1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getQuantity());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::FunctionCallee CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getQuantity());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->GetTemporaryExpr();
421 
422   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
423           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
424          "Reference should never be pseudo-strong!");
425 
426   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427   // as that will cause the lifetime adjustment to be lost for ARC
428   auto ownership = M->getType().getObjCLifetime();
429   if (ownership != Qualifiers::OCL_None &&
430       ownership != Qualifiers::OCL_ExplicitNone) {
431     Address Object = createReferenceTemporary(*this, M, E);
432     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433       Object = Address(llvm::ConstantExpr::getBitCast(Var,
434                            ConvertTypeForMem(E->getType())
435                              ->getPointerTo(Object.getAddressSpace())),
436                        Object.getAlignment());
437 
438       // createReferenceTemporary will promote the temporary to a global with a
439       // constant initializer if it can.  It can only do this to a value of
440       // ARC-manageable type if the value is global and therefore "immune" to
441       // ref-counting operations.  Therefore we have no need to emit either a
442       // dynamic initialization or a cleanup and we can just return the address
443       // of the temporary.
444       if (Var->hasInitializer())
445         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446 
447       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448     }
449     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450                                        AlignmentSource::Decl);
451 
452     switch (getEvaluationKind(E->getType())) {
453     default: llvm_unreachable("expected scalar or aggregate expression");
454     case TEK_Scalar:
455       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456       break;
457     case TEK_Aggregate: {
458       EmitAggExpr(E, AggValueSlot::forAddr(Object,
459                                            E->getType().getQualifiers(),
460                                            AggValueSlot::IsDestructed,
461                                            AggValueSlot::DoesNotNeedGCBarriers,
462                                            AggValueSlot::IsNotAliased,
463                                            AggValueSlot::DoesNotOverlap));
464       break;
465     }
466     }
467 
468     pushTemporaryCleanup(*this, M, E, Object);
469     return RefTempDst;
470   }
471 
472   SmallVector<const Expr *, 2> CommaLHSs;
473   SmallVector<SubobjectAdjustment, 2> Adjustments;
474   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475 
476   for (const auto &Ignored : CommaLHSs)
477     EmitIgnoredExpr(Ignored);
478 
479   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480     if (opaque->getType()->isRecordType()) {
481       assert(Adjustments.empty());
482       return EmitOpaqueValueLValue(opaque);
483     }
484   }
485 
486   // Create and initialize the reference temporary.
487   Address Alloca = Address::invalid();
488   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490           Object.getPointer()->stripPointerCasts())) {
491     Object = Address(llvm::ConstantExpr::getBitCast(
492                          cast<llvm::Constant>(Object.getPointer()),
493                          ConvertTypeForMem(E->getType())->getPointerTo()),
494                      Object.getAlignment());
495     // If the temporary is a global and has a constant initializer or is a
496     // constant temporary that we promoted to a global, we may have already
497     // initialized it.
498     if (!Var->hasInitializer()) {
499       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501     }
502   } else {
503     switch (M->getStorageDuration()) {
504     case SD_Automatic:
505       if (auto *Size = EmitLifetimeStart(
506               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507               Alloca.getPointer())) {
508         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509                                                   Alloca, Size);
510       }
511       break;
512 
513     case SD_FullExpression: {
514       if (!ShouldEmitLifetimeMarkers)
515         break;
516 
517       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518       // marker. Instead, start the lifetime of a conditional temporary earlier
519       // so that it's unconditional. Don't do this in ASan's use-after-scope
520       // mode so that it gets the more precise lifetime marks. If the type has
521       // a non-trivial destructor, we'll have a cleanup block for it anyway,
522       // so this typically doesn't help; skip it in that case.
523       ConditionalEvaluation *OldConditional = nullptr;
524       CGBuilderTy::InsertPoint OldIP;
525       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
526           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527         OldConditional = OutermostConditional;
528         OutermostConditional = nullptr;
529 
530         OldIP = Builder.saveIP();
531         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532         Builder.restoreIP(CGBuilderTy::InsertPoint(
533             Block, llvm::BasicBlock::iterator(Block->back())));
534       }
535 
536       if (auto *Size = EmitLifetimeStart(
537               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538               Alloca.getPointer())) {
539         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540                                              Size);
541       }
542 
543       if (OldConditional) {
544         OutermostConditional = OldConditional;
545         Builder.restoreIP(OldIP);
546       }
547       break;
548     }
549 
550     default:
551       break;
552     }
553     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554   }
555   pushTemporaryCleanup(*this, M, E, Object);
556 
557   // Perform derived-to-base casts and/or field accesses, to get from the
558   // temporary object we created (and, potentially, for which we extended
559   // the lifetime) to the subobject we're binding the reference to.
560   for (unsigned I = Adjustments.size(); I != 0; --I) {
561     SubobjectAdjustment &Adjustment = Adjustments[I-1];
562     switch (Adjustment.Kind) {
563     case SubobjectAdjustment::DerivedToBaseAdjustment:
564       Object =
565           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566                                 Adjustment.DerivedToBase.BasePath->path_begin(),
567                                 Adjustment.DerivedToBase.BasePath->path_end(),
568                                 /*NullCheckValue=*/ false, E->getExprLoc());
569       break;
570 
571     case SubobjectAdjustment::FieldAdjustment: {
572       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573       LV = EmitLValueForField(LV, Adjustment.Field);
574       assert(LV.isSimple() &&
575              "materialized temporary field is not a simple lvalue");
576       Object = LV.getAddress();
577       break;
578     }
579 
580     case SubobjectAdjustment::MemberPointerAdjustment: {
581       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583                                                Adjustment.Ptr.MPT);
584       break;
585     }
586     }
587   }
588 
589   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590 }
591 
592 RValue
593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594   // Emit the expression as an lvalue.
595   LValue LV = EmitLValue(E);
596   assert(LV.isSimple());
597   llvm::Value *Value = LV.getPointer();
598 
599   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600     // C++11 [dcl.ref]p5 (as amended by core issue 453):
601     //   If a glvalue to which a reference is directly bound designates neither
602     //   an existing object or function of an appropriate type nor a region of
603     //   storage of suitable size and alignment to contain an object of the
604     //   reference's type, the behavior is undefined.
605     QualType Ty = E->getType();
606     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607   }
608 
609   return RValue::get(Value);
610 }
611 
612 
613 /// getAccessedFieldNo - Given an encoded value and a result number, return the
614 /// input field number being accessed.
615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616                                              const llvm::Constant *Elts) {
617   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618       ->getZExtValue();
619 }
620 
621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623                                     llvm::Value *High) {
624   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625   llvm::Value *K47 = Builder.getInt64(47);
626   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630   return Builder.CreateMul(B1, KMul);
631 }
632 
633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636 }
637 
638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644 }
645 
646 bool CodeGenFunction::sanitizePerformTypeCheck() const {
647   return SanOpts.has(SanitizerKind::Null) |
648          SanOpts.has(SanitizerKind::Alignment) |
649          SanOpts.has(SanitizerKind::ObjectSize) |
650          SanOpts.has(SanitizerKind::Vptr);
651 }
652 
653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654                                     llvm::Value *Ptr, QualType Ty,
655                                     CharUnits Alignment,
656                                     SanitizerSet SkippedChecks,
657                                     llvm::Value *ArraySize) {
658   if (!sanitizePerformTypeCheck())
659     return;
660 
661   // Don't check pointers outside the default address space. The null check
662   // isn't correct, the object-size check isn't supported by LLVM, and we can't
663   // communicate the addresses to the runtime handler for the vptr check.
664   if (Ptr->getType()->getPointerAddressSpace())
665     return;
666 
667   // Don't check pointers to volatile data. The behavior here is implementation-
668   // defined.
669   if (Ty.isVolatileQualified())
670     return;
671 
672   SanitizerScope SanScope(this);
673 
674   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
675   llvm::BasicBlock *Done = nullptr;
676 
677   // Quickly determine whether we have a pointer to an alloca. It's possible
678   // to skip null checks, and some alignment checks, for these pointers. This
679   // can reduce compile-time significantly.
680   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014 
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019 
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025 
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033 
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043 
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048 
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057 
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065 
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083 
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098 
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102 
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118 
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125 
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135 
1136   // TODO: conditional operators, comma.
1137 
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143 
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147 
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155 
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163 
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169 
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175 
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183 
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190 
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206 
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227 
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247 
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250 
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::VAArgExprClass:
1271     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1272   case Expr::DeclRefExprClass:
1273     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1274   case Expr::ConstantExprClass:
1275     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1276   case Expr::ParenExprClass:
1277     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1278   case Expr::GenericSelectionExprClass:
1279     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1280   case Expr::PredefinedExprClass:
1281     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1282   case Expr::StringLiteralClass:
1283     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1284   case Expr::ObjCEncodeExprClass:
1285     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1286   case Expr::PseudoObjectExprClass:
1287     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1288   case Expr::InitListExprClass:
1289     return EmitInitListLValue(cast<InitListExpr>(E));
1290   case Expr::CXXTemporaryObjectExprClass:
1291   case Expr::CXXConstructExprClass:
1292     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1293   case Expr::CXXBindTemporaryExprClass:
1294     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1295   case Expr::CXXUuidofExprClass:
1296     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1297   case Expr::LambdaExprClass:
1298     return EmitAggExprToLValue(E);
1299 
1300   case Expr::ExprWithCleanupsClass: {
1301     const auto *cleanups = cast<ExprWithCleanups>(E);
1302     enterFullExpression(cleanups);
1303     RunCleanupsScope Scope(*this);
1304     LValue LV = EmitLValue(cleanups->getSubExpr());
1305     if (LV.isSimple()) {
1306       // Defend against branches out of gnu statement expressions surrounded by
1307       // cleanups.
1308       llvm::Value *V = LV.getPointer();
1309       Scope.ForceCleanup({&V});
1310       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1311                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1312     }
1313     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1314     // bitfield lvalue or some other non-simple lvalue?
1315     return LV;
1316   }
1317 
1318   case Expr::CXXDefaultArgExprClass: {
1319     auto *DAE = cast<CXXDefaultArgExpr>(E);
1320     CXXDefaultArgExprScope Scope(*this, DAE);
1321     return EmitLValue(DAE->getExpr());
1322   }
1323   case Expr::CXXDefaultInitExprClass: {
1324     auto *DIE = cast<CXXDefaultInitExpr>(E);
1325     CXXDefaultInitExprScope Scope(*this, DIE);
1326     return EmitLValue(DIE->getExpr());
1327   }
1328   case Expr::CXXTypeidExprClass:
1329     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1330 
1331   case Expr::ObjCMessageExprClass:
1332     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1333   case Expr::ObjCIvarRefExprClass:
1334     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1335   case Expr::StmtExprClass:
1336     return EmitStmtExprLValue(cast<StmtExpr>(E));
1337   case Expr::UnaryOperatorClass:
1338     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1339   case Expr::ArraySubscriptExprClass:
1340     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1341   case Expr::OMPArraySectionExprClass:
1342     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1343   case Expr::ExtVectorElementExprClass:
1344     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1345   case Expr::MemberExprClass:
1346     return EmitMemberExpr(cast<MemberExpr>(E));
1347   case Expr::CompoundLiteralExprClass:
1348     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1349   case Expr::ConditionalOperatorClass:
1350     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1351   case Expr::BinaryConditionalOperatorClass:
1352     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1353   case Expr::ChooseExprClass:
1354     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1355   case Expr::OpaqueValueExprClass:
1356     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1357   case Expr::SubstNonTypeTemplateParmExprClass:
1358     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1359   case Expr::ImplicitCastExprClass:
1360   case Expr::CStyleCastExprClass:
1361   case Expr::CXXFunctionalCastExprClass:
1362   case Expr::CXXStaticCastExprClass:
1363   case Expr::CXXDynamicCastExprClass:
1364   case Expr::CXXReinterpretCastExprClass:
1365   case Expr::CXXConstCastExprClass:
1366   case Expr::ObjCBridgedCastExprClass:
1367     return EmitCastLValue(cast<CastExpr>(E));
1368 
1369   case Expr::MaterializeTemporaryExprClass:
1370     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1371 
1372   case Expr::CoawaitExprClass:
1373     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1374   case Expr::CoyieldExprClass:
1375     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1376   }
1377 }
1378 
1379 /// Given an object of the given canonical type, can we safely copy a
1380 /// value out of it based on its initializer?
1381 static bool isConstantEmittableObjectType(QualType type) {
1382   assert(type.isCanonical());
1383   assert(!type->isReferenceType());
1384 
1385   // Must be const-qualified but non-volatile.
1386   Qualifiers qs = type.getLocalQualifiers();
1387   if (!qs.hasConst() || qs.hasVolatile()) return false;
1388 
1389   // Otherwise, all object types satisfy this except C++ classes with
1390   // mutable subobjects or non-trivial copy/destroy behavior.
1391   if (const auto *RT = dyn_cast<RecordType>(type))
1392     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1393       if (RD->hasMutableFields() || !RD->isTrivial())
1394         return false;
1395 
1396   return true;
1397 }
1398 
1399 /// Can we constant-emit a load of a reference to a variable of the
1400 /// given type?  This is different from predicates like
1401 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1402 /// in situations that don't necessarily satisfy the language's rules
1403 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1404 /// to do this with const float variables even if those variables
1405 /// aren't marked 'constexpr'.
1406 enum ConstantEmissionKind {
1407   CEK_None,
1408   CEK_AsReferenceOnly,
1409   CEK_AsValueOrReference,
1410   CEK_AsValueOnly
1411 };
1412 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1413   type = type.getCanonicalType();
1414   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1415     if (isConstantEmittableObjectType(ref->getPointeeType()))
1416       return CEK_AsValueOrReference;
1417     return CEK_AsReferenceOnly;
1418   }
1419   if (isConstantEmittableObjectType(type))
1420     return CEK_AsValueOnly;
1421   return CEK_None;
1422 }
1423 
1424 /// Try to emit a reference to the given value without producing it as
1425 /// an l-value.  This is just an optimization, but it avoids us needing
1426 /// to emit global copies of variables if they're named without triggering
1427 /// a formal use in a context where we can't emit a direct reference to them,
1428 /// for instance if a block or lambda or a member of a local class uses a
1429 /// const int variable or constexpr variable from an enclosing function.
1430 CodeGenFunction::ConstantEmission
1431 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1432   ValueDecl *value = refExpr->getDecl();
1433 
1434   // The value needs to be an enum constant or a constant variable.
1435   ConstantEmissionKind CEK;
1436   if (isa<ParmVarDecl>(value)) {
1437     CEK = CEK_None;
1438   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1439     CEK = checkVarTypeForConstantEmission(var->getType());
1440   } else if (isa<EnumConstantDecl>(value)) {
1441     CEK = CEK_AsValueOnly;
1442   } else {
1443     CEK = CEK_None;
1444   }
1445   if (CEK == CEK_None) return ConstantEmission();
1446 
1447   Expr::EvalResult result;
1448   bool resultIsReference;
1449   QualType resultType;
1450 
1451   // It's best to evaluate all the way as an r-value if that's permitted.
1452   if (CEK != CEK_AsReferenceOnly &&
1453       refExpr->EvaluateAsRValue(result, getContext())) {
1454     resultIsReference = false;
1455     resultType = refExpr->getType();
1456 
1457   // Otherwise, try to evaluate as an l-value.
1458   } else if (CEK != CEK_AsValueOnly &&
1459              refExpr->EvaluateAsLValue(result, getContext())) {
1460     resultIsReference = true;
1461     resultType = value->getType();
1462 
1463   // Failure.
1464   } else {
1465     return ConstantEmission();
1466   }
1467 
1468   // In any case, if the initializer has side-effects, abandon ship.
1469   if (result.HasSideEffects)
1470     return ConstantEmission();
1471 
1472   // Emit as a constant.
1473   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1474                                                result.Val, resultType);
1475 
1476   // Make sure we emit a debug reference to the global variable.
1477   // This should probably fire even for
1478   if (isa<VarDecl>(value)) {
1479     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1480       EmitDeclRefExprDbgValue(refExpr, result.Val);
1481   } else {
1482     assert(isa<EnumConstantDecl>(value));
1483     EmitDeclRefExprDbgValue(refExpr, result.Val);
1484   }
1485 
1486   // If we emitted a reference constant, we need to dereference that.
1487   if (resultIsReference)
1488     return ConstantEmission::forReference(C);
1489 
1490   return ConstantEmission::forValue(C);
1491 }
1492 
1493 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1494                                                         const MemberExpr *ME) {
1495   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1496     // Try to emit static variable member expressions as DREs.
1497     return DeclRefExpr::Create(
1498         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1499         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1500         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1501   }
1502   return nullptr;
1503 }
1504 
1505 CodeGenFunction::ConstantEmission
1506 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1507   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1508     return tryEmitAsConstant(DRE);
1509   return ConstantEmission();
1510 }
1511 
1512 llvm::Value *CodeGenFunction::emitScalarConstant(
1513     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1514   assert(Constant && "not a constant");
1515   if (Constant.isReference())
1516     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1517                             E->getExprLoc())
1518         .getScalarVal();
1519   return Constant.getValue();
1520 }
1521 
1522 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1523                                                SourceLocation Loc) {
1524   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1525                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1526                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1527 }
1528 
1529 static bool hasBooleanRepresentation(QualType Ty) {
1530   if (Ty->isBooleanType())
1531     return true;
1532 
1533   if (const EnumType *ET = Ty->getAs<EnumType>())
1534     return ET->getDecl()->getIntegerType()->isBooleanType();
1535 
1536   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1537     return hasBooleanRepresentation(AT->getValueType());
1538 
1539   return false;
1540 }
1541 
1542 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1543                             llvm::APInt &Min, llvm::APInt &End,
1544                             bool StrictEnums, bool IsBool) {
1545   const EnumType *ET = Ty->getAs<EnumType>();
1546   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1547                                 ET && !ET->getDecl()->isFixed();
1548   if (!IsBool && !IsRegularCPlusPlusEnum)
1549     return false;
1550 
1551   if (IsBool) {
1552     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1553     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1554   } else {
1555     const EnumDecl *ED = ET->getDecl();
1556     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1557     unsigned Bitwidth = LTy->getScalarSizeInBits();
1558     unsigned NumNegativeBits = ED->getNumNegativeBits();
1559     unsigned NumPositiveBits = ED->getNumPositiveBits();
1560 
1561     if (NumNegativeBits) {
1562       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1563       assert(NumBits <= Bitwidth);
1564       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1565       Min = -End;
1566     } else {
1567       assert(NumPositiveBits <= Bitwidth);
1568       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1569       Min = llvm::APInt(Bitwidth, 0);
1570     }
1571   }
1572   return true;
1573 }
1574 
1575 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1576   llvm::APInt Min, End;
1577   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1578                        hasBooleanRepresentation(Ty)))
1579     return nullptr;
1580 
1581   llvm::MDBuilder MDHelper(getLLVMContext());
1582   return MDHelper.createRange(Min, End);
1583 }
1584 
1585 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1586                                            SourceLocation Loc) {
1587   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1588   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1589   if (!HasBoolCheck && !HasEnumCheck)
1590     return false;
1591 
1592   bool IsBool = hasBooleanRepresentation(Ty) ||
1593                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1594   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1595   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1596   if (!NeedsBoolCheck && !NeedsEnumCheck)
1597     return false;
1598 
1599   // Single-bit booleans don't need to be checked. Special-case this to avoid
1600   // a bit width mismatch when handling bitfield values. This is handled by
1601   // EmitFromMemory for the non-bitfield case.
1602   if (IsBool &&
1603       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1604     return false;
1605 
1606   llvm::APInt Min, End;
1607   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1608     return true;
1609 
1610   auto &Ctx = getLLVMContext();
1611   SanitizerScope SanScope(this);
1612   llvm::Value *Check;
1613   --End;
1614   if (!Min) {
1615     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1616   } else {
1617     llvm::Value *Upper =
1618         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1619     llvm::Value *Lower =
1620         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1621     Check = Builder.CreateAnd(Upper, Lower);
1622   }
1623   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1624                                   EmitCheckTypeDescriptor(Ty)};
1625   SanitizerMask Kind =
1626       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1627   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1628             StaticArgs, EmitCheckValue(Value));
1629   return true;
1630 }
1631 
1632 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1633                                                QualType Ty,
1634                                                SourceLocation Loc,
1635                                                LValueBaseInfo BaseInfo,
1636                                                TBAAAccessInfo TBAAInfo,
1637                                                bool isNontemporal) {
1638   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1639     // For better performance, handle vector loads differently.
1640     if (Ty->isVectorType()) {
1641       const llvm::Type *EltTy = Addr.getElementType();
1642 
1643       const auto *VTy = cast<llvm::VectorType>(EltTy);
1644 
1645       // Handle vectors of size 3 like size 4 for better performance.
1646       if (VTy->getNumElements() == 3) {
1647 
1648         // Bitcast to vec4 type.
1649         llvm::VectorType *vec4Ty =
1650             llvm::VectorType::get(VTy->getElementType(), 4);
1651         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1652         // Now load value.
1653         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1654 
1655         // Shuffle vector to get vec3.
1656         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1657                                         {0, 1, 2}, "extractVec");
1658         return EmitFromMemory(V, Ty);
1659       }
1660     }
1661   }
1662 
1663   // Atomic operations have to be done on integral types.
1664   LValue AtomicLValue =
1665       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1666   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1667     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1668   }
1669 
1670   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1671   if (isNontemporal) {
1672     llvm::MDNode *Node = llvm::MDNode::get(
1673         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1674     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1675   }
1676 
1677   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1678 
1679   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1680     // In order to prevent the optimizer from throwing away the check, don't
1681     // attach range metadata to the load.
1682   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1683     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1684       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1685 
1686   return EmitFromMemory(Load, Ty);
1687 }
1688 
1689 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1690   // Bool has a different representation in memory than in registers.
1691   if (hasBooleanRepresentation(Ty)) {
1692     // This should really always be an i1, but sometimes it's already
1693     // an i8, and it's awkward to track those cases down.
1694     if (Value->getType()->isIntegerTy(1))
1695       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1696     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1697            "wrong value rep of bool");
1698   }
1699 
1700   return Value;
1701 }
1702 
1703 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1704   // Bool has a different representation in memory than in registers.
1705   if (hasBooleanRepresentation(Ty)) {
1706     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1707            "wrong value rep of bool");
1708     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1709   }
1710 
1711   return Value;
1712 }
1713 
1714 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1715                                         bool Volatile, QualType Ty,
1716                                         LValueBaseInfo BaseInfo,
1717                                         TBAAAccessInfo TBAAInfo,
1718                                         bool isInit, bool isNontemporal) {
1719   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1720     // Handle vectors differently to get better performance.
1721     if (Ty->isVectorType()) {
1722       llvm::Type *SrcTy = Value->getType();
1723       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1724       // Handle vec3 special.
1725       if (VecTy && VecTy->getNumElements() == 3) {
1726         // Our source is a vec3, do a shuffle vector to make it a vec4.
1727         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1728                                   Builder.getInt32(2),
1729                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1730         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1731         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1732                                             MaskV, "extractVec");
1733         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1734       }
1735       if (Addr.getElementType() != SrcTy) {
1736         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1737       }
1738     }
1739   }
1740 
1741   Value = EmitToMemory(Value, Ty);
1742 
1743   LValue AtomicLValue =
1744       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1745   if (Ty->isAtomicType() ||
1746       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1747     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1748     return;
1749   }
1750 
1751   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1752   if (isNontemporal) {
1753     llvm::MDNode *Node =
1754         llvm::MDNode::get(Store->getContext(),
1755                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1756     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1757   }
1758 
1759   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1760 }
1761 
1762 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1763                                         bool isInit) {
1764   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1765                     lvalue.getType(), lvalue.getBaseInfo(),
1766                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1767 }
1768 
1769 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1770 /// method emits the address of the lvalue, then loads the result as an rvalue,
1771 /// returning the rvalue.
1772 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1773   if (LV.isObjCWeak()) {
1774     // load of a __weak object.
1775     Address AddrWeakObj = LV.getAddress();
1776     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1777                                                              AddrWeakObj));
1778   }
1779   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1780     // In MRC mode, we do a load+autorelease.
1781     if (!getLangOpts().ObjCAutoRefCount) {
1782       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1783     }
1784 
1785     // In ARC mode, we load retained and then consume the value.
1786     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1787     Object = EmitObjCConsumeObject(LV.getType(), Object);
1788     return RValue::get(Object);
1789   }
1790 
1791   if (LV.isSimple()) {
1792     assert(!LV.getType()->isFunctionType());
1793 
1794     // Everything needs a load.
1795     return RValue::get(EmitLoadOfScalar(LV, Loc));
1796   }
1797 
1798   if (LV.isVectorElt()) {
1799     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1800                                               LV.isVolatileQualified());
1801     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1802                                                     "vecext"));
1803   }
1804 
1805   // If this is a reference to a subset of the elements of a vector, either
1806   // shuffle the input or extract/insert them as appropriate.
1807   if (LV.isExtVectorElt())
1808     return EmitLoadOfExtVectorElementLValue(LV);
1809 
1810   // Global Register variables always invoke intrinsics
1811   if (LV.isGlobalReg())
1812     return EmitLoadOfGlobalRegLValue(LV);
1813 
1814   assert(LV.isBitField() && "Unknown LValue type!");
1815   return EmitLoadOfBitfieldLValue(LV, Loc);
1816 }
1817 
1818 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1819                                                  SourceLocation Loc) {
1820   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1821 
1822   // Get the output type.
1823   llvm::Type *ResLTy = ConvertType(LV.getType());
1824 
1825   Address Ptr = LV.getBitFieldAddress();
1826   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1827 
1828   if (Info.IsSigned) {
1829     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1830     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1831     if (HighBits)
1832       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1833     if (Info.Offset + HighBits)
1834       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1835   } else {
1836     if (Info.Offset)
1837       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1838     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1839       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1840                                                               Info.Size),
1841                               "bf.clear");
1842   }
1843   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1844   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1845   return RValue::get(Val);
1846 }
1847 
1848 // If this is a reference to a subset of the elements of a vector, create an
1849 // appropriate shufflevector.
1850 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1851   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1852                                         LV.isVolatileQualified());
1853 
1854   const llvm::Constant *Elts = LV.getExtVectorElts();
1855 
1856   // If the result of the expression is a non-vector type, we must be extracting
1857   // a single element.  Just codegen as an extractelement.
1858   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1859   if (!ExprVT) {
1860     unsigned InIdx = getAccessedFieldNo(0, Elts);
1861     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1862     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1863   }
1864 
1865   // Always use shuffle vector to try to retain the original program structure
1866   unsigned NumResultElts = ExprVT->getNumElements();
1867 
1868   SmallVector<llvm::Constant*, 4> Mask;
1869   for (unsigned i = 0; i != NumResultElts; ++i)
1870     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1871 
1872   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1873   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1874                                     MaskV);
1875   return RValue::get(Vec);
1876 }
1877 
1878 /// Generates lvalue for partial ext_vector access.
1879 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1880   Address VectorAddress = LV.getExtVectorAddress();
1881   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1882   QualType EQT = ExprVT->getElementType();
1883   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1884 
1885   Address CastToPointerElement =
1886     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1887                                  "conv.ptr.element");
1888 
1889   const llvm::Constant *Elts = LV.getExtVectorElts();
1890   unsigned ix = getAccessedFieldNo(0, Elts);
1891 
1892   Address VectorBasePtrPlusIx =
1893     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1894                                    "vector.elt");
1895 
1896   return VectorBasePtrPlusIx;
1897 }
1898 
1899 /// Load of global gamed gegisters are always calls to intrinsics.
1900 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1901   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1902          "Bad type for register variable");
1903   llvm::MDNode *RegName = cast<llvm::MDNode>(
1904       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1905 
1906   // We accept integer and pointer types only
1907   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1908   llvm::Type *Ty = OrigTy;
1909   if (OrigTy->isPointerTy())
1910     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1911   llvm::Type *Types[] = { Ty };
1912 
1913   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1914   llvm::Value *Call = Builder.CreateCall(
1915       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1916   if (OrigTy->isPointerTy())
1917     Call = Builder.CreateIntToPtr(Call, OrigTy);
1918   return RValue::get(Call);
1919 }
1920 
1921 
1922 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1923 /// lvalue, where both are guaranteed to the have the same type, and that type
1924 /// is 'Ty'.
1925 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1926                                              bool isInit) {
1927   if (!Dst.isSimple()) {
1928     if (Dst.isVectorElt()) {
1929       // Read/modify/write the vector, inserting the new element.
1930       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1931                                             Dst.isVolatileQualified());
1932       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1933                                         Dst.getVectorIdx(), "vecins");
1934       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1935                           Dst.isVolatileQualified());
1936       return;
1937     }
1938 
1939     // If this is an update of extended vector elements, insert them as
1940     // appropriate.
1941     if (Dst.isExtVectorElt())
1942       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1943 
1944     if (Dst.isGlobalReg())
1945       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1946 
1947     assert(Dst.isBitField() && "Unknown LValue type");
1948     return EmitStoreThroughBitfieldLValue(Src, Dst);
1949   }
1950 
1951   // There's special magic for assigning into an ARC-qualified l-value.
1952   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1953     switch (Lifetime) {
1954     case Qualifiers::OCL_None:
1955       llvm_unreachable("present but none");
1956 
1957     case Qualifiers::OCL_ExplicitNone:
1958       // nothing special
1959       break;
1960 
1961     case Qualifiers::OCL_Strong:
1962       if (isInit) {
1963         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1964         break;
1965       }
1966       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1967       return;
1968 
1969     case Qualifiers::OCL_Weak:
1970       if (isInit)
1971         // Initialize and then skip the primitive store.
1972         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1973       else
1974         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1975       return;
1976 
1977     case Qualifiers::OCL_Autoreleasing:
1978       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1979                                                      Src.getScalarVal()));
1980       // fall into the normal path
1981       break;
1982     }
1983   }
1984 
1985   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1986     // load of a __weak object.
1987     Address LvalueDst = Dst.getAddress();
1988     llvm::Value *src = Src.getScalarVal();
1989      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1990     return;
1991   }
1992 
1993   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1994     // load of a __strong object.
1995     Address LvalueDst = Dst.getAddress();
1996     llvm::Value *src = Src.getScalarVal();
1997     if (Dst.isObjCIvar()) {
1998       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1999       llvm::Type *ResultType = IntPtrTy;
2000       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2001       llvm::Value *RHS = dst.getPointer();
2002       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2003       llvm::Value *LHS =
2004         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2005                                "sub.ptr.lhs.cast");
2006       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2007       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2008                                               BytesBetween);
2009     } else if (Dst.isGlobalObjCRef()) {
2010       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2011                                                 Dst.isThreadLocalRef());
2012     }
2013     else
2014       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2015     return;
2016   }
2017 
2018   assert(Src.isScalar() && "Can't emit an agg store with this method");
2019   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2020 }
2021 
2022 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2023                                                      llvm::Value **Result) {
2024   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2025   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2026   Address Ptr = Dst.getBitFieldAddress();
2027 
2028   // Get the source value, truncated to the width of the bit-field.
2029   llvm::Value *SrcVal = Src.getScalarVal();
2030 
2031   // Cast the source to the storage type and shift it into place.
2032   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2033                                  /*isSigned=*/false);
2034   llvm::Value *MaskedVal = SrcVal;
2035 
2036   // See if there are other bits in the bitfield's storage we'll need to load
2037   // and mask together with source before storing.
2038   if (Info.StorageSize != Info.Size) {
2039     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2040     llvm::Value *Val =
2041       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2042 
2043     // Mask the source value as needed.
2044     if (!hasBooleanRepresentation(Dst.getType()))
2045       SrcVal = Builder.CreateAnd(SrcVal,
2046                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2047                                                             Info.Size),
2048                                  "bf.value");
2049     MaskedVal = SrcVal;
2050     if (Info.Offset)
2051       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2052 
2053     // Mask out the original value.
2054     Val = Builder.CreateAnd(Val,
2055                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2056                                                      Info.Offset,
2057                                                      Info.Offset + Info.Size),
2058                             "bf.clear");
2059 
2060     // Or together the unchanged values and the source value.
2061     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2062   } else {
2063     assert(Info.Offset == 0);
2064   }
2065 
2066   // Write the new value back out.
2067   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2068 
2069   // Return the new value of the bit-field, if requested.
2070   if (Result) {
2071     llvm::Value *ResultVal = MaskedVal;
2072 
2073     // Sign extend the value if needed.
2074     if (Info.IsSigned) {
2075       assert(Info.Size <= Info.StorageSize);
2076       unsigned HighBits = Info.StorageSize - Info.Size;
2077       if (HighBits) {
2078         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2079         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2080       }
2081     }
2082 
2083     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2084                                       "bf.result.cast");
2085     *Result = EmitFromMemory(ResultVal, Dst.getType());
2086   }
2087 }
2088 
2089 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2090                                                                LValue Dst) {
2091   // This access turns into a read/modify/write of the vector.  Load the input
2092   // value now.
2093   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2094                                         Dst.isVolatileQualified());
2095   const llvm::Constant *Elts = Dst.getExtVectorElts();
2096 
2097   llvm::Value *SrcVal = Src.getScalarVal();
2098 
2099   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2100     unsigned NumSrcElts = VTy->getNumElements();
2101     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2102     if (NumDstElts == NumSrcElts) {
2103       // Use shuffle vector is the src and destination are the same number of
2104       // elements and restore the vector mask since it is on the side it will be
2105       // stored.
2106       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2107       for (unsigned i = 0; i != NumSrcElts; ++i)
2108         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2109 
2110       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2111       Vec = Builder.CreateShuffleVector(SrcVal,
2112                                         llvm::UndefValue::get(Vec->getType()),
2113                                         MaskV);
2114     } else if (NumDstElts > NumSrcElts) {
2115       // Extended the source vector to the same length and then shuffle it
2116       // into the destination.
2117       // FIXME: since we're shuffling with undef, can we just use the indices
2118       //        into that?  This could be simpler.
2119       SmallVector<llvm::Constant*, 4> ExtMask;
2120       for (unsigned i = 0; i != NumSrcElts; ++i)
2121         ExtMask.push_back(Builder.getInt32(i));
2122       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2123       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2124       llvm::Value *ExtSrcVal =
2125         Builder.CreateShuffleVector(SrcVal,
2126                                     llvm::UndefValue::get(SrcVal->getType()),
2127                                     ExtMaskV);
2128       // build identity
2129       SmallVector<llvm::Constant*, 4> Mask;
2130       for (unsigned i = 0; i != NumDstElts; ++i)
2131         Mask.push_back(Builder.getInt32(i));
2132 
2133       // When the vector size is odd and .odd or .hi is used, the last element
2134       // of the Elts constant array will be one past the size of the vector.
2135       // Ignore the last element here, if it is greater than the mask size.
2136       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2137         NumSrcElts--;
2138 
2139       // modify when what gets shuffled in
2140       for (unsigned i = 0; i != NumSrcElts; ++i)
2141         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2142       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2143       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2144     } else {
2145       // We should never shorten the vector
2146       llvm_unreachable("unexpected shorten vector length");
2147     }
2148   } else {
2149     // If the Src is a scalar (not a vector) it must be updating one element.
2150     unsigned InIdx = getAccessedFieldNo(0, Elts);
2151     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2152     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2153   }
2154 
2155   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2156                       Dst.isVolatileQualified());
2157 }
2158 
2159 /// Store of global named registers are always calls to intrinsics.
2160 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2161   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2162          "Bad type for register variable");
2163   llvm::MDNode *RegName = cast<llvm::MDNode>(
2164       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2165   assert(RegName && "Register LValue is not metadata");
2166 
2167   // We accept integer and pointer types only
2168   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2169   llvm::Type *Ty = OrigTy;
2170   if (OrigTy->isPointerTy())
2171     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2172   llvm::Type *Types[] = { Ty };
2173 
2174   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2175   llvm::Value *Value = Src.getScalarVal();
2176   if (OrigTy->isPointerTy())
2177     Value = Builder.CreatePtrToInt(Value, Ty);
2178   Builder.CreateCall(
2179       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2180 }
2181 
2182 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2183 // generating write-barries API. It is currently a global, ivar,
2184 // or neither.
2185 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2186                                  LValue &LV,
2187                                  bool IsMemberAccess=false) {
2188   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2189     return;
2190 
2191   if (isa<ObjCIvarRefExpr>(E)) {
2192     QualType ExpTy = E->getType();
2193     if (IsMemberAccess && ExpTy->isPointerType()) {
2194       // If ivar is a structure pointer, assigning to field of
2195       // this struct follows gcc's behavior and makes it a non-ivar
2196       // writer-barrier conservatively.
2197       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2198       if (ExpTy->isRecordType()) {
2199         LV.setObjCIvar(false);
2200         return;
2201       }
2202     }
2203     LV.setObjCIvar(true);
2204     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2205     LV.setBaseIvarExp(Exp->getBase());
2206     LV.setObjCArray(E->getType()->isArrayType());
2207     return;
2208   }
2209 
2210   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2211     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2212       if (VD->hasGlobalStorage()) {
2213         LV.setGlobalObjCRef(true);
2214         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2215       }
2216     }
2217     LV.setObjCArray(E->getType()->isArrayType());
2218     return;
2219   }
2220 
2221   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2222     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2223     return;
2224   }
2225 
2226   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2227     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2228     if (LV.isObjCIvar()) {
2229       // If cast is to a structure pointer, follow gcc's behavior and make it
2230       // a non-ivar write-barrier.
2231       QualType ExpTy = E->getType();
2232       if (ExpTy->isPointerType())
2233         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2234       if (ExpTy->isRecordType())
2235         LV.setObjCIvar(false);
2236     }
2237     return;
2238   }
2239 
2240   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2241     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2242     return;
2243   }
2244 
2245   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2246     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2247     return;
2248   }
2249 
2250   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2251     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2252     return;
2253   }
2254 
2255   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2256     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2257     return;
2258   }
2259 
2260   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2261     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2262     if (LV.isObjCIvar() && !LV.isObjCArray())
2263       // Using array syntax to assigning to what an ivar points to is not
2264       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2265       LV.setObjCIvar(false);
2266     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2267       // Using array syntax to assigning to what global points to is not
2268       // same as assigning to the global itself. {id *G;} G[i] = 0;
2269       LV.setGlobalObjCRef(false);
2270     return;
2271   }
2272 
2273   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2274     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2275     // We don't know if member is an 'ivar', but this flag is looked at
2276     // only in the context of LV.isObjCIvar().
2277     LV.setObjCArray(E->getType()->isArrayType());
2278     return;
2279   }
2280 }
2281 
2282 static llvm::Value *
2283 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2284                                 llvm::Value *V, llvm::Type *IRType,
2285                                 StringRef Name = StringRef()) {
2286   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2287   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2288 }
2289 
2290 static LValue EmitThreadPrivateVarDeclLValue(
2291     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2292     llvm::Type *RealVarTy, SourceLocation Loc) {
2293   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2294   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2295   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2296 }
2297 
2298 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2299                                            const VarDecl *VD, QualType T) {
2300   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2301       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2302   // Return an invalid address if variable is MT_To and unified
2303   // memory is not enabled. For all other cases: MT_Link and
2304   // MT_To with unified memory, return a valid address.
2305   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2306                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2307     return Address::invalid();
2308   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2309           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2310            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2311          "Expected link clause OR to clause with unified memory enabled.");
2312   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2313   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2314   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2315 }
2316 
2317 Address
2318 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2319                                      LValueBaseInfo *PointeeBaseInfo,
2320                                      TBAAAccessInfo *PointeeTBAAInfo) {
2321   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2322                                             RefLVal.isVolatile());
2323   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2324 
2325   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2326                                             PointeeBaseInfo, PointeeTBAAInfo,
2327                                             /* forPointeeType= */ true);
2328   return Address(Load, Align);
2329 }
2330 
2331 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2332   LValueBaseInfo PointeeBaseInfo;
2333   TBAAAccessInfo PointeeTBAAInfo;
2334   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2335                                             &PointeeTBAAInfo);
2336   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2337                         PointeeBaseInfo, PointeeTBAAInfo);
2338 }
2339 
2340 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2341                                            const PointerType *PtrTy,
2342                                            LValueBaseInfo *BaseInfo,
2343                                            TBAAAccessInfo *TBAAInfo) {
2344   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2345   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2346                                                BaseInfo, TBAAInfo,
2347                                                /*forPointeeType=*/true));
2348 }
2349 
2350 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2351                                                 const PointerType *PtrTy) {
2352   LValueBaseInfo BaseInfo;
2353   TBAAAccessInfo TBAAInfo;
2354   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2355   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2356 }
2357 
2358 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2359                                       const Expr *E, const VarDecl *VD) {
2360   QualType T = E->getType();
2361 
2362   // If it's thread_local, emit a call to its wrapper function instead.
2363   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2364       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2365     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2366   // Check if the variable is marked as declare target with link clause in
2367   // device codegen.
2368   if (CGF.getLangOpts().OpenMPIsDevice) {
2369     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2370     if (Addr.isValid())
2371       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2372   }
2373 
2374   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2375   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2376   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2377   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2378   Address Addr(V, Alignment);
2379   // Emit reference to the private copy of the variable if it is an OpenMP
2380   // threadprivate variable.
2381   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2382       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2383     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2384                                           E->getExprLoc());
2385   }
2386   LValue LV = VD->getType()->isReferenceType() ?
2387       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2388                                     AlignmentSource::Decl) :
2389       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2390   setObjCGCLValueClass(CGF.getContext(), E, LV);
2391   return LV;
2392 }
2393 
2394 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2395                                                const FunctionDecl *FD) {
2396   if (FD->hasAttr<WeakRefAttr>()) {
2397     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2398     return aliasee.getPointer();
2399   }
2400 
2401   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2402   if (!FD->hasPrototype()) {
2403     if (const FunctionProtoType *Proto =
2404             FD->getType()->getAs<FunctionProtoType>()) {
2405       // Ugly case: for a K&R-style definition, the type of the definition
2406       // isn't the same as the type of a use.  Correct for this with a
2407       // bitcast.
2408       QualType NoProtoType =
2409           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2410       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2411       V = llvm::ConstantExpr::getBitCast(V,
2412                                       CGM.getTypes().ConvertType(NoProtoType));
2413     }
2414   }
2415   return V;
2416 }
2417 
2418 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2419                                      const Expr *E, const FunctionDecl *FD) {
2420   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2421   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2422   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2423                             AlignmentSource::Decl);
2424 }
2425 
2426 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2427                                       llvm::Value *ThisValue) {
2428   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2429   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2430   return CGF.EmitLValueForField(LV, FD);
2431 }
2432 
2433 /// Named Registers are named metadata pointing to the register name
2434 /// which will be read from/written to as an argument to the intrinsic
2435 /// @llvm.read/write_register.
2436 /// So far, only the name is being passed down, but other options such as
2437 /// register type, allocation type or even optimization options could be
2438 /// passed down via the metadata node.
2439 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2440   SmallString<64> Name("llvm.named.register.");
2441   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2442   assert(Asm->getLabel().size() < 64-Name.size() &&
2443       "Register name too big");
2444   Name.append(Asm->getLabel());
2445   llvm::NamedMDNode *M =
2446     CGM.getModule().getOrInsertNamedMetadata(Name);
2447   if (M->getNumOperands() == 0) {
2448     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2449                                               Asm->getLabel());
2450     llvm::Metadata *Ops[] = {Str};
2451     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2452   }
2453 
2454   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2455 
2456   llvm::Value *Ptr =
2457     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2458   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2459 }
2460 
2461 /// Determine whether we can emit a reference to \p VD from the current
2462 /// context, despite not necessarily having seen an odr-use of the variable in
2463 /// this context.
2464 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2465                                                const DeclRefExpr *E,
2466                                                const VarDecl *VD,
2467                                                bool IsConstant) {
2468   // For a variable declared in an enclosing scope, do not emit a spurious
2469   // reference even if we have a capture, as that will emit an unwarranted
2470   // reference to our capture state, and will likely generate worse code than
2471   // emitting a local copy.
2472   if (E->refersToEnclosingVariableOrCapture())
2473     return false;
2474 
2475   // For a local declaration declared in this function, we can always reference
2476   // it even if we don't have an odr-use.
2477   if (VD->hasLocalStorage()) {
2478     return VD->getDeclContext() ==
2479            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2480   }
2481 
2482   // For a global declaration, we can emit a reference to it if we know
2483   // for sure that we are able to emit a definition of it.
2484   VD = VD->getDefinition(CGF.getContext());
2485   if (!VD)
2486     return false;
2487 
2488   // Don't emit a spurious reference if it might be to a variable that only
2489   // exists on a different device / target.
2490   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2491   // cross-target reference.
2492   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2493       CGF.getLangOpts().OpenCL) {
2494     return false;
2495   }
2496 
2497   // We can emit a spurious reference only if the linkage implies that we'll
2498   // be emitting a non-interposable symbol that will be retained until link
2499   // time.
2500   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2501   case llvm::GlobalValue::ExternalLinkage:
2502   case llvm::GlobalValue::LinkOnceODRLinkage:
2503   case llvm::GlobalValue::WeakODRLinkage:
2504   case llvm::GlobalValue::InternalLinkage:
2505   case llvm::GlobalValue::PrivateLinkage:
2506     return true;
2507   default:
2508     return false;
2509   }
2510 }
2511 
2512 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2513   const NamedDecl *ND = E->getDecl();
2514   QualType T = E->getType();
2515 
2516   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2517          "should not emit an unevaluated operand");
2518 
2519   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2520     // Global Named registers access via intrinsics only
2521     if (VD->getStorageClass() == SC_Register &&
2522         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2523       return EmitGlobalNamedRegister(VD, CGM);
2524 
2525     // If this DeclRefExpr does not constitute an odr-use of the variable,
2526     // we're not permitted to emit a reference to it in general, and it might
2527     // not be captured if capture would be necessary for a use. Emit the
2528     // constant value directly instead.
2529     if (E->isNonOdrUse() == NOUR_Constant &&
2530         (VD->getType()->isReferenceType() ||
2531          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2532       VD->getAnyInitializer(VD);
2533       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2534           E->getLocation(), *VD->evaluateValue(), VD->getType());
2535       assert(Val && "failed to emit constant expression");
2536 
2537       Address Addr = Address::invalid();
2538       if (!VD->getType()->isReferenceType()) {
2539         // Spill the constant value to a global.
2540         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2541                                            getContext().getDeclAlign(VD));
2542       } else {
2543         // Should we be using the alignment of the constant pointer we emitted?
2544         CharUnits Alignment =
2545             getNaturalTypeAlignment(E->getType(),
2546                                     /* BaseInfo= */ nullptr,
2547                                     /* TBAAInfo= */ nullptr,
2548                                     /* forPointeeType= */ true);
2549         Addr = Address(Val, Alignment);
2550       }
2551       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2552     }
2553 
2554     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2555 
2556     // Check for captured variables.
2557     if (E->refersToEnclosingVariableOrCapture()) {
2558       VD = VD->getCanonicalDecl();
2559       if (auto *FD = LambdaCaptureFields.lookup(VD))
2560         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2561       else if (CapturedStmtInfo) {
2562         auto I = LocalDeclMap.find(VD);
2563         if (I != LocalDeclMap.end()) {
2564           if (VD->getType()->isReferenceType())
2565             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2566                                              AlignmentSource::Decl);
2567           return MakeAddrLValue(I->second, T);
2568         }
2569         LValue CapLVal =
2570             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2571                                     CapturedStmtInfo->getContextValue());
2572         return MakeAddrLValue(
2573             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2574             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2575             CapLVal.getTBAAInfo());
2576       }
2577 
2578       assert(isa<BlockDecl>(CurCodeDecl));
2579       Address addr = GetAddrOfBlockDecl(VD);
2580       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2581     }
2582   }
2583 
2584   // FIXME: We should be able to assert this for FunctionDecls as well!
2585   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2586   // those with a valid source location.
2587   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2588           !E->getLocation().isValid()) &&
2589          "Should not use decl without marking it used!");
2590 
2591   if (ND->hasAttr<WeakRefAttr>()) {
2592     const auto *VD = cast<ValueDecl>(ND);
2593     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2594     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2595   }
2596 
2597   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2598     // Check if this is a global variable.
2599     if (VD->hasLinkage() || VD->isStaticDataMember())
2600       return EmitGlobalVarDeclLValue(*this, E, VD);
2601 
2602     Address addr = Address::invalid();
2603 
2604     // The variable should generally be present in the local decl map.
2605     auto iter = LocalDeclMap.find(VD);
2606     if (iter != LocalDeclMap.end()) {
2607       addr = iter->second;
2608 
2609     // Otherwise, it might be static local we haven't emitted yet for
2610     // some reason; most likely, because it's in an outer function.
2611     } else if (VD->isStaticLocal()) {
2612       addr = Address(CGM.getOrCreateStaticVarDecl(
2613           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2614                      getContext().getDeclAlign(VD));
2615 
2616     // No other cases for now.
2617     } else {
2618       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2619     }
2620 
2621 
2622     // Check for OpenMP threadprivate variables.
2623     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2624         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2625       return EmitThreadPrivateVarDeclLValue(
2626           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2627           E->getExprLoc());
2628     }
2629 
2630     // Drill into block byref variables.
2631     bool isBlockByref = VD->isEscapingByref();
2632     if (isBlockByref) {
2633       addr = emitBlockByrefAddress(addr, VD);
2634     }
2635 
2636     // Drill into reference types.
2637     LValue LV = VD->getType()->isReferenceType() ?
2638         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2639         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2640 
2641     bool isLocalStorage = VD->hasLocalStorage();
2642 
2643     bool NonGCable = isLocalStorage &&
2644                      !VD->getType()->isReferenceType() &&
2645                      !isBlockByref;
2646     if (NonGCable) {
2647       LV.getQuals().removeObjCGCAttr();
2648       LV.setNonGC(true);
2649     }
2650 
2651     bool isImpreciseLifetime =
2652       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2653     if (isImpreciseLifetime)
2654       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2655     setObjCGCLValueClass(getContext(), E, LV);
2656     return LV;
2657   }
2658 
2659   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2660     return EmitFunctionDeclLValue(*this, E, FD);
2661 
2662   // FIXME: While we're emitting a binding from an enclosing scope, all other
2663   // DeclRefExprs we see should be implicitly treated as if they also refer to
2664   // an enclosing scope.
2665   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2666     return EmitLValue(BD->getBinding());
2667 
2668   llvm_unreachable("Unhandled DeclRefExpr");
2669 }
2670 
2671 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2672   // __extension__ doesn't affect lvalue-ness.
2673   if (E->getOpcode() == UO_Extension)
2674     return EmitLValue(E->getSubExpr());
2675 
2676   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2677   switch (E->getOpcode()) {
2678   default: llvm_unreachable("Unknown unary operator lvalue!");
2679   case UO_Deref: {
2680     QualType T = E->getSubExpr()->getType()->getPointeeType();
2681     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2682 
2683     LValueBaseInfo BaseInfo;
2684     TBAAAccessInfo TBAAInfo;
2685     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2686                                             &TBAAInfo);
2687     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2688     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2689 
2690     // We should not generate __weak write barrier on indirect reference
2691     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2692     // But, we continue to generate __strong write barrier on indirect write
2693     // into a pointer to object.
2694     if (getLangOpts().ObjC &&
2695         getLangOpts().getGC() != LangOptions::NonGC &&
2696         LV.isObjCWeak())
2697       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2698     return LV;
2699   }
2700   case UO_Real:
2701   case UO_Imag: {
2702     LValue LV = EmitLValue(E->getSubExpr());
2703     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2704 
2705     // __real is valid on scalars.  This is a faster way of testing that.
2706     // __imag can only produce an rvalue on scalars.
2707     if (E->getOpcode() == UO_Real &&
2708         !LV.getAddress().getElementType()->isStructTy()) {
2709       assert(E->getSubExpr()->getType()->isArithmeticType());
2710       return LV;
2711     }
2712 
2713     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2714 
2715     Address Component =
2716       (E->getOpcode() == UO_Real
2717          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2718          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2719     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2720                                    CGM.getTBAAInfoForSubobject(LV, T));
2721     ElemLV.getQuals().addQualifiers(LV.getQuals());
2722     return ElemLV;
2723   }
2724   case UO_PreInc:
2725   case UO_PreDec: {
2726     LValue LV = EmitLValue(E->getSubExpr());
2727     bool isInc = E->getOpcode() == UO_PreInc;
2728 
2729     if (E->getType()->isAnyComplexType())
2730       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2731     else
2732       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2733     return LV;
2734   }
2735   }
2736 }
2737 
2738 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2739   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2740                         E->getType(), AlignmentSource::Decl);
2741 }
2742 
2743 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2744   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2745                         E->getType(), AlignmentSource::Decl);
2746 }
2747 
2748 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2749   auto SL = E->getFunctionName();
2750   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2751   StringRef FnName = CurFn->getName();
2752   if (FnName.startswith("\01"))
2753     FnName = FnName.substr(1);
2754   StringRef NameItems[] = {
2755       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2756   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2757   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2758     std::string Name = SL->getString();
2759     if (!Name.empty()) {
2760       unsigned Discriminator =
2761           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2762       if (Discriminator)
2763         Name += "_" + Twine(Discriminator + 1).str();
2764       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2765       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2766     } else {
2767       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2768       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2769     }
2770   }
2771   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2772   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2773 }
2774 
2775 /// Emit a type description suitable for use by a runtime sanitizer library. The
2776 /// format of a type descriptor is
2777 ///
2778 /// \code
2779 ///   { i16 TypeKind, i16 TypeInfo }
2780 /// \endcode
2781 ///
2782 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2783 /// integer, 1 for a floating point value, and -1 for anything else.
2784 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2785   // Only emit each type's descriptor once.
2786   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2787     return C;
2788 
2789   uint16_t TypeKind = -1;
2790   uint16_t TypeInfo = 0;
2791 
2792   if (T->isIntegerType()) {
2793     TypeKind = 0;
2794     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2795                (T->isSignedIntegerType() ? 1 : 0);
2796   } else if (T->isFloatingType()) {
2797     TypeKind = 1;
2798     TypeInfo = getContext().getTypeSize(T);
2799   }
2800 
2801   // Format the type name as if for a diagnostic, including quotes and
2802   // optionally an 'aka'.
2803   SmallString<32> Buffer;
2804   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2805                                     (intptr_t)T.getAsOpaquePtr(),
2806                                     StringRef(), StringRef(), None, Buffer,
2807                                     None);
2808 
2809   llvm::Constant *Components[] = {
2810     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2811     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2812   };
2813   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2814 
2815   auto *GV = new llvm::GlobalVariable(
2816       CGM.getModule(), Descriptor->getType(),
2817       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2818   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2819   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2820 
2821   // Remember the descriptor for this type.
2822   CGM.setTypeDescriptorInMap(T, GV);
2823 
2824   return GV;
2825 }
2826 
2827 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2828   llvm::Type *TargetTy = IntPtrTy;
2829 
2830   if (V->getType() == TargetTy)
2831     return V;
2832 
2833   // Floating-point types which fit into intptr_t are bitcast to integers
2834   // and then passed directly (after zero-extension, if necessary).
2835   if (V->getType()->isFloatingPointTy()) {
2836     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2837     if (Bits <= TargetTy->getIntegerBitWidth())
2838       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2839                                                          Bits));
2840   }
2841 
2842   // Integers which fit in intptr_t are zero-extended and passed directly.
2843   if (V->getType()->isIntegerTy() &&
2844       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2845     return Builder.CreateZExt(V, TargetTy);
2846 
2847   // Pointers are passed directly, everything else is passed by address.
2848   if (!V->getType()->isPointerTy()) {
2849     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2850     Builder.CreateStore(V, Ptr);
2851     V = Ptr.getPointer();
2852   }
2853   return Builder.CreatePtrToInt(V, TargetTy);
2854 }
2855 
2856 /// Emit a representation of a SourceLocation for passing to a handler
2857 /// in a sanitizer runtime library. The format for this data is:
2858 /// \code
2859 ///   struct SourceLocation {
2860 ///     const char *Filename;
2861 ///     int32_t Line, Column;
2862 ///   };
2863 /// \endcode
2864 /// For an invalid SourceLocation, the Filename pointer is null.
2865 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2866   llvm::Constant *Filename;
2867   int Line, Column;
2868 
2869   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2870   if (PLoc.isValid()) {
2871     StringRef FilenameString = PLoc.getFilename();
2872 
2873     int PathComponentsToStrip =
2874         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2875     if (PathComponentsToStrip < 0) {
2876       assert(PathComponentsToStrip != INT_MIN);
2877       int PathComponentsToKeep = -PathComponentsToStrip;
2878       auto I = llvm::sys::path::rbegin(FilenameString);
2879       auto E = llvm::sys::path::rend(FilenameString);
2880       while (I != E && --PathComponentsToKeep)
2881         ++I;
2882 
2883       FilenameString = FilenameString.substr(I - E);
2884     } else if (PathComponentsToStrip > 0) {
2885       auto I = llvm::sys::path::begin(FilenameString);
2886       auto E = llvm::sys::path::end(FilenameString);
2887       while (I != E && PathComponentsToStrip--)
2888         ++I;
2889 
2890       if (I != E)
2891         FilenameString =
2892             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2893       else
2894         FilenameString = llvm::sys::path::filename(FilenameString);
2895     }
2896 
2897     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2898     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2899                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2900     Filename = FilenameGV.getPointer();
2901     Line = PLoc.getLine();
2902     Column = PLoc.getColumn();
2903   } else {
2904     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2905     Line = Column = 0;
2906   }
2907 
2908   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2909                             Builder.getInt32(Column)};
2910 
2911   return llvm::ConstantStruct::getAnon(Data);
2912 }
2913 
2914 namespace {
2915 /// Specify under what conditions this check can be recovered
2916 enum class CheckRecoverableKind {
2917   /// Always terminate program execution if this check fails.
2918   Unrecoverable,
2919   /// Check supports recovering, runtime has both fatal (noreturn) and
2920   /// non-fatal handlers for this check.
2921   Recoverable,
2922   /// Runtime conditionally aborts, always need to support recovery.
2923   AlwaysRecoverable
2924 };
2925 }
2926 
2927 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2928   assert(Kind.countPopulation() == 1);
2929   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2930     return CheckRecoverableKind::AlwaysRecoverable;
2931   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2932     return CheckRecoverableKind::Unrecoverable;
2933   else
2934     return CheckRecoverableKind::Recoverable;
2935 }
2936 
2937 namespace {
2938 struct SanitizerHandlerInfo {
2939   char const *const Name;
2940   unsigned Version;
2941 };
2942 }
2943 
2944 const SanitizerHandlerInfo SanitizerHandlers[] = {
2945 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2946     LIST_SANITIZER_CHECKS
2947 #undef SANITIZER_CHECK
2948 };
2949 
2950 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2951                                  llvm::FunctionType *FnType,
2952                                  ArrayRef<llvm::Value *> FnArgs,
2953                                  SanitizerHandler CheckHandler,
2954                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2955                                  llvm::BasicBlock *ContBB) {
2956   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2957   Optional<ApplyDebugLocation> DL;
2958   if (!CGF.Builder.getCurrentDebugLocation()) {
2959     // Ensure that the call has at least an artificial debug location.
2960     DL.emplace(CGF, SourceLocation());
2961   }
2962   bool NeedsAbortSuffix =
2963       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2964   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2965   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2966   const StringRef CheckName = CheckInfo.Name;
2967   std::string FnName = "__ubsan_handle_" + CheckName.str();
2968   if (CheckInfo.Version && !MinimalRuntime)
2969     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2970   if (MinimalRuntime)
2971     FnName += "_minimal";
2972   if (NeedsAbortSuffix)
2973     FnName += "_abort";
2974   bool MayReturn =
2975       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2976 
2977   llvm::AttrBuilder B;
2978   if (!MayReturn) {
2979     B.addAttribute(llvm::Attribute::NoReturn)
2980         .addAttribute(llvm::Attribute::NoUnwind);
2981   }
2982   B.addAttribute(llvm::Attribute::UWTable);
2983 
2984   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2985       FnType, FnName,
2986       llvm::AttributeList::get(CGF.getLLVMContext(),
2987                                llvm::AttributeList::FunctionIndex, B),
2988       /*Local=*/true);
2989   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2990   if (!MayReturn) {
2991     HandlerCall->setDoesNotReturn();
2992     CGF.Builder.CreateUnreachable();
2993   } else {
2994     CGF.Builder.CreateBr(ContBB);
2995   }
2996 }
2997 
2998 void CodeGenFunction::EmitCheck(
2999     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3000     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3001     ArrayRef<llvm::Value *> DynamicArgs) {
3002   assert(IsSanitizerScope);
3003   assert(Checked.size() > 0);
3004   assert(CheckHandler >= 0 &&
3005          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3006   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3007 
3008   llvm::Value *FatalCond = nullptr;
3009   llvm::Value *RecoverableCond = nullptr;
3010   llvm::Value *TrapCond = nullptr;
3011   for (int i = 0, n = Checked.size(); i < n; ++i) {
3012     llvm::Value *Check = Checked[i].first;
3013     // -fsanitize-trap= overrides -fsanitize-recover=.
3014     llvm::Value *&Cond =
3015         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3016             ? TrapCond
3017             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3018                   ? RecoverableCond
3019                   : FatalCond;
3020     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3021   }
3022 
3023   if (TrapCond)
3024     EmitTrapCheck(TrapCond);
3025   if (!FatalCond && !RecoverableCond)
3026     return;
3027 
3028   llvm::Value *JointCond;
3029   if (FatalCond && RecoverableCond)
3030     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3031   else
3032     JointCond = FatalCond ? FatalCond : RecoverableCond;
3033   assert(JointCond);
3034 
3035   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3036   assert(SanOpts.has(Checked[0].second));
3037 #ifndef NDEBUG
3038   for (int i = 1, n = Checked.size(); i < n; ++i) {
3039     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3040            "All recoverable kinds in a single check must be same!");
3041     assert(SanOpts.has(Checked[i].second));
3042   }
3043 #endif
3044 
3045   llvm::BasicBlock *Cont = createBasicBlock("cont");
3046   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3047   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3048   // Give hint that we very much don't expect to execute the handler
3049   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3050   llvm::MDBuilder MDHelper(getLLVMContext());
3051   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3052   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3053   EmitBlock(Handlers);
3054 
3055   // Handler functions take an i8* pointing to the (handler-specific) static
3056   // information block, followed by a sequence of intptr_t arguments
3057   // representing operand values.
3058   SmallVector<llvm::Value *, 4> Args;
3059   SmallVector<llvm::Type *, 4> ArgTypes;
3060   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3061     Args.reserve(DynamicArgs.size() + 1);
3062     ArgTypes.reserve(DynamicArgs.size() + 1);
3063 
3064     // Emit handler arguments and create handler function type.
3065     if (!StaticArgs.empty()) {
3066       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3067       auto *InfoPtr =
3068           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3069                                    llvm::GlobalVariable::PrivateLinkage, Info);
3070       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3071       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3072       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3073       ArgTypes.push_back(Int8PtrTy);
3074     }
3075 
3076     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3077       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3078       ArgTypes.push_back(IntPtrTy);
3079     }
3080   }
3081 
3082   llvm::FunctionType *FnType =
3083     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3084 
3085   if (!FatalCond || !RecoverableCond) {
3086     // Simple case: we need to generate a single handler call, either
3087     // fatal, or non-fatal.
3088     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3089                          (FatalCond != nullptr), Cont);
3090   } else {
3091     // Emit two handler calls: first one for set of unrecoverable checks,
3092     // another one for recoverable.
3093     llvm::BasicBlock *NonFatalHandlerBB =
3094         createBasicBlock("non_fatal." + CheckName);
3095     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3096     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3097     EmitBlock(FatalHandlerBB);
3098     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3099                          NonFatalHandlerBB);
3100     EmitBlock(NonFatalHandlerBB);
3101     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3102                          Cont);
3103   }
3104 
3105   EmitBlock(Cont);
3106 }
3107 
3108 void CodeGenFunction::EmitCfiSlowPathCheck(
3109     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3110     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3111   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3112 
3113   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3114   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3115 
3116   llvm::MDBuilder MDHelper(getLLVMContext());
3117   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3118   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3119 
3120   EmitBlock(CheckBB);
3121 
3122   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3123 
3124   llvm::CallInst *CheckCall;
3125   llvm::FunctionCallee SlowPathFn;
3126   if (WithDiag) {
3127     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3128     auto *InfoPtr =
3129         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3130                                  llvm::GlobalVariable::PrivateLinkage, Info);
3131     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3132     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3133 
3134     SlowPathFn = CGM.getModule().getOrInsertFunction(
3135         "__cfi_slowpath_diag",
3136         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3137                                 false));
3138     CheckCall = Builder.CreateCall(
3139         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3140   } else {
3141     SlowPathFn = CGM.getModule().getOrInsertFunction(
3142         "__cfi_slowpath",
3143         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3144     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3145   }
3146 
3147   CGM.setDSOLocal(
3148       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3149   CheckCall->setDoesNotThrow();
3150 
3151   EmitBlock(Cont);
3152 }
3153 
3154 // Emit a stub for __cfi_check function so that the linker knows about this
3155 // symbol in LTO mode.
3156 void CodeGenFunction::EmitCfiCheckStub() {
3157   llvm::Module *M = &CGM.getModule();
3158   auto &Ctx = M->getContext();
3159   llvm::Function *F = llvm::Function::Create(
3160       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3161       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3162   CGM.setDSOLocal(F);
3163   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3164   // FIXME: consider emitting an intrinsic call like
3165   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3166   // which can be lowered in CrossDSOCFI pass to the actual contents of
3167   // __cfi_check. This would allow inlining of __cfi_check calls.
3168   llvm::CallInst::Create(
3169       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3170   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3171 }
3172 
3173 // This function is basically a switch over the CFI failure kind, which is
3174 // extracted from CFICheckFailData (1st function argument). Each case is either
3175 // llvm.trap or a call to one of the two runtime handlers, based on
3176 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3177 // failure kind) traps, but this should really never happen.  CFICheckFailData
3178 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3179 // check kind; in this case __cfi_check_fail traps as well.
3180 void CodeGenFunction::EmitCfiCheckFail() {
3181   SanitizerScope SanScope(this);
3182   FunctionArgList Args;
3183   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3184                             ImplicitParamDecl::Other);
3185   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3186                             ImplicitParamDecl::Other);
3187   Args.push_back(&ArgData);
3188   Args.push_back(&ArgAddr);
3189 
3190   const CGFunctionInfo &FI =
3191     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3192 
3193   llvm::Function *F = llvm::Function::Create(
3194       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3195       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3196   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3197 
3198   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3199                 SourceLocation());
3200 
3201   // This function should not be affected by blacklist. This function does
3202   // not have a source location, but "src:*" would still apply. Revert any
3203   // changes to SanOpts made in StartFunction.
3204   SanOpts = CGM.getLangOpts().Sanitize;
3205 
3206   llvm::Value *Data =
3207       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3208                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3209   llvm::Value *Addr =
3210       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3211                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3212 
3213   // Data == nullptr means the calling module has trap behaviour for this check.
3214   llvm::Value *DataIsNotNullPtr =
3215       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3216   EmitTrapCheck(DataIsNotNullPtr);
3217 
3218   llvm::StructType *SourceLocationTy =
3219       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3220   llvm::StructType *CfiCheckFailDataTy =
3221       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3222 
3223   llvm::Value *V = Builder.CreateConstGEP2_32(
3224       CfiCheckFailDataTy,
3225       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3226       0);
3227   Address CheckKindAddr(V, getIntAlign());
3228   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3229 
3230   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3231       CGM.getLLVMContext(),
3232       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3233   llvm::Value *ValidVtable = Builder.CreateZExt(
3234       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3235                          {Addr, AllVtables}),
3236       IntPtrTy);
3237 
3238   const std::pair<int, SanitizerMask> CheckKinds[] = {
3239       {CFITCK_VCall, SanitizerKind::CFIVCall},
3240       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3241       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3242       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3243       {CFITCK_ICall, SanitizerKind::CFIICall}};
3244 
3245   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3246   for (auto CheckKindMaskPair : CheckKinds) {
3247     int Kind = CheckKindMaskPair.first;
3248     SanitizerMask Mask = CheckKindMaskPair.second;
3249     llvm::Value *Cond =
3250         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3251     if (CGM.getLangOpts().Sanitize.has(Mask))
3252       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3253                 {Data, Addr, ValidVtable});
3254     else
3255       EmitTrapCheck(Cond);
3256   }
3257 
3258   FinishFunction();
3259   // The only reference to this function will be created during LTO link.
3260   // Make sure it survives until then.
3261   CGM.addUsedGlobal(F);
3262 }
3263 
3264 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3265   if (SanOpts.has(SanitizerKind::Unreachable)) {
3266     SanitizerScope SanScope(this);
3267     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3268                              SanitizerKind::Unreachable),
3269               SanitizerHandler::BuiltinUnreachable,
3270               EmitCheckSourceLocation(Loc), None);
3271   }
3272   Builder.CreateUnreachable();
3273 }
3274 
3275 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3276   llvm::BasicBlock *Cont = createBasicBlock("cont");
3277 
3278   // If we're optimizing, collapse all calls to trap down to just one per
3279   // function to save on code size.
3280   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3281     TrapBB = createBasicBlock("trap");
3282     Builder.CreateCondBr(Checked, Cont, TrapBB);
3283     EmitBlock(TrapBB);
3284     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3285     TrapCall->setDoesNotReturn();
3286     TrapCall->setDoesNotThrow();
3287     Builder.CreateUnreachable();
3288   } else {
3289     Builder.CreateCondBr(Checked, Cont, TrapBB);
3290   }
3291 
3292   EmitBlock(Cont);
3293 }
3294 
3295 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3296   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3297 
3298   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3299     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3300                                   CGM.getCodeGenOpts().TrapFuncName);
3301     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3302   }
3303 
3304   return TrapCall;
3305 }
3306 
3307 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3308                                                  LValueBaseInfo *BaseInfo,
3309                                                  TBAAAccessInfo *TBAAInfo) {
3310   assert(E->getType()->isArrayType() &&
3311          "Array to pointer decay must have array source type!");
3312 
3313   // Expressions of array type can't be bitfields or vector elements.
3314   LValue LV = EmitLValue(E);
3315   Address Addr = LV.getAddress();
3316 
3317   // If the array type was an incomplete type, we need to make sure
3318   // the decay ends up being the right type.
3319   llvm::Type *NewTy = ConvertType(E->getType());
3320   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3321 
3322   // Note that VLA pointers are always decayed, so we don't need to do
3323   // anything here.
3324   if (!E->getType()->isVariableArrayType()) {
3325     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3326            "Expected pointer to array");
3327     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3328   }
3329 
3330   // The result of this decay conversion points to an array element within the
3331   // base lvalue. However, since TBAA currently does not support representing
3332   // accesses to elements of member arrays, we conservatively represent accesses
3333   // to the pointee object as if it had no any base lvalue specified.
3334   // TODO: Support TBAA for member arrays.
3335   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3336   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3337   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3338 
3339   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3340 }
3341 
3342 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3343 /// array to pointer, return the array subexpression.
3344 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3345   // If this isn't just an array->pointer decay, bail out.
3346   const auto *CE = dyn_cast<CastExpr>(E);
3347   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3348     return nullptr;
3349 
3350   // If this is a decay from variable width array, bail out.
3351   const Expr *SubExpr = CE->getSubExpr();
3352   if (SubExpr->getType()->isVariableArrayType())
3353     return nullptr;
3354 
3355   return SubExpr;
3356 }
3357 
3358 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3359                                           llvm::Value *ptr,
3360                                           ArrayRef<llvm::Value*> indices,
3361                                           bool inbounds,
3362                                           bool signedIndices,
3363                                           SourceLocation loc,
3364                                     const llvm::Twine &name = "arrayidx") {
3365   if (inbounds) {
3366     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3367                                       CodeGenFunction::NotSubtraction, loc,
3368                                       name);
3369   } else {
3370     return CGF.Builder.CreateGEP(ptr, indices, name);
3371   }
3372 }
3373 
3374 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3375                                       llvm::Value *idx,
3376                                       CharUnits eltSize) {
3377   // If we have a constant index, we can use the exact offset of the
3378   // element we're accessing.
3379   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3380     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3381     return arrayAlign.alignmentAtOffset(offset);
3382 
3383   // Otherwise, use the worst-case alignment for any element.
3384   } else {
3385     return arrayAlign.alignmentOfArrayElement(eltSize);
3386   }
3387 }
3388 
3389 static QualType getFixedSizeElementType(const ASTContext &ctx,
3390                                         const VariableArrayType *vla) {
3391   QualType eltType;
3392   do {
3393     eltType = vla->getElementType();
3394   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3395   return eltType;
3396 }
3397 
3398 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3399                                      ArrayRef<llvm::Value *> indices,
3400                                      QualType eltType, bool inbounds,
3401                                      bool signedIndices, SourceLocation loc,
3402                                      QualType *arrayType = nullptr,
3403                                      const llvm::Twine &name = "arrayidx") {
3404   // All the indices except that last must be zero.
3405 #ifndef NDEBUG
3406   for (auto idx : indices.drop_back())
3407     assert(isa<llvm::ConstantInt>(idx) &&
3408            cast<llvm::ConstantInt>(idx)->isZero());
3409 #endif
3410 
3411   // Determine the element size of the statically-sized base.  This is
3412   // the thing that the indices are expressed in terms of.
3413   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3414     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3415   }
3416 
3417   // We can use that to compute the best alignment of the element.
3418   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3419   CharUnits eltAlign =
3420     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3421 
3422   llvm::Value *eltPtr;
3423   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3424   if (!CGF.IsInPreservedAIRegion || !LastIndex) {
3425     eltPtr = emitArraySubscriptGEP(
3426         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3427         loc, name);
3428   } else {
3429     // Remember the original array subscript for bpf target
3430     unsigned idx = LastIndex->getZExtValue();
3431     llvm::DIType *DbgInfo = nullptr;
3432     if (arrayType)
3433       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3434     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getPointer(),
3435                                                         indices.size() - 1,
3436                                                         idx, DbgInfo);
3437   }
3438 
3439   return Address(eltPtr, eltAlign);
3440 }
3441 
3442 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3443                                                bool Accessed) {
3444   // The index must always be an integer, which is not an aggregate.  Emit it
3445   // in lexical order (this complexity is, sadly, required by C++17).
3446   llvm::Value *IdxPre =
3447       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3448   bool SignedIndices = false;
3449   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3450     auto *Idx = IdxPre;
3451     if (E->getLHS() != E->getIdx()) {
3452       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3453       Idx = EmitScalarExpr(E->getIdx());
3454     }
3455 
3456     QualType IdxTy = E->getIdx()->getType();
3457     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3458     SignedIndices |= IdxSigned;
3459 
3460     if (SanOpts.has(SanitizerKind::ArrayBounds))
3461       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3462 
3463     // Extend or truncate the index type to 32 or 64-bits.
3464     if (Promote && Idx->getType() != IntPtrTy)
3465       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3466 
3467     return Idx;
3468   };
3469   IdxPre = nullptr;
3470 
3471   // If the base is a vector type, then we are forming a vector element lvalue
3472   // with this subscript.
3473   if (E->getBase()->getType()->isVectorType() &&
3474       !isa<ExtVectorElementExpr>(E->getBase())) {
3475     // Emit the vector as an lvalue to get its address.
3476     LValue LHS = EmitLValue(E->getBase());
3477     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3478     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3479     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3480                                  LHS.getBaseInfo(), TBAAAccessInfo());
3481   }
3482 
3483   // All the other cases basically behave like simple offsetting.
3484 
3485   // Handle the extvector case we ignored above.
3486   if (isa<ExtVectorElementExpr>(E->getBase())) {
3487     LValue LV = EmitLValue(E->getBase());
3488     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3489     Address Addr = EmitExtVectorElementLValue(LV);
3490 
3491     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3492     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3493                                  SignedIndices, E->getExprLoc());
3494     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3495                           CGM.getTBAAInfoForSubobject(LV, EltType));
3496   }
3497 
3498   LValueBaseInfo EltBaseInfo;
3499   TBAAAccessInfo EltTBAAInfo;
3500   Address Addr = Address::invalid();
3501   if (const VariableArrayType *vla =
3502            getContext().getAsVariableArrayType(E->getType())) {
3503     // The base must be a pointer, which is not an aggregate.  Emit
3504     // it.  It needs to be emitted first in case it's what captures
3505     // the VLA bounds.
3506     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3507     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3508 
3509     // The element count here is the total number of non-VLA elements.
3510     llvm::Value *numElements = getVLASize(vla).NumElts;
3511 
3512     // Effectively, the multiply by the VLA size is part of the GEP.
3513     // GEP indexes are signed, and scaling an index isn't permitted to
3514     // signed-overflow, so we use the same semantics for our explicit
3515     // multiply.  We suppress this if overflow is not undefined behavior.
3516     if (getLangOpts().isSignedOverflowDefined()) {
3517       Idx = Builder.CreateMul(Idx, numElements);
3518     } else {
3519       Idx = Builder.CreateNSWMul(Idx, numElements);
3520     }
3521 
3522     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3523                                  !getLangOpts().isSignedOverflowDefined(),
3524                                  SignedIndices, E->getExprLoc());
3525 
3526   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3527     // Indexing over an interface, as in "NSString *P; P[4];"
3528 
3529     // Emit the base pointer.
3530     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3531     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3532 
3533     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3534     llvm::Value *InterfaceSizeVal =
3535         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3536 
3537     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3538 
3539     // We don't necessarily build correct LLVM struct types for ObjC
3540     // interfaces, so we can't rely on GEP to do this scaling
3541     // correctly, so we need to cast to i8*.  FIXME: is this actually
3542     // true?  A lot of other things in the fragile ABI would break...
3543     llvm::Type *OrigBaseTy = Addr.getType();
3544     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3545 
3546     // Do the GEP.
3547     CharUnits EltAlign =
3548       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3549     llvm::Value *EltPtr =
3550         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3551                               SignedIndices, E->getExprLoc());
3552     Addr = Address(EltPtr, EltAlign);
3553 
3554     // Cast back.
3555     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3556   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3557     // If this is A[i] where A is an array, the frontend will have decayed the
3558     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3559     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3560     // "gep x, i" here.  Emit one "gep A, 0, i".
3561     assert(Array->getType()->isArrayType() &&
3562            "Array to pointer decay must have array source type!");
3563     LValue ArrayLV;
3564     // For simple multidimensional array indexing, set the 'accessed' flag for
3565     // better bounds-checking of the base expression.
3566     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3567       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3568     else
3569       ArrayLV = EmitLValue(Array);
3570     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3571 
3572     // Propagate the alignment from the array itself to the result.
3573     QualType arrayType = Array->getType();
3574     Addr = emitArraySubscriptGEP(
3575         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3576         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3577         E->getExprLoc(), &arrayType);
3578     EltBaseInfo = ArrayLV.getBaseInfo();
3579     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3580   } else {
3581     // The base must be a pointer; emit it with an estimate of its alignment.
3582     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3583     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3584     QualType ptrType = E->getBase()->getType();
3585     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3586                                  !getLangOpts().isSignedOverflowDefined(),
3587                                  SignedIndices, E->getExprLoc(), &ptrType);
3588   }
3589 
3590   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3591 
3592   if (getLangOpts().ObjC &&
3593       getLangOpts().getGC() != LangOptions::NonGC) {
3594     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3595     setObjCGCLValueClass(getContext(), E, LV);
3596   }
3597   return LV;
3598 }
3599 
3600 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3601                                        LValueBaseInfo &BaseInfo,
3602                                        TBAAAccessInfo &TBAAInfo,
3603                                        QualType BaseTy, QualType ElTy,
3604                                        bool IsLowerBound) {
3605   LValue BaseLVal;
3606   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3607     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3608     if (BaseTy->isArrayType()) {
3609       Address Addr = BaseLVal.getAddress();
3610       BaseInfo = BaseLVal.getBaseInfo();
3611 
3612       // If the array type was an incomplete type, we need to make sure
3613       // the decay ends up being the right type.
3614       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3615       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3616 
3617       // Note that VLA pointers are always decayed, so we don't need to do
3618       // anything here.
3619       if (!BaseTy->isVariableArrayType()) {
3620         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3621                "Expected pointer to array");
3622         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3623       }
3624 
3625       return CGF.Builder.CreateElementBitCast(Addr,
3626                                               CGF.ConvertTypeForMem(ElTy));
3627     }
3628     LValueBaseInfo TypeBaseInfo;
3629     TBAAAccessInfo TypeTBAAInfo;
3630     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3631                                                   &TypeTBAAInfo);
3632     BaseInfo.mergeForCast(TypeBaseInfo);
3633     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3634     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3635   }
3636   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3637 }
3638 
3639 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3640                                                 bool IsLowerBound) {
3641   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3642   QualType ResultExprTy;
3643   if (auto *AT = getContext().getAsArrayType(BaseTy))
3644     ResultExprTy = AT->getElementType();
3645   else
3646     ResultExprTy = BaseTy->getPointeeType();
3647   llvm::Value *Idx = nullptr;
3648   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3649     // Requesting lower bound or upper bound, but without provided length and
3650     // without ':' symbol for the default length -> length = 1.
3651     // Idx = LowerBound ?: 0;
3652     if (auto *LowerBound = E->getLowerBound()) {
3653       Idx = Builder.CreateIntCast(
3654           EmitScalarExpr(LowerBound), IntPtrTy,
3655           LowerBound->getType()->hasSignedIntegerRepresentation());
3656     } else
3657       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3658   } else {
3659     // Try to emit length or lower bound as constant. If this is possible, 1
3660     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3661     // IR (LB + Len) - 1.
3662     auto &C = CGM.getContext();
3663     auto *Length = E->getLength();
3664     llvm::APSInt ConstLength;
3665     if (Length) {
3666       // Idx = LowerBound + Length - 1;
3667       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3668         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3669         Length = nullptr;
3670       }
3671       auto *LowerBound = E->getLowerBound();
3672       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3673       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3674         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3675         LowerBound = nullptr;
3676       }
3677       if (!Length)
3678         --ConstLength;
3679       else if (!LowerBound)
3680         --ConstLowerBound;
3681 
3682       if (Length || LowerBound) {
3683         auto *LowerBoundVal =
3684             LowerBound
3685                 ? Builder.CreateIntCast(
3686                       EmitScalarExpr(LowerBound), IntPtrTy,
3687                       LowerBound->getType()->hasSignedIntegerRepresentation())
3688                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3689         auto *LengthVal =
3690             Length
3691                 ? Builder.CreateIntCast(
3692                       EmitScalarExpr(Length), IntPtrTy,
3693                       Length->getType()->hasSignedIntegerRepresentation())
3694                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3695         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3696                                 /*HasNUW=*/false,
3697                                 !getLangOpts().isSignedOverflowDefined());
3698         if (Length && LowerBound) {
3699           Idx = Builder.CreateSub(
3700               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3701               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3702         }
3703       } else
3704         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3705     } else {
3706       // Idx = ArraySize - 1;
3707       QualType ArrayTy = BaseTy->isPointerType()
3708                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3709                              : BaseTy;
3710       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3711         Length = VAT->getSizeExpr();
3712         if (Length->isIntegerConstantExpr(ConstLength, C))
3713           Length = nullptr;
3714       } else {
3715         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3716         ConstLength = CAT->getSize();
3717       }
3718       if (Length) {
3719         auto *LengthVal = Builder.CreateIntCast(
3720             EmitScalarExpr(Length), IntPtrTy,
3721             Length->getType()->hasSignedIntegerRepresentation());
3722         Idx = Builder.CreateSub(
3723             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3724             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3725       } else {
3726         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3727         --ConstLength;
3728         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3729       }
3730     }
3731   }
3732   assert(Idx);
3733 
3734   Address EltPtr = Address::invalid();
3735   LValueBaseInfo BaseInfo;
3736   TBAAAccessInfo TBAAInfo;
3737   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3738     // The base must be a pointer, which is not an aggregate.  Emit
3739     // it.  It needs to be emitted first in case it's what captures
3740     // the VLA bounds.
3741     Address Base =
3742         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3743                                 BaseTy, VLA->getElementType(), IsLowerBound);
3744     // The element count here is the total number of non-VLA elements.
3745     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3746 
3747     // Effectively, the multiply by the VLA size is part of the GEP.
3748     // GEP indexes are signed, and scaling an index isn't permitted to
3749     // signed-overflow, so we use the same semantics for our explicit
3750     // multiply.  We suppress this if overflow is not undefined behavior.
3751     if (getLangOpts().isSignedOverflowDefined())
3752       Idx = Builder.CreateMul(Idx, NumElements);
3753     else
3754       Idx = Builder.CreateNSWMul(Idx, NumElements);
3755     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3756                                    !getLangOpts().isSignedOverflowDefined(),
3757                                    /*signedIndices=*/false, E->getExprLoc());
3758   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3759     // If this is A[i] where A is an array, the frontend will have decayed the
3760     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3761     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3762     // "gep x, i" here.  Emit one "gep A, 0, i".
3763     assert(Array->getType()->isArrayType() &&
3764            "Array to pointer decay must have array source type!");
3765     LValue ArrayLV;
3766     // For simple multidimensional array indexing, set the 'accessed' flag for
3767     // better bounds-checking of the base expression.
3768     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3769       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3770     else
3771       ArrayLV = EmitLValue(Array);
3772 
3773     // Propagate the alignment from the array itself to the result.
3774     EltPtr = emitArraySubscriptGEP(
3775         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3776         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3777         /*signedIndices=*/false, E->getExprLoc());
3778     BaseInfo = ArrayLV.getBaseInfo();
3779     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3780   } else {
3781     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3782                                            TBAAInfo, BaseTy, ResultExprTy,
3783                                            IsLowerBound);
3784     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3785                                    !getLangOpts().isSignedOverflowDefined(),
3786                                    /*signedIndices=*/false, E->getExprLoc());
3787   }
3788 
3789   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3790 }
3791 
3792 LValue CodeGenFunction::
3793 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3794   // Emit the base vector as an l-value.
3795   LValue Base;
3796 
3797   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3798   if (E->isArrow()) {
3799     // If it is a pointer to a vector, emit the address and form an lvalue with
3800     // it.
3801     LValueBaseInfo BaseInfo;
3802     TBAAAccessInfo TBAAInfo;
3803     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3804     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3805     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3806     Base.getQuals().removeObjCGCAttr();
3807   } else if (E->getBase()->isGLValue()) {
3808     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3809     // emit the base as an lvalue.
3810     assert(E->getBase()->getType()->isVectorType());
3811     Base = EmitLValue(E->getBase());
3812   } else {
3813     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3814     assert(E->getBase()->getType()->isVectorType() &&
3815            "Result must be a vector");
3816     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3817 
3818     // Store the vector to memory (because LValue wants an address).
3819     Address VecMem = CreateMemTemp(E->getBase()->getType());
3820     Builder.CreateStore(Vec, VecMem);
3821     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3822                           AlignmentSource::Decl);
3823   }
3824 
3825   QualType type =
3826     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3827 
3828   // Encode the element access list into a vector of unsigned indices.
3829   SmallVector<uint32_t, 4> Indices;
3830   E->getEncodedElementAccess(Indices);
3831 
3832   if (Base.isSimple()) {
3833     llvm::Constant *CV =
3834         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3835     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3836                                     Base.getBaseInfo(), TBAAAccessInfo());
3837   }
3838   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3839 
3840   llvm::Constant *BaseElts = Base.getExtVectorElts();
3841   SmallVector<llvm::Constant *, 4> CElts;
3842 
3843   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3844     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3845   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3846   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3847                                   Base.getBaseInfo(), TBAAAccessInfo());
3848 }
3849 
3850 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3851   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3852     EmitIgnoredExpr(E->getBase());
3853     return EmitDeclRefLValue(DRE);
3854   }
3855 
3856   Expr *BaseExpr = E->getBase();
3857   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3858   LValue BaseLV;
3859   if (E->isArrow()) {
3860     LValueBaseInfo BaseInfo;
3861     TBAAAccessInfo TBAAInfo;
3862     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3863     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3864     SanitizerSet SkippedChecks;
3865     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3866     if (IsBaseCXXThis)
3867       SkippedChecks.set(SanitizerKind::Alignment, true);
3868     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3869       SkippedChecks.set(SanitizerKind::Null, true);
3870     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3871                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3872     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3873   } else
3874     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3875 
3876   NamedDecl *ND = E->getMemberDecl();
3877   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3878     LValue LV = EmitLValueForField(BaseLV, Field);
3879     setObjCGCLValueClass(getContext(), E, LV);
3880     return LV;
3881   }
3882 
3883   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3884     return EmitFunctionDeclLValue(*this, E, FD);
3885 
3886   llvm_unreachable("Unhandled member declaration!");
3887 }
3888 
3889 /// Given that we are currently emitting a lambda, emit an l-value for
3890 /// one of its members.
3891 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3892   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3893   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3894   QualType LambdaTagType =
3895     getContext().getTagDeclType(Field->getParent());
3896   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3897   return EmitLValueForField(LambdaLV, Field);
3898 }
3899 
3900 /// Get the field index in the debug info. The debug info structure/union
3901 /// will ignore the unnamed bitfields.
3902 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3903                                              unsigned FieldIndex) {
3904   unsigned I = 0, Skipped = 0;
3905 
3906   for (auto F : Rec->getDefinition()->fields()) {
3907     if (I == FieldIndex)
3908       break;
3909     if (F->isUnnamedBitfield())
3910       Skipped++;
3911     I++;
3912   }
3913 
3914   return FieldIndex - Skipped;
3915 }
3916 
3917 /// Get the address of a zero-sized field within a record. The resulting
3918 /// address doesn't necessarily have the right type.
3919 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
3920                                        const FieldDecl *Field) {
3921   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
3922       CGF.getContext().getFieldOffset(Field));
3923   if (Offset.isZero())
3924     return Base;
3925   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
3926   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
3927 }
3928 
3929 /// Drill down to the storage of a field without walking into
3930 /// reference types.
3931 ///
3932 /// The resulting address doesn't necessarily have the right type.
3933 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3934                                       const FieldDecl *field) {
3935   if (field->isZeroSize(CGF.getContext()))
3936     return emitAddrOfZeroSizeField(CGF, base, field);
3937 
3938   const RecordDecl *rec = field->getParent();
3939 
3940   unsigned idx =
3941     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3942 
3943   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3944 }
3945 
3946 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
3947                                         const FieldDecl *field) {
3948   const RecordDecl *rec = field->getParent();
3949   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
3950       CGF.getContext().getRecordType(rec), rec->getLocation());
3951 
3952   unsigned idx =
3953       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3954 
3955   return CGF.Builder.CreatePreserveStructAccessIndex(
3956       base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
3957 }
3958 
3959 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3960   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3961   if (!RD)
3962     return false;
3963 
3964   if (RD->isDynamicClass())
3965     return true;
3966 
3967   for (const auto &Base : RD->bases())
3968     if (hasAnyVptr(Base.getType(), Context))
3969       return true;
3970 
3971   for (const FieldDecl *Field : RD->fields())
3972     if (hasAnyVptr(Field->getType(), Context))
3973       return true;
3974 
3975   return false;
3976 }
3977 
3978 LValue CodeGenFunction::EmitLValueForField(LValue base,
3979                                            const FieldDecl *field) {
3980   LValueBaseInfo BaseInfo = base.getBaseInfo();
3981 
3982   if (field->isBitField()) {
3983     const CGRecordLayout &RL =
3984       CGM.getTypes().getCGRecordLayout(field->getParent());
3985     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3986     Address Addr = base.getAddress();
3987     unsigned Idx = RL.getLLVMFieldNo(field);
3988     if (Idx != 0)
3989       // For structs, we GEP to the field that the record layout suggests.
3990       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3991     // Get the access type.
3992     llvm::Type *FieldIntTy =
3993       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3994     if (Addr.getElementType() != FieldIntTy)
3995       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3996 
3997     QualType fieldType =
3998       field->getType().withCVRQualifiers(base.getVRQualifiers());
3999     // TODO: Support TBAA for bit fields.
4000     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4001     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4002                                 TBAAAccessInfo());
4003   }
4004 
4005   // Fields of may-alias structures are may-alias themselves.
4006   // FIXME: this should get propagated down through anonymous structs
4007   // and unions.
4008   QualType FieldType = field->getType();
4009   const RecordDecl *rec = field->getParent();
4010   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4011   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4012   TBAAAccessInfo FieldTBAAInfo;
4013   if (base.getTBAAInfo().isMayAlias() ||
4014           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4015     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4016   } else if (rec->isUnion()) {
4017     // TODO: Support TBAA for unions.
4018     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4019   } else {
4020     // If no base type been assigned for the base access, then try to generate
4021     // one for this base lvalue.
4022     FieldTBAAInfo = base.getTBAAInfo();
4023     if (!FieldTBAAInfo.BaseType) {
4024         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4025         assert(!FieldTBAAInfo.Offset &&
4026                "Nonzero offset for an access with no base type!");
4027     }
4028 
4029     // Adjust offset to be relative to the base type.
4030     const ASTRecordLayout &Layout =
4031         getContext().getASTRecordLayout(field->getParent());
4032     unsigned CharWidth = getContext().getCharWidth();
4033     if (FieldTBAAInfo.BaseType)
4034       FieldTBAAInfo.Offset +=
4035           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4036 
4037     // Update the final access type and size.
4038     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4039     FieldTBAAInfo.Size =
4040         getContext().getTypeSizeInChars(FieldType).getQuantity();
4041   }
4042 
4043   Address addr = base.getAddress();
4044   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4045     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4046         ClassDef->isDynamicClass()) {
4047       // Getting to any field of dynamic object requires stripping dynamic
4048       // information provided by invariant.group.  This is because accessing
4049       // fields may leak the real address of dynamic object, which could result
4050       // in miscompilation when leaked pointer would be compared.
4051       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4052       addr = Address(stripped, addr.getAlignment());
4053     }
4054   }
4055 
4056   unsigned RecordCVR = base.getVRQualifiers();
4057   if (rec->isUnion()) {
4058     // For unions, there is no pointer adjustment.
4059     assert(!FieldType->isReferenceType() && "union has reference member");
4060     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4061         hasAnyVptr(FieldType, getContext()))
4062       // Because unions can easily skip invariant.barriers, we need to add
4063       // a barrier every time CXXRecord field with vptr is referenced.
4064       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4065                      addr.getAlignment());
4066 
4067     if (IsInPreservedAIRegion) {
4068       // Remember the original union field index
4069       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4070           getContext().getRecordType(rec), rec->getLocation());
4071       addr = Address(
4072           Builder.CreatePreserveUnionAccessIndex(
4073               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4074           addr.getAlignment());
4075     }
4076   } else {
4077 
4078     if (!IsInPreservedAIRegion)
4079       // For structs, we GEP to the field that the record layout suggests.
4080       addr = emitAddrOfFieldStorage(*this, addr, field);
4081     else
4082       // Remember the original struct field index
4083       addr = emitPreserveStructAccess(*this, addr, field);
4084 
4085     // If this is a reference field, load the reference right now.
4086     if (FieldType->isReferenceType()) {
4087       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
4088                                       FieldTBAAInfo);
4089       if (RecordCVR & Qualifiers::Volatile)
4090         RefLVal.getQuals().addVolatile();
4091       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4092 
4093       // Qualifiers on the struct don't apply to the referencee.
4094       RecordCVR = 0;
4095       FieldType = FieldType->getPointeeType();
4096     }
4097   }
4098 
4099   // Make sure that the address is pointing to the right type.  This is critical
4100   // for both unions and structs.  A union needs a bitcast, a struct element
4101   // will need a bitcast if the LLVM type laid out doesn't match the desired
4102   // type.
4103   addr = Builder.CreateElementBitCast(
4104       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4105 
4106   if (field->hasAttr<AnnotateAttr>())
4107     addr = EmitFieldAnnotations(field, addr);
4108 
4109   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4110   LV.getQuals().addCVRQualifiers(RecordCVR);
4111 
4112   // __weak attribute on a field is ignored.
4113   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4114     LV.getQuals().removeObjCGCAttr();
4115 
4116   return LV;
4117 }
4118 
4119 LValue
4120 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4121                                                   const FieldDecl *Field) {
4122   QualType FieldType = Field->getType();
4123 
4124   if (!FieldType->isReferenceType())
4125     return EmitLValueForField(Base, Field);
4126 
4127   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
4128 
4129   // Make sure that the address is pointing to the right type.
4130   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4131   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4132 
4133   // TODO: Generate TBAA information that describes this access as a structure
4134   // member access and not just an access to an object of the field's type. This
4135   // should be similar to what we do in EmitLValueForField().
4136   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4137   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4138   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4139   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4140                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4141 }
4142 
4143 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4144   if (E->isFileScope()) {
4145     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4146     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4147   }
4148   if (E->getType()->isVariablyModifiedType())
4149     // make sure to emit the VLA size.
4150     EmitVariablyModifiedType(E->getType());
4151 
4152   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4153   const Expr *InitExpr = E->getInitializer();
4154   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4155 
4156   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4157                    /*Init*/ true);
4158 
4159   return Result;
4160 }
4161 
4162 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4163   if (!E->isGLValue())
4164     // Initializing an aggregate temporary in C++11: T{...}.
4165     return EmitAggExprToLValue(E);
4166 
4167   // An lvalue initializer list must be initializing a reference.
4168   assert(E->isTransparent() && "non-transparent glvalue init list");
4169   return EmitLValue(E->getInit(0));
4170 }
4171 
4172 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4173 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4174 /// LValue is returned and the current block has been terminated.
4175 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4176                                                     const Expr *Operand) {
4177   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4178     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4179     return None;
4180   }
4181 
4182   return CGF.EmitLValue(Operand);
4183 }
4184 
4185 LValue CodeGenFunction::
4186 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4187   if (!expr->isGLValue()) {
4188     // ?: here should be an aggregate.
4189     assert(hasAggregateEvaluationKind(expr->getType()) &&
4190            "Unexpected conditional operator!");
4191     return EmitAggExprToLValue(expr);
4192   }
4193 
4194   OpaqueValueMapping binding(*this, expr);
4195 
4196   const Expr *condExpr = expr->getCond();
4197   bool CondExprBool;
4198   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4199     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4200     if (!CondExprBool) std::swap(live, dead);
4201 
4202     if (!ContainsLabel(dead)) {
4203       // If the true case is live, we need to track its region.
4204       if (CondExprBool)
4205         incrementProfileCounter(expr);
4206       return EmitLValue(live);
4207     }
4208   }
4209 
4210   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4211   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4212   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4213 
4214   ConditionalEvaluation eval(*this);
4215   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4216 
4217   // Any temporaries created here are conditional.
4218   EmitBlock(lhsBlock);
4219   incrementProfileCounter(expr);
4220   eval.begin(*this);
4221   Optional<LValue> lhs =
4222       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4223   eval.end(*this);
4224 
4225   if (lhs && !lhs->isSimple())
4226     return EmitUnsupportedLValue(expr, "conditional operator");
4227 
4228   lhsBlock = Builder.GetInsertBlock();
4229   if (lhs)
4230     Builder.CreateBr(contBlock);
4231 
4232   // Any temporaries created here are conditional.
4233   EmitBlock(rhsBlock);
4234   eval.begin(*this);
4235   Optional<LValue> rhs =
4236       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4237   eval.end(*this);
4238   if (rhs && !rhs->isSimple())
4239     return EmitUnsupportedLValue(expr, "conditional operator");
4240   rhsBlock = Builder.GetInsertBlock();
4241 
4242   EmitBlock(contBlock);
4243 
4244   if (lhs && rhs) {
4245     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4246                                            2, "cond-lvalue");
4247     phi->addIncoming(lhs->getPointer(), lhsBlock);
4248     phi->addIncoming(rhs->getPointer(), rhsBlock);
4249     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4250     AlignmentSource alignSource =
4251       std::max(lhs->getBaseInfo().getAlignmentSource(),
4252                rhs->getBaseInfo().getAlignmentSource());
4253     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4254         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4255     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4256                           TBAAInfo);
4257   } else {
4258     assert((lhs || rhs) &&
4259            "both operands of glvalue conditional are throw-expressions?");
4260     return lhs ? *lhs : *rhs;
4261   }
4262 }
4263 
4264 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4265 /// type. If the cast is to a reference, we can have the usual lvalue result,
4266 /// otherwise if a cast is needed by the code generator in an lvalue context,
4267 /// then it must mean that we need the address of an aggregate in order to
4268 /// access one of its members.  This can happen for all the reasons that casts
4269 /// are permitted with aggregate result, including noop aggregate casts, and
4270 /// cast from scalar to union.
4271 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4272   switch (E->getCastKind()) {
4273   case CK_ToVoid:
4274   case CK_BitCast:
4275   case CK_LValueToRValueBitCast:
4276   case CK_ArrayToPointerDecay:
4277   case CK_FunctionToPointerDecay:
4278   case CK_NullToMemberPointer:
4279   case CK_NullToPointer:
4280   case CK_IntegralToPointer:
4281   case CK_PointerToIntegral:
4282   case CK_PointerToBoolean:
4283   case CK_VectorSplat:
4284   case CK_IntegralCast:
4285   case CK_BooleanToSignedIntegral:
4286   case CK_IntegralToBoolean:
4287   case CK_IntegralToFloating:
4288   case CK_FloatingToIntegral:
4289   case CK_FloatingToBoolean:
4290   case CK_FloatingCast:
4291   case CK_FloatingRealToComplex:
4292   case CK_FloatingComplexToReal:
4293   case CK_FloatingComplexToBoolean:
4294   case CK_FloatingComplexCast:
4295   case CK_FloatingComplexToIntegralComplex:
4296   case CK_IntegralRealToComplex:
4297   case CK_IntegralComplexToReal:
4298   case CK_IntegralComplexToBoolean:
4299   case CK_IntegralComplexCast:
4300   case CK_IntegralComplexToFloatingComplex:
4301   case CK_DerivedToBaseMemberPointer:
4302   case CK_BaseToDerivedMemberPointer:
4303   case CK_MemberPointerToBoolean:
4304   case CK_ReinterpretMemberPointer:
4305   case CK_AnyPointerToBlockPointerCast:
4306   case CK_ARCProduceObject:
4307   case CK_ARCConsumeObject:
4308   case CK_ARCReclaimReturnedObject:
4309   case CK_ARCExtendBlockObject:
4310   case CK_CopyAndAutoreleaseBlockObject:
4311   case CK_IntToOCLSampler:
4312   case CK_FixedPointCast:
4313   case CK_FixedPointToBoolean:
4314   case CK_FixedPointToIntegral:
4315   case CK_IntegralToFixedPoint:
4316     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4317 
4318   case CK_Dependent:
4319     llvm_unreachable("dependent cast kind in IR gen!");
4320 
4321   case CK_BuiltinFnToFnPtr:
4322     llvm_unreachable("builtin functions are handled elsewhere");
4323 
4324   // These are never l-values; just use the aggregate emission code.
4325   case CK_NonAtomicToAtomic:
4326   case CK_AtomicToNonAtomic:
4327     return EmitAggExprToLValue(E);
4328 
4329   case CK_Dynamic: {
4330     LValue LV = EmitLValue(E->getSubExpr());
4331     Address V = LV.getAddress();
4332     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4333     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4334   }
4335 
4336   case CK_ConstructorConversion:
4337   case CK_UserDefinedConversion:
4338   case CK_CPointerToObjCPointerCast:
4339   case CK_BlockPointerToObjCPointerCast:
4340   case CK_NoOp:
4341   case CK_LValueToRValue:
4342     return EmitLValue(E->getSubExpr());
4343 
4344   case CK_UncheckedDerivedToBase:
4345   case CK_DerivedToBase: {
4346     const RecordType *DerivedClassTy =
4347       E->getSubExpr()->getType()->getAs<RecordType>();
4348     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4349 
4350     LValue LV = EmitLValue(E->getSubExpr());
4351     Address This = LV.getAddress();
4352 
4353     // Perform the derived-to-base conversion
4354     Address Base = GetAddressOfBaseClass(
4355         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4356         /*NullCheckValue=*/false, E->getExprLoc());
4357 
4358     // TODO: Support accesses to members of base classes in TBAA. For now, we
4359     // conservatively pretend that the complete object is of the base class
4360     // type.
4361     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4362                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4363   }
4364   case CK_ToUnion:
4365     return EmitAggExprToLValue(E);
4366   case CK_BaseToDerived: {
4367     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4368     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4369 
4370     LValue LV = EmitLValue(E->getSubExpr());
4371 
4372     // Perform the base-to-derived conversion
4373     Address Derived =
4374       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4375                                E->path_begin(), E->path_end(),
4376                                /*NullCheckValue=*/false);
4377 
4378     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4379     // performed and the object is not of the derived type.
4380     if (sanitizePerformTypeCheck())
4381       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4382                     Derived.getPointer(), E->getType());
4383 
4384     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4385       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4386                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4387                                 E->getBeginLoc());
4388 
4389     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4390                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4391   }
4392   case CK_LValueBitCast: {
4393     // This must be a reinterpret_cast (or c-style equivalent).
4394     const auto *CE = cast<ExplicitCastExpr>(E);
4395 
4396     CGM.EmitExplicitCastExprType(CE, this);
4397     LValue LV = EmitLValue(E->getSubExpr());
4398     Address V = Builder.CreateBitCast(LV.getAddress(),
4399                                       ConvertType(CE->getTypeAsWritten()));
4400 
4401     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4402       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4403                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4404                                 E->getBeginLoc());
4405 
4406     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4407                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4408   }
4409   case CK_AddressSpaceConversion: {
4410     LValue LV = EmitLValue(E->getSubExpr());
4411     QualType DestTy = getContext().getPointerType(E->getType());
4412     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4413         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4414         E->getType().getAddressSpace(), ConvertType(DestTy));
4415     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4416                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4417   }
4418   case CK_ObjCObjectLValueCast: {
4419     LValue LV = EmitLValue(E->getSubExpr());
4420     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4421                                              ConvertType(E->getType()));
4422     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4423                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4424   }
4425   case CK_ZeroToOCLOpaqueType:
4426     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4427   }
4428 
4429   llvm_unreachable("Unhandled lvalue cast kind?");
4430 }
4431 
4432 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4433   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4434   return getOrCreateOpaqueLValueMapping(e);
4435 }
4436 
4437 LValue
4438 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4439   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4440 
4441   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4442       it = OpaqueLValues.find(e);
4443 
4444   if (it != OpaqueLValues.end())
4445     return it->second;
4446 
4447   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4448   return EmitLValue(e->getSourceExpr());
4449 }
4450 
4451 RValue
4452 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4453   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4454 
4455   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4456       it = OpaqueRValues.find(e);
4457 
4458   if (it != OpaqueRValues.end())
4459     return it->second;
4460 
4461   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4462   return EmitAnyExpr(e->getSourceExpr());
4463 }
4464 
4465 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4466                                            const FieldDecl *FD,
4467                                            SourceLocation Loc) {
4468   QualType FT = FD->getType();
4469   LValue FieldLV = EmitLValueForField(LV, FD);
4470   switch (getEvaluationKind(FT)) {
4471   case TEK_Complex:
4472     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4473   case TEK_Aggregate:
4474     return FieldLV.asAggregateRValue();
4475   case TEK_Scalar:
4476     // This routine is used to load fields one-by-one to perform a copy, so
4477     // don't load reference fields.
4478     if (FD->getType()->isReferenceType())
4479       return RValue::get(FieldLV.getPointer());
4480     return EmitLoadOfLValue(FieldLV, Loc);
4481   }
4482   llvm_unreachable("bad evaluation kind");
4483 }
4484 
4485 //===--------------------------------------------------------------------===//
4486 //                             Expression Emission
4487 //===--------------------------------------------------------------------===//
4488 
4489 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4490                                      ReturnValueSlot ReturnValue) {
4491   // Builtins never have block type.
4492   if (E->getCallee()->getType()->isBlockPointerType())
4493     return EmitBlockCallExpr(E, ReturnValue);
4494 
4495   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4496     return EmitCXXMemberCallExpr(CE, ReturnValue);
4497 
4498   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4499     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4500 
4501   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4502     if (const CXXMethodDecl *MD =
4503           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4504       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4505 
4506   CGCallee callee = EmitCallee(E->getCallee());
4507 
4508   if (callee.isBuiltin()) {
4509     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4510                            E, ReturnValue);
4511   }
4512 
4513   if (callee.isPseudoDestructor()) {
4514     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4515   }
4516 
4517   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4518 }
4519 
4520 /// Emit a CallExpr without considering whether it might be a subclass.
4521 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4522                                            ReturnValueSlot ReturnValue) {
4523   CGCallee Callee = EmitCallee(E->getCallee());
4524   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4525 }
4526 
4527 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4528   if (auto builtinID = FD->getBuiltinID()) {
4529     return CGCallee::forBuiltin(builtinID, FD);
4530   }
4531 
4532   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4533   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4534 }
4535 
4536 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4537   E = E->IgnoreParens();
4538 
4539   // Look through function-to-pointer decay.
4540   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4541     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4542         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4543       return EmitCallee(ICE->getSubExpr());
4544     }
4545 
4546   // Resolve direct calls.
4547   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4548     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4549       return EmitDirectCallee(*this, FD);
4550     }
4551   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4552     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4553       EmitIgnoredExpr(ME->getBase());
4554       return EmitDirectCallee(*this, FD);
4555     }
4556 
4557   // Look through template substitutions.
4558   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4559     return EmitCallee(NTTP->getReplacement());
4560 
4561   // Treat pseudo-destructor calls differently.
4562   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4563     return CGCallee::forPseudoDestructor(PDE);
4564   }
4565 
4566   // Otherwise, we have an indirect reference.
4567   llvm::Value *calleePtr;
4568   QualType functionType;
4569   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4570     calleePtr = EmitScalarExpr(E);
4571     functionType = ptrType->getPointeeType();
4572   } else {
4573     functionType = E->getType();
4574     calleePtr = EmitLValue(E).getPointer();
4575   }
4576   assert(functionType->isFunctionType());
4577 
4578   GlobalDecl GD;
4579   if (const auto *VD =
4580           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4581     GD = GlobalDecl(VD);
4582 
4583   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4584   CGCallee callee(calleeInfo, calleePtr);
4585   return callee;
4586 }
4587 
4588 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4589   // Comma expressions just emit their LHS then their RHS as an l-value.
4590   if (E->getOpcode() == BO_Comma) {
4591     EmitIgnoredExpr(E->getLHS());
4592     EnsureInsertPoint();
4593     return EmitLValue(E->getRHS());
4594   }
4595 
4596   if (E->getOpcode() == BO_PtrMemD ||
4597       E->getOpcode() == BO_PtrMemI)
4598     return EmitPointerToDataMemberBinaryExpr(E);
4599 
4600   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4601 
4602   // Note that in all of these cases, __block variables need the RHS
4603   // evaluated first just in case the variable gets moved by the RHS.
4604 
4605   switch (getEvaluationKind(E->getType())) {
4606   case TEK_Scalar: {
4607     switch (E->getLHS()->getType().getObjCLifetime()) {
4608     case Qualifiers::OCL_Strong:
4609       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4610 
4611     case Qualifiers::OCL_Autoreleasing:
4612       return EmitARCStoreAutoreleasing(E).first;
4613 
4614     // No reason to do any of these differently.
4615     case Qualifiers::OCL_None:
4616     case Qualifiers::OCL_ExplicitNone:
4617     case Qualifiers::OCL_Weak:
4618       break;
4619     }
4620 
4621     RValue RV = EmitAnyExpr(E->getRHS());
4622     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4623     if (RV.isScalar())
4624       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4625     EmitStoreThroughLValue(RV, LV);
4626     return LV;
4627   }
4628 
4629   case TEK_Complex:
4630     return EmitComplexAssignmentLValue(E);
4631 
4632   case TEK_Aggregate:
4633     return EmitAggExprToLValue(E);
4634   }
4635   llvm_unreachable("bad evaluation kind");
4636 }
4637 
4638 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4639   RValue RV = EmitCallExpr(E);
4640 
4641   if (!RV.isScalar())
4642     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4643                           AlignmentSource::Decl);
4644 
4645   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4646          "Can't have a scalar return unless the return type is a "
4647          "reference type!");
4648 
4649   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4650 }
4651 
4652 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4653   // FIXME: This shouldn't require another copy.
4654   return EmitAggExprToLValue(E);
4655 }
4656 
4657 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4658   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4659          && "binding l-value to type which needs a temporary");
4660   AggValueSlot Slot = CreateAggTemp(E->getType());
4661   EmitCXXConstructExpr(E, Slot);
4662   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4663 }
4664 
4665 LValue
4666 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4667   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4668 }
4669 
4670 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4671   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4672                                       ConvertType(E->getType()));
4673 }
4674 
4675 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4676   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4677                         AlignmentSource::Decl);
4678 }
4679 
4680 LValue
4681 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4682   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4683   Slot.setExternallyDestructed();
4684   EmitAggExpr(E->getSubExpr(), Slot);
4685   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4686   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4687 }
4688 
4689 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4690   RValue RV = EmitObjCMessageExpr(E);
4691 
4692   if (!RV.isScalar())
4693     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4694                           AlignmentSource::Decl);
4695 
4696   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4697          "Can't have a scalar return unless the return type is a "
4698          "reference type!");
4699 
4700   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4701 }
4702 
4703 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4704   Address V =
4705     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4706   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4707 }
4708 
4709 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4710                                              const ObjCIvarDecl *Ivar) {
4711   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4712 }
4713 
4714 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4715                                           llvm::Value *BaseValue,
4716                                           const ObjCIvarDecl *Ivar,
4717                                           unsigned CVRQualifiers) {
4718   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4719                                                    Ivar, CVRQualifiers);
4720 }
4721 
4722 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4723   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4724   llvm::Value *BaseValue = nullptr;
4725   const Expr *BaseExpr = E->getBase();
4726   Qualifiers BaseQuals;
4727   QualType ObjectTy;
4728   if (E->isArrow()) {
4729     BaseValue = EmitScalarExpr(BaseExpr);
4730     ObjectTy = BaseExpr->getType()->getPointeeType();
4731     BaseQuals = ObjectTy.getQualifiers();
4732   } else {
4733     LValue BaseLV = EmitLValue(BaseExpr);
4734     BaseValue = BaseLV.getPointer();
4735     ObjectTy = BaseExpr->getType();
4736     BaseQuals = ObjectTy.getQualifiers();
4737   }
4738 
4739   LValue LV =
4740     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4741                       BaseQuals.getCVRQualifiers());
4742   setObjCGCLValueClass(getContext(), E, LV);
4743   return LV;
4744 }
4745 
4746 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4747   // Can only get l-value for message expression returning aggregate type
4748   RValue RV = EmitAnyExprToTemp(E);
4749   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4750                         AlignmentSource::Decl);
4751 }
4752 
4753 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4754                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4755                                  llvm::Value *Chain) {
4756   // Get the actual function type. The callee type will always be a pointer to
4757   // function type or a block pointer type.
4758   assert(CalleeType->isFunctionPointerType() &&
4759          "Call must have function pointer type!");
4760 
4761   const Decl *TargetDecl =
4762       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4763 
4764   CalleeType = getContext().getCanonicalType(CalleeType);
4765 
4766   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4767 
4768   CGCallee Callee = OrigCallee;
4769 
4770   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4771       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4772     if (llvm::Constant *PrefixSig =
4773             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4774       SanitizerScope SanScope(this);
4775       // Remove any (C++17) exception specifications, to allow calling e.g. a
4776       // noexcept function through a non-noexcept pointer.
4777       auto ProtoTy =
4778         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4779       llvm::Constant *FTRTTIConst =
4780           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4781       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4782       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4783           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4784 
4785       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4786 
4787       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4788           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4789       llvm::Value *CalleeSigPtr =
4790           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4791       llvm::Value *CalleeSig =
4792           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4793       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4794 
4795       llvm::BasicBlock *Cont = createBasicBlock("cont");
4796       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4797       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4798 
4799       EmitBlock(TypeCheck);
4800       llvm::Value *CalleeRTTIPtr =
4801           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4802       llvm::Value *CalleeRTTIEncoded =
4803           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4804       llvm::Value *CalleeRTTI =
4805           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4806       llvm::Value *CalleeRTTIMatch =
4807           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4808       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4809                                       EmitCheckTypeDescriptor(CalleeType)};
4810       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4811                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4812                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4813 
4814       Builder.CreateBr(Cont);
4815       EmitBlock(Cont);
4816     }
4817   }
4818 
4819   const auto *FnType = cast<FunctionType>(PointeeType);
4820 
4821   // If we are checking indirect calls and this call is indirect, check that the
4822   // function pointer is a member of the bit set for the function type.
4823   if (SanOpts.has(SanitizerKind::CFIICall) &&
4824       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4825     SanitizerScope SanScope(this);
4826     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4827 
4828     llvm::Metadata *MD;
4829     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4830       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4831     else
4832       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4833 
4834     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4835 
4836     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4837     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4838     llvm::Value *TypeTest = Builder.CreateCall(
4839         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4840 
4841     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4842     llvm::Constant *StaticData[] = {
4843         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4844         EmitCheckSourceLocation(E->getBeginLoc()),
4845         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4846     };
4847     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4848       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4849                            CastedCallee, StaticData);
4850     } else {
4851       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4852                 SanitizerHandler::CFICheckFail, StaticData,
4853                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4854     }
4855   }
4856 
4857   CallArgList Args;
4858   if (Chain)
4859     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4860              CGM.getContext().VoidPtrTy);
4861 
4862   // C++17 requires that we evaluate arguments to a call using assignment syntax
4863   // right-to-left, and that we evaluate arguments to certain other operators
4864   // left-to-right. Note that we allow this to override the order dictated by
4865   // the calling convention on the MS ABI, which means that parameter
4866   // destruction order is not necessarily reverse construction order.
4867   // FIXME: Revisit this based on C++ committee response to unimplementability.
4868   EvaluationOrder Order = EvaluationOrder::Default;
4869   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4870     if (OCE->isAssignmentOp())
4871       Order = EvaluationOrder::ForceRightToLeft;
4872     else {
4873       switch (OCE->getOperator()) {
4874       case OO_LessLess:
4875       case OO_GreaterGreater:
4876       case OO_AmpAmp:
4877       case OO_PipePipe:
4878       case OO_Comma:
4879       case OO_ArrowStar:
4880         Order = EvaluationOrder::ForceLeftToRight;
4881         break;
4882       default:
4883         break;
4884       }
4885     }
4886   }
4887 
4888   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4889                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4890 
4891   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4892       Args, FnType, /*ChainCall=*/Chain);
4893 
4894   // C99 6.5.2.2p6:
4895   //   If the expression that denotes the called function has a type
4896   //   that does not include a prototype, [the default argument
4897   //   promotions are performed]. If the number of arguments does not
4898   //   equal the number of parameters, the behavior is undefined. If
4899   //   the function is defined with a type that includes a prototype,
4900   //   and either the prototype ends with an ellipsis (, ...) or the
4901   //   types of the arguments after promotion are not compatible with
4902   //   the types of the parameters, the behavior is undefined. If the
4903   //   function is defined with a type that does not include a
4904   //   prototype, and the types of the arguments after promotion are
4905   //   not compatible with those of the parameters after promotion,
4906   //   the behavior is undefined [except in some trivial cases].
4907   // That is, in the general case, we should assume that a call
4908   // through an unprototyped function type works like a *non-variadic*
4909   // call.  The way we make this work is to cast to the exact type
4910   // of the promoted arguments.
4911   //
4912   // Chain calls use this same code path to add the invisible chain parameter
4913   // to the function type.
4914   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4915     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4916     CalleeTy = CalleeTy->getPointerTo();
4917 
4918     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4919     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4920     Callee.setFunctionPointer(CalleePtr);
4921   }
4922 
4923   llvm::CallBase *CallOrInvoke = nullptr;
4924   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
4925                          E->getExprLoc());
4926 
4927   // Generate function declaration DISuprogram in order to be used
4928   // in debug info about call sites.
4929   if (CGDebugInfo *DI = getDebugInfo()) {
4930     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4931       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
4932                                   CalleeDecl);
4933   }
4934 
4935   return Call;
4936 }
4937 
4938 LValue CodeGenFunction::
4939 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4940   Address BaseAddr = Address::invalid();
4941   if (E->getOpcode() == BO_PtrMemI) {
4942     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4943   } else {
4944     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4945   }
4946 
4947   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4948 
4949   const MemberPointerType *MPT
4950     = E->getRHS()->getType()->getAs<MemberPointerType>();
4951 
4952   LValueBaseInfo BaseInfo;
4953   TBAAAccessInfo TBAAInfo;
4954   Address MemberAddr =
4955     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4956                                     &TBAAInfo);
4957 
4958   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4959 }
4960 
4961 /// Given the address of a temporary variable, produce an r-value of
4962 /// its type.
4963 RValue CodeGenFunction::convertTempToRValue(Address addr,
4964                                             QualType type,
4965                                             SourceLocation loc) {
4966   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4967   switch (getEvaluationKind(type)) {
4968   case TEK_Complex:
4969     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4970   case TEK_Aggregate:
4971     return lvalue.asAggregateRValue();
4972   case TEK_Scalar:
4973     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4974   }
4975   llvm_unreachable("bad evaluation kind");
4976 }
4977 
4978 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4979   assert(Val->getType()->isFPOrFPVectorTy());
4980   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4981     return;
4982 
4983   llvm::MDBuilder MDHelper(getLLVMContext());
4984   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4985 
4986   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4987 }
4988 
4989 namespace {
4990   struct LValueOrRValue {
4991     LValue LV;
4992     RValue RV;
4993   };
4994 }
4995 
4996 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4997                                            const PseudoObjectExpr *E,
4998                                            bool forLValue,
4999                                            AggValueSlot slot) {
5000   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5001 
5002   // Find the result expression, if any.
5003   const Expr *resultExpr = E->getResultExpr();
5004   LValueOrRValue result;
5005 
5006   for (PseudoObjectExpr::const_semantics_iterator
5007          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5008     const Expr *semantic = *i;
5009 
5010     // If this semantic expression is an opaque value, bind it
5011     // to the result of its source expression.
5012     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5013       // Skip unique OVEs.
5014       if (ov->isUnique()) {
5015         assert(ov != resultExpr &&
5016                "A unique OVE cannot be used as the result expression");
5017         continue;
5018       }
5019 
5020       // If this is the result expression, we may need to evaluate
5021       // directly into the slot.
5022       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5023       OVMA opaqueData;
5024       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5025           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5026         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5027         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5028                                        AlignmentSource::Decl);
5029         opaqueData = OVMA::bind(CGF, ov, LV);
5030         result.RV = slot.asRValue();
5031 
5032       // Otherwise, emit as normal.
5033       } else {
5034         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5035 
5036         // If this is the result, also evaluate the result now.
5037         if (ov == resultExpr) {
5038           if (forLValue)
5039             result.LV = CGF.EmitLValue(ov);
5040           else
5041             result.RV = CGF.EmitAnyExpr(ov, slot);
5042         }
5043       }
5044 
5045       opaques.push_back(opaqueData);
5046 
5047     // Otherwise, if the expression is the result, evaluate it
5048     // and remember the result.
5049     } else if (semantic == resultExpr) {
5050       if (forLValue)
5051         result.LV = CGF.EmitLValue(semantic);
5052       else
5053         result.RV = CGF.EmitAnyExpr(semantic, slot);
5054 
5055     // Otherwise, evaluate the expression in an ignored context.
5056     } else {
5057       CGF.EmitIgnoredExpr(semantic);
5058     }
5059   }
5060 
5061   // Unbind all the opaques now.
5062   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5063     opaques[i].unbind(CGF);
5064 
5065   return result;
5066 }
5067 
5068 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5069                                                AggValueSlot slot) {
5070   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5071 }
5072 
5073 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5074   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5075 }
5076