1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getQuantity());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::Constant *CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
344                                                StructorType::Complete);
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getQuantity());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->GetTemporaryExpr();
421 
422     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
423     // as that will cause the lifetime adjustment to be lost for ARC
424   auto ownership = M->getType().getObjCLifetime();
425   if (ownership != Qualifiers::OCL_None &&
426       ownership != Qualifiers::OCL_ExplicitNone) {
427     Address Object = createReferenceTemporary(*this, M, E);
428     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
429       Object = Address(llvm::ConstantExpr::getBitCast(Var,
430                            ConvertTypeForMem(E->getType())
431                              ->getPointerTo(Object.getAddressSpace())),
432                        Object.getAlignment());
433 
434       // createReferenceTemporary will promote the temporary to a global with a
435       // constant initializer if it can.  It can only do this to a value of
436       // ARC-manageable type if the value is global and therefore "immune" to
437       // ref-counting operations.  Therefore we have no need to emit either a
438       // dynamic initialization or a cleanup and we can just return the address
439       // of the temporary.
440       if (Var->hasInitializer())
441         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
442 
443       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
444     }
445     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
446                                        AlignmentSource::Decl);
447 
448     switch (getEvaluationKind(E->getType())) {
449     default: llvm_unreachable("expected scalar or aggregate expression");
450     case TEK_Scalar:
451       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
452       break;
453     case TEK_Aggregate: {
454       EmitAggExpr(E, AggValueSlot::forAddr(Object,
455                                            E->getType().getQualifiers(),
456                                            AggValueSlot::IsDestructed,
457                                            AggValueSlot::DoesNotNeedGCBarriers,
458                                            AggValueSlot::IsNotAliased,
459                                            AggValueSlot::DoesNotOverlap));
460       break;
461     }
462     }
463 
464     pushTemporaryCleanup(*this, M, E, Object);
465     return RefTempDst;
466   }
467 
468   SmallVector<const Expr *, 2> CommaLHSs;
469   SmallVector<SubobjectAdjustment, 2> Adjustments;
470   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
471 
472   for (const auto &Ignored : CommaLHSs)
473     EmitIgnoredExpr(Ignored);
474 
475   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
476     if (opaque->getType()->isRecordType()) {
477       assert(Adjustments.empty());
478       return EmitOpaqueValueLValue(opaque);
479     }
480   }
481 
482   // Create and initialize the reference temporary.
483   Address Alloca = Address::invalid();
484   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
485   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
486           Object.getPointer()->stripPointerCasts())) {
487     Object = Address(llvm::ConstantExpr::getBitCast(
488                          cast<llvm::Constant>(Object.getPointer()),
489                          ConvertTypeForMem(E->getType())->getPointerTo()),
490                      Object.getAlignment());
491     // If the temporary is a global and has a constant initializer or is a
492     // constant temporary that we promoted to a global, we may have already
493     // initialized it.
494     if (!Var->hasInitializer()) {
495       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
496       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
497     }
498   } else {
499     switch (M->getStorageDuration()) {
500     case SD_Automatic:
501       if (auto *Size = EmitLifetimeStart(
502               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
503               Alloca.getPointer())) {
504         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
505                                                   Alloca, Size);
506       }
507       break;
508 
509     case SD_FullExpression: {
510       if (!ShouldEmitLifetimeMarkers)
511         break;
512 
513       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
514       // marker. Instead, start the lifetime of a conditional temporary earlier
515       // so that it's unconditional. Don't do this in ASan's use-after-scope
516       // mode so that it gets the more precise lifetime marks. If the type has
517       // a non-trivial destructor, we'll have a cleanup block for it anyway,
518       // so this typically doesn't help; skip it in that case.
519       ConditionalEvaluation *OldConditional = nullptr;
520       CGBuilderTy::InsertPoint OldIP;
521       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
522           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
523         OldConditional = OutermostConditional;
524         OutermostConditional = nullptr;
525 
526         OldIP = Builder.saveIP();
527         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
528         Builder.restoreIP(CGBuilderTy::InsertPoint(
529             Block, llvm::BasicBlock::iterator(Block->back())));
530       }
531 
532       if (auto *Size = EmitLifetimeStart(
533               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
534               Alloca.getPointer())) {
535         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
536                                              Size);
537       }
538 
539       if (OldConditional) {
540         OutermostConditional = OldConditional;
541         Builder.restoreIP(OldIP);
542       }
543       break;
544     }
545 
546     default:
547       break;
548     }
549     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
550   }
551   pushTemporaryCleanup(*this, M, E, Object);
552 
553   // Perform derived-to-base casts and/or field accesses, to get from the
554   // temporary object we created (and, potentially, for which we extended
555   // the lifetime) to the subobject we're binding the reference to.
556   for (unsigned I = Adjustments.size(); I != 0; --I) {
557     SubobjectAdjustment &Adjustment = Adjustments[I-1];
558     switch (Adjustment.Kind) {
559     case SubobjectAdjustment::DerivedToBaseAdjustment:
560       Object =
561           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
562                                 Adjustment.DerivedToBase.BasePath->path_begin(),
563                                 Adjustment.DerivedToBase.BasePath->path_end(),
564                                 /*NullCheckValue=*/ false, E->getExprLoc());
565       break;
566 
567     case SubobjectAdjustment::FieldAdjustment: {
568       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
569       LV = EmitLValueForField(LV, Adjustment.Field);
570       assert(LV.isSimple() &&
571              "materialized temporary field is not a simple lvalue");
572       Object = LV.getAddress();
573       break;
574     }
575 
576     case SubobjectAdjustment::MemberPointerAdjustment: {
577       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
578       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
579                                                Adjustment.Ptr.MPT);
580       break;
581     }
582     }
583   }
584 
585   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
586 }
587 
588 RValue
589 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
590   // Emit the expression as an lvalue.
591   LValue LV = EmitLValue(E);
592   assert(LV.isSimple());
593   llvm::Value *Value = LV.getPointer();
594 
595   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
596     // C++11 [dcl.ref]p5 (as amended by core issue 453):
597     //   If a glvalue to which a reference is directly bound designates neither
598     //   an existing object or function of an appropriate type nor a region of
599     //   storage of suitable size and alignment to contain an object of the
600     //   reference's type, the behavior is undefined.
601     QualType Ty = E->getType();
602     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
603   }
604 
605   return RValue::get(Value);
606 }
607 
608 
609 /// getAccessedFieldNo - Given an encoded value and a result number, return the
610 /// input field number being accessed.
611 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
612                                              const llvm::Constant *Elts) {
613   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
614       ->getZExtValue();
615 }
616 
617 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
618 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
619                                     llvm::Value *High) {
620   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
621   llvm::Value *K47 = Builder.getInt64(47);
622   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
623   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
624   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
625   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
626   return Builder.CreateMul(B1, KMul);
627 }
628 
629 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
630   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
631          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
632 }
633 
634 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
635   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
636   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
637          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
638           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
639           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
640 }
641 
642 bool CodeGenFunction::sanitizePerformTypeCheck() const {
643   return SanOpts.has(SanitizerKind::Null) |
644          SanOpts.has(SanitizerKind::Alignment) |
645          SanOpts.has(SanitizerKind::ObjectSize) |
646          SanOpts.has(SanitizerKind::Vptr);
647 }
648 
649 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
650                                     llvm::Value *Ptr, QualType Ty,
651                                     CharUnits Alignment,
652                                     SanitizerSet SkippedChecks) {
653   if (!sanitizePerformTypeCheck())
654     return;
655 
656   // Don't check pointers outside the default address space. The null check
657   // isn't correct, the object-size check isn't supported by LLVM, and we can't
658   // communicate the addresses to the runtime handler for the vptr check.
659   if (Ptr->getType()->getPointerAddressSpace())
660     return;
661 
662   // Don't check pointers to volatile data. The behavior here is implementation-
663   // defined.
664   if (Ty.isVolatileQualified())
665     return;
666 
667   SanitizerScope SanScope(this);
668 
669   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
670   llvm::BasicBlock *Done = nullptr;
671 
672   // Quickly determine whether we have a pointer to an alloca. It's possible
673   // to skip null checks, and some alignment checks, for these pointers. This
674   // can reduce compile-time significantly.
675   auto PtrToAlloca =
676       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
677 
678   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
679   llvm::Value *IsNonNull = nullptr;
680   bool IsGuaranteedNonNull =
681       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
682   bool AllowNullPointers = isNullPointerAllowed(TCK);
683   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
684       !IsGuaranteedNonNull) {
685     // The glvalue must not be an empty glvalue.
686     IsNonNull = Builder.CreateIsNotNull(Ptr);
687 
688     // The IR builder can constant-fold the null check if the pointer points to
689     // a constant.
690     IsGuaranteedNonNull = IsNonNull == True;
691 
692     // Skip the null check if the pointer is known to be non-null.
693     if (!IsGuaranteedNonNull) {
694       if (AllowNullPointers) {
695         // When performing pointer casts, it's OK if the value is null.
696         // Skip the remaining checks in that case.
697         Done = createBasicBlock("null");
698         llvm::BasicBlock *Rest = createBasicBlock("not.null");
699         Builder.CreateCondBr(IsNonNull, Rest, Done);
700         EmitBlock(Rest);
701       } else {
702         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
703       }
704     }
705   }
706 
707   if (SanOpts.has(SanitizerKind::ObjectSize) &&
708       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
709       !Ty->isIncompleteType()) {
710     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
711 
712     // The glvalue must refer to a large enough storage region.
713     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
714     //        to check this.
715     // FIXME: Get object address space
716     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
717     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
718     llvm::Value *Min = Builder.getFalse();
719     llvm::Value *NullIsUnknown = Builder.getFalse();
720     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
721     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
722         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
723         llvm::ConstantInt::get(IntPtrTy, Size));
724     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
725   }
726 
727   uint64_t AlignVal = 0;
728   llvm::Value *PtrAsInt = nullptr;
729 
730   if (SanOpts.has(SanitizerKind::Alignment) &&
731       !SkippedChecks.has(SanitizerKind::Alignment)) {
732     AlignVal = Alignment.getQuantity();
733     if (!Ty->isIncompleteType() && !AlignVal)
734       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
735 
736     // The glvalue must be suitably aligned.
737     if (AlignVal > 1 &&
738         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
739       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
740       llvm::Value *Align = Builder.CreateAnd(
741           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
742       llvm::Value *Aligned =
743           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
744       if (Aligned != True)
745         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
746     }
747   }
748 
749   if (Checks.size() > 0) {
750     // Make sure we're not losing information. Alignment needs to be a power of
751     // 2
752     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
753     llvm::Constant *StaticData[] = {
754         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
755         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
756         llvm::ConstantInt::get(Int8Ty, TCK)};
757     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
758               PtrAsInt ? PtrAsInt : Ptr);
759   }
760 
761   // If possible, check that the vptr indicates that there is a subobject of
762   // type Ty at offset zero within this object.
763   //
764   // C++11 [basic.life]p5,6:
765   //   [For storage which does not refer to an object within its lifetime]
766   //   The program has undefined behavior if:
767   //    -- the [pointer or glvalue] is used to access a non-static data member
768   //       or call a non-static member function
769   if (SanOpts.has(SanitizerKind::Vptr) &&
770       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
771     // Ensure that the pointer is non-null before loading it. If there is no
772     // compile-time guarantee, reuse the run-time null check or emit a new one.
773     if (!IsGuaranteedNonNull) {
774       if (!IsNonNull)
775         IsNonNull = Builder.CreateIsNotNull(Ptr);
776       if (!Done)
777         Done = createBasicBlock("vptr.null");
778       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
779       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
780       EmitBlock(VptrNotNull);
781     }
782 
783     // Compute a hash of the mangled name of the type.
784     //
785     // FIXME: This is not guaranteed to be deterministic! Move to a
786     //        fingerprinting mechanism once LLVM provides one. For the time
787     //        being the implementation happens to be deterministic.
788     SmallString<64> MangledName;
789     llvm::raw_svector_ostream Out(MangledName);
790     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
791                                                      Out);
792 
793     // Blacklist based on the mangled type.
794     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
795             SanitizerKind::Vptr, Out.str())) {
796       llvm::hash_code TypeHash = hash_value(Out.str());
797 
798       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
799       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
800       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
801       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
802       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
803       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
804 
805       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
806       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
807 
808       // Look the hash up in our cache.
809       const int CacheSize = 128;
810       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
811       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
812                                                      "__ubsan_vptr_type_cache");
813       llvm::Value *Slot = Builder.CreateAnd(Hash,
814                                             llvm::ConstantInt::get(IntPtrTy,
815                                                                    CacheSize-1));
816       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
817       llvm::Value *CacheVal =
818         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
819                                   getPointerAlign());
820 
821       // If the hash isn't in the cache, call a runtime handler to perform the
822       // hard work of checking whether the vptr is for an object of the right
823       // type. This will either fill in the cache and return, or produce a
824       // diagnostic.
825       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
826       llvm::Constant *StaticData[] = {
827         EmitCheckSourceLocation(Loc),
828         EmitCheckTypeDescriptor(Ty),
829         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
830         llvm::ConstantInt::get(Int8Ty, TCK)
831       };
832       llvm::Value *DynamicData[] = { Ptr, Hash };
833       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
834                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
835                 DynamicData);
836     }
837   }
838 
839   if (Done) {
840     Builder.CreateBr(Done);
841     EmitBlock(Done);
842   }
843 }
844 
845 /// Determine whether this expression refers to a flexible array member in a
846 /// struct. We disable array bounds checks for such members.
847 static bool isFlexibleArrayMemberExpr(const Expr *E) {
848   // For compatibility with existing code, we treat arrays of length 0 or
849   // 1 as flexible array members.
850   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
851   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
852     if (CAT->getSize().ugt(1))
853       return false;
854   } else if (!isa<IncompleteArrayType>(AT))
855     return false;
856 
857   E = E->IgnoreParens();
858 
859   // A flexible array member must be the last member in the class.
860   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
861     // FIXME: If the base type of the member expr is not FD->getParent(),
862     // this should not be treated as a flexible array member access.
863     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
864       RecordDecl::field_iterator FI(
865           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
866       return ++FI == FD->getParent()->field_end();
867     }
868   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
869     return IRE->getDecl()->getNextIvar() == nullptr;
870   }
871 
872   return false;
873 }
874 
875 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
876                                                    QualType EltTy) {
877   ASTContext &C = getContext();
878   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
879   if (!EltSize)
880     return nullptr;
881 
882   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
883   if (!ArrayDeclRef)
884     return nullptr;
885 
886   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
887   if (!ParamDecl)
888     return nullptr;
889 
890   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
891   if (!POSAttr)
892     return nullptr;
893 
894   // Don't load the size if it's a lower bound.
895   int POSType = POSAttr->getType();
896   if (POSType != 0 && POSType != 1)
897     return nullptr;
898 
899   // Find the implicit size parameter.
900   auto PassedSizeIt = SizeArguments.find(ParamDecl);
901   if (PassedSizeIt == SizeArguments.end())
902     return nullptr;
903 
904   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
905   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
906   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
907   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
908                                               C.getSizeType(), E->getExprLoc());
909   llvm::Value *SizeOfElement =
910       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
911   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
912 }
913 
914 /// If Base is known to point to the start of an array, return the length of
915 /// that array. Return 0 if the length cannot be determined.
916 static llvm::Value *getArrayIndexingBound(
917     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
918   // For the vector indexing extension, the bound is the number of elements.
919   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
920     IndexedType = Base->getType();
921     return CGF.Builder.getInt32(VT->getNumElements());
922   }
923 
924   Base = Base->IgnoreParens();
925 
926   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
927     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
928         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
929       IndexedType = CE->getSubExpr()->getType();
930       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
931       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
932         return CGF.Builder.getInt(CAT->getSize());
933       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
934         return CGF.getVLASize(VAT).NumElts;
935       // Ignore pass_object_size here. It's not applicable on decayed pointers.
936     }
937   }
938 
939   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
940   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
941     IndexedType = Base->getType();
942     return POS;
943   }
944 
945   return nullptr;
946 }
947 
948 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
949                                       llvm::Value *Index, QualType IndexType,
950                                       bool Accessed) {
951   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
952          "should not be called unless adding bounds checks");
953   SanitizerScope SanScope(this);
954 
955   QualType IndexedType;
956   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
957   if (!Bound)
958     return;
959 
960   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
961   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
962   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
963 
964   llvm::Constant *StaticData[] = {
965     EmitCheckSourceLocation(E->getExprLoc()),
966     EmitCheckTypeDescriptor(IndexedType),
967     EmitCheckTypeDescriptor(IndexType)
968   };
969   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
970                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
971   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
972             SanitizerHandler::OutOfBounds, StaticData, Index);
973 }
974 
975 
976 CodeGenFunction::ComplexPairTy CodeGenFunction::
977 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
978                          bool isInc, bool isPre) {
979   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
980 
981   llvm::Value *NextVal;
982   if (isa<llvm::IntegerType>(InVal.first->getType())) {
983     uint64_t AmountVal = isInc ? 1 : -1;
984     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
985 
986     // Add the inc/dec to the real part.
987     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
988   } else {
989     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
990     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
991     if (!isInc)
992       FVal.changeSign();
993     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
994 
995     // Add the inc/dec to the real part.
996     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
997   }
998 
999   ComplexPairTy IncVal(NextVal, InVal.second);
1000 
1001   // Store the updated result through the lvalue.
1002   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1003 
1004   // If this is a postinc, return the value read from memory, otherwise use the
1005   // updated value.
1006   return isPre ? IncVal : InVal;
1007 }
1008 
1009 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1010                                              CodeGenFunction *CGF) {
1011   // Bind VLAs in the cast type.
1012   if (CGF && E->getType()->isVariablyModifiedType())
1013     CGF->EmitVariablyModifiedType(E->getType());
1014 
1015   if (CGDebugInfo *DI = getModuleDebugInfo())
1016     DI->EmitExplicitCastType(E->getType());
1017 }
1018 
1019 //===----------------------------------------------------------------------===//
1020 //                         LValue Expression Emission
1021 //===----------------------------------------------------------------------===//
1022 
1023 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1024 /// derive a more accurate bound on the alignment of the pointer.
1025 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1026                                                   LValueBaseInfo *BaseInfo,
1027                                                   TBAAAccessInfo *TBAAInfo) {
1028   // We allow this with ObjC object pointers because of fragile ABIs.
1029   assert(E->getType()->isPointerType() ||
1030          E->getType()->isObjCObjectPointerType());
1031   E = E->IgnoreParens();
1032 
1033   // Casts:
1034   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1035     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1036       CGM.EmitExplicitCastExprType(ECE, this);
1037 
1038     switch (CE->getCastKind()) {
1039     // Non-converting casts (but not C's implicit conversion from void*).
1040     case CK_BitCast:
1041     case CK_NoOp:
1042     case CK_AddressSpaceConversion:
1043       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1044         if (PtrTy->getPointeeType()->isVoidType())
1045           break;
1046 
1047         LValueBaseInfo InnerBaseInfo;
1048         TBAAAccessInfo InnerTBAAInfo;
1049         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1050                                                 &InnerBaseInfo,
1051                                                 &InnerTBAAInfo);
1052         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1053         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1054 
1055         if (isa<ExplicitCastExpr>(CE)) {
1056           LValueBaseInfo TargetTypeBaseInfo;
1057           TBAAAccessInfo TargetTypeTBAAInfo;
1058           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1059                                                            &TargetTypeBaseInfo,
1060                                                            &TargetTypeTBAAInfo);
1061           if (TBAAInfo)
1062             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1063                                                  TargetTypeTBAAInfo);
1064           // If the source l-value is opaque, honor the alignment of the
1065           // casted-to type.
1066           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1067             if (BaseInfo)
1068               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1069             Addr = Address(Addr.getPointer(), Align);
1070           }
1071         }
1072 
1073         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1074             CE->getCastKind() == CK_BitCast) {
1075           if (auto PT = E->getType()->getAs<PointerType>())
1076             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1077                                       /*MayBeNull=*/true,
1078                                       CodeGenFunction::CFITCK_UnrelatedCast,
1079                                       CE->getBeginLoc());
1080         }
1081         return CE->getCastKind() != CK_AddressSpaceConversion
1082                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1083                    : Builder.CreateAddrSpaceCast(Addr,
1084                                                  ConvertType(E->getType()));
1085       }
1086       break;
1087 
1088     // Array-to-pointer decay.
1089     case CK_ArrayToPointerDecay:
1090       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1091 
1092     // Derived-to-base conversions.
1093     case CK_UncheckedDerivedToBase:
1094     case CK_DerivedToBase: {
1095       // TODO: Support accesses to members of base classes in TBAA. For now, we
1096       // conservatively pretend that the complete object is of the base class
1097       // type.
1098       if (TBAAInfo)
1099         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1100       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1101       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1102       return GetAddressOfBaseClass(Addr, Derived,
1103                                    CE->path_begin(), CE->path_end(),
1104                                    ShouldNullCheckClassCastValue(CE),
1105                                    CE->getExprLoc());
1106     }
1107 
1108     // TODO: Is there any reason to treat base-to-derived conversions
1109     // specially?
1110     default:
1111       break;
1112     }
1113   }
1114 
1115   // Unary &.
1116   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1117     if (UO->getOpcode() == UO_AddrOf) {
1118       LValue LV = EmitLValue(UO->getSubExpr());
1119       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1120       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1121       return LV.getAddress();
1122     }
1123   }
1124 
1125   // TODO: conditional operators, comma.
1126 
1127   // Otherwise, use the alignment of the type.
1128   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1129                                                    TBAAInfo);
1130   return Address(EmitScalarExpr(E), Align);
1131 }
1132 
1133 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1134   if (Ty->isVoidType())
1135     return RValue::get(nullptr);
1136 
1137   switch (getEvaluationKind(Ty)) {
1138   case TEK_Complex: {
1139     llvm::Type *EltTy =
1140       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1141     llvm::Value *U = llvm::UndefValue::get(EltTy);
1142     return RValue::getComplex(std::make_pair(U, U));
1143   }
1144 
1145   // If this is a use of an undefined aggregate type, the aggregate must have an
1146   // identifiable address.  Just because the contents of the value are undefined
1147   // doesn't mean that the address can't be taken and compared.
1148   case TEK_Aggregate: {
1149     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1150     return RValue::getAggregate(DestPtr);
1151   }
1152 
1153   case TEK_Scalar:
1154     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1155   }
1156   llvm_unreachable("bad evaluation kind");
1157 }
1158 
1159 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1160                                               const char *Name) {
1161   ErrorUnsupported(E, Name);
1162   return GetUndefRValue(E->getType());
1163 }
1164 
1165 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1166                                               const char *Name) {
1167   ErrorUnsupported(E, Name);
1168   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1169   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1170                         E->getType());
1171 }
1172 
1173 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1174   const Expr *Base = Obj;
1175   while (!isa<CXXThisExpr>(Base)) {
1176     // The result of a dynamic_cast can be null.
1177     if (isa<CXXDynamicCastExpr>(Base))
1178       return false;
1179 
1180     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1181       Base = CE->getSubExpr();
1182     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1183       Base = PE->getSubExpr();
1184     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1185       if (UO->getOpcode() == UO_Extension)
1186         Base = UO->getSubExpr();
1187       else
1188         return false;
1189     } else {
1190       return false;
1191     }
1192   }
1193   return true;
1194 }
1195 
1196 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1197   LValue LV;
1198   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1199     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1200   else
1201     LV = EmitLValue(E);
1202   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1203     SanitizerSet SkippedChecks;
1204     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1205       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1206       if (IsBaseCXXThis)
1207         SkippedChecks.set(SanitizerKind::Alignment, true);
1208       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1209         SkippedChecks.set(SanitizerKind::Null, true);
1210     }
1211     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1212                   E->getType(), LV.getAlignment(), SkippedChecks);
1213   }
1214   return LV;
1215 }
1216 
1217 /// EmitLValue - Emit code to compute a designator that specifies the location
1218 /// of the expression.
1219 ///
1220 /// This can return one of two things: a simple address or a bitfield reference.
1221 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1222 /// an LLVM pointer type.
1223 ///
1224 /// If this returns a bitfield reference, nothing about the pointee type of the
1225 /// LLVM value is known: For example, it may not be a pointer to an integer.
1226 ///
1227 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1228 /// this method guarantees that the returned pointer type will point to an LLVM
1229 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1230 /// length type, this is not possible.
1231 ///
1232 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1233   ApplyDebugLocation DL(*this, E);
1234   switch (E->getStmtClass()) {
1235   default: return EmitUnsupportedLValue(E, "l-value expression");
1236 
1237   case Expr::ObjCPropertyRefExprClass:
1238     llvm_unreachable("cannot emit a property reference directly");
1239 
1240   case Expr::ObjCSelectorExprClass:
1241     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1242   case Expr::ObjCIsaExprClass:
1243     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1244   case Expr::BinaryOperatorClass:
1245     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1246   case Expr::CompoundAssignOperatorClass: {
1247     QualType Ty = E->getType();
1248     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1249       Ty = AT->getValueType();
1250     if (!Ty->isAnyComplexType())
1251       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1252     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1253   }
1254   case Expr::CallExprClass:
1255   case Expr::CXXMemberCallExprClass:
1256   case Expr::CXXOperatorCallExprClass:
1257   case Expr::UserDefinedLiteralClass:
1258     return EmitCallExprLValue(cast<CallExpr>(E));
1259   case Expr::VAArgExprClass:
1260     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1261   case Expr::DeclRefExprClass:
1262     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1263   case Expr::ParenExprClass:
1264     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1265   case Expr::GenericSelectionExprClass:
1266     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1267   case Expr::PredefinedExprClass:
1268     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1269   case Expr::StringLiteralClass:
1270     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1271   case Expr::ObjCEncodeExprClass:
1272     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1273   case Expr::PseudoObjectExprClass:
1274     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1275   case Expr::InitListExprClass:
1276     return EmitInitListLValue(cast<InitListExpr>(E));
1277   case Expr::CXXTemporaryObjectExprClass:
1278   case Expr::CXXConstructExprClass:
1279     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1280   case Expr::CXXBindTemporaryExprClass:
1281     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1282   case Expr::CXXUuidofExprClass:
1283     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1284   case Expr::LambdaExprClass:
1285     return EmitLambdaLValue(cast<LambdaExpr>(E));
1286 
1287   case Expr::ExprWithCleanupsClass: {
1288     const auto *cleanups = cast<ExprWithCleanups>(E);
1289     enterFullExpression(cleanups);
1290     RunCleanupsScope Scope(*this);
1291     LValue LV = EmitLValue(cleanups->getSubExpr());
1292     if (LV.isSimple()) {
1293       // Defend against branches out of gnu statement expressions surrounded by
1294       // cleanups.
1295       llvm::Value *V = LV.getPointer();
1296       Scope.ForceCleanup({&V});
1297       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1298                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1299     }
1300     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1301     // bitfield lvalue or some other non-simple lvalue?
1302     return LV;
1303   }
1304 
1305   case Expr::CXXDefaultArgExprClass:
1306     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1307   case Expr::CXXDefaultInitExprClass: {
1308     CXXDefaultInitExprScope Scope(*this);
1309     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1310   }
1311   case Expr::CXXTypeidExprClass:
1312     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1313 
1314   case Expr::ObjCMessageExprClass:
1315     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1316   case Expr::ObjCIvarRefExprClass:
1317     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1318   case Expr::StmtExprClass:
1319     return EmitStmtExprLValue(cast<StmtExpr>(E));
1320   case Expr::UnaryOperatorClass:
1321     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1322   case Expr::ArraySubscriptExprClass:
1323     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1324   case Expr::OMPArraySectionExprClass:
1325     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1326   case Expr::ExtVectorElementExprClass:
1327     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1328   case Expr::MemberExprClass:
1329     return EmitMemberExpr(cast<MemberExpr>(E));
1330   case Expr::CompoundLiteralExprClass:
1331     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1332   case Expr::ConditionalOperatorClass:
1333     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1334   case Expr::BinaryConditionalOperatorClass:
1335     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1336   case Expr::ChooseExprClass:
1337     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1338   case Expr::OpaqueValueExprClass:
1339     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1340   case Expr::SubstNonTypeTemplateParmExprClass:
1341     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1342   case Expr::ImplicitCastExprClass:
1343   case Expr::CStyleCastExprClass:
1344   case Expr::CXXFunctionalCastExprClass:
1345   case Expr::CXXStaticCastExprClass:
1346   case Expr::CXXDynamicCastExprClass:
1347   case Expr::CXXReinterpretCastExprClass:
1348   case Expr::CXXConstCastExprClass:
1349   case Expr::ObjCBridgedCastExprClass:
1350     return EmitCastLValue(cast<CastExpr>(E));
1351 
1352   case Expr::MaterializeTemporaryExprClass:
1353     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1354 
1355   case Expr::CoawaitExprClass:
1356     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1357   case Expr::CoyieldExprClass:
1358     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1359   }
1360 }
1361 
1362 /// Given an object of the given canonical type, can we safely copy a
1363 /// value out of it based on its initializer?
1364 static bool isConstantEmittableObjectType(QualType type) {
1365   assert(type.isCanonical());
1366   assert(!type->isReferenceType());
1367 
1368   // Must be const-qualified but non-volatile.
1369   Qualifiers qs = type.getLocalQualifiers();
1370   if (!qs.hasConst() || qs.hasVolatile()) return false;
1371 
1372   // Otherwise, all object types satisfy this except C++ classes with
1373   // mutable subobjects or non-trivial copy/destroy behavior.
1374   if (const auto *RT = dyn_cast<RecordType>(type))
1375     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1376       if (RD->hasMutableFields() || !RD->isTrivial())
1377         return false;
1378 
1379   return true;
1380 }
1381 
1382 /// Can we constant-emit a load of a reference to a variable of the
1383 /// given type?  This is different from predicates like
1384 /// Decl::isUsableInConstantExpressions because we do want it to apply
1385 /// in situations that don't necessarily satisfy the language's rules
1386 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1387 /// to do this with const float variables even if those variables
1388 /// aren't marked 'constexpr'.
1389 enum ConstantEmissionKind {
1390   CEK_None,
1391   CEK_AsReferenceOnly,
1392   CEK_AsValueOrReference,
1393   CEK_AsValueOnly
1394 };
1395 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1396   type = type.getCanonicalType();
1397   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1398     if (isConstantEmittableObjectType(ref->getPointeeType()))
1399       return CEK_AsValueOrReference;
1400     return CEK_AsReferenceOnly;
1401   }
1402   if (isConstantEmittableObjectType(type))
1403     return CEK_AsValueOnly;
1404   return CEK_None;
1405 }
1406 
1407 /// Try to emit a reference to the given value without producing it as
1408 /// an l-value.  This is actually more than an optimization: we can't
1409 /// produce an l-value for variables that we never actually captured
1410 /// in a block or lambda, which means const int variables or constexpr
1411 /// literals or similar.
1412 CodeGenFunction::ConstantEmission
1413 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1414   ValueDecl *value = refExpr->getDecl();
1415 
1416   // The value needs to be an enum constant or a constant variable.
1417   ConstantEmissionKind CEK;
1418   if (isa<ParmVarDecl>(value)) {
1419     CEK = CEK_None;
1420   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1421     CEK = checkVarTypeForConstantEmission(var->getType());
1422   } else if (isa<EnumConstantDecl>(value)) {
1423     CEK = CEK_AsValueOnly;
1424   } else {
1425     CEK = CEK_None;
1426   }
1427   if (CEK == CEK_None) return ConstantEmission();
1428 
1429   Expr::EvalResult result;
1430   bool resultIsReference;
1431   QualType resultType;
1432 
1433   // It's best to evaluate all the way as an r-value if that's permitted.
1434   if (CEK != CEK_AsReferenceOnly &&
1435       refExpr->EvaluateAsRValue(result, getContext())) {
1436     resultIsReference = false;
1437     resultType = refExpr->getType();
1438 
1439   // Otherwise, try to evaluate as an l-value.
1440   } else if (CEK != CEK_AsValueOnly &&
1441              refExpr->EvaluateAsLValue(result, getContext())) {
1442     resultIsReference = true;
1443     resultType = value->getType();
1444 
1445   // Failure.
1446   } else {
1447     return ConstantEmission();
1448   }
1449 
1450   // In any case, if the initializer has side-effects, abandon ship.
1451   if (result.HasSideEffects)
1452     return ConstantEmission();
1453 
1454   // Emit as a constant.
1455   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1456                                                result.Val, resultType);
1457 
1458   // Make sure we emit a debug reference to the global variable.
1459   // This should probably fire even for
1460   if (isa<VarDecl>(value)) {
1461     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1462       EmitDeclRefExprDbgValue(refExpr, result.Val);
1463   } else {
1464     assert(isa<EnumConstantDecl>(value));
1465     EmitDeclRefExprDbgValue(refExpr, result.Val);
1466   }
1467 
1468   // If we emitted a reference constant, we need to dereference that.
1469   if (resultIsReference)
1470     return ConstantEmission::forReference(C);
1471 
1472   return ConstantEmission::forValue(C);
1473 }
1474 
1475 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1476                                                         const MemberExpr *ME) {
1477   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1478     // Try to emit static variable member expressions as DREs.
1479     return DeclRefExpr::Create(
1480         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1481         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1482         ME->getType(), ME->getValueKind());
1483   }
1484   return nullptr;
1485 }
1486 
1487 CodeGenFunction::ConstantEmission
1488 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1489   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1490     return tryEmitAsConstant(DRE);
1491   return ConstantEmission();
1492 }
1493 
1494 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1495                                                SourceLocation Loc) {
1496   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1497                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1498                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1499 }
1500 
1501 static bool hasBooleanRepresentation(QualType Ty) {
1502   if (Ty->isBooleanType())
1503     return true;
1504 
1505   if (const EnumType *ET = Ty->getAs<EnumType>())
1506     return ET->getDecl()->getIntegerType()->isBooleanType();
1507 
1508   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1509     return hasBooleanRepresentation(AT->getValueType());
1510 
1511   return false;
1512 }
1513 
1514 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1515                             llvm::APInt &Min, llvm::APInt &End,
1516                             bool StrictEnums, bool IsBool) {
1517   const EnumType *ET = Ty->getAs<EnumType>();
1518   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1519                                 ET && !ET->getDecl()->isFixed();
1520   if (!IsBool && !IsRegularCPlusPlusEnum)
1521     return false;
1522 
1523   if (IsBool) {
1524     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1525     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1526   } else {
1527     const EnumDecl *ED = ET->getDecl();
1528     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1529     unsigned Bitwidth = LTy->getScalarSizeInBits();
1530     unsigned NumNegativeBits = ED->getNumNegativeBits();
1531     unsigned NumPositiveBits = ED->getNumPositiveBits();
1532 
1533     if (NumNegativeBits) {
1534       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1535       assert(NumBits <= Bitwidth);
1536       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1537       Min = -End;
1538     } else {
1539       assert(NumPositiveBits <= Bitwidth);
1540       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1541       Min = llvm::APInt(Bitwidth, 0);
1542     }
1543   }
1544   return true;
1545 }
1546 
1547 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1548   llvm::APInt Min, End;
1549   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1550                        hasBooleanRepresentation(Ty)))
1551     return nullptr;
1552 
1553   llvm::MDBuilder MDHelper(getLLVMContext());
1554   return MDHelper.createRange(Min, End);
1555 }
1556 
1557 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1558                                            SourceLocation Loc) {
1559   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1560   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1561   if (!HasBoolCheck && !HasEnumCheck)
1562     return false;
1563 
1564   bool IsBool = hasBooleanRepresentation(Ty) ||
1565                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1566   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1567   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1568   if (!NeedsBoolCheck && !NeedsEnumCheck)
1569     return false;
1570 
1571   // Single-bit booleans don't need to be checked. Special-case this to avoid
1572   // a bit width mismatch when handling bitfield values. This is handled by
1573   // EmitFromMemory for the non-bitfield case.
1574   if (IsBool &&
1575       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1576     return false;
1577 
1578   llvm::APInt Min, End;
1579   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1580     return true;
1581 
1582   auto &Ctx = getLLVMContext();
1583   SanitizerScope SanScope(this);
1584   llvm::Value *Check;
1585   --End;
1586   if (!Min) {
1587     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1588   } else {
1589     llvm::Value *Upper =
1590         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1591     llvm::Value *Lower =
1592         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1593     Check = Builder.CreateAnd(Upper, Lower);
1594   }
1595   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1596                                   EmitCheckTypeDescriptor(Ty)};
1597   SanitizerMask Kind =
1598       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1599   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1600             StaticArgs, EmitCheckValue(Value));
1601   return true;
1602 }
1603 
1604 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1605                                                QualType Ty,
1606                                                SourceLocation Loc,
1607                                                LValueBaseInfo BaseInfo,
1608                                                TBAAAccessInfo TBAAInfo,
1609                                                bool isNontemporal) {
1610   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1611     // For better performance, handle vector loads differently.
1612     if (Ty->isVectorType()) {
1613       const llvm::Type *EltTy = Addr.getElementType();
1614 
1615       const auto *VTy = cast<llvm::VectorType>(EltTy);
1616 
1617       // Handle vectors of size 3 like size 4 for better performance.
1618       if (VTy->getNumElements() == 3) {
1619 
1620         // Bitcast to vec4 type.
1621         llvm::VectorType *vec4Ty =
1622             llvm::VectorType::get(VTy->getElementType(), 4);
1623         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1624         // Now load value.
1625         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1626 
1627         // Shuffle vector to get vec3.
1628         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1629                                         {0, 1, 2}, "extractVec");
1630         return EmitFromMemory(V, Ty);
1631       }
1632     }
1633   }
1634 
1635   // Atomic operations have to be done on integral types.
1636   LValue AtomicLValue =
1637       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1638   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1639     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1640   }
1641 
1642   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1643   if (isNontemporal) {
1644     llvm::MDNode *Node = llvm::MDNode::get(
1645         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1646     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1647   }
1648 
1649   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1650 
1651   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1652     // In order to prevent the optimizer from throwing away the check, don't
1653     // attach range metadata to the load.
1654   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1655     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1656       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1657 
1658   return EmitFromMemory(Load, Ty);
1659 }
1660 
1661 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1662   // Bool has a different representation in memory than in registers.
1663   if (hasBooleanRepresentation(Ty)) {
1664     // This should really always be an i1, but sometimes it's already
1665     // an i8, and it's awkward to track those cases down.
1666     if (Value->getType()->isIntegerTy(1))
1667       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1668     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1669            "wrong value rep of bool");
1670   }
1671 
1672   return Value;
1673 }
1674 
1675 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1676   // Bool has a different representation in memory than in registers.
1677   if (hasBooleanRepresentation(Ty)) {
1678     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1679            "wrong value rep of bool");
1680     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1681   }
1682 
1683   return Value;
1684 }
1685 
1686 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1687                                         bool Volatile, QualType Ty,
1688                                         LValueBaseInfo BaseInfo,
1689                                         TBAAAccessInfo TBAAInfo,
1690                                         bool isInit, bool isNontemporal) {
1691   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1692     // Handle vectors differently to get better performance.
1693     if (Ty->isVectorType()) {
1694       llvm::Type *SrcTy = Value->getType();
1695       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1696       // Handle vec3 special.
1697       if (VecTy && VecTy->getNumElements() == 3) {
1698         // Our source is a vec3, do a shuffle vector to make it a vec4.
1699         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1700                                   Builder.getInt32(2),
1701                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1702         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1703         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1704                                             MaskV, "extractVec");
1705         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1706       }
1707       if (Addr.getElementType() != SrcTy) {
1708         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1709       }
1710     }
1711   }
1712 
1713   Value = EmitToMemory(Value, Ty);
1714 
1715   LValue AtomicLValue =
1716       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1717   if (Ty->isAtomicType() ||
1718       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1719     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1720     return;
1721   }
1722 
1723   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1724   if (isNontemporal) {
1725     llvm::MDNode *Node =
1726         llvm::MDNode::get(Store->getContext(),
1727                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1728     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1729   }
1730 
1731   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1732 }
1733 
1734 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1735                                         bool isInit) {
1736   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1737                     lvalue.getType(), lvalue.getBaseInfo(),
1738                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1739 }
1740 
1741 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1742 /// method emits the address of the lvalue, then loads the result as an rvalue,
1743 /// returning the rvalue.
1744 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1745   if (LV.isObjCWeak()) {
1746     // load of a __weak object.
1747     Address AddrWeakObj = LV.getAddress();
1748     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1749                                                              AddrWeakObj));
1750   }
1751   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1752     // In MRC mode, we do a load+autorelease.
1753     if (!getLangOpts().ObjCAutoRefCount) {
1754       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1755     }
1756 
1757     // In ARC mode, we load retained and then consume the value.
1758     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1759     Object = EmitObjCConsumeObject(LV.getType(), Object);
1760     return RValue::get(Object);
1761   }
1762 
1763   if (LV.isSimple()) {
1764     assert(!LV.getType()->isFunctionType());
1765 
1766     // Everything needs a load.
1767     return RValue::get(EmitLoadOfScalar(LV, Loc));
1768   }
1769 
1770   if (LV.isVectorElt()) {
1771     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1772                                               LV.isVolatileQualified());
1773     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1774                                                     "vecext"));
1775   }
1776 
1777   // If this is a reference to a subset of the elements of a vector, either
1778   // shuffle the input or extract/insert them as appropriate.
1779   if (LV.isExtVectorElt())
1780     return EmitLoadOfExtVectorElementLValue(LV);
1781 
1782   // Global Register variables always invoke intrinsics
1783   if (LV.isGlobalReg())
1784     return EmitLoadOfGlobalRegLValue(LV);
1785 
1786   assert(LV.isBitField() && "Unknown LValue type!");
1787   return EmitLoadOfBitfieldLValue(LV, Loc);
1788 }
1789 
1790 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1791                                                  SourceLocation Loc) {
1792   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1793 
1794   // Get the output type.
1795   llvm::Type *ResLTy = ConvertType(LV.getType());
1796 
1797   Address Ptr = LV.getBitFieldAddress();
1798   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1799 
1800   if (Info.IsSigned) {
1801     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1802     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1803     if (HighBits)
1804       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1805     if (Info.Offset + HighBits)
1806       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1807   } else {
1808     if (Info.Offset)
1809       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1810     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1811       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1812                                                               Info.Size),
1813                               "bf.clear");
1814   }
1815   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1816   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1817   return RValue::get(Val);
1818 }
1819 
1820 // If this is a reference to a subset of the elements of a vector, create an
1821 // appropriate shufflevector.
1822 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1823   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1824                                         LV.isVolatileQualified());
1825 
1826   const llvm::Constant *Elts = LV.getExtVectorElts();
1827 
1828   // If the result of the expression is a non-vector type, we must be extracting
1829   // a single element.  Just codegen as an extractelement.
1830   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1831   if (!ExprVT) {
1832     unsigned InIdx = getAccessedFieldNo(0, Elts);
1833     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1834     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1835   }
1836 
1837   // Always use shuffle vector to try to retain the original program structure
1838   unsigned NumResultElts = ExprVT->getNumElements();
1839 
1840   SmallVector<llvm::Constant*, 4> Mask;
1841   for (unsigned i = 0; i != NumResultElts; ++i)
1842     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1843 
1844   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1845   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1846                                     MaskV);
1847   return RValue::get(Vec);
1848 }
1849 
1850 /// Generates lvalue for partial ext_vector access.
1851 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1852   Address VectorAddress = LV.getExtVectorAddress();
1853   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1854   QualType EQT = ExprVT->getElementType();
1855   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1856 
1857   Address CastToPointerElement =
1858     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1859                                  "conv.ptr.element");
1860 
1861   const llvm::Constant *Elts = LV.getExtVectorElts();
1862   unsigned ix = getAccessedFieldNo(0, Elts);
1863 
1864   Address VectorBasePtrPlusIx =
1865     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1866                                    getContext().getTypeSizeInChars(EQT),
1867                                    "vector.elt");
1868 
1869   return VectorBasePtrPlusIx;
1870 }
1871 
1872 /// Load of global gamed gegisters are always calls to intrinsics.
1873 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1874   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1875          "Bad type for register variable");
1876   llvm::MDNode *RegName = cast<llvm::MDNode>(
1877       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1878 
1879   // We accept integer and pointer types only
1880   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1881   llvm::Type *Ty = OrigTy;
1882   if (OrigTy->isPointerTy())
1883     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1884   llvm::Type *Types[] = { Ty };
1885 
1886   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1887   llvm::Value *Call = Builder.CreateCall(
1888       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1889   if (OrigTy->isPointerTy())
1890     Call = Builder.CreateIntToPtr(Call, OrigTy);
1891   return RValue::get(Call);
1892 }
1893 
1894 
1895 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1896 /// lvalue, where both are guaranteed to the have the same type, and that type
1897 /// is 'Ty'.
1898 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1899                                              bool isInit) {
1900   if (!Dst.isSimple()) {
1901     if (Dst.isVectorElt()) {
1902       // Read/modify/write the vector, inserting the new element.
1903       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1904                                             Dst.isVolatileQualified());
1905       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1906                                         Dst.getVectorIdx(), "vecins");
1907       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1908                           Dst.isVolatileQualified());
1909       return;
1910     }
1911 
1912     // If this is an update of extended vector elements, insert them as
1913     // appropriate.
1914     if (Dst.isExtVectorElt())
1915       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1916 
1917     if (Dst.isGlobalReg())
1918       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1919 
1920     assert(Dst.isBitField() && "Unknown LValue type");
1921     return EmitStoreThroughBitfieldLValue(Src, Dst);
1922   }
1923 
1924   // There's special magic for assigning into an ARC-qualified l-value.
1925   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1926     switch (Lifetime) {
1927     case Qualifiers::OCL_None:
1928       llvm_unreachable("present but none");
1929 
1930     case Qualifiers::OCL_ExplicitNone:
1931       // nothing special
1932       break;
1933 
1934     case Qualifiers::OCL_Strong:
1935       if (isInit) {
1936         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1937         break;
1938       }
1939       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1940       return;
1941 
1942     case Qualifiers::OCL_Weak:
1943       if (isInit)
1944         // Initialize and then skip the primitive store.
1945         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1946       else
1947         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1948       return;
1949 
1950     case Qualifiers::OCL_Autoreleasing:
1951       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1952                                                      Src.getScalarVal()));
1953       // fall into the normal path
1954       break;
1955     }
1956   }
1957 
1958   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1959     // load of a __weak object.
1960     Address LvalueDst = Dst.getAddress();
1961     llvm::Value *src = Src.getScalarVal();
1962      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1963     return;
1964   }
1965 
1966   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1967     // load of a __strong object.
1968     Address LvalueDst = Dst.getAddress();
1969     llvm::Value *src = Src.getScalarVal();
1970     if (Dst.isObjCIvar()) {
1971       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1972       llvm::Type *ResultType = IntPtrTy;
1973       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1974       llvm::Value *RHS = dst.getPointer();
1975       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1976       llvm::Value *LHS =
1977         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1978                                "sub.ptr.lhs.cast");
1979       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1980       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1981                                               BytesBetween);
1982     } else if (Dst.isGlobalObjCRef()) {
1983       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1984                                                 Dst.isThreadLocalRef());
1985     }
1986     else
1987       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1988     return;
1989   }
1990 
1991   assert(Src.isScalar() && "Can't emit an agg store with this method");
1992   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1993 }
1994 
1995 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1996                                                      llvm::Value **Result) {
1997   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1998   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1999   Address Ptr = Dst.getBitFieldAddress();
2000 
2001   // Get the source value, truncated to the width of the bit-field.
2002   llvm::Value *SrcVal = Src.getScalarVal();
2003 
2004   // Cast the source to the storage type and shift it into place.
2005   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2006                                  /*IsSigned=*/false);
2007   llvm::Value *MaskedVal = SrcVal;
2008 
2009   // See if there are other bits in the bitfield's storage we'll need to load
2010   // and mask together with source before storing.
2011   if (Info.StorageSize != Info.Size) {
2012     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2013     llvm::Value *Val =
2014       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2015 
2016     // Mask the source value as needed.
2017     if (!hasBooleanRepresentation(Dst.getType()))
2018       SrcVal = Builder.CreateAnd(SrcVal,
2019                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2020                                                             Info.Size),
2021                                  "bf.value");
2022     MaskedVal = SrcVal;
2023     if (Info.Offset)
2024       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2025 
2026     // Mask out the original value.
2027     Val = Builder.CreateAnd(Val,
2028                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2029                                                      Info.Offset,
2030                                                      Info.Offset + Info.Size),
2031                             "bf.clear");
2032 
2033     // Or together the unchanged values and the source value.
2034     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2035   } else {
2036     assert(Info.Offset == 0);
2037   }
2038 
2039   // Write the new value back out.
2040   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2041 
2042   // Return the new value of the bit-field, if requested.
2043   if (Result) {
2044     llvm::Value *ResultVal = MaskedVal;
2045 
2046     // Sign extend the value if needed.
2047     if (Info.IsSigned) {
2048       assert(Info.Size <= Info.StorageSize);
2049       unsigned HighBits = Info.StorageSize - Info.Size;
2050       if (HighBits) {
2051         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2052         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2053       }
2054     }
2055 
2056     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2057                                       "bf.result.cast");
2058     *Result = EmitFromMemory(ResultVal, Dst.getType());
2059   }
2060 }
2061 
2062 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2063                                                                LValue Dst) {
2064   // This access turns into a read/modify/write of the vector.  Load the input
2065   // value now.
2066   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2067                                         Dst.isVolatileQualified());
2068   const llvm::Constant *Elts = Dst.getExtVectorElts();
2069 
2070   llvm::Value *SrcVal = Src.getScalarVal();
2071 
2072   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2073     unsigned NumSrcElts = VTy->getNumElements();
2074     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2075     if (NumDstElts == NumSrcElts) {
2076       // Use shuffle vector is the src and destination are the same number of
2077       // elements and restore the vector mask since it is on the side it will be
2078       // stored.
2079       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2080       for (unsigned i = 0; i != NumSrcElts; ++i)
2081         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2082 
2083       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2084       Vec = Builder.CreateShuffleVector(SrcVal,
2085                                         llvm::UndefValue::get(Vec->getType()),
2086                                         MaskV);
2087     } else if (NumDstElts > NumSrcElts) {
2088       // Extended the source vector to the same length and then shuffle it
2089       // into the destination.
2090       // FIXME: since we're shuffling with undef, can we just use the indices
2091       //        into that?  This could be simpler.
2092       SmallVector<llvm::Constant*, 4> ExtMask;
2093       for (unsigned i = 0; i != NumSrcElts; ++i)
2094         ExtMask.push_back(Builder.getInt32(i));
2095       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2096       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2097       llvm::Value *ExtSrcVal =
2098         Builder.CreateShuffleVector(SrcVal,
2099                                     llvm::UndefValue::get(SrcVal->getType()),
2100                                     ExtMaskV);
2101       // build identity
2102       SmallVector<llvm::Constant*, 4> Mask;
2103       for (unsigned i = 0; i != NumDstElts; ++i)
2104         Mask.push_back(Builder.getInt32(i));
2105 
2106       // When the vector size is odd and .odd or .hi is used, the last element
2107       // of the Elts constant array will be one past the size of the vector.
2108       // Ignore the last element here, if it is greater than the mask size.
2109       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2110         NumSrcElts--;
2111 
2112       // modify when what gets shuffled in
2113       for (unsigned i = 0; i != NumSrcElts; ++i)
2114         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2115       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2116       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2117     } else {
2118       // We should never shorten the vector
2119       llvm_unreachable("unexpected shorten vector length");
2120     }
2121   } else {
2122     // If the Src is a scalar (not a vector) it must be updating one element.
2123     unsigned InIdx = getAccessedFieldNo(0, Elts);
2124     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2125     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2126   }
2127 
2128   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2129                       Dst.isVolatileQualified());
2130 }
2131 
2132 /// Store of global named registers are always calls to intrinsics.
2133 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2134   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2135          "Bad type for register variable");
2136   llvm::MDNode *RegName = cast<llvm::MDNode>(
2137       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2138   assert(RegName && "Register LValue is not metadata");
2139 
2140   // We accept integer and pointer types only
2141   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2142   llvm::Type *Ty = OrigTy;
2143   if (OrigTy->isPointerTy())
2144     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2145   llvm::Type *Types[] = { Ty };
2146 
2147   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2148   llvm::Value *Value = Src.getScalarVal();
2149   if (OrigTy->isPointerTy())
2150     Value = Builder.CreatePtrToInt(Value, Ty);
2151   Builder.CreateCall(
2152       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2153 }
2154 
2155 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2156 // generating write-barries API. It is currently a global, ivar,
2157 // or neither.
2158 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2159                                  LValue &LV,
2160                                  bool IsMemberAccess=false) {
2161   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2162     return;
2163 
2164   if (isa<ObjCIvarRefExpr>(E)) {
2165     QualType ExpTy = E->getType();
2166     if (IsMemberAccess && ExpTy->isPointerType()) {
2167       // If ivar is a structure pointer, assigning to field of
2168       // this struct follows gcc's behavior and makes it a non-ivar
2169       // writer-barrier conservatively.
2170       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2171       if (ExpTy->isRecordType()) {
2172         LV.setObjCIvar(false);
2173         return;
2174       }
2175     }
2176     LV.setObjCIvar(true);
2177     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2178     LV.setBaseIvarExp(Exp->getBase());
2179     LV.setObjCArray(E->getType()->isArrayType());
2180     return;
2181   }
2182 
2183   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2184     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2185       if (VD->hasGlobalStorage()) {
2186         LV.setGlobalObjCRef(true);
2187         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2188       }
2189     }
2190     LV.setObjCArray(E->getType()->isArrayType());
2191     return;
2192   }
2193 
2194   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2195     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2196     return;
2197   }
2198 
2199   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2200     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2201     if (LV.isObjCIvar()) {
2202       // If cast is to a structure pointer, follow gcc's behavior and make it
2203       // a non-ivar write-barrier.
2204       QualType ExpTy = E->getType();
2205       if (ExpTy->isPointerType())
2206         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2207       if (ExpTy->isRecordType())
2208         LV.setObjCIvar(false);
2209     }
2210     return;
2211   }
2212 
2213   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2214     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2215     return;
2216   }
2217 
2218   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2219     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2220     return;
2221   }
2222 
2223   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2224     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2225     return;
2226   }
2227 
2228   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2229     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2230     return;
2231   }
2232 
2233   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2234     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2235     if (LV.isObjCIvar() && !LV.isObjCArray())
2236       // Using array syntax to assigning to what an ivar points to is not
2237       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2238       LV.setObjCIvar(false);
2239     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2240       // Using array syntax to assigning to what global points to is not
2241       // same as assigning to the global itself. {id *G;} G[i] = 0;
2242       LV.setGlobalObjCRef(false);
2243     return;
2244   }
2245 
2246   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2247     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2248     // We don't know if member is an 'ivar', but this flag is looked at
2249     // only in the context of LV.isObjCIvar().
2250     LV.setObjCArray(E->getType()->isArrayType());
2251     return;
2252   }
2253 }
2254 
2255 static llvm::Value *
2256 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2257                                 llvm::Value *V, llvm::Type *IRType,
2258                                 StringRef Name = StringRef()) {
2259   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2260   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2261 }
2262 
2263 static LValue EmitThreadPrivateVarDeclLValue(
2264     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2265     llvm::Type *RealVarTy, SourceLocation Loc) {
2266   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2267   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2268   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2269 }
2270 
2271 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2272                                                const VarDecl *VD, QualType T) {
2273   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2274       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2275   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2276     return Address::invalid();
2277   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2278   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2279   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2280   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2281 }
2282 
2283 Address
2284 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2285                                      LValueBaseInfo *PointeeBaseInfo,
2286                                      TBAAAccessInfo *PointeeTBAAInfo) {
2287   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2288                                             RefLVal.isVolatile());
2289   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2290 
2291   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2292                                             PointeeBaseInfo, PointeeTBAAInfo,
2293                                             /* forPointeeType= */ true);
2294   return Address(Load, Align);
2295 }
2296 
2297 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2298   LValueBaseInfo PointeeBaseInfo;
2299   TBAAAccessInfo PointeeTBAAInfo;
2300   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2301                                             &PointeeTBAAInfo);
2302   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2303                         PointeeBaseInfo, PointeeTBAAInfo);
2304 }
2305 
2306 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2307                                            const PointerType *PtrTy,
2308                                            LValueBaseInfo *BaseInfo,
2309                                            TBAAAccessInfo *TBAAInfo) {
2310   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2311   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2312                                                BaseInfo, TBAAInfo,
2313                                                /*forPointeeType=*/true));
2314 }
2315 
2316 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2317                                                 const PointerType *PtrTy) {
2318   LValueBaseInfo BaseInfo;
2319   TBAAAccessInfo TBAAInfo;
2320   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2321   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2322 }
2323 
2324 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2325                                       const Expr *E, const VarDecl *VD) {
2326   QualType T = E->getType();
2327 
2328   // If it's thread_local, emit a call to its wrapper function instead.
2329   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2330       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2331     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2332   // Check if the variable is marked as declare target with link clause in
2333   // device codegen.
2334   if (CGF.getLangOpts().OpenMPIsDevice) {
2335     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2336     if (Addr.isValid())
2337       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2338   }
2339 
2340   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2341   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2342   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2343   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2344   Address Addr(V, Alignment);
2345   // Emit reference to the private copy of the variable if it is an OpenMP
2346   // threadprivate variable.
2347   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2348       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2349     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2350                                           E->getExprLoc());
2351   }
2352   LValue LV = VD->getType()->isReferenceType() ?
2353       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2354                                     AlignmentSource::Decl) :
2355       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2356   setObjCGCLValueClass(CGF.getContext(), E, LV);
2357   return LV;
2358 }
2359 
2360 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2361                                                const FunctionDecl *FD) {
2362   if (FD->hasAttr<WeakRefAttr>()) {
2363     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2364     return aliasee.getPointer();
2365   }
2366 
2367   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2368   if (!FD->hasPrototype()) {
2369     if (const FunctionProtoType *Proto =
2370             FD->getType()->getAs<FunctionProtoType>()) {
2371       // Ugly case: for a K&R-style definition, the type of the definition
2372       // isn't the same as the type of a use.  Correct for this with a
2373       // bitcast.
2374       QualType NoProtoType =
2375           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2376       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2377       V = llvm::ConstantExpr::getBitCast(V,
2378                                       CGM.getTypes().ConvertType(NoProtoType));
2379     }
2380   }
2381   return V;
2382 }
2383 
2384 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2385                                      const Expr *E, const FunctionDecl *FD) {
2386   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2387   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2388   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2389                             AlignmentSource::Decl);
2390 }
2391 
2392 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2393                                       llvm::Value *ThisValue) {
2394   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2395   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2396   return CGF.EmitLValueForField(LV, FD);
2397 }
2398 
2399 /// Named Registers are named metadata pointing to the register name
2400 /// which will be read from/written to as an argument to the intrinsic
2401 /// @llvm.read/write_register.
2402 /// So far, only the name is being passed down, but other options such as
2403 /// register type, allocation type or even optimization options could be
2404 /// passed down via the metadata node.
2405 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2406   SmallString<64> Name("llvm.named.register.");
2407   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2408   assert(Asm->getLabel().size() < 64-Name.size() &&
2409       "Register name too big");
2410   Name.append(Asm->getLabel());
2411   llvm::NamedMDNode *M =
2412     CGM.getModule().getOrInsertNamedMetadata(Name);
2413   if (M->getNumOperands() == 0) {
2414     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2415                                               Asm->getLabel());
2416     llvm::Metadata *Ops[] = {Str};
2417     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2418   }
2419 
2420   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2421 
2422   llvm::Value *Ptr =
2423     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2424   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2425 }
2426 
2427 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2428   const NamedDecl *ND = E->getDecl();
2429   QualType T = E->getType();
2430 
2431   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2432     // Global Named registers access via intrinsics only
2433     if (VD->getStorageClass() == SC_Register &&
2434         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2435       return EmitGlobalNamedRegister(VD, CGM);
2436 
2437     // A DeclRefExpr for a reference initialized by a constant expression can
2438     // appear without being odr-used. Directly emit the constant initializer.
2439     const Expr *Init = VD->getAnyInitializer(VD);
2440     const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
2441     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2442         VD->isUsableInConstantExpressions(getContext()) &&
2443         VD->checkInitIsICE() &&
2444         // Do not emit if it is private OpenMP variable.
2445         !(E->refersToEnclosingVariableOrCapture() &&
2446           ((CapturedStmtInfo &&
2447             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2448              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2449            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2450            (BD && BD->capturesVariable(VD))))) {
2451       llvm::Constant *Val =
2452         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2453                                             *VD->evaluateValue(),
2454                                             VD->getType());
2455       assert(Val && "failed to emit reference constant expression");
2456       // FIXME: Eventually we will want to emit vector element references.
2457 
2458       // Should we be using the alignment of the constant pointer we emitted?
2459       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2460                                                     /* BaseInfo= */ nullptr,
2461                                                     /* TBAAInfo= */ nullptr,
2462                                                     /* forPointeeType= */ true);
2463       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2464     }
2465 
2466     // Check for captured variables.
2467     if (E->refersToEnclosingVariableOrCapture()) {
2468       VD = VD->getCanonicalDecl();
2469       if (auto *FD = LambdaCaptureFields.lookup(VD))
2470         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2471       else if (CapturedStmtInfo) {
2472         auto I = LocalDeclMap.find(VD);
2473         if (I != LocalDeclMap.end()) {
2474           if (VD->getType()->isReferenceType())
2475             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2476                                              AlignmentSource::Decl);
2477           return MakeAddrLValue(I->second, T);
2478         }
2479         LValue CapLVal =
2480             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2481                                     CapturedStmtInfo->getContextValue());
2482         return MakeAddrLValue(
2483             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2484             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2485             CapLVal.getTBAAInfo());
2486       }
2487 
2488       assert(isa<BlockDecl>(CurCodeDecl));
2489       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2490       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2491     }
2492   }
2493 
2494   // FIXME: We should be able to assert this for FunctionDecls as well!
2495   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2496   // those with a valid source location.
2497   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2498           !E->getLocation().isValid()) &&
2499          "Should not use decl without marking it used!");
2500 
2501   if (ND->hasAttr<WeakRefAttr>()) {
2502     const auto *VD = cast<ValueDecl>(ND);
2503     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2504     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2505   }
2506 
2507   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2508     // Check if this is a global variable.
2509     if (VD->hasLinkage() || VD->isStaticDataMember())
2510       return EmitGlobalVarDeclLValue(*this, E, VD);
2511 
2512     Address addr = Address::invalid();
2513 
2514     // The variable should generally be present in the local decl map.
2515     auto iter = LocalDeclMap.find(VD);
2516     if (iter != LocalDeclMap.end()) {
2517       addr = iter->second;
2518 
2519     // Otherwise, it might be static local we haven't emitted yet for
2520     // some reason; most likely, because it's in an outer function.
2521     } else if (VD->isStaticLocal()) {
2522       addr = Address(CGM.getOrCreateStaticVarDecl(
2523           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2524                      getContext().getDeclAlign(VD));
2525 
2526     // No other cases for now.
2527     } else {
2528       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2529     }
2530 
2531 
2532     // Check for OpenMP threadprivate variables.
2533     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2534         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2535       return EmitThreadPrivateVarDeclLValue(
2536           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2537           E->getExprLoc());
2538     }
2539 
2540     // Drill into block byref variables.
2541     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2542     if (isBlockByref) {
2543       addr = emitBlockByrefAddress(addr, VD);
2544     }
2545 
2546     // Drill into reference types.
2547     LValue LV = VD->getType()->isReferenceType() ?
2548         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2549         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2550 
2551     bool isLocalStorage = VD->hasLocalStorage();
2552 
2553     bool NonGCable = isLocalStorage &&
2554                      !VD->getType()->isReferenceType() &&
2555                      !isBlockByref;
2556     if (NonGCable) {
2557       LV.getQuals().removeObjCGCAttr();
2558       LV.setNonGC(true);
2559     }
2560 
2561     bool isImpreciseLifetime =
2562       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2563     if (isImpreciseLifetime)
2564       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2565     setObjCGCLValueClass(getContext(), E, LV);
2566     return LV;
2567   }
2568 
2569   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2570     return EmitFunctionDeclLValue(*this, E, FD);
2571 
2572   // FIXME: While we're emitting a binding from an enclosing scope, all other
2573   // DeclRefExprs we see should be implicitly treated as if they also refer to
2574   // an enclosing scope.
2575   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2576     return EmitLValue(BD->getBinding());
2577 
2578   llvm_unreachable("Unhandled DeclRefExpr");
2579 }
2580 
2581 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2582   // __extension__ doesn't affect lvalue-ness.
2583   if (E->getOpcode() == UO_Extension)
2584     return EmitLValue(E->getSubExpr());
2585 
2586   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2587   switch (E->getOpcode()) {
2588   default: llvm_unreachable("Unknown unary operator lvalue!");
2589   case UO_Deref: {
2590     QualType T = E->getSubExpr()->getType()->getPointeeType();
2591     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2592 
2593     LValueBaseInfo BaseInfo;
2594     TBAAAccessInfo TBAAInfo;
2595     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2596                                             &TBAAInfo);
2597     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2598     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2599 
2600     // We should not generate __weak write barrier on indirect reference
2601     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2602     // But, we continue to generate __strong write barrier on indirect write
2603     // into a pointer to object.
2604     if (getLangOpts().ObjC1 &&
2605         getLangOpts().getGC() != LangOptions::NonGC &&
2606         LV.isObjCWeak())
2607       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2608     return LV;
2609   }
2610   case UO_Real:
2611   case UO_Imag: {
2612     LValue LV = EmitLValue(E->getSubExpr());
2613     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2614 
2615     // __real is valid on scalars.  This is a faster way of testing that.
2616     // __imag can only produce an rvalue on scalars.
2617     if (E->getOpcode() == UO_Real &&
2618         !LV.getAddress().getElementType()->isStructTy()) {
2619       assert(E->getSubExpr()->getType()->isArithmeticType());
2620       return LV;
2621     }
2622 
2623     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2624 
2625     Address Component =
2626       (E->getOpcode() == UO_Real
2627          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2628          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2629     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2630                                    CGM.getTBAAInfoForSubobject(LV, T));
2631     ElemLV.getQuals().addQualifiers(LV.getQuals());
2632     return ElemLV;
2633   }
2634   case UO_PreInc:
2635   case UO_PreDec: {
2636     LValue LV = EmitLValue(E->getSubExpr());
2637     bool isInc = E->getOpcode() == UO_PreInc;
2638 
2639     if (E->getType()->isAnyComplexType())
2640       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2641     else
2642       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2643     return LV;
2644   }
2645   }
2646 }
2647 
2648 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2649   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2650                         E->getType(), AlignmentSource::Decl);
2651 }
2652 
2653 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2654   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2655                         E->getType(), AlignmentSource::Decl);
2656 }
2657 
2658 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2659   auto SL = E->getFunctionName();
2660   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2661   StringRef FnName = CurFn->getName();
2662   if (FnName.startswith("\01"))
2663     FnName = FnName.substr(1);
2664   StringRef NameItems[] = {
2665       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2666   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2667   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2668     std::string Name = SL->getString();
2669     if (!Name.empty()) {
2670       unsigned Discriminator =
2671           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2672       if (Discriminator)
2673         Name += "_" + Twine(Discriminator + 1).str();
2674       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2675       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2676     } else {
2677       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2678       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2679     }
2680   }
2681   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2682   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2683 }
2684 
2685 /// Emit a type description suitable for use by a runtime sanitizer library. The
2686 /// format of a type descriptor is
2687 ///
2688 /// \code
2689 ///   { i16 TypeKind, i16 TypeInfo }
2690 /// \endcode
2691 ///
2692 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2693 /// integer, 1 for a floating point value, and -1 for anything else.
2694 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2695   // Only emit each type's descriptor once.
2696   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2697     return C;
2698 
2699   uint16_t TypeKind = -1;
2700   uint16_t TypeInfo = 0;
2701 
2702   if (T->isIntegerType()) {
2703     TypeKind = 0;
2704     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2705                (T->isSignedIntegerType() ? 1 : 0);
2706   } else if (T->isFloatingType()) {
2707     TypeKind = 1;
2708     TypeInfo = getContext().getTypeSize(T);
2709   }
2710 
2711   // Format the type name as if for a diagnostic, including quotes and
2712   // optionally an 'aka'.
2713   SmallString<32> Buffer;
2714   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2715                                     (intptr_t)T.getAsOpaquePtr(),
2716                                     StringRef(), StringRef(), None, Buffer,
2717                                     None);
2718 
2719   llvm::Constant *Components[] = {
2720     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2721     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2722   };
2723   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2724 
2725   auto *GV = new llvm::GlobalVariable(
2726       CGM.getModule(), Descriptor->getType(),
2727       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2728   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2729   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2730 
2731   // Remember the descriptor for this type.
2732   CGM.setTypeDescriptorInMap(T, GV);
2733 
2734   return GV;
2735 }
2736 
2737 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2738   llvm::Type *TargetTy = IntPtrTy;
2739 
2740   if (V->getType() == TargetTy)
2741     return V;
2742 
2743   // Floating-point types which fit into intptr_t are bitcast to integers
2744   // and then passed directly (after zero-extension, if necessary).
2745   if (V->getType()->isFloatingPointTy()) {
2746     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2747     if (Bits <= TargetTy->getIntegerBitWidth())
2748       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2749                                                          Bits));
2750   }
2751 
2752   // Integers which fit in intptr_t are zero-extended and passed directly.
2753   if (V->getType()->isIntegerTy() &&
2754       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2755     return Builder.CreateZExt(V, TargetTy);
2756 
2757   // Pointers are passed directly, everything else is passed by address.
2758   if (!V->getType()->isPointerTy()) {
2759     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2760     Builder.CreateStore(V, Ptr);
2761     V = Ptr.getPointer();
2762   }
2763   return Builder.CreatePtrToInt(V, TargetTy);
2764 }
2765 
2766 /// Emit a representation of a SourceLocation for passing to a handler
2767 /// in a sanitizer runtime library. The format for this data is:
2768 /// \code
2769 ///   struct SourceLocation {
2770 ///     const char *Filename;
2771 ///     int32_t Line, Column;
2772 ///   };
2773 /// \endcode
2774 /// For an invalid SourceLocation, the Filename pointer is null.
2775 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2776   llvm::Constant *Filename;
2777   int Line, Column;
2778 
2779   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2780   if (PLoc.isValid()) {
2781     StringRef FilenameString = PLoc.getFilename();
2782 
2783     int PathComponentsToStrip =
2784         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2785     if (PathComponentsToStrip < 0) {
2786       assert(PathComponentsToStrip != INT_MIN);
2787       int PathComponentsToKeep = -PathComponentsToStrip;
2788       auto I = llvm::sys::path::rbegin(FilenameString);
2789       auto E = llvm::sys::path::rend(FilenameString);
2790       while (I != E && --PathComponentsToKeep)
2791         ++I;
2792 
2793       FilenameString = FilenameString.substr(I - E);
2794     } else if (PathComponentsToStrip > 0) {
2795       auto I = llvm::sys::path::begin(FilenameString);
2796       auto E = llvm::sys::path::end(FilenameString);
2797       while (I != E && PathComponentsToStrip--)
2798         ++I;
2799 
2800       if (I != E)
2801         FilenameString =
2802             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2803       else
2804         FilenameString = llvm::sys::path::filename(FilenameString);
2805     }
2806 
2807     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2808     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2809                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2810     Filename = FilenameGV.getPointer();
2811     Line = PLoc.getLine();
2812     Column = PLoc.getColumn();
2813   } else {
2814     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2815     Line = Column = 0;
2816   }
2817 
2818   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2819                             Builder.getInt32(Column)};
2820 
2821   return llvm::ConstantStruct::getAnon(Data);
2822 }
2823 
2824 namespace {
2825 /// Specify under what conditions this check can be recovered
2826 enum class CheckRecoverableKind {
2827   /// Always terminate program execution if this check fails.
2828   Unrecoverable,
2829   /// Check supports recovering, runtime has both fatal (noreturn) and
2830   /// non-fatal handlers for this check.
2831   Recoverable,
2832   /// Runtime conditionally aborts, always need to support recovery.
2833   AlwaysRecoverable
2834 };
2835 }
2836 
2837 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2838   assert(llvm::countPopulation(Kind) == 1);
2839   switch (Kind) {
2840   case SanitizerKind::Vptr:
2841     return CheckRecoverableKind::AlwaysRecoverable;
2842   case SanitizerKind::Return:
2843   case SanitizerKind::Unreachable:
2844     return CheckRecoverableKind::Unrecoverable;
2845   default:
2846     return CheckRecoverableKind::Recoverable;
2847   }
2848 }
2849 
2850 namespace {
2851 struct SanitizerHandlerInfo {
2852   char const *const Name;
2853   unsigned Version;
2854 };
2855 }
2856 
2857 const SanitizerHandlerInfo SanitizerHandlers[] = {
2858 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2859     LIST_SANITIZER_CHECKS
2860 #undef SANITIZER_CHECK
2861 };
2862 
2863 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2864                                  llvm::FunctionType *FnType,
2865                                  ArrayRef<llvm::Value *> FnArgs,
2866                                  SanitizerHandler CheckHandler,
2867                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2868                                  llvm::BasicBlock *ContBB) {
2869   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2870   bool NeedsAbortSuffix =
2871       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2872   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2873   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2874   const StringRef CheckName = CheckInfo.Name;
2875   std::string FnName = "__ubsan_handle_" + CheckName.str();
2876   if (CheckInfo.Version && !MinimalRuntime)
2877     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2878   if (MinimalRuntime)
2879     FnName += "_minimal";
2880   if (NeedsAbortSuffix)
2881     FnName += "_abort";
2882   bool MayReturn =
2883       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2884 
2885   llvm::AttrBuilder B;
2886   if (!MayReturn) {
2887     B.addAttribute(llvm::Attribute::NoReturn)
2888         .addAttribute(llvm::Attribute::NoUnwind);
2889   }
2890   B.addAttribute(llvm::Attribute::UWTable);
2891 
2892   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2893       FnType, FnName,
2894       llvm::AttributeList::get(CGF.getLLVMContext(),
2895                                llvm::AttributeList::FunctionIndex, B),
2896       /*Local=*/true);
2897   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2898   if (!MayReturn) {
2899     HandlerCall->setDoesNotReturn();
2900     CGF.Builder.CreateUnreachable();
2901   } else {
2902     CGF.Builder.CreateBr(ContBB);
2903   }
2904 }
2905 
2906 void CodeGenFunction::EmitCheck(
2907     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2908     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2909     ArrayRef<llvm::Value *> DynamicArgs) {
2910   assert(IsSanitizerScope);
2911   assert(Checked.size() > 0);
2912   assert(CheckHandler >= 0 &&
2913          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2914   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2915 
2916   llvm::Value *FatalCond = nullptr;
2917   llvm::Value *RecoverableCond = nullptr;
2918   llvm::Value *TrapCond = nullptr;
2919   for (int i = 0, n = Checked.size(); i < n; ++i) {
2920     llvm::Value *Check = Checked[i].first;
2921     // -fsanitize-trap= overrides -fsanitize-recover=.
2922     llvm::Value *&Cond =
2923         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2924             ? TrapCond
2925             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2926                   ? RecoverableCond
2927                   : FatalCond;
2928     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2929   }
2930 
2931   if (TrapCond)
2932     EmitTrapCheck(TrapCond);
2933   if (!FatalCond && !RecoverableCond)
2934     return;
2935 
2936   llvm::Value *JointCond;
2937   if (FatalCond && RecoverableCond)
2938     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2939   else
2940     JointCond = FatalCond ? FatalCond : RecoverableCond;
2941   assert(JointCond);
2942 
2943   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2944   assert(SanOpts.has(Checked[0].second));
2945 #ifndef NDEBUG
2946   for (int i = 1, n = Checked.size(); i < n; ++i) {
2947     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2948            "All recoverable kinds in a single check must be same!");
2949     assert(SanOpts.has(Checked[i].second));
2950   }
2951 #endif
2952 
2953   llvm::BasicBlock *Cont = createBasicBlock("cont");
2954   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2955   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2956   // Give hint that we very much don't expect to execute the handler
2957   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2958   llvm::MDBuilder MDHelper(getLLVMContext());
2959   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2960   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2961   EmitBlock(Handlers);
2962 
2963   // Handler functions take an i8* pointing to the (handler-specific) static
2964   // information block, followed by a sequence of intptr_t arguments
2965   // representing operand values.
2966   SmallVector<llvm::Value *, 4> Args;
2967   SmallVector<llvm::Type *, 4> ArgTypes;
2968   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2969     Args.reserve(DynamicArgs.size() + 1);
2970     ArgTypes.reserve(DynamicArgs.size() + 1);
2971 
2972     // Emit handler arguments and create handler function type.
2973     if (!StaticArgs.empty()) {
2974       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2975       auto *InfoPtr =
2976           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2977                                    llvm::GlobalVariable::PrivateLinkage, Info);
2978       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2979       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2980       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2981       ArgTypes.push_back(Int8PtrTy);
2982     }
2983 
2984     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2985       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2986       ArgTypes.push_back(IntPtrTy);
2987     }
2988   }
2989 
2990   llvm::FunctionType *FnType =
2991     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2992 
2993   if (!FatalCond || !RecoverableCond) {
2994     // Simple case: we need to generate a single handler call, either
2995     // fatal, or non-fatal.
2996     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2997                          (FatalCond != nullptr), Cont);
2998   } else {
2999     // Emit two handler calls: first one for set of unrecoverable checks,
3000     // another one for recoverable.
3001     llvm::BasicBlock *NonFatalHandlerBB =
3002         createBasicBlock("non_fatal." + CheckName);
3003     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3004     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3005     EmitBlock(FatalHandlerBB);
3006     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3007                          NonFatalHandlerBB);
3008     EmitBlock(NonFatalHandlerBB);
3009     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3010                          Cont);
3011   }
3012 
3013   EmitBlock(Cont);
3014 }
3015 
3016 void CodeGenFunction::EmitCfiSlowPathCheck(
3017     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3018     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3019   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3020 
3021   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3022   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3023 
3024   llvm::MDBuilder MDHelper(getLLVMContext());
3025   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3026   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3027 
3028   EmitBlock(CheckBB);
3029 
3030   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3031 
3032   llvm::CallInst *CheckCall;
3033   llvm::Constant *SlowPathFn;
3034   if (WithDiag) {
3035     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3036     auto *InfoPtr =
3037         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3038                                  llvm::GlobalVariable::PrivateLinkage, Info);
3039     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3040     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3041 
3042     SlowPathFn = CGM.getModule().getOrInsertFunction(
3043         "__cfi_slowpath_diag",
3044         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3045                                 false));
3046     CheckCall = Builder.CreateCall(
3047         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3048   } else {
3049     SlowPathFn = CGM.getModule().getOrInsertFunction(
3050         "__cfi_slowpath",
3051         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3052     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3053   }
3054 
3055   CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts()));
3056   CheckCall->setDoesNotThrow();
3057 
3058   EmitBlock(Cont);
3059 }
3060 
3061 // Emit a stub for __cfi_check function so that the linker knows about this
3062 // symbol in LTO mode.
3063 void CodeGenFunction::EmitCfiCheckStub() {
3064   llvm::Module *M = &CGM.getModule();
3065   auto &Ctx = M->getContext();
3066   llvm::Function *F = llvm::Function::Create(
3067       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3068       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3069   CGM.setDSOLocal(F);
3070   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3071   // FIXME: consider emitting an intrinsic call like
3072   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3073   // which can be lowered in CrossDSOCFI pass to the actual contents of
3074   // __cfi_check. This would allow inlining of __cfi_check calls.
3075   llvm::CallInst::Create(
3076       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3077   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3078 }
3079 
3080 // This function is basically a switch over the CFI failure kind, which is
3081 // extracted from CFICheckFailData (1st function argument). Each case is either
3082 // llvm.trap or a call to one of the two runtime handlers, based on
3083 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3084 // failure kind) traps, but this should really never happen.  CFICheckFailData
3085 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3086 // check kind; in this case __cfi_check_fail traps as well.
3087 void CodeGenFunction::EmitCfiCheckFail() {
3088   SanitizerScope SanScope(this);
3089   FunctionArgList Args;
3090   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3091                             ImplicitParamDecl::Other);
3092   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3093                             ImplicitParamDecl::Other);
3094   Args.push_back(&ArgData);
3095   Args.push_back(&ArgAddr);
3096 
3097   const CGFunctionInfo &FI =
3098     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3099 
3100   llvm::Function *F = llvm::Function::Create(
3101       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3102       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3103   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3104 
3105   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3106                 SourceLocation());
3107 
3108   // This function should not be affected by blacklist. This function does
3109   // not have a source location, but "src:*" would still apply. Revert any
3110   // changes to SanOpts made in StartFunction.
3111   SanOpts = CGM.getLangOpts().Sanitize;
3112 
3113   llvm::Value *Data =
3114       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3115                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3116   llvm::Value *Addr =
3117       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3118                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3119 
3120   // Data == nullptr means the calling module has trap behaviour for this check.
3121   llvm::Value *DataIsNotNullPtr =
3122       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3123   EmitTrapCheck(DataIsNotNullPtr);
3124 
3125   llvm::StructType *SourceLocationTy =
3126       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3127   llvm::StructType *CfiCheckFailDataTy =
3128       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3129 
3130   llvm::Value *V = Builder.CreateConstGEP2_32(
3131       CfiCheckFailDataTy,
3132       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3133       0);
3134   Address CheckKindAddr(V, getIntAlign());
3135   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3136 
3137   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3138       CGM.getLLVMContext(),
3139       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3140   llvm::Value *ValidVtable = Builder.CreateZExt(
3141       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3142                          {Addr, AllVtables}),
3143       IntPtrTy);
3144 
3145   const std::pair<int, SanitizerMask> CheckKinds[] = {
3146       {CFITCK_VCall, SanitizerKind::CFIVCall},
3147       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3148       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3149       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3150       {CFITCK_ICall, SanitizerKind::CFIICall}};
3151 
3152   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3153   for (auto CheckKindMaskPair : CheckKinds) {
3154     int Kind = CheckKindMaskPair.first;
3155     SanitizerMask Mask = CheckKindMaskPair.second;
3156     llvm::Value *Cond =
3157         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3158     if (CGM.getLangOpts().Sanitize.has(Mask))
3159       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3160                 {Data, Addr, ValidVtable});
3161     else
3162       EmitTrapCheck(Cond);
3163   }
3164 
3165   FinishFunction();
3166   // The only reference to this function will be created during LTO link.
3167   // Make sure it survives until then.
3168   CGM.addUsedGlobal(F);
3169 }
3170 
3171 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3172   if (SanOpts.has(SanitizerKind::Unreachable)) {
3173     SanitizerScope SanScope(this);
3174     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3175                              SanitizerKind::Unreachable),
3176               SanitizerHandler::BuiltinUnreachable,
3177               EmitCheckSourceLocation(Loc), None);
3178   }
3179   Builder.CreateUnreachable();
3180 }
3181 
3182 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3183   llvm::BasicBlock *Cont = createBasicBlock("cont");
3184 
3185   // If we're optimizing, collapse all calls to trap down to just one per
3186   // function to save on code size.
3187   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3188     TrapBB = createBasicBlock("trap");
3189     Builder.CreateCondBr(Checked, Cont, TrapBB);
3190     EmitBlock(TrapBB);
3191     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3192     TrapCall->setDoesNotReturn();
3193     TrapCall->setDoesNotThrow();
3194     Builder.CreateUnreachable();
3195   } else {
3196     Builder.CreateCondBr(Checked, Cont, TrapBB);
3197   }
3198 
3199   EmitBlock(Cont);
3200 }
3201 
3202 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3203   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3204 
3205   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3206     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3207                                   CGM.getCodeGenOpts().TrapFuncName);
3208     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3209   }
3210 
3211   return TrapCall;
3212 }
3213 
3214 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3215                                                  LValueBaseInfo *BaseInfo,
3216                                                  TBAAAccessInfo *TBAAInfo) {
3217   assert(E->getType()->isArrayType() &&
3218          "Array to pointer decay must have array source type!");
3219 
3220   // Expressions of array type can't be bitfields or vector elements.
3221   LValue LV = EmitLValue(E);
3222   Address Addr = LV.getAddress();
3223 
3224   // If the array type was an incomplete type, we need to make sure
3225   // the decay ends up being the right type.
3226   llvm::Type *NewTy = ConvertType(E->getType());
3227   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3228 
3229   // Note that VLA pointers are always decayed, so we don't need to do
3230   // anything here.
3231   if (!E->getType()->isVariableArrayType()) {
3232     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3233            "Expected pointer to array");
3234     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3235   }
3236 
3237   // The result of this decay conversion points to an array element within the
3238   // base lvalue. However, since TBAA currently does not support representing
3239   // accesses to elements of member arrays, we conservatively represent accesses
3240   // to the pointee object as if it had no any base lvalue specified.
3241   // TODO: Support TBAA for member arrays.
3242   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3243   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3244   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3245 
3246   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3247 }
3248 
3249 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3250 /// array to pointer, return the array subexpression.
3251 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3252   // If this isn't just an array->pointer decay, bail out.
3253   const auto *CE = dyn_cast<CastExpr>(E);
3254   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3255     return nullptr;
3256 
3257   // If this is a decay from variable width array, bail out.
3258   const Expr *SubExpr = CE->getSubExpr();
3259   if (SubExpr->getType()->isVariableArrayType())
3260     return nullptr;
3261 
3262   return SubExpr;
3263 }
3264 
3265 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3266                                           llvm::Value *ptr,
3267                                           ArrayRef<llvm::Value*> indices,
3268                                           bool inbounds,
3269                                           bool signedIndices,
3270                                           SourceLocation loc,
3271                                     const llvm::Twine &name = "arrayidx") {
3272   if (inbounds) {
3273     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3274                                       CodeGenFunction::NotSubtraction, loc,
3275                                       name);
3276   } else {
3277     return CGF.Builder.CreateGEP(ptr, indices, name);
3278   }
3279 }
3280 
3281 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3282                                       llvm::Value *idx,
3283                                       CharUnits eltSize) {
3284   // If we have a constant index, we can use the exact offset of the
3285   // element we're accessing.
3286   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3287     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3288     return arrayAlign.alignmentAtOffset(offset);
3289 
3290   // Otherwise, use the worst-case alignment for any element.
3291   } else {
3292     return arrayAlign.alignmentOfArrayElement(eltSize);
3293   }
3294 }
3295 
3296 static QualType getFixedSizeElementType(const ASTContext &ctx,
3297                                         const VariableArrayType *vla) {
3298   QualType eltType;
3299   do {
3300     eltType = vla->getElementType();
3301   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3302   return eltType;
3303 }
3304 
3305 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3306                                      ArrayRef<llvm::Value *> indices,
3307                                      QualType eltType, bool inbounds,
3308                                      bool signedIndices, SourceLocation loc,
3309                                      const llvm::Twine &name = "arrayidx") {
3310   // All the indices except that last must be zero.
3311 #ifndef NDEBUG
3312   for (auto idx : indices.drop_back())
3313     assert(isa<llvm::ConstantInt>(idx) &&
3314            cast<llvm::ConstantInt>(idx)->isZero());
3315 #endif
3316 
3317   // Determine the element size of the statically-sized base.  This is
3318   // the thing that the indices are expressed in terms of.
3319   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3320     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3321   }
3322 
3323   // We can use that to compute the best alignment of the element.
3324   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3325   CharUnits eltAlign =
3326     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3327 
3328   llvm::Value *eltPtr = emitArraySubscriptGEP(
3329       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3330   return Address(eltPtr, eltAlign);
3331 }
3332 
3333 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3334                                                bool Accessed) {
3335   // The index must always be an integer, which is not an aggregate.  Emit it
3336   // in lexical order (this complexity is, sadly, required by C++17).
3337   llvm::Value *IdxPre =
3338       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3339   bool SignedIndices = false;
3340   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3341     auto *Idx = IdxPre;
3342     if (E->getLHS() != E->getIdx()) {
3343       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3344       Idx = EmitScalarExpr(E->getIdx());
3345     }
3346 
3347     QualType IdxTy = E->getIdx()->getType();
3348     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3349     SignedIndices |= IdxSigned;
3350 
3351     if (SanOpts.has(SanitizerKind::ArrayBounds))
3352       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3353 
3354     // Extend or truncate the index type to 32 or 64-bits.
3355     if (Promote && Idx->getType() != IntPtrTy)
3356       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3357 
3358     return Idx;
3359   };
3360   IdxPre = nullptr;
3361 
3362   // If the base is a vector type, then we are forming a vector element lvalue
3363   // with this subscript.
3364   if (E->getBase()->getType()->isVectorType() &&
3365       !isa<ExtVectorElementExpr>(E->getBase())) {
3366     // Emit the vector as an lvalue to get its address.
3367     LValue LHS = EmitLValue(E->getBase());
3368     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3369     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3370     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3371                                  LHS.getBaseInfo(), TBAAAccessInfo());
3372   }
3373 
3374   // All the other cases basically behave like simple offsetting.
3375 
3376   // Handle the extvector case we ignored above.
3377   if (isa<ExtVectorElementExpr>(E->getBase())) {
3378     LValue LV = EmitLValue(E->getBase());
3379     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3380     Address Addr = EmitExtVectorElementLValue(LV);
3381 
3382     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3383     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3384                                  SignedIndices, E->getExprLoc());
3385     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3386                           CGM.getTBAAInfoForSubobject(LV, EltType));
3387   }
3388 
3389   LValueBaseInfo EltBaseInfo;
3390   TBAAAccessInfo EltTBAAInfo;
3391   Address Addr = Address::invalid();
3392   if (const VariableArrayType *vla =
3393            getContext().getAsVariableArrayType(E->getType())) {
3394     // The base must be a pointer, which is not an aggregate.  Emit
3395     // it.  It needs to be emitted first in case it's what captures
3396     // the VLA bounds.
3397     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3398     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3399 
3400     // The element count here is the total number of non-VLA elements.
3401     llvm::Value *numElements = getVLASize(vla).NumElts;
3402 
3403     // Effectively, the multiply by the VLA size is part of the GEP.
3404     // GEP indexes are signed, and scaling an index isn't permitted to
3405     // signed-overflow, so we use the same semantics for our explicit
3406     // multiply.  We suppress this if overflow is not undefined behavior.
3407     if (getLangOpts().isSignedOverflowDefined()) {
3408       Idx = Builder.CreateMul(Idx, numElements);
3409     } else {
3410       Idx = Builder.CreateNSWMul(Idx, numElements);
3411     }
3412 
3413     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3414                                  !getLangOpts().isSignedOverflowDefined(),
3415                                  SignedIndices, E->getExprLoc());
3416 
3417   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3418     // Indexing over an interface, as in "NSString *P; P[4];"
3419 
3420     // Emit the base pointer.
3421     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3422     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3423 
3424     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3425     llvm::Value *InterfaceSizeVal =
3426         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3427 
3428     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3429 
3430     // We don't necessarily build correct LLVM struct types for ObjC
3431     // interfaces, so we can't rely on GEP to do this scaling
3432     // correctly, so we need to cast to i8*.  FIXME: is this actually
3433     // true?  A lot of other things in the fragile ABI would break...
3434     llvm::Type *OrigBaseTy = Addr.getType();
3435     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3436 
3437     // Do the GEP.
3438     CharUnits EltAlign =
3439       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3440     llvm::Value *EltPtr =
3441         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3442                               SignedIndices, E->getExprLoc());
3443     Addr = Address(EltPtr, EltAlign);
3444 
3445     // Cast back.
3446     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3447   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3448     // If this is A[i] where A is an array, the frontend will have decayed the
3449     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3450     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3451     // "gep x, i" here.  Emit one "gep A, 0, i".
3452     assert(Array->getType()->isArrayType() &&
3453            "Array to pointer decay must have array source type!");
3454     LValue ArrayLV;
3455     // For simple multidimensional array indexing, set the 'accessed' flag for
3456     // better bounds-checking of the base expression.
3457     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3458       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3459     else
3460       ArrayLV = EmitLValue(Array);
3461     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3462 
3463     // Propagate the alignment from the array itself to the result.
3464     Addr = emitArraySubscriptGEP(
3465         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3466         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3467         E->getExprLoc());
3468     EltBaseInfo = ArrayLV.getBaseInfo();
3469     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3470   } else {
3471     // The base must be a pointer; emit it with an estimate of its alignment.
3472     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3473     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3474     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3475                                  !getLangOpts().isSignedOverflowDefined(),
3476                                  SignedIndices, E->getExprLoc());
3477   }
3478 
3479   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3480 
3481   if (getLangOpts().ObjC1 &&
3482       getLangOpts().getGC() != LangOptions::NonGC) {
3483     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3484     setObjCGCLValueClass(getContext(), E, LV);
3485   }
3486   return LV;
3487 }
3488 
3489 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3490                                        LValueBaseInfo &BaseInfo,
3491                                        TBAAAccessInfo &TBAAInfo,
3492                                        QualType BaseTy, QualType ElTy,
3493                                        bool IsLowerBound) {
3494   LValue BaseLVal;
3495   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3496     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3497     if (BaseTy->isArrayType()) {
3498       Address Addr = BaseLVal.getAddress();
3499       BaseInfo = BaseLVal.getBaseInfo();
3500 
3501       // If the array type was an incomplete type, we need to make sure
3502       // the decay ends up being the right type.
3503       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3504       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3505 
3506       // Note that VLA pointers are always decayed, so we don't need to do
3507       // anything here.
3508       if (!BaseTy->isVariableArrayType()) {
3509         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3510                "Expected pointer to array");
3511         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3512                                            "arraydecay");
3513       }
3514 
3515       return CGF.Builder.CreateElementBitCast(Addr,
3516                                               CGF.ConvertTypeForMem(ElTy));
3517     }
3518     LValueBaseInfo TypeBaseInfo;
3519     TBAAAccessInfo TypeTBAAInfo;
3520     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3521                                                   &TypeTBAAInfo);
3522     BaseInfo.mergeForCast(TypeBaseInfo);
3523     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3524     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3525   }
3526   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3527 }
3528 
3529 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3530                                                 bool IsLowerBound) {
3531   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3532   QualType ResultExprTy;
3533   if (auto *AT = getContext().getAsArrayType(BaseTy))
3534     ResultExprTy = AT->getElementType();
3535   else
3536     ResultExprTy = BaseTy->getPointeeType();
3537   llvm::Value *Idx = nullptr;
3538   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3539     // Requesting lower bound or upper bound, but without provided length and
3540     // without ':' symbol for the default length -> length = 1.
3541     // Idx = LowerBound ?: 0;
3542     if (auto *LowerBound = E->getLowerBound()) {
3543       Idx = Builder.CreateIntCast(
3544           EmitScalarExpr(LowerBound), IntPtrTy,
3545           LowerBound->getType()->hasSignedIntegerRepresentation());
3546     } else
3547       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3548   } else {
3549     // Try to emit length or lower bound as constant. If this is possible, 1
3550     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3551     // IR (LB + Len) - 1.
3552     auto &C = CGM.getContext();
3553     auto *Length = E->getLength();
3554     llvm::APSInt ConstLength;
3555     if (Length) {
3556       // Idx = LowerBound + Length - 1;
3557       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3558         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3559         Length = nullptr;
3560       }
3561       auto *LowerBound = E->getLowerBound();
3562       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3563       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3564         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3565         LowerBound = nullptr;
3566       }
3567       if (!Length)
3568         --ConstLength;
3569       else if (!LowerBound)
3570         --ConstLowerBound;
3571 
3572       if (Length || LowerBound) {
3573         auto *LowerBoundVal =
3574             LowerBound
3575                 ? Builder.CreateIntCast(
3576                       EmitScalarExpr(LowerBound), IntPtrTy,
3577                       LowerBound->getType()->hasSignedIntegerRepresentation())
3578                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3579         auto *LengthVal =
3580             Length
3581                 ? Builder.CreateIntCast(
3582                       EmitScalarExpr(Length), IntPtrTy,
3583                       Length->getType()->hasSignedIntegerRepresentation())
3584                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3585         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3586                                 /*HasNUW=*/false,
3587                                 !getLangOpts().isSignedOverflowDefined());
3588         if (Length && LowerBound) {
3589           Idx = Builder.CreateSub(
3590               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3591               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3592         }
3593       } else
3594         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3595     } else {
3596       // Idx = ArraySize - 1;
3597       QualType ArrayTy = BaseTy->isPointerType()
3598                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3599                              : BaseTy;
3600       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3601         Length = VAT->getSizeExpr();
3602         if (Length->isIntegerConstantExpr(ConstLength, C))
3603           Length = nullptr;
3604       } else {
3605         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3606         ConstLength = CAT->getSize();
3607       }
3608       if (Length) {
3609         auto *LengthVal = Builder.CreateIntCast(
3610             EmitScalarExpr(Length), IntPtrTy,
3611             Length->getType()->hasSignedIntegerRepresentation());
3612         Idx = Builder.CreateSub(
3613             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3614             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3615       } else {
3616         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3617         --ConstLength;
3618         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3619       }
3620     }
3621   }
3622   assert(Idx);
3623 
3624   Address EltPtr = Address::invalid();
3625   LValueBaseInfo BaseInfo;
3626   TBAAAccessInfo TBAAInfo;
3627   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3628     // The base must be a pointer, which is not an aggregate.  Emit
3629     // it.  It needs to be emitted first in case it's what captures
3630     // the VLA bounds.
3631     Address Base =
3632         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3633                                 BaseTy, VLA->getElementType(), IsLowerBound);
3634     // The element count here is the total number of non-VLA elements.
3635     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3636 
3637     // Effectively, the multiply by the VLA size is part of the GEP.
3638     // GEP indexes are signed, and scaling an index isn't permitted to
3639     // signed-overflow, so we use the same semantics for our explicit
3640     // multiply.  We suppress this if overflow is not undefined behavior.
3641     if (getLangOpts().isSignedOverflowDefined())
3642       Idx = Builder.CreateMul(Idx, NumElements);
3643     else
3644       Idx = Builder.CreateNSWMul(Idx, NumElements);
3645     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3646                                    !getLangOpts().isSignedOverflowDefined(),
3647                                    /*SignedIndices=*/false, E->getExprLoc());
3648   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3649     // If this is A[i] where A is an array, the frontend will have decayed the
3650     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3651     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3652     // "gep x, i" here.  Emit one "gep A, 0, i".
3653     assert(Array->getType()->isArrayType() &&
3654            "Array to pointer decay must have array source type!");
3655     LValue ArrayLV;
3656     // For simple multidimensional array indexing, set the 'accessed' flag for
3657     // better bounds-checking of the base expression.
3658     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3659       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3660     else
3661       ArrayLV = EmitLValue(Array);
3662 
3663     // Propagate the alignment from the array itself to the result.
3664     EltPtr = emitArraySubscriptGEP(
3665         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3666         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3667         /*SignedIndices=*/false, E->getExprLoc());
3668     BaseInfo = ArrayLV.getBaseInfo();
3669     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3670   } else {
3671     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3672                                            TBAAInfo, BaseTy, ResultExprTy,
3673                                            IsLowerBound);
3674     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3675                                    !getLangOpts().isSignedOverflowDefined(),
3676                                    /*SignedIndices=*/false, E->getExprLoc());
3677   }
3678 
3679   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3680 }
3681 
3682 LValue CodeGenFunction::
3683 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3684   // Emit the base vector as an l-value.
3685   LValue Base;
3686 
3687   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3688   if (E->isArrow()) {
3689     // If it is a pointer to a vector, emit the address and form an lvalue with
3690     // it.
3691     LValueBaseInfo BaseInfo;
3692     TBAAAccessInfo TBAAInfo;
3693     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3694     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3695     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3696     Base.getQuals().removeObjCGCAttr();
3697   } else if (E->getBase()->isGLValue()) {
3698     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3699     // emit the base as an lvalue.
3700     assert(E->getBase()->getType()->isVectorType());
3701     Base = EmitLValue(E->getBase());
3702   } else {
3703     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3704     assert(E->getBase()->getType()->isVectorType() &&
3705            "Result must be a vector");
3706     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3707 
3708     // Store the vector to memory (because LValue wants an address).
3709     Address VecMem = CreateMemTemp(E->getBase()->getType());
3710     Builder.CreateStore(Vec, VecMem);
3711     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3712                           AlignmentSource::Decl);
3713   }
3714 
3715   QualType type =
3716     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3717 
3718   // Encode the element access list into a vector of unsigned indices.
3719   SmallVector<uint32_t, 4> Indices;
3720   E->getEncodedElementAccess(Indices);
3721 
3722   if (Base.isSimple()) {
3723     llvm::Constant *CV =
3724         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3725     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3726                                     Base.getBaseInfo(), TBAAAccessInfo());
3727   }
3728   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3729 
3730   llvm::Constant *BaseElts = Base.getExtVectorElts();
3731   SmallVector<llvm::Constant *, 4> CElts;
3732 
3733   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3734     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3735   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3736   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3737                                   Base.getBaseInfo(), TBAAAccessInfo());
3738 }
3739 
3740 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3741   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3742     EmitIgnoredExpr(E->getBase());
3743     return EmitDeclRefLValue(DRE);
3744   }
3745 
3746   Expr *BaseExpr = E->getBase();
3747   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3748   LValue BaseLV;
3749   if (E->isArrow()) {
3750     LValueBaseInfo BaseInfo;
3751     TBAAAccessInfo TBAAInfo;
3752     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3753     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3754     SanitizerSet SkippedChecks;
3755     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3756     if (IsBaseCXXThis)
3757       SkippedChecks.set(SanitizerKind::Alignment, true);
3758     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3759       SkippedChecks.set(SanitizerKind::Null, true);
3760     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3761                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3762     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3763   } else
3764     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3765 
3766   NamedDecl *ND = E->getMemberDecl();
3767   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3768     LValue LV = EmitLValueForField(BaseLV, Field);
3769     setObjCGCLValueClass(getContext(), E, LV);
3770     return LV;
3771   }
3772 
3773   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3774     return EmitFunctionDeclLValue(*this, E, FD);
3775 
3776   llvm_unreachable("Unhandled member declaration!");
3777 }
3778 
3779 /// Given that we are currently emitting a lambda, emit an l-value for
3780 /// one of its members.
3781 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3782   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3783   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3784   QualType LambdaTagType =
3785     getContext().getTagDeclType(Field->getParent());
3786   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3787   return EmitLValueForField(LambdaLV, Field);
3788 }
3789 
3790 /// Drill down to the storage of a field without walking into
3791 /// reference types.
3792 ///
3793 /// The resulting address doesn't necessarily have the right type.
3794 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3795                                       const FieldDecl *field) {
3796   const RecordDecl *rec = field->getParent();
3797 
3798   unsigned idx =
3799     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3800 
3801   CharUnits offset;
3802   // Adjust the alignment down to the given offset.
3803   // As a special case, if the LLVM field index is 0, we know that this
3804   // is zero.
3805   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3806                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3807          "LLVM field at index zero had non-zero offset?");
3808   if (idx != 0) {
3809     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3810     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3811     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3812   }
3813 
3814   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3815 }
3816 
3817 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3818   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3819   if (!RD)
3820     return false;
3821 
3822   if (RD->isDynamicClass())
3823     return true;
3824 
3825   for (const auto &Base : RD->bases())
3826     if (hasAnyVptr(Base.getType(), Context))
3827       return true;
3828 
3829   for (const FieldDecl *Field : RD->fields())
3830     if (hasAnyVptr(Field->getType(), Context))
3831       return true;
3832 
3833   return false;
3834 }
3835 
3836 LValue CodeGenFunction::EmitLValueForField(LValue base,
3837                                            const FieldDecl *field) {
3838   LValueBaseInfo BaseInfo = base.getBaseInfo();
3839 
3840   if (field->isBitField()) {
3841     const CGRecordLayout &RL =
3842       CGM.getTypes().getCGRecordLayout(field->getParent());
3843     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3844     Address Addr = base.getAddress();
3845     unsigned Idx = RL.getLLVMFieldNo(field);
3846     if (Idx != 0)
3847       // For structs, we GEP to the field that the record layout suggests.
3848       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3849                                      field->getName());
3850     // Get the access type.
3851     llvm::Type *FieldIntTy =
3852       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3853     if (Addr.getElementType() != FieldIntTy)
3854       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3855 
3856     QualType fieldType =
3857       field->getType().withCVRQualifiers(base.getVRQualifiers());
3858     // TODO: Support TBAA for bit fields.
3859     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3860     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3861                                 TBAAAccessInfo());
3862   }
3863 
3864   // Fields of may-alias structures are may-alias themselves.
3865   // FIXME: this should get propagated down through anonymous structs
3866   // and unions.
3867   QualType FieldType = field->getType();
3868   const RecordDecl *rec = field->getParent();
3869   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3870   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3871   TBAAAccessInfo FieldTBAAInfo;
3872   if (base.getTBAAInfo().isMayAlias() ||
3873           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3874     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3875   } else if (rec->isUnion()) {
3876     // TODO: Support TBAA for unions.
3877     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3878   } else {
3879     // If no base type been assigned for the base access, then try to generate
3880     // one for this base lvalue.
3881     FieldTBAAInfo = base.getTBAAInfo();
3882     if (!FieldTBAAInfo.BaseType) {
3883         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3884         assert(!FieldTBAAInfo.Offset &&
3885                "Nonzero offset for an access with no base type!");
3886     }
3887 
3888     // Adjust offset to be relative to the base type.
3889     const ASTRecordLayout &Layout =
3890         getContext().getASTRecordLayout(field->getParent());
3891     unsigned CharWidth = getContext().getCharWidth();
3892     if (FieldTBAAInfo.BaseType)
3893       FieldTBAAInfo.Offset +=
3894           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3895 
3896     // Update the final access type and size.
3897     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3898     FieldTBAAInfo.Size =
3899         getContext().getTypeSizeInChars(FieldType).getQuantity();
3900   }
3901 
3902   Address addr = base.getAddress();
3903   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3904     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3905         ClassDef->isDynamicClass()) {
3906       // Getting to any field of dynamic object requires stripping dynamic
3907       // information provided by invariant.group.  This is because accessing
3908       // fields may leak the real address of dynamic object, which could result
3909       // in miscompilation when leaked pointer would be compared.
3910       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3911       addr = Address(stripped, addr.getAlignment());
3912     }
3913   }
3914 
3915   unsigned RecordCVR = base.getVRQualifiers();
3916   if (rec->isUnion()) {
3917     // For unions, there is no pointer adjustment.
3918     assert(!FieldType->isReferenceType() && "union has reference member");
3919     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3920         hasAnyVptr(FieldType, getContext()))
3921       // Because unions can easily skip invariant.barriers, we need to add
3922       // a barrier every time CXXRecord field with vptr is referenced.
3923       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3924                      addr.getAlignment());
3925   } else {
3926     // For structs, we GEP to the field that the record layout suggests.
3927     addr = emitAddrOfFieldStorage(*this, addr, field);
3928 
3929     // If this is a reference field, load the reference right now.
3930     if (FieldType->isReferenceType()) {
3931       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3932                                       FieldTBAAInfo);
3933       if (RecordCVR & Qualifiers::Volatile)
3934         RefLVal.getQuals().setVolatile(true);
3935       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3936 
3937       // Qualifiers on the struct don't apply to the referencee.
3938       RecordCVR = 0;
3939       FieldType = FieldType->getPointeeType();
3940     }
3941   }
3942 
3943   // Make sure that the address is pointing to the right type.  This is critical
3944   // for both unions and structs.  A union needs a bitcast, a struct element
3945   // will need a bitcast if the LLVM type laid out doesn't match the desired
3946   // type.
3947   addr = Builder.CreateElementBitCast(
3948       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3949 
3950   if (field->hasAttr<AnnotateAttr>())
3951     addr = EmitFieldAnnotations(field, addr);
3952 
3953   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3954   LV.getQuals().addCVRQualifiers(RecordCVR);
3955 
3956   // __weak attribute on a field is ignored.
3957   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3958     LV.getQuals().removeObjCGCAttr();
3959 
3960   return LV;
3961 }
3962 
3963 LValue
3964 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3965                                                   const FieldDecl *Field) {
3966   QualType FieldType = Field->getType();
3967 
3968   if (!FieldType->isReferenceType())
3969     return EmitLValueForField(Base, Field);
3970 
3971   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3972 
3973   // Make sure that the address is pointing to the right type.
3974   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3975   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3976 
3977   // TODO: Generate TBAA information that describes this access as a structure
3978   // member access and not just an access to an object of the field's type. This
3979   // should be similar to what we do in EmitLValueForField().
3980   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3981   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3982   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3983   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3984                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3985 }
3986 
3987 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3988   if (E->isFileScope()) {
3989     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3990     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3991   }
3992   if (E->getType()->isVariablyModifiedType())
3993     // make sure to emit the VLA size.
3994     EmitVariablyModifiedType(E->getType());
3995 
3996   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3997   const Expr *InitExpr = E->getInitializer();
3998   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3999 
4000   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4001                    /*Init*/ true);
4002 
4003   return Result;
4004 }
4005 
4006 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4007   if (!E->isGLValue())
4008     // Initializing an aggregate temporary in C++11: T{...}.
4009     return EmitAggExprToLValue(E);
4010 
4011   // An lvalue initializer list must be initializing a reference.
4012   assert(E->isTransparent() && "non-transparent glvalue init list");
4013   return EmitLValue(E->getInit(0));
4014 }
4015 
4016 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4017 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4018 /// LValue is returned and the current block has been terminated.
4019 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4020                                                     const Expr *Operand) {
4021   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4022     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4023     return None;
4024   }
4025 
4026   return CGF.EmitLValue(Operand);
4027 }
4028 
4029 LValue CodeGenFunction::
4030 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4031   if (!expr->isGLValue()) {
4032     // ?: here should be an aggregate.
4033     assert(hasAggregateEvaluationKind(expr->getType()) &&
4034            "Unexpected conditional operator!");
4035     return EmitAggExprToLValue(expr);
4036   }
4037 
4038   OpaqueValueMapping binding(*this, expr);
4039 
4040   const Expr *condExpr = expr->getCond();
4041   bool CondExprBool;
4042   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4043     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4044     if (!CondExprBool) std::swap(live, dead);
4045 
4046     if (!ContainsLabel(dead)) {
4047       // If the true case is live, we need to track its region.
4048       if (CondExprBool)
4049         incrementProfileCounter(expr);
4050       return EmitLValue(live);
4051     }
4052   }
4053 
4054   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4055   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4056   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4057 
4058   ConditionalEvaluation eval(*this);
4059   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4060 
4061   // Any temporaries created here are conditional.
4062   EmitBlock(lhsBlock);
4063   incrementProfileCounter(expr);
4064   eval.begin(*this);
4065   Optional<LValue> lhs =
4066       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4067   eval.end(*this);
4068 
4069   if (lhs && !lhs->isSimple())
4070     return EmitUnsupportedLValue(expr, "conditional operator");
4071 
4072   lhsBlock = Builder.GetInsertBlock();
4073   if (lhs)
4074     Builder.CreateBr(contBlock);
4075 
4076   // Any temporaries created here are conditional.
4077   EmitBlock(rhsBlock);
4078   eval.begin(*this);
4079   Optional<LValue> rhs =
4080       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4081   eval.end(*this);
4082   if (rhs && !rhs->isSimple())
4083     return EmitUnsupportedLValue(expr, "conditional operator");
4084   rhsBlock = Builder.GetInsertBlock();
4085 
4086   EmitBlock(contBlock);
4087 
4088   if (lhs && rhs) {
4089     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4090                                            2, "cond-lvalue");
4091     phi->addIncoming(lhs->getPointer(), lhsBlock);
4092     phi->addIncoming(rhs->getPointer(), rhsBlock);
4093     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4094     AlignmentSource alignSource =
4095       std::max(lhs->getBaseInfo().getAlignmentSource(),
4096                rhs->getBaseInfo().getAlignmentSource());
4097     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4098         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4099     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4100                           TBAAInfo);
4101   } else {
4102     assert((lhs || rhs) &&
4103            "both operands of glvalue conditional are throw-expressions?");
4104     return lhs ? *lhs : *rhs;
4105   }
4106 }
4107 
4108 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4109 /// type. If the cast is to a reference, we can have the usual lvalue result,
4110 /// otherwise if a cast is needed by the code generator in an lvalue context,
4111 /// then it must mean that we need the address of an aggregate in order to
4112 /// access one of its members.  This can happen for all the reasons that casts
4113 /// are permitted with aggregate result, including noop aggregate casts, and
4114 /// cast from scalar to union.
4115 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4116   switch (E->getCastKind()) {
4117   case CK_ToVoid:
4118   case CK_BitCast:
4119   case CK_ArrayToPointerDecay:
4120   case CK_FunctionToPointerDecay:
4121   case CK_NullToMemberPointer:
4122   case CK_NullToPointer:
4123   case CK_IntegralToPointer:
4124   case CK_PointerToIntegral:
4125   case CK_PointerToBoolean:
4126   case CK_VectorSplat:
4127   case CK_IntegralCast:
4128   case CK_BooleanToSignedIntegral:
4129   case CK_IntegralToBoolean:
4130   case CK_IntegralToFloating:
4131   case CK_FloatingToIntegral:
4132   case CK_FloatingToBoolean:
4133   case CK_FloatingCast:
4134   case CK_FloatingRealToComplex:
4135   case CK_FloatingComplexToReal:
4136   case CK_FloatingComplexToBoolean:
4137   case CK_FloatingComplexCast:
4138   case CK_FloatingComplexToIntegralComplex:
4139   case CK_IntegralRealToComplex:
4140   case CK_IntegralComplexToReal:
4141   case CK_IntegralComplexToBoolean:
4142   case CK_IntegralComplexCast:
4143   case CK_IntegralComplexToFloatingComplex:
4144   case CK_DerivedToBaseMemberPointer:
4145   case CK_BaseToDerivedMemberPointer:
4146   case CK_MemberPointerToBoolean:
4147   case CK_ReinterpretMemberPointer:
4148   case CK_AnyPointerToBlockPointerCast:
4149   case CK_ARCProduceObject:
4150   case CK_ARCConsumeObject:
4151   case CK_ARCReclaimReturnedObject:
4152   case CK_ARCExtendBlockObject:
4153   case CK_CopyAndAutoreleaseBlockObject:
4154   case CK_AddressSpaceConversion:
4155   case CK_IntToOCLSampler:
4156     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4157 
4158   case CK_Dependent:
4159     llvm_unreachable("dependent cast kind in IR gen!");
4160 
4161   case CK_BuiltinFnToFnPtr:
4162     llvm_unreachable("builtin functions are handled elsewhere");
4163 
4164   // These are never l-values; just use the aggregate emission code.
4165   case CK_NonAtomicToAtomic:
4166   case CK_AtomicToNonAtomic:
4167     return EmitAggExprToLValue(E);
4168 
4169   case CK_Dynamic: {
4170     LValue LV = EmitLValue(E->getSubExpr());
4171     Address V = LV.getAddress();
4172     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4173     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4174   }
4175 
4176   case CK_ConstructorConversion:
4177   case CK_UserDefinedConversion:
4178   case CK_CPointerToObjCPointerCast:
4179   case CK_BlockPointerToObjCPointerCast:
4180   case CK_NoOp:
4181   case CK_LValueToRValue:
4182     return EmitLValue(E->getSubExpr());
4183 
4184   case CK_UncheckedDerivedToBase:
4185   case CK_DerivedToBase: {
4186     const RecordType *DerivedClassTy =
4187       E->getSubExpr()->getType()->getAs<RecordType>();
4188     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4189 
4190     LValue LV = EmitLValue(E->getSubExpr());
4191     Address This = LV.getAddress();
4192 
4193     // Perform the derived-to-base conversion
4194     Address Base = GetAddressOfBaseClass(
4195         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4196         /*NullCheckValue=*/false, E->getExprLoc());
4197 
4198     // TODO: Support accesses to members of base classes in TBAA. For now, we
4199     // conservatively pretend that the complete object is of the base class
4200     // type.
4201     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4202                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4203   }
4204   case CK_ToUnion:
4205     return EmitAggExprToLValue(E);
4206   case CK_BaseToDerived: {
4207     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4208     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4209 
4210     LValue LV = EmitLValue(E->getSubExpr());
4211 
4212     // Perform the base-to-derived conversion
4213     Address Derived =
4214       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4215                                E->path_begin(), E->path_end(),
4216                                /*NullCheckValue=*/false);
4217 
4218     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4219     // performed and the object is not of the derived type.
4220     if (sanitizePerformTypeCheck())
4221       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4222                     Derived.getPointer(), E->getType());
4223 
4224     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4225       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4226                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4227                                 E->getBeginLoc());
4228 
4229     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4230                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4231   }
4232   case CK_LValueBitCast: {
4233     // This must be a reinterpret_cast (or c-style equivalent).
4234     const auto *CE = cast<ExplicitCastExpr>(E);
4235 
4236     CGM.EmitExplicitCastExprType(CE, this);
4237     LValue LV = EmitLValue(E->getSubExpr());
4238     Address V = Builder.CreateBitCast(LV.getAddress(),
4239                                       ConvertType(CE->getTypeAsWritten()));
4240 
4241     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4242       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4243                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4244                                 E->getBeginLoc());
4245 
4246     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4247                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4248   }
4249   case CK_ObjCObjectLValueCast: {
4250     LValue LV = EmitLValue(E->getSubExpr());
4251     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4252                                              ConvertType(E->getType()));
4253     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4254                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4255   }
4256   case CK_ZeroToOCLQueue:
4257     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4258   case CK_ZeroToOCLEvent:
4259     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4260   }
4261 
4262   llvm_unreachable("Unhandled lvalue cast kind?");
4263 }
4264 
4265 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4266   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4267   return getOrCreateOpaqueLValueMapping(e);
4268 }
4269 
4270 LValue
4271 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4272   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4273 
4274   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4275       it = OpaqueLValues.find(e);
4276 
4277   if (it != OpaqueLValues.end())
4278     return it->second;
4279 
4280   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4281   return EmitLValue(e->getSourceExpr());
4282 }
4283 
4284 RValue
4285 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4286   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4287 
4288   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4289       it = OpaqueRValues.find(e);
4290 
4291   if (it != OpaqueRValues.end())
4292     return it->second;
4293 
4294   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4295   return EmitAnyExpr(e->getSourceExpr());
4296 }
4297 
4298 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4299                                            const FieldDecl *FD,
4300                                            SourceLocation Loc) {
4301   QualType FT = FD->getType();
4302   LValue FieldLV = EmitLValueForField(LV, FD);
4303   switch (getEvaluationKind(FT)) {
4304   case TEK_Complex:
4305     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4306   case TEK_Aggregate:
4307     return FieldLV.asAggregateRValue();
4308   case TEK_Scalar:
4309     // This routine is used to load fields one-by-one to perform a copy, so
4310     // don't load reference fields.
4311     if (FD->getType()->isReferenceType())
4312       return RValue::get(FieldLV.getPointer());
4313     return EmitLoadOfLValue(FieldLV, Loc);
4314   }
4315   llvm_unreachable("bad evaluation kind");
4316 }
4317 
4318 //===--------------------------------------------------------------------===//
4319 //                             Expression Emission
4320 //===--------------------------------------------------------------------===//
4321 
4322 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4323                                      ReturnValueSlot ReturnValue) {
4324   // Builtins never have block type.
4325   if (E->getCallee()->getType()->isBlockPointerType())
4326     return EmitBlockCallExpr(E, ReturnValue);
4327 
4328   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4329     return EmitCXXMemberCallExpr(CE, ReturnValue);
4330 
4331   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4332     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4333 
4334   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4335     if (const CXXMethodDecl *MD =
4336           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4337       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4338 
4339   CGCallee callee = EmitCallee(E->getCallee());
4340 
4341   if (callee.isBuiltin()) {
4342     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4343                            E, ReturnValue);
4344   }
4345 
4346   if (callee.isPseudoDestructor()) {
4347     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4348   }
4349 
4350   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4351 }
4352 
4353 /// Emit a CallExpr without considering whether it might be a subclass.
4354 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4355                                            ReturnValueSlot ReturnValue) {
4356   CGCallee Callee = EmitCallee(E->getCallee());
4357   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4358 }
4359 
4360 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4361   if (auto builtinID = FD->getBuiltinID()) {
4362     return CGCallee::forBuiltin(builtinID, FD);
4363   }
4364 
4365   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4366   return CGCallee::forDirect(calleePtr, FD);
4367 }
4368 
4369 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4370   E = E->IgnoreParens();
4371 
4372   // Look through function-to-pointer decay.
4373   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4374     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4375         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4376       return EmitCallee(ICE->getSubExpr());
4377     }
4378 
4379   // Resolve direct calls.
4380   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4381     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4382       return EmitDirectCallee(*this, FD);
4383     }
4384   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4385     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4386       EmitIgnoredExpr(ME->getBase());
4387       return EmitDirectCallee(*this, FD);
4388     }
4389 
4390   // Look through template substitutions.
4391   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4392     return EmitCallee(NTTP->getReplacement());
4393 
4394   // Treat pseudo-destructor calls differently.
4395   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4396     return CGCallee::forPseudoDestructor(PDE);
4397   }
4398 
4399   // Otherwise, we have an indirect reference.
4400   llvm::Value *calleePtr;
4401   QualType functionType;
4402   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4403     calleePtr = EmitScalarExpr(E);
4404     functionType = ptrType->getPointeeType();
4405   } else {
4406     functionType = E->getType();
4407     calleePtr = EmitLValue(E).getPointer();
4408   }
4409   assert(functionType->isFunctionType());
4410   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4411                           E->getReferencedDeclOfCallee());
4412   CGCallee callee(calleeInfo, calleePtr);
4413   return callee;
4414 }
4415 
4416 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4417   // Comma expressions just emit their LHS then their RHS as an l-value.
4418   if (E->getOpcode() == BO_Comma) {
4419     EmitIgnoredExpr(E->getLHS());
4420     EnsureInsertPoint();
4421     return EmitLValue(E->getRHS());
4422   }
4423 
4424   if (E->getOpcode() == BO_PtrMemD ||
4425       E->getOpcode() == BO_PtrMemI)
4426     return EmitPointerToDataMemberBinaryExpr(E);
4427 
4428   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4429 
4430   // Note that in all of these cases, __block variables need the RHS
4431   // evaluated first just in case the variable gets moved by the RHS.
4432 
4433   switch (getEvaluationKind(E->getType())) {
4434   case TEK_Scalar: {
4435     switch (E->getLHS()->getType().getObjCLifetime()) {
4436     case Qualifiers::OCL_Strong:
4437       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4438 
4439     case Qualifiers::OCL_Autoreleasing:
4440       return EmitARCStoreAutoreleasing(E).first;
4441 
4442     // No reason to do any of these differently.
4443     case Qualifiers::OCL_None:
4444     case Qualifiers::OCL_ExplicitNone:
4445     case Qualifiers::OCL_Weak:
4446       break;
4447     }
4448 
4449     RValue RV = EmitAnyExpr(E->getRHS());
4450     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4451     if (RV.isScalar())
4452       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4453     EmitStoreThroughLValue(RV, LV);
4454     return LV;
4455   }
4456 
4457   case TEK_Complex:
4458     return EmitComplexAssignmentLValue(E);
4459 
4460   case TEK_Aggregate:
4461     return EmitAggExprToLValue(E);
4462   }
4463   llvm_unreachable("bad evaluation kind");
4464 }
4465 
4466 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4467   RValue RV = EmitCallExpr(E);
4468 
4469   if (!RV.isScalar())
4470     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4471                           AlignmentSource::Decl);
4472 
4473   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4474          "Can't have a scalar return unless the return type is a "
4475          "reference type!");
4476 
4477   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4478 }
4479 
4480 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4481   // FIXME: This shouldn't require another copy.
4482   return EmitAggExprToLValue(E);
4483 }
4484 
4485 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4486   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4487          && "binding l-value to type which needs a temporary");
4488   AggValueSlot Slot = CreateAggTemp(E->getType());
4489   EmitCXXConstructExpr(E, Slot);
4490   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4491 }
4492 
4493 LValue
4494 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4495   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4496 }
4497 
4498 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4499   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4500                                       ConvertType(E->getType()));
4501 }
4502 
4503 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4504   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4505                         AlignmentSource::Decl);
4506 }
4507 
4508 LValue
4509 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4510   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4511   Slot.setExternallyDestructed();
4512   EmitAggExpr(E->getSubExpr(), Slot);
4513   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4514   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4515 }
4516 
4517 LValue
4518 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4519   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4520   EmitLambdaExpr(E, Slot);
4521   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4522 }
4523 
4524 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4525   RValue RV = EmitObjCMessageExpr(E);
4526 
4527   if (!RV.isScalar())
4528     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4529                           AlignmentSource::Decl);
4530 
4531   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4532          "Can't have a scalar return unless the return type is a "
4533          "reference type!");
4534 
4535   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4536 }
4537 
4538 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4539   Address V =
4540     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4541   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4542 }
4543 
4544 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4545                                              const ObjCIvarDecl *Ivar) {
4546   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4547 }
4548 
4549 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4550                                           llvm::Value *BaseValue,
4551                                           const ObjCIvarDecl *Ivar,
4552                                           unsigned CVRQualifiers) {
4553   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4554                                                    Ivar, CVRQualifiers);
4555 }
4556 
4557 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4558   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4559   llvm::Value *BaseValue = nullptr;
4560   const Expr *BaseExpr = E->getBase();
4561   Qualifiers BaseQuals;
4562   QualType ObjectTy;
4563   if (E->isArrow()) {
4564     BaseValue = EmitScalarExpr(BaseExpr);
4565     ObjectTy = BaseExpr->getType()->getPointeeType();
4566     BaseQuals = ObjectTy.getQualifiers();
4567   } else {
4568     LValue BaseLV = EmitLValue(BaseExpr);
4569     BaseValue = BaseLV.getPointer();
4570     ObjectTy = BaseExpr->getType();
4571     BaseQuals = ObjectTy.getQualifiers();
4572   }
4573 
4574   LValue LV =
4575     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4576                       BaseQuals.getCVRQualifiers());
4577   setObjCGCLValueClass(getContext(), E, LV);
4578   return LV;
4579 }
4580 
4581 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4582   // Can only get l-value for message expression returning aggregate type
4583   RValue RV = EmitAnyExprToTemp(E);
4584   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4585                         AlignmentSource::Decl);
4586 }
4587 
4588 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4589                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4590                                  llvm::Value *Chain) {
4591   // Get the actual function type. The callee type will always be a pointer to
4592   // function type or a block pointer type.
4593   assert(CalleeType->isFunctionPointerType() &&
4594          "Call must have function pointer type!");
4595 
4596   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4597 
4598   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4599     // We can only guarantee that a function is called from the correct
4600     // context/function based on the appropriate target attributes,
4601     // so only check in the case where we have both always_inline and target
4602     // since otherwise we could be making a conditional call after a check for
4603     // the proper cpu features (and it won't cause code generation issues due to
4604     // function based code generation).
4605     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4606         TargetDecl->hasAttr<TargetAttr>())
4607       checkTargetFeatures(E, FD);
4608 
4609   CalleeType = getContext().getCanonicalType(CalleeType);
4610 
4611   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4612 
4613   CGCallee Callee = OrigCallee;
4614 
4615   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4616       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4617     if (llvm::Constant *PrefixSig =
4618             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4619       SanitizerScope SanScope(this);
4620       // Remove any (C++17) exception specifications, to allow calling e.g. a
4621       // noexcept function through a non-noexcept pointer.
4622       auto ProtoTy =
4623         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4624       llvm::Constant *FTRTTIConst =
4625           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4626       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4627       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4628           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4629 
4630       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4631 
4632       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4633           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4634       llvm::Value *CalleeSigPtr =
4635           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4636       llvm::Value *CalleeSig =
4637           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4638       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4639 
4640       llvm::BasicBlock *Cont = createBasicBlock("cont");
4641       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4642       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4643 
4644       EmitBlock(TypeCheck);
4645       llvm::Value *CalleeRTTIPtr =
4646           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4647       llvm::Value *CalleeRTTIEncoded =
4648           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4649       llvm::Value *CalleeRTTI =
4650           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4651       llvm::Value *CalleeRTTIMatch =
4652           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4653       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4654                                       EmitCheckTypeDescriptor(CalleeType)};
4655       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4656                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4657 
4658       Builder.CreateBr(Cont);
4659       EmitBlock(Cont);
4660     }
4661   }
4662 
4663   const auto *FnType = cast<FunctionType>(PointeeType);
4664 
4665   // If we are checking indirect calls and this call is indirect, check that the
4666   // function pointer is a member of the bit set for the function type.
4667   if (SanOpts.has(SanitizerKind::CFIICall) &&
4668       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4669     SanitizerScope SanScope(this);
4670     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4671 
4672     llvm::Metadata *MD;
4673     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4674       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4675     else
4676       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4677 
4678     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4679 
4680     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4681     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4682     llvm::Value *TypeTest = Builder.CreateCall(
4683         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4684 
4685     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4686     llvm::Constant *StaticData[] = {
4687         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4688         EmitCheckSourceLocation(E->getBeginLoc()),
4689         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4690     };
4691     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4692       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4693                            CastedCallee, StaticData);
4694     } else {
4695       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4696                 SanitizerHandler::CFICheckFail, StaticData,
4697                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4698     }
4699   }
4700 
4701   CallArgList Args;
4702   if (Chain)
4703     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4704              CGM.getContext().VoidPtrTy);
4705 
4706   // C++17 requires that we evaluate arguments to a call using assignment syntax
4707   // right-to-left, and that we evaluate arguments to certain other operators
4708   // left-to-right. Note that we allow this to override the order dictated by
4709   // the calling convention on the MS ABI, which means that parameter
4710   // destruction order is not necessarily reverse construction order.
4711   // FIXME: Revisit this based on C++ committee response to unimplementability.
4712   EvaluationOrder Order = EvaluationOrder::Default;
4713   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4714     if (OCE->isAssignmentOp())
4715       Order = EvaluationOrder::ForceRightToLeft;
4716     else {
4717       switch (OCE->getOperator()) {
4718       case OO_LessLess:
4719       case OO_GreaterGreater:
4720       case OO_AmpAmp:
4721       case OO_PipePipe:
4722       case OO_Comma:
4723       case OO_ArrowStar:
4724         Order = EvaluationOrder::ForceLeftToRight;
4725         break;
4726       default:
4727         break;
4728       }
4729     }
4730   }
4731 
4732   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4733                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4734 
4735   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4736       Args, FnType, /*isChainCall=*/Chain);
4737 
4738   // C99 6.5.2.2p6:
4739   //   If the expression that denotes the called function has a type
4740   //   that does not include a prototype, [the default argument
4741   //   promotions are performed]. If the number of arguments does not
4742   //   equal the number of parameters, the behavior is undefined. If
4743   //   the function is defined with a type that includes a prototype,
4744   //   and either the prototype ends with an ellipsis (, ...) or the
4745   //   types of the arguments after promotion are not compatible with
4746   //   the types of the parameters, the behavior is undefined. If the
4747   //   function is defined with a type that does not include a
4748   //   prototype, and the types of the arguments after promotion are
4749   //   not compatible with those of the parameters after promotion,
4750   //   the behavior is undefined [except in some trivial cases].
4751   // That is, in the general case, we should assume that a call
4752   // through an unprototyped function type works like a *non-variadic*
4753   // call.  The way we make this work is to cast to the exact type
4754   // of the promoted arguments.
4755   //
4756   // Chain calls use this same code path to add the invisible chain parameter
4757   // to the function type.
4758   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4759     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4760     CalleeTy = CalleeTy->getPointerTo();
4761 
4762     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4763     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4764     Callee.setFunctionPointer(CalleePtr);
4765   }
4766 
4767   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4768 }
4769 
4770 LValue CodeGenFunction::
4771 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4772   Address BaseAddr = Address::invalid();
4773   if (E->getOpcode() == BO_PtrMemI) {
4774     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4775   } else {
4776     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4777   }
4778 
4779   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4780 
4781   const MemberPointerType *MPT
4782     = E->getRHS()->getType()->getAs<MemberPointerType>();
4783 
4784   LValueBaseInfo BaseInfo;
4785   TBAAAccessInfo TBAAInfo;
4786   Address MemberAddr =
4787     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4788                                     &TBAAInfo);
4789 
4790   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4791 }
4792 
4793 /// Given the address of a temporary variable, produce an r-value of
4794 /// its type.
4795 RValue CodeGenFunction::convertTempToRValue(Address addr,
4796                                             QualType type,
4797                                             SourceLocation loc) {
4798   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4799   switch (getEvaluationKind(type)) {
4800   case TEK_Complex:
4801     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4802   case TEK_Aggregate:
4803     return lvalue.asAggregateRValue();
4804   case TEK_Scalar:
4805     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4806   }
4807   llvm_unreachable("bad evaluation kind");
4808 }
4809 
4810 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4811   assert(Val->getType()->isFPOrFPVectorTy());
4812   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4813     return;
4814 
4815   llvm::MDBuilder MDHelper(getLLVMContext());
4816   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4817 
4818   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4819 }
4820 
4821 namespace {
4822   struct LValueOrRValue {
4823     LValue LV;
4824     RValue RV;
4825   };
4826 }
4827 
4828 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4829                                            const PseudoObjectExpr *E,
4830                                            bool forLValue,
4831                                            AggValueSlot slot) {
4832   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4833 
4834   // Find the result expression, if any.
4835   const Expr *resultExpr = E->getResultExpr();
4836   LValueOrRValue result;
4837 
4838   for (PseudoObjectExpr::const_semantics_iterator
4839          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4840     const Expr *semantic = *i;
4841 
4842     // If this semantic expression is an opaque value, bind it
4843     // to the result of its source expression.
4844     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4845       // Skip unique OVEs.
4846       if (ov->isUnique()) {
4847         assert(ov != resultExpr &&
4848                "A unique OVE cannot be used as the result expression");
4849         continue;
4850       }
4851 
4852       // If this is the result expression, we may need to evaluate
4853       // directly into the slot.
4854       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4855       OVMA opaqueData;
4856       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4857           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4858         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4859         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4860                                        AlignmentSource::Decl);
4861         opaqueData = OVMA::bind(CGF, ov, LV);
4862         result.RV = slot.asRValue();
4863 
4864       // Otherwise, emit as normal.
4865       } else {
4866         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4867 
4868         // If this is the result, also evaluate the result now.
4869         if (ov == resultExpr) {
4870           if (forLValue)
4871             result.LV = CGF.EmitLValue(ov);
4872           else
4873             result.RV = CGF.EmitAnyExpr(ov, slot);
4874         }
4875       }
4876 
4877       opaques.push_back(opaqueData);
4878 
4879     // Otherwise, if the expression is the result, evaluate it
4880     // and remember the result.
4881     } else if (semantic == resultExpr) {
4882       if (forLValue)
4883         result.LV = CGF.EmitLValue(semantic);
4884       else
4885         result.RV = CGF.EmitAnyExpr(semantic, slot);
4886 
4887     // Otherwise, evaluate the expression in an ignored context.
4888     } else {
4889       CGF.EmitIgnoredExpr(semantic);
4890     }
4891   }
4892 
4893   // Unbind all the opaques now.
4894   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4895     opaques[i].unbind(CGF);
4896 
4897   return result;
4898 }
4899 
4900 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4901                                                AggValueSlot slot) {
4902   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4903 }
4904 
4905 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4906   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4907 }
4908