1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51       cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
64                                                      CharUnits Align,
65                                                      const Twine &Name,
66                                                      llvm::Value *ArraySize) {
67   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
68   Alloca->setAlignment(Align.getQuantity());
69   return Address(Alloca, Align);
70 }
71 
72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
73 /// block. The alloca is casted to default address space if necessary.
74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
75                                           const Twine &Name,
76                                           llvm::Value *ArraySize,
77                                           Address *AllocaAddr) {
78   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
79   if (AllocaAddr)
80     *AllocaAddr = Alloca;
81   llvm::Value *V = Alloca.getPointer();
82   // Alloca always returns a pointer in alloca address space, which may
83   // be different from the type defined by the language. For example,
84   // in C++ the auto variables are in the default address space. Therefore
85   // cast alloca to the default address space when necessary.
86   if (getASTAllocaAddressSpace() != LangAS::Default) {
87     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
88     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
89     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
90     // otherwise alloca is inserted at the current insertion point of the
91     // builder.
92     if (!ArraySize)
93       Builder.SetInsertPoint(AllocaInsertPt);
94     V = getTargetHooks().performAddrSpaceCast(
95         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
96         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
97   }
98 
99   return Address(V, Align);
100 }
101 
102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
104 /// insertion point of the builder.
105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
106                                                     const Twine &Name,
107                                                     llvm::Value *ArraySize) {
108   if (ArraySize)
109     return Builder.CreateAlloca(Ty, ArraySize, Name);
110   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
111                               ArraySize, Name, AllocaInsertPt);
112 }
113 
114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
115 /// default alignment of the corresponding LLVM type, which is *not*
116 /// guaranteed to be related in any way to the expected alignment of
117 /// an AST type that might have been lowered to Ty.
118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
119                                                       const Twine &Name) {
120   CharUnits Align =
121     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
122   return CreateTempAlloca(Ty, Align, Name);
123 }
124 
125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
126   assert(isa<llvm::AllocaInst>(Var.getPointer()));
127   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
128   Store->setAlignment(Var.getAlignment().getQuantity());
129   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
130   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
131 }
132 
133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
134   CharUnits Align = getContext().getTypeAlignInChars(Ty);
135   return CreateTempAlloca(ConvertType(Ty), Align, Name);
136 }
137 
138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
139                                        Address *Alloca) {
140   // FIXME: Should we prefer the preferred type alignment here?
141   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
142 }
143 
144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
145                                        const Twine &Name, Address *Alloca) {
146   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
147                           /*ArraySize=*/nullptr, Alloca);
148 }
149 
150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
151                                                   const Twine &Name) {
152   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
153 }
154 
155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
156                                                   const Twine &Name) {
157   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
158                                   Name);
159 }
160 
161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
162 /// expression and compare the result against zero, returning an Int1Ty value.
163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
164   PGO.setCurrentStmt(E);
165   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
166     llvm::Value *MemPtr = EmitScalarExpr(E);
167     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
168   }
169 
170   QualType BoolTy = getContext().BoolTy;
171   SourceLocation Loc = E->getExprLoc();
172   if (!E->getType()->isAnyComplexType())
173     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
174 
175   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
176                                        Loc);
177 }
178 
179 /// EmitIgnoredExpr - Emit code to compute the specified expression,
180 /// ignoring the result.
181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
182   if (E->isRValue())
183     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
184 
185   // Just emit it as an l-value and drop the result.
186   EmitLValue(E);
187 }
188 
189 /// EmitAnyExpr - Emit code to compute the specified expression which
190 /// can have any type.  The result is returned as an RValue struct.
191 /// If this is an aggregate expression, AggSlot indicates where the
192 /// result should be returned.
193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
194                                     AggValueSlot aggSlot,
195                                     bool ignoreResult) {
196   switch (getEvaluationKind(E->getType())) {
197   case TEK_Scalar:
198     return RValue::get(EmitScalarExpr(E, ignoreResult));
199   case TEK_Complex:
200     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
201   case TEK_Aggregate:
202     if (!ignoreResult && aggSlot.isIgnored())
203       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
204     EmitAggExpr(E, aggSlot);
205     return aggSlot.asRValue();
206   }
207   llvm_unreachable("bad evaluation kind");
208 }
209 
210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
211 /// always be accessible even if no aggregate location is provided.
212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
213   AggValueSlot AggSlot = AggValueSlot::ignored();
214 
215   if (hasAggregateEvaluationKind(E->getType()))
216     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
217   return EmitAnyExpr(E, AggSlot);
218 }
219 
220 /// EmitAnyExprToMem - Evaluate an expression into a given memory
221 /// location.
222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
223                                        Address Location,
224                                        Qualifiers Quals,
225                                        bool IsInit) {
226   // FIXME: This function should take an LValue as an argument.
227   switch (getEvaluationKind(E->getType())) {
228   case TEK_Complex:
229     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
230                               /*isInit*/ false);
231     return;
232 
233   case TEK_Aggregate: {
234     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
235                                          AggValueSlot::IsDestructed_t(IsInit),
236                                          AggValueSlot::DoesNotNeedGCBarriers,
237                                          AggValueSlot::IsAliased_t(!IsInit),
238                                          AggValueSlot::MayOverlap));
239     return;
240   }
241 
242   case TEK_Scalar: {
243     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
244     LValue LV = MakeAddrLValue(Location, E->getType());
245     EmitStoreThroughLValue(RV, LV);
246     return;
247   }
248   }
249   llvm_unreachable("bad evaluation kind");
250 }
251 
252 static void
253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
254                      const Expr *E, Address ReferenceTemporary) {
255   // Objective-C++ ARC:
256   //   If we are binding a reference to a temporary that has ownership, we
257   //   need to perform retain/release operations on the temporary.
258   //
259   // FIXME: This should be looking at E, not M.
260   if (auto Lifetime = M->getType().getObjCLifetime()) {
261     switch (Lifetime) {
262     case Qualifiers::OCL_None:
263     case Qualifiers::OCL_ExplicitNone:
264       // Carry on to normal cleanup handling.
265       break;
266 
267     case Qualifiers::OCL_Autoreleasing:
268       // Nothing to do; cleaned up by an autorelease pool.
269       return;
270 
271     case Qualifiers::OCL_Strong:
272     case Qualifiers::OCL_Weak:
273       switch (StorageDuration Duration = M->getStorageDuration()) {
274       case SD_Static:
275         // Note: we intentionally do not register a cleanup to release
276         // the object on program termination.
277         return;
278 
279       case SD_Thread:
280         // FIXME: We should probably register a cleanup in this case.
281         return;
282 
283       case SD_Automatic:
284       case SD_FullExpression:
285         CodeGenFunction::Destroyer *Destroy;
286         CleanupKind CleanupKind;
287         if (Lifetime == Qualifiers::OCL_Strong) {
288           const ValueDecl *VD = M->getExtendingDecl();
289           bool Precise =
290               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
291           CleanupKind = CGF.getARCCleanupKind();
292           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
293                             : &CodeGenFunction::destroyARCStrongImprecise;
294         } else {
295           // __weak objects always get EH cleanups; otherwise, exceptions
296           // could cause really nasty crashes instead of mere leaks.
297           CleanupKind = NormalAndEHCleanup;
298           Destroy = &CodeGenFunction::destroyARCWeak;
299         }
300         if (Duration == SD_FullExpression)
301           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
302                           M->getType(), *Destroy,
303                           CleanupKind & EHCleanup);
304         else
305           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
306                                           M->getType(),
307                                           *Destroy, CleanupKind & EHCleanup);
308         return;
309 
310       case SD_Dynamic:
311         llvm_unreachable("temporary cannot have dynamic storage duration");
312       }
313       llvm_unreachable("unknown storage duration");
314     }
315   }
316 
317   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
318   if (const RecordType *RT =
319           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
320     // Get the destructor for the reference temporary.
321     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
322     if (!ClassDecl->hasTrivialDestructor())
323       ReferenceTemporaryDtor = ClassDecl->getDestructor();
324   }
325 
326   if (!ReferenceTemporaryDtor)
327     return;
328 
329   // Call the destructor for the temporary.
330   switch (M->getStorageDuration()) {
331   case SD_Static:
332   case SD_Thread: {
333     llvm::Constant *CleanupFn;
334     llvm::Constant *CleanupArg;
335     if (E->getType()->isArrayType()) {
336       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
337           ReferenceTemporary, E->getType(),
338           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
339           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
340       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
341     } else {
342       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
343                                                StructorType::Complete);
344       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
345     }
346     CGF.CGM.getCXXABI().registerGlobalDtor(
347         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
348     break;
349   }
350 
351   case SD_FullExpression:
352     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
353                     CodeGenFunction::destroyCXXObject,
354                     CGF.getLangOpts().Exceptions);
355     break;
356 
357   case SD_Automatic:
358     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
359                                     ReferenceTemporary, E->getType(),
360                                     CodeGenFunction::destroyCXXObject,
361                                     CGF.getLangOpts().Exceptions);
362     break;
363 
364   case SD_Dynamic:
365     llvm_unreachable("temporary cannot have dynamic storage duration");
366   }
367 }
368 
369 static Address createReferenceTemporary(CodeGenFunction &CGF,
370                                         const MaterializeTemporaryExpr *M,
371                                         const Expr *Inner,
372                                         Address *Alloca = nullptr) {
373   auto &TCG = CGF.getTargetHooks();
374   switch (M->getStorageDuration()) {
375   case SD_FullExpression:
376   case SD_Automatic: {
377     // If we have a constant temporary array or record try to promote it into a
378     // constant global under the same rules a normal constant would've been
379     // promoted. This is easier on the optimizer and generally emits fewer
380     // instructions.
381     QualType Ty = Inner->getType();
382     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
383         (Ty->isArrayType() || Ty->isRecordType()) &&
384         CGF.CGM.isTypeConstant(Ty, true))
385       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
386         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
387           auto AS = AddrSpace.getValue();
388           auto *GV = new llvm::GlobalVariable(
389               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
390               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
391               llvm::GlobalValue::NotThreadLocal,
392               CGF.getContext().getTargetAddressSpace(AS));
393           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
394           GV->setAlignment(alignment.getQuantity());
395           llvm::Constant *C = GV;
396           if (AS != LangAS::Default)
397             C = TCG.performAddrSpaceCast(
398                 CGF.CGM, GV, AS, LangAS::Default,
399                 GV->getValueType()->getPointerTo(
400                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
401           // FIXME: Should we put the new global into a COMDAT?
402           return Address(C, alignment);
403         }
404       }
405     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
406   }
407   case SD_Thread:
408   case SD_Static:
409     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
410 
411   case SD_Dynamic:
412     llvm_unreachable("temporary can't have dynamic storage duration");
413   }
414   llvm_unreachable("unknown storage duration");
415 }
416 
417 LValue CodeGenFunction::
418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
419   const Expr *E = M->GetTemporaryExpr();
420 
421   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
422           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
423          "Reference should never be pseudo-strong!");
424 
425   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
426   // as that will cause the lifetime adjustment to be lost for ARC
427   auto ownership = M->getType().getObjCLifetime();
428   if (ownership != Qualifiers::OCL_None &&
429       ownership != Qualifiers::OCL_ExplicitNone) {
430     Address Object = createReferenceTemporary(*this, M, E);
431     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
432       Object = Address(llvm::ConstantExpr::getBitCast(Var,
433                            ConvertTypeForMem(E->getType())
434                              ->getPointerTo(Object.getAddressSpace())),
435                        Object.getAlignment());
436 
437       // createReferenceTemporary will promote the temporary to a global with a
438       // constant initializer if it can.  It can only do this to a value of
439       // ARC-manageable type if the value is global and therefore "immune" to
440       // ref-counting operations.  Therefore we have no need to emit either a
441       // dynamic initialization or a cleanup and we can just return the address
442       // of the temporary.
443       if (Var->hasInitializer())
444         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
445 
446       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
447     }
448     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
449                                        AlignmentSource::Decl);
450 
451     switch (getEvaluationKind(E->getType())) {
452     default: llvm_unreachable("expected scalar or aggregate expression");
453     case TEK_Scalar:
454       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
455       break;
456     case TEK_Aggregate: {
457       EmitAggExpr(E, AggValueSlot::forAddr(Object,
458                                            E->getType().getQualifiers(),
459                                            AggValueSlot::IsDestructed,
460                                            AggValueSlot::DoesNotNeedGCBarriers,
461                                            AggValueSlot::IsNotAliased,
462                                            AggValueSlot::DoesNotOverlap));
463       break;
464     }
465     }
466 
467     pushTemporaryCleanup(*this, M, E, Object);
468     return RefTempDst;
469   }
470 
471   SmallVector<const Expr *, 2> CommaLHSs;
472   SmallVector<SubobjectAdjustment, 2> Adjustments;
473   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
474 
475   for (const auto &Ignored : CommaLHSs)
476     EmitIgnoredExpr(Ignored);
477 
478   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
479     if (opaque->getType()->isRecordType()) {
480       assert(Adjustments.empty());
481       return EmitOpaqueValueLValue(opaque);
482     }
483   }
484 
485   // Create and initialize the reference temporary.
486   Address Alloca = Address::invalid();
487   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
488   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
489           Object.getPointer()->stripPointerCasts())) {
490     Object = Address(llvm::ConstantExpr::getBitCast(
491                          cast<llvm::Constant>(Object.getPointer()),
492                          ConvertTypeForMem(E->getType())->getPointerTo()),
493                      Object.getAlignment());
494     // If the temporary is a global and has a constant initializer or is a
495     // constant temporary that we promoted to a global, we may have already
496     // initialized it.
497     if (!Var->hasInitializer()) {
498       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
499       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
500     }
501   } else {
502     switch (M->getStorageDuration()) {
503     case SD_Automatic:
504       if (auto *Size = EmitLifetimeStart(
505               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
506               Alloca.getPointer())) {
507         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
508                                                   Alloca, Size);
509       }
510       break;
511 
512     case SD_FullExpression: {
513       if (!ShouldEmitLifetimeMarkers)
514         break;
515 
516       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
517       // marker. Instead, start the lifetime of a conditional temporary earlier
518       // so that it's unconditional. Don't do this in ASan's use-after-scope
519       // mode so that it gets the more precise lifetime marks. If the type has
520       // a non-trivial destructor, we'll have a cleanup block for it anyway,
521       // so this typically doesn't help; skip it in that case.
522       ConditionalEvaluation *OldConditional = nullptr;
523       CGBuilderTy::InsertPoint OldIP;
524       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
525           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
526         OldConditional = OutermostConditional;
527         OutermostConditional = nullptr;
528 
529         OldIP = Builder.saveIP();
530         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
531         Builder.restoreIP(CGBuilderTy::InsertPoint(
532             Block, llvm::BasicBlock::iterator(Block->back())));
533       }
534 
535       if (auto *Size = EmitLifetimeStart(
536               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
537               Alloca.getPointer())) {
538         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
539                                              Size);
540       }
541 
542       if (OldConditional) {
543         OutermostConditional = OldConditional;
544         Builder.restoreIP(OldIP);
545       }
546       break;
547     }
548 
549     default:
550       break;
551     }
552     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
553   }
554   pushTemporaryCleanup(*this, M, E, Object);
555 
556   // Perform derived-to-base casts and/or field accesses, to get from the
557   // temporary object we created (and, potentially, for which we extended
558   // the lifetime) to the subobject we're binding the reference to.
559   for (unsigned I = Adjustments.size(); I != 0; --I) {
560     SubobjectAdjustment &Adjustment = Adjustments[I-1];
561     switch (Adjustment.Kind) {
562     case SubobjectAdjustment::DerivedToBaseAdjustment:
563       Object =
564           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
565                                 Adjustment.DerivedToBase.BasePath->path_begin(),
566                                 Adjustment.DerivedToBase.BasePath->path_end(),
567                                 /*NullCheckValue=*/ false, E->getExprLoc());
568       break;
569 
570     case SubobjectAdjustment::FieldAdjustment: {
571       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
572       LV = EmitLValueForField(LV, Adjustment.Field);
573       assert(LV.isSimple() &&
574              "materialized temporary field is not a simple lvalue");
575       Object = LV.getAddress();
576       break;
577     }
578 
579     case SubobjectAdjustment::MemberPointerAdjustment: {
580       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
581       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
582                                                Adjustment.Ptr.MPT);
583       break;
584     }
585     }
586   }
587 
588   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
589 }
590 
591 RValue
592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
593   // Emit the expression as an lvalue.
594   LValue LV = EmitLValue(E);
595   assert(LV.isSimple());
596   llvm::Value *Value = LV.getPointer();
597 
598   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
599     // C++11 [dcl.ref]p5 (as amended by core issue 453):
600     //   If a glvalue to which a reference is directly bound designates neither
601     //   an existing object or function of an appropriate type nor a region of
602     //   storage of suitable size and alignment to contain an object of the
603     //   reference's type, the behavior is undefined.
604     QualType Ty = E->getType();
605     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
606   }
607 
608   return RValue::get(Value);
609 }
610 
611 
612 /// getAccessedFieldNo - Given an encoded value and a result number, return the
613 /// input field number being accessed.
614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
615                                              const llvm::Constant *Elts) {
616   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
617       ->getZExtValue();
618 }
619 
620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
622                                     llvm::Value *High) {
623   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
624   llvm::Value *K47 = Builder.getInt64(47);
625   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
626   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
627   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
628   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
629   return Builder.CreateMul(B1, KMul);
630 }
631 
632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
633   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
634          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
635 }
636 
637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
638   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
639   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
640          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
641           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
642           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
643 }
644 
645 bool CodeGenFunction::sanitizePerformTypeCheck() const {
646   return SanOpts.has(SanitizerKind::Null) |
647          SanOpts.has(SanitizerKind::Alignment) |
648          SanOpts.has(SanitizerKind::ObjectSize) |
649          SanOpts.has(SanitizerKind::Vptr);
650 }
651 
652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
653                                     llvm::Value *Ptr, QualType Ty,
654                                     CharUnits Alignment,
655                                     SanitizerSet SkippedChecks,
656                                     llvm::Value *ArraySize) {
657   if (!sanitizePerformTypeCheck())
658     return;
659 
660   // Don't check pointers outside the default address space. The null check
661   // isn't correct, the object-size check isn't supported by LLVM, and we can't
662   // communicate the addresses to the runtime handler for the vptr check.
663   if (Ptr->getType()->getPointerAddressSpace())
664     return;
665 
666   // Don't check pointers to volatile data. The behavior here is implementation-
667   // defined.
668   if (Ty.isVolatileQualified())
669     return;
670 
671   SanitizerScope SanScope(this);
672 
673   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
674   llvm::BasicBlock *Done = nullptr;
675 
676   // Quickly determine whether we have a pointer to an alloca. It's possible
677   // to skip null checks, and some alignment checks, for these pointers. This
678   // can reduce compile-time significantly.
679   auto PtrToAlloca =
680       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
731       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
732           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), Size);
733       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
734     }
735   }
736 
737   uint64_t AlignVal = 0;
738   llvm::Value *PtrAsInt = nullptr;
739 
740   if (SanOpts.has(SanitizerKind::Alignment) &&
741       !SkippedChecks.has(SanitizerKind::Alignment)) {
742     AlignVal = Alignment.getQuantity();
743     if (!Ty->isIncompleteType() && !AlignVal)
744       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
745 
746     // The glvalue must be suitably aligned.
747     if (AlignVal > 1 &&
748         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
749       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
750       llvm::Value *Align = Builder.CreateAnd(
751           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
752       llvm::Value *Aligned =
753           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
754       if (Aligned != True)
755         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
756     }
757   }
758 
759   if (Checks.size() > 0) {
760     // Make sure we're not losing information. Alignment needs to be a power of
761     // 2
762     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
763     llvm::Constant *StaticData[] = {
764         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
765         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
766         llvm::ConstantInt::get(Int8Ty, TCK)};
767     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
768               PtrAsInt ? PtrAsInt : Ptr);
769   }
770 
771   // If possible, check that the vptr indicates that there is a subobject of
772   // type Ty at offset zero within this object.
773   //
774   // C++11 [basic.life]p5,6:
775   //   [For storage which does not refer to an object within its lifetime]
776   //   The program has undefined behavior if:
777   //    -- the [pointer or glvalue] is used to access a non-static data member
778   //       or call a non-static member function
779   if (SanOpts.has(SanitizerKind::Vptr) &&
780       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
781     // Ensure that the pointer is non-null before loading it. If there is no
782     // compile-time guarantee, reuse the run-time null check or emit a new one.
783     if (!IsGuaranteedNonNull) {
784       if (!IsNonNull)
785         IsNonNull = Builder.CreateIsNotNull(Ptr);
786       if (!Done)
787         Done = createBasicBlock("vptr.null");
788       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
789       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
790       EmitBlock(VptrNotNull);
791     }
792 
793     // Compute a hash of the mangled name of the type.
794     //
795     // FIXME: This is not guaranteed to be deterministic! Move to a
796     //        fingerprinting mechanism once LLVM provides one. For the time
797     //        being the implementation happens to be deterministic.
798     SmallString<64> MangledName;
799     llvm::raw_svector_ostream Out(MangledName);
800     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
801                                                      Out);
802 
803     // Blacklist based on the mangled type.
804     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
805             SanitizerKind::Vptr, Out.str())) {
806       llvm::hash_code TypeHash = hash_value(Out.str());
807 
808       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
809       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
810       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
811       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
812       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
813       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
814 
815       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
816       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
817 
818       // Look the hash up in our cache.
819       const int CacheSize = 128;
820       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
821       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
822                                                      "__ubsan_vptr_type_cache");
823       llvm::Value *Slot = Builder.CreateAnd(Hash,
824                                             llvm::ConstantInt::get(IntPtrTy,
825                                                                    CacheSize-1));
826       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
827       llvm::Value *CacheVal =
828         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
829                                   getPointerAlign());
830 
831       // If the hash isn't in the cache, call a runtime handler to perform the
832       // hard work of checking whether the vptr is for an object of the right
833       // type. This will either fill in the cache and return, or produce a
834       // diagnostic.
835       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
836       llvm::Constant *StaticData[] = {
837         EmitCheckSourceLocation(Loc),
838         EmitCheckTypeDescriptor(Ty),
839         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
840         llvm::ConstantInt::get(Int8Ty, TCK)
841       };
842       llvm::Value *DynamicData[] = { Ptr, Hash };
843       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
844                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
845                 DynamicData);
846     }
847   }
848 
849   if (Done) {
850     Builder.CreateBr(Done);
851     EmitBlock(Done);
852   }
853 }
854 
855 /// Determine whether this expression refers to a flexible array member in a
856 /// struct. We disable array bounds checks for such members.
857 static bool isFlexibleArrayMemberExpr(const Expr *E) {
858   // For compatibility with existing code, we treat arrays of length 0 or
859   // 1 as flexible array members.
860   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
861   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
862     if (CAT->getSize().ugt(1))
863       return false;
864   } else if (!isa<IncompleteArrayType>(AT))
865     return false;
866 
867   E = E->IgnoreParens();
868 
869   // A flexible array member must be the last member in the class.
870   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
871     // FIXME: If the base type of the member expr is not FD->getParent(),
872     // this should not be treated as a flexible array member access.
873     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
874       RecordDecl::field_iterator FI(
875           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
876       return ++FI == FD->getParent()->field_end();
877     }
878   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
879     return IRE->getDecl()->getNextIvar() == nullptr;
880   }
881 
882   return false;
883 }
884 
885 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
886                                                    QualType EltTy) {
887   ASTContext &C = getContext();
888   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
889   if (!EltSize)
890     return nullptr;
891 
892   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
893   if (!ArrayDeclRef)
894     return nullptr;
895 
896   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
897   if (!ParamDecl)
898     return nullptr;
899 
900   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
901   if (!POSAttr)
902     return nullptr;
903 
904   // Don't load the size if it's a lower bound.
905   int POSType = POSAttr->getType();
906   if (POSType != 0 && POSType != 1)
907     return nullptr;
908 
909   // Find the implicit size parameter.
910   auto PassedSizeIt = SizeArguments.find(ParamDecl);
911   if (PassedSizeIt == SizeArguments.end())
912     return nullptr;
913 
914   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
915   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
916   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
917   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
918                                               C.getSizeType(), E->getExprLoc());
919   llvm::Value *SizeOfElement =
920       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
921   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
922 }
923 
924 /// If Base is known to point to the start of an array, return the length of
925 /// that array. Return 0 if the length cannot be determined.
926 static llvm::Value *getArrayIndexingBound(
927     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
928   // For the vector indexing extension, the bound is the number of elements.
929   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
930     IndexedType = Base->getType();
931     return CGF.Builder.getInt32(VT->getNumElements());
932   }
933 
934   Base = Base->IgnoreParens();
935 
936   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
937     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
938         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
939       IndexedType = CE->getSubExpr()->getType();
940       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
941       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
942         return CGF.Builder.getInt(CAT->getSize());
943       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
944         return CGF.getVLASize(VAT).NumElts;
945       // Ignore pass_object_size here. It's not applicable on decayed pointers.
946     }
947   }
948 
949   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
950   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
951     IndexedType = Base->getType();
952     return POS;
953   }
954 
955   return nullptr;
956 }
957 
958 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
959                                       llvm::Value *Index, QualType IndexType,
960                                       bool Accessed) {
961   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
962          "should not be called unless adding bounds checks");
963   SanitizerScope SanScope(this);
964 
965   QualType IndexedType;
966   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
967   if (!Bound)
968     return;
969 
970   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
971   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
972   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
973 
974   llvm::Constant *StaticData[] = {
975     EmitCheckSourceLocation(E->getExprLoc()),
976     EmitCheckTypeDescriptor(IndexedType),
977     EmitCheckTypeDescriptor(IndexType)
978   };
979   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
980                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
981   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
982             SanitizerHandler::OutOfBounds, StaticData, Index);
983 }
984 
985 
986 CodeGenFunction::ComplexPairTy CodeGenFunction::
987 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
988                          bool isInc, bool isPre) {
989   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
990 
991   llvm::Value *NextVal;
992   if (isa<llvm::IntegerType>(InVal.first->getType())) {
993     uint64_t AmountVal = isInc ? 1 : -1;
994     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
995 
996     // Add the inc/dec to the real part.
997     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
998   } else {
999     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1000     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1001     if (!isInc)
1002       FVal.changeSign();
1003     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1004 
1005     // Add the inc/dec to the real part.
1006     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1007   }
1008 
1009   ComplexPairTy IncVal(NextVal, InVal.second);
1010 
1011   // Store the updated result through the lvalue.
1012   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1013 
1014   // If this is a postinc, return the value read from memory, otherwise use the
1015   // updated value.
1016   return isPre ? IncVal : InVal;
1017 }
1018 
1019 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1020                                              CodeGenFunction *CGF) {
1021   // Bind VLAs in the cast type.
1022   if (CGF && E->getType()->isVariablyModifiedType())
1023     CGF->EmitVariablyModifiedType(E->getType());
1024 
1025   if (CGDebugInfo *DI = getModuleDebugInfo())
1026     DI->EmitExplicitCastType(E->getType());
1027 }
1028 
1029 //===----------------------------------------------------------------------===//
1030 //                         LValue Expression Emission
1031 //===----------------------------------------------------------------------===//
1032 
1033 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1034 /// derive a more accurate bound on the alignment of the pointer.
1035 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1036                                                   LValueBaseInfo *BaseInfo,
1037                                                   TBAAAccessInfo *TBAAInfo) {
1038   // We allow this with ObjC object pointers because of fragile ABIs.
1039   assert(E->getType()->isPointerType() ||
1040          E->getType()->isObjCObjectPointerType());
1041   E = E->IgnoreParens();
1042 
1043   // Casts:
1044   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1045     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1046       CGM.EmitExplicitCastExprType(ECE, this);
1047 
1048     switch (CE->getCastKind()) {
1049     // Non-converting casts (but not C's implicit conversion from void*).
1050     case CK_BitCast:
1051     case CK_NoOp:
1052     case CK_AddressSpaceConversion:
1053       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1054         if (PtrTy->getPointeeType()->isVoidType())
1055           break;
1056 
1057         LValueBaseInfo InnerBaseInfo;
1058         TBAAAccessInfo InnerTBAAInfo;
1059         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1060                                                 &InnerBaseInfo,
1061                                                 &InnerTBAAInfo);
1062         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1063         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1064 
1065         if (isa<ExplicitCastExpr>(CE)) {
1066           LValueBaseInfo TargetTypeBaseInfo;
1067           TBAAAccessInfo TargetTypeTBAAInfo;
1068           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1069                                                            &TargetTypeBaseInfo,
1070                                                            &TargetTypeTBAAInfo);
1071           if (TBAAInfo)
1072             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1073                                                  TargetTypeTBAAInfo);
1074           // If the source l-value is opaque, honor the alignment of the
1075           // casted-to type.
1076           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1077             if (BaseInfo)
1078               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1079             Addr = Address(Addr.getPointer(), Align);
1080           }
1081         }
1082 
1083         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1084             CE->getCastKind() == CK_BitCast) {
1085           if (auto PT = E->getType()->getAs<PointerType>())
1086             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1087                                       /*MayBeNull=*/true,
1088                                       CodeGenFunction::CFITCK_UnrelatedCast,
1089                                       CE->getBeginLoc());
1090         }
1091         return CE->getCastKind() != CK_AddressSpaceConversion
1092                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1093                    : Builder.CreateAddrSpaceCast(Addr,
1094                                                  ConvertType(E->getType()));
1095       }
1096       break;
1097 
1098     // Array-to-pointer decay.
1099     case CK_ArrayToPointerDecay:
1100       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1101 
1102     // Derived-to-base conversions.
1103     case CK_UncheckedDerivedToBase:
1104     case CK_DerivedToBase: {
1105       // TODO: Support accesses to members of base classes in TBAA. For now, we
1106       // conservatively pretend that the complete object is of the base class
1107       // type.
1108       if (TBAAInfo)
1109         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1110       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1111       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1112       return GetAddressOfBaseClass(Addr, Derived,
1113                                    CE->path_begin(), CE->path_end(),
1114                                    ShouldNullCheckClassCastValue(CE),
1115                                    CE->getExprLoc());
1116     }
1117 
1118     // TODO: Is there any reason to treat base-to-derived conversions
1119     // specially?
1120     default:
1121       break;
1122     }
1123   }
1124 
1125   // Unary &.
1126   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1127     if (UO->getOpcode() == UO_AddrOf) {
1128       LValue LV = EmitLValue(UO->getSubExpr());
1129       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1130       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1131       return LV.getAddress();
1132     }
1133   }
1134 
1135   // TODO: conditional operators, comma.
1136 
1137   // Otherwise, use the alignment of the type.
1138   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1139                                                    TBAAInfo);
1140   return Address(EmitScalarExpr(E), Align);
1141 }
1142 
1143 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1144   if (Ty->isVoidType())
1145     return RValue::get(nullptr);
1146 
1147   switch (getEvaluationKind(Ty)) {
1148   case TEK_Complex: {
1149     llvm::Type *EltTy =
1150       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1151     llvm::Value *U = llvm::UndefValue::get(EltTy);
1152     return RValue::getComplex(std::make_pair(U, U));
1153   }
1154 
1155   // If this is a use of an undefined aggregate type, the aggregate must have an
1156   // identifiable address.  Just because the contents of the value are undefined
1157   // doesn't mean that the address can't be taken and compared.
1158   case TEK_Aggregate: {
1159     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1160     return RValue::getAggregate(DestPtr);
1161   }
1162 
1163   case TEK_Scalar:
1164     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1165   }
1166   llvm_unreachable("bad evaluation kind");
1167 }
1168 
1169 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1170                                               const char *Name) {
1171   ErrorUnsupported(E, Name);
1172   return GetUndefRValue(E->getType());
1173 }
1174 
1175 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1176                                               const char *Name) {
1177   ErrorUnsupported(E, Name);
1178   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1179   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1180                         E->getType());
1181 }
1182 
1183 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1184   const Expr *Base = Obj;
1185   while (!isa<CXXThisExpr>(Base)) {
1186     // The result of a dynamic_cast can be null.
1187     if (isa<CXXDynamicCastExpr>(Base))
1188       return false;
1189 
1190     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1191       Base = CE->getSubExpr();
1192     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1193       Base = PE->getSubExpr();
1194     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1195       if (UO->getOpcode() == UO_Extension)
1196         Base = UO->getSubExpr();
1197       else
1198         return false;
1199     } else {
1200       return false;
1201     }
1202   }
1203   return true;
1204 }
1205 
1206 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1207   LValue LV;
1208   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1209     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1210   else
1211     LV = EmitLValue(E);
1212   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1213     SanitizerSet SkippedChecks;
1214     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1215       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1216       if (IsBaseCXXThis)
1217         SkippedChecks.set(SanitizerKind::Alignment, true);
1218       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1219         SkippedChecks.set(SanitizerKind::Null, true);
1220     }
1221     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1222                   E->getType(), LV.getAlignment(), SkippedChecks);
1223   }
1224   return LV;
1225 }
1226 
1227 /// EmitLValue - Emit code to compute a designator that specifies the location
1228 /// of the expression.
1229 ///
1230 /// This can return one of two things: a simple address or a bitfield reference.
1231 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1232 /// an LLVM pointer type.
1233 ///
1234 /// If this returns a bitfield reference, nothing about the pointee type of the
1235 /// LLVM value is known: For example, it may not be a pointer to an integer.
1236 ///
1237 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1238 /// this method guarantees that the returned pointer type will point to an LLVM
1239 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1240 /// length type, this is not possible.
1241 ///
1242 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1243   ApplyDebugLocation DL(*this, E);
1244   switch (E->getStmtClass()) {
1245   default: return EmitUnsupportedLValue(E, "l-value expression");
1246 
1247   case Expr::ObjCPropertyRefExprClass:
1248     llvm_unreachable("cannot emit a property reference directly");
1249 
1250   case Expr::ObjCSelectorExprClass:
1251     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1252   case Expr::ObjCIsaExprClass:
1253     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1254   case Expr::BinaryOperatorClass:
1255     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1256   case Expr::CompoundAssignOperatorClass: {
1257     QualType Ty = E->getType();
1258     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1259       Ty = AT->getValueType();
1260     if (!Ty->isAnyComplexType())
1261       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1262     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263   }
1264   case Expr::CallExprClass:
1265   case Expr::CXXMemberCallExprClass:
1266   case Expr::CXXOperatorCallExprClass:
1267   case Expr::UserDefinedLiteralClass:
1268     return EmitCallExprLValue(cast<CallExpr>(E));
1269   case Expr::VAArgExprClass:
1270     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1271   case Expr::DeclRefExprClass:
1272     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1273   case Expr::ConstantExprClass:
1274     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1275   case Expr::ParenExprClass:
1276     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1277   case Expr::GenericSelectionExprClass:
1278     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1279   case Expr::PredefinedExprClass:
1280     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1281   case Expr::StringLiteralClass:
1282     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1283   case Expr::ObjCEncodeExprClass:
1284     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1285   case Expr::PseudoObjectExprClass:
1286     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1287   case Expr::InitListExprClass:
1288     return EmitInitListLValue(cast<InitListExpr>(E));
1289   case Expr::CXXTemporaryObjectExprClass:
1290   case Expr::CXXConstructExprClass:
1291     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1292   case Expr::CXXBindTemporaryExprClass:
1293     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1294   case Expr::CXXUuidofExprClass:
1295     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1296 
1297   case Expr::ExprWithCleanupsClass: {
1298     const auto *cleanups = cast<ExprWithCleanups>(E);
1299     enterFullExpression(cleanups);
1300     RunCleanupsScope Scope(*this);
1301     LValue LV = EmitLValue(cleanups->getSubExpr());
1302     if (LV.isSimple()) {
1303       // Defend against branches out of gnu statement expressions surrounded by
1304       // cleanups.
1305       llvm::Value *V = LV.getPointer();
1306       Scope.ForceCleanup({&V});
1307       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1308                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1309     }
1310     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1311     // bitfield lvalue or some other non-simple lvalue?
1312     return LV;
1313   }
1314 
1315   case Expr::CXXDefaultArgExprClass:
1316     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1317   case Expr::CXXDefaultInitExprClass: {
1318     CXXDefaultInitExprScope Scope(*this);
1319     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1320   }
1321   case Expr::CXXTypeidExprClass:
1322     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1323 
1324   case Expr::ObjCMessageExprClass:
1325     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1326   case Expr::ObjCIvarRefExprClass:
1327     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1328   case Expr::StmtExprClass:
1329     return EmitStmtExprLValue(cast<StmtExpr>(E));
1330   case Expr::UnaryOperatorClass:
1331     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1332   case Expr::ArraySubscriptExprClass:
1333     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1334   case Expr::OMPArraySectionExprClass:
1335     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1336   case Expr::ExtVectorElementExprClass:
1337     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1338   case Expr::MemberExprClass:
1339     return EmitMemberExpr(cast<MemberExpr>(E));
1340   case Expr::CompoundLiteralExprClass:
1341     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1342   case Expr::ConditionalOperatorClass:
1343     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1344   case Expr::BinaryConditionalOperatorClass:
1345     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1346   case Expr::ChooseExprClass:
1347     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1348   case Expr::OpaqueValueExprClass:
1349     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1350   case Expr::SubstNonTypeTemplateParmExprClass:
1351     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1352   case Expr::ImplicitCastExprClass:
1353   case Expr::CStyleCastExprClass:
1354   case Expr::CXXFunctionalCastExprClass:
1355   case Expr::CXXStaticCastExprClass:
1356   case Expr::CXXDynamicCastExprClass:
1357   case Expr::CXXReinterpretCastExprClass:
1358   case Expr::CXXConstCastExprClass:
1359   case Expr::ObjCBridgedCastExprClass:
1360     return EmitCastLValue(cast<CastExpr>(E));
1361 
1362   case Expr::MaterializeTemporaryExprClass:
1363     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1364 
1365   case Expr::CoawaitExprClass:
1366     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1367   case Expr::CoyieldExprClass:
1368     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1369   }
1370 }
1371 
1372 /// Given an object of the given canonical type, can we safely copy a
1373 /// value out of it based on its initializer?
1374 static bool isConstantEmittableObjectType(QualType type) {
1375   assert(type.isCanonical());
1376   assert(!type->isReferenceType());
1377 
1378   // Must be const-qualified but non-volatile.
1379   Qualifiers qs = type.getLocalQualifiers();
1380   if (!qs.hasConst() || qs.hasVolatile()) return false;
1381 
1382   // Otherwise, all object types satisfy this except C++ classes with
1383   // mutable subobjects or non-trivial copy/destroy behavior.
1384   if (const auto *RT = dyn_cast<RecordType>(type))
1385     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1386       if (RD->hasMutableFields() || !RD->isTrivial())
1387         return false;
1388 
1389   return true;
1390 }
1391 
1392 /// Can we constant-emit a load of a reference to a variable of the
1393 /// given type?  This is different from predicates like
1394 /// Decl::isUsableInConstantExpressions because we do want it to apply
1395 /// in situations that don't necessarily satisfy the language's rules
1396 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1397 /// to do this with const float variables even if those variables
1398 /// aren't marked 'constexpr'.
1399 enum ConstantEmissionKind {
1400   CEK_None,
1401   CEK_AsReferenceOnly,
1402   CEK_AsValueOrReference,
1403   CEK_AsValueOnly
1404 };
1405 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1406   type = type.getCanonicalType();
1407   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1408     if (isConstantEmittableObjectType(ref->getPointeeType()))
1409       return CEK_AsValueOrReference;
1410     return CEK_AsReferenceOnly;
1411   }
1412   if (isConstantEmittableObjectType(type))
1413     return CEK_AsValueOnly;
1414   return CEK_None;
1415 }
1416 
1417 /// Try to emit a reference to the given value without producing it as
1418 /// an l-value.  This is actually more than an optimization: we can't
1419 /// produce an l-value for variables that we never actually captured
1420 /// in a block or lambda, which means const int variables or constexpr
1421 /// literals or similar.
1422 CodeGenFunction::ConstantEmission
1423 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1424   ValueDecl *value = refExpr->getDecl();
1425 
1426   // The value needs to be an enum constant or a constant variable.
1427   ConstantEmissionKind CEK;
1428   if (isa<ParmVarDecl>(value)) {
1429     CEK = CEK_None;
1430   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1431     CEK = checkVarTypeForConstantEmission(var->getType());
1432   } else if (isa<EnumConstantDecl>(value)) {
1433     CEK = CEK_AsValueOnly;
1434   } else {
1435     CEK = CEK_None;
1436   }
1437   if (CEK == CEK_None) return ConstantEmission();
1438 
1439   Expr::EvalResult result;
1440   bool resultIsReference;
1441   QualType resultType;
1442 
1443   // It's best to evaluate all the way as an r-value if that's permitted.
1444   if (CEK != CEK_AsReferenceOnly &&
1445       refExpr->EvaluateAsRValue(result, getContext())) {
1446     resultIsReference = false;
1447     resultType = refExpr->getType();
1448 
1449   // Otherwise, try to evaluate as an l-value.
1450   } else if (CEK != CEK_AsValueOnly &&
1451              refExpr->EvaluateAsLValue(result, getContext())) {
1452     resultIsReference = true;
1453     resultType = value->getType();
1454 
1455   // Failure.
1456   } else {
1457     return ConstantEmission();
1458   }
1459 
1460   // In any case, if the initializer has side-effects, abandon ship.
1461   if (result.HasSideEffects)
1462     return ConstantEmission();
1463 
1464   // Emit as a constant.
1465   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1466                                                result.Val, resultType);
1467 
1468   // Make sure we emit a debug reference to the global variable.
1469   // This should probably fire even for
1470   if (isa<VarDecl>(value)) {
1471     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1472       EmitDeclRefExprDbgValue(refExpr, result.Val);
1473   } else {
1474     assert(isa<EnumConstantDecl>(value));
1475     EmitDeclRefExprDbgValue(refExpr, result.Val);
1476   }
1477 
1478   // If we emitted a reference constant, we need to dereference that.
1479   if (resultIsReference)
1480     return ConstantEmission::forReference(C);
1481 
1482   return ConstantEmission::forValue(C);
1483 }
1484 
1485 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1486                                                         const MemberExpr *ME) {
1487   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1488     // Try to emit static variable member expressions as DREs.
1489     return DeclRefExpr::Create(
1490         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1491         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1492         ME->getType(), ME->getValueKind());
1493   }
1494   return nullptr;
1495 }
1496 
1497 CodeGenFunction::ConstantEmission
1498 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1499   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1500     return tryEmitAsConstant(DRE);
1501   return ConstantEmission();
1502 }
1503 
1504 llvm::Value *CodeGenFunction::emitScalarConstant(
1505     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1506   assert(Constant && "not a constant");
1507   if (Constant.isReference())
1508     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1509                             E->getExprLoc())
1510         .getScalarVal();
1511   return Constant.getValue();
1512 }
1513 
1514 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1515                                                SourceLocation Loc) {
1516   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1517                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1518                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1519 }
1520 
1521 static bool hasBooleanRepresentation(QualType Ty) {
1522   if (Ty->isBooleanType())
1523     return true;
1524 
1525   if (const EnumType *ET = Ty->getAs<EnumType>())
1526     return ET->getDecl()->getIntegerType()->isBooleanType();
1527 
1528   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1529     return hasBooleanRepresentation(AT->getValueType());
1530 
1531   return false;
1532 }
1533 
1534 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1535                             llvm::APInt &Min, llvm::APInt &End,
1536                             bool StrictEnums, bool IsBool) {
1537   const EnumType *ET = Ty->getAs<EnumType>();
1538   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1539                                 ET && !ET->getDecl()->isFixed();
1540   if (!IsBool && !IsRegularCPlusPlusEnum)
1541     return false;
1542 
1543   if (IsBool) {
1544     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1545     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1546   } else {
1547     const EnumDecl *ED = ET->getDecl();
1548     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1549     unsigned Bitwidth = LTy->getScalarSizeInBits();
1550     unsigned NumNegativeBits = ED->getNumNegativeBits();
1551     unsigned NumPositiveBits = ED->getNumPositiveBits();
1552 
1553     if (NumNegativeBits) {
1554       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1555       assert(NumBits <= Bitwidth);
1556       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1557       Min = -End;
1558     } else {
1559       assert(NumPositiveBits <= Bitwidth);
1560       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1561       Min = llvm::APInt(Bitwidth, 0);
1562     }
1563   }
1564   return true;
1565 }
1566 
1567 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1568   llvm::APInt Min, End;
1569   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1570                        hasBooleanRepresentation(Ty)))
1571     return nullptr;
1572 
1573   llvm::MDBuilder MDHelper(getLLVMContext());
1574   return MDHelper.createRange(Min, End);
1575 }
1576 
1577 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1578                                            SourceLocation Loc) {
1579   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1580   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1581   if (!HasBoolCheck && !HasEnumCheck)
1582     return false;
1583 
1584   bool IsBool = hasBooleanRepresentation(Ty) ||
1585                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1586   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1587   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1588   if (!NeedsBoolCheck && !NeedsEnumCheck)
1589     return false;
1590 
1591   // Single-bit booleans don't need to be checked. Special-case this to avoid
1592   // a bit width mismatch when handling bitfield values. This is handled by
1593   // EmitFromMemory for the non-bitfield case.
1594   if (IsBool &&
1595       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1596     return false;
1597 
1598   llvm::APInt Min, End;
1599   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1600     return true;
1601 
1602   auto &Ctx = getLLVMContext();
1603   SanitizerScope SanScope(this);
1604   llvm::Value *Check;
1605   --End;
1606   if (!Min) {
1607     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1608   } else {
1609     llvm::Value *Upper =
1610         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1611     llvm::Value *Lower =
1612         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1613     Check = Builder.CreateAnd(Upper, Lower);
1614   }
1615   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1616                                   EmitCheckTypeDescriptor(Ty)};
1617   SanitizerMask Kind =
1618       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1619   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1620             StaticArgs, EmitCheckValue(Value));
1621   return true;
1622 }
1623 
1624 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1625                                                QualType Ty,
1626                                                SourceLocation Loc,
1627                                                LValueBaseInfo BaseInfo,
1628                                                TBAAAccessInfo TBAAInfo,
1629                                                bool isNontemporal) {
1630   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1631     // For better performance, handle vector loads differently.
1632     if (Ty->isVectorType()) {
1633       const llvm::Type *EltTy = Addr.getElementType();
1634 
1635       const auto *VTy = cast<llvm::VectorType>(EltTy);
1636 
1637       // Handle vectors of size 3 like size 4 for better performance.
1638       if (VTy->getNumElements() == 3) {
1639 
1640         // Bitcast to vec4 type.
1641         llvm::VectorType *vec4Ty =
1642             llvm::VectorType::get(VTy->getElementType(), 4);
1643         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1644         // Now load value.
1645         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1646 
1647         // Shuffle vector to get vec3.
1648         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1649                                         {0, 1, 2}, "extractVec");
1650         return EmitFromMemory(V, Ty);
1651       }
1652     }
1653   }
1654 
1655   // Atomic operations have to be done on integral types.
1656   LValue AtomicLValue =
1657       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1658   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1659     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1660   }
1661 
1662   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1663   if (isNontemporal) {
1664     llvm::MDNode *Node = llvm::MDNode::get(
1665         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1666     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1667   }
1668 
1669   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1670 
1671   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1672     // In order to prevent the optimizer from throwing away the check, don't
1673     // attach range metadata to the load.
1674   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1675     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1676       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1677 
1678   return EmitFromMemory(Load, Ty);
1679 }
1680 
1681 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1682   // Bool has a different representation in memory than in registers.
1683   if (hasBooleanRepresentation(Ty)) {
1684     // This should really always be an i1, but sometimes it's already
1685     // an i8, and it's awkward to track those cases down.
1686     if (Value->getType()->isIntegerTy(1))
1687       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1688     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1689            "wrong value rep of bool");
1690   }
1691 
1692   return Value;
1693 }
1694 
1695 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1696   // Bool has a different representation in memory than in registers.
1697   if (hasBooleanRepresentation(Ty)) {
1698     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1699            "wrong value rep of bool");
1700     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1701   }
1702 
1703   return Value;
1704 }
1705 
1706 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1707                                         bool Volatile, QualType Ty,
1708                                         LValueBaseInfo BaseInfo,
1709                                         TBAAAccessInfo TBAAInfo,
1710                                         bool isInit, bool isNontemporal) {
1711   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1712     // Handle vectors differently to get better performance.
1713     if (Ty->isVectorType()) {
1714       llvm::Type *SrcTy = Value->getType();
1715       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1716       // Handle vec3 special.
1717       if (VecTy && VecTy->getNumElements() == 3) {
1718         // Our source is a vec3, do a shuffle vector to make it a vec4.
1719         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1720                                   Builder.getInt32(2),
1721                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1722         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1723         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1724                                             MaskV, "extractVec");
1725         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1726       }
1727       if (Addr.getElementType() != SrcTy) {
1728         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1729       }
1730     }
1731   }
1732 
1733   Value = EmitToMemory(Value, Ty);
1734 
1735   LValue AtomicLValue =
1736       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1737   if (Ty->isAtomicType() ||
1738       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1739     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1740     return;
1741   }
1742 
1743   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1744   if (isNontemporal) {
1745     llvm::MDNode *Node =
1746         llvm::MDNode::get(Store->getContext(),
1747                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1748     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1749   }
1750 
1751   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1752 }
1753 
1754 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1755                                         bool isInit) {
1756   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1757                     lvalue.getType(), lvalue.getBaseInfo(),
1758                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1759 }
1760 
1761 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1762 /// method emits the address of the lvalue, then loads the result as an rvalue,
1763 /// returning the rvalue.
1764 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1765   if (LV.isObjCWeak()) {
1766     // load of a __weak object.
1767     Address AddrWeakObj = LV.getAddress();
1768     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1769                                                              AddrWeakObj));
1770   }
1771   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1772     // In MRC mode, we do a load+autorelease.
1773     if (!getLangOpts().ObjCAutoRefCount) {
1774       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1775     }
1776 
1777     // In ARC mode, we load retained and then consume the value.
1778     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1779     Object = EmitObjCConsumeObject(LV.getType(), Object);
1780     return RValue::get(Object);
1781   }
1782 
1783   if (LV.isSimple()) {
1784     assert(!LV.getType()->isFunctionType());
1785 
1786     // Everything needs a load.
1787     return RValue::get(EmitLoadOfScalar(LV, Loc));
1788   }
1789 
1790   if (LV.isVectorElt()) {
1791     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1792                                               LV.isVolatileQualified());
1793     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1794                                                     "vecext"));
1795   }
1796 
1797   // If this is a reference to a subset of the elements of a vector, either
1798   // shuffle the input or extract/insert them as appropriate.
1799   if (LV.isExtVectorElt())
1800     return EmitLoadOfExtVectorElementLValue(LV);
1801 
1802   // Global Register variables always invoke intrinsics
1803   if (LV.isGlobalReg())
1804     return EmitLoadOfGlobalRegLValue(LV);
1805 
1806   assert(LV.isBitField() && "Unknown LValue type!");
1807   return EmitLoadOfBitfieldLValue(LV, Loc);
1808 }
1809 
1810 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1811                                                  SourceLocation Loc) {
1812   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1813 
1814   // Get the output type.
1815   llvm::Type *ResLTy = ConvertType(LV.getType());
1816 
1817   Address Ptr = LV.getBitFieldAddress();
1818   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1819 
1820   if (Info.IsSigned) {
1821     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1822     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1823     if (HighBits)
1824       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1825     if (Info.Offset + HighBits)
1826       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1827   } else {
1828     if (Info.Offset)
1829       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1830     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1831       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1832                                                               Info.Size),
1833                               "bf.clear");
1834   }
1835   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1836   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1837   return RValue::get(Val);
1838 }
1839 
1840 // If this is a reference to a subset of the elements of a vector, create an
1841 // appropriate shufflevector.
1842 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1843   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1844                                         LV.isVolatileQualified());
1845 
1846   const llvm::Constant *Elts = LV.getExtVectorElts();
1847 
1848   // If the result of the expression is a non-vector type, we must be extracting
1849   // a single element.  Just codegen as an extractelement.
1850   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1851   if (!ExprVT) {
1852     unsigned InIdx = getAccessedFieldNo(0, Elts);
1853     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1854     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1855   }
1856 
1857   // Always use shuffle vector to try to retain the original program structure
1858   unsigned NumResultElts = ExprVT->getNumElements();
1859 
1860   SmallVector<llvm::Constant*, 4> Mask;
1861   for (unsigned i = 0; i != NumResultElts; ++i)
1862     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1863 
1864   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1865   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1866                                     MaskV);
1867   return RValue::get(Vec);
1868 }
1869 
1870 /// Generates lvalue for partial ext_vector access.
1871 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1872   Address VectorAddress = LV.getExtVectorAddress();
1873   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1874   QualType EQT = ExprVT->getElementType();
1875   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1876 
1877   Address CastToPointerElement =
1878     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1879                                  "conv.ptr.element");
1880 
1881   const llvm::Constant *Elts = LV.getExtVectorElts();
1882   unsigned ix = getAccessedFieldNo(0, Elts);
1883 
1884   Address VectorBasePtrPlusIx =
1885     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1886                                    getContext().getTypeSizeInChars(EQT),
1887                                    "vector.elt");
1888 
1889   return VectorBasePtrPlusIx;
1890 }
1891 
1892 /// Load of global gamed gegisters are always calls to intrinsics.
1893 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1894   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1895          "Bad type for register variable");
1896   llvm::MDNode *RegName = cast<llvm::MDNode>(
1897       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1898 
1899   // We accept integer and pointer types only
1900   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1901   llvm::Type *Ty = OrigTy;
1902   if (OrigTy->isPointerTy())
1903     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1904   llvm::Type *Types[] = { Ty };
1905 
1906   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1907   llvm::Value *Call = Builder.CreateCall(
1908       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1909   if (OrigTy->isPointerTy())
1910     Call = Builder.CreateIntToPtr(Call, OrigTy);
1911   return RValue::get(Call);
1912 }
1913 
1914 
1915 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1916 /// lvalue, where both are guaranteed to the have the same type, and that type
1917 /// is 'Ty'.
1918 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1919                                              bool isInit) {
1920   if (!Dst.isSimple()) {
1921     if (Dst.isVectorElt()) {
1922       // Read/modify/write the vector, inserting the new element.
1923       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1924                                             Dst.isVolatileQualified());
1925       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1926                                         Dst.getVectorIdx(), "vecins");
1927       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1928                           Dst.isVolatileQualified());
1929       return;
1930     }
1931 
1932     // If this is an update of extended vector elements, insert them as
1933     // appropriate.
1934     if (Dst.isExtVectorElt())
1935       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1936 
1937     if (Dst.isGlobalReg())
1938       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1939 
1940     assert(Dst.isBitField() && "Unknown LValue type");
1941     return EmitStoreThroughBitfieldLValue(Src, Dst);
1942   }
1943 
1944   // There's special magic for assigning into an ARC-qualified l-value.
1945   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1946     switch (Lifetime) {
1947     case Qualifiers::OCL_None:
1948       llvm_unreachable("present but none");
1949 
1950     case Qualifiers::OCL_ExplicitNone:
1951       // nothing special
1952       break;
1953 
1954     case Qualifiers::OCL_Strong:
1955       if (isInit) {
1956         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1957         break;
1958       }
1959       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1960       return;
1961 
1962     case Qualifiers::OCL_Weak:
1963       if (isInit)
1964         // Initialize and then skip the primitive store.
1965         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1966       else
1967         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1968       return;
1969 
1970     case Qualifiers::OCL_Autoreleasing:
1971       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1972                                                      Src.getScalarVal()));
1973       // fall into the normal path
1974       break;
1975     }
1976   }
1977 
1978   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1979     // load of a __weak object.
1980     Address LvalueDst = Dst.getAddress();
1981     llvm::Value *src = Src.getScalarVal();
1982      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1983     return;
1984   }
1985 
1986   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1987     // load of a __strong object.
1988     Address LvalueDst = Dst.getAddress();
1989     llvm::Value *src = Src.getScalarVal();
1990     if (Dst.isObjCIvar()) {
1991       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1992       llvm::Type *ResultType = IntPtrTy;
1993       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1994       llvm::Value *RHS = dst.getPointer();
1995       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1996       llvm::Value *LHS =
1997         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1998                                "sub.ptr.lhs.cast");
1999       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2000       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2001                                               BytesBetween);
2002     } else if (Dst.isGlobalObjCRef()) {
2003       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2004                                                 Dst.isThreadLocalRef());
2005     }
2006     else
2007       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2008     return;
2009   }
2010 
2011   assert(Src.isScalar() && "Can't emit an agg store with this method");
2012   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2013 }
2014 
2015 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2016                                                      llvm::Value **Result) {
2017   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2018   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2019   Address Ptr = Dst.getBitFieldAddress();
2020 
2021   // Get the source value, truncated to the width of the bit-field.
2022   llvm::Value *SrcVal = Src.getScalarVal();
2023 
2024   // Cast the source to the storage type and shift it into place.
2025   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2026                                  /*IsSigned=*/false);
2027   llvm::Value *MaskedVal = SrcVal;
2028 
2029   // See if there are other bits in the bitfield's storage we'll need to load
2030   // and mask together with source before storing.
2031   if (Info.StorageSize != Info.Size) {
2032     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2033     llvm::Value *Val =
2034       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2035 
2036     // Mask the source value as needed.
2037     if (!hasBooleanRepresentation(Dst.getType()))
2038       SrcVal = Builder.CreateAnd(SrcVal,
2039                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2040                                                             Info.Size),
2041                                  "bf.value");
2042     MaskedVal = SrcVal;
2043     if (Info.Offset)
2044       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2045 
2046     // Mask out the original value.
2047     Val = Builder.CreateAnd(Val,
2048                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2049                                                      Info.Offset,
2050                                                      Info.Offset + Info.Size),
2051                             "bf.clear");
2052 
2053     // Or together the unchanged values and the source value.
2054     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2055   } else {
2056     assert(Info.Offset == 0);
2057   }
2058 
2059   // Write the new value back out.
2060   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2061 
2062   // Return the new value of the bit-field, if requested.
2063   if (Result) {
2064     llvm::Value *ResultVal = MaskedVal;
2065 
2066     // Sign extend the value if needed.
2067     if (Info.IsSigned) {
2068       assert(Info.Size <= Info.StorageSize);
2069       unsigned HighBits = Info.StorageSize - Info.Size;
2070       if (HighBits) {
2071         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2072         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2073       }
2074     }
2075 
2076     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2077                                       "bf.result.cast");
2078     *Result = EmitFromMemory(ResultVal, Dst.getType());
2079   }
2080 }
2081 
2082 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2083                                                                LValue Dst) {
2084   // This access turns into a read/modify/write of the vector.  Load the input
2085   // value now.
2086   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2087                                         Dst.isVolatileQualified());
2088   const llvm::Constant *Elts = Dst.getExtVectorElts();
2089 
2090   llvm::Value *SrcVal = Src.getScalarVal();
2091 
2092   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2093     unsigned NumSrcElts = VTy->getNumElements();
2094     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2095     if (NumDstElts == NumSrcElts) {
2096       // Use shuffle vector is the src and destination are the same number of
2097       // elements and restore the vector mask since it is on the side it will be
2098       // stored.
2099       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2100       for (unsigned i = 0; i != NumSrcElts; ++i)
2101         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2102 
2103       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2104       Vec = Builder.CreateShuffleVector(SrcVal,
2105                                         llvm::UndefValue::get(Vec->getType()),
2106                                         MaskV);
2107     } else if (NumDstElts > NumSrcElts) {
2108       // Extended the source vector to the same length and then shuffle it
2109       // into the destination.
2110       // FIXME: since we're shuffling with undef, can we just use the indices
2111       //        into that?  This could be simpler.
2112       SmallVector<llvm::Constant*, 4> ExtMask;
2113       for (unsigned i = 0; i != NumSrcElts; ++i)
2114         ExtMask.push_back(Builder.getInt32(i));
2115       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2116       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2117       llvm::Value *ExtSrcVal =
2118         Builder.CreateShuffleVector(SrcVal,
2119                                     llvm::UndefValue::get(SrcVal->getType()),
2120                                     ExtMaskV);
2121       // build identity
2122       SmallVector<llvm::Constant*, 4> Mask;
2123       for (unsigned i = 0; i != NumDstElts; ++i)
2124         Mask.push_back(Builder.getInt32(i));
2125 
2126       // When the vector size is odd and .odd or .hi is used, the last element
2127       // of the Elts constant array will be one past the size of the vector.
2128       // Ignore the last element here, if it is greater than the mask size.
2129       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2130         NumSrcElts--;
2131 
2132       // modify when what gets shuffled in
2133       for (unsigned i = 0; i != NumSrcElts; ++i)
2134         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2135       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2136       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2137     } else {
2138       // We should never shorten the vector
2139       llvm_unreachable("unexpected shorten vector length");
2140     }
2141   } else {
2142     // If the Src is a scalar (not a vector) it must be updating one element.
2143     unsigned InIdx = getAccessedFieldNo(0, Elts);
2144     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2145     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2146   }
2147 
2148   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2149                       Dst.isVolatileQualified());
2150 }
2151 
2152 /// Store of global named registers are always calls to intrinsics.
2153 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2154   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2155          "Bad type for register variable");
2156   llvm::MDNode *RegName = cast<llvm::MDNode>(
2157       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2158   assert(RegName && "Register LValue is not metadata");
2159 
2160   // We accept integer and pointer types only
2161   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2162   llvm::Type *Ty = OrigTy;
2163   if (OrigTy->isPointerTy())
2164     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2165   llvm::Type *Types[] = { Ty };
2166 
2167   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2168   llvm::Value *Value = Src.getScalarVal();
2169   if (OrigTy->isPointerTy())
2170     Value = Builder.CreatePtrToInt(Value, Ty);
2171   Builder.CreateCall(
2172       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2173 }
2174 
2175 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2176 // generating write-barries API. It is currently a global, ivar,
2177 // or neither.
2178 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2179                                  LValue &LV,
2180                                  bool IsMemberAccess=false) {
2181   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2182     return;
2183 
2184   if (isa<ObjCIvarRefExpr>(E)) {
2185     QualType ExpTy = E->getType();
2186     if (IsMemberAccess && ExpTy->isPointerType()) {
2187       // If ivar is a structure pointer, assigning to field of
2188       // this struct follows gcc's behavior and makes it a non-ivar
2189       // writer-barrier conservatively.
2190       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2191       if (ExpTy->isRecordType()) {
2192         LV.setObjCIvar(false);
2193         return;
2194       }
2195     }
2196     LV.setObjCIvar(true);
2197     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2198     LV.setBaseIvarExp(Exp->getBase());
2199     LV.setObjCArray(E->getType()->isArrayType());
2200     return;
2201   }
2202 
2203   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2204     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2205       if (VD->hasGlobalStorage()) {
2206         LV.setGlobalObjCRef(true);
2207         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2208       }
2209     }
2210     LV.setObjCArray(E->getType()->isArrayType());
2211     return;
2212   }
2213 
2214   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2215     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2216     return;
2217   }
2218 
2219   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2220     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2221     if (LV.isObjCIvar()) {
2222       // If cast is to a structure pointer, follow gcc's behavior and make it
2223       // a non-ivar write-barrier.
2224       QualType ExpTy = E->getType();
2225       if (ExpTy->isPointerType())
2226         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2227       if (ExpTy->isRecordType())
2228         LV.setObjCIvar(false);
2229     }
2230     return;
2231   }
2232 
2233   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2234     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2235     return;
2236   }
2237 
2238   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2239     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2240     return;
2241   }
2242 
2243   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2244     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2245     return;
2246   }
2247 
2248   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2249     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2250     return;
2251   }
2252 
2253   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2254     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2255     if (LV.isObjCIvar() && !LV.isObjCArray())
2256       // Using array syntax to assigning to what an ivar points to is not
2257       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2258       LV.setObjCIvar(false);
2259     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2260       // Using array syntax to assigning to what global points to is not
2261       // same as assigning to the global itself. {id *G;} G[i] = 0;
2262       LV.setGlobalObjCRef(false);
2263     return;
2264   }
2265 
2266   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2267     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2268     // We don't know if member is an 'ivar', but this flag is looked at
2269     // only in the context of LV.isObjCIvar().
2270     LV.setObjCArray(E->getType()->isArrayType());
2271     return;
2272   }
2273 }
2274 
2275 static llvm::Value *
2276 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2277                                 llvm::Value *V, llvm::Type *IRType,
2278                                 StringRef Name = StringRef()) {
2279   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2280   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2281 }
2282 
2283 static LValue EmitThreadPrivateVarDeclLValue(
2284     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2285     llvm::Type *RealVarTy, SourceLocation Loc) {
2286   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2287   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2288   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2289 }
2290 
2291 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2292                                                const VarDecl *VD, QualType T) {
2293   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2294       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2295   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2296     return Address::invalid();
2297   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2298   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2299   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2300   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2301 }
2302 
2303 Address
2304 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2305                                      LValueBaseInfo *PointeeBaseInfo,
2306                                      TBAAAccessInfo *PointeeTBAAInfo) {
2307   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2308                                             RefLVal.isVolatile());
2309   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2310 
2311   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2312                                             PointeeBaseInfo, PointeeTBAAInfo,
2313                                             /* forPointeeType= */ true);
2314   return Address(Load, Align);
2315 }
2316 
2317 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2318   LValueBaseInfo PointeeBaseInfo;
2319   TBAAAccessInfo PointeeTBAAInfo;
2320   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2321                                             &PointeeTBAAInfo);
2322   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2323                         PointeeBaseInfo, PointeeTBAAInfo);
2324 }
2325 
2326 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2327                                            const PointerType *PtrTy,
2328                                            LValueBaseInfo *BaseInfo,
2329                                            TBAAAccessInfo *TBAAInfo) {
2330   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2331   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2332                                                BaseInfo, TBAAInfo,
2333                                                /*forPointeeType=*/true));
2334 }
2335 
2336 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2337                                                 const PointerType *PtrTy) {
2338   LValueBaseInfo BaseInfo;
2339   TBAAAccessInfo TBAAInfo;
2340   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2341   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2342 }
2343 
2344 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2345                                       const Expr *E, const VarDecl *VD) {
2346   QualType T = E->getType();
2347 
2348   // If it's thread_local, emit a call to its wrapper function instead.
2349   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2350       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2351     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2352   // Check if the variable is marked as declare target with link clause in
2353   // device codegen.
2354   if (CGF.getLangOpts().OpenMPIsDevice) {
2355     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2356     if (Addr.isValid())
2357       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2358   }
2359 
2360   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2361   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2362   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2363   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2364   Address Addr(V, Alignment);
2365   // Emit reference to the private copy of the variable if it is an OpenMP
2366   // threadprivate variable.
2367   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2368       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2369     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2370                                           E->getExprLoc());
2371   }
2372   LValue LV = VD->getType()->isReferenceType() ?
2373       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2374                                     AlignmentSource::Decl) :
2375       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2376   setObjCGCLValueClass(CGF.getContext(), E, LV);
2377   return LV;
2378 }
2379 
2380 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2381                                                const FunctionDecl *FD) {
2382   if (FD->hasAttr<WeakRefAttr>()) {
2383     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2384     return aliasee.getPointer();
2385   }
2386 
2387   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2388   if (!FD->hasPrototype()) {
2389     if (const FunctionProtoType *Proto =
2390             FD->getType()->getAs<FunctionProtoType>()) {
2391       // Ugly case: for a K&R-style definition, the type of the definition
2392       // isn't the same as the type of a use.  Correct for this with a
2393       // bitcast.
2394       QualType NoProtoType =
2395           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2396       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2397       V = llvm::ConstantExpr::getBitCast(V,
2398                                       CGM.getTypes().ConvertType(NoProtoType));
2399     }
2400   }
2401   return V;
2402 }
2403 
2404 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2405                                      const Expr *E, const FunctionDecl *FD) {
2406   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2407   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2408   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2409                             AlignmentSource::Decl);
2410 }
2411 
2412 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2413                                       llvm::Value *ThisValue) {
2414   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2415   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2416   return CGF.EmitLValueForField(LV, FD);
2417 }
2418 
2419 /// Named Registers are named metadata pointing to the register name
2420 /// which will be read from/written to as an argument to the intrinsic
2421 /// @llvm.read/write_register.
2422 /// So far, only the name is being passed down, but other options such as
2423 /// register type, allocation type or even optimization options could be
2424 /// passed down via the metadata node.
2425 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2426   SmallString<64> Name("llvm.named.register.");
2427   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2428   assert(Asm->getLabel().size() < 64-Name.size() &&
2429       "Register name too big");
2430   Name.append(Asm->getLabel());
2431   llvm::NamedMDNode *M =
2432     CGM.getModule().getOrInsertNamedMetadata(Name);
2433   if (M->getNumOperands() == 0) {
2434     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2435                                               Asm->getLabel());
2436     llvm::Metadata *Ops[] = {Str};
2437     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2438   }
2439 
2440   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2441 
2442   llvm::Value *Ptr =
2443     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2444   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2445 }
2446 
2447 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2448   const NamedDecl *ND = E->getDecl();
2449   QualType T = E->getType();
2450 
2451   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2452     // Global Named registers access via intrinsics only
2453     if (VD->getStorageClass() == SC_Register &&
2454         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2455       return EmitGlobalNamedRegister(VD, CGM);
2456 
2457     // A DeclRefExpr for a reference initialized by a constant expression can
2458     // appear without being odr-used. Directly emit the constant initializer.
2459     const Expr *Init = VD->getAnyInitializer(VD);
2460     const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
2461     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2462         VD->isUsableInConstantExpressions(getContext()) &&
2463         VD->checkInitIsICE() &&
2464         // Do not emit if it is private OpenMP variable.
2465         !(E->refersToEnclosingVariableOrCapture() &&
2466           ((CapturedStmtInfo &&
2467             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2468              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2469            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2470            (BD && BD->capturesVariable(VD))))) {
2471       llvm::Constant *Val =
2472         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2473                                             *VD->evaluateValue(),
2474                                             VD->getType());
2475       assert(Val && "failed to emit reference constant expression");
2476       // FIXME: Eventually we will want to emit vector element references.
2477 
2478       // Should we be using the alignment of the constant pointer we emitted?
2479       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2480                                                     /* BaseInfo= */ nullptr,
2481                                                     /* TBAAInfo= */ nullptr,
2482                                                     /* forPointeeType= */ true);
2483       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2484     }
2485 
2486     // Check for captured variables.
2487     if (E->refersToEnclosingVariableOrCapture()) {
2488       VD = VD->getCanonicalDecl();
2489       if (auto *FD = LambdaCaptureFields.lookup(VD))
2490         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2491       else if (CapturedStmtInfo) {
2492         auto I = LocalDeclMap.find(VD);
2493         if (I != LocalDeclMap.end()) {
2494           if (VD->getType()->isReferenceType())
2495             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2496                                              AlignmentSource::Decl);
2497           return MakeAddrLValue(I->second, T);
2498         }
2499         LValue CapLVal =
2500             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2501                                     CapturedStmtInfo->getContextValue());
2502         return MakeAddrLValue(
2503             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2504             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2505             CapLVal.getTBAAInfo());
2506       }
2507 
2508       assert(isa<BlockDecl>(CurCodeDecl));
2509       Address addr = GetAddrOfBlockDecl(VD);
2510       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2511     }
2512   }
2513 
2514   // FIXME: We should be able to assert this for FunctionDecls as well!
2515   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2516   // those with a valid source location.
2517   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2518           !E->getLocation().isValid()) &&
2519          "Should not use decl without marking it used!");
2520 
2521   if (ND->hasAttr<WeakRefAttr>()) {
2522     const auto *VD = cast<ValueDecl>(ND);
2523     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2524     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2525   }
2526 
2527   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2528     // Check if this is a global variable.
2529     if (VD->hasLinkage() || VD->isStaticDataMember())
2530       return EmitGlobalVarDeclLValue(*this, E, VD);
2531 
2532     Address addr = Address::invalid();
2533 
2534     // The variable should generally be present in the local decl map.
2535     auto iter = LocalDeclMap.find(VD);
2536     if (iter != LocalDeclMap.end()) {
2537       addr = iter->second;
2538 
2539     // Otherwise, it might be static local we haven't emitted yet for
2540     // some reason; most likely, because it's in an outer function.
2541     } else if (VD->isStaticLocal()) {
2542       addr = Address(CGM.getOrCreateStaticVarDecl(
2543           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2544                      getContext().getDeclAlign(VD));
2545 
2546     // No other cases for now.
2547     } else {
2548       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2549     }
2550 
2551 
2552     // Check for OpenMP threadprivate variables.
2553     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2554         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2555       return EmitThreadPrivateVarDeclLValue(
2556           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2557           E->getExprLoc());
2558     }
2559 
2560     // Drill into block byref variables.
2561     bool isBlockByref = VD->isEscapingByref();
2562     if (isBlockByref) {
2563       addr = emitBlockByrefAddress(addr, VD);
2564     }
2565 
2566     // Drill into reference types.
2567     LValue LV = VD->getType()->isReferenceType() ?
2568         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2569         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2570 
2571     bool isLocalStorage = VD->hasLocalStorage();
2572 
2573     bool NonGCable = isLocalStorage &&
2574                      !VD->getType()->isReferenceType() &&
2575                      !isBlockByref;
2576     if (NonGCable) {
2577       LV.getQuals().removeObjCGCAttr();
2578       LV.setNonGC(true);
2579     }
2580 
2581     bool isImpreciseLifetime =
2582       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2583     if (isImpreciseLifetime)
2584       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2585     setObjCGCLValueClass(getContext(), E, LV);
2586     return LV;
2587   }
2588 
2589   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2590     return EmitFunctionDeclLValue(*this, E, FD);
2591 
2592   // FIXME: While we're emitting a binding from an enclosing scope, all other
2593   // DeclRefExprs we see should be implicitly treated as if they also refer to
2594   // an enclosing scope.
2595   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2596     return EmitLValue(BD->getBinding());
2597 
2598   llvm_unreachable("Unhandled DeclRefExpr");
2599 }
2600 
2601 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2602   // __extension__ doesn't affect lvalue-ness.
2603   if (E->getOpcode() == UO_Extension)
2604     return EmitLValue(E->getSubExpr());
2605 
2606   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2607   switch (E->getOpcode()) {
2608   default: llvm_unreachable("Unknown unary operator lvalue!");
2609   case UO_Deref: {
2610     QualType T = E->getSubExpr()->getType()->getPointeeType();
2611     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2612 
2613     LValueBaseInfo BaseInfo;
2614     TBAAAccessInfo TBAAInfo;
2615     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2616                                             &TBAAInfo);
2617     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2618     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2619 
2620     // We should not generate __weak write barrier on indirect reference
2621     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2622     // But, we continue to generate __strong write barrier on indirect write
2623     // into a pointer to object.
2624     if (getLangOpts().ObjC &&
2625         getLangOpts().getGC() != LangOptions::NonGC &&
2626         LV.isObjCWeak())
2627       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2628     return LV;
2629   }
2630   case UO_Real:
2631   case UO_Imag: {
2632     LValue LV = EmitLValue(E->getSubExpr());
2633     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2634 
2635     // __real is valid on scalars.  This is a faster way of testing that.
2636     // __imag can only produce an rvalue on scalars.
2637     if (E->getOpcode() == UO_Real &&
2638         !LV.getAddress().getElementType()->isStructTy()) {
2639       assert(E->getSubExpr()->getType()->isArithmeticType());
2640       return LV;
2641     }
2642 
2643     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2644 
2645     Address Component =
2646       (E->getOpcode() == UO_Real
2647          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2648          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2649     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2650                                    CGM.getTBAAInfoForSubobject(LV, T));
2651     ElemLV.getQuals().addQualifiers(LV.getQuals());
2652     return ElemLV;
2653   }
2654   case UO_PreInc:
2655   case UO_PreDec: {
2656     LValue LV = EmitLValue(E->getSubExpr());
2657     bool isInc = E->getOpcode() == UO_PreInc;
2658 
2659     if (E->getType()->isAnyComplexType())
2660       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2661     else
2662       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2663     return LV;
2664   }
2665   }
2666 }
2667 
2668 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2669   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2670                         E->getType(), AlignmentSource::Decl);
2671 }
2672 
2673 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2674   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2675                         E->getType(), AlignmentSource::Decl);
2676 }
2677 
2678 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2679   auto SL = E->getFunctionName();
2680   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2681   StringRef FnName = CurFn->getName();
2682   if (FnName.startswith("\01"))
2683     FnName = FnName.substr(1);
2684   StringRef NameItems[] = {
2685       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2686   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2687   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2688     std::string Name = SL->getString();
2689     if (!Name.empty()) {
2690       unsigned Discriminator =
2691           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2692       if (Discriminator)
2693         Name += "_" + Twine(Discriminator + 1).str();
2694       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2695       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2696     } else {
2697       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2698       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2699     }
2700   }
2701   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2702   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2703 }
2704 
2705 /// Emit a type description suitable for use by a runtime sanitizer library. The
2706 /// format of a type descriptor is
2707 ///
2708 /// \code
2709 ///   { i16 TypeKind, i16 TypeInfo }
2710 /// \endcode
2711 ///
2712 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2713 /// integer, 1 for a floating point value, and -1 for anything else.
2714 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2715   // Only emit each type's descriptor once.
2716   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2717     return C;
2718 
2719   uint16_t TypeKind = -1;
2720   uint16_t TypeInfo = 0;
2721 
2722   if (T->isIntegerType()) {
2723     TypeKind = 0;
2724     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2725                (T->isSignedIntegerType() ? 1 : 0);
2726   } else if (T->isFloatingType()) {
2727     TypeKind = 1;
2728     TypeInfo = getContext().getTypeSize(T);
2729   }
2730 
2731   // Format the type name as if for a diagnostic, including quotes and
2732   // optionally an 'aka'.
2733   SmallString<32> Buffer;
2734   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2735                                     (intptr_t)T.getAsOpaquePtr(),
2736                                     StringRef(), StringRef(), None, Buffer,
2737                                     None);
2738 
2739   llvm::Constant *Components[] = {
2740     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2741     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2742   };
2743   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2744 
2745   auto *GV = new llvm::GlobalVariable(
2746       CGM.getModule(), Descriptor->getType(),
2747       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2748   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2749   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2750 
2751   // Remember the descriptor for this type.
2752   CGM.setTypeDescriptorInMap(T, GV);
2753 
2754   return GV;
2755 }
2756 
2757 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2758   llvm::Type *TargetTy = IntPtrTy;
2759 
2760   if (V->getType() == TargetTy)
2761     return V;
2762 
2763   // Floating-point types which fit into intptr_t are bitcast to integers
2764   // and then passed directly (after zero-extension, if necessary).
2765   if (V->getType()->isFloatingPointTy()) {
2766     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2767     if (Bits <= TargetTy->getIntegerBitWidth())
2768       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2769                                                          Bits));
2770   }
2771 
2772   // Integers which fit in intptr_t are zero-extended and passed directly.
2773   if (V->getType()->isIntegerTy() &&
2774       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2775     return Builder.CreateZExt(V, TargetTy);
2776 
2777   // Pointers are passed directly, everything else is passed by address.
2778   if (!V->getType()->isPointerTy()) {
2779     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2780     Builder.CreateStore(V, Ptr);
2781     V = Ptr.getPointer();
2782   }
2783   return Builder.CreatePtrToInt(V, TargetTy);
2784 }
2785 
2786 /// Emit a representation of a SourceLocation for passing to a handler
2787 /// in a sanitizer runtime library. The format for this data is:
2788 /// \code
2789 ///   struct SourceLocation {
2790 ///     const char *Filename;
2791 ///     int32_t Line, Column;
2792 ///   };
2793 /// \endcode
2794 /// For an invalid SourceLocation, the Filename pointer is null.
2795 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2796   llvm::Constant *Filename;
2797   int Line, Column;
2798 
2799   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2800   if (PLoc.isValid()) {
2801     StringRef FilenameString = PLoc.getFilename();
2802 
2803     int PathComponentsToStrip =
2804         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2805     if (PathComponentsToStrip < 0) {
2806       assert(PathComponentsToStrip != INT_MIN);
2807       int PathComponentsToKeep = -PathComponentsToStrip;
2808       auto I = llvm::sys::path::rbegin(FilenameString);
2809       auto E = llvm::sys::path::rend(FilenameString);
2810       while (I != E && --PathComponentsToKeep)
2811         ++I;
2812 
2813       FilenameString = FilenameString.substr(I - E);
2814     } else if (PathComponentsToStrip > 0) {
2815       auto I = llvm::sys::path::begin(FilenameString);
2816       auto E = llvm::sys::path::end(FilenameString);
2817       while (I != E && PathComponentsToStrip--)
2818         ++I;
2819 
2820       if (I != E)
2821         FilenameString =
2822             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2823       else
2824         FilenameString = llvm::sys::path::filename(FilenameString);
2825     }
2826 
2827     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2828     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2829                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2830     Filename = FilenameGV.getPointer();
2831     Line = PLoc.getLine();
2832     Column = PLoc.getColumn();
2833   } else {
2834     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2835     Line = Column = 0;
2836   }
2837 
2838   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2839                             Builder.getInt32(Column)};
2840 
2841   return llvm::ConstantStruct::getAnon(Data);
2842 }
2843 
2844 namespace {
2845 /// Specify under what conditions this check can be recovered
2846 enum class CheckRecoverableKind {
2847   /// Always terminate program execution if this check fails.
2848   Unrecoverable,
2849   /// Check supports recovering, runtime has both fatal (noreturn) and
2850   /// non-fatal handlers for this check.
2851   Recoverable,
2852   /// Runtime conditionally aborts, always need to support recovery.
2853   AlwaysRecoverable
2854 };
2855 }
2856 
2857 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2858   assert(llvm::countPopulation(Kind) == 1);
2859   switch (Kind) {
2860   case SanitizerKind::Vptr:
2861     return CheckRecoverableKind::AlwaysRecoverable;
2862   case SanitizerKind::Return:
2863   case SanitizerKind::Unreachable:
2864     return CheckRecoverableKind::Unrecoverable;
2865   default:
2866     return CheckRecoverableKind::Recoverable;
2867   }
2868 }
2869 
2870 namespace {
2871 struct SanitizerHandlerInfo {
2872   char const *const Name;
2873   unsigned Version;
2874 };
2875 }
2876 
2877 const SanitizerHandlerInfo SanitizerHandlers[] = {
2878 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2879     LIST_SANITIZER_CHECKS
2880 #undef SANITIZER_CHECK
2881 };
2882 
2883 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2884                                  llvm::FunctionType *FnType,
2885                                  ArrayRef<llvm::Value *> FnArgs,
2886                                  SanitizerHandler CheckHandler,
2887                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2888                                  llvm::BasicBlock *ContBB) {
2889   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2890   Optional<ApplyDebugLocation> DL;
2891   if (!CGF.Builder.getCurrentDebugLocation()) {
2892     // Ensure that the call has at least an artificial debug location.
2893     DL.emplace(CGF, SourceLocation());
2894   }
2895   bool NeedsAbortSuffix =
2896       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2897   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2898   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2899   const StringRef CheckName = CheckInfo.Name;
2900   std::string FnName = "__ubsan_handle_" + CheckName.str();
2901   if (CheckInfo.Version && !MinimalRuntime)
2902     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2903   if (MinimalRuntime)
2904     FnName += "_minimal";
2905   if (NeedsAbortSuffix)
2906     FnName += "_abort";
2907   bool MayReturn =
2908       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2909 
2910   llvm::AttrBuilder B;
2911   if (!MayReturn) {
2912     B.addAttribute(llvm::Attribute::NoReturn)
2913         .addAttribute(llvm::Attribute::NoUnwind);
2914   }
2915   B.addAttribute(llvm::Attribute::UWTable);
2916 
2917   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2918       FnType, FnName,
2919       llvm::AttributeList::get(CGF.getLLVMContext(),
2920                                llvm::AttributeList::FunctionIndex, B),
2921       /*Local=*/true);
2922   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2923   if (!MayReturn) {
2924     HandlerCall->setDoesNotReturn();
2925     CGF.Builder.CreateUnreachable();
2926   } else {
2927     CGF.Builder.CreateBr(ContBB);
2928   }
2929 }
2930 
2931 void CodeGenFunction::EmitCheck(
2932     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2933     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2934     ArrayRef<llvm::Value *> DynamicArgs) {
2935   assert(IsSanitizerScope);
2936   assert(Checked.size() > 0);
2937   assert(CheckHandler >= 0 &&
2938          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2939   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2940 
2941   llvm::Value *FatalCond = nullptr;
2942   llvm::Value *RecoverableCond = nullptr;
2943   llvm::Value *TrapCond = nullptr;
2944   for (int i = 0, n = Checked.size(); i < n; ++i) {
2945     llvm::Value *Check = Checked[i].first;
2946     // -fsanitize-trap= overrides -fsanitize-recover=.
2947     llvm::Value *&Cond =
2948         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2949             ? TrapCond
2950             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2951                   ? RecoverableCond
2952                   : FatalCond;
2953     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2954   }
2955 
2956   if (TrapCond)
2957     EmitTrapCheck(TrapCond);
2958   if (!FatalCond && !RecoverableCond)
2959     return;
2960 
2961   llvm::Value *JointCond;
2962   if (FatalCond && RecoverableCond)
2963     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2964   else
2965     JointCond = FatalCond ? FatalCond : RecoverableCond;
2966   assert(JointCond);
2967 
2968   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2969   assert(SanOpts.has(Checked[0].second));
2970 #ifndef NDEBUG
2971   for (int i = 1, n = Checked.size(); i < n; ++i) {
2972     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2973            "All recoverable kinds in a single check must be same!");
2974     assert(SanOpts.has(Checked[i].second));
2975   }
2976 #endif
2977 
2978   llvm::BasicBlock *Cont = createBasicBlock("cont");
2979   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2980   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2981   // Give hint that we very much don't expect to execute the handler
2982   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2983   llvm::MDBuilder MDHelper(getLLVMContext());
2984   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2985   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2986   EmitBlock(Handlers);
2987 
2988   // Handler functions take an i8* pointing to the (handler-specific) static
2989   // information block, followed by a sequence of intptr_t arguments
2990   // representing operand values.
2991   SmallVector<llvm::Value *, 4> Args;
2992   SmallVector<llvm::Type *, 4> ArgTypes;
2993   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2994     Args.reserve(DynamicArgs.size() + 1);
2995     ArgTypes.reserve(DynamicArgs.size() + 1);
2996 
2997     // Emit handler arguments and create handler function type.
2998     if (!StaticArgs.empty()) {
2999       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3000       auto *InfoPtr =
3001           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3002                                    llvm::GlobalVariable::PrivateLinkage, Info);
3003       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3004       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3005       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3006       ArgTypes.push_back(Int8PtrTy);
3007     }
3008 
3009     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3010       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3011       ArgTypes.push_back(IntPtrTy);
3012     }
3013   }
3014 
3015   llvm::FunctionType *FnType =
3016     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3017 
3018   if (!FatalCond || !RecoverableCond) {
3019     // Simple case: we need to generate a single handler call, either
3020     // fatal, or non-fatal.
3021     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3022                          (FatalCond != nullptr), Cont);
3023   } else {
3024     // Emit two handler calls: first one for set of unrecoverable checks,
3025     // another one for recoverable.
3026     llvm::BasicBlock *NonFatalHandlerBB =
3027         createBasicBlock("non_fatal." + CheckName);
3028     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3029     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3030     EmitBlock(FatalHandlerBB);
3031     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3032                          NonFatalHandlerBB);
3033     EmitBlock(NonFatalHandlerBB);
3034     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3035                          Cont);
3036   }
3037 
3038   EmitBlock(Cont);
3039 }
3040 
3041 void CodeGenFunction::EmitCfiSlowPathCheck(
3042     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3043     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3044   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3045 
3046   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3047   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3048 
3049   llvm::MDBuilder MDHelper(getLLVMContext());
3050   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3051   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3052 
3053   EmitBlock(CheckBB);
3054 
3055   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3056 
3057   llvm::CallInst *CheckCall;
3058   llvm::Constant *SlowPathFn;
3059   if (WithDiag) {
3060     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3061     auto *InfoPtr =
3062         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3063                                  llvm::GlobalVariable::PrivateLinkage, Info);
3064     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3065     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3066 
3067     SlowPathFn = CGM.getModule().getOrInsertFunction(
3068         "__cfi_slowpath_diag",
3069         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3070                                 false));
3071     CheckCall = Builder.CreateCall(
3072         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3073   } else {
3074     SlowPathFn = CGM.getModule().getOrInsertFunction(
3075         "__cfi_slowpath",
3076         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3077     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3078   }
3079 
3080   CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts()));
3081   CheckCall->setDoesNotThrow();
3082 
3083   EmitBlock(Cont);
3084 }
3085 
3086 // Emit a stub for __cfi_check function so that the linker knows about this
3087 // symbol in LTO mode.
3088 void CodeGenFunction::EmitCfiCheckStub() {
3089   llvm::Module *M = &CGM.getModule();
3090   auto &Ctx = M->getContext();
3091   llvm::Function *F = llvm::Function::Create(
3092       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3093       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3094   CGM.setDSOLocal(F);
3095   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3096   // FIXME: consider emitting an intrinsic call like
3097   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3098   // which can be lowered in CrossDSOCFI pass to the actual contents of
3099   // __cfi_check. This would allow inlining of __cfi_check calls.
3100   llvm::CallInst::Create(
3101       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3102   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3103 }
3104 
3105 // This function is basically a switch over the CFI failure kind, which is
3106 // extracted from CFICheckFailData (1st function argument). Each case is either
3107 // llvm.trap or a call to one of the two runtime handlers, based on
3108 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3109 // failure kind) traps, but this should really never happen.  CFICheckFailData
3110 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3111 // check kind; in this case __cfi_check_fail traps as well.
3112 void CodeGenFunction::EmitCfiCheckFail() {
3113   SanitizerScope SanScope(this);
3114   FunctionArgList Args;
3115   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3116                             ImplicitParamDecl::Other);
3117   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3118                             ImplicitParamDecl::Other);
3119   Args.push_back(&ArgData);
3120   Args.push_back(&ArgAddr);
3121 
3122   const CGFunctionInfo &FI =
3123     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3124 
3125   llvm::Function *F = llvm::Function::Create(
3126       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3127       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3128   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3129 
3130   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3131                 SourceLocation());
3132 
3133   // This function should not be affected by blacklist. This function does
3134   // not have a source location, but "src:*" would still apply. Revert any
3135   // changes to SanOpts made in StartFunction.
3136   SanOpts = CGM.getLangOpts().Sanitize;
3137 
3138   llvm::Value *Data =
3139       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3140                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3141   llvm::Value *Addr =
3142       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3143                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3144 
3145   // Data == nullptr means the calling module has trap behaviour for this check.
3146   llvm::Value *DataIsNotNullPtr =
3147       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3148   EmitTrapCheck(DataIsNotNullPtr);
3149 
3150   llvm::StructType *SourceLocationTy =
3151       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3152   llvm::StructType *CfiCheckFailDataTy =
3153       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3154 
3155   llvm::Value *V = Builder.CreateConstGEP2_32(
3156       CfiCheckFailDataTy,
3157       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3158       0);
3159   Address CheckKindAddr(V, getIntAlign());
3160   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3161 
3162   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3163       CGM.getLLVMContext(),
3164       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3165   llvm::Value *ValidVtable = Builder.CreateZExt(
3166       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3167                          {Addr, AllVtables}),
3168       IntPtrTy);
3169 
3170   const std::pair<int, SanitizerMask> CheckKinds[] = {
3171       {CFITCK_VCall, SanitizerKind::CFIVCall},
3172       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3173       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3174       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3175       {CFITCK_ICall, SanitizerKind::CFIICall}};
3176 
3177   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3178   for (auto CheckKindMaskPair : CheckKinds) {
3179     int Kind = CheckKindMaskPair.first;
3180     SanitizerMask Mask = CheckKindMaskPair.second;
3181     llvm::Value *Cond =
3182         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3183     if (CGM.getLangOpts().Sanitize.has(Mask))
3184       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3185                 {Data, Addr, ValidVtable});
3186     else
3187       EmitTrapCheck(Cond);
3188   }
3189 
3190   FinishFunction();
3191   // The only reference to this function will be created during LTO link.
3192   // Make sure it survives until then.
3193   CGM.addUsedGlobal(F);
3194 }
3195 
3196 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3197   if (SanOpts.has(SanitizerKind::Unreachable)) {
3198     SanitizerScope SanScope(this);
3199     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3200                              SanitizerKind::Unreachable),
3201               SanitizerHandler::BuiltinUnreachable,
3202               EmitCheckSourceLocation(Loc), None);
3203   }
3204   Builder.CreateUnreachable();
3205 }
3206 
3207 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3208   llvm::BasicBlock *Cont = createBasicBlock("cont");
3209 
3210   // If we're optimizing, collapse all calls to trap down to just one per
3211   // function to save on code size.
3212   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3213     TrapBB = createBasicBlock("trap");
3214     Builder.CreateCondBr(Checked, Cont, TrapBB);
3215     EmitBlock(TrapBB);
3216     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3217     TrapCall->setDoesNotReturn();
3218     TrapCall->setDoesNotThrow();
3219     Builder.CreateUnreachable();
3220   } else {
3221     Builder.CreateCondBr(Checked, Cont, TrapBB);
3222   }
3223 
3224   EmitBlock(Cont);
3225 }
3226 
3227 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3228   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3229 
3230   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3231     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3232                                   CGM.getCodeGenOpts().TrapFuncName);
3233     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3234   }
3235 
3236   return TrapCall;
3237 }
3238 
3239 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3240                                                  LValueBaseInfo *BaseInfo,
3241                                                  TBAAAccessInfo *TBAAInfo) {
3242   assert(E->getType()->isArrayType() &&
3243          "Array to pointer decay must have array source type!");
3244 
3245   // Expressions of array type can't be bitfields or vector elements.
3246   LValue LV = EmitLValue(E);
3247   Address Addr = LV.getAddress();
3248 
3249   // If the array type was an incomplete type, we need to make sure
3250   // the decay ends up being the right type.
3251   llvm::Type *NewTy = ConvertType(E->getType());
3252   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3253 
3254   // Note that VLA pointers are always decayed, so we don't need to do
3255   // anything here.
3256   if (!E->getType()->isVariableArrayType()) {
3257     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3258            "Expected pointer to array");
3259     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3260   }
3261 
3262   // The result of this decay conversion points to an array element within the
3263   // base lvalue. However, since TBAA currently does not support representing
3264   // accesses to elements of member arrays, we conservatively represent accesses
3265   // to the pointee object as if it had no any base lvalue specified.
3266   // TODO: Support TBAA for member arrays.
3267   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3268   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3269   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3270 
3271   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3272 }
3273 
3274 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3275 /// array to pointer, return the array subexpression.
3276 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3277   // If this isn't just an array->pointer decay, bail out.
3278   const auto *CE = dyn_cast<CastExpr>(E);
3279   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3280     return nullptr;
3281 
3282   // If this is a decay from variable width array, bail out.
3283   const Expr *SubExpr = CE->getSubExpr();
3284   if (SubExpr->getType()->isVariableArrayType())
3285     return nullptr;
3286 
3287   return SubExpr;
3288 }
3289 
3290 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3291                                           llvm::Value *ptr,
3292                                           ArrayRef<llvm::Value*> indices,
3293                                           bool inbounds,
3294                                           bool signedIndices,
3295                                           SourceLocation loc,
3296                                     const llvm::Twine &name = "arrayidx") {
3297   if (inbounds) {
3298     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3299                                       CodeGenFunction::NotSubtraction, loc,
3300                                       name);
3301   } else {
3302     return CGF.Builder.CreateGEP(ptr, indices, name);
3303   }
3304 }
3305 
3306 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3307                                       llvm::Value *idx,
3308                                       CharUnits eltSize) {
3309   // If we have a constant index, we can use the exact offset of the
3310   // element we're accessing.
3311   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3312     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3313     return arrayAlign.alignmentAtOffset(offset);
3314 
3315   // Otherwise, use the worst-case alignment for any element.
3316   } else {
3317     return arrayAlign.alignmentOfArrayElement(eltSize);
3318   }
3319 }
3320 
3321 static QualType getFixedSizeElementType(const ASTContext &ctx,
3322                                         const VariableArrayType *vla) {
3323   QualType eltType;
3324   do {
3325     eltType = vla->getElementType();
3326   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3327   return eltType;
3328 }
3329 
3330 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3331                                      ArrayRef<llvm::Value *> indices,
3332                                      QualType eltType, bool inbounds,
3333                                      bool signedIndices, SourceLocation loc,
3334                                      const llvm::Twine &name = "arrayidx") {
3335   // All the indices except that last must be zero.
3336 #ifndef NDEBUG
3337   for (auto idx : indices.drop_back())
3338     assert(isa<llvm::ConstantInt>(idx) &&
3339            cast<llvm::ConstantInt>(idx)->isZero());
3340 #endif
3341 
3342   // Determine the element size of the statically-sized base.  This is
3343   // the thing that the indices are expressed in terms of.
3344   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3345     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3346   }
3347 
3348   // We can use that to compute the best alignment of the element.
3349   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3350   CharUnits eltAlign =
3351     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3352 
3353   llvm::Value *eltPtr = emitArraySubscriptGEP(
3354       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3355   return Address(eltPtr, eltAlign);
3356 }
3357 
3358 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3359                                                bool Accessed) {
3360   // The index must always be an integer, which is not an aggregate.  Emit it
3361   // in lexical order (this complexity is, sadly, required by C++17).
3362   llvm::Value *IdxPre =
3363       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3364   bool SignedIndices = false;
3365   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3366     auto *Idx = IdxPre;
3367     if (E->getLHS() != E->getIdx()) {
3368       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3369       Idx = EmitScalarExpr(E->getIdx());
3370     }
3371 
3372     QualType IdxTy = E->getIdx()->getType();
3373     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3374     SignedIndices |= IdxSigned;
3375 
3376     if (SanOpts.has(SanitizerKind::ArrayBounds))
3377       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3378 
3379     // Extend or truncate the index type to 32 or 64-bits.
3380     if (Promote && Idx->getType() != IntPtrTy)
3381       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3382 
3383     return Idx;
3384   };
3385   IdxPre = nullptr;
3386 
3387   // If the base is a vector type, then we are forming a vector element lvalue
3388   // with this subscript.
3389   if (E->getBase()->getType()->isVectorType() &&
3390       !isa<ExtVectorElementExpr>(E->getBase())) {
3391     // Emit the vector as an lvalue to get its address.
3392     LValue LHS = EmitLValue(E->getBase());
3393     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3394     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3395     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3396                                  LHS.getBaseInfo(), TBAAAccessInfo());
3397   }
3398 
3399   // All the other cases basically behave like simple offsetting.
3400 
3401   // Handle the extvector case we ignored above.
3402   if (isa<ExtVectorElementExpr>(E->getBase())) {
3403     LValue LV = EmitLValue(E->getBase());
3404     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3405     Address Addr = EmitExtVectorElementLValue(LV);
3406 
3407     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3408     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3409                                  SignedIndices, E->getExprLoc());
3410     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3411                           CGM.getTBAAInfoForSubobject(LV, EltType));
3412   }
3413 
3414   LValueBaseInfo EltBaseInfo;
3415   TBAAAccessInfo EltTBAAInfo;
3416   Address Addr = Address::invalid();
3417   if (const VariableArrayType *vla =
3418            getContext().getAsVariableArrayType(E->getType())) {
3419     // The base must be a pointer, which is not an aggregate.  Emit
3420     // it.  It needs to be emitted first in case it's what captures
3421     // the VLA bounds.
3422     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3423     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3424 
3425     // The element count here is the total number of non-VLA elements.
3426     llvm::Value *numElements = getVLASize(vla).NumElts;
3427 
3428     // Effectively, the multiply by the VLA size is part of the GEP.
3429     // GEP indexes are signed, and scaling an index isn't permitted to
3430     // signed-overflow, so we use the same semantics for our explicit
3431     // multiply.  We suppress this if overflow is not undefined behavior.
3432     if (getLangOpts().isSignedOverflowDefined()) {
3433       Idx = Builder.CreateMul(Idx, numElements);
3434     } else {
3435       Idx = Builder.CreateNSWMul(Idx, numElements);
3436     }
3437 
3438     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3439                                  !getLangOpts().isSignedOverflowDefined(),
3440                                  SignedIndices, E->getExprLoc());
3441 
3442   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3443     // Indexing over an interface, as in "NSString *P; P[4];"
3444 
3445     // Emit the base pointer.
3446     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3447     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3448 
3449     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3450     llvm::Value *InterfaceSizeVal =
3451         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3452 
3453     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3454 
3455     // We don't necessarily build correct LLVM struct types for ObjC
3456     // interfaces, so we can't rely on GEP to do this scaling
3457     // correctly, so we need to cast to i8*.  FIXME: is this actually
3458     // true?  A lot of other things in the fragile ABI would break...
3459     llvm::Type *OrigBaseTy = Addr.getType();
3460     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3461 
3462     // Do the GEP.
3463     CharUnits EltAlign =
3464       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3465     llvm::Value *EltPtr =
3466         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3467                               SignedIndices, E->getExprLoc());
3468     Addr = Address(EltPtr, EltAlign);
3469 
3470     // Cast back.
3471     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3472   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3473     // If this is A[i] where A is an array, the frontend will have decayed the
3474     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3475     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3476     // "gep x, i" here.  Emit one "gep A, 0, i".
3477     assert(Array->getType()->isArrayType() &&
3478            "Array to pointer decay must have array source type!");
3479     LValue ArrayLV;
3480     // For simple multidimensional array indexing, set the 'accessed' flag for
3481     // better bounds-checking of the base expression.
3482     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3483       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3484     else
3485       ArrayLV = EmitLValue(Array);
3486     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3487 
3488     // Propagate the alignment from the array itself to the result.
3489     Addr = emitArraySubscriptGEP(
3490         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3491         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3492         E->getExprLoc());
3493     EltBaseInfo = ArrayLV.getBaseInfo();
3494     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3495   } else {
3496     // The base must be a pointer; emit it with an estimate of its alignment.
3497     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3498     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3499     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3500                                  !getLangOpts().isSignedOverflowDefined(),
3501                                  SignedIndices, E->getExprLoc());
3502   }
3503 
3504   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3505 
3506   if (getLangOpts().ObjC &&
3507       getLangOpts().getGC() != LangOptions::NonGC) {
3508     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3509     setObjCGCLValueClass(getContext(), E, LV);
3510   }
3511   return LV;
3512 }
3513 
3514 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3515                                        LValueBaseInfo &BaseInfo,
3516                                        TBAAAccessInfo &TBAAInfo,
3517                                        QualType BaseTy, QualType ElTy,
3518                                        bool IsLowerBound) {
3519   LValue BaseLVal;
3520   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3521     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3522     if (BaseTy->isArrayType()) {
3523       Address Addr = BaseLVal.getAddress();
3524       BaseInfo = BaseLVal.getBaseInfo();
3525 
3526       // If the array type was an incomplete type, we need to make sure
3527       // the decay ends up being the right type.
3528       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3529       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3530 
3531       // Note that VLA pointers are always decayed, so we don't need to do
3532       // anything here.
3533       if (!BaseTy->isVariableArrayType()) {
3534         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3535                "Expected pointer to array");
3536         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3537                                            "arraydecay");
3538       }
3539 
3540       return CGF.Builder.CreateElementBitCast(Addr,
3541                                               CGF.ConvertTypeForMem(ElTy));
3542     }
3543     LValueBaseInfo TypeBaseInfo;
3544     TBAAAccessInfo TypeTBAAInfo;
3545     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3546                                                   &TypeTBAAInfo);
3547     BaseInfo.mergeForCast(TypeBaseInfo);
3548     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3549     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3550   }
3551   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3552 }
3553 
3554 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3555                                                 bool IsLowerBound) {
3556   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3557   QualType ResultExprTy;
3558   if (auto *AT = getContext().getAsArrayType(BaseTy))
3559     ResultExprTy = AT->getElementType();
3560   else
3561     ResultExprTy = BaseTy->getPointeeType();
3562   llvm::Value *Idx = nullptr;
3563   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3564     // Requesting lower bound or upper bound, but without provided length and
3565     // without ':' symbol for the default length -> length = 1.
3566     // Idx = LowerBound ?: 0;
3567     if (auto *LowerBound = E->getLowerBound()) {
3568       Idx = Builder.CreateIntCast(
3569           EmitScalarExpr(LowerBound), IntPtrTy,
3570           LowerBound->getType()->hasSignedIntegerRepresentation());
3571     } else
3572       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3573   } else {
3574     // Try to emit length or lower bound as constant. If this is possible, 1
3575     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3576     // IR (LB + Len) - 1.
3577     auto &C = CGM.getContext();
3578     auto *Length = E->getLength();
3579     llvm::APSInt ConstLength;
3580     if (Length) {
3581       // Idx = LowerBound + Length - 1;
3582       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3583         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3584         Length = nullptr;
3585       }
3586       auto *LowerBound = E->getLowerBound();
3587       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3588       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3589         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3590         LowerBound = nullptr;
3591       }
3592       if (!Length)
3593         --ConstLength;
3594       else if (!LowerBound)
3595         --ConstLowerBound;
3596 
3597       if (Length || LowerBound) {
3598         auto *LowerBoundVal =
3599             LowerBound
3600                 ? Builder.CreateIntCast(
3601                       EmitScalarExpr(LowerBound), IntPtrTy,
3602                       LowerBound->getType()->hasSignedIntegerRepresentation())
3603                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3604         auto *LengthVal =
3605             Length
3606                 ? Builder.CreateIntCast(
3607                       EmitScalarExpr(Length), IntPtrTy,
3608                       Length->getType()->hasSignedIntegerRepresentation())
3609                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3610         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3611                                 /*HasNUW=*/false,
3612                                 !getLangOpts().isSignedOverflowDefined());
3613         if (Length && LowerBound) {
3614           Idx = Builder.CreateSub(
3615               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3616               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3617         }
3618       } else
3619         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3620     } else {
3621       // Idx = ArraySize - 1;
3622       QualType ArrayTy = BaseTy->isPointerType()
3623                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3624                              : BaseTy;
3625       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3626         Length = VAT->getSizeExpr();
3627         if (Length->isIntegerConstantExpr(ConstLength, C))
3628           Length = nullptr;
3629       } else {
3630         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3631         ConstLength = CAT->getSize();
3632       }
3633       if (Length) {
3634         auto *LengthVal = Builder.CreateIntCast(
3635             EmitScalarExpr(Length), IntPtrTy,
3636             Length->getType()->hasSignedIntegerRepresentation());
3637         Idx = Builder.CreateSub(
3638             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3639             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3640       } else {
3641         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3642         --ConstLength;
3643         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3644       }
3645     }
3646   }
3647   assert(Idx);
3648 
3649   Address EltPtr = Address::invalid();
3650   LValueBaseInfo BaseInfo;
3651   TBAAAccessInfo TBAAInfo;
3652   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3653     // The base must be a pointer, which is not an aggregate.  Emit
3654     // it.  It needs to be emitted first in case it's what captures
3655     // the VLA bounds.
3656     Address Base =
3657         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3658                                 BaseTy, VLA->getElementType(), IsLowerBound);
3659     // The element count here is the total number of non-VLA elements.
3660     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3661 
3662     // Effectively, the multiply by the VLA size is part of the GEP.
3663     // GEP indexes are signed, and scaling an index isn't permitted to
3664     // signed-overflow, so we use the same semantics for our explicit
3665     // multiply.  We suppress this if overflow is not undefined behavior.
3666     if (getLangOpts().isSignedOverflowDefined())
3667       Idx = Builder.CreateMul(Idx, NumElements);
3668     else
3669       Idx = Builder.CreateNSWMul(Idx, NumElements);
3670     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3671                                    !getLangOpts().isSignedOverflowDefined(),
3672                                    /*SignedIndices=*/false, E->getExprLoc());
3673   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3674     // If this is A[i] where A is an array, the frontend will have decayed the
3675     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3676     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3677     // "gep x, i" here.  Emit one "gep A, 0, i".
3678     assert(Array->getType()->isArrayType() &&
3679            "Array to pointer decay must have array source type!");
3680     LValue ArrayLV;
3681     // For simple multidimensional array indexing, set the 'accessed' flag for
3682     // better bounds-checking of the base expression.
3683     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3684       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3685     else
3686       ArrayLV = EmitLValue(Array);
3687 
3688     // Propagate the alignment from the array itself to the result.
3689     EltPtr = emitArraySubscriptGEP(
3690         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3691         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3692         /*SignedIndices=*/false, E->getExprLoc());
3693     BaseInfo = ArrayLV.getBaseInfo();
3694     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3695   } else {
3696     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3697                                            TBAAInfo, BaseTy, ResultExprTy,
3698                                            IsLowerBound);
3699     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3700                                    !getLangOpts().isSignedOverflowDefined(),
3701                                    /*SignedIndices=*/false, E->getExprLoc());
3702   }
3703 
3704   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3705 }
3706 
3707 LValue CodeGenFunction::
3708 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3709   // Emit the base vector as an l-value.
3710   LValue Base;
3711 
3712   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3713   if (E->isArrow()) {
3714     // If it is a pointer to a vector, emit the address and form an lvalue with
3715     // it.
3716     LValueBaseInfo BaseInfo;
3717     TBAAAccessInfo TBAAInfo;
3718     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3719     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3720     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3721     Base.getQuals().removeObjCGCAttr();
3722   } else if (E->getBase()->isGLValue()) {
3723     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3724     // emit the base as an lvalue.
3725     assert(E->getBase()->getType()->isVectorType());
3726     Base = EmitLValue(E->getBase());
3727   } else {
3728     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3729     assert(E->getBase()->getType()->isVectorType() &&
3730            "Result must be a vector");
3731     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3732 
3733     // Store the vector to memory (because LValue wants an address).
3734     Address VecMem = CreateMemTemp(E->getBase()->getType());
3735     Builder.CreateStore(Vec, VecMem);
3736     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3737                           AlignmentSource::Decl);
3738   }
3739 
3740   QualType type =
3741     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3742 
3743   // Encode the element access list into a vector of unsigned indices.
3744   SmallVector<uint32_t, 4> Indices;
3745   E->getEncodedElementAccess(Indices);
3746 
3747   if (Base.isSimple()) {
3748     llvm::Constant *CV =
3749         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3750     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3751                                     Base.getBaseInfo(), TBAAAccessInfo());
3752   }
3753   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3754 
3755   llvm::Constant *BaseElts = Base.getExtVectorElts();
3756   SmallVector<llvm::Constant *, 4> CElts;
3757 
3758   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3759     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3760   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3761   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3762                                   Base.getBaseInfo(), TBAAAccessInfo());
3763 }
3764 
3765 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3766   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3767     EmitIgnoredExpr(E->getBase());
3768     return EmitDeclRefLValue(DRE);
3769   }
3770 
3771   Expr *BaseExpr = E->getBase();
3772   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3773   LValue BaseLV;
3774   if (E->isArrow()) {
3775     LValueBaseInfo BaseInfo;
3776     TBAAAccessInfo TBAAInfo;
3777     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3778     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3779     SanitizerSet SkippedChecks;
3780     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3781     if (IsBaseCXXThis)
3782       SkippedChecks.set(SanitizerKind::Alignment, true);
3783     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3784       SkippedChecks.set(SanitizerKind::Null, true);
3785     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3786                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3787     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3788   } else
3789     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3790 
3791   NamedDecl *ND = E->getMemberDecl();
3792   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3793     LValue LV = EmitLValueForField(BaseLV, Field);
3794     setObjCGCLValueClass(getContext(), E, LV);
3795     return LV;
3796   }
3797 
3798   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3799     return EmitFunctionDeclLValue(*this, E, FD);
3800 
3801   llvm_unreachable("Unhandled member declaration!");
3802 }
3803 
3804 /// Given that we are currently emitting a lambda, emit an l-value for
3805 /// one of its members.
3806 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3807   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3808   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3809   QualType LambdaTagType =
3810     getContext().getTagDeclType(Field->getParent());
3811   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3812   return EmitLValueForField(LambdaLV, Field);
3813 }
3814 
3815 /// Drill down to the storage of a field without walking into
3816 /// reference types.
3817 ///
3818 /// The resulting address doesn't necessarily have the right type.
3819 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3820                                       const FieldDecl *field) {
3821   const RecordDecl *rec = field->getParent();
3822 
3823   unsigned idx =
3824     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3825 
3826   CharUnits offset;
3827   // Adjust the alignment down to the given offset.
3828   // As a special case, if the LLVM field index is 0, we know that this
3829   // is zero.
3830   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3831                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3832          "LLVM field at index zero had non-zero offset?");
3833   if (idx != 0) {
3834     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3835     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3836     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3837   }
3838 
3839   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3840 }
3841 
3842 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3843   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3844   if (!RD)
3845     return false;
3846 
3847   if (RD->isDynamicClass())
3848     return true;
3849 
3850   for (const auto &Base : RD->bases())
3851     if (hasAnyVptr(Base.getType(), Context))
3852       return true;
3853 
3854   for (const FieldDecl *Field : RD->fields())
3855     if (hasAnyVptr(Field->getType(), Context))
3856       return true;
3857 
3858   return false;
3859 }
3860 
3861 LValue CodeGenFunction::EmitLValueForField(LValue base,
3862                                            const FieldDecl *field) {
3863   LValueBaseInfo BaseInfo = base.getBaseInfo();
3864 
3865   if (field->isBitField()) {
3866     const CGRecordLayout &RL =
3867       CGM.getTypes().getCGRecordLayout(field->getParent());
3868     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3869     Address Addr = base.getAddress();
3870     unsigned Idx = RL.getLLVMFieldNo(field);
3871     if (Idx != 0)
3872       // For structs, we GEP to the field that the record layout suggests.
3873       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3874                                      field->getName());
3875     // Get the access type.
3876     llvm::Type *FieldIntTy =
3877       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3878     if (Addr.getElementType() != FieldIntTy)
3879       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3880 
3881     QualType fieldType =
3882       field->getType().withCVRQualifiers(base.getVRQualifiers());
3883     // TODO: Support TBAA for bit fields.
3884     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3885     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3886                                 TBAAAccessInfo());
3887   }
3888 
3889   // Fields of may-alias structures are may-alias themselves.
3890   // FIXME: this should get propagated down through anonymous structs
3891   // and unions.
3892   QualType FieldType = field->getType();
3893   const RecordDecl *rec = field->getParent();
3894   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3895   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3896   TBAAAccessInfo FieldTBAAInfo;
3897   if (base.getTBAAInfo().isMayAlias() ||
3898           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3899     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3900   } else if (rec->isUnion()) {
3901     // TODO: Support TBAA for unions.
3902     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3903   } else {
3904     // If no base type been assigned for the base access, then try to generate
3905     // one for this base lvalue.
3906     FieldTBAAInfo = base.getTBAAInfo();
3907     if (!FieldTBAAInfo.BaseType) {
3908         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3909         assert(!FieldTBAAInfo.Offset &&
3910                "Nonzero offset for an access with no base type!");
3911     }
3912 
3913     // Adjust offset to be relative to the base type.
3914     const ASTRecordLayout &Layout =
3915         getContext().getASTRecordLayout(field->getParent());
3916     unsigned CharWidth = getContext().getCharWidth();
3917     if (FieldTBAAInfo.BaseType)
3918       FieldTBAAInfo.Offset +=
3919           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3920 
3921     // Update the final access type and size.
3922     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3923     FieldTBAAInfo.Size =
3924         getContext().getTypeSizeInChars(FieldType).getQuantity();
3925   }
3926 
3927   Address addr = base.getAddress();
3928   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3929     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3930         ClassDef->isDynamicClass()) {
3931       // Getting to any field of dynamic object requires stripping dynamic
3932       // information provided by invariant.group.  This is because accessing
3933       // fields may leak the real address of dynamic object, which could result
3934       // in miscompilation when leaked pointer would be compared.
3935       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3936       addr = Address(stripped, addr.getAlignment());
3937     }
3938   }
3939 
3940   unsigned RecordCVR = base.getVRQualifiers();
3941   if (rec->isUnion()) {
3942     // For unions, there is no pointer adjustment.
3943     assert(!FieldType->isReferenceType() && "union has reference member");
3944     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3945         hasAnyVptr(FieldType, getContext()))
3946       // Because unions can easily skip invariant.barriers, we need to add
3947       // a barrier every time CXXRecord field with vptr is referenced.
3948       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3949                      addr.getAlignment());
3950   } else {
3951     // For structs, we GEP to the field that the record layout suggests.
3952     addr = emitAddrOfFieldStorage(*this, addr, field);
3953 
3954     // If this is a reference field, load the reference right now.
3955     if (FieldType->isReferenceType()) {
3956       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3957                                       FieldTBAAInfo);
3958       if (RecordCVR & Qualifiers::Volatile)
3959         RefLVal.getQuals().addVolatile();
3960       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3961 
3962       // Qualifiers on the struct don't apply to the referencee.
3963       RecordCVR = 0;
3964       FieldType = FieldType->getPointeeType();
3965     }
3966   }
3967 
3968   // Make sure that the address is pointing to the right type.  This is critical
3969   // for both unions and structs.  A union needs a bitcast, a struct element
3970   // will need a bitcast if the LLVM type laid out doesn't match the desired
3971   // type.
3972   addr = Builder.CreateElementBitCast(
3973       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3974 
3975   if (field->hasAttr<AnnotateAttr>())
3976     addr = EmitFieldAnnotations(field, addr);
3977 
3978   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3979   LV.getQuals().addCVRQualifiers(RecordCVR);
3980 
3981   // __weak attribute on a field is ignored.
3982   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3983     LV.getQuals().removeObjCGCAttr();
3984 
3985   return LV;
3986 }
3987 
3988 LValue
3989 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3990                                                   const FieldDecl *Field) {
3991   QualType FieldType = Field->getType();
3992 
3993   if (!FieldType->isReferenceType())
3994     return EmitLValueForField(Base, Field);
3995 
3996   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3997 
3998   // Make sure that the address is pointing to the right type.
3999   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4000   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4001 
4002   // TODO: Generate TBAA information that describes this access as a structure
4003   // member access and not just an access to an object of the field's type. This
4004   // should be similar to what we do in EmitLValueForField().
4005   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4006   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4007   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4008   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4009                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4010 }
4011 
4012 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4013   if (E->isFileScope()) {
4014     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4015     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4016   }
4017   if (E->getType()->isVariablyModifiedType())
4018     // make sure to emit the VLA size.
4019     EmitVariablyModifiedType(E->getType());
4020 
4021   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4022   const Expr *InitExpr = E->getInitializer();
4023   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4024 
4025   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4026                    /*Init*/ true);
4027 
4028   return Result;
4029 }
4030 
4031 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4032   if (!E->isGLValue())
4033     // Initializing an aggregate temporary in C++11: T{...}.
4034     return EmitAggExprToLValue(E);
4035 
4036   // An lvalue initializer list must be initializing a reference.
4037   assert(E->isTransparent() && "non-transparent glvalue init list");
4038   return EmitLValue(E->getInit(0));
4039 }
4040 
4041 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4042 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4043 /// LValue is returned and the current block has been terminated.
4044 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4045                                                     const Expr *Operand) {
4046   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4047     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4048     return None;
4049   }
4050 
4051   return CGF.EmitLValue(Operand);
4052 }
4053 
4054 LValue CodeGenFunction::
4055 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4056   if (!expr->isGLValue()) {
4057     // ?: here should be an aggregate.
4058     assert(hasAggregateEvaluationKind(expr->getType()) &&
4059            "Unexpected conditional operator!");
4060     return EmitAggExprToLValue(expr);
4061   }
4062 
4063   OpaqueValueMapping binding(*this, expr);
4064 
4065   const Expr *condExpr = expr->getCond();
4066   bool CondExprBool;
4067   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4068     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4069     if (!CondExprBool) std::swap(live, dead);
4070 
4071     if (!ContainsLabel(dead)) {
4072       // If the true case is live, we need to track its region.
4073       if (CondExprBool)
4074         incrementProfileCounter(expr);
4075       return EmitLValue(live);
4076     }
4077   }
4078 
4079   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4080   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4081   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4082 
4083   ConditionalEvaluation eval(*this);
4084   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4085 
4086   // Any temporaries created here are conditional.
4087   EmitBlock(lhsBlock);
4088   incrementProfileCounter(expr);
4089   eval.begin(*this);
4090   Optional<LValue> lhs =
4091       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4092   eval.end(*this);
4093 
4094   if (lhs && !lhs->isSimple())
4095     return EmitUnsupportedLValue(expr, "conditional operator");
4096 
4097   lhsBlock = Builder.GetInsertBlock();
4098   if (lhs)
4099     Builder.CreateBr(contBlock);
4100 
4101   // Any temporaries created here are conditional.
4102   EmitBlock(rhsBlock);
4103   eval.begin(*this);
4104   Optional<LValue> rhs =
4105       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4106   eval.end(*this);
4107   if (rhs && !rhs->isSimple())
4108     return EmitUnsupportedLValue(expr, "conditional operator");
4109   rhsBlock = Builder.GetInsertBlock();
4110 
4111   EmitBlock(contBlock);
4112 
4113   if (lhs && rhs) {
4114     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4115                                            2, "cond-lvalue");
4116     phi->addIncoming(lhs->getPointer(), lhsBlock);
4117     phi->addIncoming(rhs->getPointer(), rhsBlock);
4118     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4119     AlignmentSource alignSource =
4120       std::max(lhs->getBaseInfo().getAlignmentSource(),
4121                rhs->getBaseInfo().getAlignmentSource());
4122     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4123         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4124     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4125                           TBAAInfo);
4126   } else {
4127     assert((lhs || rhs) &&
4128            "both operands of glvalue conditional are throw-expressions?");
4129     return lhs ? *lhs : *rhs;
4130   }
4131 }
4132 
4133 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4134 /// type. If the cast is to a reference, we can have the usual lvalue result,
4135 /// otherwise if a cast is needed by the code generator in an lvalue context,
4136 /// then it must mean that we need the address of an aggregate in order to
4137 /// access one of its members.  This can happen for all the reasons that casts
4138 /// are permitted with aggregate result, including noop aggregate casts, and
4139 /// cast from scalar to union.
4140 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4141   switch (E->getCastKind()) {
4142   case CK_ToVoid:
4143   case CK_BitCast:
4144   case CK_ArrayToPointerDecay:
4145   case CK_FunctionToPointerDecay:
4146   case CK_NullToMemberPointer:
4147   case CK_NullToPointer:
4148   case CK_IntegralToPointer:
4149   case CK_PointerToIntegral:
4150   case CK_PointerToBoolean:
4151   case CK_VectorSplat:
4152   case CK_IntegralCast:
4153   case CK_BooleanToSignedIntegral:
4154   case CK_IntegralToBoolean:
4155   case CK_IntegralToFloating:
4156   case CK_FloatingToIntegral:
4157   case CK_FloatingToBoolean:
4158   case CK_FloatingCast:
4159   case CK_FloatingRealToComplex:
4160   case CK_FloatingComplexToReal:
4161   case CK_FloatingComplexToBoolean:
4162   case CK_FloatingComplexCast:
4163   case CK_FloatingComplexToIntegralComplex:
4164   case CK_IntegralRealToComplex:
4165   case CK_IntegralComplexToReal:
4166   case CK_IntegralComplexToBoolean:
4167   case CK_IntegralComplexCast:
4168   case CK_IntegralComplexToFloatingComplex:
4169   case CK_DerivedToBaseMemberPointer:
4170   case CK_BaseToDerivedMemberPointer:
4171   case CK_MemberPointerToBoolean:
4172   case CK_ReinterpretMemberPointer:
4173   case CK_AnyPointerToBlockPointerCast:
4174   case CK_ARCProduceObject:
4175   case CK_ARCConsumeObject:
4176   case CK_ARCReclaimReturnedObject:
4177   case CK_ARCExtendBlockObject:
4178   case CK_CopyAndAutoreleaseBlockObject:
4179   case CK_IntToOCLSampler:
4180   case CK_FixedPointCast:
4181   case CK_FixedPointToBoolean:
4182     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4183 
4184   case CK_Dependent:
4185     llvm_unreachable("dependent cast kind in IR gen!");
4186 
4187   case CK_BuiltinFnToFnPtr:
4188     llvm_unreachable("builtin functions are handled elsewhere");
4189 
4190   // These are never l-values; just use the aggregate emission code.
4191   case CK_NonAtomicToAtomic:
4192   case CK_AtomicToNonAtomic:
4193     return EmitAggExprToLValue(E);
4194 
4195   case CK_Dynamic: {
4196     LValue LV = EmitLValue(E->getSubExpr());
4197     Address V = LV.getAddress();
4198     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4199     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4200   }
4201 
4202   case CK_ConstructorConversion:
4203   case CK_UserDefinedConversion:
4204   case CK_CPointerToObjCPointerCast:
4205   case CK_BlockPointerToObjCPointerCast:
4206   case CK_NoOp:
4207   case CK_LValueToRValue:
4208     return EmitLValue(E->getSubExpr());
4209 
4210   case CK_UncheckedDerivedToBase:
4211   case CK_DerivedToBase: {
4212     const RecordType *DerivedClassTy =
4213       E->getSubExpr()->getType()->getAs<RecordType>();
4214     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4215 
4216     LValue LV = EmitLValue(E->getSubExpr());
4217     Address This = LV.getAddress();
4218 
4219     // Perform the derived-to-base conversion
4220     Address Base = GetAddressOfBaseClass(
4221         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4222         /*NullCheckValue=*/false, E->getExprLoc());
4223 
4224     // TODO: Support accesses to members of base classes in TBAA. For now, we
4225     // conservatively pretend that the complete object is of the base class
4226     // type.
4227     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4228                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4229   }
4230   case CK_ToUnion:
4231     return EmitAggExprToLValue(E);
4232   case CK_BaseToDerived: {
4233     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4234     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4235 
4236     LValue LV = EmitLValue(E->getSubExpr());
4237 
4238     // Perform the base-to-derived conversion
4239     Address Derived =
4240       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4241                                E->path_begin(), E->path_end(),
4242                                /*NullCheckValue=*/false);
4243 
4244     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4245     // performed and the object is not of the derived type.
4246     if (sanitizePerformTypeCheck())
4247       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4248                     Derived.getPointer(), E->getType());
4249 
4250     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4251       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4252                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4253                                 E->getBeginLoc());
4254 
4255     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4256                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4257   }
4258   case CK_LValueBitCast: {
4259     // This must be a reinterpret_cast (or c-style equivalent).
4260     const auto *CE = cast<ExplicitCastExpr>(E);
4261 
4262     CGM.EmitExplicitCastExprType(CE, this);
4263     LValue LV = EmitLValue(E->getSubExpr());
4264     Address V = Builder.CreateBitCast(LV.getAddress(),
4265                                       ConvertType(CE->getTypeAsWritten()));
4266 
4267     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4268       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4269                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4270                                 E->getBeginLoc());
4271 
4272     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4273                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4274   }
4275   case CK_AddressSpaceConversion: {
4276     LValue LV = EmitLValue(E->getSubExpr());
4277     QualType DestTy = getContext().getPointerType(E->getType());
4278     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4279         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4280         E->getType().getAddressSpace(), ConvertType(DestTy));
4281     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4282                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4283   }
4284   case CK_ObjCObjectLValueCast: {
4285     LValue LV = EmitLValue(E->getSubExpr());
4286     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4287                                              ConvertType(E->getType()));
4288     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4289                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4290   }
4291   case CK_ZeroToOCLOpaqueType:
4292     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4293   }
4294 
4295   llvm_unreachable("Unhandled lvalue cast kind?");
4296 }
4297 
4298 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4299   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4300   return getOrCreateOpaqueLValueMapping(e);
4301 }
4302 
4303 LValue
4304 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4305   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4306 
4307   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4308       it = OpaqueLValues.find(e);
4309 
4310   if (it != OpaqueLValues.end())
4311     return it->second;
4312 
4313   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4314   return EmitLValue(e->getSourceExpr());
4315 }
4316 
4317 RValue
4318 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4319   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4320 
4321   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4322       it = OpaqueRValues.find(e);
4323 
4324   if (it != OpaqueRValues.end())
4325     return it->second;
4326 
4327   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4328   return EmitAnyExpr(e->getSourceExpr());
4329 }
4330 
4331 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4332                                            const FieldDecl *FD,
4333                                            SourceLocation Loc) {
4334   QualType FT = FD->getType();
4335   LValue FieldLV = EmitLValueForField(LV, FD);
4336   switch (getEvaluationKind(FT)) {
4337   case TEK_Complex:
4338     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4339   case TEK_Aggregate:
4340     return FieldLV.asAggregateRValue();
4341   case TEK_Scalar:
4342     // This routine is used to load fields one-by-one to perform a copy, so
4343     // don't load reference fields.
4344     if (FD->getType()->isReferenceType())
4345       return RValue::get(FieldLV.getPointer());
4346     return EmitLoadOfLValue(FieldLV, Loc);
4347   }
4348   llvm_unreachable("bad evaluation kind");
4349 }
4350 
4351 //===--------------------------------------------------------------------===//
4352 //                             Expression Emission
4353 //===--------------------------------------------------------------------===//
4354 
4355 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4356                                      ReturnValueSlot ReturnValue) {
4357   // Builtins never have block type.
4358   if (E->getCallee()->getType()->isBlockPointerType())
4359     return EmitBlockCallExpr(E, ReturnValue);
4360 
4361   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4362     return EmitCXXMemberCallExpr(CE, ReturnValue);
4363 
4364   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4365     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4366 
4367   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4368     if (const CXXMethodDecl *MD =
4369           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4370       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4371 
4372   CGCallee callee = EmitCallee(E->getCallee());
4373 
4374   if (callee.isBuiltin()) {
4375     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4376                            E, ReturnValue);
4377   }
4378 
4379   if (callee.isPseudoDestructor()) {
4380     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4381   }
4382 
4383   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4384 }
4385 
4386 /// Emit a CallExpr without considering whether it might be a subclass.
4387 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4388                                            ReturnValueSlot ReturnValue) {
4389   CGCallee Callee = EmitCallee(E->getCallee());
4390   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4391 }
4392 
4393 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4394   if (auto builtinID = FD->getBuiltinID()) {
4395     return CGCallee::forBuiltin(builtinID, FD);
4396   }
4397 
4398   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4399   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4400 }
4401 
4402 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4403   E = E->IgnoreParens();
4404 
4405   // Look through function-to-pointer decay.
4406   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4407     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4408         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4409       return EmitCallee(ICE->getSubExpr());
4410     }
4411 
4412   // Resolve direct calls.
4413   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4414     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4415       return EmitDirectCallee(*this, FD);
4416     }
4417   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4418     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4419       EmitIgnoredExpr(ME->getBase());
4420       return EmitDirectCallee(*this, FD);
4421     }
4422 
4423   // Look through template substitutions.
4424   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4425     return EmitCallee(NTTP->getReplacement());
4426 
4427   // Treat pseudo-destructor calls differently.
4428   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4429     return CGCallee::forPseudoDestructor(PDE);
4430   }
4431 
4432   // Otherwise, we have an indirect reference.
4433   llvm::Value *calleePtr;
4434   QualType functionType;
4435   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4436     calleePtr = EmitScalarExpr(E);
4437     functionType = ptrType->getPointeeType();
4438   } else {
4439     functionType = E->getType();
4440     calleePtr = EmitLValue(E).getPointer();
4441   }
4442   assert(functionType->isFunctionType());
4443 
4444   GlobalDecl GD;
4445   if (const auto *VD =
4446           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4447     GD = GlobalDecl(VD);
4448 
4449   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4450   CGCallee callee(calleeInfo, calleePtr);
4451   return callee;
4452 }
4453 
4454 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4455   // Comma expressions just emit their LHS then their RHS as an l-value.
4456   if (E->getOpcode() == BO_Comma) {
4457     EmitIgnoredExpr(E->getLHS());
4458     EnsureInsertPoint();
4459     return EmitLValue(E->getRHS());
4460   }
4461 
4462   if (E->getOpcode() == BO_PtrMemD ||
4463       E->getOpcode() == BO_PtrMemI)
4464     return EmitPointerToDataMemberBinaryExpr(E);
4465 
4466   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4467 
4468   // Note that in all of these cases, __block variables need the RHS
4469   // evaluated first just in case the variable gets moved by the RHS.
4470 
4471   switch (getEvaluationKind(E->getType())) {
4472   case TEK_Scalar: {
4473     switch (E->getLHS()->getType().getObjCLifetime()) {
4474     case Qualifiers::OCL_Strong:
4475       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4476 
4477     case Qualifiers::OCL_Autoreleasing:
4478       return EmitARCStoreAutoreleasing(E).first;
4479 
4480     // No reason to do any of these differently.
4481     case Qualifiers::OCL_None:
4482     case Qualifiers::OCL_ExplicitNone:
4483     case Qualifiers::OCL_Weak:
4484       break;
4485     }
4486 
4487     RValue RV = EmitAnyExpr(E->getRHS());
4488     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4489     if (RV.isScalar())
4490       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4491     EmitStoreThroughLValue(RV, LV);
4492     return LV;
4493   }
4494 
4495   case TEK_Complex:
4496     return EmitComplexAssignmentLValue(E);
4497 
4498   case TEK_Aggregate:
4499     return EmitAggExprToLValue(E);
4500   }
4501   llvm_unreachable("bad evaluation kind");
4502 }
4503 
4504 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4505   RValue RV = EmitCallExpr(E);
4506 
4507   if (!RV.isScalar())
4508     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4509                           AlignmentSource::Decl);
4510 
4511   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4512          "Can't have a scalar return unless the return type is a "
4513          "reference type!");
4514 
4515   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4516 }
4517 
4518 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4519   // FIXME: This shouldn't require another copy.
4520   return EmitAggExprToLValue(E);
4521 }
4522 
4523 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4524   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4525          && "binding l-value to type which needs a temporary");
4526   AggValueSlot Slot = CreateAggTemp(E->getType());
4527   EmitCXXConstructExpr(E, Slot);
4528   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4529 }
4530 
4531 LValue
4532 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4533   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4534 }
4535 
4536 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4537   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4538                                       ConvertType(E->getType()));
4539 }
4540 
4541 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4542   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4543                         AlignmentSource::Decl);
4544 }
4545 
4546 LValue
4547 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4548   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4549   Slot.setExternallyDestructed();
4550   EmitAggExpr(E->getSubExpr(), Slot);
4551   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4552   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4553 }
4554 
4555 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4556   RValue RV = EmitObjCMessageExpr(E);
4557 
4558   if (!RV.isScalar())
4559     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4560                           AlignmentSource::Decl);
4561 
4562   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4563          "Can't have a scalar return unless the return type is a "
4564          "reference type!");
4565 
4566   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4567 }
4568 
4569 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4570   Address V =
4571     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4572   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4573 }
4574 
4575 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4576                                              const ObjCIvarDecl *Ivar) {
4577   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4578 }
4579 
4580 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4581                                           llvm::Value *BaseValue,
4582                                           const ObjCIvarDecl *Ivar,
4583                                           unsigned CVRQualifiers) {
4584   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4585                                                    Ivar, CVRQualifiers);
4586 }
4587 
4588 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4589   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4590   llvm::Value *BaseValue = nullptr;
4591   const Expr *BaseExpr = E->getBase();
4592   Qualifiers BaseQuals;
4593   QualType ObjectTy;
4594   if (E->isArrow()) {
4595     BaseValue = EmitScalarExpr(BaseExpr);
4596     ObjectTy = BaseExpr->getType()->getPointeeType();
4597     BaseQuals = ObjectTy.getQualifiers();
4598   } else {
4599     LValue BaseLV = EmitLValue(BaseExpr);
4600     BaseValue = BaseLV.getPointer();
4601     ObjectTy = BaseExpr->getType();
4602     BaseQuals = ObjectTy.getQualifiers();
4603   }
4604 
4605   LValue LV =
4606     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4607                       BaseQuals.getCVRQualifiers());
4608   setObjCGCLValueClass(getContext(), E, LV);
4609   return LV;
4610 }
4611 
4612 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4613   // Can only get l-value for message expression returning aggregate type
4614   RValue RV = EmitAnyExprToTemp(E);
4615   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4616                         AlignmentSource::Decl);
4617 }
4618 
4619 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4620                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4621                                  llvm::Value *Chain) {
4622   // Get the actual function type. The callee type will always be a pointer to
4623   // function type or a block pointer type.
4624   assert(CalleeType->isFunctionPointerType() &&
4625          "Call must have function pointer type!");
4626 
4627   const Decl *TargetDecl =
4628       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4629 
4630   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4631     // We can only guarantee that a function is called from the correct
4632     // context/function based on the appropriate target attributes,
4633     // so only check in the case where we have both always_inline and target
4634     // since otherwise we could be making a conditional call after a check for
4635     // the proper cpu features (and it won't cause code generation issues due to
4636     // function based code generation).
4637     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4638         TargetDecl->hasAttr<TargetAttr>())
4639       checkTargetFeatures(E, FD);
4640 
4641   CalleeType = getContext().getCanonicalType(CalleeType);
4642 
4643   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4644 
4645   CGCallee Callee = OrigCallee;
4646 
4647   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4648       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4649     if (llvm::Constant *PrefixSig =
4650             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4651       SanitizerScope SanScope(this);
4652       // Remove any (C++17) exception specifications, to allow calling e.g. a
4653       // noexcept function through a non-noexcept pointer.
4654       auto ProtoTy =
4655         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4656       llvm::Constant *FTRTTIConst =
4657           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4658       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4659       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4660           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4661 
4662       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4663 
4664       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4665           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4666       llvm::Value *CalleeSigPtr =
4667           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4668       llvm::Value *CalleeSig =
4669           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4670       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4671 
4672       llvm::BasicBlock *Cont = createBasicBlock("cont");
4673       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4674       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4675 
4676       EmitBlock(TypeCheck);
4677       llvm::Value *CalleeRTTIPtr =
4678           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4679       llvm::Value *CalleeRTTIEncoded =
4680           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4681       llvm::Value *CalleeRTTI =
4682           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4683       llvm::Value *CalleeRTTIMatch =
4684           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4685       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4686                                       EmitCheckTypeDescriptor(CalleeType)};
4687       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4688                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4689 
4690       Builder.CreateBr(Cont);
4691       EmitBlock(Cont);
4692     }
4693   }
4694 
4695   const auto *FnType = cast<FunctionType>(PointeeType);
4696 
4697   // If we are checking indirect calls and this call is indirect, check that the
4698   // function pointer is a member of the bit set for the function type.
4699   if (SanOpts.has(SanitizerKind::CFIICall) &&
4700       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4701     SanitizerScope SanScope(this);
4702     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4703 
4704     llvm::Metadata *MD;
4705     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4706       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4707     else
4708       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4709 
4710     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4711 
4712     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4713     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4714     llvm::Value *TypeTest = Builder.CreateCall(
4715         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4716 
4717     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4718     llvm::Constant *StaticData[] = {
4719         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4720         EmitCheckSourceLocation(E->getBeginLoc()),
4721         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4722     };
4723     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4724       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4725                            CastedCallee, StaticData);
4726     } else {
4727       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4728                 SanitizerHandler::CFICheckFail, StaticData,
4729                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4730     }
4731   }
4732 
4733   CallArgList Args;
4734   if (Chain)
4735     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4736              CGM.getContext().VoidPtrTy);
4737 
4738   // C++17 requires that we evaluate arguments to a call using assignment syntax
4739   // right-to-left, and that we evaluate arguments to certain other operators
4740   // left-to-right. Note that we allow this to override the order dictated by
4741   // the calling convention on the MS ABI, which means that parameter
4742   // destruction order is not necessarily reverse construction order.
4743   // FIXME: Revisit this based on C++ committee response to unimplementability.
4744   EvaluationOrder Order = EvaluationOrder::Default;
4745   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4746     if (OCE->isAssignmentOp())
4747       Order = EvaluationOrder::ForceRightToLeft;
4748     else {
4749       switch (OCE->getOperator()) {
4750       case OO_LessLess:
4751       case OO_GreaterGreater:
4752       case OO_AmpAmp:
4753       case OO_PipePipe:
4754       case OO_Comma:
4755       case OO_ArrowStar:
4756         Order = EvaluationOrder::ForceLeftToRight;
4757         break;
4758       default:
4759         break;
4760       }
4761     }
4762   }
4763 
4764   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4765                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4766 
4767   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4768       Args, FnType, /*isChainCall=*/Chain);
4769 
4770   // C99 6.5.2.2p6:
4771   //   If the expression that denotes the called function has a type
4772   //   that does not include a prototype, [the default argument
4773   //   promotions are performed]. If the number of arguments does not
4774   //   equal the number of parameters, the behavior is undefined. If
4775   //   the function is defined with a type that includes a prototype,
4776   //   and either the prototype ends with an ellipsis (, ...) or the
4777   //   types of the arguments after promotion are not compatible with
4778   //   the types of the parameters, the behavior is undefined. If the
4779   //   function is defined with a type that does not include a
4780   //   prototype, and the types of the arguments after promotion are
4781   //   not compatible with those of the parameters after promotion,
4782   //   the behavior is undefined [except in some trivial cases].
4783   // That is, in the general case, we should assume that a call
4784   // through an unprototyped function type works like a *non-variadic*
4785   // call.  The way we make this work is to cast to the exact type
4786   // of the promoted arguments.
4787   //
4788   // Chain calls use this same code path to add the invisible chain parameter
4789   // to the function type.
4790   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4791     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4792     CalleeTy = CalleeTy->getPointerTo();
4793 
4794     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4795     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4796     Callee.setFunctionPointer(CalleePtr);
4797   }
4798 
4799   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4800 }
4801 
4802 LValue CodeGenFunction::
4803 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4804   Address BaseAddr = Address::invalid();
4805   if (E->getOpcode() == BO_PtrMemI) {
4806     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4807   } else {
4808     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4809   }
4810 
4811   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4812 
4813   const MemberPointerType *MPT
4814     = E->getRHS()->getType()->getAs<MemberPointerType>();
4815 
4816   LValueBaseInfo BaseInfo;
4817   TBAAAccessInfo TBAAInfo;
4818   Address MemberAddr =
4819     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4820                                     &TBAAInfo);
4821 
4822   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4823 }
4824 
4825 /// Given the address of a temporary variable, produce an r-value of
4826 /// its type.
4827 RValue CodeGenFunction::convertTempToRValue(Address addr,
4828                                             QualType type,
4829                                             SourceLocation loc) {
4830   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4831   switch (getEvaluationKind(type)) {
4832   case TEK_Complex:
4833     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4834   case TEK_Aggregate:
4835     return lvalue.asAggregateRValue();
4836   case TEK_Scalar:
4837     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4838   }
4839   llvm_unreachable("bad evaluation kind");
4840 }
4841 
4842 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4843   assert(Val->getType()->isFPOrFPVectorTy());
4844   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4845     return;
4846 
4847   llvm::MDBuilder MDHelper(getLLVMContext());
4848   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4849 
4850   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4851 }
4852 
4853 namespace {
4854   struct LValueOrRValue {
4855     LValue LV;
4856     RValue RV;
4857   };
4858 }
4859 
4860 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4861                                            const PseudoObjectExpr *E,
4862                                            bool forLValue,
4863                                            AggValueSlot slot) {
4864   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4865 
4866   // Find the result expression, if any.
4867   const Expr *resultExpr = E->getResultExpr();
4868   LValueOrRValue result;
4869 
4870   for (PseudoObjectExpr::const_semantics_iterator
4871          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4872     const Expr *semantic = *i;
4873 
4874     // If this semantic expression is an opaque value, bind it
4875     // to the result of its source expression.
4876     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4877       // Skip unique OVEs.
4878       if (ov->isUnique()) {
4879         assert(ov != resultExpr &&
4880                "A unique OVE cannot be used as the result expression");
4881         continue;
4882       }
4883 
4884       // If this is the result expression, we may need to evaluate
4885       // directly into the slot.
4886       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4887       OVMA opaqueData;
4888       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4889           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4890         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4891         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4892                                        AlignmentSource::Decl);
4893         opaqueData = OVMA::bind(CGF, ov, LV);
4894         result.RV = slot.asRValue();
4895 
4896       // Otherwise, emit as normal.
4897       } else {
4898         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4899 
4900         // If this is the result, also evaluate the result now.
4901         if (ov == resultExpr) {
4902           if (forLValue)
4903             result.LV = CGF.EmitLValue(ov);
4904           else
4905             result.RV = CGF.EmitAnyExpr(ov, slot);
4906         }
4907       }
4908 
4909       opaques.push_back(opaqueData);
4910 
4911     // Otherwise, if the expression is the result, evaluate it
4912     // and remember the result.
4913     } else if (semantic == resultExpr) {
4914       if (forLValue)
4915         result.LV = CGF.EmitLValue(semantic);
4916       else
4917         result.RV = CGF.EmitAnyExpr(semantic, slot);
4918 
4919     // Otherwise, evaluate the expression in an ignored context.
4920     } else {
4921       CGF.EmitIgnoredExpr(semantic);
4922     }
4923   }
4924 
4925   // Unbind all the opaques now.
4926   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4927     opaques[i].unbind(CGF);
4928 
4929   return result;
4930 }
4931 
4932 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4933                                                AggValueSlot slot) {
4934   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4935 }
4936 
4937 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4938   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4939 }
4940