1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===--------------------------------------------------------------------===//
32 //                        Miscellaneous Helper Methods
33 //===--------------------------------------------------------------------===//
34 
35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36   unsigned addressSpace =
37     cast<llvm::PointerType>(value->getType())->getAddressSpace();
38 
39   llvm::PointerType *destType = Int8PtrTy;
40   if (addressSpace)
41     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42 
43   if (value->getType() == destType) return value;
44   return Builder.CreateBitCast(value, destType);
45 }
46 
47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
48 /// block.
49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                     const Twine &Name) {
51   if (!Builder.isNamePreserving())
52     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54 }
55 
56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                      llvm::Value *Init) {
58   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61 }
62 
63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                 const Twine &Name) {
65   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66   // FIXME: Should we prefer the preferred type alignment here?
67   CharUnits Align = getContext().getTypeAlignInChars(Ty);
68   Alloc->setAlignment(Align.getQuantity());
69   return Alloc;
70 }
71 
72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                  const Twine &Name) {
74   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75   // FIXME: Should we prefer the preferred type alignment here?
76   CharUnits Align = getContext().getTypeAlignInChars(Ty);
77   Alloc->setAlignment(Align.getQuantity());
78   return Alloc;
79 }
80 
81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82 /// expression and compare the result against zero, returning an Int1Ty value.
83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85     llvm::Value *MemPtr = EmitScalarExpr(E);
86     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87   }
88 
89   QualType BoolTy = getContext().BoolTy;
90   if (!E->getType()->isAnyComplexType())
91     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92 
93   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94 }
95 
96 /// EmitIgnoredExpr - Emit code to compute the specified expression,
97 /// ignoring the result.
98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99   if (E->isRValue())
100     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101 
102   // Just emit it as an l-value and drop the result.
103   EmitLValue(E);
104 }
105 
106 /// EmitAnyExpr - Emit code to compute the specified expression which
107 /// can have any type.  The result is returned as an RValue struct.
108 /// If this is an aggregate expression, AggSlot indicates where the
109 /// result should be returned.
110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                     bool IgnoreResult) {
112   if (!hasAggregateLLVMType(E->getType()))
113     return RValue::get(EmitScalarExpr(E, IgnoreResult));
114   else if (E->getType()->isAnyComplexType())
115     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116 
117   EmitAggExpr(E, AggSlot, IgnoreResult);
118   return AggSlot.asRValue();
119 }
120 
121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122 /// always be accessible even if no aggregate location is provided.
123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124   AggValueSlot AggSlot = AggValueSlot::ignored();
125 
126   if (hasAggregateLLVMType(E->getType()) &&
127       !E->getType()->isAnyComplexType())
128     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129   return EmitAnyExpr(E, AggSlot);
130 }
131 
132 /// EmitAnyExprToMem - Evaluate an expression into a given memory
133 /// location.
134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                        llvm::Value *Location,
136                                        Qualifiers Quals,
137                                        bool IsInit) {
138   // FIXME: This function should take an LValue as an argument.
139   if (E->getType()->isAnyComplexType()) {
140     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
141   } else if (hasAggregateLLVMType(E->getType())) {
142     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
143     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
144                                          AggValueSlot::IsDestructed_t(IsInit),
145                                          AggValueSlot::DoesNotNeedGCBarriers,
146                                          AggValueSlot::IsAliased_t(!IsInit)));
147   } else {
148     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
149     LValue LV = MakeAddrLValue(Location, E->getType());
150     EmitStoreThroughLValue(RV, LV);
151   }
152 }
153 
154 namespace {
155 /// \brief An adjustment to be made to the temporary created when emitting a
156 /// reference binding, which accesses a particular subobject of that temporary.
157   struct SubobjectAdjustment {
158     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
159 
160     union {
161       struct {
162         const CastExpr *BasePath;
163         const CXXRecordDecl *DerivedClass;
164       } DerivedToBase;
165 
166       FieldDecl *Field;
167     };
168 
169     SubobjectAdjustment(const CastExpr *BasePath,
170                         const CXXRecordDecl *DerivedClass)
171       : Kind(DerivedToBaseAdjustment) {
172       DerivedToBase.BasePath = BasePath;
173       DerivedToBase.DerivedClass = DerivedClass;
174     }
175 
176     SubobjectAdjustment(FieldDecl *Field)
177       : Kind(FieldAdjustment) {
178       this->Field = Field;
179     }
180   };
181 }
182 
183 static llvm::Value *
184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
185                          const NamedDecl *InitializedDecl) {
186   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
187     if (VD->hasGlobalStorage()) {
188       llvm::SmallString<256> Name;
189       llvm::raw_svector_ostream Out(Name);
190       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
191       Out.flush();
192 
193       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
194 
195       // Create the reference temporary.
196       llvm::GlobalValue *RefTemp =
197         new llvm::GlobalVariable(CGF.CGM.getModule(),
198                                  RefTempTy, /*isConstant=*/false,
199                                  llvm::GlobalValue::InternalLinkage,
200                                  llvm::Constant::getNullValue(RefTempTy),
201                                  Name.str());
202       return RefTemp;
203     }
204   }
205 
206   return CGF.CreateMemTemp(Type, "ref.tmp");
207 }
208 
209 static llvm::Value *
210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
211                             llvm::Value *&ReferenceTemporary,
212                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
213                             QualType &ObjCARCReferenceLifetimeType,
214                             const NamedDecl *InitializedDecl) {
215   // Look through single-element init lists that claim to be lvalues. They're
216   // just syntactic wrappers in this case.
217   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
218     if (ILE->getNumInits() == 1 && ILE->isGLValue())
219       E = ILE->getInit(0);
220   }
221 
222   // Look through expressions for materialized temporaries (for now).
223   if (const MaterializeTemporaryExpr *M
224                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
225     // Objective-C++ ARC:
226     //   If we are binding a reference to a temporary that has ownership, we
227     //   need to perform retain/release operations on the temporary.
228     if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
229         E->getType()->isObjCLifetimeType() &&
230         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
231          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
232          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
233       ObjCARCReferenceLifetimeType = E->getType();
234 
235     E = M->GetTemporaryExpr();
236   }
237 
238   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
239     E = DAE->getExpr();
240 
241   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
242     CGF.enterFullExpression(EWC);
243     CodeGenFunction::RunCleanupsScope Scope(CGF);
244 
245     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
246                                        ReferenceTemporary,
247                                        ReferenceTemporaryDtor,
248                                        ObjCARCReferenceLifetimeType,
249                                        InitializedDecl);
250   }
251 
252   RValue RV;
253   if (E->isGLValue()) {
254     // Emit the expression as an lvalue.
255     LValue LV = CGF.EmitLValue(E);
256 
257     if (LV.isSimple())
258       return LV.getAddress();
259 
260     // We have to load the lvalue.
261     RV = CGF.EmitLoadOfLValue(LV);
262   } else {
263     if (!ObjCARCReferenceLifetimeType.isNull()) {
264       ReferenceTemporary = CreateReferenceTemporary(CGF,
265                                                   ObjCARCReferenceLifetimeType,
266                                                     InitializedDecl);
267 
268 
269       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
270                                              ObjCARCReferenceLifetimeType);
271 
272       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
273                          RefTempDst, false);
274 
275       bool ExtendsLifeOfTemporary = false;
276       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
277         if (Var->extendsLifetimeOfTemporary())
278           ExtendsLifeOfTemporary = true;
279       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
280         ExtendsLifeOfTemporary = true;
281       }
282 
283       if (!ExtendsLifeOfTemporary) {
284         // Since the lifetime of this temporary isn't going to be extended,
285         // we need to clean it up ourselves at the end of the full expression.
286         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
287         case Qualifiers::OCL_None:
288         case Qualifiers::OCL_ExplicitNone:
289         case Qualifiers::OCL_Autoreleasing:
290           break;
291 
292         case Qualifiers::OCL_Strong: {
293           assert(!ObjCARCReferenceLifetimeType->isArrayType());
294           CleanupKind cleanupKind = CGF.getARCCleanupKind();
295           CGF.pushDestroy(cleanupKind,
296                           ReferenceTemporary,
297                           ObjCARCReferenceLifetimeType,
298                           CodeGenFunction::destroyARCStrongImprecise,
299                           cleanupKind & EHCleanup);
300           break;
301         }
302 
303         case Qualifiers::OCL_Weak:
304           assert(!ObjCARCReferenceLifetimeType->isArrayType());
305           CGF.pushDestroy(NormalAndEHCleanup,
306                           ReferenceTemporary,
307                           ObjCARCReferenceLifetimeType,
308                           CodeGenFunction::destroyARCWeak,
309                           /*useEHCleanupForArray*/ true);
310           break;
311         }
312 
313         ObjCARCReferenceLifetimeType = QualType();
314       }
315 
316       return ReferenceTemporary;
317     }
318 
319     SmallVector<SubobjectAdjustment, 2> Adjustments;
320     while (true) {
321       E = E->IgnoreParens();
322 
323       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
324         if ((CE->getCastKind() == CK_DerivedToBase ||
325              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
326             E->getType()->isRecordType()) {
327           E = CE->getSubExpr();
328           CXXRecordDecl *Derived
329             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
330           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
331           continue;
332         }
333 
334         if (CE->getCastKind() == CK_NoOp) {
335           E = CE->getSubExpr();
336           continue;
337         }
338       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
339         if (!ME->isArrow() && ME->getBase()->isRValue()) {
340           assert(ME->getBase()->getType()->isRecordType());
341           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
342             E = ME->getBase();
343             Adjustments.push_back(SubobjectAdjustment(Field));
344             continue;
345           }
346         }
347       }
348 
349       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
350         if (opaque->getType()->isRecordType())
351           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
352 
353       // Nothing changed.
354       break;
355     }
356 
357     // Create a reference temporary if necessary.
358     AggValueSlot AggSlot = AggValueSlot::ignored();
359     if (CGF.hasAggregateLLVMType(E->getType()) &&
360         !E->getType()->isAnyComplexType()) {
361       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
362                                                     InitializedDecl);
363       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
364       AggValueSlot::IsDestructed_t isDestructed
365         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
366       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
367                                       Qualifiers(), isDestructed,
368                                       AggValueSlot::DoesNotNeedGCBarriers,
369                                       AggValueSlot::IsNotAliased);
370     }
371 
372     if (InitializedDecl) {
373       // Get the destructor for the reference temporary.
374       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
375         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
376         if (!ClassDecl->hasTrivialDestructor())
377           ReferenceTemporaryDtor = ClassDecl->getDestructor();
378       }
379     }
380 
381     RV = CGF.EmitAnyExpr(E, AggSlot);
382 
383     // Check if need to perform derived-to-base casts and/or field accesses, to
384     // get from the temporary object we created (and, potentially, for which we
385     // extended the lifetime) to the subobject we're binding the reference to.
386     if (!Adjustments.empty()) {
387       llvm::Value *Object = RV.getAggregateAddr();
388       for (unsigned I = Adjustments.size(); I != 0; --I) {
389         SubobjectAdjustment &Adjustment = Adjustments[I-1];
390         switch (Adjustment.Kind) {
391         case SubobjectAdjustment::DerivedToBaseAdjustment:
392           Object =
393               CGF.GetAddressOfBaseClass(Object,
394                                         Adjustment.DerivedToBase.DerivedClass,
395                               Adjustment.DerivedToBase.BasePath->path_begin(),
396                               Adjustment.DerivedToBase.BasePath->path_end(),
397                                         /*NullCheckValue=*/false);
398           break;
399 
400         case SubobjectAdjustment::FieldAdjustment: {
401           LValue LV =
402             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
403           if (LV.isSimple()) {
404             Object = LV.getAddress();
405             break;
406           }
407 
408           // For non-simple lvalues, we actually have to create a copy of
409           // the object we're binding to.
410           QualType T = Adjustment.Field->getType().getNonReferenceType()
411                                                   .getUnqualifiedType();
412           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
413           LValue TempLV = CGF.MakeAddrLValue(Object,
414                                              Adjustment.Field->getType());
415           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
416           break;
417         }
418 
419         }
420       }
421 
422       return Object;
423     }
424   }
425 
426   if (RV.isAggregate())
427     return RV.getAggregateAddr();
428 
429   // Create a temporary variable that we can bind the reference to.
430   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
431                                                 InitializedDecl);
432 
433 
434   unsigned Alignment =
435     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
436   if (RV.isScalar())
437     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
438                           /*Volatile=*/false, Alignment, E->getType());
439   else
440     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
441                            /*Volatile=*/false);
442   return ReferenceTemporary;
443 }
444 
445 RValue
446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
447                                             const NamedDecl *InitializedDecl) {
448   llvm::Value *ReferenceTemporary = 0;
449   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
450   QualType ObjCARCReferenceLifetimeType;
451   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
452                                                    ReferenceTemporaryDtor,
453                                                    ObjCARCReferenceLifetimeType,
454                                                    InitializedDecl);
455   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
456     return RValue::get(Value);
457 
458   // Make sure to call the destructor for the reference temporary.
459   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
460   if (VD && VD->hasGlobalStorage()) {
461     if (ReferenceTemporaryDtor) {
462       llvm::Constant *DtorFn =
463         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
464       EmitCXXGlobalDtorRegistration(DtorFn,
465                                     cast<llvm::Constant>(ReferenceTemporary));
466     } else {
467       assert(!ObjCARCReferenceLifetimeType.isNull());
468       // Note: We intentionally do not register a global "destructor" to
469       // release the object.
470     }
471 
472     return RValue::get(Value);
473   }
474 
475   if (ReferenceTemporaryDtor)
476     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
477   else {
478     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
479     case Qualifiers::OCL_None:
480       llvm_unreachable(
481                       "Not a reference temporary that needs to be deallocated");
482     case Qualifiers::OCL_ExplicitNone:
483     case Qualifiers::OCL_Autoreleasing:
484       // Nothing to do.
485       break;
486 
487     case Qualifiers::OCL_Strong: {
488       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
489       CleanupKind cleanupKind = getARCCleanupKind();
490       // This local is a GCC and MSVC compiler workaround.
491       Destroyer *destroyer = precise ? &destroyARCStrongPrecise :
492                                        &destroyARCStrongImprecise;
493       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
494                   *destroyer, cleanupKind & EHCleanup);
495       break;
496     }
497 
498     case Qualifiers::OCL_Weak: {
499       // This local is a GCC and MSVC compiler workaround.
500       Destroyer *destroyer = &destroyARCWeak;
501       // __weak objects always get EH cleanups; otherwise, exceptions
502       // could cause really nasty crashes instead of mere leaks.
503       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
504                   ObjCARCReferenceLifetimeType, *destroyer, true);
505       break;
506     }
507     }
508   }
509 
510   return RValue::get(Value);
511 }
512 
513 
514 /// getAccessedFieldNo - Given an encoded value and a result number, return the
515 /// input field number being accessed.
516 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
517                                              const llvm::Constant *Elts) {
518   if (isa<llvm::ConstantAggregateZero>(Elts))
519     return 0;
520 
521   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
522 }
523 
524 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
525   if (!CatchUndefined)
526     return;
527 
528   // This needs to be to the standard address space.
529   Address = Builder.CreateBitCast(Address, Int8PtrTy);
530 
531   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
532 
533   // In time, people may want to control this and use a 1 here.
534   llvm::Value *Arg = Builder.getFalse();
535   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
536   llvm::BasicBlock *Cont = createBasicBlock();
537   llvm::BasicBlock *Check = createBasicBlock();
538   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
539   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
540 
541   EmitBlock(Check);
542   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
543                                         llvm::ConstantInt::get(IntPtrTy, Size)),
544                        Cont, getTrapBB());
545   EmitBlock(Cont);
546 }
547 
548 
549 CodeGenFunction::ComplexPairTy CodeGenFunction::
550 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
551                          bool isInc, bool isPre) {
552   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
553                                             LV.isVolatileQualified());
554 
555   llvm::Value *NextVal;
556   if (isa<llvm::IntegerType>(InVal.first->getType())) {
557     uint64_t AmountVal = isInc ? 1 : -1;
558     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
559 
560     // Add the inc/dec to the real part.
561     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
562   } else {
563     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
564     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
565     if (!isInc)
566       FVal.changeSign();
567     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
568 
569     // Add the inc/dec to the real part.
570     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
571   }
572 
573   ComplexPairTy IncVal(NextVal, InVal.second);
574 
575   // Store the updated result through the lvalue.
576   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
577 
578   // If this is a postinc, return the value read from memory, otherwise use the
579   // updated value.
580   return isPre ? IncVal : InVal;
581 }
582 
583 
584 //===----------------------------------------------------------------------===//
585 //                         LValue Expression Emission
586 //===----------------------------------------------------------------------===//
587 
588 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
589   if (Ty->isVoidType())
590     return RValue::get(0);
591 
592   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
593     llvm::Type *EltTy = ConvertType(CTy->getElementType());
594     llvm::Value *U = llvm::UndefValue::get(EltTy);
595     return RValue::getComplex(std::make_pair(U, U));
596   }
597 
598   // If this is a use of an undefined aggregate type, the aggregate must have an
599   // identifiable address.  Just because the contents of the value are undefined
600   // doesn't mean that the address can't be taken and compared.
601   if (hasAggregateLLVMType(Ty)) {
602     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
603     return RValue::getAggregate(DestPtr);
604   }
605 
606   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
607 }
608 
609 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
610                                               const char *Name) {
611   ErrorUnsupported(E, Name);
612   return GetUndefRValue(E->getType());
613 }
614 
615 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
616                                               const char *Name) {
617   ErrorUnsupported(E, Name);
618   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
619   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
620 }
621 
622 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
623   LValue LV = EmitLValue(E);
624   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
625     EmitCheck(LV.getAddress(),
626               getContext().getTypeSizeInChars(E->getType()).getQuantity());
627   return LV;
628 }
629 
630 /// EmitLValue - Emit code to compute a designator that specifies the location
631 /// of the expression.
632 ///
633 /// This can return one of two things: a simple address or a bitfield reference.
634 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
635 /// an LLVM pointer type.
636 ///
637 /// If this returns a bitfield reference, nothing about the pointee type of the
638 /// LLVM value is known: For example, it may not be a pointer to an integer.
639 ///
640 /// If this returns a normal address, and if the lvalue's C type is fixed size,
641 /// this method guarantees that the returned pointer type will point to an LLVM
642 /// type of the same size of the lvalue's type.  If the lvalue has a variable
643 /// length type, this is not possible.
644 ///
645 LValue CodeGenFunction::EmitLValue(const Expr *E) {
646   switch (E->getStmtClass()) {
647   default: return EmitUnsupportedLValue(E, "l-value expression");
648 
649   case Expr::ObjCPropertyRefExprClass:
650     llvm_unreachable("cannot emit a property reference directly");
651 
652   case Expr::ObjCSelectorExprClass:
653   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
654   case Expr::ObjCIsaExprClass:
655     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
656   case Expr::BinaryOperatorClass:
657     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
658   case Expr::CompoundAssignOperatorClass:
659     if (!E->getType()->isAnyComplexType())
660       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
661     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
662   case Expr::CallExprClass:
663   case Expr::CXXMemberCallExprClass:
664   case Expr::CXXOperatorCallExprClass:
665     return EmitCallExprLValue(cast<CallExpr>(E));
666   case Expr::VAArgExprClass:
667     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
668   case Expr::DeclRefExprClass:
669     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
670   case Expr::ParenExprClass:
671     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
672   case Expr::GenericSelectionExprClass:
673     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
674   case Expr::PredefinedExprClass:
675     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
676   case Expr::StringLiteralClass:
677     return EmitStringLiteralLValue(cast<StringLiteral>(E));
678   case Expr::ObjCEncodeExprClass:
679     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
680   case Expr::PseudoObjectExprClass:
681     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
682   case Expr::InitListExprClass:
683     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
684            "Only single-element init list can be lvalue.");
685     return EmitLValue(cast<InitListExpr>(E)->getInit(0));
686 
687   case Expr::BlockDeclRefExprClass:
688     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
689 
690   case Expr::CXXTemporaryObjectExprClass:
691   case Expr::CXXConstructExprClass:
692     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
693   case Expr::CXXBindTemporaryExprClass:
694     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
695 
696   case Expr::ExprWithCleanupsClass: {
697     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
698     enterFullExpression(cleanups);
699     RunCleanupsScope Scope(*this);
700     return EmitLValue(cleanups->getSubExpr());
701   }
702 
703   case Expr::CXXScalarValueInitExprClass:
704     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
705   case Expr::CXXDefaultArgExprClass:
706     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
707   case Expr::CXXTypeidExprClass:
708     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
709 
710   case Expr::ObjCMessageExprClass:
711     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
712   case Expr::ObjCIvarRefExprClass:
713     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
714   case Expr::StmtExprClass:
715     return EmitStmtExprLValue(cast<StmtExpr>(E));
716   case Expr::UnaryOperatorClass:
717     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
718   case Expr::ArraySubscriptExprClass:
719     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
720   case Expr::ExtVectorElementExprClass:
721     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
722   case Expr::MemberExprClass:
723     return EmitMemberExpr(cast<MemberExpr>(E));
724   case Expr::CompoundLiteralExprClass:
725     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
726   case Expr::ConditionalOperatorClass:
727     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
728   case Expr::BinaryConditionalOperatorClass:
729     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
730   case Expr::ChooseExprClass:
731     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
732   case Expr::OpaqueValueExprClass:
733     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
734   case Expr::SubstNonTypeTemplateParmExprClass:
735     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
736   case Expr::ImplicitCastExprClass:
737   case Expr::CStyleCastExprClass:
738   case Expr::CXXFunctionalCastExprClass:
739   case Expr::CXXStaticCastExprClass:
740   case Expr::CXXDynamicCastExprClass:
741   case Expr::CXXReinterpretCastExprClass:
742   case Expr::CXXConstCastExprClass:
743   case Expr::ObjCBridgedCastExprClass:
744     return EmitCastLValue(cast<CastExpr>(E));
745 
746   case Expr::MaterializeTemporaryExprClass:
747     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
748   }
749 }
750 
751 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
752   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
753                           lvalue.getAlignment().getQuantity(),
754                           lvalue.getType(), lvalue.getTBAAInfo());
755 }
756 
757 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
758                                               unsigned Alignment, QualType Ty,
759                                               llvm::MDNode *TBAAInfo) {
760   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
761   if (Volatile)
762     Load->setVolatile(true);
763   if (Alignment)
764     Load->setAlignment(Alignment);
765   if (TBAAInfo)
766     CGM.DecorateInstruction(Load, TBAAInfo);
767 
768   return EmitFromMemory(Load, Ty);
769 }
770 
771 static bool isBooleanUnderlyingType(QualType Ty) {
772   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
773     return ET->getDecl()->getIntegerType()->isBooleanType();
774   return false;
775 }
776 
777 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
778   // Bool has a different representation in memory than in registers.
779   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
780     // This should really always be an i1, but sometimes it's already
781     // an i8, and it's awkward to track those cases down.
782     if (Value->getType()->isIntegerTy(1))
783       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
784     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
785   }
786 
787   return Value;
788 }
789 
790 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
791   // Bool has a different representation in memory than in registers.
792   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
793     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
794     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
795   }
796 
797   return Value;
798 }
799 
800 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
801                                         bool Volatile, unsigned Alignment,
802                                         QualType Ty,
803                                         llvm::MDNode *TBAAInfo) {
804   Value = EmitToMemory(Value, Ty);
805 
806   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
807   if (Alignment)
808     Store->setAlignment(Alignment);
809   if (TBAAInfo)
810     CGM.DecorateInstruction(Store, TBAAInfo);
811 }
812 
813 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) {
814   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
815                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
816                     lvalue.getTBAAInfo());
817 }
818 
819 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
820 /// method emits the address of the lvalue, then loads the result as an rvalue,
821 /// returning the rvalue.
822 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
823   if (LV.isObjCWeak()) {
824     // load of a __weak object.
825     llvm::Value *AddrWeakObj = LV.getAddress();
826     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
827                                                              AddrWeakObj));
828   }
829   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
830     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
831 
832   if (LV.isSimple()) {
833     assert(!LV.getType()->isFunctionType());
834 
835     // Everything needs a load.
836     return RValue::get(EmitLoadOfScalar(LV));
837   }
838 
839   if (LV.isVectorElt()) {
840     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
841                                           LV.isVolatileQualified());
842     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
843                                                     "vecext"));
844   }
845 
846   // If this is a reference to a subset of the elements of a vector, either
847   // shuffle the input or extract/insert them as appropriate.
848   if (LV.isExtVectorElt())
849     return EmitLoadOfExtVectorElementLValue(LV);
850 
851   assert(LV.isBitField() && "Unknown LValue type!");
852   return EmitLoadOfBitfieldLValue(LV);
853 }
854 
855 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
856   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
857 
858   // Get the output type.
859   llvm::Type *ResLTy = ConvertType(LV.getType());
860   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
861 
862   // Compute the result as an OR of all of the individual component accesses.
863   llvm::Value *Res = 0;
864   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
865     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
866 
867     // Get the field pointer.
868     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
869 
870     // Only offset by the field index if used, so that incoming values are not
871     // required to be structures.
872     if (AI.FieldIndex)
873       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
874 
875     // Offset by the byte offset, if used.
876     if (!AI.FieldByteOffset.isZero()) {
877       Ptr = EmitCastToVoidPtr(Ptr);
878       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
879                                        "bf.field.offs");
880     }
881 
882     // Cast to the access type.
883     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
884                                                      AI.AccessWidth,
885                        CGM.getContext().getTargetAddressSpace(LV.getType()));
886     Ptr = Builder.CreateBitCast(Ptr, PTy);
887 
888     // Perform the load.
889     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
890     if (!AI.AccessAlignment.isZero())
891       Load->setAlignment(AI.AccessAlignment.getQuantity());
892 
893     // Shift out unused low bits and mask out unused high bits.
894     llvm::Value *Val = Load;
895     if (AI.FieldBitStart)
896       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
897     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
898                                                             AI.TargetBitWidth),
899                             "bf.clear");
900 
901     // Extend or truncate to the target size.
902     if (AI.AccessWidth < ResSizeInBits)
903       Val = Builder.CreateZExt(Val, ResLTy);
904     else if (AI.AccessWidth > ResSizeInBits)
905       Val = Builder.CreateTrunc(Val, ResLTy);
906 
907     // Shift into place, and OR into the result.
908     if (AI.TargetBitOffset)
909       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
910     Res = Res ? Builder.CreateOr(Res, Val) : Val;
911   }
912 
913   // If the bit-field is signed, perform the sign-extension.
914   //
915   // FIXME: This can easily be folded into the load of the high bits, which
916   // could also eliminate the mask of high bits in some situations.
917   if (Info.isSigned()) {
918     unsigned ExtraBits = ResSizeInBits - Info.getSize();
919     if (ExtraBits)
920       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
921                                ExtraBits, "bf.val.sext");
922   }
923 
924   return RValue::get(Res);
925 }
926 
927 // If this is a reference to a subset of the elements of a vector, create an
928 // appropriate shufflevector.
929 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
930   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
931                                         LV.isVolatileQualified());
932 
933   const llvm::Constant *Elts = LV.getExtVectorElts();
934 
935   // If the result of the expression is a non-vector type, we must be extracting
936   // a single element.  Just codegen as an extractelement.
937   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
938   if (!ExprVT) {
939     unsigned InIdx = getAccessedFieldNo(0, Elts);
940     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
941     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
942   }
943 
944   // Always use shuffle vector to try to retain the original program structure
945   unsigned NumResultElts = ExprVT->getNumElements();
946 
947   SmallVector<llvm::Constant*, 4> Mask;
948   for (unsigned i = 0; i != NumResultElts; ++i) {
949     unsigned InIdx = getAccessedFieldNo(i, Elts);
950     Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
951   }
952 
953   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
954   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
955                                     MaskV);
956   return RValue::get(Vec);
957 }
958 
959 
960 
961 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
962 /// lvalue, where both are guaranteed to the have the same type, and that type
963 /// is 'Ty'.
964 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) {
965   if (!Dst.isSimple()) {
966     if (Dst.isVectorElt()) {
967       // Read/modify/write the vector, inserting the new element.
968       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
969                                             Dst.isVolatileQualified());
970       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
971                                         Dst.getVectorIdx(), "vecins");
972       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
973       return;
974     }
975 
976     // If this is an update of extended vector elements, insert them as
977     // appropriate.
978     if (Dst.isExtVectorElt())
979       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
980 
981     assert(Dst.isBitField() && "Unknown LValue type");
982     return EmitStoreThroughBitfieldLValue(Src, Dst);
983   }
984 
985   // There's special magic for assigning into an ARC-qualified l-value.
986   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
987     switch (Lifetime) {
988     case Qualifiers::OCL_None:
989       llvm_unreachable("present but none");
990 
991     case Qualifiers::OCL_ExplicitNone:
992       // nothing special
993       break;
994 
995     case Qualifiers::OCL_Strong:
996       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
997       return;
998 
999     case Qualifiers::OCL_Weak:
1000       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1001       return;
1002 
1003     case Qualifiers::OCL_Autoreleasing:
1004       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1005                                                      Src.getScalarVal()));
1006       // fall into the normal path
1007       break;
1008     }
1009   }
1010 
1011   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1012     // load of a __weak object.
1013     llvm::Value *LvalueDst = Dst.getAddress();
1014     llvm::Value *src = Src.getScalarVal();
1015      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1016     return;
1017   }
1018 
1019   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1020     // load of a __strong object.
1021     llvm::Value *LvalueDst = Dst.getAddress();
1022     llvm::Value *src = Src.getScalarVal();
1023     if (Dst.isObjCIvar()) {
1024       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1025       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1026       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1027       llvm::Value *dst = RHS;
1028       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1029       llvm::Value *LHS =
1030         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1031       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1032       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1033                                               BytesBetween);
1034     } else if (Dst.isGlobalObjCRef()) {
1035       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1036                                                 Dst.isThreadLocalRef());
1037     }
1038     else
1039       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1040     return;
1041   }
1042 
1043   assert(Src.isScalar() && "Can't emit an agg store with this method");
1044   EmitStoreOfScalar(Src.getScalarVal(), Dst);
1045 }
1046 
1047 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1048                                                      llvm::Value **Result) {
1049   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1050 
1051   // Get the output type.
1052   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1053   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1054 
1055   // Get the source value, truncated to the width of the bit-field.
1056   llvm::Value *SrcVal = Src.getScalarVal();
1057 
1058   if (Dst.getType()->isBooleanType())
1059     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1060 
1061   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1062                                                                 Info.getSize()),
1063                              "bf.value");
1064 
1065   // Return the new value of the bit-field, if requested.
1066   if (Result) {
1067     // Cast back to the proper type for result.
1068     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1069     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1070                                                    "bf.reload.val");
1071 
1072     // Sign extend if necessary.
1073     if (Info.isSigned()) {
1074       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1075       if (ExtraBits)
1076         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1077                                        ExtraBits, "bf.reload.sext");
1078     }
1079 
1080     *Result = ReloadVal;
1081   }
1082 
1083   // Iterate over the components, writing each piece to memory.
1084   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1085     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1086 
1087     // Get the field pointer.
1088     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1089     unsigned addressSpace =
1090       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1091 
1092     // Only offset by the field index if used, so that incoming values are not
1093     // required to be structures.
1094     if (AI.FieldIndex)
1095       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1096 
1097     // Offset by the byte offset, if used.
1098     if (!AI.FieldByteOffset.isZero()) {
1099       Ptr = EmitCastToVoidPtr(Ptr);
1100       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1101                                        "bf.field.offs");
1102     }
1103 
1104     // Cast to the access type.
1105     llvm::Type *AccessLTy =
1106       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1107 
1108     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1109     Ptr = Builder.CreateBitCast(Ptr, PTy);
1110 
1111     // Extract the piece of the bit-field value to write in this access, limited
1112     // to the values that are part of this access.
1113     llvm::Value *Val = SrcVal;
1114     if (AI.TargetBitOffset)
1115       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1116     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1117                                                             AI.TargetBitWidth));
1118 
1119     // Extend or truncate to the access size.
1120     if (ResSizeInBits < AI.AccessWidth)
1121       Val = Builder.CreateZExt(Val, AccessLTy);
1122     else if (ResSizeInBits > AI.AccessWidth)
1123       Val = Builder.CreateTrunc(Val, AccessLTy);
1124 
1125     // Shift into the position in memory.
1126     if (AI.FieldBitStart)
1127       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1128 
1129     // If necessary, load and OR in bits that are outside of the bit-field.
1130     if (AI.TargetBitWidth != AI.AccessWidth) {
1131       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1132       if (!AI.AccessAlignment.isZero())
1133         Load->setAlignment(AI.AccessAlignment.getQuantity());
1134 
1135       // Compute the mask for zeroing the bits that are part of the bit-field.
1136       llvm::APInt InvMask =
1137         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1138                                  AI.FieldBitStart + AI.TargetBitWidth);
1139 
1140       // Apply the mask and OR in to the value to write.
1141       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1142     }
1143 
1144     // Write the value.
1145     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1146                                                  Dst.isVolatileQualified());
1147     if (!AI.AccessAlignment.isZero())
1148       Store->setAlignment(AI.AccessAlignment.getQuantity());
1149   }
1150 }
1151 
1152 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1153                                                                LValue Dst) {
1154   // This access turns into a read/modify/write of the vector.  Load the input
1155   // value now.
1156   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1157                                         Dst.isVolatileQualified());
1158   const llvm::Constant *Elts = Dst.getExtVectorElts();
1159 
1160   llvm::Value *SrcVal = Src.getScalarVal();
1161 
1162   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1163     unsigned NumSrcElts = VTy->getNumElements();
1164     unsigned NumDstElts =
1165        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1166     if (NumDstElts == NumSrcElts) {
1167       // Use shuffle vector is the src and destination are the same number of
1168       // elements and restore the vector mask since it is on the side it will be
1169       // stored.
1170       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1171       for (unsigned i = 0; i != NumSrcElts; ++i) {
1172         unsigned InIdx = getAccessedFieldNo(i, Elts);
1173         Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
1174       }
1175 
1176       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1177       Vec = Builder.CreateShuffleVector(SrcVal,
1178                                         llvm::UndefValue::get(Vec->getType()),
1179                                         MaskV);
1180     } else if (NumDstElts > NumSrcElts) {
1181       // Extended the source vector to the same length and then shuffle it
1182       // into the destination.
1183       // FIXME: since we're shuffling with undef, can we just use the indices
1184       //        into that?  This could be simpler.
1185       SmallVector<llvm::Constant*, 4> ExtMask;
1186       unsigned i;
1187       for (i = 0; i != NumSrcElts; ++i)
1188         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1189       for (; i != NumDstElts; ++i)
1190         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1191       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1192       llvm::Value *ExtSrcVal =
1193         Builder.CreateShuffleVector(SrcVal,
1194                                     llvm::UndefValue::get(SrcVal->getType()),
1195                                     ExtMaskV);
1196       // build identity
1197       SmallVector<llvm::Constant*, 4> Mask;
1198       for (unsigned i = 0; i != NumDstElts; ++i)
1199         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1200 
1201       // modify when what gets shuffled in
1202       for (unsigned i = 0; i != NumSrcElts; ++i) {
1203         unsigned Idx = getAccessedFieldNo(i, Elts);
1204         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1205       }
1206       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1207       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1208     } else {
1209       // We should never shorten the vector
1210       llvm_unreachable("unexpected shorten vector length");
1211     }
1212   } else {
1213     // If the Src is a scalar (not a vector) it must be updating one element.
1214     unsigned InIdx = getAccessedFieldNo(0, Elts);
1215     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1216     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1217   }
1218 
1219   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1220 }
1221 
1222 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1223 // generating write-barries API. It is currently a global, ivar,
1224 // or neither.
1225 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1226                                  LValue &LV,
1227                                  bool IsMemberAccess=false) {
1228   if (Ctx.getLangOptions().getGC() == LangOptions::NonGC)
1229     return;
1230 
1231   if (isa<ObjCIvarRefExpr>(E)) {
1232     QualType ExpTy = E->getType();
1233     if (IsMemberAccess && ExpTy->isPointerType()) {
1234       // If ivar is a structure pointer, assigning to field of
1235       // this struct follows gcc's behavior and makes it a non-ivar
1236       // writer-barrier conservatively.
1237       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1238       if (ExpTy->isRecordType()) {
1239         LV.setObjCIvar(false);
1240         return;
1241       }
1242     }
1243     LV.setObjCIvar(true);
1244     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1245     LV.setBaseIvarExp(Exp->getBase());
1246     LV.setObjCArray(E->getType()->isArrayType());
1247     return;
1248   }
1249 
1250   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1251     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1252       if (VD->hasGlobalStorage()) {
1253         LV.setGlobalObjCRef(true);
1254         LV.setThreadLocalRef(VD->isThreadSpecified());
1255       }
1256     }
1257     LV.setObjCArray(E->getType()->isArrayType());
1258     return;
1259   }
1260 
1261   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1262     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1263     return;
1264   }
1265 
1266   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1267     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1268     if (LV.isObjCIvar()) {
1269       // If cast is to a structure pointer, follow gcc's behavior and make it
1270       // a non-ivar write-barrier.
1271       QualType ExpTy = E->getType();
1272       if (ExpTy->isPointerType())
1273         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1274       if (ExpTy->isRecordType())
1275         LV.setObjCIvar(false);
1276     }
1277     return;
1278   }
1279 
1280   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1281     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1282     return;
1283   }
1284 
1285   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1286     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1287     return;
1288   }
1289 
1290   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1291     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1292     return;
1293   }
1294 
1295   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1296     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1297     return;
1298   }
1299 
1300   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1301     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1302     if (LV.isObjCIvar() && !LV.isObjCArray())
1303       // Using array syntax to assigning to what an ivar points to is not
1304       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1305       LV.setObjCIvar(false);
1306     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1307       // Using array syntax to assigning to what global points to is not
1308       // same as assigning to the global itself. {id *G;} G[i] = 0;
1309       LV.setGlobalObjCRef(false);
1310     return;
1311   }
1312 
1313   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1314     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1315     // We don't know if member is an 'ivar', but this flag is looked at
1316     // only in the context of LV.isObjCIvar().
1317     LV.setObjCArray(E->getType()->isArrayType());
1318     return;
1319   }
1320 }
1321 
1322 static llvm::Value *
1323 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1324                                 llvm::Value *V, llvm::Type *IRType,
1325                                 StringRef Name = StringRef()) {
1326   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1327   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1328 }
1329 
1330 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1331                                       const Expr *E, const VarDecl *VD) {
1332   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1333          "Var decl must have external storage or be a file var decl!");
1334 
1335   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1336   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1337   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1338   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1339   QualType T = E->getType();
1340   LValue LV;
1341   if (VD->getType()->isReferenceType()) {
1342     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1343     LI->setAlignment(Alignment.getQuantity());
1344     V = LI;
1345     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1346   } else {
1347     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1348   }
1349   setObjCGCLValueClass(CGF.getContext(), E, LV);
1350   return LV;
1351 }
1352 
1353 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1354                                      const Expr *E, const FunctionDecl *FD) {
1355   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1356   if (!FD->hasPrototype()) {
1357     if (const FunctionProtoType *Proto =
1358             FD->getType()->getAs<FunctionProtoType>()) {
1359       // Ugly case: for a K&R-style definition, the type of the definition
1360       // isn't the same as the type of a use.  Correct for this with a
1361       // bitcast.
1362       QualType NoProtoType =
1363           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1364       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1365       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1366     }
1367   }
1368   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1369   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1370 }
1371 
1372 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1373   const NamedDecl *ND = E->getDecl();
1374   CharUnits Alignment = getContext().getDeclAlign(ND);
1375   QualType T = E->getType();
1376 
1377   if (ND->hasAttr<WeakRefAttr>()) {
1378     const ValueDecl *VD = cast<ValueDecl>(ND);
1379     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1380     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1381   }
1382 
1383   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1384 
1385     // Check if this is a global variable.
1386     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1387       return EmitGlobalVarDeclLValue(*this, E, VD);
1388 
1389     bool NonGCable = VD->hasLocalStorage() &&
1390                      !VD->getType()->isReferenceType() &&
1391                      !VD->hasAttr<BlocksAttr>();
1392 
1393     llvm::Value *V = LocalDeclMap[VD];
1394     if (!V && VD->isStaticLocal())
1395       V = CGM.getStaticLocalDeclAddress(VD);
1396     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1397 
1398     if (VD->hasAttr<BlocksAttr>())
1399       V = BuildBlockByrefAddress(V, VD);
1400 
1401     LValue LV;
1402     if (VD->getType()->isReferenceType()) {
1403       llvm::LoadInst *LI = Builder.CreateLoad(V);
1404       LI->setAlignment(Alignment.getQuantity());
1405       V = LI;
1406       LV = MakeNaturalAlignAddrLValue(V, T);
1407     } else {
1408       LV = MakeAddrLValue(V, T, Alignment);
1409     }
1410 
1411     if (NonGCable) {
1412       LV.getQuals().removeObjCGCAttr();
1413       LV.setNonGC(true);
1414     }
1415     setObjCGCLValueClass(getContext(), E, LV);
1416     return LV;
1417   }
1418 
1419   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1420     return EmitFunctionDeclLValue(*this, E, fn);
1421 
1422   llvm_unreachable("Unhandled DeclRefExpr");
1423 
1424   // an invalid LValue, but the assert will
1425   // ensure that this point is never reached.
1426   return LValue();
1427 }
1428 
1429 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1430   CharUnits Alignment = getContext().getDeclAlign(E->getDecl());
1431   return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1432 }
1433 
1434 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1435   // __extension__ doesn't affect lvalue-ness.
1436   if (E->getOpcode() == UO_Extension)
1437     return EmitLValue(E->getSubExpr());
1438 
1439   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1440   switch (E->getOpcode()) {
1441   default: llvm_unreachable("Unknown unary operator lvalue!");
1442   case UO_Deref: {
1443     QualType T = E->getSubExpr()->getType()->getPointeeType();
1444     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1445 
1446     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1447     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1448 
1449     // We should not generate __weak write barrier on indirect reference
1450     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1451     // But, we continue to generate __strong write barrier on indirect write
1452     // into a pointer to object.
1453     if (getContext().getLangOptions().ObjC1 &&
1454         getContext().getLangOptions().getGC() != LangOptions::NonGC &&
1455         LV.isObjCWeak())
1456       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1457     return LV;
1458   }
1459   case UO_Real:
1460   case UO_Imag: {
1461     LValue LV = EmitLValue(E->getSubExpr());
1462     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1463     llvm::Value *Addr = LV.getAddress();
1464 
1465     // real and imag are valid on scalars.  This is a faster way of
1466     // testing that.
1467     if (!cast<llvm::PointerType>(Addr->getType())
1468            ->getElementType()->isStructTy()) {
1469       assert(E->getSubExpr()->getType()->isArithmeticType());
1470       return LV;
1471     }
1472 
1473     assert(E->getSubExpr()->getType()->isAnyComplexType());
1474 
1475     unsigned Idx = E->getOpcode() == UO_Imag;
1476     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1477                                                   Idx, "idx"),
1478                           ExprTy);
1479   }
1480   case UO_PreInc:
1481   case UO_PreDec: {
1482     LValue LV = EmitLValue(E->getSubExpr());
1483     bool isInc = E->getOpcode() == UO_PreInc;
1484 
1485     if (E->getType()->isAnyComplexType())
1486       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1487     else
1488       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1489     return LV;
1490   }
1491   }
1492 }
1493 
1494 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1495   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1496                         E->getType());
1497 }
1498 
1499 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1500   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1501                         E->getType());
1502 }
1503 
1504 
1505 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1506   switch (E->getIdentType()) {
1507   default:
1508     return EmitUnsupportedLValue(E, "predefined expression");
1509 
1510   case PredefinedExpr::Func:
1511   case PredefinedExpr::Function:
1512   case PredefinedExpr::PrettyFunction: {
1513     unsigned Type = E->getIdentType();
1514     std::string GlobalVarName;
1515 
1516     switch (Type) {
1517     default: llvm_unreachable("Invalid type");
1518     case PredefinedExpr::Func:
1519       GlobalVarName = "__func__.";
1520       break;
1521     case PredefinedExpr::Function:
1522       GlobalVarName = "__FUNCTION__.";
1523       break;
1524     case PredefinedExpr::PrettyFunction:
1525       GlobalVarName = "__PRETTY_FUNCTION__.";
1526       break;
1527     }
1528 
1529     StringRef FnName = CurFn->getName();
1530     if (FnName.startswith("\01"))
1531       FnName = FnName.substr(1);
1532     GlobalVarName += FnName;
1533 
1534     const Decl *CurDecl = CurCodeDecl;
1535     if (CurDecl == 0)
1536       CurDecl = getContext().getTranslationUnitDecl();
1537 
1538     std::string FunctionName =
1539         (isa<BlockDecl>(CurDecl)
1540          ? FnName.str()
1541          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1542 
1543     llvm::Constant *C =
1544       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1545     return MakeAddrLValue(C, E->getType());
1546   }
1547   }
1548 }
1549 
1550 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1551   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1552 
1553   // If we are not optimzing, don't collapse all calls to trap in the function
1554   // to the same call, that way, in the debugger they can see which operation
1555   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1556   // to just one per function to save on codesize.
1557   if (GCO.OptimizationLevel && TrapBB)
1558     return TrapBB;
1559 
1560   llvm::BasicBlock *Cont = 0;
1561   if (HaveInsertPoint()) {
1562     Cont = createBasicBlock("cont");
1563     EmitBranch(Cont);
1564   }
1565   TrapBB = createBasicBlock("trap");
1566   EmitBlock(TrapBB);
1567 
1568   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1569   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1570   TrapCall->setDoesNotReturn();
1571   TrapCall->setDoesNotThrow();
1572   Builder.CreateUnreachable();
1573 
1574   if (Cont)
1575     EmitBlock(Cont);
1576   return TrapBB;
1577 }
1578 
1579 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1580 /// array to pointer, return the array subexpression.
1581 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1582   // If this isn't just an array->pointer decay, bail out.
1583   const CastExpr *CE = dyn_cast<CastExpr>(E);
1584   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1585     return 0;
1586 
1587   // If this is a decay from variable width array, bail out.
1588   const Expr *SubExpr = CE->getSubExpr();
1589   if (SubExpr->getType()->isVariableArrayType())
1590     return 0;
1591 
1592   return SubExpr;
1593 }
1594 
1595 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1596   // The index must always be an integer, which is not an aggregate.  Emit it.
1597   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1598   QualType IdxTy  = E->getIdx()->getType();
1599   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1600 
1601   // If the base is a vector type, then we are forming a vector element lvalue
1602   // with this subscript.
1603   if (E->getBase()->getType()->isVectorType()) {
1604     // Emit the vector as an lvalue to get its address.
1605     LValue LHS = EmitLValue(E->getBase());
1606     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1607     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1608     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1609                                  E->getBase()->getType());
1610   }
1611 
1612   // Extend or truncate the index type to 32 or 64-bits.
1613   if (Idx->getType() != IntPtrTy)
1614     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1615 
1616   // FIXME: As llvm implements the object size checking, this can come out.
1617   if (CatchUndefined) {
1618     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1619       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1620         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1621           if (const ConstantArrayType *CAT
1622               = getContext().getAsConstantArrayType(DRE->getType())) {
1623             llvm::APInt Size = CAT->getSize();
1624             llvm::BasicBlock *Cont = createBasicBlock("cont");
1625             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1626                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1627                                  Cont, getTrapBB());
1628             EmitBlock(Cont);
1629           }
1630         }
1631       }
1632     }
1633   }
1634 
1635   // We know that the pointer points to a type of the correct size, unless the
1636   // size is a VLA or Objective-C interface.
1637   llvm::Value *Address = 0;
1638   CharUnits ArrayAlignment;
1639   if (const VariableArrayType *vla =
1640         getContext().getAsVariableArrayType(E->getType())) {
1641     // The base must be a pointer, which is not an aggregate.  Emit
1642     // it.  It needs to be emitted first in case it's what captures
1643     // the VLA bounds.
1644     Address = EmitScalarExpr(E->getBase());
1645 
1646     // The element count here is the total number of non-VLA elements.
1647     llvm::Value *numElements = getVLASize(vla).first;
1648 
1649     // Effectively, the multiply by the VLA size is part of the GEP.
1650     // GEP indexes are signed, and scaling an index isn't permitted to
1651     // signed-overflow, so we use the same semantics for our explicit
1652     // multiply.  We suppress this if overflow is not undefined behavior.
1653     if (getLangOptions().isSignedOverflowDefined()) {
1654       Idx = Builder.CreateMul(Idx, numElements);
1655       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1656     } else {
1657       Idx = Builder.CreateNSWMul(Idx, numElements);
1658       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1659     }
1660   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1661     // Indexing over an interface, as in "NSString *P; P[4];"
1662     llvm::Value *InterfaceSize =
1663       llvm::ConstantInt::get(Idx->getType(),
1664           getContext().getTypeSizeInChars(OIT).getQuantity());
1665 
1666     Idx = Builder.CreateMul(Idx, InterfaceSize);
1667 
1668     // The base must be a pointer, which is not an aggregate.  Emit it.
1669     llvm::Value *Base = EmitScalarExpr(E->getBase());
1670     Address = EmitCastToVoidPtr(Base);
1671     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1672     Address = Builder.CreateBitCast(Address, Base->getType());
1673   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1674     // If this is A[i] where A is an array, the frontend will have decayed the
1675     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1676     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1677     // "gep x, i" here.  Emit one "gep A, 0, i".
1678     assert(Array->getType()->isArrayType() &&
1679            "Array to pointer decay must have array source type!");
1680     LValue ArrayLV = EmitLValue(Array);
1681     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1682     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1683     llvm::Value *Args[] = { Zero, Idx };
1684 
1685     // Propagate the alignment from the array itself to the result.
1686     ArrayAlignment = ArrayLV.getAlignment();
1687 
1688     if (getContext().getLangOptions().isSignedOverflowDefined())
1689       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1690     else
1691       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1692   } else {
1693     // The base must be a pointer, which is not an aggregate.  Emit it.
1694     llvm::Value *Base = EmitScalarExpr(E->getBase());
1695     if (getContext().getLangOptions().isSignedOverflowDefined())
1696       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1697     else
1698       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1699   }
1700 
1701   QualType T = E->getBase()->getType()->getPointeeType();
1702   assert(!T.isNull() &&
1703          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1704 
1705 
1706   // Limit the alignment to that of the result type.
1707   LValue LV;
1708   if (!ArrayAlignment.isZero()) {
1709     CharUnits Align = getContext().getTypeAlignInChars(T);
1710     ArrayAlignment = std::min(Align, ArrayAlignment);
1711     LV = MakeAddrLValue(Address, T, ArrayAlignment);
1712   } else {
1713     LV = MakeNaturalAlignAddrLValue(Address, T);
1714   }
1715 
1716   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1717 
1718   if (getContext().getLangOptions().ObjC1 &&
1719       getContext().getLangOptions().getGC() != LangOptions::NonGC) {
1720     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1721     setObjCGCLValueClass(getContext(), E, LV);
1722   }
1723   return LV;
1724 }
1725 
1726 static
1727 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1728                                        SmallVector<unsigned, 4> &Elts) {
1729   SmallVector<llvm::Constant*, 4> CElts;
1730 
1731   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1732   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1733     CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1734 
1735   return llvm::ConstantVector::get(CElts);
1736 }
1737 
1738 LValue CodeGenFunction::
1739 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1740   // Emit the base vector as an l-value.
1741   LValue Base;
1742 
1743   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1744   if (E->isArrow()) {
1745     // If it is a pointer to a vector, emit the address and form an lvalue with
1746     // it.
1747     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1748     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1749     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1750     Base.getQuals().removeObjCGCAttr();
1751   } else if (E->getBase()->isGLValue()) {
1752     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1753     // emit the base as an lvalue.
1754     assert(E->getBase()->getType()->isVectorType());
1755     Base = EmitLValue(E->getBase());
1756   } else {
1757     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1758     assert(E->getBase()->getType()->isVectorType() &&
1759            "Result must be a vector");
1760     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1761 
1762     // Store the vector to memory (because LValue wants an address).
1763     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1764     Builder.CreateStore(Vec, VecMem);
1765     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1766   }
1767 
1768   QualType type =
1769     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1770 
1771   // Encode the element access list into a vector of unsigned indices.
1772   SmallVector<unsigned, 4> Indices;
1773   E->getEncodedElementAccess(Indices);
1774 
1775   if (Base.isSimple()) {
1776     llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1777     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1778   }
1779   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1780 
1781   llvm::Constant *BaseElts = Base.getExtVectorElts();
1782   SmallVector<llvm::Constant *, 4> CElts;
1783 
1784   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1785     if (isa<llvm::ConstantAggregateZero>(BaseElts))
1786       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1787     else
1788       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1789   }
1790   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1791   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1792 }
1793 
1794 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1795   bool isNonGC = false;
1796   Expr *BaseExpr = E->getBase();
1797   llvm::Value *BaseValue = NULL;
1798   Qualifiers BaseQuals;
1799 
1800   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1801   if (E->isArrow()) {
1802     BaseValue = EmitScalarExpr(BaseExpr);
1803     const PointerType *PTy =
1804       BaseExpr->getType()->getAs<PointerType>();
1805     BaseQuals = PTy->getPointeeType().getQualifiers();
1806   } else {
1807     LValue BaseLV = EmitLValue(BaseExpr);
1808     if (BaseLV.isNonGC())
1809       isNonGC = true;
1810     // FIXME: this isn't right for bitfields.
1811     BaseValue = BaseLV.getAddress();
1812     QualType BaseTy = BaseExpr->getType();
1813     BaseQuals = BaseTy.getQualifiers();
1814   }
1815 
1816   NamedDecl *ND = E->getMemberDecl();
1817   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1818     LValue LV = EmitLValueForField(BaseValue, Field,
1819                                    BaseQuals.getCVRQualifiers());
1820     LV.setNonGC(isNonGC);
1821     setObjCGCLValueClass(getContext(), E, LV);
1822     return LV;
1823   }
1824 
1825   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1826     return EmitGlobalVarDeclLValue(*this, E, VD);
1827 
1828   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1829     return EmitFunctionDeclLValue(*this, E, FD);
1830 
1831   llvm_unreachable("Unhandled member declaration!");
1832 }
1833 
1834 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1835                                               const FieldDecl *Field,
1836                                               unsigned CVRQualifiers) {
1837   const CGRecordLayout &RL =
1838     CGM.getTypes().getCGRecordLayout(Field->getParent());
1839   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1840   return LValue::MakeBitfield(BaseValue, Info,
1841                           Field->getType().withCVRQualifiers(CVRQualifiers));
1842 }
1843 
1844 /// EmitLValueForAnonRecordField - Given that the field is a member of
1845 /// an anonymous struct or union buried inside a record, and given
1846 /// that the base value is a pointer to the enclosing record, derive
1847 /// an lvalue for the ultimate field.
1848 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1849                                              const IndirectFieldDecl *Field,
1850                                                      unsigned CVRQualifiers) {
1851   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1852     IEnd = Field->chain_end();
1853   while (true) {
1854     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1855                                    CVRQualifiers);
1856     if (++I == IEnd) return LV;
1857 
1858     assert(LV.isSimple());
1859     BaseValue = LV.getAddress();
1860     CVRQualifiers |= LV.getVRQualifiers();
1861   }
1862 }
1863 
1864 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1865                                            const FieldDecl *field,
1866                                            unsigned cvr) {
1867   if (field->isBitField())
1868     return EmitLValueForBitfield(baseAddr, field, cvr);
1869 
1870   const RecordDecl *rec = field->getParent();
1871   QualType type = field->getType();
1872   CharUnits alignment = getContext().getDeclAlign(field);
1873 
1874   bool mayAlias = rec->hasAttr<MayAliasAttr>();
1875 
1876   llvm::Value *addr = baseAddr;
1877   if (rec->isUnion()) {
1878     // For unions, there is no pointer adjustment.
1879     assert(!type->isReferenceType() && "union has reference member");
1880   } else {
1881     // For structs, we GEP to the field that the record layout suggests.
1882     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1883     addr = Builder.CreateStructGEP(addr, idx, field->getName());
1884 
1885     // If this is a reference field, load the reference right now.
1886     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1887       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1888       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1889       load->setAlignment(alignment.getQuantity());
1890 
1891       if (CGM.shouldUseTBAA()) {
1892         llvm::MDNode *tbaa;
1893         if (mayAlias)
1894           tbaa = CGM.getTBAAInfo(getContext().CharTy);
1895         else
1896           tbaa = CGM.getTBAAInfo(type);
1897         CGM.DecorateInstruction(load, tbaa);
1898       }
1899 
1900       addr = load;
1901       mayAlias = false;
1902       type = refType->getPointeeType();
1903       if (type->isIncompleteType())
1904         alignment = CharUnits();
1905       else
1906         alignment = getContext().getTypeAlignInChars(type);
1907       cvr = 0; // qualifiers don't recursively apply to referencee
1908     }
1909   }
1910 
1911   // Make sure that the address is pointing to the right type.  This is critical
1912   // for both unions and structs.  A union needs a bitcast, a struct element
1913   // will need a bitcast if the LLVM type laid out doesn't match the desired
1914   // type.
1915   addr = EmitBitCastOfLValueToProperType(*this, addr,
1916                                          CGM.getTypes().ConvertTypeForMem(type),
1917                                          field->getName());
1918 
1919   if (field->hasAttr<AnnotateAttr>())
1920     addr = EmitFieldAnnotations(field, addr);
1921 
1922   LValue LV = MakeAddrLValue(addr, type, alignment);
1923   LV.getQuals().addCVRQualifiers(cvr);
1924 
1925   // __weak attribute on a field is ignored.
1926   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1927     LV.getQuals().removeObjCGCAttr();
1928 
1929   // Fields of may_alias structs act like 'char' for TBAA purposes.
1930   // FIXME: this should get propagated down through anonymous structs
1931   // and unions.
1932   if (mayAlias && LV.getTBAAInfo())
1933     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1934 
1935   return LV;
1936 }
1937 
1938 LValue
1939 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1940                                                   const FieldDecl *Field,
1941                                                   unsigned CVRQualifiers) {
1942   QualType FieldType = Field->getType();
1943 
1944   if (!FieldType->isReferenceType())
1945     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1946 
1947   const CGRecordLayout &RL =
1948     CGM.getTypes().getCGRecordLayout(Field->getParent());
1949   unsigned idx = RL.getLLVMFieldNo(Field);
1950   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
1951   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1952 
1953 
1954   // Make sure that the address is pointing to the right type.  This is critical
1955   // for both unions and structs.  A union needs a bitcast, a struct element
1956   // will need a bitcast if the LLVM type laid out doesn't match the desired
1957   // type.
1958   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
1959   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1960   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
1961 
1962   CharUnits Alignment = getContext().getDeclAlign(Field);
1963   return MakeAddrLValue(V, FieldType, Alignment);
1964 }
1965 
1966 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1967   if (E->isFileScope()) {
1968     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
1969     return MakeAddrLValue(GlobalPtr, E->getType());
1970   }
1971 
1972   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1973   const Expr *InitExpr = E->getInitializer();
1974   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1975 
1976   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
1977                    /*Init*/ true);
1978 
1979   return Result;
1980 }
1981 
1982 LValue CodeGenFunction::
1983 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1984   if (!expr->isGLValue()) {
1985     // ?: here should be an aggregate.
1986     assert((hasAggregateLLVMType(expr->getType()) &&
1987             !expr->getType()->isAnyComplexType()) &&
1988            "Unexpected conditional operator!");
1989     return EmitAggExprToLValue(expr);
1990   }
1991 
1992   const Expr *condExpr = expr->getCond();
1993   bool CondExprBool;
1994   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
1995     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1996     if (!CondExprBool) std::swap(live, dead);
1997 
1998     if (!ContainsLabel(dead))
1999       return EmitLValue(live);
2000   }
2001 
2002   OpaqueValueMapping binding(*this, expr);
2003 
2004   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2005   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2006   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2007 
2008   ConditionalEvaluation eval(*this);
2009   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2010 
2011   // Any temporaries created here are conditional.
2012   EmitBlock(lhsBlock);
2013   eval.begin(*this);
2014   LValue lhs = EmitLValue(expr->getTrueExpr());
2015   eval.end(*this);
2016 
2017   if (!lhs.isSimple())
2018     return EmitUnsupportedLValue(expr, "conditional operator");
2019 
2020   lhsBlock = Builder.GetInsertBlock();
2021   Builder.CreateBr(contBlock);
2022 
2023   // Any temporaries created here are conditional.
2024   EmitBlock(rhsBlock);
2025   eval.begin(*this);
2026   LValue rhs = EmitLValue(expr->getFalseExpr());
2027   eval.end(*this);
2028   if (!rhs.isSimple())
2029     return EmitUnsupportedLValue(expr, "conditional operator");
2030   rhsBlock = Builder.GetInsertBlock();
2031 
2032   EmitBlock(contBlock);
2033 
2034   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2035                                          "cond-lvalue");
2036   phi->addIncoming(lhs.getAddress(), lhsBlock);
2037   phi->addIncoming(rhs.getAddress(), rhsBlock);
2038   return MakeAddrLValue(phi, expr->getType());
2039 }
2040 
2041 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2042 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
2043 /// otherwise if a cast is needed by the code generator in an lvalue context,
2044 /// then it must mean that we need the address of an aggregate in order to
2045 /// access one of its fields.  This can happen for all the reasons that casts
2046 /// are permitted with aggregate result, including noop aggregate casts, and
2047 /// cast from scalar to union.
2048 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2049   switch (E->getCastKind()) {
2050   case CK_ToVoid:
2051     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2052 
2053   case CK_Dependent:
2054     llvm_unreachable("dependent cast kind in IR gen!");
2055 
2056   case CK_NoOp:
2057   case CK_LValueToRValue:
2058     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2059         || E->getType()->isRecordType())
2060       return EmitLValue(E->getSubExpr());
2061     // Fall through to synthesize a temporary.
2062 
2063   case CK_BitCast:
2064   case CK_ArrayToPointerDecay:
2065   case CK_FunctionToPointerDecay:
2066   case CK_NullToMemberPointer:
2067   case CK_NullToPointer:
2068   case CK_IntegralToPointer:
2069   case CK_PointerToIntegral:
2070   case CK_PointerToBoolean:
2071   case CK_VectorSplat:
2072   case CK_IntegralCast:
2073   case CK_IntegralToBoolean:
2074   case CK_IntegralToFloating:
2075   case CK_FloatingToIntegral:
2076   case CK_FloatingToBoolean:
2077   case CK_FloatingCast:
2078   case CK_FloatingRealToComplex:
2079   case CK_FloatingComplexToReal:
2080   case CK_FloatingComplexToBoolean:
2081   case CK_FloatingComplexCast:
2082   case CK_FloatingComplexToIntegralComplex:
2083   case CK_IntegralRealToComplex:
2084   case CK_IntegralComplexToReal:
2085   case CK_IntegralComplexToBoolean:
2086   case CK_IntegralComplexCast:
2087   case CK_IntegralComplexToFloatingComplex:
2088   case CK_DerivedToBaseMemberPointer:
2089   case CK_BaseToDerivedMemberPointer:
2090   case CK_MemberPointerToBoolean:
2091   case CK_AnyPointerToBlockPointerCast:
2092   case CK_ARCProduceObject:
2093   case CK_ARCConsumeObject:
2094   case CK_ARCReclaimReturnedObject:
2095   case CK_ARCExtendBlockObject: {
2096     // These casts only produce lvalues when we're binding a reference to a
2097     // temporary realized from a (converted) pure rvalue. Emit the expression
2098     // as a value, copy it into a temporary, and return an lvalue referring to
2099     // that temporary.
2100     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2101     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2102     return MakeAddrLValue(V, E->getType());
2103   }
2104 
2105   case CK_Dynamic: {
2106     LValue LV = EmitLValue(E->getSubExpr());
2107     llvm::Value *V = LV.getAddress();
2108     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2109     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2110   }
2111 
2112   case CK_ConstructorConversion:
2113   case CK_UserDefinedConversion:
2114   case CK_CPointerToObjCPointerCast:
2115   case CK_BlockPointerToObjCPointerCast:
2116     return EmitLValue(E->getSubExpr());
2117 
2118   case CK_UncheckedDerivedToBase:
2119   case CK_DerivedToBase: {
2120     const RecordType *DerivedClassTy =
2121       E->getSubExpr()->getType()->getAs<RecordType>();
2122     CXXRecordDecl *DerivedClassDecl =
2123       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2124 
2125     LValue LV = EmitLValue(E->getSubExpr());
2126     llvm::Value *This = LV.getAddress();
2127 
2128     // Perform the derived-to-base conversion
2129     llvm::Value *Base =
2130       GetAddressOfBaseClass(This, DerivedClassDecl,
2131                             E->path_begin(), E->path_end(),
2132                             /*NullCheckValue=*/false);
2133 
2134     return MakeAddrLValue(Base, E->getType());
2135   }
2136   case CK_ToUnion:
2137     return EmitAggExprToLValue(E);
2138   case CK_BaseToDerived: {
2139     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2140     CXXRecordDecl *DerivedClassDecl =
2141       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2142 
2143     LValue LV = EmitLValue(E->getSubExpr());
2144 
2145     // Perform the base-to-derived conversion
2146     llvm::Value *Derived =
2147       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2148                                E->path_begin(), E->path_end(),
2149                                /*NullCheckValue=*/false);
2150 
2151     return MakeAddrLValue(Derived, E->getType());
2152   }
2153   case CK_LValueBitCast: {
2154     // This must be a reinterpret_cast (or c-style equivalent).
2155     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2156 
2157     LValue LV = EmitLValue(E->getSubExpr());
2158     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2159                                            ConvertType(CE->getTypeAsWritten()));
2160     return MakeAddrLValue(V, E->getType());
2161   }
2162   case CK_ObjCObjectLValueCast: {
2163     LValue LV = EmitLValue(E->getSubExpr());
2164     QualType ToType = getContext().getLValueReferenceType(E->getType());
2165     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2166                                            ConvertType(ToType));
2167     return MakeAddrLValue(V, E->getType());
2168   }
2169   }
2170 
2171   llvm_unreachable("Unhandled lvalue cast kind?");
2172 }
2173 
2174 LValue CodeGenFunction::EmitNullInitializationLValue(
2175                                               const CXXScalarValueInitExpr *E) {
2176   QualType Ty = E->getType();
2177   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2178   EmitNullInitialization(LV.getAddress(), Ty);
2179   return LV;
2180 }
2181 
2182 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2183   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2184   return getOpaqueLValueMapping(e);
2185 }
2186 
2187 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2188                                            const MaterializeTemporaryExpr *E) {
2189   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2190   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2191 }
2192 
2193 
2194 //===--------------------------------------------------------------------===//
2195 //                             Expression Emission
2196 //===--------------------------------------------------------------------===//
2197 
2198 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2199                                      ReturnValueSlot ReturnValue) {
2200   if (CGDebugInfo *DI = getDebugInfo())
2201     DI->EmitLocation(Builder, E->getLocStart());
2202 
2203   // Builtins never have block type.
2204   if (E->getCallee()->getType()->isBlockPointerType())
2205     return EmitBlockCallExpr(E, ReturnValue);
2206 
2207   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2208     return EmitCXXMemberCallExpr(CE, ReturnValue);
2209 
2210   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2211     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2212 
2213   const Decl *TargetDecl = E->getCalleeDecl();
2214   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2215     if (unsigned builtinID = FD->getBuiltinID())
2216       return EmitBuiltinExpr(FD, builtinID, E);
2217   }
2218 
2219   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2220     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2221       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2222 
2223   if (const CXXPseudoDestructorExpr *PseudoDtor
2224           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2225     QualType DestroyedType = PseudoDtor->getDestroyedType();
2226     if (getContext().getLangOptions().ObjCAutoRefCount &&
2227         DestroyedType->isObjCLifetimeType() &&
2228         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2229          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2230       // Automatic Reference Counting:
2231       //   If the pseudo-expression names a retainable object with weak or
2232       //   strong lifetime, the object shall be released.
2233       Expr *BaseExpr = PseudoDtor->getBase();
2234       llvm::Value *BaseValue = NULL;
2235       Qualifiers BaseQuals;
2236 
2237       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2238       if (PseudoDtor->isArrow()) {
2239         BaseValue = EmitScalarExpr(BaseExpr);
2240         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2241         BaseQuals = PTy->getPointeeType().getQualifiers();
2242       } else {
2243         LValue BaseLV = EmitLValue(BaseExpr);
2244         BaseValue = BaseLV.getAddress();
2245         QualType BaseTy = BaseExpr->getType();
2246         BaseQuals = BaseTy.getQualifiers();
2247       }
2248 
2249       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2250       case Qualifiers::OCL_None:
2251       case Qualifiers::OCL_ExplicitNone:
2252       case Qualifiers::OCL_Autoreleasing:
2253         break;
2254 
2255       case Qualifiers::OCL_Strong:
2256         EmitARCRelease(Builder.CreateLoad(BaseValue,
2257                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2258                        /*precise*/ true);
2259         break;
2260 
2261       case Qualifiers::OCL_Weak:
2262         EmitARCDestroyWeak(BaseValue);
2263         break;
2264       }
2265     } else {
2266       // C++ [expr.pseudo]p1:
2267       //   The result shall only be used as the operand for the function call
2268       //   operator (), and the result of such a call has type void. The only
2269       //   effect is the evaluation of the postfix-expression before the dot or
2270       //   arrow.
2271       EmitScalarExpr(E->getCallee());
2272     }
2273 
2274     return RValue::get(0);
2275   }
2276 
2277   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2278   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2279                   E->arg_begin(), E->arg_end(), TargetDecl);
2280 }
2281 
2282 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2283   // Comma expressions just emit their LHS then their RHS as an l-value.
2284   if (E->getOpcode() == BO_Comma) {
2285     EmitIgnoredExpr(E->getLHS());
2286     EnsureInsertPoint();
2287     return EmitLValue(E->getRHS());
2288   }
2289 
2290   if (E->getOpcode() == BO_PtrMemD ||
2291       E->getOpcode() == BO_PtrMemI)
2292     return EmitPointerToDataMemberBinaryExpr(E);
2293 
2294   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2295 
2296   // Note that in all of these cases, __block variables need the RHS
2297   // evaluated first just in case the variable gets moved by the RHS.
2298 
2299   if (!hasAggregateLLVMType(E->getType())) {
2300     switch (E->getLHS()->getType().getObjCLifetime()) {
2301     case Qualifiers::OCL_Strong:
2302       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2303 
2304     case Qualifiers::OCL_Autoreleasing:
2305       return EmitARCStoreAutoreleasing(E).first;
2306 
2307     // No reason to do any of these differently.
2308     case Qualifiers::OCL_None:
2309     case Qualifiers::OCL_ExplicitNone:
2310     case Qualifiers::OCL_Weak:
2311       break;
2312     }
2313 
2314     RValue RV = EmitAnyExpr(E->getRHS());
2315     LValue LV = EmitLValue(E->getLHS());
2316     EmitStoreThroughLValue(RV, LV);
2317     return LV;
2318   }
2319 
2320   if (E->getType()->isAnyComplexType())
2321     return EmitComplexAssignmentLValue(E);
2322 
2323   return EmitAggExprToLValue(E);
2324 }
2325 
2326 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2327   RValue RV = EmitCallExpr(E);
2328 
2329   if (!RV.isScalar())
2330     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2331 
2332   assert(E->getCallReturnType()->isReferenceType() &&
2333          "Can't have a scalar return unless the return type is a "
2334          "reference type!");
2335 
2336   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2337 }
2338 
2339 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2340   // FIXME: This shouldn't require another copy.
2341   return EmitAggExprToLValue(E);
2342 }
2343 
2344 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2345   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2346          && "binding l-value to type which needs a temporary");
2347   AggValueSlot Slot = CreateAggTemp(E->getType());
2348   EmitCXXConstructExpr(E, Slot);
2349   return MakeAddrLValue(Slot.getAddr(), E->getType());
2350 }
2351 
2352 LValue
2353 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2354   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2355 }
2356 
2357 LValue
2358 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2359   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2360   Slot.setExternallyDestructed();
2361   EmitAggExpr(E->getSubExpr(), Slot);
2362   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2363   return MakeAddrLValue(Slot.getAddr(), E->getType());
2364 }
2365 
2366 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2367   RValue RV = EmitObjCMessageExpr(E);
2368 
2369   if (!RV.isScalar())
2370     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2371 
2372   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2373          "Can't have a scalar return unless the return type is a "
2374          "reference type!");
2375 
2376   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2377 }
2378 
2379 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2380   llvm::Value *V =
2381     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2382   return MakeAddrLValue(V, E->getType());
2383 }
2384 
2385 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2386                                              const ObjCIvarDecl *Ivar) {
2387   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2388 }
2389 
2390 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2391                                           llvm::Value *BaseValue,
2392                                           const ObjCIvarDecl *Ivar,
2393                                           unsigned CVRQualifiers) {
2394   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2395                                                    Ivar, CVRQualifiers);
2396 }
2397 
2398 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2399   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2400   llvm::Value *BaseValue = 0;
2401   const Expr *BaseExpr = E->getBase();
2402   Qualifiers BaseQuals;
2403   QualType ObjectTy;
2404   if (E->isArrow()) {
2405     BaseValue = EmitScalarExpr(BaseExpr);
2406     ObjectTy = BaseExpr->getType()->getPointeeType();
2407     BaseQuals = ObjectTy.getQualifiers();
2408   } else {
2409     LValue BaseLV = EmitLValue(BaseExpr);
2410     // FIXME: this isn't right for bitfields.
2411     BaseValue = BaseLV.getAddress();
2412     ObjectTy = BaseExpr->getType();
2413     BaseQuals = ObjectTy.getQualifiers();
2414   }
2415 
2416   LValue LV =
2417     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2418                       BaseQuals.getCVRQualifiers());
2419   setObjCGCLValueClass(getContext(), E, LV);
2420   return LV;
2421 }
2422 
2423 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2424   // Can only get l-value for message expression returning aggregate type
2425   RValue RV = EmitAnyExprToTemp(E);
2426   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2427 }
2428 
2429 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2430                                  ReturnValueSlot ReturnValue,
2431                                  CallExpr::const_arg_iterator ArgBeg,
2432                                  CallExpr::const_arg_iterator ArgEnd,
2433                                  const Decl *TargetDecl) {
2434   // Get the actual function type. The callee type will always be a pointer to
2435   // function type or a block pointer type.
2436   assert(CalleeType->isFunctionPointerType() &&
2437          "Call must have function pointer type!");
2438 
2439   CalleeType = getContext().getCanonicalType(CalleeType);
2440 
2441   const FunctionType *FnType
2442     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2443 
2444   CallArgList Args;
2445   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2446 
2447   const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(Args, FnType);
2448 
2449   // C99 6.5.2.2p6:
2450   //   If the expression that denotes the called function has a type
2451   //   that does not include a prototype, [the default argument
2452   //   promotions are performed]. If the number of arguments does not
2453   //   equal the number of parameters, the behavior is undefined. If
2454   //   the function is defined with a type that includes a prototype,
2455   //   and either the prototype ends with an ellipsis (, ...) or the
2456   //   types of the arguments after promotion are not compatible with
2457   //   the types of the parameters, the behavior is undefined. If the
2458   //   function is defined with a type that does not include a
2459   //   prototype, and the types of the arguments after promotion are
2460   //   not compatible with those of the parameters after promotion,
2461   //   the behavior is undefined [except in some trivial cases].
2462   // That is, in the general case, we should assume that a call
2463   // through an unprototyped function type works like a *non-variadic*
2464   // call.  The way we make this work is to cast to the exact type
2465   // of the promoted arguments.
2466   if (isa<FunctionNoProtoType>(FnType) &&
2467       !getTargetHooks().isNoProtoCallVariadic(FnInfo)) {
2468     assert(cast<llvm::FunctionType>(Callee->getType()->getContainedType(0))
2469              ->isVarArg());
2470     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo, false);
2471     CalleeTy = CalleeTy->getPointerTo();
2472     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2473   }
2474 
2475   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2476 }
2477 
2478 LValue CodeGenFunction::
2479 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2480   llvm::Value *BaseV;
2481   if (E->getOpcode() == BO_PtrMemI)
2482     BaseV = EmitScalarExpr(E->getLHS());
2483   else
2484     BaseV = EmitLValue(E->getLHS()).getAddress();
2485 
2486   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2487 
2488   const MemberPointerType *MPT
2489     = E->getRHS()->getType()->getAs<MemberPointerType>();
2490 
2491   llvm::Value *AddV =
2492     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2493 
2494   return MakeAddrLValue(AddV, MPT->getPointeeType());
2495 }
2496 
2497 static void
2498 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2499              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2500              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2501   if (E->isCmpXChg()) {
2502     // Note that cmpxchg only supports specifying one ordering and
2503     // doesn't support weak cmpxchg, at least at the moment.
2504     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2505     LoadVal1->setAlignment(Align);
2506     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2507     LoadVal2->setAlignment(Align);
2508     llvm::AtomicCmpXchgInst *CXI =
2509         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2510     CXI->setVolatile(E->isVolatile());
2511     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2512     StoreVal1->setAlignment(Align);
2513     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2514     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2515     return;
2516   }
2517 
2518   if (E->getOp() == AtomicExpr::Load) {
2519     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2520     Load->setAtomic(Order);
2521     Load->setAlignment(Size);
2522     Load->setVolatile(E->isVolatile());
2523     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2524     StoreDest->setAlignment(Align);
2525     return;
2526   }
2527 
2528   if (E->getOp() == AtomicExpr::Store) {
2529     assert(!Dest && "Store does not return a value");
2530     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2531     LoadVal1->setAlignment(Align);
2532     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2533     Store->setAtomic(Order);
2534     Store->setAlignment(Size);
2535     Store->setVolatile(E->isVolatile());
2536     return;
2537   }
2538 
2539   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2540   switch (E->getOp()) {
2541     case AtomicExpr::CmpXchgWeak:
2542     case AtomicExpr::CmpXchgStrong:
2543     case AtomicExpr::Store:
2544     case AtomicExpr::Load:  assert(0 && "Already handled!");
2545     case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2546     case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2547     case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2548     case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2549     case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2550     case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2551   }
2552   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2553   LoadVal1->setAlignment(Align);
2554   llvm::AtomicRMWInst *RMWI =
2555       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2556   RMWI->setVolatile(E->isVolatile());
2557   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2558   StoreDest->setAlignment(Align);
2559 }
2560 
2561 // This function emits any expression (scalar, complex, or aggregate)
2562 // into a temporary alloca.
2563 static llvm::Value *
2564 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2565   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2566   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2567                        /*Init*/ true);
2568   return DeclPtr;
2569 }
2570 
2571 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2572                                   llvm::Value *Dest) {
2573   if (Ty->isAnyComplexType())
2574     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2575   if (CGF.hasAggregateLLVMType(Ty))
2576     return RValue::getAggregate(Dest);
2577   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2578 }
2579 
2580 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2581   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2582   QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2583   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2584   uint64_t Size = sizeChars.getQuantity();
2585   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2586   unsigned Align = alignChars.getQuantity();
2587   unsigned MaxInlineWidth =
2588       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2589   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2590 
2591   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2592   Ptr = EmitScalarExpr(E->getPtr());
2593   Order = EmitScalarExpr(E->getOrder());
2594   if (E->isCmpXChg()) {
2595     Val1 = EmitScalarExpr(E->getVal1());
2596     Val2 = EmitValToTemp(*this, E->getVal2());
2597     OrderFail = EmitScalarExpr(E->getOrderFail());
2598     (void)OrderFail; // OrderFail is unused at the moment
2599   } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2600              MemTy->isPointerType()) {
2601     // For pointers, we're required to do a bit of math: adding 1 to an int*
2602     // is not the same as adding 1 to a uintptr_t.
2603     QualType Val1Ty = E->getVal1()->getType();
2604     llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2605     CharUnits PointeeIncAmt =
2606         getContext().getTypeSizeInChars(MemTy->getPointeeType());
2607     Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2608     Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2609     EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2610   } else if (E->getOp() != AtomicExpr::Load) {
2611     Val1 = EmitValToTemp(*this, E->getVal1());
2612   }
2613 
2614   if (E->getOp() != AtomicExpr::Store && !Dest)
2615     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2616 
2617   if (UseLibcall) {
2618     // FIXME: Finalize what the libcalls are actually supposed to look like.
2619     // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2620     return EmitUnsupportedRValue(E, "atomic library call");
2621   }
2622 #if 0
2623   if (UseLibcall) {
2624     const char* LibCallName;
2625     switch (E->getOp()) {
2626     case AtomicExpr::CmpXchgWeak:
2627       LibCallName = "__atomic_compare_exchange_generic"; break;
2628     case AtomicExpr::CmpXchgStrong:
2629       LibCallName = "__atomic_compare_exchange_generic"; break;
2630     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2631     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2632     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2633     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2634     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2635     case AtomicExpr::Xchg:  LibCallName = "__atomic_exchange_generic"; break;
2636     case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break;
2637     case AtomicExpr::Load:  LibCallName = "__atomic_load_generic"; break;
2638     }
2639     llvm::SmallVector<QualType, 4> Params;
2640     CallArgList Args;
2641     QualType RetTy = getContext().VoidTy;
2642     if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg())
2643       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2644                getContext().VoidPtrTy);
2645     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2646              getContext().VoidPtrTy);
2647     if (E->getOp() != AtomicExpr::Load)
2648       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2649                getContext().VoidPtrTy);
2650     if (E->isCmpXChg()) {
2651       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2652                getContext().VoidPtrTy);
2653       RetTy = getContext().IntTy;
2654     }
2655     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2656              getContext().getSizeType());
2657     const CGFunctionInfo &FuncInfo =
2658         CGM.getTypes().getFunctionInfo(RetTy, Args, FunctionType::ExtInfo());
2659     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false);
2660     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2661     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2662     if (E->isCmpXChg())
2663       return Res;
2664     if (E->getOp() == AtomicExpr::Store)
2665       return RValue::get(0);
2666     return ConvertTempToRValue(*this, E->getType(), Dest);
2667   }
2668 #endif
2669   llvm::Type *IPtrTy =
2670       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2671   llvm::Value *OrigDest = Dest;
2672   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2673   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2674   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2675   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2676 
2677   if (isa<llvm::ConstantInt>(Order)) {
2678     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2679     switch (ord) {
2680     case 0:  // memory_order_relaxed
2681       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2682                    llvm::Monotonic);
2683       break;
2684     case 1:  // memory_order_consume
2685     case 2:  // memory_order_acquire
2686       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2687                    llvm::Acquire);
2688       break;
2689     case 3:  // memory_order_release
2690       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2691                    llvm::Release);
2692       break;
2693     case 4:  // memory_order_acq_rel
2694       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2695                    llvm::AcquireRelease);
2696       break;
2697     case 5:  // memory_order_seq_cst
2698       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2699                    llvm::SequentiallyConsistent);
2700       break;
2701     default: // invalid order
2702       // We should not ever get here normally, but it's hard to
2703       // enforce that in general.
2704       break;
2705     }
2706     if (E->getOp() == AtomicExpr::Store)
2707       return RValue::get(0);
2708     return ConvertTempToRValue(*this, E->getType(), OrigDest);
2709   }
2710 
2711   // Long case, when Order isn't obviously constant.
2712 
2713   // Create all the relevant BB's
2714   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2715                    *AcqRelBB = 0, *SeqCstBB = 0;
2716   MonotonicBB = createBasicBlock("monotonic", CurFn);
2717   if (E->getOp() != AtomicExpr::Store)
2718     AcquireBB = createBasicBlock("acquire", CurFn);
2719   if (E->getOp() != AtomicExpr::Load)
2720     ReleaseBB = createBasicBlock("release", CurFn);
2721   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2722     AcqRelBB = createBasicBlock("acqrel", CurFn);
2723   SeqCstBB = createBasicBlock("seqcst", CurFn);
2724   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2725 
2726   // Create the switch for the split
2727   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2728   // doesn't matter unless someone is crazy enough to use something that
2729   // doesn't fold to a constant for the ordering.
2730   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2731   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2732 
2733   // Emit all the different atomics
2734   Builder.SetInsertPoint(MonotonicBB);
2735   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2736                llvm::Monotonic);
2737   Builder.CreateBr(ContBB);
2738   if (E->getOp() != AtomicExpr::Store) {
2739     Builder.SetInsertPoint(AcquireBB);
2740     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2741                  llvm::Acquire);
2742     Builder.CreateBr(ContBB);
2743     SI->addCase(Builder.getInt32(1), AcquireBB);
2744     SI->addCase(Builder.getInt32(2), AcquireBB);
2745   }
2746   if (E->getOp() != AtomicExpr::Load) {
2747     Builder.SetInsertPoint(ReleaseBB);
2748     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2749                  llvm::Release);
2750     Builder.CreateBr(ContBB);
2751     SI->addCase(Builder.getInt32(3), ReleaseBB);
2752   }
2753   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2754     Builder.SetInsertPoint(AcqRelBB);
2755     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2756                  llvm::AcquireRelease);
2757     Builder.CreateBr(ContBB);
2758     SI->addCase(Builder.getInt32(4), AcqRelBB);
2759   }
2760   Builder.SetInsertPoint(SeqCstBB);
2761   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2762                llvm::SequentiallyConsistent);
2763   Builder.CreateBr(ContBB);
2764   SI->addCase(Builder.getInt32(5), SeqCstBB);
2765 
2766   // Cleanup and return
2767   Builder.SetInsertPoint(ContBB);
2768   if (E->getOp() == AtomicExpr::Store)
2769     return RValue::get(0);
2770   return ConvertTempToRValue(*this, E->getType(), OrigDest);
2771 }
2772 
2773 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2774                                     unsigned AccuracyD) {
2775   assert(Val->getType()->isFPOrFPVectorTy());
2776   if (!AccuracyN || !isa<llvm::Instruction>(Val))
2777     return;
2778 
2779   llvm::Value *Vals[2];
2780   Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
2781   Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
2782   llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
2783 
2784   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
2785                                             Node);
2786 }
2787 
2788 namespace {
2789   struct LValueOrRValue {
2790     LValue LV;
2791     RValue RV;
2792   };
2793 }
2794 
2795 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
2796                                            const PseudoObjectExpr *E,
2797                                            bool forLValue,
2798                                            AggValueSlot slot) {
2799   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2800 
2801   // Find the result expression, if any.
2802   const Expr *resultExpr = E->getResultExpr();
2803   LValueOrRValue result;
2804 
2805   for (PseudoObjectExpr::const_semantics_iterator
2806          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2807     const Expr *semantic = *i;
2808 
2809     // If this semantic expression is an opaque value, bind it
2810     // to the result of its source expression.
2811     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2812 
2813       // If this is the result expression, we may need to evaluate
2814       // directly into the slot.
2815       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2816       OVMA opaqueData;
2817       if (ov == resultExpr && ov->isRValue() && !forLValue &&
2818           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
2819           !ov->getType()->isAnyComplexType()) {
2820         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
2821 
2822         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
2823         opaqueData = OVMA::bind(CGF, ov, LV);
2824         result.RV = slot.asRValue();
2825 
2826       // Otherwise, emit as normal.
2827       } else {
2828         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2829 
2830         // If this is the result, also evaluate the result now.
2831         if (ov == resultExpr) {
2832           if (forLValue)
2833             result.LV = CGF.EmitLValue(ov);
2834           else
2835             result.RV = CGF.EmitAnyExpr(ov, slot);
2836         }
2837       }
2838 
2839       opaques.push_back(opaqueData);
2840 
2841     // Otherwise, if the expression is the result, evaluate it
2842     // and remember the result.
2843     } else if (semantic == resultExpr) {
2844       if (forLValue)
2845         result.LV = CGF.EmitLValue(semantic);
2846       else
2847         result.RV = CGF.EmitAnyExpr(semantic, slot);
2848 
2849     // Otherwise, evaluate the expression in an ignored context.
2850     } else {
2851       CGF.EmitIgnoredExpr(semantic);
2852     }
2853   }
2854 
2855   // Unbind all the opaques now.
2856   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2857     opaques[i].unbind(CGF);
2858 
2859   return result;
2860 }
2861 
2862 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
2863                                                AggValueSlot slot) {
2864   return emitPseudoObjectExpr(*this, E, false, slot).RV;
2865 }
2866 
2867 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
2868   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
2869 }
2870