1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getAsAlign()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getAsAlign()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::FunctionCallee CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 344 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getAsAlign()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 LValue CodeGenFunction:: 419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 420 const Expr *E = M->GetTemporaryExpr(); 421 422 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 423 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 424 "Reference should never be pseudo-strong!"); 425 426 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 427 // as that will cause the lifetime adjustment to be lost for ARC 428 auto ownership = M->getType().getObjCLifetime(); 429 if (ownership != Qualifiers::OCL_None && 430 ownership != Qualifiers::OCL_ExplicitNone) { 431 Address Object = createReferenceTemporary(*this, M, E); 432 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 433 Object = Address(llvm::ConstantExpr::getBitCast(Var, 434 ConvertTypeForMem(E->getType()) 435 ->getPointerTo(Object.getAddressSpace())), 436 Object.getAlignment()); 437 438 // createReferenceTemporary will promote the temporary to a global with a 439 // constant initializer if it can. It can only do this to a value of 440 // ARC-manageable type if the value is global and therefore "immune" to 441 // ref-counting operations. Therefore we have no need to emit either a 442 // dynamic initialization or a cleanup and we can just return the address 443 // of the temporary. 444 if (Var->hasInitializer()) 445 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 446 447 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 448 } 449 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 450 AlignmentSource::Decl); 451 452 switch (getEvaluationKind(E->getType())) { 453 default: llvm_unreachable("expected scalar or aggregate expression"); 454 case TEK_Scalar: 455 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 456 break; 457 case TEK_Aggregate: { 458 EmitAggExpr(E, AggValueSlot::forAddr(Object, 459 E->getType().getQualifiers(), 460 AggValueSlot::IsDestructed, 461 AggValueSlot::DoesNotNeedGCBarriers, 462 AggValueSlot::IsNotAliased, 463 AggValueSlot::DoesNotOverlap)); 464 break; 465 } 466 } 467 468 pushTemporaryCleanup(*this, M, E, Object); 469 return RefTempDst; 470 } 471 472 SmallVector<const Expr *, 2> CommaLHSs; 473 SmallVector<SubobjectAdjustment, 2> Adjustments; 474 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 475 476 for (const auto &Ignored : CommaLHSs) 477 EmitIgnoredExpr(Ignored); 478 479 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 480 if (opaque->getType()->isRecordType()) { 481 assert(Adjustments.empty()); 482 return EmitOpaqueValueLValue(opaque); 483 } 484 } 485 486 // Create and initialize the reference temporary. 487 Address Alloca = Address::invalid(); 488 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 489 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 490 Object.getPointer()->stripPointerCasts())) { 491 Object = Address(llvm::ConstantExpr::getBitCast( 492 cast<llvm::Constant>(Object.getPointer()), 493 ConvertTypeForMem(E->getType())->getPointerTo()), 494 Object.getAlignment()); 495 // If the temporary is a global and has a constant initializer or is a 496 // constant temporary that we promoted to a global, we may have already 497 // initialized it. 498 if (!Var->hasInitializer()) { 499 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 500 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 501 } 502 } else { 503 switch (M->getStorageDuration()) { 504 case SD_Automatic: 505 if (auto *Size = EmitLifetimeStart( 506 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 507 Alloca.getPointer())) { 508 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 509 Alloca, Size); 510 } 511 break; 512 513 case SD_FullExpression: { 514 if (!ShouldEmitLifetimeMarkers) 515 break; 516 517 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 518 // marker. Instead, start the lifetime of a conditional temporary earlier 519 // so that it's unconditional. Don't do this with sanitizers which need 520 // more precise lifetime marks. 521 ConditionalEvaluation *OldConditional = nullptr; 522 CGBuilderTy::InsertPoint OldIP; 523 if (isInConditionalBranch() && !E->getType().isDestructedType() && 524 !SanOpts.has(SanitizerKind::HWAddress) && 525 !SanOpts.has(SanitizerKind::Memory) && 526 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 527 OldConditional = OutermostConditional; 528 OutermostConditional = nullptr; 529 530 OldIP = Builder.saveIP(); 531 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 532 Builder.restoreIP(CGBuilderTy::InsertPoint( 533 Block, llvm::BasicBlock::iterator(Block->back()))); 534 } 535 536 if (auto *Size = EmitLifetimeStart( 537 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 538 Alloca.getPointer())) { 539 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 540 Size); 541 } 542 543 if (OldConditional) { 544 OutermostConditional = OldConditional; 545 Builder.restoreIP(OldIP); 546 } 547 break; 548 } 549 550 default: 551 break; 552 } 553 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 554 } 555 pushTemporaryCleanup(*this, M, E, Object); 556 557 // Perform derived-to-base casts and/or field accesses, to get from the 558 // temporary object we created (and, potentially, for which we extended 559 // the lifetime) to the subobject we're binding the reference to. 560 for (unsigned I = Adjustments.size(); I != 0; --I) { 561 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 562 switch (Adjustment.Kind) { 563 case SubobjectAdjustment::DerivedToBaseAdjustment: 564 Object = 565 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 566 Adjustment.DerivedToBase.BasePath->path_begin(), 567 Adjustment.DerivedToBase.BasePath->path_end(), 568 /*NullCheckValue=*/ false, E->getExprLoc()); 569 break; 570 571 case SubobjectAdjustment::FieldAdjustment: { 572 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 573 LV = EmitLValueForField(LV, Adjustment.Field); 574 assert(LV.isSimple() && 575 "materialized temporary field is not a simple lvalue"); 576 Object = LV.getAddress(); 577 break; 578 } 579 580 case SubobjectAdjustment::MemberPointerAdjustment: { 581 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 582 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 583 Adjustment.Ptr.MPT); 584 break; 585 } 586 } 587 } 588 589 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 590 } 591 592 RValue 593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 594 // Emit the expression as an lvalue. 595 LValue LV = EmitLValue(E); 596 assert(LV.isSimple()); 597 llvm::Value *Value = LV.getPointer(); 598 599 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 600 // C++11 [dcl.ref]p5 (as amended by core issue 453): 601 // If a glvalue to which a reference is directly bound designates neither 602 // an existing object or function of an appropriate type nor a region of 603 // storage of suitable size and alignment to contain an object of the 604 // reference's type, the behavior is undefined. 605 QualType Ty = E->getType(); 606 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 607 } 608 609 return RValue::get(Value); 610 } 611 612 613 /// getAccessedFieldNo - Given an encoded value and a result number, return the 614 /// input field number being accessed. 615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 616 const llvm::Constant *Elts) { 617 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 618 ->getZExtValue(); 619 } 620 621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 623 llvm::Value *High) { 624 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 625 llvm::Value *K47 = Builder.getInt64(47); 626 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 627 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 628 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 629 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 630 return Builder.CreateMul(B1, KMul); 631 } 632 633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 634 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 635 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 636 } 637 638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 639 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 640 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 641 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 642 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 643 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 644 } 645 646 bool CodeGenFunction::sanitizePerformTypeCheck() const { 647 return SanOpts.has(SanitizerKind::Null) | 648 SanOpts.has(SanitizerKind::Alignment) | 649 SanOpts.has(SanitizerKind::ObjectSize) | 650 SanOpts.has(SanitizerKind::Vptr); 651 } 652 653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 654 llvm::Value *Ptr, QualType Ty, 655 CharUnits Alignment, 656 SanitizerSet SkippedChecks, 657 llvm::Value *ArraySize) { 658 if (!sanitizePerformTypeCheck()) 659 return; 660 661 // Don't check pointers outside the default address space. The null check 662 // isn't correct, the object-size check isn't supported by LLVM, and we can't 663 // communicate the addresses to the runtime handler for the vptr check. 664 if (Ptr->getType()->getPointerAddressSpace()) 665 return; 666 667 // Don't check pointers to volatile data. The behavior here is implementation- 668 // defined. 669 if (Ty.isVolatileQualified()) 670 return; 671 672 SanitizerScope SanScope(this); 673 674 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 675 llvm::BasicBlock *Done = nullptr; 676 677 // Quickly determine whether we have a pointer to an alloca. It's possible 678 // to skip null checks, and some alignment checks, for these pointers. This 679 // can reduce compile-time significantly. 680 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 681 682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 683 llvm::Value *IsNonNull = nullptr; 684 bool IsGuaranteedNonNull = 685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 686 bool AllowNullPointers = isNullPointerAllowed(TCK); 687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 688 !IsGuaranteedNonNull) { 689 // The glvalue must not be an empty glvalue. 690 IsNonNull = Builder.CreateIsNotNull(Ptr); 691 692 // The IR builder can constant-fold the null check if the pointer points to 693 // a constant. 694 IsGuaranteedNonNull = IsNonNull == True; 695 696 // Skip the null check if the pointer is known to be non-null. 697 if (!IsGuaranteedNonNull) { 698 if (AllowNullPointers) { 699 // When performing pointer casts, it's OK if the value is null. 700 // Skip the remaining checks in that case. 701 Done = createBasicBlock("null"); 702 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 703 Builder.CreateCondBr(IsNonNull, Rest, Done); 704 EmitBlock(Rest); 705 } else { 706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 707 } 708 } 709 } 710 711 if (SanOpts.has(SanitizerKind::ObjectSize) && 712 !SkippedChecks.has(SanitizerKind::ObjectSize) && 713 !Ty->isIncompleteType()) { 714 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); 715 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 716 if (ArraySize) 717 Size = Builder.CreateMul(Size, ArraySize); 718 719 // Degenerate case: new X[0] does not need an objectsize check. 720 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 721 if (!ConstantSize || !ConstantSize->isNullValue()) { 722 // The glvalue must refer to a large enough storage region. 723 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 724 // to check this. 725 // FIXME: Get object address space 726 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 727 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 728 llvm::Value *Min = Builder.getFalse(); 729 llvm::Value *NullIsUnknown = Builder.getFalse(); 730 llvm::Value *Dynamic = Builder.getFalse(); 731 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 732 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 733 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 734 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 735 } 736 } 737 738 uint64_t AlignVal = 0; 739 llvm::Value *PtrAsInt = nullptr; 740 741 if (SanOpts.has(SanitizerKind::Alignment) && 742 !SkippedChecks.has(SanitizerKind::Alignment)) { 743 AlignVal = Alignment.getQuantity(); 744 if (!Ty->isIncompleteType() && !AlignVal) 745 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 746 747 // The glvalue must be suitably aligned. 748 if (AlignVal > 1 && 749 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 750 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 751 llvm::Value *Align = Builder.CreateAnd( 752 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 753 llvm::Value *Aligned = 754 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 755 if (Aligned != True) 756 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 757 } 758 } 759 760 if (Checks.size() > 0) { 761 // Make sure we're not losing information. Alignment needs to be a power of 762 // 2 763 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 764 llvm::Constant *StaticData[] = { 765 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 766 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 767 llvm::ConstantInt::get(Int8Ty, TCK)}; 768 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 769 PtrAsInt ? PtrAsInt : Ptr); 770 } 771 772 // If possible, check that the vptr indicates that there is a subobject of 773 // type Ty at offset zero within this object. 774 // 775 // C++11 [basic.life]p5,6: 776 // [For storage which does not refer to an object within its lifetime] 777 // The program has undefined behavior if: 778 // -- the [pointer or glvalue] is used to access a non-static data member 779 // or call a non-static member function 780 if (SanOpts.has(SanitizerKind::Vptr) && 781 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 782 // Ensure that the pointer is non-null before loading it. If there is no 783 // compile-time guarantee, reuse the run-time null check or emit a new one. 784 if (!IsGuaranteedNonNull) { 785 if (!IsNonNull) 786 IsNonNull = Builder.CreateIsNotNull(Ptr); 787 if (!Done) 788 Done = createBasicBlock("vptr.null"); 789 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 790 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 791 EmitBlock(VptrNotNull); 792 } 793 794 // Compute a hash of the mangled name of the type. 795 // 796 // FIXME: This is not guaranteed to be deterministic! Move to a 797 // fingerprinting mechanism once LLVM provides one. For the time 798 // being the implementation happens to be deterministic. 799 SmallString<64> MangledName; 800 llvm::raw_svector_ostream Out(MangledName); 801 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 802 Out); 803 804 // Blacklist based on the mangled type. 805 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 806 SanitizerKind::Vptr, Out.str())) { 807 llvm::hash_code TypeHash = hash_value(Out.str()); 808 809 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 810 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 811 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 812 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 813 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 814 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 815 816 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 817 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 818 819 // Look the hash up in our cache. 820 const int CacheSize = 128; 821 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 822 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 823 "__ubsan_vptr_type_cache"); 824 llvm::Value *Slot = Builder.CreateAnd(Hash, 825 llvm::ConstantInt::get(IntPtrTy, 826 CacheSize-1)); 827 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 828 llvm::Value *CacheVal = 829 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 830 getPointerAlign()); 831 832 // If the hash isn't in the cache, call a runtime handler to perform the 833 // hard work of checking whether the vptr is for an object of the right 834 // type. This will either fill in the cache and return, or produce a 835 // diagnostic. 836 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 837 llvm::Constant *StaticData[] = { 838 EmitCheckSourceLocation(Loc), 839 EmitCheckTypeDescriptor(Ty), 840 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 841 llvm::ConstantInt::get(Int8Ty, TCK) 842 }; 843 llvm::Value *DynamicData[] = { Ptr, Hash }; 844 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 845 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 846 DynamicData); 847 } 848 } 849 850 if (Done) { 851 Builder.CreateBr(Done); 852 EmitBlock(Done); 853 } 854 } 855 856 /// Determine whether this expression refers to a flexible array member in a 857 /// struct. We disable array bounds checks for such members. 858 static bool isFlexibleArrayMemberExpr(const Expr *E) { 859 // For compatibility with existing code, we treat arrays of length 0 or 860 // 1 as flexible array members. 861 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 862 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 863 if (CAT->getSize().ugt(1)) 864 return false; 865 } else if (!isa<IncompleteArrayType>(AT)) 866 return false; 867 868 E = E->IgnoreParens(); 869 870 // A flexible array member must be the last member in the class. 871 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 872 // FIXME: If the base type of the member expr is not FD->getParent(), 873 // this should not be treated as a flexible array member access. 874 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 875 RecordDecl::field_iterator FI( 876 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 877 return ++FI == FD->getParent()->field_end(); 878 } 879 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 880 return IRE->getDecl()->getNextIvar() == nullptr; 881 } 882 883 return false; 884 } 885 886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 887 QualType EltTy) { 888 ASTContext &C = getContext(); 889 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 890 if (!EltSize) 891 return nullptr; 892 893 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 894 if (!ArrayDeclRef) 895 return nullptr; 896 897 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 898 if (!ParamDecl) 899 return nullptr; 900 901 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 902 if (!POSAttr) 903 return nullptr; 904 905 // Don't load the size if it's a lower bound. 906 int POSType = POSAttr->getType(); 907 if (POSType != 0 && POSType != 1) 908 return nullptr; 909 910 // Find the implicit size parameter. 911 auto PassedSizeIt = SizeArguments.find(ParamDecl); 912 if (PassedSizeIt == SizeArguments.end()) 913 return nullptr; 914 915 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 916 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 917 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 918 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 919 C.getSizeType(), E->getExprLoc()); 920 llvm::Value *SizeOfElement = 921 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 922 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 923 } 924 925 /// If Base is known to point to the start of an array, return the length of 926 /// that array. Return 0 if the length cannot be determined. 927 static llvm::Value *getArrayIndexingBound( 928 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 929 // For the vector indexing extension, the bound is the number of elements. 930 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 931 IndexedType = Base->getType(); 932 return CGF.Builder.getInt32(VT->getNumElements()); 933 } 934 935 Base = Base->IgnoreParens(); 936 937 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 938 if (CE->getCastKind() == CK_ArrayToPointerDecay && 939 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 940 IndexedType = CE->getSubExpr()->getType(); 941 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 942 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 943 return CGF.Builder.getInt(CAT->getSize()); 944 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 945 return CGF.getVLASize(VAT).NumElts; 946 // Ignore pass_object_size here. It's not applicable on decayed pointers. 947 } 948 } 949 950 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 951 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 952 IndexedType = Base->getType(); 953 return POS; 954 } 955 956 return nullptr; 957 } 958 959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 960 llvm::Value *Index, QualType IndexType, 961 bool Accessed) { 962 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 963 "should not be called unless adding bounds checks"); 964 SanitizerScope SanScope(this); 965 966 QualType IndexedType; 967 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 968 if (!Bound) 969 return; 970 971 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 972 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 973 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 974 975 llvm::Constant *StaticData[] = { 976 EmitCheckSourceLocation(E->getExprLoc()), 977 EmitCheckTypeDescriptor(IndexedType), 978 EmitCheckTypeDescriptor(IndexType) 979 }; 980 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 981 : Builder.CreateICmpULE(IndexVal, BoundVal); 982 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 983 SanitizerHandler::OutOfBounds, StaticData, Index); 984 } 985 986 987 CodeGenFunction::ComplexPairTy CodeGenFunction:: 988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 989 bool isInc, bool isPre) { 990 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 991 992 llvm::Value *NextVal; 993 if (isa<llvm::IntegerType>(InVal.first->getType())) { 994 uint64_t AmountVal = isInc ? 1 : -1; 995 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 996 997 // Add the inc/dec to the real part. 998 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 999 } else { 1000 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1001 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1002 if (!isInc) 1003 FVal.changeSign(); 1004 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1005 1006 // Add the inc/dec to the real part. 1007 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1008 } 1009 1010 ComplexPairTy IncVal(NextVal, InVal.second); 1011 1012 // Store the updated result through the lvalue. 1013 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1014 1015 // If this is a postinc, return the value read from memory, otherwise use the 1016 // updated value. 1017 return isPre ? IncVal : InVal; 1018 } 1019 1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1021 CodeGenFunction *CGF) { 1022 // Bind VLAs in the cast type. 1023 if (CGF && E->getType()->isVariablyModifiedType()) 1024 CGF->EmitVariablyModifiedType(E->getType()); 1025 1026 if (CGDebugInfo *DI = getModuleDebugInfo()) 1027 DI->EmitExplicitCastType(E->getType()); 1028 } 1029 1030 //===----------------------------------------------------------------------===// 1031 // LValue Expression Emission 1032 //===----------------------------------------------------------------------===// 1033 1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1035 /// derive a more accurate bound on the alignment of the pointer. 1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1037 LValueBaseInfo *BaseInfo, 1038 TBAAAccessInfo *TBAAInfo) { 1039 // We allow this with ObjC object pointers because of fragile ABIs. 1040 assert(E->getType()->isPointerType() || 1041 E->getType()->isObjCObjectPointerType()); 1042 E = E->IgnoreParens(); 1043 1044 // Casts: 1045 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1046 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1047 CGM.EmitExplicitCastExprType(ECE, this); 1048 1049 switch (CE->getCastKind()) { 1050 // Non-converting casts (but not C's implicit conversion from void*). 1051 case CK_BitCast: 1052 case CK_NoOp: 1053 case CK_AddressSpaceConversion: 1054 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1055 if (PtrTy->getPointeeType()->isVoidType()) 1056 break; 1057 1058 LValueBaseInfo InnerBaseInfo; 1059 TBAAAccessInfo InnerTBAAInfo; 1060 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1061 &InnerBaseInfo, 1062 &InnerTBAAInfo); 1063 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1064 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1065 1066 if (isa<ExplicitCastExpr>(CE)) { 1067 LValueBaseInfo TargetTypeBaseInfo; 1068 TBAAAccessInfo TargetTypeTBAAInfo; 1069 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1070 &TargetTypeBaseInfo, 1071 &TargetTypeTBAAInfo); 1072 if (TBAAInfo) 1073 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1074 TargetTypeTBAAInfo); 1075 // If the source l-value is opaque, honor the alignment of the 1076 // casted-to type. 1077 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1078 if (BaseInfo) 1079 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1080 Addr = Address(Addr.getPointer(), Align); 1081 } 1082 } 1083 1084 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1085 CE->getCastKind() == CK_BitCast) { 1086 if (auto PT = E->getType()->getAs<PointerType>()) 1087 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1088 /*MayBeNull=*/true, 1089 CodeGenFunction::CFITCK_UnrelatedCast, 1090 CE->getBeginLoc()); 1091 } 1092 return CE->getCastKind() != CK_AddressSpaceConversion 1093 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1094 : Builder.CreateAddrSpaceCast(Addr, 1095 ConvertType(E->getType())); 1096 } 1097 break; 1098 1099 // Array-to-pointer decay. 1100 case CK_ArrayToPointerDecay: 1101 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1102 1103 // Derived-to-base conversions. 1104 case CK_UncheckedDerivedToBase: 1105 case CK_DerivedToBase: { 1106 // TODO: Support accesses to members of base classes in TBAA. For now, we 1107 // conservatively pretend that the complete object is of the base class 1108 // type. 1109 if (TBAAInfo) 1110 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1111 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1112 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1113 return GetAddressOfBaseClass(Addr, Derived, 1114 CE->path_begin(), CE->path_end(), 1115 ShouldNullCheckClassCastValue(CE), 1116 CE->getExprLoc()); 1117 } 1118 1119 // TODO: Is there any reason to treat base-to-derived conversions 1120 // specially? 1121 default: 1122 break; 1123 } 1124 } 1125 1126 // Unary &. 1127 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1128 if (UO->getOpcode() == UO_AddrOf) { 1129 LValue LV = EmitLValue(UO->getSubExpr()); 1130 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1131 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1132 return LV.getAddress(); 1133 } 1134 } 1135 1136 // TODO: conditional operators, comma. 1137 1138 // Otherwise, use the alignment of the type. 1139 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1140 TBAAInfo); 1141 return Address(EmitScalarExpr(E), Align); 1142 } 1143 1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1145 if (Ty->isVoidType()) 1146 return RValue::get(nullptr); 1147 1148 switch (getEvaluationKind(Ty)) { 1149 case TEK_Complex: { 1150 llvm::Type *EltTy = 1151 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1152 llvm::Value *U = llvm::UndefValue::get(EltTy); 1153 return RValue::getComplex(std::make_pair(U, U)); 1154 } 1155 1156 // If this is a use of an undefined aggregate type, the aggregate must have an 1157 // identifiable address. Just because the contents of the value are undefined 1158 // doesn't mean that the address can't be taken and compared. 1159 case TEK_Aggregate: { 1160 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1161 return RValue::getAggregate(DestPtr); 1162 } 1163 1164 case TEK_Scalar: 1165 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1166 } 1167 llvm_unreachable("bad evaluation kind"); 1168 } 1169 1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1171 const char *Name) { 1172 ErrorUnsupported(E, Name); 1173 return GetUndefRValue(E->getType()); 1174 } 1175 1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1177 const char *Name) { 1178 ErrorUnsupported(E, Name); 1179 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1180 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1181 E->getType()); 1182 } 1183 1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1185 const Expr *Base = Obj; 1186 while (!isa<CXXThisExpr>(Base)) { 1187 // The result of a dynamic_cast can be null. 1188 if (isa<CXXDynamicCastExpr>(Base)) 1189 return false; 1190 1191 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1192 Base = CE->getSubExpr(); 1193 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1194 Base = PE->getSubExpr(); 1195 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1196 if (UO->getOpcode() == UO_Extension) 1197 Base = UO->getSubExpr(); 1198 else 1199 return false; 1200 } else { 1201 return false; 1202 } 1203 } 1204 return true; 1205 } 1206 1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1208 LValue LV; 1209 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1210 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1211 else 1212 LV = EmitLValue(E); 1213 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1214 SanitizerSet SkippedChecks; 1215 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1216 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1217 if (IsBaseCXXThis) 1218 SkippedChecks.set(SanitizerKind::Alignment, true); 1219 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1220 SkippedChecks.set(SanitizerKind::Null, true); 1221 } 1222 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1223 E->getType(), LV.getAlignment(), SkippedChecks); 1224 } 1225 return LV; 1226 } 1227 1228 /// EmitLValue - Emit code to compute a designator that specifies the location 1229 /// of the expression. 1230 /// 1231 /// This can return one of two things: a simple address or a bitfield reference. 1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1233 /// an LLVM pointer type. 1234 /// 1235 /// If this returns a bitfield reference, nothing about the pointee type of the 1236 /// LLVM value is known: For example, it may not be a pointer to an integer. 1237 /// 1238 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1239 /// this method guarantees that the returned pointer type will point to an LLVM 1240 /// type of the same size of the lvalue's type. If the lvalue has a variable 1241 /// length type, this is not possible. 1242 /// 1243 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1244 ApplyDebugLocation DL(*this, E); 1245 switch (E->getStmtClass()) { 1246 default: return EmitUnsupportedLValue(E, "l-value expression"); 1247 1248 case Expr::ObjCPropertyRefExprClass: 1249 llvm_unreachable("cannot emit a property reference directly"); 1250 1251 case Expr::ObjCSelectorExprClass: 1252 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1253 case Expr::ObjCIsaExprClass: 1254 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1255 case Expr::BinaryOperatorClass: 1256 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1257 case Expr::CompoundAssignOperatorClass: { 1258 QualType Ty = E->getType(); 1259 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1260 Ty = AT->getValueType(); 1261 if (!Ty->isAnyComplexType()) 1262 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1263 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1264 } 1265 case Expr::CallExprClass: 1266 case Expr::CXXMemberCallExprClass: 1267 case Expr::CXXOperatorCallExprClass: 1268 case Expr::UserDefinedLiteralClass: 1269 return EmitCallExprLValue(cast<CallExpr>(E)); 1270 case Expr::VAArgExprClass: 1271 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1272 case Expr::DeclRefExprClass: 1273 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1274 case Expr::ConstantExprClass: 1275 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1276 case Expr::ParenExprClass: 1277 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1278 case Expr::GenericSelectionExprClass: 1279 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1280 case Expr::PredefinedExprClass: 1281 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1282 case Expr::StringLiteralClass: 1283 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1284 case Expr::ObjCEncodeExprClass: 1285 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1286 case Expr::PseudoObjectExprClass: 1287 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1288 case Expr::InitListExprClass: 1289 return EmitInitListLValue(cast<InitListExpr>(E)); 1290 case Expr::CXXTemporaryObjectExprClass: 1291 case Expr::CXXConstructExprClass: 1292 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1293 case Expr::CXXBindTemporaryExprClass: 1294 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1295 case Expr::CXXUuidofExprClass: 1296 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1297 case Expr::LambdaExprClass: 1298 return EmitAggExprToLValue(E); 1299 1300 case Expr::ExprWithCleanupsClass: { 1301 const auto *cleanups = cast<ExprWithCleanups>(E); 1302 enterFullExpression(cleanups); 1303 RunCleanupsScope Scope(*this); 1304 LValue LV = EmitLValue(cleanups->getSubExpr()); 1305 if (LV.isSimple()) { 1306 // Defend against branches out of gnu statement expressions surrounded by 1307 // cleanups. 1308 llvm::Value *V = LV.getPointer(); 1309 Scope.ForceCleanup({&V}); 1310 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1311 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1312 } 1313 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1314 // bitfield lvalue or some other non-simple lvalue? 1315 return LV; 1316 } 1317 1318 case Expr::CXXDefaultArgExprClass: { 1319 auto *DAE = cast<CXXDefaultArgExpr>(E); 1320 CXXDefaultArgExprScope Scope(*this, DAE); 1321 return EmitLValue(DAE->getExpr()); 1322 } 1323 case Expr::CXXDefaultInitExprClass: { 1324 auto *DIE = cast<CXXDefaultInitExpr>(E); 1325 CXXDefaultInitExprScope Scope(*this, DIE); 1326 return EmitLValue(DIE->getExpr()); 1327 } 1328 case Expr::CXXTypeidExprClass: 1329 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1330 1331 case Expr::ObjCMessageExprClass: 1332 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1333 case Expr::ObjCIvarRefExprClass: 1334 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1335 case Expr::StmtExprClass: 1336 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1337 case Expr::UnaryOperatorClass: 1338 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1339 case Expr::ArraySubscriptExprClass: 1340 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1341 case Expr::OMPArraySectionExprClass: 1342 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1343 case Expr::ExtVectorElementExprClass: 1344 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1345 case Expr::MemberExprClass: 1346 return EmitMemberExpr(cast<MemberExpr>(E)); 1347 case Expr::CompoundLiteralExprClass: 1348 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1349 case Expr::ConditionalOperatorClass: 1350 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1351 case Expr::BinaryConditionalOperatorClass: 1352 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1353 case Expr::ChooseExprClass: 1354 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1355 case Expr::OpaqueValueExprClass: 1356 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1357 case Expr::SubstNonTypeTemplateParmExprClass: 1358 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1359 case Expr::ImplicitCastExprClass: 1360 case Expr::CStyleCastExprClass: 1361 case Expr::CXXFunctionalCastExprClass: 1362 case Expr::CXXStaticCastExprClass: 1363 case Expr::CXXDynamicCastExprClass: 1364 case Expr::CXXReinterpretCastExprClass: 1365 case Expr::CXXConstCastExprClass: 1366 case Expr::ObjCBridgedCastExprClass: 1367 return EmitCastLValue(cast<CastExpr>(E)); 1368 1369 case Expr::MaterializeTemporaryExprClass: 1370 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1371 1372 case Expr::CoawaitExprClass: 1373 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1374 case Expr::CoyieldExprClass: 1375 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1376 } 1377 } 1378 1379 /// Given an object of the given canonical type, can we safely copy a 1380 /// value out of it based on its initializer? 1381 static bool isConstantEmittableObjectType(QualType type) { 1382 assert(type.isCanonical()); 1383 assert(!type->isReferenceType()); 1384 1385 // Must be const-qualified but non-volatile. 1386 Qualifiers qs = type.getLocalQualifiers(); 1387 if (!qs.hasConst() || qs.hasVolatile()) return false; 1388 1389 // Otherwise, all object types satisfy this except C++ classes with 1390 // mutable subobjects or non-trivial copy/destroy behavior. 1391 if (const auto *RT = dyn_cast<RecordType>(type)) 1392 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1393 if (RD->hasMutableFields() || !RD->isTrivial()) 1394 return false; 1395 1396 return true; 1397 } 1398 1399 /// Can we constant-emit a load of a reference to a variable of the 1400 /// given type? This is different from predicates like 1401 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1402 /// in situations that don't necessarily satisfy the language's rules 1403 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1404 /// to do this with const float variables even if those variables 1405 /// aren't marked 'constexpr'. 1406 enum ConstantEmissionKind { 1407 CEK_None, 1408 CEK_AsReferenceOnly, 1409 CEK_AsValueOrReference, 1410 CEK_AsValueOnly 1411 }; 1412 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1413 type = type.getCanonicalType(); 1414 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1415 if (isConstantEmittableObjectType(ref->getPointeeType())) 1416 return CEK_AsValueOrReference; 1417 return CEK_AsReferenceOnly; 1418 } 1419 if (isConstantEmittableObjectType(type)) 1420 return CEK_AsValueOnly; 1421 return CEK_None; 1422 } 1423 1424 /// Try to emit a reference to the given value without producing it as 1425 /// an l-value. This is just an optimization, but it avoids us needing 1426 /// to emit global copies of variables if they're named without triggering 1427 /// a formal use in a context where we can't emit a direct reference to them, 1428 /// for instance if a block or lambda or a member of a local class uses a 1429 /// const int variable or constexpr variable from an enclosing function. 1430 CodeGenFunction::ConstantEmission 1431 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1432 ValueDecl *value = refExpr->getDecl(); 1433 1434 // The value needs to be an enum constant or a constant variable. 1435 ConstantEmissionKind CEK; 1436 if (isa<ParmVarDecl>(value)) { 1437 CEK = CEK_None; 1438 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1439 CEK = checkVarTypeForConstantEmission(var->getType()); 1440 } else if (isa<EnumConstantDecl>(value)) { 1441 CEK = CEK_AsValueOnly; 1442 } else { 1443 CEK = CEK_None; 1444 } 1445 if (CEK == CEK_None) return ConstantEmission(); 1446 1447 Expr::EvalResult result; 1448 bool resultIsReference; 1449 QualType resultType; 1450 1451 // It's best to evaluate all the way as an r-value if that's permitted. 1452 if (CEK != CEK_AsReferenceOnly && 1453 refExpr->EvaluateAsRValue(result, getContext())) { 1454 resultIsReference = false; 1455 resultType = refExpr->getType(); 1456 1457 // Otherwise, try to evaluate as an l-value. 1458 } else if (CEK != CEK_AsValueOnly && 1459 refExpr->EvaluateAsLValue(result, getContext())) { 1460 resultIsReference = true; 1461 resultType = value->getType(); 1462 1463 // Failure. 1464 } else { 1465 return ConstantEmission(); 1466 } 1467 1468 // In any case, if the initializer has side-effects, abandon ship. 1469 if (result.HasSideEffects) 1470 return ConstantEmission(); 1471 1472 // Emit as a constant. 1473 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1474 result.Val, resultType); 1475 1476 // Make sure we emit a debug reference to the global variable. 1477 // This should probably fire even for 1478 if (isa<VarDecl>(value)) { 1479 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1480 EmitDeclRefExprDbgValue(refExpr, result.Val); 1481 } else { 1482 assert(isa<EnumConstantDecl>(value)); 1483 EmitDeclRefExprDbgValue(refExpr, result.Val); 1484 } 1485 1486 // If we emitted a reference constant, we need to dereference that. 1487 if (resultIsReference) 1488 return ConstantEmission::forReference(C); 1489 1490 return ConstantEmission::forValue(C); 1491 } 1492 1493 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1494 const MemberExpr *ME) { 1495 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1496 // Try to emit static variable member expressions as DREs. 1497 return DeclRefExpr::Create( 1498 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1499 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1500 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1501 } 1502 return nullptr; 1503 } 1504 1505 CodeGenFunction::ConstantEmission 1506 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1507 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1508 return tryEmitAsConstant(DRE); 1509 return ConstantEmission(); 1510 } 1511 1512 llvm::Value *CodeGenFunction::emitScalarConstant( 1513 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1514 assert(Constant && "not a constant"); 1515 if (Constant.isReference()) 1516 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1517 E->getExprLoc()) 1518 .getScalarVal(); 1519 return Constant.getValue(); 1520 } 1521 1522 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1523 SourceLocation Loc) { 1524 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1525 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1526 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1527 } 1528 1529 static bool hasBooleanRepresentation(QualType Ty) { 1530 if (Ty->isBooleanType()) 1531 return true; 1532 1533 if (const EnumType *ET = Ty->getAs<EnumType>()) 1534 return ET->getDecl()->getIntegerType()->isBooleanType(); 1535 1536 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1537 return hasBooleanRepresentation(AT->getValueType()); 1538 1539 return false; 1540 } 1541 1542 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1543 llvm::APInt &Min, llvm::APInt &End, 1544 bool StrictEnums, bool IsBool) { 1545 const EnumType *ET = Ty->getAs<EnumType>(); 1546 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1547 ET && !ET->getDecl()->isFixed(); 1548 if (!IsBool && !IsRegularCPlusPlusEnum) 1549 return false; 1550 1551 if (IsBool) { 1552 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1553 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1554 } else { 1555 const EnumDecl *ED = ET->getDecl(); 1556 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1557 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1558 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1559 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1560 1561 if (NumNegativeBits) { 1562 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1563 assert(NumBits <= Bitwidth); 1564 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1565 Min = -End; 1566 } else { 1567 assert(NumPositiveBits <= Bitwidth); 1568 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1569 Min = llvm::APInt(Bitwidth, 0); 1570 } 1571 } 1572 return true; 1573 } 1574 1575 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1576 llvm::APInt Min, End; 1577 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1578 hasBooleanRepresentation(Ty))) 1579 return nullptr; 1580 1581 llvm::MDBuilder MDHelper(getLLVMContext()); 1582 return MDHelper.createRange(Min, End); 1583 } 1584 1585 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1586 SourceLocation Loc) { 1587 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1588 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1589 if (!HasBoolCheck && !HasEnumCheck) 1590 return false; 1591 1592 bool IsBool = hasBooleanRepresentation(Ty) || 1593 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1594 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1595 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1596 if (!NeedsBoolCheck && !NeedsEnumCheck) 1597 return false; 1598 1599 // Single-bit booleans don't need to be checked. Special-case this to avoid 1600 // a bit width mismatch when handling bitfield values. This is handled by 1601 // EmitFromMemory for the non-bitfield case. 1602 if (IsBool && 1603 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1604 return false; 1605 1606 llvm::APInt Min, End; 1607 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1608 return true; 1609 1610 auto &Ctx = getLLVMContext(); 1611 SanitizerScope SanScope(this); 1612 llvm::Value *Check; 1613 --End; 1614 if (!Min) { 1615 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1616 } else { 1617 llvm::Value *Upper = 1618 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1619 llvm::Value *Lower = 1620 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1621 Check = Builder.CreateAnd(Upper, Lower); 1622 } 1623 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1624 EmitCheckTypeDescriptor(Ty)}; 1625 SanitizerMask Kind = 1626 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1627 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1628 StaticArgs, EmitCheckValue(Value)); 1629 return true; 1630 } 1631 1632 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1633 QualType Ty, 1634 SourceLocation Loc, 1635 LValueBaseInfo BaseInfo, 1636 TBAAAccessInfo TBAAInfo, 1637 bool isNontemporal) { 1638 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1639 // For better performance, handle vector loads differently. 1640 if (Ty->isVectorType()) { 1641 const llvm::Type *EltTy = Addr.getElementType(); 1642 1643 const auto *VTy = cast<llvm::VectorType>(EltTy); 1644 1645 // Handle vectors of size 3 like size 4 for better performance. 1646 if (VTy->getNumElements() == 3) { 1647 1648 // Bitcast to vec4 type. 1649 llvm::VectorType *vec4Ty = 1650 llvm::VectorType::get(VTy->getElementType(), 4); 1651 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1652 // Now load value. 1653 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1654 1655 // Shuffle vector to get vec3. 1656 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1657 {0, 1, 2}, "extractVec"); 1658 return EmitFromMemory(V, Ty); 1659 } 1660 } 1661 } 1662 1663 // Atomic operations have to be done on integral types. 1664 LValue AtomicLValue = 1665 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1666 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1667 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1668 } 1669 1670 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1671 if (isNontemporal) { 1672 llvm::MDNode *Node = llvm::MDNode::get( 1673 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1674 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1675 } 1676 1677 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1678 1679 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1680 // In order to prevent the optimizer from throwing away the check, don't 1681 // attach range metadata to the load. 1682 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1683 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1684 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1685 1686 return EmitFromMemory(Load, Ty); 1687 } 1688 1689 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1690 // Bool has a different representation in memory than in registers. 1691 if (hasBooleanRepresentation(Ty)) { 1692 // This should really always be an i1, but sometimes it's already 1693 // an i8, and it's awkward to track those cases down. 1694 if (Value->getType()->isIntegerTy(1)) 1695 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1696 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1697 "wrong value rep of bool"); 1698 } 1699 1700 return Value; 1701 } 1702 1703 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1704 // Bool has a different representation in memory than in registers. 1705 if (hasBooleanRepresentation(Ty)) { 1706 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1707 "wrong value rep of bool"); 1708 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1709 } 1710 1711 return Value; 1712 } 1713 1714 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1715 bool Volatile, QualType Ty, 1716 LValueBaseInfo BaseInfo, 1717 TBAAAccessInfo TBAAInfo, 1718 bool isInit, bool isNontemporal) { 1719 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1720 // Handle vectors differently to get better performance. 1721 if (Ty->isVectorType()) { 1722 llvm::Type *SrcTy = Value->getType(); 1723 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1724 // Handle vec3 special. 1725 if (VecTy && VecTy->getNumElements() == 3) { 1726 // Our source is a vec3, do a shuffle vector to make it a vec4. 1727 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1728 Builder.getInt32(2), 1729 llvm::UndefValue::get(Builder.getInt32Ty())}; 1730 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1731 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1732 MaskV, "extractVec"); 1733 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1734 } 1735 if (Addr.getElementType() != SrcTy) { 1736 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1737 } 1738 } 1739 } 1740 1741 Value = EmitToMemory(Value, Ty); 1742 1743 LValue AtomicLValue = 1744 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1745 if (Ty->isAtomicType() || 1746 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1747 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1748 return; 1749 } 1750 1751 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1752 if (isNontemporal) { 1753 llvm::MDNode *Node = 1754 llvm::MDNode::get(Store->getContext(), 1755 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1756 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1757 } 1758 1759 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1760 } 1761 1762 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1763 bool isInit) { 1764 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1765 lvalue.getType(), lvalue.getBaseInfo(), 1766 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1767 } 1768 1769 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1770 /// method emits the address of the lvalue, then loads the result as an rvalue, 1771 /// returning the rvalue. 1772 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1773 if (LV.isObjCWeak()) { 1774 // load of a __weak object. 1775 Address AddrWeakObj = LV.getAddress(); 1776 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1777 AddrWeakObj)); 1778 } 1779 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1780 // In MRC mode, we do a load+autorelease. 1781 if (!getLangOpts().ObjCAutoRefCount) { 1782 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1783 } 1784 1785 // In ARC mode, we load retained and then consume the value. 1786 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1787 Object = EmitObjCConsumeObject(LV.getType(), Object); 1788 return RValue::get(Object); 1789 } 1790 1791 if (LV.isSimple()) { 1792 assert(!LV.getType()->isFunctionType()); 1793 1794 // Everything needs a load. 1795 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1796 } 1797 1798 if (LV.isVectorElt()) { 1799 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1800 LV.isVolatileQualified()); 1801 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1802 "vecext")); 1803 } 1804 1805 // If this is a reference to a subset of the elements of a vector, either 1806 // shuffle the input or extract/insert them as appropriate. 1807 if (LV.isExtVectorElt()) 1808 return EmitLoadOfExtVectorElementLValue(LV); 1809 1810 // Global Register variables always invoke intrinsics 1811 if (LV.isGlobalReg()) 1812 return EmitLoadOfGlobalRegLValue(LV); 1813 1814 assert(LV.isBitField() && "Unknown LValue type!"); 1815 return EmitLoadOfBitfieldLValue(LV, Loc); 1816 } 1817 1818 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1819 SourceLocation Loc) { 1820 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1821 1822 // Get the output type. 1823 llvm::Type *ResLTy = ConvertType(LV.getType()); 1824 1825 Address Ptr = LV.getBitFieldAddress(); 1826 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1827 1828 if (Info.IsSigned) { 1829 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1830 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1831 if (HighBits) 1832 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1833 if (Info.Offset + HighBits) 1834 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1835 } else { 1836 if (Info.Offset) 1837 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1838 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1839 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1840 Info.Size), 1841 "bf.clear"); 1842 } 1843 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1844 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1845 return RValue::get(Val); 1846 } 1847 1848 // If this is a reference to a subset of the elements of a vector, create an 1849 // appropriate shufflevector. 1850 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1851 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1852 LV.isVolatileQualified()); 1853 1854 const llvm::Constant *Elts = LV.getExtVectorElts(); 1855 1856 // If the result of the expression is a non-vector type, we must be extracting 1857 // a single element. Just codegen as an extractelement. 1858 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1859 if (!ExprVT) { 1860 unsigned InIdx = getAccessedFieldNo(0, Elts); 1861 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1862 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1863 } 1864 1865 // Always use shuffle vector to try to retain the original program structure 1866 unsigned NumResultElts = ExprVT->getNumElements(); 1867 1868 SmallVector<llvm::Constant*, 4> Mask; 1869 for (unsigned i = 0; i != NumResultElts; ++i) 1870 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1871 1872 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1873 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1874 MaskV); 1875 return RValue::get(Vec); 1876 } 1877 1878 /// Generates lvalue for partial ext_vector access. 1879 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1880 Address VectorAddress = LV.getExtVectorAddress(); 1881 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1882 QualType EQT = ExprVT->getElementType(); 1883 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1884 1885 Address CastToPointerElement = 1886 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1887 "conv.ptr.element"); 1888 1889 const llvm::Constant *Elts = LV.getExtVectorElts(); 1890 unsigned ix = getAccessedFieldNo(0, Elts); 1891 1892 Address VectorBasePtrPlusIx = 1893 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1894 "vector.elt"); 1895 1896 return VectorBasePtrPlusIx; 1897 } 1898 1899 /// Load of global gamed gegisters are always calls to intrinsics. 1900 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1901 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1902 "Bad type for register variable"); 1903 llvm::MDNode *RegName = cast<llvm::MDNode>( 1904 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1905 1906 // We accept integer and pointer types only 1907 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1908 llvm::Type *Ty = OrigTy; 1909 if (OrigTy->isPointerTy()) 1910 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1911 llvm::Type *Types[] = { Ty }; 1912 1913 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1914 llvm::Value *Call = Builder.CreateCall( 1915 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1916 if (OrigTy->isPointerTy()) 1917 Call = Builder.CreateIntToPtr(Call, OrigTy); 1918 return RValue::get(Call); 1919 } 1920 1921 1922 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1923 /// lvalue, where both are guaranteed to the have the same type, and that type 1924 /// is 'Ty'. 1925 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1926 bool isInit) { 1927 if (!Dst.isSimple()) { 1928 if (Dst.isVectorElt()) { 1929 // Read/modify/write the vector, inserting the new element. 1930 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1931 Dst.isVolatileQualified()); 1932 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1933 Dst.getVectorIdx(), "vecins"); 1934 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1935 Dst.isVolatileQualified()); 1936 return; 1937 } 1938 1939 // If this is an update of extended vector elements, insert them as 1940 // appropriate. 1941 if (Dst.isExtVectorElt()) 1942 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1943 1944 if (Dst.isGlobalReg()) 1945 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1946 1947 assert(Dst.isBitField() && "Unknown LValue type"); 1948 return EmitStoreThroughBitfieldLValue(Src, Dst); 1949 } 1950 1951 // There's special magic for assigning into an ARC-qualified l-value. 1952 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1953 switch (Lifetime) { 1954 case Qualifiers::OCL_None: 1955 llvm_unreachable("present but none"); 1956 1957 case Qualifiers::OCL_ExplicitNone: 1958 // nothing special 1959 break; 1960 1961 case Qualifiers::OCL_Strong: 1962 if (isInit) { 1963 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1964 break; 1965 } 1966 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1967 return; 1968 1969 case Qualifiers::OCL_Weak: 1970 if (isInit) 1971 // Initialize and then skip the primitive store. 1972 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1973 else 1974 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1975 return; 1976 1977 case Qualifiers::OCL_Autoreleasing: 1978 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1979 Src.getScalarVal())); 1980 // fall into the normal path 1981 break; 1982 } 1983 } 1984 1985 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1986 // load of a __weak object. 1987 Address LvalueDst = Dst.getAddress(); 1988 llvm::Value *src = Src.getScalarVal(); 1989 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1990 return; 1991 } 1992 1993 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1994 // load of a __strong object. 1995 Address LvalueDst = Dst.getAddress(); 1996 llvm::Value *src = Src.getScalarVal(); 1997 if (Dst.isObjCIvar()) { 1998 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1999 llvm::Type *ResultType = IntPtrTy; 2000 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2001 llvm::Value *RHS = dst.getPointer(); 2002 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2003 llvm::Value *LHS = 2004 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2005 "sub.ptr.lhs.cast"); 2006 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2007 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2008 BytesBetween); 2009 } else if (Dst.isGlobalObjCRef()) { 2010 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2011 Dst.isThreadLocalRef()); 2012 } 2013 else 2014 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2015 return; 2016 } 2017 2018 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2019 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2020 } 2021 2022 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2023 llvm::Value **Result) { 2024 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2025 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2026 Address Ptr = Dst.getBitFieldAddress(); 2027 2028 // Get the source value, truncated to the width of the bit-field. 2029 llvm::Value *SrcVal = Src.getScalarVal(); 2030 2031 // Cast the source to the storage type and shift it into place. 2032 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2033 /*isSigned=*/false); 2034 llvm::Value *MaskedVal = SrcVal; 2035 2036 // See if there are other bits in the bitfield's storage we'll need to load 2037 // and mask together with source before storing. 2038 if (Info.StorageSize != Info.Size) { 2039 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2040 llvm::Value *Val = 2041 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2042 2043 // Mask the source value as needed. 2044 if (!hasBooleanRepresentation(Dst.getType())) 2045 SrcVal = Builder.CreateAnd(SrcVal, 2046 llvm::APInt::getLowBitsSet(Info.StorageSize, 2047 Info.Size), 2048 "bf.value"); 2049 MaskedVal = SrcVal; 2050 if (Info.Offset) 2051 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2052 2053 // Mask out the original value. 2054 Val = Builder.CreateAnd(Val, 2055 ~llvm::APInt::getBitsSet(Info.StorageSize, 2056 Info.Offset, 2057 Info.Offset + Info.Size), 2058 "bf.clear"); 2059 2060 // Or together the unchanged values and the source value. 2061 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2062 } else { 2063 assert(Info.Offset == 0); 2064 } 2065 2066 // Write the new value back out. 2067 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2068 2069 // Return the new value of the bit-field, if requested. 2070 if (Result) { 2071 llvm::Value *ResultVal = MaskedVal; 2072 2073 // Sign extend the value if needed. 2074 if (Info.IsSigned) { 2075 assert(Info.Size <= Info.StorageSize); 2076 unsigned HighBits = Info.StorageSize - Info.Size; 2077 if (HighBits) { 2078 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2079 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2080 } 2081 } 2082 2083 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2084 "bf.result.cast"); 2085 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2086 } 2087 } 2088 2089 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2090 LValue Dst) { 2091 // This access turns into a read/modify/write of the vector. Load the input 2092 // value now. 2093 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2094 Dst.isVolatileQualified()); 2095 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2096 2097 llvm::Value *SrcVal = Src.getScalarVal(); 2098 2099 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2100 unsigned NumSrcElts = VTy->getNumElements(); 2101 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2102 if (NumDstElts == NumSrcElts) { 2103 // Use shuffle vector is the src and destination are the same number of 2104 // elements and restore the vector mask since it is on the side it will be 2105 // stored. 2106 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2107 for (unsigned i = 0; i != NumSrcElts; ++i) 2108 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2109 2110 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2111 Vec = Builder.CreateShuffleVector(SrcVal, 2112 llvm::UndefValue::get(Vec->getType()), 2113 MaskV); 2114 } else if (NumDstElts > NumSrcElts) { 2115 // Extended the source vector to the same length and then shuffle it 2116 // into the destination. 2117 // FIXME: since we're shuffling with undef, can we just use the indices 2118 // into that? This could be simpler. 2119 SmallVector<llvm::Constant*, 4> ExtMask; 2120 for (unsigned i = 0; i != NumSrcElts; ++i) 2121 ExtMask.push_back(Builder.getInt32(i)); 2122 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2123 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2124 llvm::Value *ExtSrcVal = 2125 Builder.CreateShuffleVector(SrcVal, 2126 llvm::UndefValue::get(SrcVal->getType()), 2127 ExtMaskV); 2128 // build identity 2129 SmallVector<llvm::Constant*, 4> Mask; 2130 for (unsigned i = 0; i != NumDstElts; ++i) 2131 Mask.push_back(Builder.getInt32(i)); 2132 2133 // When the vector size is odd and .odd or .hi is used, the last element 2134 // of the Elts constant array will be one past the size of the vector. 2135 // Ignore the last element here, if it is greater than the mask size. 2136 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2137 NumSrcElts--; 2138 2139 // modify when what gets shuffled in 2140 for (unsigned i = 0; i != NumSrcElts; ++i) 2141 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2142 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2143 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2144 } else { 2145 // We should never shorten the vector 2146 llvm_unreachable("unexpected shorten vector length"); 2147 } 2148 } else { 2149 // If the Src is a scalar (not a vector) it must be updating one element. 2150 unsigned InIdx = getAccessedFieldNo(0, Elts); 2151 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2152 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2153 } 2154 2155 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2156 Dst.isVolatileQualified()); 2157 } 2158 2159 /// Store of global named registers are always calls to intrinsics. 2160 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2161 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2162 "Bad type for register variable"); 2163 llvm::MDNode *RegName = cast<llvm::MDNode>( 2164 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2165 assert(RegName && "Register LValue is not metadata"); 2166 2167 // We accept integer and pointer types only 2168 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2169 llvm::Type *Ty = OrigTy; 2170 if (OrigTy->isPointerTy()) 2171 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2172 llvm::Type *Types[] = { Ty }; 2173 2174 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2175 llvm::Value *Value = Src.getScalarVal(); 2176 if (OrigTy->isPointerTy()) 2177 Value = Builder.CreatePtrToInt(Value, Ty); 2178 Builder.CreateCall( 2179 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2180 } 2181 2182 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2183 // generating write-barries API. It is currently a global, ivar, 2184 // or neither. 2185 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2186 LValue &LV, 2187 bool IsMemberAccess=false) { 2188 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2189 return; 2190 2191 if (isa<ObjCIvarRefExpr>(E)) { 2192 QualType ExpTy = E->getType(); 2193 if (IsMemberAccess && ExpTy->isPointerType()) { 2194 // If ivar is a structure pointer, assigning to field of 2195 // this struct follows gcc's behavior and makes it a non-ivar 2196 // writer-barrier conservatively. 2197 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2198 if (ExpTy->isRecordType()) { 2199 LV.setObjCIvar(false); 2200 return; 2201 } 2202 } 2203 LV.setObjCIvar(true); 2204 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2205 LV.setBaseIvarExp(Exp->getBase()); 2206 LV.setObjCArray(E->getType()->isArrayType()); 2207 return; 2208 } 2209 2210 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2211 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2212 if (VD->hasGlobalStorage()) { 2213 LV.setGlobalObjCRef(true); 2214 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2215 } 2216 } 2217 LV.setObjCArray(E->getType()->isArrayType()); 2218 return; 2219 } 2220 2221 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2222 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2223 return; 2224 } 2225 2226 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2227 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2228 if (LV.isObjCIvar()) { 2229 // If cast is to a structure pointer, follow gcc's behavior and make it 2230 // a non-ivar write-barrier. 2231 QualType ExpTy = E->getType(); 2232 if (ExpTy->isPointerType()) 2233 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2234 if (ExpTy->isRecordType()) 2235 LV.setObjCIvar(false); 2236 } 2237 return; 2238 } 2239 2240 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2241 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2242 return; 2243 } 2244 2245 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2246 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2247 return; 2248 } 2249 2250 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2251 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2252 return; 2253 } 2254 2255 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2256 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2257 return; 2258 } 2259 2260 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2261 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2262 if (LV.isObjCIvar() && !LV.isObjCArray()) 2263 // Using array syntax to assigning to what an ivar points to is not 2264 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2265 LV.setObjCIvar(false); 2266 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2267 // Using array syntax to assigning to what global points to is not 2268 // same as assigning to the global itself. {id *G;} G[i] = 0; 2269 LV.setGlobalObjCRef(false); 2270 return; 2271 } 2272 2273 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2274 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2275 // We don't know if member is an 'ivar', but this flag is looked at 2276 // only in the context of LV.isObjCIvar(). 2277 LV.setObjCArray(E->getType()->isArrayType()); 2278 return; 2279 } 2280 } 2281 2282 static llvm::Value * 2283 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2284 llvm::Value *V, llvm::Type *IRType, 2285 StringRef Name = StringRef()) { 2286 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2287 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2288 } 2289 2290 static LValue EmitThreadPrivateVarDeclLValue( 2291 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2292 llvm::Type *RealVarTy, SourceLocation Loc) { 2293 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2294 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2295 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2296 } 2297 2298 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2299 const VarDecl *VD, QualType T) { 2300 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2301 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2302 // Return an invalid address if variable is MT_To and unified 2303 // memory is not enabled. For all other cases: MT_Link and 2304 // MT_To with unified memory, return a valid address. 2305 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2306 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2307 return Address::invalid(); 2308 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2309 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2310 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2311 "Expected link clause OR to clause with unified memory enabled."); 2312 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2313 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2314 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2315 } 2316 2317 Address 2318 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2319 LValueBaseInfo *PointeeBaseInfo, 2320 TBAAAccessInfo *PointeeTBAAInfo) { 2321 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2322 RefLVal.isVolatile()); 2323 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2324 2325 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2326 PointeeBaseInfo, PointeeTBAAInfo, 2327 /* forPointeeType= */ true); 2328 return Address(Load, Align); 2329 } 2330 2331 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2332 LValueBaseInfo PointeeBaseInfo; 2333 TBAAAccessInfo PointeeTBAAInfo; 2334 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2335 &PointeeTBAAInfo); 2336 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2337 PointeeBaseInfo, PointeeTBAAInfo); 2338 } 2339 2340 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2341 const PointerType *PtrTy, 2342 LValueBaseInfo *BaseInfo, 2343 TBAAAccessInfo *TBAAInfo) { 2344 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2345 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2346 BaseInfo, TBAAInfo, 2347 /*forPointeeType=*/true)); 2348 } 2349 2350 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2351 const PointerType *PtrTy) { 2352 LValueBaseInfo BaseInfo; 2353 TBAAAccessInfo TBAAInfo; 2354 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2355 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2356 } 2357 2358 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2359 const Expr *E, const VarDecl *VD) { 2360 QualType T = E->getType(); 2361 2362 // If it's thread_local, emit a call to its wrapper function instead. 2363 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2364 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2365 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2366 // Check if the variable is marked as declare target with link clause in 2367 // device codegen. 2368 if (CGF.getLangOpts().OpenMPIsDevice) { 2369 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2370 if (Addr.isValid()) 2371 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2372 } 2373 2374 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2375 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2376 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2377 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2378 Address Addr(V, Alignment); 2379 // Emit reference to the private copy of the variable if it is an OpenMP 2380 // threadprivate variable. 2381 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2382 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2383 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2384 E->getExprLoc()); 2385 } 2386 LValue LV = VD->getType()->isReferenceType() ? 2387 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2388 AlignmentSource::Decl) : 2389 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2390 setObjCGCLValueClass(CGF.getContext(), E, LV); 2391 return LV; 2392 } 2393 2394 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2395 const FunctionDecl *FD) { 2396 if (FD->hasAttr<WeakRefAttr>()) { 2397 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2398 return aliasee.getPointer(); 2399 } 2400 2401 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2402 if (!FD->hasPrototype()) { 2403 if (const FunctionProtoType *Proto = 2404 FD->getType()->getAs<FunctionProtoType>()) { 2405 // Ugly case: for a K&R-style definition, the type of the definition 2406 // isn't the same as the type of a use. Correct for this with a 2407 // bitcast. 2408 QualType NoProtoType = 2409 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2410 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2411 V = llvm::ConstantExpr::getBitCast(V, 2412 CGM.getTypes().ConvertType(NoProtoType)); 2413 } 2414 } 2415 return V; 2416 } 2417 2418 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2419 const Expr *E, const FunctionDecl *FD) { 2420 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2421 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2422 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2423 AlignmentSource::Decl); 2424 } 2425 2426 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2427 llvm::Value *ThisValue) { 2428 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2429 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2430 return CGF.EmitLValueForField(LV, FD); 2431 } 2432 2433 /// Named Registers are named metadata pointing to the register name 2434 /// which will be read from/written to as an argument to the intrinsic 2435 /// @llvm.read/write_register. 2436 /// So far, only the name is being passed down, but other options such as 2437 /// register type, allocation type or even optimization options could be 2438 /// passed down via the metadata node. 2439 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2440 SmallString<64> Name("llvm.named.register."); 2441 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2442 assert(Asm->getLabel().size() < 64-Name.size() && 2443 "Register name too big"); 2444 Name.append(Asm->getLabel()); 2445 llvm::NamedMDNode *M = 2446 CGM.getModule().getOrInsertNamedMetadata(Name); 2447 if (M->getNumOperands() == 0) { 2448 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2449 Asm->getLabel()); 2450 llvm::Metadata *Ops[] = {Str}; 2451 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2452 } 2453 2454 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2455 2456 llvm::Value *Ptr = 2457 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2458 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2459 } 2460 2461 /// Determine whether we can emit a reference to \p VD from the current 2462 /// context, despite not necessarily having seen an odr-use of the variable in 2463 /// this context. 2464 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2465 const DeclRefExpr *E, 2466 const VarDecl *VD, 2467 bool IsConstant) { 2468 // For a variable declared in an enclosing scope, do not emit a spurious 2469 // reference even if we have a capture, as that will emit an unwarranted 2470 // reference to our capture state, and will likely generate worse code than 2471 // emitting a local copy. 2472 if (E->refersToEnclosingVariableOrCapture()) 2473 return false; 2474 2475 // For a local declaration declared in this function, we can always reference 2476 // it even if we don't have an odr-use. 2477 if (VD->hasLocalStorage()) { 2478 return VD->getDeclContext() == 2479 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2480 } 2481 2482 // For a global declaration, we can emit a reference to it if we know 2483 // for sure that we are able to emit a definition of it. 2484 VD = VD->getDefinition(CGF.getContext()); 2485 if (!VD) 2486 return false; 2487 2488 // Don't emit a spurious reference if it might be to a variable that only 2489 // exists on a different device / target. 2490 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2491 // cross-target reference. 2492 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2493 CGF.getLangOpts().OpenCL) { 2494 return false; 2495 } 2496 2497 // We can emit a spurious reference only if the linkage implies that we'll 2498 // be emitting a non-interposable symbol that will be retained until link 2499 // time. 2500 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2501 case llvm::GlobalValue::ExternalLinkage: 2502 case llvm::GlobalValue::LinkOnceODRLinkage: 2503 case llvm::GlobalValue::WeakODRLinkage: 2504 case llvm::GlobalValue::InternalLinkage: 2505 case llvm::GlobalValue::PrivateLinkage: 2506 return true; 2507 default: 2508 return false; 2509 } 2510 } 2511 2512 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2513 const NamedDecl *ND = E->getDecl(); 2514 QualType T = E->getType(); 2515 2516 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2517 "should not emit an unevaluated operand"); 2518 2519 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2520 // Global Named registers access via intrinsics only 2521 if (VD->getStorageClass() == SC_Register && 2522 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2523 return EmitGlobalNamedRegister(VD, CGM); 2524 2525 // If this DeclRefExpr does not constitute an odr-use of the variable, 2526 // we're not permitted to emit a reference to it in general, and it might 2527 // not be captured if capture would be necessary for a use. Emit the 2528 // constant value directly instead. 2529 if (E->isNonOdrUse() == NOUR_Constant && 2530 (VD->getType()->isReferenceType() || 2531 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2532 VD->getAnyInitializer(VD); 2533 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2534 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2535 assert(Val && "failed to emit constant expression"); 2536 2537 Address Addr = Address::invalid(); 2538 if (!VD->getType()->isReferenceType()) { 2539 // Spill the constant value to a global. 2540 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2541 getContext().getDeclAlign(VD)); 2542 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2543 auto *PTy = llvm::PointerType::get( 2544 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2545 if (PTy != Addr.getType()) 2546 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2547 } else { 2548 // Should we be using the alignment of the constant pointer we emitted? 2549 CharUnits Alignment = 2550 getNaturalTypeAlignment(E->getType(), 2551 /* BaseInfo= */ nullptr, 2552 /* TBAAInfo= */ nullptr, 2553 /* forPointeeType= */ true); 2554 Addr = Address(Val, Alignment); 2555 } 2556 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2557 } 2558 2559 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2560 2561 // Check for captured variables. 2562 if (E->refersToEnclosingVariableOrCapture()) { 2563 VD = VD->getCanonicalDecl(); 2564 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2565 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2566 else if (CapturedStmtInfo) { 2567 auto I = LocalDeclMap.find(VD); 2568 if (I != LocalDeclMap.end()) { 2569 if (VD->getType()->isReferenceType()) 2570 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2571 AlignmentSource::Decl); 2572 return MakeAddrLValue(I->second, T); 2573 } 2574 LValue CapLVal = 2575 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2576 CapturedStmtInfo->getContextValue()); 2577 return MakeAddrLValue( 2578 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2579 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2580 CapLVal.getTBAAInfo()); 2581 } 2582 2583 assert(isa<BlockDecl>(CurCodeDecl)); 2584 Address addr = GetAddrOfBlockDecl(VD); 2585 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2586 } 2587 } 2588 2589 // FIXME: We should be able to assert this for FunctionDecls as well! 2590 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2591 // those with a valid source location. 2592 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2593 !E->getLocation().isValid()) && 2594 "Should not use decl without marking it used!"); 2595 2596 if (ND->hasAttr<WeakRefAttr>()) { 2597 const auto *VD = cast<ValueDecl>(ND); 2598 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2599 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2600 } 2601 2602 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2603 // Check if this is a global variable. 2604 if (VD->hasLinkage() || VD->isStaticDataMember()) 2605 return EmitGlobalVarDeclLValue(*this, E, VD); 2606 2607 Address addr = Address::invalid(); 2608 2609 // The variable should generally be present in the local decl map. 2610 auto iter = LocalDeclMap.find(VD); 2611 if (iter != LocalDeclMap.end()) { 2612 addr = iter->second; 2613 2614 // Otherwise, it might be static local we haven't emitted yet for 2615 // some reason; most likely, because it's in an outer function. 2616 } else if (VD->isStaticLocal()) { 2617 addr = Address(CGM.getOrCreateStaticVarDecl( 2618 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2619 getContext().getDeclAlign(VD)); 2620 2621 // No other cases for now. 2622 } else { 2623 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2624 } 2625 2626 2627 // Check for OpenMP threadprivate variables. 2628 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2629 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2630 return EmitThreadPrivateVarDeclLValue( 2631 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2632 E->getExprLoc()); 2633 } 2634 2635 // Drill into block byref variables. 2636 bool isBlockByref = VD->isEscapingByref(); 2637 if (isBlockByref) { 2638 addr = emitBlockByrefAddress(addr, VD); 2639 } 2640 2641 // Drill into reference types. 2642 LValue LV = VD->getType()->isReferenceType() ? 2643 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2644 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2645 2646 bool isLocalStorage = VD->hasLocalStorage(); 2647 2648 bool NonGCable = isLocalStorage && 2649 !VD->getType()->isReferenceType() && 2650 !isBlockByref; 2651 if (NonGCable) { 2652 LV.getQuals().removeObjCGCAttr(); 2653 LV.setNonGC(true); 2654 } 2655 2656 bool isImpreciseLifetime = 2657 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2658 if (isImpreciseLifetime) 2659 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2660 setObjCGCLValueClass(getContext(), E, LV); 2661 return LV; 2662 } 2663 2664 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2665 return EmitFunctionDeclLValue(*this, E, FD); 2666 2667 // FIXME: While we're emitting a binding from an enclosing scope, all other 2668 // DeclRefExprs we see should be implicitly treated as if they also refer to 2669 // an enclosing scope. 2670 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2671 return EmitLValue(BD->getBinding()); 2672 2673 llvm_unreachable("Unhandled DeclRefExpr"); 2674 } 2675 2676 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2677 // __extension__ doesn't affect lvalue-ness. 2678 if (E->getOpcode() == UO_Extension) 2679 return EmitLValue(E->getSubExpr()); 2680 2681 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2682 switch (E->getOpcode()) { 2683 default: llvm_unreachable("Unknown unary operator lvalue!"); 2684 case UO_Deref: { 2685 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2686 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2687 2688 LValueBaseInfo BaseInfo; 2689 TBAAAccessInfo TBAAInfo; 2690 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2691 &TBAAInfo); 2692 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2693 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2694 2695 // We should not generate __weak write barrier on indirect reference 2696 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2697 // But, we continue to generate __strong write barrier on indirect write 2698 // into a pointer to object. 2699 if (getLangOpts().ObjC && 2700 getLangOpts().getGC() != LangOptions::NonGC && 2701 LV.isObjCWeak()) 2702 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2703 return LV; 2704 } 2705 case UO_Real: 2706 case UO_Imag: { 2707 LValue LV = EmitLValue(E->getSubExpr()); 2708 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2709 2710 // __real is valid on scalars. This is a faster way of testing that. 2711 // __imag can only produce an rvalue on scalars. 2712 if (E->getOpcode() == UO_Real && 2713 !LV.getAddress().getElementType()->isStructTy()) { 2714 assert(E->getSubExpr()->getType()->isArithmeticType()); 2715 return LV; 2716 } 2717 2718 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2719 2720 Address Component = 2721 (E->getOpcode() == UO_Real 2722 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2723 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2724 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2725 CGM.getTBAAInfoForSubobject(LV, T)); 2726 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2727 return ElemLV; 2728 } 2729 case UO_PreInc: 2730 case UO_PreDec: { 2731 LValue LV = EmitLValue(E->getSubExpr()); 2732 bool isInc = E->getOpcode() == UO_PreInc; 2733 2734 if (E->getType()->isAnyComplexType()) 2735 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2736 else 2737 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2738 return LV; 2739 } 2740 } 2741 } 2742 2743 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2744 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2745 E->getType(), AlignmentSource::Decl); 2746 } 2747 2748 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2749 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2750 E->getType(), AlignmentSource::Decl); 2751 } 2752 2753 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2754 auto SL = E->getFunctionName(); 2755 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2756 StringRef FnName = CurFn->getName(); 2757 if (FnName.startswith("\01")) 2758 FnName = FnName.substr(1); 2759 StringRef NameItems[] = { 2760 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2761 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2762 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2763 std::string Name = SL->getString(); 2764 if (!Name.empty()) { 2765 unsigned Discriminator = 2766 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2767 if (Discriminator) 2768 Name += "_" + Twine(Discriminator + 1).str(); 2769 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2770 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2771 } else { 2772 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2773 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2774 } 2775 } 2776 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2777 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2778 } 2779 2780 /// Emit a type description suitable for use by a runtime sanitizer library. The 2781 /// format of a type descriptor is 2782 /// 2783 /// \code 2784 /// { i16 TypeKind, i16 TypeInfo } 2785 /// \endcode 2786 /// 2787 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2788 /// integer, 1 for a floating point value, and -1 for anything else. 2789 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2790 // Only emit each type's descriptor once. 2791 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2792 return C; 2793 2794 uint16_t TypeKind = -1; 2795 uint16_t TypeInfo = 0; 2796 2797 if (T->isIntegerType()) { 2798 TypeKind = 0; 2799 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2800 (T->isSignedIntegerType() ? 1 : 0); 2801 } else if (T->isFloatingType()) { 2802 TypeKind = 1; 2803 TypeInfo = getContext().getTypeSize(T); 2804 } 2805 2806 // Format the type name as if for a diagnostic, including quotes and 2807 // optionally an 'aka'. 2808 SmallString<32> Buffer; 2809 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2810 (intptr_t)T.getAsOpaquePtr(), 2811 StringRef(), StringRef(), None, Buffer, 2812 None); 2813 2814 llvm::Constant *Components[] = { 2815 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2816 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2817 }; 2818 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2819 2820 auto *GV = new llvm::GlobalVariable( 2821 CGM.getModule(), Descriptor->getType(), 2822 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2823 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2824 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2825 2826 // Remember the descriptor for this type. 2827 CGM.setTypeDescriptorInMap(T, GV); 2828 2829 return GV; 2830 } 2831 2832 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2833 llvm::Type *TargetTy = IntPtrTy; 2834 2835 if (V->getType() == TargetTy) 2836 return V; 2837 2838 // Floating-point types which fit into intptr_t are bitcast to integers 2839 // and then passed directly (after zero-extension, if necessary). 2840 if (V->getType()->isFloatingPointTy()) { 2841 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2842 if (Bits <= TargetTy->getIntegerBitWidth()) 2843 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2844 Bits)); 2845 } 2846 2847 // Integers which fit in intptr_t are zero-extended and passed directly. 2848 if (V->getType()->isIntegerTy() && 2849 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2850 return Builder.CreateZExt(V, TargetTy); 2851 2852 // Pointers are passed directly, everything else is passed by address. 2853 if (!V->getType()->isPointerTy()) { 2854 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2855 Builder.CreateStore(V, Ptr); 2856 V = Ptr.getPointer(); 2857 } 2858 return Builder.CreatePtrToInt(V, TargetTy); 2859 } 2860 2861 /// Emit a representation of a SourceLocation for passing to a handler 2862 /// in a sanitizer runtime library. The format for this data is: 2863 /// \code 2864 /// struct SourceLocation { 2865 /// const char *Filename; 2866 /// int32_t Line, Column; 2867 /// }; 2868 /// \endcode 2869 /// For an invalid SourceLocation, the Filename pointer is null. 2870 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2871 llvm::Constant *Filename; 2872 int Line, Column; 2873 2874 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2875 if (PLoc.isValid()) { 2876 StringRef FilenameString = PLoc.getFilename(); 2877 2878 int PathComponentsToStrip = 2879 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2880 if (PathComponentsToStrip < 0) { 2881 assert(PathComponentsToStrip != INT_MIN); 2882 int PathComponentsToKeep = -PathComponentsToStrip; 2883 auto I = llvm::sys::path::rbegin(FilenameString); 2884 auto E = llvm::sys::path::rend(FilenameString); 2885 while (I != E && --PathComponentsToKeep) 2886 ++I; 2887 2888 FilenameString = FilenameString.substr(I - E); 2889 } else if (PathComponentsToStrip > 0) { 2890 auto I = llvm::sys::path::begin(FilenameString); 2891 auto E = llvm::sys::path::end(FilenameString); 2892 while (I != E && PathComponentsToStrip--) 2893 ++I; 2894 2895 if (I != E) 2896 FilenameString = 2897 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2898 else 2899 FilenameString = llvm::sys::path::filename(FilenameString); 2900 } 2901 2902 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2903 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2904 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2905 Filename = FilenameGV.getPointer(); 2906 Line = PLoc.getLine(); 2907 Column = PLoc.getColumn(); 2908 } else { 2909 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2910 Line = Column = 0; 2911 } 2912 2913 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2914 Builder.getInt32(Column)}; 2915 2916 return llvm::ConstantStruct::getAnon(Data); 2917 } 2918 2919 namespace { 2920 /// Specify under what conditions this check can be recovered 2921 enum class CheckRecoverableKind { 2922 /// Always terminate program execution if this check fails. 2923 Unrecoverable, 2924 /// Check supports recovering, runtime has both fatal (noreturn) and 2925 /// non-fatal handlers for this check. 2926 Recoverable, 2927 /// Runtime conditionally aborts, always need to support recovery. 2928 AlwaysRecoverable 2929 }; 2930 } 2931 2932 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2933 assert(Kind.countPopulation() == 1); 2934 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2935 return CheckRecoverableKind::AlwaysRecoverable; 2936 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2937 return CheckRecoverableKind::Unrecoverable; 2938 else 2939 return CheckRecoverableKind::Recoverable; 2940 } 2941 2942 namespace { 2943 struct SanitizerHandlerInfo { 2944 char const *const Name; 2945 unsigned Version; 2946 }; 2947 } 2948 2949 const SanitizerHandlerInfo SanitizerHandlers[] = { 2950 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2951 LIST_SANITIZER_CHECKS 2952 #undef SANITIZER_CHECK 2953 }; 2954 2955 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2956 llvm::FunctionType *FnType, 2957 ArrayRef<llvm::Value *> FnArgs, 2958 SanitizerHandler CheckHandler, 2959 CheckRecoverableKind RecoverKind, bool IsFatal, 2960 llvm::BasicBlock *ContBB) { 2961 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2962 Optional<ApplyDebugLocation> DL; 2963 if (!CGF.Builder.getCurrentDebugLocation()) { 2964 // Ensure that the call has at least an artificial debug location. 2965 DL.emplace(CGF, SourceLocation()); 2966 } 2967 bool NeedsAbortSuffix = 2968 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2969 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2970 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2971 const StringRef CheckName = CheckInfo.Name; 2972 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2973 if (CheckInfo.Version && !MinimalRuntime) 2974 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2975 if (MinimalRuntime) 2976 FnName += "_minimal"; 2977 if (NeedsAbortSuffix) 2978 FnName += "_abort"; 2979 bool MayReturn = 2980 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2981 2982 llvm::AttrBuilder B; 2983 if (!MayReturn) { 2984 B.addAttribute(llvm::Attribute::NoReturn) 2985 .addAttribute(llvm::Attribute::NoUnwind); 2986 } 2987 B.addAttribute(llvm::Attribute::UWTable); 2988 2989 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 2990 FnType, FnName, 2991 llvm::AttributeList::get(CGF.getLLVMContext(), 2992 llvm::AttributeList::FunctionIndex, B), 2993 /*Local=*/true); 2994 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2995 if (!MayReturn) { 2996 HandlerCall->setDoesNotReturn(); 2997 CGF.Builder.CreateUnreachable(); 2998 } else { 2999 CGF.Builder.CreateBr(ContBB); 3000 } 3001 } 3002 3003 void CodeGenFunction::EmitCheck( 3004 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3005 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3006 ArrayRef<llvm::Value *> DynamicArgs) { 3007 assert(IsSanitizerScope); 3008 assert(Checked.size() > 0); 3009 assert(CheckHandler >= 0 && 3010 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3011 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3012 3013 llvm::Value *FatalCond = nullptr; 3014 llvm::Value *RecoverableCond = nullptr; 3015 llvm::Value *TrapCond = nullptr; 3016 for (int i = 0, n = Checked.size(); i < n; ++i) { 3017 llvm::Value *Check = Checked[i].first; 3018 // -fsanitize-trap= overrides -fsanitize-recover=. 3019 llvm::Value *&Cond = 3020 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3021 ? TrapCond 3022 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3023 ? RecoverableCond 3024 : FatalCond; 3025 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3026 } 3027 3028 if (TrapCond) 3029 EmitTrapCheck(TrapCond); 3030 if (!FatalCond && !RecoverableCond) 3031 return; 3032 3033 llvm::Value *JointCond; 3034 if (FatalCond && RecoverableCond) 3035 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3036 else 3037 JointCond = FatalCond ? FatalCond : RecoverableCond; 3038 assert(JointCond); 3039 3040 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3041 assert(SanOpts.has(Checked[0].second)); 3042 #ifndef NDEBUG 3043 for (int i = 1, n = Checked.size(); i < n; ++i) { 3044 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3045 "All recoverable kinds in a single check must be same!"); 3046 assert(SanOpts.has(Checked[i].second)); 3047 } 3048 #endif 3049 3050 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3051 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3052 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3053 // Give hint that we very much don't expect to execute the handler 3054 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3055 llvm::MDBuilder MDHelper(getLLVMContext()); 3056 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3057 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3058 EmitBlock(Handlers); 3059 3060 // Handler functions take an i8* pointing to the (handler-specific) static 3061 // information block, followed by a sequence of intptr_t arguments 3062 // representing operand values. 3063 SmallVector<llvm::Value *, 4> Args; 3064 SmallVector<llvm::Type *, 4> ArgTypes; 3065 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3066 Args.reserve(DynamicArgs.size() + 1); 3067 ArgTypes.reserve(DynamicArgs.size() + 1); 3068 3069 // Emit handler arguments and create handler function type. 3070 if (!StaticArgs.empty()) { 3071 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3072 auto *InfoPtr = 3073 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3074 llvm::GlobalVariable::PrivateLinkage, Info); 3075 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3076 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3077 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3078 ArgTypes.push_back(Int8PtrTy); 3079 } 3080 3081 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3082 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3083 ArgTypes.push_back(IntPtrTy); 3084 } 3085 } 3086 3087 llvm::FunctionType *FnType = 3088 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3089 3090 if (!FatalCond || !RecoverableCond) { 3091 // Simple case: we need to generate a single handler call, either 3092 // fatal, or non-fatal. 3093 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3094 (FatalCond != nullptr), Cont); 3095 } else { 3096 // Emit two handler calls: first one for set of unrecoverable checks, 3097 // another one for recoverable. 3098 llvm::BasicBlock *NonFatalHandlerBB = 3099 createBasicBlock("non_fatal." + CheckName); 3100 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3101 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3102 EmitBlock(FatalHandlerBB); 3103 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3104 NonFatalHandlerBB); 3105 EmitBlock(NonFatalHandlerBB); 3106 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3107 Cont); 3108 } 3109 3110 EmitBlock(Cont); 3111 } 3112 3113 void CodeGenFunction::EmitCfiSlowPathCheck( 3114 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3115 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3116 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3117 3118 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3119 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3120 3121 llvm::MDBuilder MDHelper(getLLVMContext()); 3122 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3123 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3124 3125 EmitBlock(CheckBB); 3126 3127 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3128 3129 llvm::CallInst *CheckCall; 3130 llvm::FunctionCallee SlowPathFn; 3131 if (WithDiag) { 3132 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3133 auto *InfoPtr = 3134 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3135 llvm::GlobalVariable::PrivateLinkage, Info); 3136 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3137 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3138 3139 SlowPathFn = CGM.getModule().getOrInsertFunction( 3140 "__cfi_slowpath_diag", 3141 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3142 false)); 3143 CheckCall = Builder.CreateCall( 3144 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3145 } else { 3146 SlowPathFn = CGM.getModule().getOrInsertFunction( 3147 "__cfi_slowpath", 3148 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3149 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3150 } 3151 3152 CGM.setDSOLocal( 3153 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3154 CheckCall->setDoesNotThrow(); 3155 3156 EmitBlock(Cont); 3157 } 3158 3159 // Emit a stub for __cfi_check function so that the linker knows about this 3160 // symbol in LTO mode. 3161 void CodeGenFunction::EmitCfiCheckStub() { 3162 llvm::Module *M = &CGM.getModule(); 3163 auto &Ctx = M->getContext(); 3164 llvm::Function *F = llvm::Function::Create( 3165 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3166 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3167 CGM.setDSOLocal(F); 3168 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3169 // FIXME: consider emitting an intrinsic call like 3170 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3171 // which can be lowered in CrossDSOCFI pass to the actual contents of 3172 // __cfi_check. This would allow inlining of __cfi_check calls. 3173 llvm::CallInst::Create( 3174 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3175 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3176 } 3177 3178 // This function is basically a switch over the CFI failure kind, which is 3179 // extracted from CFICheckFailData (1st function argument). Each case is either 3180 // llvm.trap or a call to one of the two runtime handlers, based on 3181 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3182 // failure kind) traps, but this should really never happen. CFICheckFailData 3183 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3184 // check kind; in this case __cfi_check_fail traps as well. 3185 void CodeGenFunction::EmitCfiCheckFail() { 3186 SanitizerScope SanScope(this); 3187 FunctionArgList Args; 3188 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3189 ImplicitParamDecl::Other); 3190 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3191 ImplicitParamDecl::Other); 3192 Args.push_back(&ArgData); 3193 Args.push_back(&ArgAddr); 3194 3195 const CGFunctionInfo &FI = 3196 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3197 3198 llvm::Function *F = llvm::Function::Create( 3199 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3200 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3201 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3202 3203 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3204 SourceLocation()); 3205 3206 // This function should not be affected by blacklist. This function does 3207 // not have a source location, but "src:*" would still apply. Revert any 3208 // changes to SanOpts made in StartFunction. 3209 SanOpts = CGM.getLangOpts().Sanitize; 3210 3211 llvm::Value *Data = 3212 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3213 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3214 llvm::Value *Addr = 3215 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3216 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3217 3218 // Data == nullptr means the calling module has trap behaviour for this check. 3219 llvm::Value *DataIsNotNullPtr = 3220 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3221 EmitTrapCheck(DataIsNotNullPtr); 3222 3223 llvm::StructType *SourceLocationTy = 3224 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3225 llvm::StructType *CfiCheckFailDataTy = 3226 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3227 3228 llvm::Value *V = Builder.CreateConstGEP2_32( 3229 CfiCheckFailDataTy, 3230 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3231 0); 3232 Address CheckKindAddr(V, getIntAlign()); 3233 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3234 3235 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3236 CGM.getLLVMContext(), 3237 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3238 llvm::Value *ValidVtable = Builder.CreateZExt( 3239 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3240 {Addr, AllVtables}), 3241 IntPtrTy); 3242 3243 const std::pair<int, SanitizerMask> CheckKinds[] = { 3244 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3245 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3246 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3247 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3248 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3249 3250 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3251 for (auto CheckKindMaskPair : CheckKinds) { 3252 int Kind = CheckKindMaskPair.first; 3253 SanitizerMask Mask = CheckKindMaskPair.second; 3254 llvm::Value *Cond = 3255 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3256 if (CGM.getLangOpts().Sanitize.has(Mask)) 3257 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3258 {Data, Addr, ValidVtable}); 3259 else 3260 EmitTrapCheck(Cond); 3261 } 3262 3263 FinishFunction(); 3264 // The only reference to this function will be created during LTO link. 3265 // Make sure it survives until then. 3266 CGM.addUsedGlobal(F); 3267 } 3268 3269 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3270 if (SanOpts.has(SanitizerKind::Unreachable)) { 3271 SanitizerScope SanScope(this); 3272 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3273 SanitizerKind::Unreachable), 3274 SanitizerHandler::BuiltinUnreachable, 3275 EmitCheckSourceLocation(Loc), None); 3276 } 3277 Builder.CreateUnreachable(); 3278 } 3279 3280 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3281 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3282 3283 // If we're optimizing, collapse all calls to trap down to just one per 3284 // function to save on code size. 3285 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3286 TrapBB = createBasicBlock("trap"); 3287 Builder.CreateCondBr(Checked, Cont, TrapBB); 3288 EmitBlock(TrapBB); 3289 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3290 TrapCall->setDoesNotReturn(); 3291 TrapCall->setDoesNotThrow(); 3292 Builder.CreateUnreachable(); 3293 } else { 3294 Builder.CreateCondBr(Checked, Cont, TrapBB); 3295 } 3296 3297 EmitBlock(Cont); 3298 } 3299 3300 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3301 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3302 3303 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3304 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3305 CGM.getCodeGenOpts().TrapFuncName); 3306 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3307 } 3308 3309 return TrapCall; 3310 } 3311 3312 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3313 LValueBaseInfo *BaseInfo, 3314 TBAAAccessInfo *TBAAInfo) { 3315 assert(E->getType()->isArrayType() && 3316 "Array to pointer decay must have array source type!"); 3317 3318 // Expressions of array type can't be bitfields or vector elements. 3319 LValue LV = EmitLValue(E); 3320 Address Addr = LV.getAddress(); 3321 3322 // If the array type was an incomplete type, we need to make sure 3323 // the decay ends up being the right type. 3324 llvm::Type *NewTy = ConvertType(E->getType()); 3325 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3326 3327 // Note that VLA pointers are always decayed, so we don't need to do 3328 // anything here. 3329 if (!E->getType()->isVariableArrayType()) { 3330 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3331 "Expected pointer to array"); 3332 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3333 } 3334 3335 // The result of this decay conversion points to an array element within the 3336 // base lvalue. However, since TBAA currently does not support representing 3337 // accesses to elements of member arrays, we conservatively represent accesses 3338 // to the pointee object as if it had no any base lvalue specified. 3339 // TODO: Support TBAA for member arrays. 3340 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3341 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3342 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3343 3344 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3345 } 3346 3347 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3348 /// array to pointer, return the array subexpression. 3349 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3350 // If this isn't just an array->pointer decay, bail out. 3351 const auto *CE = dyn_cast<CastExpr>(E); 3352 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3353 return nullptr; 3354 3355 // If this is a decay from variable width array, bail out. 3356 const Expr *SubExpr = CE->getSubExpr(); 3357 if (SubExpr->getType()->isVariableArrayType()) 3358 return nullptr; 3359 3360 return SubExpr; 3361 } 3362 3363 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3364 llvm::Value *ptr, 3365 ArrayRef<llvm::Value*> indices, 3366 bool inbounds, 3367 bool signedIndices, 3368 SourceLocation loc, 3369 const llvm::Twine &name = "arrayidx") { 3370 if (inbounds) { 3371 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3372 CodeGenFunction::NotSubtraction, loc, 3373 name); 3374 } else { 3375 return CGF.Builder.CreateGEP(ptr, indices, name); 3376 } 3377 } 3378 3379 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3380 llvm::Value *idx, 3381 CharUnits eltSize) { 3382 // If we have a constant index, we can use the exact offset of the 3383 // element we're accessing. 3384 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3385 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3386 return arrayAlign.alignmentAtOffset(offset); 3387 3388 // Otherwise, use the worst-case alignment for any element. 3389 } else { 3390 return arrayAlign.alignmentOfArrayElement(eltSize); 3391 } 3392 } 3393 3394 static QualType getFixedSizeElementType(const ASTContext &ctx, 3395 const VariableArrayType *vla) { 3396 QualType eltType; 3397 do { 3398 eltType = vla->getElementType(); 3399 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3400 return eltType; 3401 } 3402 3403 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3404 ArrayRef<llvm::Value *> indices, 3405 QualType eltType, bool inbounds, 3406 bool signedIndices, SourceLocation loc, 3407 QualType *arrayType = nullptr, 3408 const llvm::Twine &name = "arrayidx") { 3409 // All the indices except that last must be zero. 3410 #ifndef NDEBUG 3411 for (auto idx : indices.drop_back()) 3412 assert(isa<llvm::ConstantInt>(idx) && 3413 cast<llvm::ConstantInt>(idx)->isZero()); 3414 #endif 3415 3416 // Determine the element size of the statically-sized base. This is 3417 // the thing that the indices are expressed in terms of. 3418 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3419 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3420 } 3421 3422 // We can use that to compute the best alignment of the element. 3423 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3424 CharUnits eltAlign = 3425 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3426 3427 llvm::Value *eltPtr; 3428 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3429 if (!CGF.IsInPreservedAIRegion || !LastIndex) { 3430 eltPtr = emitArraySubscriptGEP( 3431 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3432 loc, name); 3433 } else { 3434 // Remember the original array subscript for bpf target 3435 unsigned idx = LastIndex->getZExtValue(); 3436 llvm::DIType *DbgInfo = nullptr; 3437 if (arrayType) 3438 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3439 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getPointer(), 3440 indices.size() - 1, 3441 idx, DbgInfo); 3442 } 3443 3444 return Address(eltPtr, eltAlign); 3445 } 3446 3447 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3448 bool Accessed) { 3449 // The index must always be an integer, which is not an aggregate. Emit it 3450 // in lexical order (this complexity is, sadly, required by C++17). 3451 llvm::Value *IdxPre = 3452 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3453 bool SignedIndices = false; 3454 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3455 auto *Idx = IdxPre; 3456 if (E->getLHS() != E->getIdx()) { 3457 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3458 Idx = EmitScalarExpr(E->getIdx()); 3459 } 3460 3461 QualType IdxTy = E->getIdx()->getType(); 3462 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3463 SignedIndices |= IdxSigned; 3464 3465 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3466 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3467 3468 // Extend or truncate the index type to 32 or 64-bits. 3469 if (Promote && Idx->getType() != IntPtrTy) 3470 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3471 3472 return Idx; 3473 }; 3474 IdxPre = nullptr; 3475 3476 // If the base is a vector type, then we are forming a vector element lvalue 3477 // with this subscript. 3478 if (E->getBase()->getType()->isVectorType() && 3479 !isa<ExtVectorElementExpr>(E->getBase())) { 3480 // Emit the vector as an lvalue to get its address. 3481 LValue LHS = EmitLValue(E->getBase()); 3482 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3483 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3484 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3485 LHS.getBaseInfo(), TBAAAccessInfo()); 3486 } 3487 3488 // All the other cases basically behave like simple offsetting. 3489 3490 // Handle the extvector case we ignored above. 3491 if (isa<ExtVectorElementExpr>(E->getBase())) { 3492 LValue LV = EmitLValue(E->getBase()); 3493 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3494 Address Addr = EmitExtVectorElementLValue(LV); 3495 3496 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3497 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3498 SignedIndices, E->getExprLoc()); 3499 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3500 CGM.getTBAAInfoForSubobject(LV, EltType)); 3501 } 3502 3503 LValueBaseInfo EltBaseInfo; 3504 TBAAAccessInfo EltTBAAInfo; 3505 Address Addr = Address::invalid(); 3506 if (const VariableArrayType *vla = 3507 getContext().getAsVariableArrayType(E->getType())) { 3508 // The base must be a pointer, which is not an aggregate. Emit 3509 // it. It needs to be emitted first in case it's what captures 3510 // the VLA bounds. 3511 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3512 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3513 3514 // The element count here is the total number of non-VLA elements. 3515 llvm::Value *numElements = getVLASize(vla).NumElts; 3516 3517 // Effectively, the multiply by the VLA size is part of the GEP. 3518 // GEP indexes are signed, and scaling an index isn't permitted to 3519 // signed-overflow, so we use the same semantics for our explicit 3520 // multiply. We suppress this if overflow is not undefined behavior. 3521 if (getLangOpts().isSignedOverflowDefined()) { 3522 Idx = Builder.CreateMul(Idx, numElements); 3523 } else { 3524 Idx = Builder.CreateNSWMul(Idx, numElements); 3525 } 3526 3527 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3528 !getLangOpts().isSignedOverflowDefined(), 3529 SignedIndices, E->getExprLoc()); 3530 3531 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3532 // Indexing over an interface, as in "NSString *P; P[4];" 3533 3534 // Emit the base pointer. 3535 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3536 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3537 3538 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3539 llvm::Value *InterfaceSizeVal = 3540 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3541 3542 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3543 3544 // We don't necessarily build correct LLVM struct types for ObjC 3545 // interfaces, so we can't rely on GEP to do this scaling 3546 // correctly, so we need to cast to i8*. FIXME: is this actually 3547 // true? A lot of other things in the fragile ABI would break... 3548 llvm::Type *OrigBaseTy = Addr.getType(); 3549 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3550 3551 // Do the GEP. 3552 CharUnits EltAlign = 3553 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3554 llvm::Value *EltPtr = 3555 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3556 SignedIndices, E->getExprLoc()); 3557 Addr = Address(EltPtr, EltAlign); 3558 3559 // Cast back. 3560 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3561 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3562 // If this is A[i] where A is an array, the frontend will have decayed the 3563 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3564 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3565 // "gep x, i" here. Emit one "gep A, 0, i". 3566 assert(Array->getType()->isArrayType() && 3567 "Array to pointer decay must have array source type!"); 3568 LValue ArrayLV; 3569 // For simple multidimensional array indexing, set the 'accessed' flag for 3570 // better bounds-checking of the base expression. 3571 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3572 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3573 else 3574 ArrayLV = EmitLValue(Array); 3575 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3576 3577 // Propagate the alignment from the array itself to the result. 3578 QualType arrayType = Array->getType(); 3579 Addr = emitArraySubscriptGEP( 3580 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3581 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3582 E->getExprLoc(), &arrayType); 3583 EltBaseInfo = ArrayLV.getBaseInfo(); 3584 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3585 } else { 3586 // The base must be a pointer; emit it with an estimate of its alignment. 3587 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3588 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3589 QualType ptrType = E->getBase()->getType(); 3590 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3591 !getLangOpts().isSignedOverflowDefined(), 3592 SignedIndices, E->getExprLoc(), &ptrType); 3593 } 3594 3595 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3596 3597 if (getLangOpts().ObjC && 3598 getLangOpts().getGC() != LangOptions::NonGC) { 3599 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3600 setObjCGCLValueClass(getContext(), E, LV); 3601 } 3602 return LV; 3603 } 3604 3605 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3606 LValueBaseInfo &BaseInfo, 3607 TBAAAccessInfo &TBAAInfo, 3608 QualType BaseTy, QualType ElTy, 3609 bool IsLowerBound) { 3610 LValue BaseLVal; 3611 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3612 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3613 if (BaseTy->isArrayType()) { 3614 Address Addr = BaseLVal.getAddress(); 3615 BaseInfo = BaseLVal.getBaseInfo(); 3616 3617 // If the array type was an incomplete type, we need to make sure 3618 // the decay ends up being the right type. 3619 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3620 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3621 3622 // Note that VLA pointers are always decayed, so we don't need to do 3623 // anything here. 3624 if (!BaseTy->isVariableArrayType()) { 3625 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3626 "Expected pointer to array"); 3627 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3628 } 3629 3630 return CGF.Builder.CreateElementBitCast(Addr, 3631 CGF.ConvertTypeForMem(ElTy)); 3632 } 3633 LValueBaseInfo TypeBaseInfo; 3634 TBAAAccessInfo TypeTBAAInfo; 3635 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3636 &TypeTBAAInfo); 3637 BaseInfo.mergeForCast(TypeBaseInfo); 3638 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3639 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3640 } 3641 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3642 } 3643 3644 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3645 bool IsLowerBound) { 3646 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3647 QualType ResultExprTy; 3648 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3649 ResultExprTy = AT->getElementType(); 3650 else 3651 ResultExprTy = BaseTy->getPointeeType(); 3652 llvm::Value *Idx = nullptr; 3653 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3654 // Requesting lower bound or upper bound, but without provided length and 3655 // without ':' symbol for the default length -> length = 1. 3656 // Idx = LowerBound ?: 0; 3657 if (auto *LowerBound = E->getLowerBound()) { 3658 Idx = Builder.CreateIntCast( 3659 EmitScalarExpr(LowerBound), IntPtrTy, 3660 LowerBound->getType()->hasSignedIntegerRepresentation()); 3661 } else 3662 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3663 } else { 3664 // Try to emit length or lower bound as constant. If this is possible, 1 3665 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3666 // IR (LB + Len) - 1. 3667 auto &C = CGM.getContext(); 3668 auto *Length = E->getLength(); 3669 llvm::APSInt ConstLength; 3670 if (Length) { 3671 // Idx = LowerBound + Length - 1; 3672 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3673 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3674 Length = nullptr; 3675 } 3676 auto *LowerBound = E->getLowerBound(); 3677 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3678 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3679 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3680 LowerBound = nullptr; 3681 } 3682 if (!Length) 3683 --ConstLength; 3684 else if (!LowerBound) 3685 --ConstLowerBound; 3686 3687 if (Length || LowerBound) { 3688 auto *LowerBoundVal = 3689 LowerBound 3690 ? Builder.CreateIntCast( 3691 EmitScalarExpr(LowerBound), IntPtrTy, 3692 LowerBound->getType()->hasSignedIntegerRepresentation()) 3693 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3694 auto *LengthVal = 3695 Length 3696 ? Builder.CreateIntCast( 3697 EmitScalarExpr(Length), IntPtrTy, 3698 Length->getType()->hasSignedIntegerRepresentation()) 3699 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3700 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3701 /*HasNUW=*/false, 3702 !getLangOpts().isSignedOverflowDefined()); 3703 if (Length && LowerBound) { 3704 Idx = Builder.CreateSub( 3705 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3706 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3707 } 3708 } else 3709 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3710 } else { 3711 // Idx = ArraySize - 1; 3712 QualType ArrayTy = BaseTy->isPointerType() 3713 ? E->getBase()->IgnoreParenImpCasts()->getType() 3714 : BaseTy; 3715 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3716 Length = VAT->getSizeExpr(); 3717 if (Length->isIntegerConstantExpr(ConstLength, C)) 3718 Length = nullptr; 3719 } else { 3720 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3721 ConstLength = CAT->getSize(); 3722 } 3723 if (Length) { 3724 auto *LengthVal = Builder.CreateIntCast( 3725 EmitScalarExpr(Length), IntPtrTy, 3726 Length->getType()->hasSignedIntegerRepresentation()); 3727 Idx = Builder.CreateSub( 3728 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3729 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3730 } else { 3731 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3732 --ConstLength; 3733 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3734 } 3735 } 3736 } 3737 assert(Idx); 3738 3739 Address EltPtr = Address::invalid(); 3740 LValueBaseInfo BaseInfo; 3741 TBAAAccessInfo TBAAInfo; 3742 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3743 // The base must be a pointer, which is not an aggregate. Emit 3744 // it. It needs to be emitted first in case it's what captures 3745 // the VLA bounds. 3746 Address Base = 3747 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3748 BaseTy, VLA->getElementType(), IsLowerBound); 3749 // The element count here is the total number of non-VLA elements. 3750 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3751 3752 // Effectively, the multiply by the VLA size is part of the GEP. 3753 // GEP indexes are signed, and scaling an index isn't permitted to 3754 // signed-overflow, so we use the same semantics for our explicit 3755 // multiply. We suppress this if overflow is not undefined behavior. 3756 if (getLangOpts().isSignedOverflowDefined()) 3757 Idx = Builder.CreateMul(Idx, NumElements); 3758 else 3759 Idx = Builder.CreateNSWMul(Idx, NumElements); 3760 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3761 !getLangOpts().isSignedOverflowDefined(), 3762 /*signedIndices=*/false, E->getExprLoc()); 3763 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3764 // If this is A[i] where A is an array, the frontend will have decayed the 3765 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3766 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3767 // "gep x, i" here. Emit one "gep A, 0, i". 3768 assert(Array->getType()->isArrayType() && 3769 "Array to pointer decay must have array source type!"); 3770 LValue ArrayLV; 3771 // For simple multidimensional array indexing, set the 'accessed' flag for 3772 // better bounds-checking of the base expression. 3773 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3774 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3775 else 3776 ArrayLV = EmitLValue(Array); 3777 3778 // Propagate the alignment from the array itself to the result. 3779 EltPtr = emitArraySubscriptGEP( 3780 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3781 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3782 /*signedIndices=*/false, E->getExprLoc()); 3783 BaseInfo = ArrayLV.getBaseInfo(); 3784 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3785 } else { 3786 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3787 TBAAInfo, BaseTy, ResultExprTy, 3788 IsLowerBound); 3789 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3790 !getLangOpts().isSignedOverflowDefined(), 3791 /*signedIndices=*/false, E->getExprLoc()); 3792 } 3793 3794 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3795 } 3796 3797 LValue CodeGenFunction:: 3798 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3799 // Emit the base vector as an l-value. 3800 LValue Base; 3801 3802 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3803 if (E->isArrow()) { 3804 // If it is a pointer to a vector, emit the address and form an lvalue with 3805 // it. 3806 LValueBaseInfo BaseInfo; 3807 TBAAAccessInfo TBAAInfo; 3808 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3809 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3810 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3811 Base.getQuals().removeObjCGCAttr(); 3812 } else if (E->getBase()->isGLValue()) { 3813 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3814 // emit the base as an lvalue. 3815 assert(E->getBase()->getType()->isVectorType()); 3816 Base = EmitLValue(E->getBase()); 3817 } else { 3818 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3819 assert(E->getBase()->getType()->isVectorType() && 3820 "Result must be a vector"); 3821 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3822 3823 // Store the vector to memory (because LValue wants an address). 3824 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3825 Builder.CreateStore(Vec, VecMem); 3826 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3827 AlignmentSource::Decl); 3828 } 3829 3830 QualType type = 3831 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3832 3833 // Encode the element access list into a vector of unsigned indices. 3834 SmallVector<uint32_t, 4> Indices; 3835 E->getEncodedElementAccess(Indices); 3836 3837 if (Base.isSimple()) { 3838 llvm::Constant *CV = 3839 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3840 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3841 Base.getBaseInfo(), TBAAAccessInfo()); 3842 } 3843 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3844 3845 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3846 SmallVector<llvm::Constant *, 4> CElts; 3847 3848 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3849 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3850 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3851 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3852 Base.getBaseInfo(), TBAAAccessInfo()); 3853 } 3854 3855 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3856 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3857 EmitIgnoredExpr(E->getBase()); 3858 return EmitDeclRefLValue(DRE); 3859 } 3860 3861 Expr *BaseExpr = E->getBase(); 3862 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3863 LValue BaseLV; 3864 if (E->isArrow()) { 3865 LValueBaseInfo BaseInfo; 3866 TBAAAccessInfo TBAAInfo; 3867 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3868 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3869 SanitizerSet SkippedChecks; 3870 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3871 if (IsBaseCXXThis) 3872 SkippedChecks.set(SanitizerKind::Alignment, true); 3873 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3874 SkippedChecks.set(SanitizerKind::Null, true); 3875 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3876 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3877 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3878 } else 3879 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3880 3881 NamedDecl *ND = E->getMemberDecl(); 3882 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3883 LValue LV = EmitLValueForField(BaseLV, Field); 3884 setObjCGCLValueClass(getContext(), E, LV); 3885 return LV; 3886 } 3887 3888 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3889 return EmitFunctionDeclLValue(*this, E, FD); 3890 3891 llvm_unreachable("Unhandled member declaration!"); 3892 } 3893 3894 /// Given that we are currently emitting a lambda, emit an l-value for 3895 /// one of its members. 3896 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3897 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3898 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3899 QualType LambdaTagType = 3900 getContext().getTagDeclType(Field->getParent()); 3901 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3902 return EmitLValueForField(LambdaLV, Field); 3903 } 3904 3905 /// Get the field index in the debug info. The debug info structure/union 3906 /// will ignore the unnamed bitfields. 3907 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 3908 unsigned FieldIndex) { 3909 unsigned I = 0, Skipped = 0; 3910 3911 for (auto F : Rec->getDefinition()->fields()) { 3912 if (I == FieldIndex) 3913 break; 3914 if (F->isUnnamedBitfield()) 3915 Skipped++; 3916 I++; 3917 } 3918 3919 return FieldIndex - Skipped; 3920 } 3921 3922 /// Get the address of a zero-sized field within a record. The resulting 3923 /// address doesn't necessarily have the right type. 3924 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 3925 const FieldDecl *Field) { 3926 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 3927 CGF.getContext().getFieldOffset(Field)); 3928 if (Offset.isZero()) 3929 return Base; 3930 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 3931 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 3932 } 3933 3934 /// Drill down to the storage of a field without walking into 3935 /// reference types. 3936 /// 3937 /// The resulting address doesn't necessarily have the right type. 3938 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3939 const FieldDecl *field) { 3940 if (field->isZeroSize(CGF.getContext())) 3941 return emitAddrOfZeroSizeField(CGF, base, field); 3942 3943 const RecordDecl *rec = field->getParent(); 3944 3945 unsigned idx = 3946 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3947 3948 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 3949 } 3950 3951 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base, 3952 const FieldDecl *field) { 3953 const RecordDecl *rec = field->getParent(); 3954 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType( 3955 CGF.getContext().getRecordType(rec), rec->getLocation()); 3956 3957 unsigned idx = 3958 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3959 3960 return CGF.Builder.CreatePreserveStructAccessIndex( 3961 base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 3962 } 3963 3964 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3965 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3966 if (!RD) 3967 return false; 3968 3969 if (RD->isDynamicClass()) 3970 return true; 3971 3972 for (const auto &Base : RD->bases()) 3973 if (hasAnyVptr(Base.getType(), Context)) 3974 return true; 3975 3976 for (const FieldDecl *Field : RD->fields()) 3977 if (hasAnyVptr(Field->getType(), Context)) 3978 return true; 3979 3980 return false; 3981 } 3982 3983 LValue CodeGenFunction::EmitLValueForField(LValue base, 3984 const FieldDecl *field) { 3985 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3986 3987 if (field->isBitField()) { 3988 const CGRecordLayout &RL = 3989 CGM.getTypes().getCGRecordLayout(field->getParent()); 3990 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3991 Address Addr = base.getAddress(); 3992 unsigned Idx = RL.getLLVMFieldNo(field); 3993 if (!IsInPreservedAIRegion) { 3994 if (Idx != 0) 3995 // For structs, we GEP to the field that the record layout suggests. 3996 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 3997 } else { 3998 const RecordDecl *rec = field->getParent(); 3999 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4000 getContext().getRecordType(rec), rec->getLocation()); 4001 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4002 getDebugInfoFIndex(rec, field->getFieldIndex()), 4003 DbgInfo); 4004 } 4005 4006 // Get the access type. 4007 llvm::Type *FieldIntTy = 4008 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4009 if (Addr.getElementType() != FieldIntTy) 4010 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4011 4012 QualType fieldType = 4013 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4014 // TODO: Support TBAA for bit fields. 4015 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4016 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4017 TBAAAccessInfo()); 4018 } 4019 4020 // Fields of may-alias structures are may-alias themselves. 4021 // FIXME: this should get propagated down through anonymous structs 4022 // and unions. 4023 QualType FieldType = field->getType(); 4024 const RecordDecl *rec = field->getParent(); 4025 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4026 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4027 TBAAAccessInfo FieldTBAAInfo; 4028 if (base.getTBAAInfo().isMayAlias() || 4029 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4030 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4031 } else if (rec->isUnion()) { 4032 // TODO: Support TBAA for unions. 4033 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4034 } else { 4035 // If no base type been assigned for the base access, then try to generate 4036 // one for this base lvalue. 4037 FieldTBAAInfo = base.getTBAAInfo(); 4038 if (!FieldTBAAInfo.BaseType) { 4039 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4040 assert(!FieldTBAAInfo.Offset && 4041 "Nonzero offset for an access with no base type!"); 4042 } 4043 4044 // Adjust offset to be relative to the base type. 4045 const ASTRecordLayout &Layout = 4046 getContext().getASTRecordLayout(field->getParent()); 4047 unsigned CharWidth = getContext().getCharWidth(); 4048 if (FieldTBAAInfo.BaseType) 4049 FieldTBAAInfo.Offset += 4050 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4051 4052 // Update the final access type and size. 4053 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4054 FieldTBAAInfo.Size = 4055 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4056 } 4057 4058 Address addr = base.getAddress(); 4059 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4060 if (CGM.getCodeGenOpts().StrictVTablePointers && 4061 ClassDef->isDynamicClass()) { 4062 // Getting to any field of dynamic object requires stripping dynamic 4063 // information provided by invariant.group. This is because accessing 4064 // fields may leak the real address of dynamic object, which could result 4065 // in miscompilation when leaked pointer would be compared. 4066 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4067 addr = Address(stripped, addr.getAlignment()); 4068 } 4069 } 4070 4071 unsigned RecordCVR = base.getVRQualifiers(); 4072 if (rec->isUnion()) { 4073 // For unions, there is no pointer adjustment. 4074 if (CGM.getCodeGenOpts().StrictVTablePointers && 4075 hasAnyVptr(FieldType, getContext())) 4076 // Because unions can easily skip invariant.barriers, we need to add 4077 // a barrier every time CXXRecord field with vptr is referenced. 4078 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4079 addr.getAlignment()); 4080 4081 if (IsInPreservedAIRegion) { 4082 // Remember the original union field index 4083 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4084 getContext().getRecordType(rec), rec->getLocation()); 4085 addr = Address( 4086 Builder.CreatePreserveUnionAccessIndex( 4087 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4088 addr.getAlignment()); 4089 } 4090 4091 if (FieldType->isReferenceType()) 4092 addr = Builder.CreateElementBitCast( 4093 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4094 } else { 4095 if (!IsInPreservedAIRegion) 4096 // For structs, we GEP to the field that the record layout suggests. 4097 addr = emitAddrOfFieldStorage(*this, addr, field); 4098 else 4099 // Remember the original struct field index 4100 addr = emitPreserveStructAccess(*this, addr, field); 4101 } 4102 4103 // If this is a reference field, load the reference right now. 4104 if (FieldType->isReferenceType()) { 4105 LValue RefLVal = 4106 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4107 if (RecordCVR & Qualifiers::Volatile) 4108 RefLVal.getQuals().addVolatile(); 4109 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4110 4111 // Qualifiers on the struct don't apply to the referencee. 4112 RecordCVR = 0; 4113 FieldType = FieldType->getPointeeType(); 4114 } 4115 4116 // Make sure that the address is pointing to the right type. This is critical 4117 // for both unions and structs. A union needs a bitcast, a struct element 4118 // will need a bitcast if the LLVM type laid out doesn't match the desired 4119 // type. 4120 addr = Builder.CreateElementBitCast( 4121 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4122 4123 if (field->hasAttr<AnnotateAttr>()) 4124 addr = EmitFieldAnnotations(field, addr); 4125 4126 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4127 LV.getQuals().addCVRQualifiers(RecordCVR); 4128 4129 // __weak attribute on a field is ignored. 4130 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4131 LV.getQuals().removeObjCGCAttr(); 4132 4133 return LV; 4134 } 4135 4136 LValue 4137 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4138 const FieldDecl *Field) { 4139 QualType FieldType = Field->getType(); 4140 4141 if (!FieldType->isReferenceType()) 4142 return EmitLValueForField(Base, Field); 4143 4144 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 4145 4146 // Make sure that the address is pointing to the right type. 4147 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4148 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4149 4150 // TODO: Generate TBAA information that describes this access as a structure 4151 // member access and not just an access to an object of the field's type. This 4152 // should be similar to what we do in EmitLValueForField(). 4153 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4154 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4155 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4156 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4157 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4158 } 4159 4160 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4161 if (E->isFileScope()) { 4162 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4163 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4164 } 4165 if (E->getType()->isVariablyModifiedType()) 4166 // make sure to emit the VLA size. 4167 EmitVariablyModifiedType(E->getType()); 4168 4169 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4170 const Expr *InitExpr = E->getInitializer(); 4171 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4172 4173 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4174 /*Init*/ true); 4175 4176 return Result; 4177 } 4178 4179 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4180 if (!E->isGLValue()) 4181 // Initializing an aggregate temporary in C++11: T{...}. 4182 return EmitAggExprToLValue(E); 4183 4184 // An lvalue initializer list must be initializing a reference. 4185 assert(E->isTransparent() && "non-transparent glvalue init list"); 4186 return EmitLValue(E->getInit(0)); 4187 } 4188 4189 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4190 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4191 /// LValue is returned and the current block has been terminated. 4192 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4193 const Expr *Operand) { 4194 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4195 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4196 return None; 4197 } 4198 4199 return CGF.EmitLValue(Operand); 4200 } 4201 4202 LValue CodeGenFunction:: 4203 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4204 if (!expr->isGLValue()) { 4205 // ?: here should be an aggregate. 4206 assert(hasAggregateEvaluationKind(expr->getType()) && 4207 "Unexpected conditional operator!"); 4208 return EmitAggExprToLValue(expr); 4209 } 4210 4211 OpaqueValueMapping binding(*this, expr); 4212 4213 const Expr *condExpr = expr->getCond(); 4214 bool CondExprBool; 4215 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4216 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4217 if (!CondExprBool) std::swap(live, dead); 4218 4219 if (!ContainsLabel(dead)) { 4220 // If the true case is live, we need to track its region. 4221 if (CondExprBool) 4222 incrementProfileCounter(expr); 4223 return EmitLValue(live); 4224 } 4225 } 4226 4227 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4228 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4229 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4230 4231 ConditionalEvaluation eval(*this); 4232 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4233 4234 // Any temporaries created here are conditional. 4235 EmitBlock(lhsBlock); 4236 incrementProfileCounter(expr); 4237 eval.begin(*this); 4238 Optional<LValue> lhs = 4239 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4240 eval.end(*this); 4241 4242 if (lhs && !lhs->isSimple()) 4243 return EmitUnsupportedLValue(expr, "conditional operator"); 4244 4245 lhsBlock = Builder.GetInsertBlock(); 4246 if (lhs) 4247 Builder.CreateBr(contBlock); 4248 4249 // Any temporaries created here are conditional. 4250 EmitBlock(rhsBlock); 4251 eval.begin(*this); 4252 Optional<LValue> rhs = 4253 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4254 eval.end(*this); 4255 if (rhs && !rhs->isSimple()) 4256 return EmitUnsupportedLValue(expr, "conditional operator"); 4257 rhsBlock = Builder.GetInsertBlock(); 4258 4259 EmitBlock(contBlock); 4260 4261 if (lhs && rhs) { 4262 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4263 2, "cond-lvalue"); 4264 phi->addIncoming(lhs->getPointer(), lhsBlock); 4265 phi->addIncoming(rhs->getPointer(), rhsBlock); 4266 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4267 AlignmentSource alignSource = 4268 std::max(lhs->getBaseInfo().getAlignmentSource(), 4269 rhs->getBaseInfo().getAlignmentSource()); 4270 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4271 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4272 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4273 TBAAInfo); 4274 } else { 4275 assert((lhs || rhs) && 4276 "both operands of glvalue conditional are throw-expressions?"); 4277 return lhs ? *lhs : *rhs; 4278 } 4279 } 4280 4281 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4282 /// type. If the cast is to a reference, we can have the usual lvalue result, 4283 /// otherwise if a cast is needed by the code generator in an lvalue context, 4284 /// then it must mean that we need the address of an aggregate in order to 4285 /// access one of its members. This can happen for all the reasons that casts 4286 /// are permitted with aggregate result, including noop aggregate casts, and 4287 /// cast from scalar to union. 4288 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4289 switch (E->getCastKind()) { 4290 case CK_ToVoid: 4291 case CK_BitCast: 4292 case CK_LValueToRValueBitCast: 4293 case CK_ArrayToPointerDecay: 4294 case CK_FunctionToPointerDecay: 4295 case CK_NullToMemberPointer: 4296 case CK_NullToPointer: 4297 case CK_IntegralToPointer: 4298 case CK_PointerToIntegral: 4299 case CK_PointerToBoolean: 4300 case CK_VectorSplat: 4301 case CK_IntegralCast: 4302 case CK_BooleanToSignedIntegral: 4303 case CK_IntegralToBoolean: 4304 case CK_IntegralToFloating: 4305 case CK_FloatingToIntegral: 4306 case CK_FloatingToBoolean: 4307 case CK_FloatingCast: 4308 case CK_FloatingRealToComplex: 4309 case CK_FloatingComplexToReal: 4310 case CK_FloatingComplexToBoolean: 4311 case CK_FloatingComplexCast: 4312 case CK_FloatingComplexToIntegralComplex: 4313 case CK_IntegralRealToComplex: 4314 case CK_IntegralComplexToReal: 4315 case CK_IntegralComplexToBoolean: 4316 case CK_IntegralComplexCast: 4317 case CK_IntegralComplexToFloatingComplex: 4318 case CK_DerivedToBaseMemberPointer: 4319 case CK_BaseToDerivedMemberPointer: 4320 case CK_MemberPointerToBoolean: 4321 case CK_ReinterpretMemberPointer: 4322 case CK_AnyPointerToBlockPointerCast: 4323 case CK_ARCProduceObject: 4324 case CK_ARCConsumeObject: 4325 case CK_ARCReclaimReturnedObject: 4326 case CK_ARCExtendBlockObject: 4327 case CK_CopyAndAutoreleaseBlockObject: 4328 case CK_IntToOCLSampler: 4329 case CK_FixedPointCast: 4330 case CK_FixedPointToBoolean: 4331 case CK_FixedPointToIntegral: 4332 case CK_IntegralToFixedPoint: 4333 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4334 4335 case CK_Dependent: 4336 llvm_unreachable("dependent cast kind in IR gen!"); 4337 4338 case CK_BuiltinFnToFnPtr: 4339 llvm_unreachable("builtin functions are handled elsewhere"); 4340 4341 // These are never l-values; just use the aggregate emission code. 4342 case CK_NonAtomicToAtomic: 4343 case CK_AtomicToNonAtomic: 4344 return EmitAggExprToLValue(E); 4345 4346 case CK_Dynamic: { 4347 LValue LV = EmitLValue(E->getSubExpr()); 4348 Address V = LV.getAddress(); 4349 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4350 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4351 } 4352 4353 case CK_ConstructorConversion: 4354 case CK_UserDefinedConversion: 4355 case CK_CPointerToObjCPointerCast: 4356 case CK_BlockPointerToObjCPointerCast: 4357 case CK_NoOp: 4358 case CK_LValueToRValue: 4359 return EmitLValue(E->getSubExpr()); 4360 4361 case CK_UncheckedDerivedToBase: 4362 case CK_DerivedToBase: { 4363 const RecordType *DerivedClassTy = 4364 E->getSubExpr()->getType()->getAs<RecordType>(); 4365 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4366 4367 LValue LV = EmitLValue(E->getSubExpr()); 4368 Address This = LV.getAddress(); 4369 4370 // Perform the derived-to-base conversion 4371 Address Base = GetAddressOfBaseClass( 4372 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4373 /*NullCheckValue=*/false, E->getExprLoc()); 4374 4375 // TODO: Support accesses to members of base classes in TBAA. For now, we 4376 // conservatively pretend that the complete object is of the base class 4377 // type. 4378 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4379 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4380 } 4381 case CK_ToUnion: 4382 return EmitAggExprToLValue(E); 4383 case CK_BaseToDerived: { 4384 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4385 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4386 4387 LValue LV = EmitLValue(E->getSubExpr()); 4388 4389 // Perform the base-to-derived conversion 4390 Address Derived = 4391 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4392 E->path_begin(), E->path_end(), 4393 /*NullCheckValue=*/false); 4394 4395 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4396 // performed and the object is not of the derived type. 4397 if (sanitizePerformTypeCheck()) 4398 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4399 Derived.getPointer(), E->getType()); 4400 4401 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4402 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4403 /*MayBeNull=*/false, CFITCK_DerivedCast, 4404 E->getBeginLoc()); 4405 4406 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4407 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4408 } 4409 case CK_LValueBitCast: { 4410 // This must be a reinterpret_cast (or c-style equivalent). 4411 const auto *CE = cast<ExplicitCastExpr>(E); 4412 4413 CGM.EmitExplicitCastExprType(CE, this); 4414 LValue LV = EmitLValue(E->getSubExpr()); 4415 Address V = Builder.CreateBitCast(LV.getAddress(), 4416 ConvertType(CE->getTypeAsWritten())); 4417 4418 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4419 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4420 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4421 E->getBeginLoc()); 4422 4423 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4424 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4425 } 4426 case CK_AddressSpaceConversion: { 4427 LValue LV = EmitLValue(E->getSubExpr()); 4428 QualType DestTy = getContext().getPointerType(E->getType()); 4429 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4430 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4431 E->getType().getAddressSpace(), ConvertType(DestTy)); 4432 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), 4433 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4434 } 4435 case CK_ObjCObjectLValueCast: { 4436 LValue LV = EmitLValue(E->getSubExpr()); 4437 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4438 ConvertType(E->getType())); 4439 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4440 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4441 } 4442 case CK_ZeroToOCLOpaqueType: 4443 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4444 } 4445 4446 llvm_unreachable("Unhandled lvalue cast kind?"); 4447 } 4448 4449 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4450 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4451 return getOrCreateOpaqueLValueMapping(e); 4452 } 4453 4454 LValue 4455 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4456 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4457 4458 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4459 it = OpaqueLValues.find(e); 4460 4461 if (it != OpaqueLValues.end()) 4462 return it->second; 4463 4464 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4465 return EmitLValue(e->getSourceExpr()); 4466 } 4467 4468 RValue 4469 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4470 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4471 4472 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4473 it = OpaqueRValues.find(e); 4474 4475 if (it != OpaqueRValues.end()) 4476 return it->second; 4477 4478 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4479 return EmitAnyExpr(e->getSourceExpr()); 4480 } 4481 4482 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4483 const FieldDecl *FD, 4484 SourceLocation Loc) { 4485 QualType FT = FD->getType(); 4486 LValue FieldLV = EmitLValueForField(LV, FD); 4487 switch (getEvaluationKind(FT)) { 4488 case TEK_Complex: 4489 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4490 case TEK_Aggregate: 4491 return FieldLV.asAggregateRValue(); 4492 case TEK_Scalar: 4493 // This routine is used to load fields one-by-one to perform a copy, so 4494 // don't load reference fields. 4495 if (FD->getType()->isReferenceType()) 4496 return RValue::get(FieldLV.getPointer()); 4497 return EmitLoadOfLValue(FieldLV, Loc); 4498 } 4499 llvm_unreachable("bad evaluation kind"); 4500 } 4501 4502 //===--------------------------------------------------------------------===// 4503 // Expression Emission 4504 //===--------------------------------------------------------------------===// 4505 4506 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4507 ReturnValueSlot ReturnValue) { 4508 // Builtins never have block type. 4509 if (E->getCallee()->getType()->isBlockPointerType()) 4510 return EmitBlockCallExpr(E, ReturnValue); 4511 4512 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4513 return EmitCXXMemberCallExpr(CE, ReturnValue); 4514 4515 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4516 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4517 4518 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4519 if (const CXXMethodDecl *MD = 4520 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4521 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4522 4523 CGCallee callee = EmitCallee(E->getCallee()); 4524 4525 if (callee.isBuiltin()) { 4526 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4527 E, ReturnValue); 4528 } 4529 4530 if (callee.isPseudoDestructor()) { 4531 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4532 } 4533 4534 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4535 } 4536 4537 /// Emit a CallExpr without considering whether it might be a subclass. 4538 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4539 ReturnValueSlot ReturnValue) { 4540 CGCallee Callee = EmitCallee(E->getCallee()); 4541 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4542 } 4543 4544 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4545 if (auto builtinID = FD->getBuiltinID()) { 4546 return CGCallee::forBuiltin(builtinID, FD); 4547 } 4548 4549 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4550 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4551 } 4552 4553 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4554 E = E->IgnoreParens(); 4555 4556 // Look through function-to-pointer decay. 4557 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4558 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4559 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4560 return EmitCallee(ICE->getSubExpr()); 4561 } 4562 4563 // Resolve direct calls. 4564 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4565 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4566 return EmitDirectCallee(*this, FD); 4567 } 4568 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4569 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4570 EmitIgnoredExpr(ME->getBase()); 4571 return EmitDirectCallee(*this, FD); 4572 } 4573 4574 // Look through template substitutions. 4575 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4576 return EmitCallee(NTTP->getReplacement()); 4577 4578 // Treat pseudo-destructor calls differently. 4579 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4580 return CGCallee::forPseudoDestructor(PDE); 4581 } 4582 4583 // Otherwise, we have an indirect reference. 4584 llvm::Value *calleePtr; 4585 QualType functionType; 4586 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4587 calleePtr = EmitScalarExpr(E); 4588 functionType = ptrType->getPointeeType(); 4589 } else { 4590 functionType = E->getType(); 4591 calleePtr = EmitLValue(E).getPointer(); 4592 } 4593 assert(functionType->isFunctionType()); 4594 4595 GlobalDecl GD; 4596 if (const auto *VD = 4597 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4598 GD = GlobalDecl(VD); 4599 4600 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4601 CGCallee callee(calleeInfo, calleePtr); 4602 return callee; 4603 } 4604 4605 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4606 // Comma expressions just emit their LHS then their RHS as an l-value. 4607 if (E->getOpcode() == BO_Comma) { 4608 EmitIgnoredExpr(E->getLHS()); 4609 EnsureInsertPoint(); 4610 return EmitLValue(E->getRHS()); 4611 } 4612 4613 if (E->getOpcode() == BO_PtrMemD || 4614 E->getOpcode() == BO_PtrMemI) 4615 return EmitPointerToDataMemberBinaryExpr(E); 4616 4617 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4618 4619 // Note that in all of these cases, __block variables need the RHS 4620 // evaluated first just in case the variable gets moved by the RHS. 4621 4622 switch (getEvaluationKind(E->getType())) { 4623 case TEK_Scalar: { 4624 switch (E->getLHS()->getType().getObjCLifetime()) { 4625 case Qualifiers::OCL_Strong: 4626 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4627 4628 case Qualifiers::OCL_Autoreleasing: 4629 return EmitARCStoreAutoreleasing(E).first; 4630 4631 // No reason to do any of these differently. 4632 case Qualifiers::OCL_None: 4633 case Qualifiers::OCL_ExplicitNone: 4634 case Qualifiers::OCL_Weak: 4635 break; 4636 } 4637 4638 RValue RV = EmitAnyExpr(E->getRHS()); 4639 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4640 if (RV.isScalar()) 4641 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4642 EmitStoreThroughLValue(RV, LV); 4643 return LV; 4644 } 4645 4646 case TEK_Complex: 4647 return EmitComplexAssignmentLValue(E); 4648 4649 case TEK_Aggregate: 4650 return EmitAggExprToLValue(E); 4651 } 4652 llvm_unreachable("bad evaluation kind"); 4653 } 4654 4655 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4656 RValue RV = EmitCallExpr(E); 4657 4658 if (!RV.isScalar()) 4659 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4660 AlignmentSource::Decl); 4661 4662 assert(E->getCallReturnType(getContext())->isReferenceType() && 4663 "Can't have a scalar return unless the return type is a " 4664 "reference type!"); 4665 4666 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4667 } 4668 4669 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4670 // FIXME: This shouldn't require another copy. 4671 return EmitAggExprToLValue(E); 4672 } 4673 4674 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4675 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4676 && "binding l-value to type which needs a temporary"); 4677 AggValueSlot Slot = CreateAggTemp(E->getType()); 4678 EmitCXXConstructExpr(E, Slot); 4679 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4680 } 4681 4682 LValue 4683 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4684 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4685 } 4686 4687 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4688 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4689 ConvertType(E->getType())); 4690 } 4691 4692 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4693 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4694 AlignmentSource::Decl); 4695 } 4696 4697 LValue 4698 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4699 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4700 Slot.setExternallyDestructed(); 4701 EmitAggExpr(E->getSubExpr(), Slot); 4702 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4703 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4704 } 4705 4706 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4707 RValue RV = EmitObjCMessageExpr(E); 4708 4709 if (!RV.isScalar()) 4710 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4711 AlignmentSource::Decl); 4712 4713 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4714 "Can't have a scalar return unless the return type is a " 4715 "reference type!"); 4716 4717 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4718 } 4719 4720 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4721 Address V = 4722 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4723 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4724 } 4725 4726 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4727 const ObjCIvarDecl *Ivar) { 4728 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4729 } 4730 4731 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4732 llvm::Value *BaseValue, 4733 const ObjCIvarDecl *Ivar, 4734 unsigned CVRQualifiers) { 4735 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4736 Ivar, CVRQualifiers); 4737 } 4738 4739 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4740 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4741 llvm::Value *BaseValue = nullptr; 4742 const Expr *BaseExpr = E->getBase(); 4743 Qualifiers BaseQuals; 4744 QualType ObjectTy; 4745 if (E->isArrow()) { 4746 BaseValue = EmitScalarExpr(BaseExpr); 4747 ObjectTy = BaseExpr->getType()->getPointeeType(); 4748 BaseQuals = ObjectTy.getQualifiers(); 4749 } else { 4750 LValue BaseLV = EmitLValue(BaseExpr); 4751 BaseValue = BaseLV.getPointer(); 4752 ObjectTy = BaseExpr->getType(); 4753 BaseQuals = ObjectTy.getQualifiers(); 4754 } 4755 4756 LValue LV = 4757 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4758 BaseQuals.getCVRQualifiers()); 4759 setObjCGCLValueClass(getContext(), E, LV); 4760 return LV; 4761 } 4762 4763 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4764 // Can only get l-value for message expression returning aggregate type 4765 RValue RV = EmitAnyExprToTemp(E); 4766 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4767 AlignmentSource::Decl); 4768 } 4769 4770 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4771 const CallExpr *E, ReturnValueSlot ReturnValue, 4772 llvm::Value *Chain) { 4773 // Get the actual function type. The callee type will always be a pointer to 4774 // function type or a block pointer type. 4775 assert(CalleeType->isFunctionPointerType() && 4776 "Call must have function pointer type!"); 4777 4778 const Decl *TargetDecl = 4779 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4780 4781 CalleeType = getContext().getCanonicalType(CalleeType); 4782 4783 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4784 4785 CGCallee Callee = OrigCallee; 4786 4787 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4788 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4789 if (llvm::Constant *PrefixSig = 4790 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4791 SanitizerScope SanScope(this); 4792 // Remove any (C++17) exception specifications, to allow calling e.g. a 4793 // noexcept function through a non-noexcept pointer. 4794 auto ProtoTy = 4795 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4796 llvm::Constant *FTRTTIConst = 4797 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4798 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4799 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4800 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4801 4802 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4803 4804 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4805 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4806 llvm::Value *CalleeSigPtr = 4807 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4808 llvm::Value *CalleeSig = 4809 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4810 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4811 4812 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4813 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4814 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4815 4816 EmitBlock(TypeCheck); 4817 llvm::Value *CalleeRTTIPtr = 4818 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4819 llvm::Value *CalleeRTTIEncoded = 4820 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4821 llvm::Value *CalleeRTTI = 4822 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4823 llvm::Value *CalleeRTTIMatch = 4824 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4825 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4826 EmitCheckTypeDescriptor(CalleeType)}; 4827 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4828 SanitizerHandler::FunctionTypeMismatch, StaticData, 4829 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4830 4831 Builder.CreateBr(Cont); 4832 EmitBlock(Cont); 4833 } 4834 } 4835 4836 const auto *FnType = cast<FunctionType>(PointeeType); 4837 4838 // If we are checking indirect calls and this call is indirect, check that the 4839 // function pointer is a member of the bit set for the function type. 4840 if (SanOpts.has(SanitizerKind::CFIICall) && 4841 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4842 SanitizerScope SanScope(this); 4843 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4844 4845 llvm::Metadata *MD; 4846 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4847 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4848 else 4849 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4850 4851 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4852 4853 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4854 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4855 llvm::Value *TypeTest = Builder.CreateCall( 4856 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4857 4858 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4859 llvm::Constant *StaticData[] = { 4860 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4861 EmitCheckSourceLocation(E->getBeginLoc()), 4862 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4863 }; 4864 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4865 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4866 CastedCallee, StaticData); 4867 } else { 4868 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4869 SanitizerHandler::CFICheckFail, StaticData, 4870 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4871 } 4872 } 4873 4874 CallArgList Args; 4875 if (Chain) 4876 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4877 CGM.getContext().VoidPtrTy); 4878 4879 // C++17 requires that we evaluate arguments to a call using assignment syntax 4880 // right-to-left, and that we evaluate arguments to certain other operators 4881 // left-to-right. Note that we allow this to override the order dictated by 4882 // the calling convention on the MS ABI, which means that parameter 4883 // destruction order is not necessarily reverse construction order. 4884 // FIXME: Revisit this based on C++ committee response to unimplementability. 4885 EvaluationOrder Order = EvaluationOrder::Default; 4886 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4887 if (OCE->isAssignmentOp()) 4888 Order = EvaluationOrder::ForceRightToLeft; 4889 else { 4890 switch (OCE->getOperator()) { 4891 case OO_LessLess: 4892 case OO_GreaterGreater: 4893 case OO_AmpAmp: 4894 case OO_PipePipe: 4895 case OO_Comma: 4896 case OO_ArrowStar: 4897 Order = EvaluationOrder::ForceLeftToRight; 4898 break; 4899 default: 4900 break; 4901 } 4902 } 4903 } 4904 4905 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4906 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4907 4908 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4909 Args, FnType, /*ChainCall=*/Chain); 4910 4911 // C99 6.5.2.2p6: 4912 // If the expression that denotes the called function has a type 4913 // that does not include a prototype, [the default argument 4914 // promotions are performed]. If the number of arguments does not 4915 // equal the number of parameters, the behavior is undefined. If 4916 // the function is defined with a type that includes a prototype, 4917 // and either the prototype ends with an ellipsis (, ...) or the 4918 // types of the arguments after promotion are not compatible with 4919 // the types of the parameters, the behavior is undefined. If the 4920 // function is defined with a type that does not include a 4921 // prototype, and the types of the arguments after promotion are 4922 // not compatible with those of the parameters after promotion, 4923 // the behavior is undefined [except in some trivial cases]. 4924 // That is, in the general case, we should assume that a call 4925 // through an unprototyped function type works like a *non-variadic* 4926 // call. The way we make this work is to cast to the exact type 4927 // of the promoted arguments. 4928 // 4929 // Chain calls use this same code path to add the invisible chain parameter 4930 // to the function type. 4931 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4932 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4933 CalleeTy = CalleeTy->getPointerTo(); 4934 4935 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4936 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4937 Callee.setFunctionPointer(CalleePtr); 4938 } 4939 4940 llvm::CallBase *CallOrInvoke = nullptr; 4941 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 4942 E->getExprLoc()); 4943 4944 // Generate function declaration DISuprogram in order to be used 4945 // in debug info about call sites. 4946 if (CGDebugInfo *DI = getDebugInfo()) { 4947 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4948 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 4949 CalleeDecl); 4950 } 4951 4952 return Call; 4953 } 4954 4955 LValue CodeGenFunction:: 4956 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4957 Address BaseAddr = Address::invalid(); 4958 if (E->getOpcode() == BO_PtrMemI) { 4959 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4960 } else { 4961 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4962 } 4963 4964 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4965 4966 const MemberPointerType *MPT 4967 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4968 4969 LValueBaseInfo BaseInfo; 4970 TBAAAccessInfo TBAAInfo; 4971 Address MemberAddr = 4972 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4973 &TBAAInfo); 4974 4975 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4976 } 4977 4978 /// Given the address of a temporary variable, produce an r-value of 4979 /// its type. 4980 RValue CodeGenFunction::convertTempToRValue(Address addr, 4981 QualType type, 4982 SourceLocation loc) { 4983 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4984 switch (getEvaluationKind(type)) { 4985 case TEK_Complex: 4986 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4987 case TEK_Aggregate: 4988 return lvalue.asAggregateRValue(); 4989 case TEK_Scalar: 4990 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4991 } 4992 llvm_unreachable("bad evaluation kind"); 4993 } 4994 4995 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4996 assert(Val->getType()->isFPOrFPVectorTy()); 4997 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4998 return; 4999 5000 llvm::MDBuilder MDHelper(getLLVMContext()); 5001 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5002 5003 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5004 } 5005 5006 namespace { 5007 struct LValueOrRValue { 5008 LValue LV; 5009 RValue RV; 5010 }; 5011 } 5012 5013 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5014 const PseudoObjectExpr *E, 5015 bool forLValue, 5016 AggValueSlot slot) { 5017 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5018 5019 // Find the result expression, if any. 5020 const Expr *resultExpr = E->getResultExpr(); 5021 LValueOrRValue result; 5022 5023 for (PseudoObjectExpr::const_semantics_iterator 5024 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5025 const Expr *semantic = *i; 5026 5027 // If this semantic expression is an opaque value, bind it 5028 // to the result of its source expression. 5029 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5030 // Skip unique OVEs. 5031 if (ov->isUnique()) { 5032 assert(ov != resultExpr && 5033 "A unique OVE cannot be used as the result expression"); 5034 continue; 5035 } 5036 5037 // If this is the result expression, we may need to evaluate 5038 // directly into the slot. 5039 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5040 OVMA opaqueData; 5041 if (ov == resultExpr && ov->isRValue() && !forLValue && 5042 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5043 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5044 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5045 AlignmentSource::Decl); 5046 opaqueData = OVMA::bind(CGF, ov, LV); 5047 result.RV = slot.asRValue(); 5048 5049 // Otherwise, emit as normal. 5050 } else { 5051 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5052 5053 // If this is the result, also evaluate the result now. 5054 if (ov == resultExpr) { 5055 if (forLValue) 5056 result.LV = CGF.EmitLValue(ov); 5057 else 5058 result.RV = CGF.EmitAnyExpr(ov, slot); 5059 } 5060 } 5061 5062 opaques.push_back(opaqueData); 5063 5064 // Otherwise, if the expression is the result, evaluate it 5065 // and remember the result. 5066 } else if (semantic == resultExpr) { 5067 if (forLValue) 5068 result.LV = CGF.EmitLValue(semantic); 5069 else 5070 result.RV = CGF.EmitAnyExpr(semantic, slot); 5071 5072 // Otherwise, evaluate the expression in an ignored context. 5073 } else { 5074 CGF.EmitIgnoredExpr(semantic); 5075 } 5076 } 5077 5078 // Unbind all the opaques now. 5079 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5080 opaques[i].unbind(CGF); 5081 5082 return result; 5083 } 5084 5085 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5086 AggValueSlot slot) { 5087 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5088 } 5089 5090 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5091 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5092 } 5093