVal, Dst.getType());
2317   }
2318 }
2319 
2320 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2321                                                                LValue Dst) {
2322   // This access turns into a read/modify/write of the vector.  Load the input
2323   // value now.
2324   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2325                                         Dst.isVolatileQualified());
2326   const llvm::Constant *Elts = Dst.getExtVectorElts();
2327 
2328   llvm::Value *SrcVal = Src.getScalarVal();
2329 
2330   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2331     unsigned NumSrcElts = VTy->getNumElements();
2332     unsigned NumDstElts =
2333         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2334     if (NumDstElts == NumSrcElts) {
2335       // Use shuffle vector is the src and destination are the same number of
2336       // elements and restore the vector mask since it is on the side it will be
2337       // stored.
2338       SmallVector<int, 4> Mask(NumDstElts);
2339       for (unsigned i = 0; i != NumSrcElts; ++i)
2340         Mask[getAccessedFieldNo(i, Elts)] = i;
2341 
2342       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2343     } else if (NumDstElts > NumSrcElts) {
2344       // Extended the source vector to the same length and then shuffle it
2345       // into the destination.
2346       // FIXME: since we're shuffling with undef, can we just use the indices
2347       //        into that?  This could be simpler.
2348       SmallVector<int, 4> ExtMask;
2349       for (unsigned i = 0; i != NumSrcElts; ++i)
2350         ExtMask.push_back(i);
2351       ExtMask.resize(NumDstElts, -1);
2352       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2353       // build identity
2354       SmallVector<int, 4> Mask;
2355       for (unsigned i = 0; i != NumDstElts; ++i)
2356         Mask.push_back(i);
2357 
2358       // When the vector size is odd and .odd or .hi is used, the last element
2359       // of the Elts constant array will be one past the size of the vector.
2360       // Ignore the last element here, if it is greater than the mask size.
2361       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2362         NumSrcElts--;
2363 
2364       // modify when what gets shuffled in
2365       for (unsigned i = 0; i != NumSrcElts; ++i)
2366         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2367       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2368     } else {
2369       // We should never shorten the vector
2370       llvm_unreachable("unexpected shorten vector length");
2371     }
2372   } else {
2373     // If the Src is a scalar (not a vector) it must be updating one element.
2374     unsigned InIdx = getAccessedFieldNo(0, Elts);
2375     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2376     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2377   }
2378 
2379   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2380                       Dst.isVolatileQualified());
2381 }
2382 
2383 /// Store of global named registers are always calls to intrinsics.
2384 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2385   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2386          "Bad type for register variable");
2387   llvm::MDNode *RegName = cast<llvm::MDNode>(
2388       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2389   assert(RegName && "Register LValue is not metadata");
2390 
2391   // We accept integer and pointer types only
2392   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2393   llvm::Type *Ty = OrigTy;
2394   if (OrigTy->isPointerTy())
2395     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2396   llvm::Type *Types[] = { Ty };
2397 
2398   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2399   llvm::Value *Value = Src.getScalarVal();
2400   if (OrigTy->isPointerTy())
2401     Value = Builder.CreatePtrToInt(Value, Ty);
2402   Builder.CreateCall(
2403       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2404 }
2405 
2406 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2407 // generating write-barries API. It is currently a global, ivar,
2408 // or neither.
2409 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2410                                  LValue &LV,
2411                                  bool IsMemberAccess=false) {
2412   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2413     return;
2414 
2415   if (isa<ObjCIvarRefExpr>(E)) {
2416     QualType ExpTy = E->getType();
2417     if (IsMemberAccess && ExpTy->isPointerType()) {
2418       // If ivar is a structure pointer, assigning to field of
2419       // this struct follows gcc's behavior and makes it a non-ivar
2420       // writer-barrier conservatively.
2421       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2422       if (ExpTy->isRecordType()) {
2423         LV.setObjCIvar(false);
2424         return;
2425       }
2426     }
2427     LV.setObjCIvar(true);
2428     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2429     LV.setBaseIvarExp(Exp->getBase());
2430     LV.setObjCArray(E->getType()->isArrayType());
2431     return;
2432   }
2433 
2434   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2435     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2436       if (VD->hasGlobalStorage()) {
2437         LV.setGlobalObjCRef(true);
2438         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2439       }
2440     }
2441     LV.setObjCArray(E->getType()->isArrayType());
2442     return;
2443   }
2444 
2445   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2446     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2447     return;
2448   }
2449 
2450   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2451     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2452     if (LV.isObjCIvar()) {
2453       // If cast is to a structure pointer, follow gcc's behavior and make it
2454       // a non-ivar write-barrier.
2455       QualType ExpTy = E->getType();
2456       if (ExpTy->isPointerType())
2457         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2458       if (ExpTy->isRecordType())
2459         LV.setObjCIvar(false);
2460     }
2461     return;
2462   }
2463 
2464   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2465     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2466     return;
2467   }
2468 
2469   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2470     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2471     return;
2472   }
2473 
2474   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2475     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2476     return;
2477   }
2478 
2479   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2480     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2481     return;
2482   }
2483 
2484   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2485     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2486     if (LV.isObjCIvar() && !LV.isObjCArray())
2487       // Using array syntax to assigning to what an ivar points to is not
2488       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2489       LV.setObjCIvar(false);
2490     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2491       // Using array syntax to assigning to what global points to is not
2492       // same as assigning to the global itself. {id *G;} G[i] = 0;
2493       LV.setGlobalObjCRef(false);
2494     return;
2495   }
2496 
2497   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2498     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2499     // We don't know if member is an 'ivar', but this flag is looked at
2500     // only in the context of LV.isObjCIvar().
2501     LV.setObjCArray(E->getType()->isArrayType());
2502     return;
2503   }
2504 }
2505 
2506 static llvm::Value *
2507 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2508                                 llvm::Value *V, llvm::Type *IRType,
2509                                 StringRef Name = StringRef()) {
2510   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2511   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2512 }
2513 
2514 static LValue EmitThreadPrivateVarDeclLValue(
2515     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2516     llvm::Type *RealVarTy, SourceLocation Loc) {
2517   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2518     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2519         CGF, VD, Addr, Loc);
2520   else
2521     Addr =
2522         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2523 
2524   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2525   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2526 }
2527 
2528 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2529                                            const VarDecl *VD, QualType T) {
2530   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2531       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2532   // Return an invalid address if variable is MT_To and unified
2533   // memory is not enabled. For all other cases: MT_Link and
2534   // MT_To with unified memory, return a valid address.
2535   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2536                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2537     return Address::invalid();
2538   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2539           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2540            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2541          "Expected link clause OR to clause with unified memory enabled.");
2542   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2543   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2544   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2545 }
2546 
2547 Address
2548 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2549                                      LValueBaseInfo *PointeeBaseInfo,
2550                                      TBAAAccessInfo *PointeeTBAAInfo) {
2551   llvm::LoadInst *Load =
2552       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2553   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2554 
2555   QualType PointeeType = RefLVal.getType()->getPointeeType();
2556   CharUnits Align = CGM.getNaturalTypeAlignment(
2557       PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2558       /* forPointeeType= */ true);
2559   return Address(Load, ConvertTypeForMem(PointeeType), Align);
2560 }
2561 
2562 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2563   LValueBaseInfo PointeeBaseInfo;
2564   TBAAAccessInfo PointeeTBAAInfo;
2565   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2566                                             &PointeeTBAAInfo);
2567   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2568                         PointeeBaseInfo, PointeeTBAAInfo);
2569 }
2570 
2571 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2572                                            const PointerType *PtrTy,
2573                                            LValueBaseInfo *BaseInfo,
2574                                            TBAAAccessInfo *TBAAInfo) {
2575   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2576   return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()),
2577                  CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo,
2578                                              TBAAInfo,
2579                                              /*forPointeeType=*/true));
2580 }
2581 
2582 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2583                                                 const PointerType *PtrTy) {
2584   LValueBaseInfo BaseInfo;
2585   TBAAAccessInfo TBAAInfo;
2586   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2587   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2588 }
2589 
2590 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2591                                       const Expr *E, const VarDecl *VD) {
2592   QualType T = E->getType();
2593 
2594   // If it's thread_local, emit a call to its wrapper function instead.
2595   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2596       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2597     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2598   // Check if the variable is marked as declare target with link clause in
2599   // device codegen.
2600   if (CGF.getLangOpts().OpenMPIsDevice) {
2601     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2602     if (Addr.isValid())
2603       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2604   }
2605 
2606   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2607   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2608   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2609   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2610   Address Addr(V, RealVarTy, Alignment);
2611   // Emit reference to the private copy of the variable if it is an OpenMP
2612   // threadprivate variable.
2613   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2614       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2615     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2616                                           E->getExprLoc());
2617   }
2618   LValue LV = VD->getType()->isReferenceType() ?
2619       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2620                                     AlignmentSource::Decl) :
2621       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2622   setObjCGCLValueClass(CGF.getContext(), E, LV);
2623   return LV;
2624 }
2625 
2626 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2627                                                GlobalDecl GD) {
2628   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2629   if (FD->hasAttr<WeakRefAttr>()) {
2630     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2631     return aliasee.getPointer();
2632   }
2633 
2634   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2635   if (!FD->hasPrototype()) {
2636     if (const FunctionProtoType *Proto =
2637             FD->getType()->getAs<FunctionProtoType>()) {
2638       // Ugly case: for a K&R-style definition, the type of the definition
2639       // isn't the same as the type of a use.  Correct for this with a
2640       // bitcast.
2641       QualType NoProtoType =
2642           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2643       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2644       V = llvm::ConstantExpr::getBitCast(V,
2645                                       CGM.getTypes().ConvertType(NoProtoType));
2646     }
2647   }
2648   return V;
2649 }
2650 
2651 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2652                                      GlobalDecl GD) {
2653   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2654   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2655   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2656   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2657                             AlignmentSource::Decl);
2658 }
2659 
2660 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2661                                       llvm::Value *ThisValue) {
2662   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2663   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2664   return CGF.EmitLValueForField(LV, FD);
2665 }
2666 
2667 /// Named Registers are named metadata pointing to the register name
2668 /// which will be read from/written to as an argument to the intrinsic
2669 /// @llvm.read/write_register.
2670 /// So far, only the name is being passed down, but other options such as
2671 /// register type, allocation type or even optimization options could be
2672 /// passed down via the metadata node.
2673 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2674   SmallString<64> Name("llvm.named.register.");
2675   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2676   assert(Asm->getLabel().size() < 64-Name.size() &&
2677       "Register name too big");
2678   Name.append(Asm->getLabel());
2679   llvm::NamedMDNode *M =
2680     CGM.getModule().getOrInsertNamedMetadata(Name);
2681   if (M->getNumOperands() == 0) {
2682     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2683                                               Asm->getLabel());
2684     llvm::Metadata *Ops[] = {Str};
2685     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2686   }
2687 
2688   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2689 
2690   llvm::Value *Ptr =
2691     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2692   return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2693 }
2694 
2695 /// Determine whether we can emit a reference to \p VD from the current
2696 /// context, despite not necessarily having seen an odr-use of the variable in
2697 /// this context.
2698 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2699                                                const DeclRefExpr *E,
2700                                                const VarDecl *VD,
2701                                                bool IsConstant) {
2702   // For a variable declared in an enclosing scope, do not emit a spurious
2703   // reference even if we have a capture, as that will emit an unwarranted
2704   // reference to our capture state, and will likely generate worse code than
2705   // emitting a local copy.
2706   if (E->refersToEnclosingVariableOrCapture())
2707     return false;
2708 
2709   // For a local declaration declared in this function, we can always reference
2710   // it even if we don't have an odr-use.
2711   if (VD->hasLocalStorage()) {
2712     return VD->getDeclContext() ==
2713            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2714   }
2715 
2716   // For a global declaration, we can emit a reference to it if we know
2717   // for sure that we are able to emit a definition of it.
2718   VD = VD->getDefinition(CGF.getContext());
2719   if (!VD)
2720     return false;
2721 
2722   // Don't emit a spurious reference if it might be to a variable that only
2723   // exists on a different device / target.
2724   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2725   // cross-target reference.
2726   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2727       CGF.getLangOpts().OpenCL) {
2728     return false;
2729   }
2730 
2731   // We can emit a spurious reference only if the linkage implies that we'll
2732   // be emitting a non-interposable symbol that will be retained until link
2733   // time.
2734   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2735   case llvm::GlobalValue::ExternalLinkage:
2736   case llvm::GlobalValue::LinkOnceODRLinkage:
2737   case llvm::GlobalValue::WeakODRLinkage:
2738   case llvm::GlobalValue::InternalLinkage:
2739   case llvm::GlobalValue::PrivateLinkage:
2740     return true;
2741   default:
2742     return false;
2743   }
2744 }
2745 
2746 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2747   const NamedDecl *ND = E->getDecl();
2748   QualType T = E->getType();
2749 
2750   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2751          "should not emit an unevaluated operand");
2752 
2753   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2754     // Global Named registers access via intrinsics only
2755     if (VD->getStorageClass() == SC_Register &&
2756         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2757       return EmitGlobalNamedRegister(VD, CGM);
2758 
2759     // If this DeclRefExpr does not constitute an odr-use of the variable,
2760     // we're not permitted to emit a reference to it in general, and it might
2761     // not be captured if capture would be necessary for a use. Emit the
2762     // constant value directly instead.
2763     if (E->isNonOdrUse() == NOUR_Constant &&
2764         (VD->getType()->isReferenceType() ||
2765          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2766       VD->getAnyInitializer(VD);
2767       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2768           E->getLocation(), *VD->evaluateValue(), VD->getType());
2769       assert(Val && "failed to emit constant expression");
2770 
2771       Address Addr = Address::invalid();
2772       if (!VD->getType()->isReferenceType()) {
2773         // Spill the constant value to a global.
2774         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2775                                            getContext().getDeclAlign(VD));
2776         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2777         auto *PTy = llvm::PointerType::get(
2778             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2779         Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
2780       } else {
2781         // Should we be using the alignment of the constant pointer we emitted?
2782         CharUnits Alignment =
2783             CGM.getNaturalTypeAlignment(E->getType(),
2784                                         /* BaseInfo= */ nullptr,
2785                                         /* TBAAInfo= */ nullptr,
2786                                         /* forPointeeType= */ true);
2787         Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
2788       }
2789       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2790     }
2791 
2792     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2793 
2794     // Check for captured variables.
2795     if (E->refersToEnclosingVariableOrCapture()) {
2796       VD = VD->getCanonicalDecl();
2797       if (auto *FD = LambdaCaptureFields.lookup(VD))
2798         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2799       if (CapturedStmtInfo) {
2800         auto I = LocalDeclMap.find(VD);
2801         if (I != LocalDeclMap.end()) {
2802           LValue CapLVal;
2803           if (VD->getType()->isReferenceType())
2804             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2805                                                 AlignmentSource::Decl);
2806           else
2807             CapLVal = MakeAddrLValue(I->second, T);
2808           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2809           // in simd context.
2810           if (getLangOpts().OpenMP &&
2811               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2812             CapLVal.setNontemporal(/*Value=*/true);
2813           return CapLVal;
2814         }
2815         LValue CapLVal =
2816             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2817                                     CapturedStmtInfo->getContextValue());
2818         Address LValueAddress = CapLVal.getAddress(*this);
2819         CapLVal = MakeAddrLValue(
2820             Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
2821                     getContext().getDeclAlign(VD)),
2822             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2823             CapLVal.getTBAAInfo());
2824         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2825         // in simd context.
2826         if (getLangOpts().OpenMP &&
2827             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2828           CapLVal.setNontemporal(/*Value=*/true);
2829         return CapLVal;
2830       }
2831 
2832       assert(isa<BlockDecl>(CurCodeDecl));
2833       Address addr = GetAddrOfBlockDecl(VD);
2834       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2835     }
2836   }
2837 
2838   // FIXME: We should be able to assert this for FunctionDecls as well!
2839   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2840   // those with a valid source location.
2841   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2842           !E->getLocation().isValid()) &&
2843          "Should not use decl without marking it used!");
2844 
2845   if (ND->hasAttr<WeakRefAttr>()) {
2846     const auto *VD = cast<ValueDecl>(ND);
2847     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2848     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2849   }
2850 
2851   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2852     // Check if this is a global variable.
2853     if (VD->hasLinkage() || VD->isStaticDataMember())
2854       return EmitGlobalVarDeclLValue(*this, E, VD);
2855 
2856     Address addr = Address::invalid();
2857 
2858     // The variable should generally be present in the local decl map.
2859     auto iter = LocalDeclMap.find(VD);
2860     if (iter != LocalDeclMap.end()) {
2861       addr = iter->second;
2862 
2863     // Otherwise, it might be static local we haven't emitted yet for
2864     // some reason; most likely, because it's in an outer function.
2865     } else if (VD->isStaticLocal()) {
2866       llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
2867           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
2868       addr = Address(
2869           var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
2870 
2871     // No other cases for now.
2872     } else {
2873       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2874     }
2875 
2876 
2877     // Check for OpenMP threadprivate variables.
2878     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2879         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2880       return EmitThreadPrivateVarDeclLValue(
2881           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2882           E->getExprLoc());
2883     }
2884 
2885     // Drill into block byref variables.
2886     bool isBlockByref = VD->isEscapingByref();
2887     if (isBlockByref) {
2888       addr = emitBlockByrefAddress(addr, VD);
2889     }
2890 
2891     // Drill into reference types.
2892     LValue LV = VD->getType()->isReferenceType() ?
2893         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2894         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2895 
2896     bool isLocalStorage = VD->hasLocalStorage();
2897 
2898     bool NonGCable = isLocalStorage &&
2899                      !VD->getType()->isReferenceType() &&
2900                      !isBlockByref;
2901     if (NonGCable) {
2902       LV.getQuals().removeObjCGCAttr();
2903       LV.setNonGC(true);
2904     }
2905 
2906     bool isImpreciseLifetime =
2907       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2908     if (isImpreciseLifetime)
2909       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2910     setObjCGCLValueClass(getContext(), E, LV);
2911     return LV;
2912   }
2913 
2914   if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2915     LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2916 
2917     // Emit debuginfo for the function declaration if the target wants to.
2918     if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2919       if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2920         auto *Fn =
2921             cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2922         if (!Fn->getSubprogram())
2923           DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2924       }
2925     }
2926 
2927     return LV;
2928   }
2929 
2930   // FIXME: While we're emitting a binding from an enclosing scope, all other
2931   // DeclRefExprs we see should be implicitly treated as if they also refer to
2932   // an enclosing scope.
2933   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2934     return EmitLValue(BD->getBinding());
2935 
2936   // We can form DeclRefExprs naming GUID declarations when reconstituting
2937   // non-type template parameters into expressions.
2938   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2939     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2940                           AlignmentSource::Decl);
2941 
2942   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2943     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2944                           AlignmentSource::Decl);
2945 
2946   llvm_unreachable("Unhandled DeclRefExpr");
2947 }
2948 
2949 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2950   // __extension__ doesn't affect lvalue-ness.
2951   if (E->getOpcode() == UO_Extension)
2952     return EmitLValue(E->getSubExpr());
2953 
2954   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2955   switch (E->getOpcode()) {
2956   default: llvm_unreachable("Unknown unary operator lvalue!");
2957   case UO_Deref: {
2958     QualType T = E->getSubExpr()->getType()->getPointeeType();
2959     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2960 
2961     LValueBaseInfo BaseInfo;
2962     TBAAAccessInfo TBAAInfo;
2963     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2964                                             &TBAAInfo);
2965     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2966     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2967 
2968     // We should not generate __weak write barrier on indirect reference
2969     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2970     // But, we continue to generate __strong write barrier on indirect write
2971     // into a pointer to object.
2972     if (getLangOpts().ObjC &&
2973         getLangOpts().getGC() != LangOptions::NonGC &&
2974         LV.isObjCWeak())
2975       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2976     return LV;
2977   }
2978   case UO_Real:
2979   case UO_Imag: {
2980     LValue LV = EmitLValue(E->getSubExpr());
2981     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2982 
2983     // __real is valid on scalars.  This is a faster way of testing that.
2984     // __imag can only produce an rvalue on scalars.
2985     if (E->getOpcode() == UO_Real &&
2986         !LV.getAddress(*this).getElementType()->isStructTy()) {
2987       assert(E->getSubExpr()->getType()->isArithmeticType());
2988       return LV;
2989     }
2990 
2991     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2992 
2993     Address Component =
2994         (E->getOpcode() == UO_Real
2995              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2996              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2997     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2998                                    CGM.getTBAAInfoForSubobject(LV, T));
2999     ElemLV.getQuals().addQualifiers(LV.getQuals());
3000     return ElemLV;
3001   }
3002   case UO_PreInc:
3003   case UO_PreDec: {
3004     LValue LV = EmitLValue(E->getSubExpr());
3005     bool isInc = E->getOpcode() == UO_PreInc;
3006 
3007     if (E->getType()->isAnyComplexType())
3008       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
3009     else
3010       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
3011     return LV;
3012   }
3013   }
3014 }
3015 
3016 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
3017   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3018                         E->getType(), AlignmentSource::Decl);
3019 }
3020 
3021 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3022   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3023                         E->getType(), AlignmentSource::Decl);
3024 }
3025 
3026 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3027   auto SL = E->getFunctionName();
3028   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3029   StringRef FnName = CurFn->getName();
3030   if (FnName.startswith("\01"))
3031     FnName = FnName.substr(1);
3032   StringRef NameItems[] = {
3033       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3034   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3035   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3036     std::string Name = std::string(SL->getString());
3037     if (!Name.empty()) {
3038       unsigned Discriminator =
3039           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3040       if (Discriminator)
3041         Name += "_" + Twine(Discriminator + 1).str();
3042       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3043       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3044     } else {
3045       auto C =
3046           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3047       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3048     }
3049   }
3050   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3051   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3052 }
3053 
3054 /// Emit a type description suitable for use by a runtime sanitizer library. The
3055 /// format of a type descriptor is
3056 ///
3057 /// \code
3058 ///   { i16 TypeKind, i16 TypeInfo }
3059 /// \endcode
3060 ///
3061 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3062 /// integer, 1 for a floating point value, and -1 for anything else.
3063 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3064   // Only emit each type's descriptor once.
3065   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3066     return C;
3067 
3068   uint16_t TypeKind = -1;
3069   uint16_t TypeInfo = 0;
3070 
3071   if (T->isIntegerType()) {
3072     TypeKind = 0;
3073     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3074                (T->isSignedIntegerType() ? 1 : 0);
3075   } else if (T->isFloatingType()) {
3076     TypeKind = 1;
3077     TypeInfo = getContext().getTypeSize(T);
3078   }
3079 
3080   // Format the type name as if for a diagnostic, including quotes and
3081   // optionally an 'aka'.
3082   SmallString<32> Buffer;
3083   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3084                                     (intptr_t)T.getAsOpaquePtr(),
3085                                     StringRef(), StringRef(), None, Buffer,
3086                                     None);
3087 
3088   llvm::Constant *Components[] = {
3089     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3090     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3091   };
3092   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3093 
3094   auto *GV = new llvm::GlobalVariable(
3095       CGM.getModule(), Descriptor->getType(),
3096       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3097   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3098   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3099 
3100   // Remember the descriptor for this type.
3101   CGM.setTypeDescriptorInMap(T, GV);
3102 
3103   return GV;
3104 }
3105 
3106 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3107   llvm::Type *TargetTy = IntPtrTy;
3108 
3109   if (V->getType() == TargetTy)
3110     return V;
3111 
3112   // Floating-point types which fit into intptr_t are bitcast to integers
3113   // and then passed directly (after zero-extension, if necessary).
3114   if (V->getType()->isFloatingPointTy()) {
3115     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3116     if (Bits <= TargetTy->getIntegerBitWidth())
3117       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3118                                                          Bits));
3119   }
3120 
3121   // Integers which fit in intptr_t are zero-extended and passed directly.
3122   if (V->getType()->isIntegerTy() &&
3123       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3124     return Builder.CreateZExt(V, TargetTy);
3125 
3126   // Pointers are passed directly, everything else is passed by address.
3127   if (!V->getType()->isPointerTy()) {
3128     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3129     Builder.CreateStore(V, Ptr);
3130     V = Ptr.getPointer();
3131   }
3132   return Builder.CreatePtrToInt(V, TargetTy);
3133 }
3134 
3135 /// Emit a representation of a SourceLocation for passing to a handler
3136 /// in a sanitizer runtime library. The format for this data is:
3137 /// \code
3138 ///   struct SourceLocation {
3139 ///     const char *Filename;
3140 ///     int32_t Line, Column;
3141 ///   };
3142 /// \endcode
3143 /// For an invalid SourceLocation, the Filename pointer is null.
3144 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3145   llvm::Constant *Filename;
3146   int Line, Column;
3147 
3148   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3149   if (PLoc.isValid()) {
3150     StringRef FilenameString = PLoc.getFilename();
3151 
3152     int PathComponentsToStrip =
3153         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3154     if (PathComponentsToStrip < 0) {
3155       assert(PathComponentsToStrip != INT_MIN);
3156       int PathComponentsToKeep = -PathComponentsToStrip;
3157       auto I = llvm::sys::path::rbegin(FilenameString);
3158       auto E = llvm::sys::path::rend(FilenameString);
3159       while (I != E && --PathComponentsToKeep)
3160         ++I;
3161 
3162       FilenameString = FilenameString.substr(I - E);
3163     } else if (PathComponentsToStrip > 0) {
3164       auto I = llvm::sys::path::begin(FilenameString);
3165       auto E = llvm::sys::path::end(FilenameString);
3166       while (I != E && PathComponentsToStrip--)
3167         ++I;
3168 
3169       if (I != E)
3170         FilenameString =
3171             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3172       else
3173         FilenameString = llvm::sys::path::filename(FilenameString);
3174     }
3175 
3176     auto FilenameGV =
3177         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3178     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3179                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3180     Filename = FilenameGV.getPointer();
3181     Line = PLoc.getLine();
3182     Column = PLoc.getColumn();
3183   } else {
3184     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3185     Line = Column = 0;
3186   }
3187 
3188   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3189                             Builder.getInt32(Column)};
3190 
3191   return llvm::ConstantStruct::getAnon(Data);
3192 }
3193 
3194 namespace {
3195 /// Specify under what conditions this check can be recovered
3196 enum class CheckRecoverableKind {
3197   /// Always terminate program execution if this check fails.
3198   Unrecoverable,
3199   /// Check supports recovering, runtime has both fatal (noreturn) and
3200   /// non-fatal handlers for this check.
3201   Recoverable,
3202   /// Runtime conditionally aborts, always need to support recovery.
3203   AlwaysRecoverable
3204 };
3205 }
3206 
3207 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3208   assert(Kind.countPopulation() == 1);
3209   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3210     return CheckRecoverableKind::AlwaysRecoverable;
3211   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3212     return CheckRecoverableKind::Unrecoverable;
3213   else
3214     return CheckRecoverableKind::Recoverable;
3215 }
3216 
3217 namespace {
3218 struct SanitizerHandlerInfo {
3219   char const *const Name;
3220   unsigned Version;
3221 };
3222 }
3223 
3224 const SanitizerHandlerInfo SanitizerHandlers[] = {
3225 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3226     LIST_SANITIZER_CHECKS
3227 #undef SANITIZER_CHECK
3228 };
3229 
3230 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3231                                  llvm::FunctionType *FnType,
3232                                  ArrayRef<llvm::Value *> FnArgs,
3233                                  SanitizerHandler CheckHandler,
3234                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3235                                  llvm::BasicBlock *ContBB) {
3236   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3237   Optional<ApplyDebugLocation> DL;
3238   if (!CGF.Builder.getCurrentDebugLocation()) {
3239     // Ensure that the call has at least an artificial debug location.
3240     DL.emplace(CGF, SourceLocation());
3241   }
3242   bool NeedsAbortSuffix =
3243       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3244   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3245   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3246   const StringRef CheckName = CheckInfo.Name;
3247   std::string FnName = "__ubsan_handle_" + CheckName.str();
3248   if (CheckInfo.Version && !MinimalRuntime)
3249     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3250   if (MinimalRuntime)
3251     FnName += "_minimal";
3252   if (NeedsAbortSuffix)
3253     FnName += "_abort";
3254   bool MayReturn =
3255       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3256 
3257   llvm::AttrBuilder B(CGF.getLLVMContext());
3258   if (!MayReturn) {
3259     B.addAttribute(llvm::Attribute::NoReturn)
3260         .addAttribute(llvm::Attribute::NoUnwind);
3261   }
3262   B.addUWTableAttr(llvm::UWTableKind::Default);
3263 
3264   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3265       FnType, FnName,
3266       llvm::AttributeList::get(CGF.getLLVMContext(),
3267                                llvm::AttributeList::FunctionIndex, B),
3268       /*Local=*/true);
3269   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3270   if (!MayReturn) {
3271     HandlerCall->setDoesNotReturn();
3272     CGF.Builder.CreateUnreachable();
3273   } else {
3274     CGF.Builder.CreateBr(ContBB);
3275   }
3276 }
3277 
3278 void CodeGenFunction::EmitCheck(
3279     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3280     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3281     ArrayRef<llvm::Value *> DynamicArgs) {
3282   assert(IsSanitizerScope);
3283   assert(Checked.size() > 0);
3284   assert(CheckHandler >= 0 &&
3285          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3286   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3287 
3288   llvm::Value *FatalCond = nullptr;
3289   llvm::Value *RecoverableCond = nullptr;
3290   llvm::Value *TrapCond = nullptr;
3291   for (int i = 0, n = Checked.size(); i < n; ++i) {
3292     llvm::Value *Check = Checked[i].first;
3293     // -fsanitize-trap= overrides -fsanitize-recover=.
3294     llvm::Value *&Cond =
3295         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3296             ? TrapCond
3297             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3298                   ? RecoverableCond
3299                   : FatalCond;
3300     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3301   }
3302 
3303   if (TrapCond)
3304     EmitTrapCheck(TrapCond, CheckHandler);
3305   if (!FatalCond && !RecoverableCond)
3306     return;
3307 
3308   llvm::Value *JointCond;
3309   if (FatalCond && RecoverableCond)
3310     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3311   else
3312     JointCond = FatalCond ? FatalCond : RecoverableCond;
3313   assert(JointCond);
3314 
3315   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3316   assert(SanOpts.has(Checked[0].second));
3317 #ifndef NDEBUG
3318   for (int i = 1, n = Checked.size(); i < n; ++i) {
3319     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3320            "All recoverable kinds in a single check must be same!");
3321     assert(SanOpts.has(Checked[i].second));
3322   }
3323 #endif
3324 
3325   llvm::BasicBlock *Cont = createBasicBlock("cont");
3326   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3327   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3328   // Give hint that we very much don't expect to execute the handler
3329   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3330   llvm::MDBuilder MDHelper(getLLVMContext());
3331   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3332   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3333   EmitBlock(Handlers);
3334 
3335   // Handler functions take an i8* pointing to the (handler-specific) static
3336   // information block, followed by a sequence of intptr_t arguments
3337   // representing operand values.
3338   SmallVector<llvm::Value *, 4> Args;
3339   SmallVector<llvm::Type *, 4> ArgTypes;
3340   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3341     Args.reserve(DynamicArgs.size() + 1);
3342     ArgTypes.reserve(DynamicArgs.size() + 1);
3343 
3344     // Emit handler arguments and create handler function type.
3345     if (!StaticArgs.empty()) {
3346       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3347       auto *InfoPtr =
3348           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3349                                    llvm::GlobalVariable::PrivateLinkage, Info);
3350       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3351       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3352       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3353       ArgTypes.push_back(Int8PtrTy);
3354     }
3355 
3356     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3357       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3358       ArgTypes.push_back(IntPtrTy);
3359     }
3360   }
3361 
3362   llvm::FunctionType *FnType =
3363     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3364 
3365   if (!FatalCond || !RecoverableCond) {
3366     // Simple case: we need to generate a single handler call, either
3367     // fatal, or non-fatal.
3368     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3369                          (FatalCond != nullptr), Cont);
3370   } else {
3371     // Emit two handler calls: first one for set of unrecoverable checks,
3372     // another one for recoverable.
3373     llvm::BasicBlock *NonFatalHandlerBB =
3374         createBasicBlock("non_fatal." + CheckName);
3375     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3376     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3377     EmitBlock(FatalHandlerBB);
3378     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3379                          NonFatalHandlerBB);
3380     EmitBlock(NonFatalHandlerBB);
3381     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3382                          Cont);
3383   }
3384 
3385   EmitBlock(Cont);
3386 }
3387 
3388 void CodeGenFunction::EmitCfiSlowPathCheck(
3389     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3390     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3391   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3392 
3393   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3394   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3395 
3396   llvm::MDBuilder MDHelper(getLLVMContext());
3397   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3398   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3399 
3400   EmitBlock(CheckBB);
3401 
3402   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3403 
3404   llvm::CallInst *CheckCall;
3405   llvm::FunctionCallee SlowPathFn;
3406   if (WithDiag) {
3407     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3408     auto *InfoPtr =
3409         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3410                                  llvm::GlobalVariable::PrivateLinkage, Info);
3411     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3412     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3413 
3414     SlowPathFn = CGM.getModule().getOrInsertFunction(
3415         "__cfi_slowpath_diag",
3416         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3417                                 false));
3418     CheckCall = Builder.CreateCall(
3419         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3420   } else {
3421     SlowPathFn = CGM.getModule().getOrInsertFunction(
3422         "__cfi_slowpath",
3423         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3424     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3425   }
3426 
3427   CGM.setDSOLocal(
3428       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3429   CheckCall->setDoesNotThrow();
3430 
3431   EmitBlock(Cont);
3432 }
3433 
3434 // Emit a stub for __cfi_check function so that the linker knows about this
3435 // symbol in LTO mode.
3436 void CodeGenFunction::EmitCfiCheckStub() {
3437   llvm::Module *M = &CGM.getModule();
3438   auto &Ctx = M->getContext();
3439   llvm::Function *F = llvm::Function::Create(
3440       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3441       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3442   CGM.setDSOLocal(F);
3443   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3444   // FIXME: consider emitting an intrinsic call like
3445   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3446   // which can be lowered in CrossDSOCFI pass to the actual contents of
3447   // __cfi_check. This would allow inlining of __cfi_check calls.
3448   llvm::CallInst::Create(
3449       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3450   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3451 }
3452 
3453 // This function is basically a switch over the CFI failure kind, which is
3454 // extracted from CFICheckFailData (1st function argument). Each case is either
3455 // llvm.trap or a call to one of the two runtime handlers, based on
3456 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3457 // failure kind) traps, but this should really never happen.  CFICheckFailData
3458 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3459 // check kind; in this case __cfi_check_fail traps as well.
3460 void CodeGenFunction::EmitCfiCheckFail() {
3461   SanitizerScope SanScope(this);
3462   FunctionArgList Args;
3463   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3464                             ImplicitParamDecl::Other);
3465   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3466                             ImplicitParamDecl::Other);
3467   Args.push_back(&ArgData);
3468   Args.push_back(&ArgAddr);
3469 
3470   const CGFunctionInfo &FI =
3471     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3472 
3473   llvm::Function *F = llvm::Function::Create(
3474       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3475       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3476 
3477   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3478   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3479   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3480 
3481   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3482                 SourceLocation());
3483 
3484   // This function is not affected by NoSanitizeList. This function does
3485   // not have a source location, but "src:*" would still apply. Revert any
3486   // changes to SanOpts made in StartFunction.
3487   SanOpts = CGM.getLangOpts().Sanitize;
3488 
3489   llvm::Value *Data =
3490       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3491                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3492   llvm::Value *Addr =
3493       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3494                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3495 
3496   // Data == nullptr means the calling module has trap behaviour for this check.
3497   llvm::Value *DataIsNotNullPtr =
3498       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3499   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3500 
3501   llvm::StructType *SourceLocationTy =
3502       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3503   llvm::StructType *CfiCheckFailDataTy =
3504       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3505 
3506   llvm::Value *V = Builder.CreateConstGEP2_32(
3507       CfiCheckFailDataTy,
3508       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3509       0);
3510 
3511   Address CheckKindAddr(V, Int8Ty, getIntAlign());
3512   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3513 
3514   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3515       CGM.getLLVMContext(),
3516       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3517   llvm::Value *ValidVtable = Builder.CreateZExt(
3518       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3519                          {Addr, AllVtables}),
3520       IntPtrTy);
3521 
3522   const std::pair<int, SanitizerMask> CheckKinds[] = {
3523       {CFITCK_VCall, SanitizerKind::CFIVCall},
3524       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3525       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3526       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3527       {CFITCK_ICall, SanitizerKind::CFIICall}};
3528 
3529   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3530   for (auto CheckKindMaskPair : CheckKinds) {
3531     int Kind = CheckKindMaskPair.first;
3532     SanitizerMask Mask = CheckKindMaskPair.second;
3533     llvm::Value *Cond =
3534         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3535     if (CGM.getLangOpts().Sanitize.has(Mask))
3536       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3537                 {Data, Addr, ValidVtable});
3538     else
3539       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3540   }
3541 
3542   FinishFunction();
3543   // The only reference to this function will be created during LTO link.
3544   // Make sure it survives until then.
3545   CGM.addUsedGlobal(F);
3546 }
3547 
3548 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3549   if (SanOpts.has(SanitizerKind::Unreachable)) {
3550     SanitizerScope SanScope(this);
3551     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3552                              SanitizerKind::Unreachable),
3553               SanitizerHandler::BuiltinUnreachable,
3554               EmitCheckSourceLocation(Loc), None);
3555   }
3556   Builder.CreateUnreachable();
3557 }
3558 
3559 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3560                                     SanitizerHandler CheckHandlerID) {
3561   llvm::BasicBlock *Cont = createBasicBlock("cont");
3562 
3563   // If we're optimizing, collapse all calls to trap down to just one per
3564   // check-type per function to save on code size.
3565   if (TrapBBs.size() <= CheckHandlerID)
3566     TrapBBs.resize(CheckHandlerID + 1);
3567   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3568 
3569   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3570     TrapBB = createBasicBlock("trap");
3571     Builder.CreateCondBr(Checked, Cont, TrapBB);
3572     EmitBlock(TrapBB);
3573 
3574     llvm::CallInst *TrapCall =
3575         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3576                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3577 
3578     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3579       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3580                                     CGM.getCodeGenOpts().TrapFuncName);
3581       TrapCall->addFnAttr(A);
3582     }
3583     TrapCall->setDoesNotReturn();
3584     TrapCall->setDoesNotThrow();
3585     Builder.CreateUnreachable();
3586   } else {
3587     auto Call = TrapBB->begin();
3588     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3589 
3590     Call->applyMergedLocation(Call->getDebugLoc(),
3591                               Builder.getCurrentDebugLocation());
3592     Builder.CreateCondBr(Checked, Cont, TrapBB);
3593   }
3594 
3595   EmitBlock(Cont);
3596 }
3597 
3598 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3599   llvm::CallInst *TrapCall =
3600       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3601 
3602   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3603     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3604                                   CGM.getCodeGenOpts().TrapFuncName);
3605     TrapCall->addFnAttr(A);
3606   }
3607 
3608   return TrapCall;
3609 }
3610 
3611 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3612                                                  LValueBaseInfo *BaseInfo,
3613                                                  TBAAAccessInfo *TBAAInfo) {
3614   assert(E->getType()->isArrayType() &&
3615          "Array to pointer decay must have array source type!");
3616 
3617   // Expressions of array type can't be bitfields or vector elements.
3618   LValue LV = EmitLValue(E);
3619   Address Addr = LV.getAddress(*this);
3620 
3621   // If the array type was an incomplete type, we need to make sure
3622   // the decay ends up being the right type.
3623   llvm::Type *NewTy = ConvertType(E->getType());
3624   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3625 
3626   // Note that VLA pointers are always decayed, so we don't need to do
3627   // anything here.
3628   if (!E->getType()->isVariableArrayType()) {
3629     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3630            "Expected pointer to array");
3631     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3632   }
3633 
3634   // The result of this decay conversion points to an array element within the
3635   // base lvalue. However, since TBAA currently does not support representing
3636   // accesses to elements of member arrays, we conservatively represent accesses
3637   // to the pointee object as if it had no any base lvalue specified.
3638   // TODO: Support TBAA for member arrays.
3639   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3640   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3641   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3642 
3643   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3644 }
3645 
3646 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3647 /// array to pointer, return the array subexpression.
3648 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3649   // If this isn't just an array->pointer decay, bail out.
3650   const auto *CE = dyn_cast<CastExpr>(E);
3651   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3652     return nullptr;
3653 
3654   // If this is a decay from variable width array, bail out.
3655   const Expr *SubExpr = CE->getSubExpr();
3656   if (SubExpr->getType()->isVariableArrayType())
3657     return nullptr;
3658 
3659   return SubExpr;
3660 }
3661 
3662 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3663                                           llvm::Type *elemType,
3664                                           llvm::Value *ptr,
3665                                           ArrayRef<llvm::Value*> indices,
3666                                           bool inbounds,
3667                                           bool signedIndices,
3668                                           SourceLocation loc,
3669                                     const llvm::Twine &name = "arrayidx") {
3670   if (inbounds) {
3671     return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3672                                       CodeGenFunction::NotSubtraction, loc,
3673                                       name);
3674   } else {
3675     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3676   }
3677 }
3678 
3679 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3680                                       llvm::Value *idx,
3681                                       CharUnits eltSize) {
3682   // If we have a constant index, we can use the exact offset of the
3683   // element we're accessing.
3684   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3685     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3686     return arrayAlign.alignmentAtOffset(offset);
3687 
3688   // Otherwise, use the worst-case alignment for any element.
3689   } else {
3690     return arrayAlign.alignmentOfArrayElement(eltSize);
3691   }
3692 }
3693 
3694 static QualType getFixedSizeElementType(const ASTContext &ctx,
3695                                         const VariableArrayType *vla) {
3696   QualType eltType;
3697   do {
3698     eltType = vla->getElementType();
3699   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3700   return eltType;
3701 }
3702 
3703 /// Given an array base, check whether its member access belongs to a record
3704 /// with preserve_access_index attribute or not.
3705 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3706   if (!ArrayBase || !CGF.getDebugInfo())
3707     return false;
3708 
3709   // Only support base as either a MemberExpr or DeclRefExpr.
3710   // DeclRefExpr to cover cases like:
3711   //    struct s { int a; int b[10]; };
3712   //    struct s *p;
3713   //    p[1].a
3714   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3715   // p->b[5] is a MemberExpr example.
3716   const Expr *E = ArrayBase->IgnoreImpCasts();
3717   if (const auto *ME = dyn_cast<MemberExpr>(E))
3718     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3719 
3720   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3721     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3722     if (!VarDef)
3723       return false;
3724 
3725     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3726     if (!PtrT)
3727       return false;
3728 
3729     const auto *PointeeT = PtrT->getPointeeType()
3730                              ->getUnqualifiedDesugaredType();
3731     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3732       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3733     return false;
3734   }
3735 
3736   return false;
3737 }
3738 
3739 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3740                                      ArrayRef<llvm::Value *> indices,
3741                                      QualType eltType, bool inbounds,
3742                                      bool signedIndices, SourceLocation loc,
3743                                      QualType *arrayType = nullptr,
3744                                      const Expr *Base = nullptr,
3745                                      const llvm::Twine &name = "arrayidx") {
3746   // All the indices except that last must be zero.
3747 #ifndef NDEBUG
3748   for (auto idx : indices.drop_back())
3749     assert(isa<llvm::ConstantInt>(idx) &&
3750            cast<llvm::ConstantInt>(idx)->isZero());
3751 #endif
3752 
3753   // Determine the element size of the statically-sized base.  This is
3754   // the thing that the indices are expressed in terms of.
3755   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3756     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3757   }
3758 
3759   // We can use that to compute the best alignment of the element.
3760   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3761   CharUnits eltAlign =
3762     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3763 
3764   llvm::Value *eltPtr;
3765   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3766   if (!LastIndex ||
3767       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3768     eltPtr = emitArraySubscriptGEP(
3769         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3770         signedIndices, loc, name);
3771   } else {
3772     // Remember the original array subscript for bpf target
3773     unsigned idx = LastIndex->getZExtValue();
3774     llvm::DIType *DbgInfo = nullptr;
3775     if (arrayType)
3776       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3777     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3778                                                         addr.getPointer(),
3779                                                         indices.size() - 1,
3780                                                         idx, DbgInfo);
3781   }
3782 
3783   return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
3784 }
3785 
3786 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3787                                                bool Accessed) {
3788   // The index must always be an integer, which is not an aggregate.  Emit it
3789   // in lexical order (this complexity is, sadly, required by C++17).
3790   llvm::Value *IdxPre =
3791       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3792   bool SignedIndices = false;
3793   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3794     auto *Idx = IdxPre;
3795     if (E->getLHS() != E->getIdx()) {
3796       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3797       Idx = EmitScalarExpr(E->getIdx());
3798     }
3799 
3800     QualType IdxTy = E->getIdx()->getType();
3801     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3802     SignedIndices |= IdxSigned;
3803 
3804     if (SanOpts.has(SanitizerKind::ArrayBounds))
3805       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3806 
3807     // Extend or truncate the index type to 32 or 64-bits.
3808     if (Promote && Idx->getType() != IntPtrTy)
3809       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3810 
3811     return Idx;
3812   };
3813   IdxPre = nullptr;
3814 
3815   // If the base is a vector type, then we are forming a vector element lvalue
3816   // with this subscript.
3817   if (E->getBase()->getType()->isVectorType() &&
3818       !isa<ExtVectorElementExpr>(E->getBase())) {
3819     // Emit the vector as an lvalue to get its address.
3820     LValue LHS = EmitLValue(E->getBase());
3821     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3822     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3823     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3824                                  E->getBase()->getType(), LHS.getBaseInfo(),
3825                                  TBAAAccessInfo());
3826   }
3827 
3828   // All the other cases basically behave like simple offsetting.
3829 
3830   // Handle the extvector case we ignored above.
3831   if (isa<ExtVectorElementExpr>(E->getBase())) {
3832     LValue LV = EmitLValue(E->getBase());
3833     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3834     Address Addr = EmitExtVectorElementLValue(LV);
3835 
3836     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3837     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3838                                  SignedIndices, E->getExprLoc());
3839     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3840                           CGM.getTBAAInfoForSubobject(LV, EltType));
3841   }
3842 
3843   LValueBaseInfo EltBaseInfo;
3844   TBAAAccessInfo EltTBAAInfo;
3845   Address Addr = Address::invalid();
3846   if (const VariableArrayType *vla =
3847            getContext().getAsVariableArrayType(E->getType())) {
3848     // The base must be a pointer, which is not an aggregate.  Emit
3849     // it.  It needs to be emitted first in case it's what captures
3850     // the VLA bounds.
3851     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3852     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3853 
3854     // The element count here is the total number of non-VLA elements.
3855     llvm::Value *numElements = getVLASize(vla).NumElts;
3856 
3857     // Effectively, the multiply by the VLA size is part of the GEP.
3858     // GEP indexes are signed, and scaling an index isn't permitted to
3859     // signed-overflow, so we use the same semantics for our explicit
3860     // multiply.  We suppress this if overflow is not undefined behavior.
3861     if (getLangOpts().isSignedOverflowDefined()) {
3862       Idx = Builder.CreateMul(Idx, numElements);
3863     } else {
3864       Idx = Builder.CreateNSWMul(Idx, numElements);
3865     }
3866 
3867     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3868                                  !getLangOpts().isSignedOverflowDefined(),
3869                                  SignedIndices, E->getExprLoc());
3870 
3871   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3872     // Indexing over an interface, as in "NSString *P; P[4];"
3873 
3874     // Emit the base pointer.
3875     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3876     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3877 
3878     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3879     llvm::Value *InterfaceSizeVal =
3880         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3881 
3882     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3883 
3884     // We don't necessarily build correct LLVM struct types for ObjC
3885     // interfaces, so we can't rely on GEP to do this scaling
3886     // correctly, so we need to cast to i8*.  FIXME: is this actually
3887     // true?  A lot of other things in the fragile ABI would break...
3888     llvm::Type *OrigBaseElemTy = Addr.getElementType();
3889     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3890 
3891     // Do the GEP.
3892     CharUnits EltAlign =
3893       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3894     llvm::Value *EltPtr =
3895         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3896                               ScaledIdx, false, SignedIndices, E->getExprLoc());
3897     Addr = Address(EltPtr, Addr.getElementType(), EltAlign);
3898 
3899     // Cast back.
3900     Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy);
3901   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3902     // If this is A[i] where A is an array, the frontend will have decayed the
3903     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3904     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3905     // "gep x, i" here.  Emit one "gep A, 0, i".
3906     assert(Array->getType()->isArrayType() &&
3907            "Array to pointer decay must have array source type!");
3908     LValue ArrayLV;
3909     // For simple multidimensional array indexing, set the 'accessed' flag for
3910     // better bounds-checking of the base expression.
3911     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3912       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3913     else
3914       ArrayLV = EmitLValue(Array);
3915     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3916 
3917     // Propagate the alignment from the array itself to the result.
3918     QualType arrayType = Array->getType();
3919     Addr = emitArraySubscriptGEP(
3920         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3921         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3922         E->getExprLoc(), &arrayType, E->getBase());
3923     EltBaseInfo = ArrayLV.getBaseInfo();
3924     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3925   } else {
3926     // The base must be a pointer; emit it with an estimate of its alignment.
3927     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3928     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3929     QualType ptrType = E->getBase()->getType();
3930     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3931                                  !getLangOpts().isSignedOverflowDefined(),
3932                                  SignedIndices, E->getExprLoc(), &ptrType,
3933                                  E->getBase());
3934   }
3935 
3936   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3937 
3938   if (getLangOpts().ObjC &&
3939       getLangOpts().getGC() != LangOptions::NonGC) {
3940     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3941     setObjCGCLValueClass(getContext(), E, LV);
3942   }
3943   return LV;
3944 }
3945 
3946 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3947   assert(
3948       !E->isIncomplete() &&
3949       "incomplete matrix subscript expressions should be rejected during Sema");
3950   LValue Base = EmitLValue(E->getBase());
3951   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3952   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3953   llvm::Value *NumRows = Builder.getIntN(
3954       RowIdx->getType()->getScalarSizeInBits(),
3955       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3956   llvm::Value *FinalIdx =
3957       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3958   return LValue::MakeMatrixElt(
3959       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3960       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3961 }
3962 
3963 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3964                                        LValueBaseInfo &BaseInfo,
3965                                        TBAAAccessInfo &TBAAInfo,
3966                                        QualType BaseTy, QualType ElTy,
3967                                        bool IsLowerBound) {
3968   LValue BaseLVal;
3969   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3970     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3971     if (BaseTy->isArrayType()) {
3972       Address Addr = BaseLVal.getAddress(CGF);
3973       BaseInfo = BaseLVal.getBaseInfo();
3974 
3975       // If the array type was an incomplete type, we need to make sure
3976       // the decay ends up being the right type.
3977       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3978       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3979 
3980       // Note that VLA pointers are always decayed, so we don't need to do
3981       // anything here.
3982       if (!BaseTy->isVariableArrayType()) {
3983         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3984                "Expected pointer to array");
3985         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3986       }
3987 
3988       return CGF.Builder.CreateElementBitCast(Addr,
3989                                               CGF.ConvertTypeForMem(ElTy));
3990     }
3991     LValueBaseInfo TypeBaseInfo;
3992     TBAAAccessInfo TypeTBAAInfo;
3993     CharUnits Align =
3994         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3995     BaseInfo.mergeForCast(TypeBaseInfo);
3996     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3997     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
3998                    CGF.ConvertTypeForMem(ElTy), Align);
3999   }
4000   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
4001 }
4002 
4003 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
4004                                                 bool IsLowerBound) {
4005   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
4006   QualType ResultExprTy;
4007   if (auto *AT = getContext().getAsArrayType(BaseTy))
4008     ResultExprTy = AT->getElementType();
4009   else
4010     ResultExprTy = BaseTy->getPointeeType();
4011   llvm::Value *Idx = nullptr;
4012   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
4013     // Requesting lower bound or upper bound, but without provided length and
4014     // without ':' symbol for the default length -> length = 1.
4015     // Idx = LowerBound ?: 0;
4016     if (auto *LowerBound = E->getLowerBound()) {
4017       Idx = Builder.CreateIntCast(
4018           EmitScalarExpr(LowerBound), IntPtrTy,
4019           LowerBound->getType()->hasSignedIntegerRepresentation());
4020     } else
4021       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4022   } else {
4023     // Try to emit length or lower bound as constant. If this is possible, 1
4024     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4025     // IR (LB + Len) - 1.
4026     auto &C = CGM.getContext();
4027     auto *Length = E->getLength();
4028     llvm::APSInt ConstLength;
4029     if (Length) {
4030       // Idx = LowerBound + Length - 1;
4031       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4032         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4033         Length = nullptr;
4034       }
4035       auto *LowerBound = E->getLowerBound();
4036       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4037       if (LowerBound) {
4038         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
4039           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4040           LowerBound = nullptr;
4041         }
4042       }
4043       if (!Length)
4044         --ConstLength;
4045       else if (!LowerBound)
4046         --ConstLowerBound;
4047 
4048       if (Length || LowerBound) {
4049         auto *LowerBoundVal =
4050             LowerBound
4051                 ? Builder.CreateIntCast(
4052                       EmitScalarExpr(LowerBound), IntPtrTy,
4053                       LowerBound->getType()->hasSignedIntegerRepresentation())
4054                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4055         auto *LengthVal =
4056             Length
4057                 ? Builder.CreateIntCast(
4058                       EmitScalarExpr(Length), IntPtrTy,
4059                       Length->getType()->hasSignedIntegerRepresentation())
4060                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4061         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4062                                 /*HasNUW=*/false,
4063                                 !getLangOpts().isSignedOverflowDefined());
4064         if (Length && LowerBound) {
4065           Idx = Builder.CreateSub(
4066               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4067               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4068         }
4069       } else
4070         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4071     } else {
4072       // Idx = ArraySize - 1;
4073       QualType ArrayTy = BaseTy->isPointerType()
4074                              ? E->getBase()->IgnoreParenImpCasts()->getType()
4075                              : BaseTy;
4076       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4077         Length = VAT->getSizeExpr();
4078         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4079           ConstLength = *L;
4080           Length = nullptr;
4081         }
4082       } else {
4083         auto *CAT = C.getAsConstantArrayType(ArrayTy);
4084         ConstLength = CAT->getSize();
4085       }
4086       if (Length) {
4087         auto *LengthVal = Builder.CreateIntCast(
4088             EmitScalarExpr(Length), IntPtrTy,
4089             Length->getType()->hasSignedIntegerRepresentation());
4090         Idx = Builder.CreateSub(
4091             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4092             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4093       } else {
4094         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4095         --ConstLength;
4096         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4097       }
4098     }
4099   }
4100   assert(Idx);
4101 
4102   Address EltPtr = Address::invalid();
4103   LValueBaseInfo BaseInfo;
4104   TBAAAccessInfo TBAAInfo;
4105   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4106     // The base must be a pointer, which is not an aggregate.  Emit
4107     // it.  It needs to be emitted first in case it's what captures
4108     // the VLA bounds.
4109     Address Base =
4110         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4111                                 BaseTy, VLA->getElementType(), IsLowerBound);
4112     // The element count here is the total number of non-VLA elements.
4113     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4114 
4115     // Effectively, the multiply by the VLA size is part of the GEP.
4116     // GEP indexes are signed, and scaling an index isn't permitted to
4117     // signed-overflow, so we use the same semantics for our explicit
4118     // multiply.  We suppress this if overflow is not undefined behavior.
4119     if (getLangOpts().isSignedOverflowDefined())
4120       Idx = Builder.CreateMul(Idx, NumElements);
4121     else
4122       Idx = Builder.CreateNSWMul(Idx, NumElements);
4123     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4124                                    !getLangOpts().isSignedOverflowDefined(),
4125                                    /*signedIndices=*/false, E->getExprLoc());
4126   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4127     // If this is A[i] where A is an array, the frontend will have decayed the
4128     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4129     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4130     // "gep x, i" here.  Emit one "gep A, 0, i".
4131     assert(Array->getType()->isArrayType() &&
4132            "Array to pointer decay must have array source type!");
4133     LValue ArrayLV;
4134     // For simple multidimensional array indexing, set the 'accessed' flag for
4135     // better bounds-checking of the base expression.
4136     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4137       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4138     else
4139       ArrayLV = EmitLValue(Array);
4140 
4141     // Propagate the alignment from the array itself to the result.
4142     EltPtr = emitArraySubscriptGEP(
4143         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4144         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4145         /*signedIndices=*/false, E->getExprLoc());
4146     BaseInfo = ArrayLV.getBaseInfo();
4147     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4148   } else {
4149     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4150                                            TBAAInfo, BaseTy, ResultExprTy,
4151                                            IsLowerBound);
4152     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4153                                    !getLangOpts().isSignedOverflowDefined(),
4154                                    /*signedIndices=*/false, E->getExprLoc());
4155   }
4156 
4157   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4158 }
4159 
4160 LValue CodeGenFunction::
4161 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4162   // Emit the base vector as an l-value.
4163   LValue Base;
4164 
4165   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4166   if (E->isArrow()) {
4167     // If it is a pointer to a vector, emit the address and form an lvalue with
4168     // it.
4169     LValueBaseInfo BaseInfo;
4170     TBAAAccessInfo TBAAInfo;
4171     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4172     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4173     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4174     Base.getQuals().removeObjCGCAttr();
4175   } else if (E->getBase()->isGLValue()) {
4176     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4177     // emit the base as an lvalue.
4178     assert(E->getBase()->getType()->isVectorType());
4179     Base = EmitLValue(E->getBase());
4180   } else {
4181     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4182     assert(E->getBase()->getType()->isVectorType() &&
4183            "Result must be a vector");
4184     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4185 
4186     // Store the vector to memory (because LValue wants an address).
4187     Address VecMem = CreateMemTemp(E->getBase()->getType());
4188     Builder.CreateStore(Vec, VecMem);
4189     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4190                           AlignmentSource::Decl);
4191   }
4192 
4193   QualType type =
4194     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4195 
4196   // Encode the element access list into a vector of unsigned indices.
4197   SmallVector<uint32_t, 4> Indices;
4198   E->getEncodedElementAccess(Indices);
4199 
4200   if (Base.isSimple()) {
4201     llvm::Constant *CV =
4202         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4203     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4204                                     Base.getBaseInfo(), TBAAAccessInfo());
4205   }
4206   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4207 
4208   llvm::Constant *BaseElts = Base.getExtVectorElts();
4209   SmallVector<llvm::Constant *, 4> CElts;
4210 
4211   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4212     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4213   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4214   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4215                                   Base.getBaseInfo(), TBAAAccessInfo());
4216 }
4217 
4218 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4219   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4220     EmitIgnoredExpr(E->getBase());
4221     return EmitDeclRefLValue(DRE);
4222   }
4223 
4224   Expr *BaseExpr = E->getBase();
4225   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4226   LValue BaseLV;
4227   if (E->isArrow()) {
4228     LValueBaseInfo BaseInfo;
4229     TBAAAccessInfo TBAAInfo;
4230     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4231     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4232     SanitizerSet SkippedChecks;
4233     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4234     if (IsBaseCXXThis)
4235       SkippedChecks.set(SanitizerKind::Alignment, true);
4236     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4237       SkippedChecks.set(SanitizerKind::Null, true);
4238     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4239                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4240     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4241   } else
4242     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4243 
4244   NamedDecl *ND = E->getMemberDecl();
4245   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4246     LValue LV = EmitLValueForField(BaseLV, Field);
4247     setObjCGCLValueClass(getContext(), E, LV);
4248     if (getLangOpts().OpenMP) {
4249       // If the member was explicitly marked as nontemporal, mark it as
4250       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4251       // to children as nontemporal too.
4252       if ((IsWrappedCXXThis(BaseExpr) &&
4253            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4254           BaseLV.isNontemporal())
4255         LV.setNontemporal(/*Value=*/true);
4256     }
4257     return LV;
4258   }
4259 
4260   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4261     return EmitFunctionDeclLValue(*this, E, FD);
4262 
4263   llvm_unreachable("Unhandled member declaration!");
4264 }
4265 
4266 /// Given that we are currently emitting a lambda, emit an l-value for
4267 /// one of its members.
4268 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4269   if (CurCodeDecl) {
4270     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4271     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4272   }
4273   QualType LambdaTagType =
4274     getContext().getTagDeclType(Field->getParent());
4275   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4276   return EmitLValueForField(LambdaLV, Field);
4277 }
4278 
4279 /// Get the field index in the debug info. The debug info structure/union
4280 /// will ignore the unnamed bitfields.
4281 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4282                                              unsigned FieldIndex) {
4283   unsigned I = 0, Skipped = 0;
4284 
4285   for (auto F : Rec->getDefinition()->fields()) {
4286     if (I == FieldIndex)
4287       break;
4288     if (F->isUnnamedBitfield())
4289       Skipped++;
4290     I++;
4291   }
4292 
4293   return FieldIndex - Skipped;
4294 }
4295 
4296 /// Get the address of a zero-sized field within a record. The resulting
4297 /// address doesn't necessarily have the right type.
4298 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4299                                        const FieldDecl *Field) {
4300   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4301       CGF.getContext().getFieldOffset(Field));
4302   if (Offset.isZero())
4303     return Base;
4304   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4305   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4306 }
4307 
4308 /// Drill down to the storage of a field without walking into
4309 /// reference types.
4310 ///
4311 /// The resulting address doesn't necessarily have the right type.
4312 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4313                                       const FieldDecl *field) {
4314   if (field->isZeroSize(CGF.getContext()))
4315     return emitAddrOfZeroSizeField(CGF, base, field);
4316 
4317   const RecordDecl *rec = field->getParent();
4318 
4319   unsigned idx =
4320     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4321 
4322   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4323 }
4324 
4325 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4326                                         Address addr, const FieldDecl *field) {
4327   const RecordDecl *rec = field->getParent();
4328   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4329       base.getType(), rec->getLocation());
4330 
4331   unsigned idx =
4332       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4333 
4334   return CGF.Builder.CreatePreserveStructAccessIndex(
4335       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4336 }
4337 
4338 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4339   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4340   if (!RD)
4341     return false;
4342 
4343   if (RD->isDynamicClass())
4344     return true;
4345 
4346   for (const auto &Base : RD->bases())
4347     if (hasAnyVptr(Base.getType(), Context))
4348       return true;
4349 
4350   for (const FieldDecl *Field : RD->fields())
4351     if (hasAnyVptr(Field->getType(), Context))
4352       return true;
4353 
4354   return false;
4355 }
4356 
4357 LValue CodeGenFunction::EmitLValueForField(LValue base,
4358                                            const FieldDecl *field) {
4359   LValueBaseInfo BaseInfo = base.getBaseInfo();
4360 
4361   if (field->isBitField()) {
4362     const CGRecordLayout &RL =
4363         CGM.getTypes().getCGRecordLayout(field->getParent());
4364     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4365     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4366                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4367                              Info.VolatileStorageSize != 0 &&
4368                              field->getType()
4369                                  .withCVRQualifiers(base.getVRQualifiers())
4370                                  .isVolatileQualified();
4371     Address Addr = base.getAddress(*this);
4372     unsigned Idx = RL.getLLVMFieldNo(field);
4373     const RecordDecl *rec = field->getParent();
4374     if (!UseVolatile) {
4375       if (!IsInPreservedAIRegion &&
4376           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4377         if (Idx != 0)
4378           // For structs, we GEP to the field that the record layout suggests.
4379           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4380       } else {
4381         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4382             getContext().getRecordType(rec), rec->getLocation());
4383         Addr = Builder.CreatePreserveStructAccessIndex(
4384             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4385             DbgInfo);
4386       }
4387     }
4388     const unsigned SS =
4389         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4390     // Get the access type.
4391     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4392     if (Addr.getElementType() != FieldIntTy)
4393       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4394     if (UseVolatile) {
4395       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4396       if (VolatileOffset)
4397         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4398     }
4399 
4400     QualType fieldType =
4401         field->getType().withCVRQualifiers(base.getVRQualifiers());
4402     // TODO: Support TBAA for bit fields.
4403     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4404     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4405                                 TBAAAccessInfo());
4406   }
4407 
4408   // Fields of may-alias structures are may-alias themselves.
4409   // FIXME: this should get propagated down through anonymous structs
4410   // and unions.
4411   QualType FieldType = field->getType();
4412   const RecordDecl *rec = field->getParent();
4413   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4414   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4415   TBAAAccessInfo FieldTBAAInfo;
4416   if (base.getTBAAInfo().isMayAlias() ||
4417           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4418     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4419   } else if (rec->isUnion()) {
4420     // TODO: Support TBAA for unions.
4421     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4422   } else {
4423     // If no base type been assigned for the base access, then try to generate
4424     // one for this base lvalue.
4425     FieldTBAAInfo = base.getTBAAInfo();
4426     if (!FieldTBAAInfo.BaseType) {
4427         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4428         assert(!FieldTBAAInfo.Offset &&
4429                "Nonzero offset for an access with no base type!");
4430     }
4431 
4432     // Adjust offset to be relative to the base type.
4433     const ASTRecordLayout &Layout =
4434         getContext().getASTRecordLayout(field->getParent());
4435     unsigned CharWidth = getContext().getCharWidth();
4436     if (FieldTBAAInfo.BaseType)
4437       FieldTBAAInfo.Offset +=
4438           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4439 
4440     // Update the final access type and size.
4441     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4442     FieldTBAAInfo.Size =
4443         getContext().getTypeSizeInChars(FieldType).getQuantity();
4444   }
4445 
4446   Address addr = base.getAddress(*this);
4447   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4448     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4449         ClassDef->isDynamicClass()) {
4450       // Getting to any field of dynamic object requires stripping dynamic
4451       // information provided by invariant.group.  This is because accessing
4452       // fields may leak the real address of dynamic object, which could result
4453       // in miscompilation when leaked pointer would be compared.
4454       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4455       addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4456     }
4457   }
4458 
4459   unsigned RecordCVR = base.getVRQualifiers();
4460   if (rec->isUnion()) {
4461     // For unions, there is no pointer adjustment.
4462     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4463         hasAnyVptr(FieldType, getContext()))
4464       // Because unions can easily skip invariant.barriers, we need to add
4465       // a barrier every time CXXRecord field with vptr is referenced.
4466       addr = Builder.CreateLaunderInvariantGroup(addr);
4467 
4468     if (IsInPreservedAIRegion ||
4469         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4470       // Remember the original union field index
4471       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4472           rec->getLocation());
4473       addr = Address(
4474           Builder.CreatePreserveUnionAccessIndex(
4475               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4476           addr.getElementType(), addr.getAlignment());
4477     }
4478 
4479     if (FieldType->isReferenceType())
4480       addr = Builder.CreateElementBitCast(
4481           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4482   } else {
4483     if (!IsInPreservedAIRegion &&
4484         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4485       // For structs, we GEP to the field that the record layout suggests.
4486       addr = emitAddrOfFieldStorage(*this, addr, field);
4487     else
4488       // Remember the original struct field index
4489       addr = emitPreserveStructAccess(*this, base, addr, field);
4490   }
4491 
4492   // If this is a reference field, load the reference right now.
4493   if (FieldType->isReferenceType()) {
4494     LValue RefLVal =
4495         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4496     if (RecordCVR & Qualifiers::Volatile)
4497       RefLVal.getQuals().addVolatile();
4498     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4499 
4500     // Qualifiers on the struct don't apply to the referencee.
4501     RecordCVR = 0;
4502     FieldType = FieldType->getPointeeType();
4503   }
4504 
4505   // Make sure that the address is pointing to the right type.  This is critical
4506   // for both unions and structs.  A union needs a bitcast, a struct element
4507   // will need a bitcast if the LLVM type laid out doesn't match the desired
4508   // type.
4509   addr = Builder.CreateElementBitCast(
4510       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4511 
4512   if (field->hasAttr<AnnotateAttr>())
4513     addr = EmitFieldAnnotations(field, addr);
4514 
4515   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4516   LV.getQuals().addCVRQualifiers(RecordCVR);
4517 
4518   // __weak attribute on a field is ignored.
4519   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4520     LV.getQuals().removeObjCGCAttr();
4521 
4522   return LV;
4523 }
4524 
4525 LValue
4526 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4527                                                   const FieldDecl *Field) {
4528   QualType FieldType = Field->getType();
4529 
4530   if (!FieldType->isReferenceType())
4531     return EmitLValueForField(Base, Field);
4532 
4533   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4534 
4535   // Make sure that the address is pointing to the right type.
4536   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4537   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4538 
4539   // TODO: Generate TBAA information that describes this access as a structure
4540   // member access and not just an access to an object of the field's type. This
4541   // should be similar to what we do in EmitLValueForField().
4542   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4543   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4544   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4545   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4546                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4547 }
4548 
4549 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4550   if (E->isFileScope()) {
4551     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4552     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4553   }
4554   if (E->getType()->isVariablyModifiedType())
4555     // make sure to emit the VLA size.
4556     EmitVariablyModifiedType(E->getType());
4557 
4558   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4559   const Expr *InitExpr = E->getInitializer();
4560   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4561 
4562   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4563                    /*Init*/ true);
4564 
4565   // Block-scope compound literals are destroyed at the end of the enclosing
4566   // scope in C.
4567   if (!getLangOpts().CPlusPlus)
4568     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4569       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4570                                   E->getType(), getDestroyer(DtorKind),
4571                                   DtorKind & EHCleanup);
4572 
4573   return Result;
4574 }
4575 
4576 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4577   if (!E->isGLValue())
4578     // Initializing an aggregate temporary in C++11: T{...}.
4579     return EmitAggExprToLValue(E);
4580 
4581   // An lvalue initializer list must be initializing a reference.
4582   assert(E->isTransparent() && "non-transparent glvalue init list");
4583   return EmitLValue(E->getInit(0));
4584 }
4585 
4586 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4587 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4588 /// LValue is returned and the current block has been terminated.
4589 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4590                                                     const Expr *Operand) {
4591   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4592     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4593     return None;
4594   }
4595 
4596   return CGF.EmitLValue(Operand);
4597 }
4598 
4599 namespace {
4600 // Handle the case where the condition is a constant evaluatable simple integer,
4601 // which means we don't have to separately handle the true/false blocks.
4602 llvm::Optional<LValue> HandleConditionalOperatorLValueSimpleCase(
4603     CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
4604   const Expr *condExpr = E->getCond();
4605   bool CondExprBool;
4606   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4607     const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
4608     if (!CondExprBool)
4609       std::swap(Live, Dead);
4610 
4611     if (!CGF.ContainsLabel(Dead)) {
4612       // If the true case is live, we need to track its region.
4613       if (CondExprBool)
4614         CGF.incrementProfileCounter(E);
4615       // If a throw expression we emit it and return an undefined lvalue
4616       // because it can't be used.
4617       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
4618         CGF.EmitCXXThrowExpr(ThrowExpr);
4619         llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
4620         llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy);
4621         return CGF.MakeAddrLValue(
4622             Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
4623             Dead->getType());
4624       }
4625       return CGF.EmitLValue(Live);
4626     }
4627   }
4628   return llvm::None;
4629 }
4630 struct ConditionalInfo {
4631   llvm::BasicBlock *lhsBlock, *rhsBlock;
4632   Optional<LValue> LHS, RHS;
4633 };
4634 
4635 // Create and generate the 3 blocks for a conditional operator.
4636 // Leaves the 'current block' in the continuation basic block.
4637 template<typename FuncTy>
4638 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
4639                                       const AbstractConditionalOperator *E,
4640                                       const FuncTy &BranchGenFunc) {
4641   ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
4642                        CGF.createBasicBlock("cond.false"), llvm::None,
4643                        llvm::None};
4644   llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
4645 
4646   CodeGenFunction::ConditionalEvaluation eval(CGF);
4647   CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
4648                            CGF.getProfileCount(E));
4649 
4650   // Any temporaries created here are conditional.
4651   CGF.EmitBlock(Info.lhsBlock);
4652   CGF.incrementProfileCounter(E);
4653   eval.begin(CGF);
4654   Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
4655   eval.end(CGF);
4656   Info.lhsBlock = CGF.Builder.GetInsertBlock();
4657 
4658   if (Info.LHS)
4659     CGF.Builder.CreateBr(endBlock);
4660 
4661   // Any temporaries created here are conditional.
4662   CGF.EmitBlock(Info.rhsBlock);
4663   eval.begin(CGF);
4664   Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
4665   eval.end(CGF);
4666   Info.rhsBlock = CGF.Builder.GetInsertBlock();
4667   CGF.EmitBlock(endBlock);
4668 
4669   return Info;
4670 }
4671 } // namespace
4672 
4673 void CodeGenFunction::EmitIgnoredConditionalOperator(
4674     const AbstractConditionalOperator *E) {
4675   if (!E->isGLValue()) {
4676     // ?: here should be an aggregate.
4677     assert(hasAggregateEvaluationKind(E->getType()) &&
4678            "Unexpected conditional operator!");
4679     return (void)EmitAggExprToLValue(E);
4680   }
4681 
4682   OpaqueValueMapping binding(*this, E);
4683   if (HandleConditionalOperatorLValueSimpleCase(*this, E))
4684     return;
4685 
4686   EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
4687     CGF.EmitIgnoredExpr(E);
4688     return LValue{};
4689   });
4690 }
4691 LValue CodeGenFunction::EmitConditionalOperatorLValue(
4692     const AbstractConditionalOperator *expr) {
4693   if (!expr->isGLValue()) {
4694     // ?: here should be an aggregate.
4695     assert(hasAggregateEvaluationKind(expr->getType()) &&
4696            "Unexpected conditional operator!");
4697     return EmitAggExprToLValue(expr);
4698   }
4699 
4700   OpaqueValueMapping binding(*this, expr);
4701   if (llvm::Optional<LValue> Res =
4702           HandleConditionalOperatorLValueSimpleCase(*this, expr))
4703     return *Res;
4704 
4705   ConditionalInfo Info = EmitConditionalBlocks(
4706       *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
4707         return EmitLValueOrThrowExpression(CGF, E);
4708       });
4709 
4710   if ((Info.LHS && !Info.LHS->isSimple()) ||
4711       (Info.RHS && !Info.RHS->isSimple()))
4712     return EmitUnsupportedLValue(expr, "conditional operator");
4713 
4714   if (Info.LHS && Info.RHS) {
4715     Address lhsAddr = Info.LHS->getAddress(*this);
4716     Address rhsAddr = Info.RHS->getAddress(*this);
4717     llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
4718     phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock);
4719     phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock);
4720     Address result(phi, lhsAddr.getElementType(),
4721                    std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
4722     AlignmentSource alignSource =
4723         std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
4724                  Info.RHS->getBaseInfo().getAlignmentSource());
4725     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4726         Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
4727     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4728                           TBAAInfo);
4729   } else {
4730     assert((Info.LHS || Info.RHS) &&
4731            "both operands of glvalue conditional are throw-expressions?");
4732     return Info.LHS ? *Info.LHS : *Info.RHS;
4733   }
4734 }
4735 
4736 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4737 /// type. If the cast is to a reference, we can have the usual lvalue result,
4738 /// otherwise if a cast is needed by the code generator in an lvalue context,
4739 /// then it must mean that we need the address of an aggregate in order to
4740 /// access one of its members.  This can happen for all the reasons that casts
4741 /// are permitted with aggregate result, including noop aggregate casts, and
4742 /// cast from scalar to union.
4743 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4744   switch (E->getCastKind()) {
4745   case CK_ToVoid:
4746   case CK_BitCast:
4747   case CK_LValueToRValueBitCast:
4748   case CK_ArrayToPointerDecay:
4749   case CK_FunctionToPointerDecay:
4750   case CK_NullToMemberPointer:
4751   case CK_NullToPointer:
4752   case CK_IntegralToPointer:
4753   case CK_PointerToIntegral:
4754   case CK_PointerToBoolean:
4755   case CK_VectorSplat:
4756   case CK_IntegralCast:
4757   case CK_BooleanToSignedIntegral:
4758   case CK_IntegralToBoolean:
4759   case CK_IntegralToFloating:
4760   case CK_FloatingToIntegral:
4761   case CK_FloatingToBoolean:
4762   case CK_FloatingCast:
4763   case CK_FloatingRealToComplex:
4764   case CK_FloatingComplexToReal:
4765   case CK_FloatingComplexToBoolean:
4766   case CK_FloatingComplexCast:
4767   case CK_FloatingComplexToIntegralComplex:
4768   case CK_IntegralRealToComplex:
4769   case CK_IntegralComplexToReal:
4770   case CK_IntegralComplexToBoolean:
4771   case CK_IntegralComplexCast:
4772   case CK_IntegralComplexToFloatingComplex:
4773   case CK_DerivedToBaseMemberPointer:
4774   case CK_BaseToDerivedMemberPointer:
4775   case CK_MemberPointerToBoolean:
4776   case CK_ReinterpretMemberPointer:
4777   case CK_AnyPointerToBlockPointerCast:
4778   case CK_ARCProduceObject:
4779   case CK_ARCConsumeObject:
4780   case CK_ARCReclaimReturnedObject:
4781   case CK_ARCExtendBlockObject:
4782   case CK_CopyAndAutoreleaseBlockObject:
4783   case CK_IntToOCLSampler:
4784   case CK_FloatingToFixedPoint:
4785   case CK_FixedPointToFloating:
4786   case CK_FixedPointCast:
4787   case CK_FixedPointToBoolean:
4788   case CK_FixedPointToIntegral:
4789   case CK_IntegralToFixedPoint:
4790   case CK_MatrixCast:
4791     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4792 
4793   case CK_Dependent:
4794     llvm_unreachable("dependent cast kind in IR gen!");
4795 
4796   case CK_BuiltinFnToFnPtr:
4797     llvm_unreachable("builtin functions are handled elsewhere");
4798 
4799   // These are never l-values; just use the aggregate emission code.
4800   case CK_NonAtomicToAtomic:
4801   case CK_AtomicToNonAtomic:
4802     return EmitAggExprToLValue(E);
4803 
4804   case CK_Dynamic: {
4805     LValue LV = EmitLValue(E->getSubExpr());
4806     Address V = LV.getAddress(*this);
4807     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4808     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4809   }
4810 
4811   case CK_ConstructorConversion:
4812   case CK_UserDefinedConversion:
4813   case CK_CPointerToObjCPointerCast:
4814   case CK_BlockPointerToObjCPointerCast:
4815   case CK_LValueToRValue:
4816     return EmitLValue(E->getSubExpr());
4817 
4818   case CK_NoOp: {
4819     // CK_NoOp can model a qualification conversion, which can remove an array
4820     // bound and change the IR type.
4821     // FIXME: Once pointee types are removed from IR, remove this.
4822     LValue LV = EmitLValue(E->getSubExpr());
4823     if (LV.isSimple()) {
4824       Address V = LV.getAddress(*this);
4825       if (V.isValid()) {
4826         llvm::Type *T = ConvertTypeForMem(E->getType());
4827         if (V.getElementType() != T)
4828           LV.setAddress(Builder.CreateElementBitCast(V, T));
4829       }
4830     }
4831     return LV;
4832   }
4833 
4834   case CK_UncheckedDerivedToBase:
4835   case CK_DerivedToBase: {
4836     const auto *DerivedClassTy =
4837         E->getSubExpr()->getType()->castAs<RecordType>();
4838     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4839 
4840     LValue LV = EmitLValue(E->getSubExpr());
4841     Address This = LV.getAddress(*this);
4842 
4843     // Perform the derived-to-base conversion
4844     Address Base = GetAddressOfBaseClass(
4845         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4846         /*NullCheckValue=*/false, E->getExprLoc());
4847 
4848     // TODO: Support accesses to members of base classes in TBAA. For now, we
4849     // conservatively pretend that the complete object is of the base class
4850     // type.
4851     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4852                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4853   }
4854   case CK_ToUnion:
4855     return EmitAggExprToLValue(E);
4856   case CK_BaseToDerived: {
4857     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4858     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4859 
4860     LValue LV = EmitLValue(E->getSubExpr());
4861 
4862     // Perform the base-to-derived conversion
4863     Address Derived = GetAddressOfDerivedClass(
4864         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4865         /*NullCheckValue=*/false);
4866 
4867     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4868     // performed and the object is not of the derived type.
4869     if (sanitizePerformTypeCheck())
4870       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4871                     Derived.getPointer(), E->getType());
4872 
4873     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4874       EmitVTablePtrCheckForCast(E->getType(), Derived,
4875                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4876                                 E->getBeginLoc());
4877 
4878     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4879                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4880   }
4881   case CK_LValueBitCast: {
4882     // This must be a reinterpret_cast (or c-style equivalent).
4883     const auto *CE = cast<ExplicitCastExpr>(E);
4884 
4885     CGM.EmitExplicitCastExprType(CE, this);
4886     LValue LV = EmitLValue(E->getSubExpr());
4887     Address V = Builder.CreateElementBitCast(
4888         LV.getAddress(*this),
4889         ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
4890 
4891     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4892       EmitVTablePtrCheckForCast(E->getType(), V,
4893                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4894                                 E->getBeginLoc());
4895 
4896     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4897                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4898   }
4899   case CK_AddressSpaceConversion: {
4900     LValue LV = EmitLValue(E->getSubExpr());
4901     QualType DestTy = getContext().getPointerType(E->getType());
4902     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4903         *this, LV.getPointer(*this),
4904         E->getSubExpr()->getType().getAddressSpace(),
4905         E->getType().getAddressSpace(), ConvertType(DestTy));
4906     return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
4907                                   LV.getAddress(*this).getAlignment()),
4908                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4909   }
4910   case CK_ObjCObjectLValueCast: {
4911     LValue LV = EmitLValue(E->getSubExpr());
4912     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4913                                              ConvertType(E->getType()));
4914     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4915                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4916   }
4917   case CK_ZeroToOCLOpaqueType:
4918     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4919   }
4920 
4921   llvm_unreachable("Unhandled lvalue cast kind?");
4922 }
4923 
4924 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4925   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4926   return getOrCreateOpaqueLValueMapping(e);
4927 }
4928 
4929 LValue
4930 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4931   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4932 
4933   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4934       it = OpaqueLValues.find(e);
4935 
4936   if (it != OpaqueLValues.end())
4937     return it->second;
4938 
4939   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4940   return EmitLValue(e->getSourceExpr());
4941 }
4942 
4943 RValue
4944 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4945   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4946 
4947   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4948       it = OpaqueRValues.find(e);
4949 
4950   if (it != OpaqueRValues.end())
4951     return it->second;
4952 
4953   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4954   return EmitAnyExpr(e->getSourceExpr());
4955 }
4956 
4957 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4958                                            const FieldDecl *FD,
4959                                            SourceLocation Loc) {
4960   QualType FT = FD->getType();
4961   LValue FieldLV = EmitLValueForField(LV, FD);
4962   switch (getEvaluationKind(FT)) {
4963   case TEK_Complex:
4964     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4965   case TEK_Aggregate:
4966     return FieldLV.asAggregateRValue(*this);
4967   case TEK_Scalar:
4968     // This routine is used to load fields one-by-one to perform a copy, so
4969     // don't load reference fields.
4970     if (FD->getType()->isReferenceType())
4971       return RValue::get(FieldLV.getPointer(*this));
4972     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4973     // primitive load.
4974     if (FieldLV.isBitField())
4975       return EmitLoadOfLValue(FieldLV, Loc);
4976     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4977   }
4978   llvm_unreachable("bad evaluation kind");
4979 }
4980 
4981 //===--------------------------------------------------------------------===//
4982 //                             Expression Emission
4983 //===--------------------------------------------------------------------===//
4984 
4985 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4986                                      ReturnValueSlot ReturnValue) {
4987   // Builtins never have block type.
4988   if (E->getCallee()->getType()->isBlockPointerType())
4989     return EmitBlockCallExpr(E, ReturnValue);
4990 
4991   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4992     return EmitCXXMemberCallExpr(CE, ReturnValue);
4993 
4994   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4995     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4996 
4997   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4998     if (const CXXMethodDecl *MD =
4999           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
5000       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
5001 
5002   CGCallee callee = EmitCallee(E->getCallee());
5003 
5004   if (callee.isBuiltin()) {
5005     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
5006                            E, ReturnValue);
5007   }
5008 
5009   if (callee.isPseudoDestructor()) {
5010     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
5011   }
5012 
5013   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
5014 }
5015 
5016 /// Emit a CallExpr without considering whether it might be a subclass.
5017 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5018                                            ReturnValueSlot ReturnValue) {
5019   CGCallee Callee = EmitCallee(E->getCallee());
5020   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5021 }
5022 
5023 // Detect the unusual situation where an inline version is shadowed by a
5024 // non-inline version. In that case we should pick the external one
5025 // everywhere. That's GCC behavior too.
5026 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5027   for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5028     if (!PD->isInlineBuiltinDeclaration())
5029       return false;
5030   return true;
5031 }
5032 
5033 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5034   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5035 
5036   if (auto builtinID = FD->getBuiltinID()) {
5037     std::string FDInlineName = (FD->getName() + ".inline").str();
5038     // When directing calling an inline builtin, call it through it's mangled
5039     // name to make it clear it's not the actual builtin.
5040     if (CGF.CurFn->getName() != FDInlineName &&
5041         OnlyHasInlineBuiltinDeclaration(FD)) {
5042       llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5043       llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5044       llvm::Module *M = Fn->getParent();
5045       llvm::Function *Clone = M->getFunction(FDInlineName);
5046       if (!Clone) {
5047         Clone = llvm::Function::Create(Fn->getFunctionType(),
5048                                        llvm::GlobalValue::InternalLinkage,
5049                                        Fn->getAddressSpace(), FDInlineName, M);
5050         Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5051       }
5052       return CGCallee::forDirect(Clone, GD);
5053     }
5054 
5055     // Replaceable builtins provide their own implementation of a builtin. If we
5056     // are in an inline builtin implementation, avoid trivial infinite
5057     // recursion.
5058     else
5059       return CGCallee::forBuiltin(builtinID, FD);
5060   }
5061 
5062   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5063   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5064       FD->hasAttr<CUDAGlobalAttr>())
5065     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5066         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5067 
5068   return CGCallee::forDirect(CalleePtr, GD);
5069 }
5070 
5071 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5072   E = E->IgnoreParens();
5073 
5074   // Look through function-to-pointer decay.
5075   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5076     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5077         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5078       return EmitCallee(ICE->getSubExpr());
5079     }
5080 
5081   // Resolve direct calls.
5082   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5083     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5084       return EmitDirectCallee(*this, FD);
5085     }
5086   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5087     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5088       EmitIgnoredExpr(ME->getBase());
5089       return EmitDirectCallee(*this, FD);
5090     }
5091 
5092   // Look through template substitutions.
5093   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5094     return EmitCallee(NTTP->getReplacement());
5095 
5096   // Treat pseudo-destructor calls differently.
5097   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5098     return CGCallee::forPseudoDestructor(PDE);
5099   }
5100 
5101   // Otherwise, we have an indirect reference.
5102   llvm::Value *calleePtr;
5103   QualType functionType;
5104   if (auto ptrType = E->getType()->getAs<PointerType>()) {
5105     calleePtr = EmitScalarExpr(E);
5106     functionType = ptrType->getPointeeType();
5107   } else {
5108     functionType = E->getType();
5109     calleePtr = EmitLValue(E).getPointer(*this);
5110   }
5111   assert(functionType->isFunctionType());
5112 
5113   GlobalDecl GD;
5114   if (const auto *VD =
5115           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5116     GD = GlobalDecl(VD);
5117 
5118   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5119   CGCallee callee(calleeInfo, calleePtr);
5120   return callee;
5121 }
5122 
5123 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5124   // Comma expressions just emit their LHS then their RHS as an l-value.
5125   if (E->getOpcode() == BO_Comma) {
5126     EmitIgnoredExpr(E->getLHS());
5127     EnsureInsertPoint();
5128     return EmitLValue(E->getRHS());
5129   }
5130 
5131   if (E->getOpcode() == BO_PtrMemD ||
5132       E->getOpcode() == BO_PtrMemI)
5133     return EmitPointerToDataMemberBinaryExpr(E);
5134 
5135   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5136 
5137   // Note that in all of these cases, __block variables need the RHS
5138   // evaluated first just in case the variable gets moved by the RHS.
5139 
5140   switch (getEvaluationKind(E->getType())) {
5141   case TEK_Scalar: {
5142     switch (E->getLHS()->getType().getObjCLifetime()) {
5143     case Qualifiers::OCL_Strong:
5144       return EmitARCStoreStrong(E, /*ignored*/ false).first;
5145 
5146     case Qualifiers::OCL_Autoreleasing:
5147       return EmitARCStoreAutoreleasing(E).first;
5148 
5149     // No reason to do any of these differently.
5150     case Qualifiers::OCL_None:
5151     case Qualifiers::OCL_ExplicitNone:
5152     case Qualifiers::OCL_Weak:
5153       break;
5154     }
5155 
5156     RValue RV = EmitAnyExpr(E->getRHS());
5157     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5158     if (RV.isScalar())
5159       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5160     EmitStoreThroughLValue(RV, LV);
5161     if (getLangOpts().OpenMP)
5162       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5163                                                                 E->getLHS());
5164     return LV;
5165   }
5166 
5167   case TEK_Complex:
5168     return EmitComplexAssignmentLValue(E);
5169 
5170   case TEK_Aggregate:
5171     return EmitAggExprToLValue(E);
5172   }
5173   llvm_unreachable("bad evaluation kind");
5174 }
5175 
5176 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5177   RValue RV = EmitCallExpr(E);
5178 
5179   if (!RV.isScalar())
5180     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5181                           AlignmentSource::Decl);
5182 
5183   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5184          "Can't have a scalar return unless the return type is a "
5185          "reference type!");
5186 
5187   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5188 }
5189 
5190 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5191   // FIXME: This shouldn't require another copy.
5192   return EmitAggExprToLValue(E);
5193 }
5194 
5195 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5196   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5197          && "binding l-value to type which needs a temporary");
5198   AggValueSlot Slot = CreateAggTemp(E->getType());
5199   EmitCXXConstructExpr(E, Slot);
5200   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5201 }
5202 
5203 LValue
5204 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5205   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5206 }
5207 
5208 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5209   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5210                                       ConvertType(E->getType()));
5211 }
5212 
5213 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5214   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5215                         AlignmentSource::Decl);
5216 }
5217 
5218 LValue
5219 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5220   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5221   Slot.setExternallyDestructed();
5222   EmitAggExpr(E->getSubExpr(), Slot);
5223   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5224   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5225 }
5226 
5227 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5228   RValue RV = EmitObjCMessageExpr(E);
5229 
5230   if (!RV.isScalar())
5231     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5232                           AlignmentSource::Decl);
5233 
5234   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5235          "Can't have a scalar return unless the return type is a "
5236          "reference type!");
5237 
5238   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5239 }
5240 
5241 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5242   Address V =
5243     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5244   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5245 }
5246 
5247 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5248                                              const ObjCIvarDecl *Ivar) {
5249   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5250 }
5251 
5252 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5253                                           llvm::Value *BaseValue,
5254                                           const ObjCIvarDecl *Ivar,
5255                                           unsigned CVRQualifiers) {
5256   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5257                                                    Ivar, CVRQualifiers);
5258 }
5259 
5260 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5261   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5262   llvm::Value *BaseValue = nullptr;
5263   const Expr *BaseExpr = E->getBase();
5264   Qualifiers BaseQuals;
5265   QualType ObjectTy;
5266   if (E->isArrow()) {
5267     BaseValue = EmitScalarExpr(BaseExpr);
5268     ObjectTy = BaseExpr->getType()->getPointeeType();
5269     BaseQuals = ObjectTy.getQualifiers();
5270   } else {
5271     LValue BaseLV = EmitLValue(BaseExpr);
5272     BaseValue = BaseLV.getPointer(*this);
5273     ObjectTy = BaseExpr->getType();
5274     BaseQuals = ObjectTy.getQualifiers();
5275   }
5276 
5277   LValue LV =
5278     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5279                       BaseQuals.getCVRQualifiers());
5280   setObjCGCLValueClass(getContext(), E, LV);
5281   return LV;
5282 }
5283 
5284 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5285   // Can only get l-value for message expression returning aggregate type
5286   RValue RV = EmitAnyExprToTemp(E);
5287   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5288                         AlignmentSource::Decl);
5289 }
5290 
5291 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5292                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5293                                  llvm::Value *Chain) {
5294   // Get the actual function type. The callee type will always be a pointer to
5295   // function type or a block pointer type.
5296   assert(CalleeType->isFunctionPointerType() &&
5297          "Call must have function pointer type!");
5298 
5299   const Decl *TargetDecl =
5300       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5301 
5302   CalleeType = getContext().getCanonicalType(CalleeType);
5303 
5304   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5305 
5306   CGCallee Callee = OrigCallee;
5307 
5308   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5309       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5310     if (llvm::Constant *PrefixSig =
5311             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5312       SanitizerScope SanScope(this);
5313       // Remove any (C++17) exception specifications, to allow calling e.g. a
5314       // noexcept function through a non-noexcept pointer.
5315       auto ProtoTy =
5316         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5317       llvm::Constant *FTRTTIConst =
5318           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5319       llvm::Type *PrefixSigType = PrefixSig->getType();
5320       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5321           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5322 
5323       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5324 
5325       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5326           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5327       llvm::Value *CalleeSigPtr =
5328           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5329       llvm::Value *CalleeSig =
5330           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5331       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5332 
5333       llvm::BasicBlock *Cont = createBasicBlock("cont");
5334       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5335       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5336 
5337       EmitBlock(TypeCheck);
5338       llvm::Value *CalleeRTTIPtr =
5339           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5340       llvm::Value *CalleeRTTIEncoded =
5341           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5342       llvm::Value *CalleeRTTI =
5343           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5344       llvm::Value *CalleeRTTIMatch =
5345           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5346       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5347                                       EmitCheckTypeDescriptor(CalleeType)};
5348       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5349                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5350                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5351 
5352       Builder.CreateBr(Cont);
5353       EmitBlock(Cont);
5354     }
5355   }
5356 
5357   const auto *FnType = cast<FunctionType>(PointeeType);
5358 
5359   // If we are checking indirect calls and this call is indirect, check that the
5360   // function pointer is a member of the bit set for the function type.
5361   if (SanOpts.has(SanitizerKind::CFIICall) &&
5362       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5363     SanitizerScope SanScope(this);
5364     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5365 
5366     llvm::Metadata *MD;
5367     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5368       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5369     else
5370       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5371 
5372     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5373 
5374     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5375     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5376     llvm::Value *TypeTest = Builder.CreateCall(
5377         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5378 
5379     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5380     llvm::Constant *StaticData[] = {
5381         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5382         EmitCheckSourceLocation(E->getBeginLoc()),
5383         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5384     };
5385     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5386       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5387                            CastedCallee, StaticData);
5388     } else {
5389       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5390                 SanitizerHandler::CFICheckFail, StaticData,
5391                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5392     }
5393   }
5394 
5395   CallArgList Args;
5396   if (Chain)
5397     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5398              CGM.getContext().VoidPtrTy);
5399 
5400   // C++17 requires that we evaluate arguments to a call using assignment syntax
5401   // right-to-left, and that we evaluate arguments to certain other operators
5402   // left-to-right. Note that we allow this to override the order dictated by
5403   // the calling convention on the MS ABI, which means that parameter
5404   // destruction order is not necessarily reverse construction order.
5405   // FIXME: Revisit this based on C++ committee response to unimplementability.
5406   EvaluationOrder Order = EvaluationOrder::Default;
5407   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5408     if (OCE->isAssignmentOp())
5409       Order = EvaluationOrder::ForceRightToLeft;
5410     else {
5411       switch (OCE->getOperator()) {
5412       case OO_LessLess:
5413       case OO_GreaterGreater:
5414       case OO_AmpAmp:
5415       case OO_PipePipe:
5416       case OO_Comma:
5417       case OO_ArrowStar:
5418         Order = EvaluationOrder::ForceLeftToRight;
5419         break;
5420       default:
5421         break;
5422       }
5423     }
5424   }
5425 
5426   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5427                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5428 
5429   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5430       Args, FnType, /*ChainCall=*/Chain);
5431 
5432   // C99 6.5.2.2p6:
5433   //   If the expression that denotes the called function has a type
5434   //   that does not include a prototype, [the default argument
5435   //   promotions are performed]. If the number of arguments does not
5436   //   equal the number of parameters, the behavior is undefined. If
5437   //   the function is defined with a type that includes a prototype,
5438   //   and either the prototype ends with an ellipsis (, ...) or the
5439   //   types of the arguments after promotion are not compatible with
5440   //   the types of the parameters, the behavior is undefined. If the
5441   //   function is defined with a type that does not include a
5442   //   prototype, and the types of the arguments after promotion are
5443   //   not compatible with those of the parameters after promotion,
5444   //   the behavior is undefined [except in some trivial cases].
5445   // That is, in the general case, we should assume that a call
5446   // through an unprototyped function type works like a *non-variadic*
5447   // call.  The way we make this work is to cast to the exact type
5448   // of the promoted arguments.
5449   //
5450   // Chain calls use this same code path to add the invisible chain parameter
5451   // to the function type.
5452   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5453     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5454     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5455     CalleeTy = CalleeTy->getPointerTo(AS);
5456 
5457     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5458     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5459     Callee.setFunctionPointer(CalleePtr);
5460   }
5461 
5462   // HIP function pointer contains kernel handle when it is used in triple
5463   // chevron. The kernel stub needs to be loaded from kernel handle and used
5464   // as callee.
5465   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5466       isa<CUDAKernelCallExpr>(E) &&
5467       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5468     llvm::Value *Handle = Callee.getFunctionPointer();
5469     auto *Cast =
5470         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5471     auto *Stub = Builder.CreateLoad(
5472         Address(Cast, Handle->getType(), CGM.getPointerAlign()));
5473     Callee.setFunctionPointer(Stub);
5474   }
5475   llvm::CallBase *CallOrInvoke = nullptr;
5476   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5477                          E == MustTailCall, E->getExprLoc());
5478 
5479   // Generate function declaration DISuprogram in order to be used
5480   // in debug info about call sites.
5481   if (CGDebugInfo *DI = getDebugInfo()) {
5482     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5483       FunctionArgList Args;
5484       QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5485       DI->EmitFuncDeclForCallSite(CallOrInvoke,
5486                                   DI->getFunctionType(CalleeDecl, ResTy, Args),
5487                                   CalleeDecl);
5488     }
5489   }
5490 
5491   return Call;
5492 }
5493 
5494 LValue CodeGenFunction::
5495 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5496   Address BaseAddr = Address::invalid();
5497   if (E->getOpcode() == BO_PtrMemI) {
5498     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5499   } else {
5500     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5501   }
5502 
5503   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5504   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5505 
5506   LValueBaseInfo BaseInfo;
5507   TBAAAccessInfo TBAAInfo;
5508   Address MemberAddr =
5509     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5510                                     &TBAAInfo);
5511 
5512   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5513 }
5514 
5515 /// Given the address of a temporary variable, produce an r-value of
5516 /// its type.
5517 RValue CodeGenFunction::convertTempToRValue(Address addr,
5518                                             QualType type,
5519                                             SourceLocation loc) {
5520   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5521   switch (getEvaluationKind(type)) {
5522   case TEK_Complex:
5523     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5524   case TEK_Aggregate:
5525     return lvalue.asAggregateRValue(*this);
5526   case TEK_Scalar:
5527     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5528   }
5529   llvm_unreachable("bad evaluation kind");
5530 }
5531 
5532 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5533   assert(Val->getType()->isFPOrFPVectorTy());
5534   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5535     return;
5536 
5537   llvm::MDBuilder MDHelper(getLLVMContext());
5538   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5539 
5540   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5541 }
5542 
5543 namespace {
5544   struct LValueOrRValue {
5545     LValue LV;
5546     RValue RV;
5547   };
5548 }
5549 
5550 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5551                                            const PseudoObjectExpr *E,
5552                                            bool forLValue,
5553                                            AggValueSlot slot) {
5554   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5555 
5556   // Find the result expression, if any.
5557   const Expr *resultExpr = E->getResultExpr();
5558   LValueOrRValue result;
5559 
5560   for (PseudoObjectExpr::const_semantics_iterator
5561          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5562     const Expr *semantic = *i;
5563 
5564     // If this semantic expression is an opaque value, bind it
5565     // to the result of its source expression.
5566     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5567       // Skip unique OVEs.
5568       if (ov->isUnique()) {
5569         assert(ov != resultExpr &&
5570                "A unique OVE cannot be used as the result expression");
5571         continue;
5572       }
5573 
5574       // If this is the result expression, we may need to evaluate
5575       // directly into the slot.
5576       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5577       OVMA opaqueData;
5578       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5579           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5580         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5581         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5582                                        AlignmentSource::Decl);
5583         opaqueData = OVMA::bind(CGF, ov, LV);
5584         result.RV = slot.asRValue();
5585 
5586       // Otherwise, emit as normal.
5587       } else {
5588         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5589 
5590         // If this is the result, also evaluate the result now.
5591         if (ov == resultExpr) {
5592           if (forLValue)
5593             result.LV = CGF.EmitLValue(ov);
5594           else
5595             result.RV = CGF.EmitAnyExpr(ov, slot);
5596         }
5597       }
5598 
5599       opaques.push_back(opaqueData);
5600 
5601     // Otherwise, if the expression is the result, evaluate it
5602     // and remember the result.
5603     } else if (semantic == resultExpr) {
5604       if (forLValue)
5605         result.LV = CGF.EmitLValue(semantic);
5606       else
5607         result.RV = CGF.EmitAnyExpr(semantic, slot);
5608 
5609     // Otherwise, evaluate the expression in an ignored context.
5610     } else {
5611       CGF.EmitIgnoredExpr(semantic);
5612     }
5613   }
5614 
5615   // Unbind all the opaques now.
5616   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5617     opaques[i].unbind(CGF);
5618 
5619   return result;
5620 }
5621 
5622 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5623                                                AggValueSlot slot) {
5624   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5625 }
5626 
5627 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5628   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5629 }
5630