1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   assert(isa<llvm::AllocaInst>(Var.getPointer()));
129   auto *Store = new llvm::StoreInst(Init, Var.getPointer(), /*volatile*/ false,
130                                     Var.getAlignment().getAsAlign());
131   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
132   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
133 }
134 
135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
136   CharUnits Align = getContext().getTypeAlignInChars(Ty);
137   return CreateTempAlloca(ConvertType(Ty), Align, Name);
138 }
139 
140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
141                                        Address *Alloca) {
142   // FIXME: Should we prefer the preferred type alignment here?
143   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
144 }
145 
146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
147                                        const Twine &Name, Address *Alloca) {
148   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
149                                     /*ArraySize=*/nullptr, Alloca);
150 
151   if (Ty->isConstantMatrixType()) {
152     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
153     auto *VectorTy = llvm::VectorType::get(ArrayTy->getElementType(),
154                                            ArrayTy->getNumElements());
155 
156     Result = Address(
157         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
158         Result.getAlignment());
159   }
160   return Result;
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
164                                                   const Twine &Name) {
165   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
166 }
167 
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
169                                                   const Twine &Name) {
170   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
171                                   Name);
172 }
173 
174 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
175 /// expression and compare the result against zero, returning an Int1Ty value.
176 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
177   PGO.setCurrentStmt(E);
178   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
179     llvm::Value *MemPtr = EmitScalarExpr(E);
180     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
181   }
182 
183   QualType BoolTy = getContext().BoolTy;
184   SourceLocation Loc = E->getExprLoc();
185   if (!E->getType()->isAnyComplexType())
186     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
187 
188   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
189                                        Loc);
190 }
191 
192 /// EmitIgnoredExpr - Emit code to compute the specified expression,
193 /// ignoring the result.
194 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
195   if (E->isRValue())
196     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
197 
198   // Just emit it as an l-value and drop the result.
199   EmitLValue(E);
200 }
201 
202 /// EmitAnyExpr - Emit code to compute the specified expression which
203 /// can have any type.  The result is returned as an RValue struct.
204 /// If this is an aggregate expression, AggSlot indicates where the
205 /// result should be returned.
206 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
207                                     AggValueSlot aggSlot,
208                                     bool ignoreResult) {
209   switch (getEvaluationKind(E->getType())) {
210   case TEK_Scalar:
211     return RValue::get(EmitScalarExpr(E, ignoreResult));
212   case TEK_Complex:
213     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
214   case TEK_Aggregate:
215     if (!ignoreResult && aggSlot.isIgnored())
216       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
217     EmitAggExpr(E, aggSlot);
218     return aggSlot.asRValue();
219   }
220   llvm_unreachable("bad evaluation kind");
221 }
222 
223 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
224 /// always be accessible even if no aggregate location is provided.
225 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
226   AggValueSlot AggSlot = AggValueSlot::ignored();
227 
228   if (hasAggregateEvaluationKind(E->getType()))
229     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
230   return EmitAnyExpr(E, AggSlot);
231 }
232 
233 /// EmitAnyExprToMem - Evaluate an expression into a given memory
234 /// location.
235 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
236                                        Address Location,
237                                        Qualifiers Quals,
238                                        bool IsInit) {
239   // FIXME: This function should take an LValue as an argument.
240   switch (getEvaluationKind(E->getType())) {
241   case TEK_Complex:
242     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
243                               /*isInit*/ false);
244     return;
245 
246   case TEK_Aggregate: {
247     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
248                                          AggValueSlot::IsDestructed_t(IsInit),
249                                          AggValueSlot::DoesNotNeedGCBarriers,
250                                          AggValueSlot::IsAliased_t(!IsInit),
251                                          AggValueSlot::MayOverlap));
252     return;
253   }
254 
255   case TEK_Scalar: {
256     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
257     LValue LV = MakeAddrLValue(Location, E->getType());
258     EmitStoreThroughLValue(RV, LV);
259     return;
260   }
261   }
262   llvm_unreachable("bad evaluation kind");
263 }
264 
265 static void
266 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
267                      const Expr *E, Address ReferenceTemporary) {
268   // Objective-C++ ARC:
269   //   If we are binding a reference to a temporary that has ownership, we
270   //   need to perform retain/release operations on the temporary.
271   //
272   // FIXME: This should be looking at E, not M.
273   if (auto Lifetime = M->getType().getObjCLifetime()) {
274     switch (Lifetime) {
275     case Qualifiers::OCL_None:
276     case Qualifiers::OCL_ExplicitNone:
277       // Carry on to normal cleanup handling.
278       break;
279 
280     case Qualifiers::OCL_Autoreleasing:
281       // Nothing to do; cleaned up by an autorelease pool.
282       return;
283 
284     case Qualifiers::OCL_Strong:
285     case Qualifiers::OCL_Weak:
286       switch (StorageDuration Duration = M->getStorageDuration()) {
287       case SD_Static:
288         // Note: we intentionally do not register a cleanup to release
289         // the object on program termination.
290         return;
291 
292       case SD_Thread:
293         // FIXME: We should probably register a cleanup in this case.
294         return;
295 
296       case SD_Automatic:
297       case SD_FullExpression:
298         CodeGenFunction::Destroyer *Destroy;
299         CleanupKind CleanupKind;
300         if (Lifetime == Qualifiers::OCL_Strong) {
301           const ValueDecl *VD = M->getExtendingDecl();
302           bool Precise =
303               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
304           CleanupKind = CGF.getARCCleanupKind();
305           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
306                             : &CodeGenFunction::destroyARCStrongImprecise;
307         } else {
308           // __weak objects always get EH cleanups; otherwise, exceptions
309           // could cause really nasty crashes instead of mere leaks.
310           CleanupKind = NormalAndEHCleanup;
311           Destroy = &CodeGenFunction::destroyARCWeak;
312         }
313         if (Duration == SD_FullExpression)
314           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
315                           M->getType(), *Destroy,
316                           CleanupKind & EHCleanup);
317         else
318           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
319                                           M->getType(),
320                                           *Destroy, CleanupKind & EHCleanup);
321         return;
322 
323       case SD_Dynamic:
324         llvm_unreachable("temporary cannot have dynamic storage duration");
325       }
326       llvm_unreachable("unknown storage duration");
327     }
328   }
329 
330   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
331   if (const RecordType *RT =
332           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
333     // Get the destructor for the reference temporary.
334     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
335     if (!ClassDecl->hasTrivialDestructor())
336       ReferenceTemporaryDtor = ClassDecl->getDestructor();
337   }
338 
339   if (!ReferenceTemporaryDtor)
340     return;
341 
342   // Call the destructor for the temporary.
343   switch (M->getStorageDuration()) {
344   case SD_Static:
345   case SD_Thread: {
346     llvm::FunctionCallee CleanupFn;
347     llvm::Constant *CleanupArg;
348     if (E->getType()->isArrayType()) {
349       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
350           ReferenceTemporary, E->getType(),
351           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
352           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
353       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
354     } else {
355       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
356           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
357       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
358     }
359     CGF.CGM.getCXXABI().registerGlobalDtor(
360         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
361     break;
362   }
363 
364   case SD_FullExpression:
365     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
366                     CodeGenFunction::destroyCXXObject,
367                     CGF.getLangOpts().Exceptions);
368     break;
369 
370   case SD_Automatic:
371     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
372                                     ReferenceTemporary, E->getType(),
373                                     CodeGenFunction::destroyCXXObject,
374                                     CGF.getLangOpts().Exceptions);
375     break;
376 
377   case SD_Dynamic:
378     llvm_unreachable("temporary cannot have dynamic storage duration");
379   }
380 }
381 
382 static Address createReferenceTemporary(CodeGenFunction &CGF,
383                                         const MaterializeTemporaryExpr *M,
384                                         const Expr *Inner,
385                                         Address *Alloca = nullptr) {
386   auto &TCG = CGF.getTargetHooks();
387   switch (M->getStorageDuration()) {
388   case SD_FullExpression:
389   case SD_Automatic: {
390     // If we have a constant temporary array or record try to promote it into a
391     // constant global under the same rules a normal constant would've been
392     // promoted. This is easier on the optimizer and generally emits fewer
393     // instructions.
394     QualType Ty = Inner->getType();
395     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
396         (Ty->isArrayType() || Ty->isRecordType()) &&
397         CGF.CGM.isTypeConstant(Ty, true))
398       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
399         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
400           auto AS = AddrSpace.getValue();
401           auto *GV = new llvm::GlobalVariable(
402               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
403               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
404               llvm::GlobalValue::NotThreadLocal,
405               CGF.getContext().getTargetAddressSpace(AS));
406           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
407           GV->setAlignment(alignment.getAsAlign());
408           llvm::Constant *C = GV;
409           if (AS != LangAS::Default)
410             C = TCG.performAddrSpaceCast(
411                 CGF.CGM, GV, AS, LangAS::Default,
412                 GV->getValueType()->getPointerTo(
413                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
414           // FIXME: Should we put the new global into a COMDAT?
415           return Address(C, alignment);
416         }
417       }
418     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
419   }
420   case SD_Thread:
421   case SD_Static:
422     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
423 
424   case SD_Dynamic:
425     llvm_unreachable("temporary can't have dynamic storage duration");
426   }
427   llvm_unreachable("unknown storage duration");
428 }
429 
430 /// Helper method to check if the underlying ABI is AAPCS
431 static bool isAAPCS(const TargetInfo &TargetInfo) {
432   return TargetInfo.getABI().startswith("aapcs");
433 }
434 
435 LValue CodeGenFunction::
436 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
437   const Expr *E = M->getSubExpr();
438 
439   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
440           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
441          "Reference should never be pseudo-strong!");
442 
443   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
444   // as that will cause the lifetime adjustment to be lost for ARC
445   auto ownership = M->getType().getObjCLifetime();
446   if (ownership != Qualifiers::OCL_None &&
447       ownership != Qualifiers::OCL_ExplicitNone) {
448     Address Object = createReferenceTemporary(*this, M, E);
449     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
450       Object = Address(llvm::ConstantExpr::getBitCast(Var,
451                            ConvertTypeForMem(E->getType())
452                              ->getPointerTo(Object.getAddressSpace())),
453                        Object.getAlignment());
454 
455       // createReferenceTemporary will promote the temporary to a global with a
456       // constant initializer if it can.  It can only do this to a value of
457       // ARC-manageable type if the value is global and therefore "immune" to
458       // ref-counting operations.  Therefore we have no need to emit either a
459       // dynamic initialization or a cleanup and we can just return the address
460       // of the temporary.
461       if (Var->hasInitializer())
462         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
463 
464       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
465     }
466     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
467                                        AlignmentSource::Decl);
468 
469     switch (getEvaluationKind(E->getType())) {
470     default: llvm_unreachable("expected scalar or aggregate expression");
471     case TEK_Scalar:
472       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
473       break;
474     case TEK_Aggregate: {
475       EmitAggExpr(E, AggValueSlot::forAddr(Object,
476                                            E->getType().getQualifiers(),
477                                            AggValueSlot::IsDestructed,
478                                            AggValueSlot::DoesNotNeedGCBarriers,
479                                            AggValueSlot::IsNotAliased,
480                                            AggValueSlot::DoesNotOverlap));
481       break;
482     }
483     }
484 
485     pushTemporaryCleanup(*this, M, E, Object);
486     return RefTempDst;
487   }
488 
489   SmallVector<const Expr *, 2> CommaLHSs;
490   SmallVector<SubobjectAdjustment, 2> Adjustments;
491   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
492 
493   for (const auto &Ignored : CommaLHSs)
494     EmitIgnoredExpr(Ignored);
495 
496   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
497     if (opaque->getType()->isRecordType()) {
498       assert(Adjustments.empty());
499       return EmitOpaqueValueLValue(opaque);
500     }
501   }
502 
503   // Create and initialize the reference temporary.
504   Address Alloca = Address::invalid();
505   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
506   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
507           Object.getPointer()->stripPointerCasts())) {
508     Object = Address(llvm::ConstantExpr::getBitCast(
509                          cast<llvm::Constant>(Object.getPointer()),
510                          ConvertTypeForMem(E->getType())->getPointerTo()),
511                      Object.getAlignment());
512     // If the temporary is a global and has a constant initializer or is a
513     // constant temporary that we promoted to a global, we may have already
514     // initialized it.
515     if (!Var->hasInitializer()) {
516       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
517       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
518     }
519   } else {
520     switch (M->getStorageDuration()) {
521     case SD_Automatic:
522       if (auto *Size = EmitLifetimeStart(
523               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
524               Alloca.getPointer())) {
525         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
526                                                   Alloca, Size);
527       }
528       break;
529 
530     case SD_FullExpression: {
531       if (!ShouldEmitLifetimeMarkers)
532         break;
533 
534       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
535       // marker. Instead, start the lifetime of a conditional temporary earlier
536       // so that it's unconditional. Don't do this with sanitizers which need
537       // more precise lifetime marks.
538       ConditionalEvaluation *OldConditional = nullptr;
539       CGBuilderTy::InsertPoint OldIP;
540       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
541           !SanOpts.has(SanitizerKind::HWAddress) &&
542           !SanOpts.has(SanitizerKind::Memory) &&
543           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
544         OldConditional = OutermostConditional;
545         OutermostConditional = nullptr;
546 
547         OldIP = Builder.saveIP();
548         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
549         Builder.restoreIP(CGBuilderTy::InsertPoint(
550             Block, llvm::BasicBlock::iterator(Block->back())));
551       }
552 
553       if (auto *Size = EmitLifetimeStart(
554               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
555               Alloca.getPointer())) {
556         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
557                                              Size);
558       }
559 
560       if (OldConditional) {
561         OutermostConditional = OldConditional;
562         Builder.restoreIP(OldIP);
563       }
564       break;
565     }
566 
567     default:
568       break;
569     }
570     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
571   }
572   pushTemporaryCleanup(*this, M, E, Object);
573 
574   // Perform derived-to-base casts and/or field accesses, to get from the
575   // temporary object we created (and, potentially, for which we extended
576   // the lifetime) to the subobject we're binding the reference to.
577   for (unsigned I = Adjustments.size(); I != 0; --I) {
578     SubobjectAdjustment &Adjustment = Adjustments[I-1];
579     switch (Adjustment.Kind) {
580     case SubobjectAdjustment::DerivedToBaseAdjustment:
581       Object =
582           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
583                                 Adjustment.DerivedToBase.BasePath->path_begin(),
584                                 Adjustment.DerivedToBase.BasePath->path_end(),
585                                 /*NullCheckValue=*/ false, E->getExprLoc());
586       break;
587 
588     case SubobjectAdjustment::FieldAdjustment: {
589       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
590       LV = EmitLValueForField(LV, Adjustment.Field);
591       assert(LV.isSimple() &&
592              "materialized temporary field is not a simple lvalue");
593       Object = LV.getAddress(*this);
594       break;
595     }
596 
597     case SubobjectAdjustment::MemberPointerAdjustment: {
598       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
599       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
600                                                Adjustment.Ptr.MPT);
601       break;
602     }
603     }
604   }
605 
606   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
607 }
608 
609 RValue
610 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
611   // Emit the expression as an lvalue.
612   LValue LV = EmitLValue(E);
613   assert(LV.isSimple());
614   llvm::Value *Value = LV.getPointer(*this);
615 
616   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
617     // C++11 [dcl.ref]p5 (as amended by core issue 453):
618     //   If a glvalue to which a reference is directly bound designates neither
619     //   an existing object or function of an appropriate type nor a region of
620     //   storage of suitable size and alignment to contain an object of the
621     //   reference's type, the behavior is undefined.
622     QualType Ty = E->getType();
623     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
624   }
625 
626   return RValue::get(Value);
627 }
628 
629 
630 /// getAccessedFieldNo - Given an encoded value and a result number, return the
631 /// input field number being accessed.
632 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
633                                              const llvm::Constant *Elts) {
634   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
635       ->getZExtValue();
636 }
637 
638 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
639 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
640                                     llvm::Value *High) {
641   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
642   llvm::Value *K47 = Builder.getInt64(47);
643   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
644   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
645   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
646   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
647   return Builder.CreateMul(B1, KMul);
648 }
649 
650 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
651   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
652          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
653 }
654 
655 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
656   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
657   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
658          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
659           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
660           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
661 }
662 
663 bool CodeGenFunction::sanitizePerformTypeCheck() const {
664   return SanOpts.has(SanitizerKind::Null) |
665          SanOpts.has(SanitizerKind::Alignment) |
666          SanOpts.has(SanitizerKind::ObjectSize) |
667          SanOpts.has(SanitizerKind::Vptr);
668 }
669 
670 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
671                                     llvm::Value *Ptr, QualType Ty,
672                                     CharUnits Alignment,
673                                     SanitizerSet SkippedChecks,
674                                     llvm::Value *ArraySize) {
675   if (!sanitizePerformTypeCheck())
676     return;
677 
678   // Don't check pointers outside the default address space. The null check
679   // isn't correct, the object-size check isn't supported by LLVM, and we can't
680   // communicate the addresses to the runtime handler for the vptr check.
681   if (Ptr->getType()->getPointerAddressSpace())
682     return;
683 
684   // Don't check pointers to volatile data. The behavior here is implementation-
685   // defined.
686   if (Ty.isVolatileQualified())
687     return;
688 
689   SanitizerScope SanScope(this);
690 
691   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
692   llvm::BasicBlock *Done = nullptr;
693 
694   // Quickly determine whether we have a pointer to an alloca. It's possible
695   // to skip null checks, and some alignment checks, for these pointers. This
696   // can reduce compile-time significantly.
697   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
698 
699   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
700   llvm::Value *IsNonNull = nullptr;
701   bool IsGuaranteedNonNull =
702       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
703   bool AllowNullPointers = isNullPointerAllowed(TCK);
704   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
705       !IsGuaranteedNonNull) {
706     // The glvalue must not be an empty glvalue.
707     IsNonNull = Builder.CreateIsNotNull(Ptr);
708 
709     // The IR builder can constant-fold the null check if the pointer points to
710     // a constant.
711     IsGuaranteedNonNull = IsNonNull == True;
712 
713     // Skip the null check if the pointer is known to be non-null.
714     if (!IsGuaranteedNonNull) {
715       if (AllowNullPointers) {
716         // When performing pointer casts, it's OK if the value is null.
717         // Skip the remaining checks in that case.
718         Done = createBasicBlock("null");
719         llvm::BasicBlock *Rest = createBasicBlock("not.null");
720         Builder.CreateCondBr(IsNonNull, Rest, Done);
721         EmitBlock(Rest);
722       } else {
723         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
724       }
725     }
726   }
727 
728   if (SanOpts.has(SanitizerKind::ObjectSize) &&
729       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
730       !Ty->isIncompleteType()) {
731     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
732     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
733     if (ArraySize)
734       Size = Builder.CreateMul(Size, ArraySize);
735 
736     // Degenerate case: new X[0] does not need an objectsize check.
737     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
738     if (!ConstantSize || !ConstantSize->isNullValue()) {
739       // The glvalue must refer to a large enough storage region.
740       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
741       //        to check this.
742       // FIXME: Get object address space
743       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
744       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
745       llvm::Value *Min = Builder.getFalse();
746       llvm::Value *NullIsUnknown = Builder.getFalse();
747       llvm::Value *Dynamic = Builder.getFalse();
748       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
749       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
750           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
751       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
752     }
753   }
754 
755   uint64_t AlignVal = 0;
756   llvm::Value *PtrAsInt = nullptr;
757 
758   if (SanOpts.has(SanitizerKind::Alignment) &&
759       !SkippedChecks.has(SanitizerKind::Alignment)) {
760     AlignVal = Alignment.getQuantity();
761     if (!Ty->isIncompleteType() && !AlignVal)
762       AlignVal =
763           getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true)
764               .getQuantity();
765 
766     // The glvalue must be suitably aligned.
767     if (AlignVal > 1 &&
768         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
769       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
770       llvm::Value *Align = Builder.CreateAnd(
771           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
772       llvm::Value *Aligned =
773           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
774       if (Aligned != True)
775         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
776     }
777   }
778 
779   if (Checks.size() > 0) {
780     // Make sure we're not losing information. Alignment needs to be a power of
781     // 2
782     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
783     llvm::Constant *StaticData[] = {
784         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
785         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
786         llvm::ConstantInt::get(Int8Ty, TCK)};
787     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
788               PtrAsInt ? PtrAsInt : Ptr);
789   }
790 
791   // If possible, check that the vptr indicates that there is a subobject of
792   // type Ty at offset zero within this object.
793   //
794   // C++11 [basic.life]p5,6:
795   //   [For storage which does not refer to an object within its lifetime]
796   //   The program has undefined behavior if:
797   //    -- the [pointer or glvalue] is used to access a non-static data member
798   //       or call a non-static member function
799   if (SanOpts.has(SanitizerKind::Vptr) &&
800       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
801     // Ensure that the pointer is non-null before loading it. If there is no
802     // compile-time guarantee, reuse the run-time null check or emit a new one.
803     if (!IsGuaranteedNonNull) {
804       if (!IsNonNull)
805         IsNonNull = Builder.CreateIsNotNull(Ptr);
806       if (!Done)
807         Done = createBasicBlock("vptr.null");
808       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
809       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
810       EmitBlock(VptrNotNull);
811     }
812 
813     // Compute a hash of the mangled name of the type.
814     //
815     // FIXME: This is not guaranteed to be deterministic! Move to a
816     //        fingerprinting mechanism once LLVM provides one. For the time
817     //        being the implementation happens to be deterministic.
818     SmallString<64> MangledName;
819     llvm::raw_svector_ostream Out(MangledName);
820     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
821                                                      Out);
822 
823     // Blacklist based on the mangled type.
824     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
825             SanitizerKind::Vptr, Out.str())) {
826       llvm::hash_code TypeHash = hash_value(Out.str());
827 
828       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
829       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
830       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
831       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
832       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
833       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
834 
835       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
836       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
837 
838       // Look the hash up in our cache.
839       const int CacheSize = 128;
840       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
841       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
842                                                      "__ubsan_vptr_type_cache");
843       llvm::Value *Slot = Builder.CreateAnd(Hash,
844                                             llvm::ConstantInt::get(IntPtrTy,
845                                                                    CacheSize-1));
846       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
847       llvm::Value *CacheVal =
848         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
849                                   getPointerAlign());
850 
851       // If the hash isn't in the cache, call a runtime handler to perform the
852       // hard work of checking whether the vptr is for an object of the right
853       // type. This will either fill in the cache and return, or produce a
854       // diagnostic.
855       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
856       llvm::Constant *StaticData[] = {
857         EmitCheckSourceLocation(Loc),
858         EmitCheckTypeDescriptor(Ty),
859         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
860         llvm::ConstantInt::get(Int8Ty, TCK)
861       };
862       llvm::Value *DynamicData[] = { Ptr, Hash };
863       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
864                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
865                 DynamicData);
866     }
867   }
868 
869   if (Done) {
870     Builder.CreateBr(Done);
871     EmitBlock(Done);
872   }
873 }
874 
875 /// Determine whether this expression refers to a flexible array member in a
876 /// struct. We disable array bounds checks for such members.
877 static bool isFlexibleArrayMemberExpr(const Expr *E) {
878   // For compatibility with existing code, we treat arrays of length 0 or
879   // 1 as flexible array members.
880   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
881   // the two mechanisms.
882   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
883   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
884     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
885     // was produced by macro expansion.
886     if (CAT->getSize().ugt(1))
887       return false;
888   } else if (!isa<IncompleteArrayType>(AT))
889     return false;
890 
891   E = E->IgnoreParens();
892 
893   // A flexible array member must be the last member in the class.
894   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
895     // FIXME: If the base type of the member expr is not FD->getParent(),
896     // this should not be treated as a flexible array member access.
897     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
898       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
899       // member, only a T[0] or T[] member gets that treatment.
900       if (FD->getParent()->isUnion())
901         return true;
902       RecordDecl::field_iterator FI(
903           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
904       return ++FI == FD->getParent()->field_end();
905     }
906   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
907     return IRE->getDecl()->getNextIvar() == nullptr;
908   }
909 
910   return false;
911 }
912 
913 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
914                                                    QualType EltTy) {
915   ASTContext &C = getContext();
916   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
917   if (!EltSize)
918     return nullptr;
919 
920   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
921   if (!ArrayDeclRef)
922     return nullptr;
923 
924   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
925   if (!ParamDecl)
926     return nullptr;
927 
928   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
929   if (!POSAttr)
930     return nullptr;
931 
932   // Don't load the size if it's a lower bound.
933   int POSType = POSAttr->getType();
934   if (POSType != 0 && POSType != 1)
935     return nullptr;
936 
937   // Find the implicit size parameter.
938   auto PassedSizeIt = SizeArguments.find(ParamDecl);
939   if (PassedSizeIt == SizeArguments.end())
940     return nullptr;
941 
942   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
943   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
944   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
945   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
946                                               C.getSizeType(), E->getExprLoc());
947   llvm::Value *SizeOfElement =
948       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
949   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
950 }
951 
952 /// If Base is known to point to the start of an array, return the length of
953 /// that array. Return 0 if the length cannot be determined.
954 static llvm::Value *getArrayIndexingBound(
955     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
956   // For the vector indexing extension, the bound is the number of elements.
957   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
958     IndexedType = Base->getType();
959     return CGF.Builder.getInt32(VT->getNumElements());
960   }
961 
962   Base = Base->IgnoreParens();
963 
964   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
965     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
966         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
967       IndexedType = CE->getSubExpr()->getType();
968       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
969       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
970         return CGF.Builder.getInt(CAT->getSize());
971       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
972         return CGF.getVLASize(VAT).NumElts;
973       // Ignore pass_object_size here. It's not applicable on decayed pointers.
974     }
975   }
976 
977   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
978   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
979     IndexedType = Base->getType();
980     return POS;
981   }
982 
983   return nullptr;
984 }
985 
986 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
987                                       llvm::Value *Index, QualType IndexType,
988                                       bool Accessed) {
989   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
990          "should not be called unless adding bounds checks");
991   SanitizerScope SanScope(this);
992 
993   QualType IndexedType;
994   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
995   if (!Bound)
996     return;
997 
998   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
999   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1000   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1001 
1002   llvm::Constant *StaticData[] = {
1003     EmitCheckSourceLocation(E->getExprLoc()),
1004     EmitCheckTypeDescriptor(IndexedType),
1005     EmitCheckTypeDescriptor(IndexType)
1006   };
1007   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1008                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1009   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1010             SanitizerHandler::OutOfBounds, StaticData, Index);
1011 }
1012 
1013 
1014 CodeGenFunction::ComplexPairTy CodeGenFunction::
1015 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1016                          bool isInc, bool isPre) {
1017   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1018 
1019   llvm::Value *NextVal;
1020   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1021     uint64_t AmountVal = isInc ? 1 : -1;
1022     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1023 
1024     // Add the inc/dec to the real part.
1025     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1026   } else {
1027     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1028     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1029     if (!isInc)
1030       FVal.changeSign();
1031     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1032 
1033     // Add the inc/dec to the real part.
1034     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1035   }
1036 
1037   ComplexPairTy IncVal(NextVal, InVal.second);
1038 
1039   // Store the updated result through the lvalue.
1040   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1041   if (getLangOpts().OpenMP)
1042     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1043                                                               E->getSubExpr());
1044 
1045   // If this is a postinc, return the value read from memory, otherwise use the
1046   // updated value.
1047   return isPre ? IncVal : InVal;
1048 }
1049 
1050 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1051                                              CodeGenFunction *CGF) {
1052   // Bind VLAs in the cast type.
1053   if (CGF && E->getType()->isVariablyModifiedType())
1054     CGF->EmitVariablyModifiedType(E->getType());
1055 
1056   if (CGDebugInfo *DI = getModuleDebugInfo())
1057     DI->EmitExplicitCastType(E->getType());
1058 }
1059 
1060 //===----------------------------------------------------------------------===//
1061 //                         LValue Expression Emission
1062 //===----------------------------------------------------------------------===//
1063 
1064 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1065 /// derive a more accurate bound on the alignment of the pointer.
1066 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1067                                                   LValueBaseInfo *BaseInfo,
1068                                                   TBAAAccessInfo *TBAAInfo) {
1069   // We allow this with ObjC object pointers because of fragile ABIs.
1070   assert(E->getType()->isPointerType() ||
1071          E->getType()->isObjCObjectPointerType());
1072   E = E->IgnoreParens();
1073 
1074   // Casts:
1075   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1076     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1077       CGM.EmitExplicitCastExprType(ECE, this);
1078 
1079     switch (CE->getCastKind()) {
1080     // Non-converting casts (but not C's implicit conversion from void*).
1081     case CK_BitCast:
1082     case CK_NoOp:
1083     case CK_AddressSpaceConversion:
1084       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1085         if (PtrTy->getPointeeType()->isVoidType())
1086           break;
1087 
1088         LValueBaseInfo InnerBaseInfo;
1089         TBAAAccessInfo InnerTBAAInfo;
1090         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1091                                                 &InnerBaseInfo,
1092                                                 &InnerTBAAInfo);
1093         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1094         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1095 
1096         if (isa<ExplicitCastExpr>(CE)) {
1097           LValueBaseInfo TargetTypeBaseInfo;
1098           TBAAAccessInfo TargetTypeTBAAInfo;
1099           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1100                                                            &TargetTypeBaseInfo,
1101                                                            &TargetTypeTBAAInfo);
1102           if (TBAAInfo)
1103             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1104                                                  TargetTypeTBAAInfo);
1105           // If the source l-value is opaque, honor the alignment of the
1106           // casted-to type.
1107           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1108             if (BaseInfo)
1109               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1110             Addr = Address(Addr.getPointer(), Align);
1111           }
1112         }
1113 
1114         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1115             CE->getCastKind() == CK_BitCast) {
1116           if (auto PT = E->getType()->getAs<PointerType>())
1117             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1118                                       /*MayBeNull=*/true,
1119                                       CodeGenFunction::CFITCK_UnrelatedCast,
1120                                       CE->getBeginLoc());
1121         }
1122         return CE->getCastKind() != CK_AddressSpaceConversion
1123                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1124                    : Builder.CreateAddrSpaceCast(Addr,
1125                                                  ConvertType(E->getType()));
1126       }
1127       break;
1128 
1129     // Array-to-pointer decay.
1130     case CK_ArrayToPointerDecay:
1131       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1132 
1133     // Derived-to-base conversions.
1134     case CK_UncheckedDerivedToBase:
1135     case CK_DerivedToBase: {
1136       // TODO: Support accesses to members of base classes in TBAA. For now, we
1137       // conservatively pretend that the complete object is of the base class
1138       // type.
1139       if (TBAAInfo)
1140         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1141       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1142       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1143       return GetAddressOfBaseClass(Addr, Derived,
1144                                    CE->path_begin(), CE->path_end(),
1145                                    ShouldNullCheckClassCastValue(CE),
1146                                    CE->getExprLoc());
1147     }
1148 
1149     // TODO: Is there any reason to treat base-to-derived conversions
1150     // specially?
1151     default:
1152       break;
1153     }
1154   }
1155 
1156   // Unary &.
1157   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1158     if (UO->getOpcode() == UO_AddrOf) {
1159       LValue LV = EmitLValue(UO->getSubExpr());
1160       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1161       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1162       return LV.getAddress(*this);
1163     }
1164   }
1165 
1166   // TODO: conditional operators, comma.
1167 
1168   // Otherwise, use the alignment of the type.
1169   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1170                                                    TBAAInfo);
1171   return Address(EmitScalarExpr(E), Align);
1172 }
1173 
1174 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1175   if (Ty->isVoidType())
1176     return RValue::get(nullptr);
1177 
1178   switch (getEvaluationKind(Ty)) {
1179   case TEK_Complex: {
1180     llvm::Type *EltTy =
1181       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1182     llvm::Value *U = llvm::UndefValue::get(EltTy);
1183     return RValue::getComplex(std::make_pair(U, U));
1184   }
1185 
1186   // If this is a use of an undefined aggregate type, the aggregate must have an
1187   // identifiable address.  Just because the contents of the value are undefined
1188   // doesn't mean that the address can't be taken and compared.
1189   case TEK_Aggregate: {
1190     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1191     return RValue::getAggregate(DestPtr);
1192   }
1193 
1194   case TEK_Scalar:
1195     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1196   }
1197   llvm_unreachable("bad evaluation kind");
1198 }
1199 
1200 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1201                                               const char *Name) {
1202   ErrorUnsupported(E, Name);
1203   return GetUndefRValue(E->getType());
1204 }
1205 
1206 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1207                                               const char *Name) {
1208   ErrorUnsupported(E, Name);
1209   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1210   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1211                         E->getType());
1212 }
1213 
1214 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1215   const Expr *Base = Obj;
1216   while (!isa<CXXThisExpr>(Base)) {
1217     // The result of a dynamic_cast can be null.
1218     if (isa<CXXDynamicCastExpr>(Base))
1219       return false;
1220 
1221     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1222       Base = CE->getSubExpr();
1223     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1224       Base = PE->getSubExpr();
1225     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1226       if (UO->getOpcode() == UO_Extension)
1227         Base = UO->getSubExpr();
1228       else
1229         return false;
1230     } else {
1231       return false;
1232     }
1233   }
1234   return true;
1235 }
1236 
1237 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1238   LValue LV;
1239   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1240     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1241   else
1242     LV = EmitLValue(E);
1243   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1244     SanitizerSet SkippedChecks;
1245     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1246       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1247       if (IsBaseCXXThis)
1248         SkippedChecks.set(SanitizerKind::Alignment, true);
1249       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1250         SkippedChecks.set(SanitizerKind::Null, true);
1251     }
1252     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1253                   LV.getAlignment(), SkippedChecks);
1254   }
1255   return LV;
1256 }
1257 
1258 /// EmitLValue - Emit code to compute a designator that specifies the location
1259 /// of the expression.
1260 ///
1261 /// This can return one of two things: a simple address or a bitfield reference.
1262 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1263 /// an LLVM pointer type.
1264 ///
1265 /// If this returns a bitfield reference, nothing about the pointee type of the
1266 /// LLVM value is known: For example, it may not be a pointer to an integer.
1267 ///
1268 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1269 /// this method guarantees that the returned pointer type will point to an LLVM
1270 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1271 /// length type, this is not possible.
1272 ///
1273 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1274   ApplyDebugLocation DL(*this, E);
1275   switch (E->getStmtClass()) {
1276   default: return EmitUnsupportedLValue(E, "l-value expression");
1277 
1278   case Expr::ObjCPropertyRefExprClass:
1279     llvm_unreachable("cannot emit a property reference directly");
1280 
1281   case Expr::ObjCSelectorExprClass:
1282     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1283   case Expr::ObjCIsaExprClass:
1284     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1285   case Expr::BinaryOperatorClass:
1286     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1287   case Expr::CompoundAssignOperatorClass: {
1288     QualType Ty = E->getType();
1289     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1290       Ty = AT->getValueType();
1291     if (!Ty->isAnyComplexType())
1292       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1294   }
1295   case Expr::CallExprClass:
1296   case Expr::CXXMemberCallExprClass:
1297   case Expr::CXXOperatorCallExprClass:
1298   case Expr::UserDefinedLiteralClass:
1299     return EmitCallExprLValue(cast<CallExpr>(E));
1300   case Expr::CXXRewrittenBinaryOperatorClass:
1301     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1302   case Expr::VAArgExprClass:
1303     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1304   case Expr::DeclRefExprClass:
1305     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1306   case Expr::ConstantExprClass:
1307     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1308   case Expr::ParenExprClass:
1309     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1310   case Expr::GenericSelectionExprClass:
1311     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1312   case Expr::PredefinedExprClass:
1313     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1314   case Expr::StringLiteralClass:
1315     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1316   case Expr::ObjCEncodeExprClass:
1317     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1318   case Expr::PseudoObjectExprClass:
1319     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1320   case Expr::InitListExprClass:
1321     return EmitInitListLValue(cast<InitListExpr>(E));
1322   case Expr::CXXTemporaryObjectExprClass:
1323   case Expr::CXXConstructExprClass:
1324     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1325   case Expr::CXXBindTemporaryExprClass:
1326     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1327   case Expr::CXXUuidofExprClass:
1328     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1329   case Expr::LambdaExprClass:
1330     return EmitAggExprToLValue(E);
1331 
1332   case Expr::ExprWithCleanupsClass: {
1333     const auto *cleanups = cast<ExprWithCleanups>(E);
1334     enterFullExpression(cleanups);
1335     RunCleanupsScope Scope(*this);
1336     LValue LV = EmitLValue(cleanups->getSubExpr());
1337     if (LV.isSimple()) {
1338       // Defend against branches out of gnu statement expressions surrounded by
1339       // cleanups.
1340       llvm::Value *V = LV.getPointer(*this);
1341       Scope.ForceCleanup({&V});
1342       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1343                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1344     }
1345     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1346     // bitfield lvalue or some other non-simple lvalue?
1347     return LV;
1348   }
1349 
1350   case Expr::CXXDefaultArgExprClass: {
1351     auto *DAE = cast<CXXDefaultArgExpr>(E);
1352     CXXDefaultArgExprScope Scope(*this, DAE);
1353     return EmitLValue(DAE->getExpr());
1354   }
1355   case Expr::CXXDefaultInitExprClass: {
1356     auto *DIE = cast<CXXDefaultInitExpr>(E);
1357     CXXDefaultInitExprScope Scope(*this, DIE);
1358     return EmitLValue(DIE->getExpr());
1359   }
1360   case Expr::CXXTypeidExprClass:
1361     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1362 
1363   case Expr::ObjCMessageExprClass:
1364     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1365   case Expr::ObjCIvarRefExprClass:
1366     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1367   case Expr::StmtExprClass:
1368     return EmitStmtExprLValue(cast<StmtExpr>(E));
1369   case Expr::UnaryOperatorClass:
1370     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1371   case Expr::ArraySubscriptExprClass:
1372     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1373   case Expr::OMPArraySectionExprClass:
1374     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1375   case Expr::ExtVectorElementExprClass:
1376     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1377   case Expr::MemberExprClass:
1378     return EmitMemberExpr(cast<MemberExpr>(E));
1379   case Expr::CompoundLiteralExprClass:
1380     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1381   case Expr::ConditionalOperatorClass:
1382     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1383   case Expr::BinaryConditionalOperatorClass:
1384     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1385   case Expr::ChooseExprClass:
1386     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1387   case Expr::OpaqueValueExprClass:
1388     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1389   case Expr::SubstNonTypeTemplateParmExprClass:
1390     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1391   case Expr::ImplicitCastExprClass:
1392   case Expr::CStyleCastExprClass:
1393   case Expr::CXXFunctionalCastExprClass:
1394   case Expr::CXXStaticCastExprClass:
1395   case Expr::CXXDynamicCastExprClass:
1396   case Expr::CXXReinterpretCastExprClass:
1397   case Expr::CXXConstCastExprClass:
1398   case Expr::CXXAddrspaceCastExprClass:
1399   case Expr::ObjCBridgedCastExprClass:
1400     return EmitCastLValue(cast<CastExpr>(E));
1401 
1402   case Expr::MaterializeTemporaryExprClass:
1403     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1404 
1405   case Expr::CoawaitExprClass:
1406     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1407   case Expr::CoyieldExprClass:
1408     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1409   }
1410 }
1411 
1412 /// Given an object of the given canonical type, can we safely copy a
1413 /// value out of it based on its initializer?
1414 static bool isConstantEmittableObjectType(QualType type) {
1415   assert(type.isCanonical());
1416   assert(!type->isReferenceType());
1417 
1418   // Must be const-qualified but non-volatile.
1419   Qualifiers qs = type.getLocalQualifiers();
1420   if (!qs.hasConst() || qs.hasVolatile()) return false;
1421 
1422   // Otherwise, all object types satisfy this except C++ classes with
1423   // mutable subobjects or non-trivial copy/destroy behavior.
1424   if (const auto *RT = dyn_cast<RecordType>(type))
1425     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1426       if (RD->hasMutableFields() || !RD->isTrivial())
1427         return false;
1428 
1429   return true;
1430 }
1431 
1432 /// Can we constant-emit a load of a reference to a variable of the
1433 /// given type?  This is different from predicates like
1434 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1435 /// in situations that don't necessarily satisfy the language's rules
1436 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1437 /// to do this with const float variables even if those variables
1438 /// aren't marked 'constexpr'.
1439 enum ConstantEmissionKind {
1440   CEK_None,
1441   CEK_AsReferenceOnly,
1442   CEK_AsValueOrReference,
1443   CEK_AsValueOnly
1444 };
1445 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1446   type = type.getCanonicalType();
1447   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1448     if (isConstantEmittableObjectType(ref->getPointeeType()))
1449       return CEK_AsValueOrReference;
1450     return CEK_AsReferenceOnly;
1451   }
1452   if (isConstantEmittableObjectType(type))
1453     return CEK_AsValueOnly;
1454   return CEK_None;
1455 }
1456 
1457 /// Try to emit a reference to the given value without producing it as
1458 /// an l-value.  This is just an optimization, but it avoids us needing
1459 /// to emit global copies of variables if they're named without triggering
1460 /// a formal use in a context where we can't emit a direct reference to them,
1461 /// for instance if a block or lambda or a member of a local class uses a
1462 /// const int variable or constexpr variable from an enclosing function.
1463 CodeGenFunction::ConstantEmission
1464 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1465   ValueDecl *value = refExpr->getDecl();
1466 
1467   // The value needs to be an enum constant or a constant variable.
1468   ConstantEmissionKind CEK;
1469   if (isa<ParmVarDecl>(value)) {
1470     CEK = CEK_None;
1471   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1472     CEK = checkVarTypeForConstantEmission(var->getType());
1473   } else if (isa<EnumConstantDecl>(value)) {
1474     CEK = CEK_AsValueOnly;
1475   } else {
1476     CEK = CEK_None;
1477   }
1478   if (CEK == CEK_None) return ConstantEmission();
1479 
1480   Expr::EvalResult result;
1481   bool resultIsReference;
1482   QualType resultType;
1483 
1484   // It's best to evaluate all the way as an r-value if that's permitted.
1485   if (CEK != CEK_AsReferenceOnly &&
1486       refExpr->EvaluateAsRValue(result, getContext())) {
1487     resultIsReference = false;
1488     resultType = refExpr->getType();
1489 
1490   // Otherwise, try to evaluate as an l-value.
1491   } else if (CEK != CEK_AsValueOnly &&
1492              refExpr->EvaluateAsLValue(result, getContext())) {
1493     resultIsReference = true;
1494     resultType = value->getType();
1495 
1496   // Failure.
1497   } else {
1498     return ConstantEmission();
1499   }
1500 
1501   // In any case, if the initializer has side-effects, abandon ship.
1502   if (result.HasSideEffects)
1503     return ConstantEmission();
1504 
1505   // Emit as a constant.
1506   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1507                                                result.Val, resultType);
1508 
1509   // Make sure we emit a debug reference to the global variable.
1510   // This should probably fire even for
1511   if (isa<VarDecl>(value)) {
1512     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1513       EmitDeclRefExprDbgValue(refExpr, result.Val);
1514   } else {
1515     assert(isa<EnumConstantDecl>(value));
1516     EmitDeclRefExprDbgValue(refExpr, result.Val);
1517   }
1518 
1519   // If we emitted a reference constant, we need to dereference that.
1520   if (resultIsReference)
1521     return ConstantEmission::forReference(C);
1522 
1523   return ConstantEmission::forValue(C);
1524 }
1525 
1526 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1527                                                         const MemberExpr *ME) {
1528   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1529     // Try to emit static variable member expressions as DREs.
1530     return DeclRefExpr::Create(
1531         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1532         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1533         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1534   }
1535   return nullptr;
1536 }
1537 
1538 CodeGenFunction::ConstantEmission
1539 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1540   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1541     return tryEmitAsConstant(DRE);
1542   return ConstantEmission();
1543 }
1544 
1545 llvm::Value *CodeGenFunction::emitScalarConstant(
1546     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1547   assert(Constant && "not a constant");
1548   if (Constant.isReference())
1549     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1550                             E->getExprLoc())
1551         .getScalarVal();
1552   return Constant.getValue();
1553 }
1554 
1555 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1556                                                SourceLocation Loc) {
1557   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1558                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1559                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1560 }
1561 
1562 static bool hasBooleanRepresentation(QualType Ty) {
1563   if (Ty->isBooleanType())
1564     return true;
1565 
1566   if (const EnumType *ET = Ty->getAs<EnumType>())
1567     return ET->getDecl()->getIntegerType()->isBooleanType();
1568 
1569   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1570     return hasBooleanRepresentation(AT->getValueType());
1571 
1572   return false;
1573 }
1574 
1575 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1576                             llvm::APInt &Min, llvm::APInt &End,
1577                             bool StrictEnums, bool IsBool) {
1578   const EnumType *ET = Ty->getAs<EnumType>();
1579   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1580                                 ET && !ET->getDecl()->isFixed();
1581   if (!IsBool && !IsRegularCPlusPlusEnum)
1582     return false;
1583 
1584   if (IsBool) {
1585     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1586     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1587   } else {
1588     const EnumDecl *ED = ET->getDecl();
1589     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1590     unsigned Bitwidth = LTy->getScalarSizeInBits();
1591     unsigned NumNegativeBits = ED->getNumNegativeBits();
1592     unsigned NumPositiveBits = ED->getNumPositiveBits();
1593 
1594     if (NumNegativeBits) {
1595       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1596       assert(NumBits <= Bitwidth);
1597       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1598       Min = -End;
1599     } else {
1600       assert(NumPositiveBits <= Bitwidth);
1601       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1602       Min = llvm::APInt(Bitwidth, 0);
1603     }
1604   }
1605   return true;
1606 }
1607 
1608 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1609   llvm::APInt Min, End;
1610   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1611                        hasBooleanRepresentation(Ty)))
1612     return nullptr;
1613 
1614   llvm::MDBuilder MDHelper(getLLVMContext());
1615   return MDHelper.createRange(Min, End);
1616 }
1617 
1618 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1619                                            SourceLocation Loc) {
1620   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1621   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1622   if (!HasBoolCheck && !HasEnumCheck)
1623     return false;
1624 
1625   bool IsBool = hasBooleanRepresentation(Ty) ||
1626                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1627   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1628   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1629   if (!NeedsBoolCheck && !NeedsEnumCheck)
1630     return false;
1631 
1632   // Single-bit booleans don't need to be checked. Special-case this to avoid
1633   // a bit width mismatch when handling bitfield values. This is handled by
1634   // EmitFromMemory for the non-bitfield case.
1635   if (IsBool &&
1636       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1637     return false;
1638 
1639   llvm::APInt Min, End;
1640   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1641     return true;
1642 
1643   auto &Ctx = getLLVMContext();
1644   SanitizerScope SanScope(this);
1645   llvm::Value *Check;
1646   --End;
1647   if (!Min) {
1648     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1649   } else {
1650     llvm::Value *Upper =
1651         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1652     llvm::Value *Lower =
1653         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1654     Check = Builder.CreateAnd(Upper, Lower);
1655   }
1656   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1657                                   EmitCheckTypeDescriptor(Ty)};
1658   SanitizerMask Kind =
1659       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1660   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1661             StaticArgs, EmitCheckValue(Value));
1662   return true;
1663 }
1664 
1665 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1666                                                QualType Ty,
1667                                                SourceLocation Loc,
1668                                                LValueBaseInfo BaseInfo,
1669                                                TBAAAccessInfo TBAAInfo,
1670                                                bool isNontemporal) {
1671   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1672     // For better performance, handle vector loads differently.
1673     if (Ty->isVectorType()) {
1674       const llvm::Type *EltTy = Addr.getElementType();
1675 
1676       const auto *VTy = cast<llvm::VectorType>(EltTy);
1677 
1678       // Handle vectors of size 3 like size 4 for better performance.
1679       if (VTy->getNumElements() == 3) {
1680 
1681         // Bitcast to vec4 type.
1682         llvm::VectorType *vec4Ty =
1683             llvm::VectorType::get(VTy->getElementType(), 4);
1684         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1685         // Now load value.
1686         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1687 
1688         // Shuffle vector to get vec3.
1689         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1690                                         ArrayRef<int>{0, 1, 2}, "extractVec");
1691         return EmitFromMemory(V, Ty);
1692       }
1693     }
1694   }
1695 
1696   // Atomic operations have to be done on integral types.
1697   LValue AtomicLValue =
1698       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1699   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1700     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1701   }
1702 
1703   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1704   if (isNontemporal) {
1705     llvm::MDNode *Node = llvm::MDNode::get(
1706         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1707     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1708   }
1709 
1710   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1711 
1712   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1713     // In order to prevent the optimizer from throwing away the check, don't
1714     // attach range metadata to the load.
1715   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1716     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1717       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1718 
1719   return EmitFromMemory(Load, Ty);
1720 }
1721 
1722 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1723   // Bool has a different representation in memory than in registers.
1724   if (hasBooleanRepresentation(Ty)) {
1725     // This should really always be an i1, but sometimes it's already
1726     // an i8, and it's awkward to track those cases down.
1727     if (Value->getType()->isIntegerTy(1))
1728       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1729     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1730            "wrong value rep of bool");
1731   }
1732 
1733   return Value;
1734 }
1735 
1736 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1737   // Bool has a different representation in memory than in registers.
1738   if (hasBooleanRepresentation(Ty)) {
1739     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1740            "wrong value rep of bool");
1741     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1742   }
1743 
1744   return Value;
1745 }
1746 
1747 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1748 // MatrixType), if it points to a array (the memory type of MatrixType).
1749 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1750                                          bool IsVector = true) {
1751   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1752       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1753   if (ArrayTy && IsVector) {
1754     auto *VectorTy = llvm::VectorType::get(ArrayTy->getElementType(),
1755                                            ArrayTy->getNumElements());
1756 
1757     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1758   }
1759   auto *VectorTy = dyn_cast<llvm::VectorType>(
1760       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1761   if (VectorTy && !IsVector) {
1762     auto *ArrayTy = llvm::ArrayType::get(VectorTy->getElementType(),
1763                                          VectorTy->getNumElements());
1764 
1765     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1766   }
1767 
1768   return Addr;
1769 }
1770 
1771 // Emit a store of a matrix LValue. This may require casting the original
1772 // pointer to memory address (ArrayType) to a pointer to the value type
1773 // (VectorType).
1774 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1775                                     bool isInit, CodeGenFunction &CGF) {
1776   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1777                                            value->getType()->isVectorTy());
1778   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1779                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1780                         lvalue.isNontemporal());
1781 }
1782 
1783 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1784                                         bool Volatile, QualType Ty,
1785                                         LValueBaseInfo BaseInfo,
1786                                         TBAAAccessInfo TBAAInfo,
1787                                         bool isInit, bool isNontemporal) {
1788   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1789     // Handle vectors differently to get better performance.
1790     if (Ty->isVectorType()) {
1791       llvm::Type *SrcTy = Value->getType();
1792       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1793       // Handle vec3 special.
1794       if (VecTy && VecTy->getNumElements() == 3) {
1795         // Our source is a vec3, do a shuffle vector to make it a vec4.
1796         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1797                                             ArrayRef<int>{0, 1, 2, -1},
1798                                             "extractVec");
1799         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1800       }
1801       if (Addr.getElementType() != SrcTy) {
1802         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1803       }
1804     }
1805   }
1806 
1807   Value = EmitToMemory(Value, Ty);
1808 
1809   LValue AtomicLValue =
1810       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1811   if (Ty->isAtomicType() ||
1812       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1813     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1814     return;
1815   }
1816 
1817   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1818   if (isNontemporal) {
1819     llvm::MDNode *Node =
1820         llvm::MDNode::get(Store->getContext(),
1821                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1822     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1823   }
1824 
1825   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1826 }
1827 
1828 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1829                                         bool isInit) {
1830   if (lvalue.getType()->isConstantMatrixType()) {
1831     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1832     return;
1833   }
1834 
1835   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1836                     lvalue.getType(), lvalue.getBaseInfo(),
1837                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1838 }
1839 
1840 // Emit a load of a LValue of matrix type. This may require casting the pointer
1841 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1842 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1843                                      CodeGenFunction &CGF) {
1844   assert(LV.getType()->isConstantMatrixType());
1845   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1846   LV.setAddress(Addr);
1847   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1848 }
1849 
1850 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1851 /// method emits the address of the lvalue, then loads the result as an rvalue,
1852 /// returning the rvalue.
1853 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1854   if (LV.isObjCWeak()) {
1855     // load of a __weak object.
1856     Address AddrWeakObj = LV.getAddress(*this);
1857     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1858                                                              AddrWeakObj));
1859   }
1860   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1861     // In MRC mode, we do a load+autorelease.
1862     if (!getLangOpts().ObjCAutoRefCount) {
1863       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1864     }
1865 
1866     // In ARC mode, we load retained and then consume the value.
1867     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1868     Object = EmitObjCConsumeObject(LV.getType(), Object);
1869     return RValue::get(Object);
1870   }
1871 
1872   if (LV.isSimple()) {
1873     assert(!LV.getType()->isFunctionType());
1874 
1875     if (LV.getType()->isConstantMatrixType())
1876       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1877 
1878     // Everything needs a load.
1879     return RValue::get(EmitLoadOfScalar(LV, Loc));
1880   }
1881 
1882   if (LV.isVectorElt()) {
1883     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1884                                               LV.isVolatileQualified());
1885     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1886                                                     "vecext"));
1887   }
1888 
1889   // If this is a reference to a subset of the elements of a vector, either
1890   // shuffle the input or extract/insert them as appropriate.
1891   if (LV.isExtVectorElt())
1892     return EmitLoadOfExtVectorElementLValue(LV);
1893 
1894   // Global Register variables always invoke intrinsics
1895   if (LV.isGlobalReg())
1896     return EmitLoadOfGlobalRegLValue(LV);
1897 
1898   assert(LV.isBitField() && "Unknown LValue type!");
1899   return EmitLoadOfBitfieldLValue(LV, Loc);
1900 }
1901 
1902 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1903                                                  SourceLocation Loc) {
1904   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1905 
1906   // Get the output type.
1907   llvm::Type *ResLTy = ConvertType(LV.getType());
1908 
1909   Address Ptr = LV.getBitFieldAddress();
1910   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1911 
1912   if (Info.IsSigned) {
1913     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1914     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1915     if (HighBits)
1916       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1917     if (Info.Offset + HighBits)
1918       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1919   } else {
1920     if (Info.Offset)
1921       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1922     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1923       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1924                                                               Info.Size),
1925                               "bf.clear");
1926   }
1927   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1928   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1929   return RValue::get(Val);
1930 }
1931 
1932 // If this is a reference to a subset of the elements of a vector, create an
1933 // appropriate shufflevector.
1934 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1935   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1936                                         LV.isVolatileQualified());
1937 
1938   const llvm::Constant *Elts = LV.getExtVectorElts();
1939 
1940   // If the result of the expression is a non-vector type, we must be extracting
1941   // a single element.  Just codegen as an extractelement.
1942   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1943   if (!ExprVT) {
1944     unsigned InIdx = getAccessedFieldNo(0, Elts);
1945     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1946     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1947   }
1948 
1949   // Always use shuffle vector to try to retain the original program structure
1950   unsigned NumResultElts = ExprVT->getNumElements();
1951 
1952   SmallVector<int, 4> Mask;
1953   for (unsigned i = 0; i != NumResultElts; ++i)
1954     Mask.push_back(getAccessedFieldNo(i, Elts));
1955 
1956   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1957                                     Mask);
1958   return RValue::get(Vec);
1959 }
1960 
1961 /// Generates lvalue for partial ext_vector access.
1962 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1963   Address VectorAddress = LV.getExtVectorAddress();
1964   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1965   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1966 
1967   Address CastToPointerElement =
1968     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1969                                  "conv.ptr.element");
1970 
1971   const llvm::Constant *Elts = LV.getExtVectorElts();
1972   unsigned ix = getAccessedFieldNo(0, Elts);
1973 
1974   Address VectorBasePtrPlusIx =
1975     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1976                                    "vector.elt");
1977 
1978   return VectorBasePtrPlusIx;
1979 }
1980 
1981 /// Load of global gamed gegisters are always calls to intrinsics.
1982 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1983   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1984          "Bad type for register variable");
1985   llvm::MDNode *RegName = cast<llvm::MDNode>(
1986       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1987 
1988   // We accept integer and pointer types only
1989   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1990   llvm::Type *Ty = OrigTy;
1991   if (OrigTy->isPointerTy())
1992     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1993   llvm::Type *Types[] = { Ty };
1994 
1995   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1996   llvm::Value *Call = Builder.CreateCall(
1997       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1998   if (OrigTy->isPointerTy())
1999     Call = Builder.CreateIntToPtr(Call, OrigTy);
2000   return RValue::get(Call);
2001 }
2002 
2003 
2004 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2005 /// lvalue, where both are guaranteed to the have the same type, and that type
2006 /// is 'Ty'.
2007 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2008                                              bool isInit) {
2009   if (!Dst.isSimple()) {
2010     if (Dst.isVectorElt()) {
2011       // Read/modify/write the vector, inserting the new element.
2012       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2013                                             Dst.isVolatileQualified());
2014       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2015                                         Dst.getVectorIdx(), "vecins");
2016       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2017                           Dst.isVolatileQualified());
2018       return;
2019     }
2020 
2021     // If this is an update of extended vector elements, insert them as
2022     // appropriate.
2023     if (Dst.isExtVectorElt())
2024       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2025 
2026     if (Dst.isGlobalReg())
2027       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2028 
2029     assert(Dst.isBitField() && "Unknown LValue type");
2030     return EmitStoreThroughBitfieldLValue(Src, Dst);
2031   }
2032 
2033   // There's special magic for assigning into an ARC-qualified l-value.
2034   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2035     switch (Lifetime) {
2036     case Qualifiers::OCL_None:
2037       llvm_unreachable("present but none");
2038 
2039     case Qualifiers::OCL_ExplicitNone:
2040       // nothing special
2041       break;
2042 
2043     case Qualifiers::OCL_Strong:
2044       if (isInit) {
2045         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2046         break;
2047       }
2048       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2049       return;
2050 
2051     case Qualifiers::OCL_Weak:
2052       if (isInit)
2053         // Initialize and then skip the primitive store.
2054         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2055       else
2056         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2057                          /*ignore*/ true);
2058       return;
2059 
2060     case Qualifiers::OCL_Autoreleasing:
2061       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2062                                                      Src.getScalarVal()));
2063       // fall into the normal path
2064       break;
2065     }
2066   }
2067 
2068   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2069     // load of a __weak object.
2070     Address LvalueDst = Dst.getAddress(*this);
2071     llvm::Value *src = Src.getScalarVal();
2072      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2073     return;
2074   }
2075 
2076   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2077     // load of a __strong object.
2078     Address LvalueDst = Dst.getAddress(*this);
2079     llvm::Value *src = Src.getScalarVal();
2080     if (Dst.isObjCIvar()) {
2081       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2082       llvm::Type *ResultType = IntPtrTy;
2083       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2084       llvm::Value *RHS = dst.getPointer();
2085       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2086       llvm::Value *LHS =
2087         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2088                                "sub.ptr.lhs.cast");
2089       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2090       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2091                                               BytesBetween);
2092     } else if (Dst.isGlobalObjCRef()) {
2093       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2094                                                 Dst.isThreadLocalRef());
2095     }
2096     else
2097       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2098     return;
2099   }
2100 
2101   assert(Src.isScalar() && "Can't emit an agg store with this method");
2102   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2103 }
2104 
2105 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2106                                                      llvm::Value **Result) {
2107   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2108   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2109   Address Ptr = Dst.getBitFieldAddress();
2110 
2111   // Get the source value, truncated to the width of the bit-field.
2112   llvm::Value *SrcVal = Src.getScalarVal();
2113 
2114   // Cast the source to the storage type and shift it into place.
2115   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2116                                  /*isSigned=*/false);
2117   llvm::Value *MaskedVal = SrcVal;
2118 
2119   // See if there are other bits in the bitfield's storage we'll need to load
2120   // and mask together with source before storing.
2121   if (Info.StorageSize != Info.Size) {
2122     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2123     llvm::Value *Val =
2124       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2125 
2126     // Mask the source value as needed.
2127     if (!hasBooleanRepresentation(Dst.getType()))
2128       SrcVal = Builder.CreateAnd(SrcVal,
2129                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2130                                                             Info.Size),
2131                                  "bf.value");
2132     MaskedVal = SrcVal;
2133     if (Info.Offset)
2134       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2135 
2136     // Mask out the original value.
2137     Val = Builder.CreateAnd(Val,
2138                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2139                                                      Info.Offset,
2140                                                      Info.Offset + Info.Size),
2141                             "bf.clear");
2142 
2143     // Or together the unchanged values and the source value.
2144     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2145   } else {
2146     assert(Info.Offset == 0);
2147     // According to the AACPS:
2148     // When a volatile bit-field is written, and its container does not overlap
2149     // with any non-bit-field member, its container must be read exactly once and
2150     // written exactly once using the access width appropriate to the type of the
2151     // container. The two accesses are not atomic.
2152     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2153         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2154       Builder.CreateLoad(Ptr, true, "bf.load");
2155   }
2156 
2157   // Write the new value back out.
2158   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2159 
2160   // Return the new value of the bit-field, if requested.
2161   if (Result) {
2162     llvm::Value *ResultVal = MaskedVal;
2163 
2164     // Sign extend the value if needed.
2165     if (Info.IsSigned) {
2166       assert(Info.Size <= Info.StorageSize);
2167       unsigned HighBits = Info.StorageSize - Info.Size;
2168       if (HighBits) {
2169         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2170         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2171       }
2172     }
2173 
2174     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2175                                       "bf.result.cast");
2176     *Result = EmitFromMemory(ResultVal, Dst.getType());
2177   }
2178 }
2179 
2180 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2181                                                                LValue Dst) {
2182   // This access turns into a read/modify/write of the vector.  Load the input
2183   // value now.
2184   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2185                                         Dst.isVolatileQualified());
2186   const llvm::Constant *Elts = Dst.getExtVectorElts();
2187 
2188   llvm::Value *SrcVal = Src.getScalarVal();
2189 
2190   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2191     unsigned NumSrcElts = VTy->getNumElements();
2192     unsigned NumDstElts =
2193         cast<llvm::VectorType>(Vec->getType())->getNumElements();
2194     if (NumDstElts == NumSrcElts) {
2195       // Use shuffle vector is the src and destination are the same number of
2196       // elements and restore the vector mask since it is on the side it will be
2197       // stored.
2198       SmallVector<int, 4> Mask(NumDstElts);
2199       for (unsigned i = 0; i != NumSrcElts; ++i)
2200         Mask[getAccessedFieldNo(i, Elts)] = i;
2201 
2202       Vec = Builder.CreateShuffleVector(
2203           SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
2204     } else if (NumDstElts > NumSrcElts) {
2205       // Extended the source vector to the same length and then shuffle it
2206       // into the destination.
2207       // FIXME: since we're shuffling with undef, can we just use the indices
2208       //        into that?  This could be simpler.
2209       SmallVector<int, 4> ExtMask;
2210       for (unsigned i = 0; i != NumSrcElts; ++i)
2211         ExtMask.push_back(i);
2212       ExtMask.resize(NumDstElts, -1);
2213       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
2214           SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
2215       // build identity
2216       SmallVector<int, 4> Mask;
2217       for (unsigned i = 0; i != NumDstElts; ++i)
2218         Mask.push_back(i);
2219 
2220       // When the vector size is odd and .odd or .hi is used, the last element
2221       // of the Elts constant array will be one past the size of the vector.
2222       // Ignore the last element here, if it is greater than the mask size.
2223       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2224         NumSrcElts--;
2225 
2226       // modify when what gets shuffled in
2227       for (unsigned i = 0; i != NumSrcElts; ++i)
2228         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2229       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2230     } else {
2231       // We should never shorten the vector
2232       llvm_unreachable("unexpected shorten vector length");
2233     }
2234   } else {
2235     // If the Src is a scalar (not a vector) it must be updating one element.
2236     unsigned InIdx = getAccessedFieldNo(0, Elts);
2237     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2238     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2239   }
2240 
2241   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2242                       Dst.isVolatileQualified());
2243 }
2244 
2245 /// Store of global named registers are always calls to intrinsics.
2246 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2247   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2248          "Bad type for register variable");
2249   llvm::MDNode *RegName = cast<llvm::MDNode>(
2250       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2251   assert(RegName && "Register LValue is not metadata");
2252 
2253   // We accept integer and pointer types only
2254   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2255   llvm::Type *Ty = OrigTy;
2256   if (OrigTy->isPointerTy())
2257     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2258   llvm::Type *Types[] = { Ty };
2259 
2260   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2261   llvm::Value *Value = Src.getScalarVal();
2262   if (OrigTy->isPointerTy())
2263     Value = Builder.CreatePtrToInt(Value, Ty);
2264   Builder.CreateCall(
2265       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2266 }
2267 
2268 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2269 // generating write-barries API. It is currently a global, ivar,
2270 // or neither.
2271 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2272                                  LValue &LV,
2273                                  bool IsMemberAccess=false) {
2274   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2275     return;
2276 
2277   if (isa<ObjCIvarRefExpr>(E)) {
2278     QualType ExpTy = E->getType();
2279     if (IsMemberAccess && ExpTy->isPointerType()) {
2280       // If ivar is a structure pointer, assigning to field of
2281       // this struct follows gcc's behavior and makes it a non-ivar
2282       // writer-barrier conservatively.
2283       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2284       if (ExpTy->isRecordType()) {
2285         LV.setObjCIvar(false);
2286         return;
2287       }
2288     }
2289     LV.setObjCIvar(true);
2290     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2291     LV.setBaseIvarExp(Exp->getBase());
2292     LV.setObjCArray(E->getType()->isArrayType());
2293     return;
2294   }
2295 
2296   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2297     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2298       if (VD->hasGlobalStorage()) {
2299         LV.setGlobalObjCRef(true);
2300         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2301       }
2302     }
2303     LV.setObjCArray(E->getType()->isArrayType());
2304     return;
2305   }
2306 
2307   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2308     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2309     return;
2310   }
2311 
2312   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2313     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2314     if (LV.isObjCIvar()) {
2315       // If cast is to a structure pointer, follow gcc's behavior and make it
2316       // a non-ivar write-barrier.
2317       QualType ExpTy = E->getType();
2318       if (ExpTy->isPointerType())
2319         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2320       if (ExpTy->isRecordType())
2321         LV.setObjCIvar(false);
2322     }
2323     return;
2324   }
2325 
2326   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2327     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2328     return;
2329   }
2330 
2331   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2332     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2333     return;
2334   }
2335 
2336   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2337     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2338     return;
2339   }
2340 
2341   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2342     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2343     return;
2344   }
2345 
2346   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2347     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2348     if (LV.isObjCIvar() && !LV.isObjCArray())
2349       // Using array syntax to assigning to what an ivar points to is not
2350       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2351       LV.setObjCIvar(false);
2352     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2353       // Using array syntax to assigning to what global points to is not
2354       // same as assigning to the global itself. {id *G;} G[i] = 0;
2355       LV.setGlobalObjCRef(false);
2356     return;
2357   }
2358 
2359   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2360     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2361     // We don't know if member is an 'ivar', but this flag is looked at
2362     // only in the context of LV.isObjCIvar().
2363     LV.setObjCArray(E->getType()->isArrayType());
2364     return;
2365   }
2366 }
2367 
2368 static llvm::Value *
2369 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2370                                 llvm::Value *V, llvm::Type *IRType,
2371                                 StringRef Name = StringRef()) {
2372   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2373   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2374 }
2375 
2376 static LValue EmitThreadPrivateVarDeclLValue(
2377     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2378     llvm::Type *RealVarTy, SourceLocation Loc) {
2379   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2380   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2381   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2382 }
2383 
2384 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2385                                            const VarDecl *VD, QualType T) {
2386   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2387       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2388   // Return an invalid address if variable is MT_To and unified
2389   // memory is not enabled. For all other cases: MT_Link and
2390   // MT_To with unified memory, return a valid address.
2391   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2392                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2393     return Address::invalid();
2394   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2395           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2396            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2397          "Expected link clause OR to clause with unified memory enabled.");
2398   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2399   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2400   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2401 }
2402 
2403 Address
2404 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2405                                      LValueBaseInfo *PointeeBaseInfo,
2406                                      TBAAAccessInfo *PointeeTBAAInfo) {
2407   llvm::LoadInst *Load =
2408       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2409   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2410 
2411   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2412                                             PointeeBaseInfo, PointeeTBAAInfo,
2413                                             /* forPointeeType= */ true);
2414   return Address(Load, Align);
2415 }
2416 
2417 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2418   LValueBaseInfo PointeeBaseInfo;
2419   TBAAAccessInfo PointeeTBAAInfo;
2420   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2421                                             &PointeeTBAAInfo);
2422   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2423                         PointeeBaseInfo, PointeeTBAAInfo);
2424 }
2425 
2426 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2427                                            const PointerType *PtrTy,
2428                                            LValueBaseInfo *BaseInfo,
2429                                            TBAAAccessInfo *TBAAInfo) {
2430   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2431   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2432                                                BaseInfo, TBAAInfo,
2433                                                /*forPointeeType=*/true));
2434 }
2435 
2436 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2437                                                 const PointerType *PtrTy) {
2438   LValueBaseInfo BaseInfo;
2439   TBAAAccessInfo TBAAInfo;
2440   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2441   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2442 }
2443 
2444 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2445                                       const Expr *E, const VarDecl *VD) {
2446   QualType T = E->getType();
2447 
2448   // If it's thread_local, emit a call to its wrapper function instead.
2449   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2450       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2451     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2452   // Check if the variable is marked as declare target with link clause in
2453   // device codegen.
2454   if (CGF.getLangOpts().OpenMPIsDevice) {
2455     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2456     if (Addr.isValid())
2457       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2458   }
2459 
2460   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2461   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2462   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2463   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2464   Address Addr(V, Alignment);
2465   // Emit reference to the private copy of the variable if it is an OpenMP
2466   // threadprivate variable.
2467   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2468       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2469     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2470                                           E->getExprLoc());
2471   }
2472   LValue LV = VD->getType()->isReferenceType() ?
2473       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2474                                     AlignmentSource::Decl) :
2475       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2476   setObjCGCLValueClass(CGF.getContext(), E, LV);
2477   return LV;
2478 }
2479 
2480 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2481                                                GlobalDecl GD) {
2482   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2483   if (FD->hasAttr<WeakRefAttr>()) {
2484     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2485     return aliasee.getPointer();
2486   }
2487 
2488   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2489   if (!FD->hasPrototype()) {
2490     if (const FunctionProtoType *Proto =
2491             FD->getType()->getAs<FunctionProtoType>()) {
2492       // Ugly case: for a K&R-style definition, the type of the definition
2493       // isn't the same as the type of a use.  Correct for this with a
2494       // bitcast.
2495       QualType NoProtoType =
2496           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2497       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2498       V = llvm::ConstantExpr::getBitCast(V,
2499                                       CGM.getTypes().ConvertType(NoProtoType));
2500     }
2501   }
2502   return V;
2503 }
2504 
2505 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2506                                      GlobalDecl GD) {
2507   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2508   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2509   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2510   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2511                             AlignmentSource::Decl);
2512 }
2513 
2514 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2515                                       llvm::Value *ThisValue) {
2516   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2517   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2518   return CGF.EmitLValueForField(LV, FD);
2519 }
2520 
2521 /// Named Registers are named metadata pointing to the register name
2522 /// which will be read from/written to as an argument to the intrinsic
2523 /// @llvm.read/write_register.
2524 /// So far, only the name is being passed down, but other options such as
2525 /// register type, allocation type or even optimization options could be
2526 /// passed down via the metadata node.
2527 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2528   SmallString<64> Name("llvm.named.register.");
2529   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2530   assert(Asm->getLabel().size() < 64-Name.size() &&
2531       "Register name too big");
2532   Name.append(Asm->getLabel());
2533   llvm::NamedMDNode *M =
2534     CGM.getModule().getOrInsertNamedMetadata(Name);
2535   if (M->getNumOperands() == 0) {
2536     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2537                                               Asm->getLabel());
2538     llvm::Metadata *Ops[] = {Str};
2539     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2540   }
2541 
2542   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2543 
2544   llvm::Value *Ptr =
2545     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2546   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2547 }
2548 
2549 /// Determine whether we can emit a reference to \p VD from the current
2550 /// context, despite not necessarily having seen an odr-use of the variable in
2551 /// this context.
2552 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2553                                                const DeclRefExpr *E,
2554                                                const VarDecl *VD,
2555                                                bool IsConstant) {
2556   // For a variable declared in an enclosing scope, do not emit a spurious
2557   // reference even if we have a capture, as that will emit an unwarranted
2558   // reference to our capture state, and will likely generate worse code than
2559   // emitting a local copy.
2560   if (E->refersToEnclosingVariableOrCapture())
2561     return false;
2562 
2563   // For a local declaration declared in this function, we can always reference
2564   // it even if we don't have an odr-use.
2565   if (VD->hasLocalStorage()) {
2566     return VD->getDeclContext() ==
2567            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2568   }
2569 
2570   // For a global declaration, we can emit a reference to it if we know
2571   // for sure that we are able to emit a definition of it.
2572   VD = VD->getDefinition(CGF.getContext());
2573   if (!VD)
2574     return false;
2575 
2576   // Don't emit a spurious reference if it might be to a variable that only
2577   // exists on a different device / target.
2578   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2579   // cross-target reference.
2580   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2581       CGF.getLangOpts().OpenCL) {
2582     return false;
2583   }
2584 
2585   // We can emit a spurious reference only if the linkage implies that we'll
2586   // be emitting a non-interposable symbol that will be retained until link
2587   // time.
2588   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2589   case llvm::GlobalValue::ExternalLinkage:
2590   case llvm::GlobalValue::LinkOnceODRLinkage:
2591   case llvm::GlobalValue::WeakODRLinkage:
2592   case llvm::GlobalValue::InternalLinkage:
2593   case llvm::GlobalValue::PrivateLinkage:
2594     return true;
2595   default:
2596     return false;
2597   }
2598 }
2599 
2600 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2601   const NamedDecl *ND = E->getDecl();
2602   QualType T = E->getType();
2603 
2604   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2605          "should not emit an unevaluated operand");
2606 
2607   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2608     // Global Named registers access via intrinsics only
2609     if (VD->getStorageClass() == SC_Register &&
2610         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2611       return EmitGlobalNamedRegister(VD, CGM);
2612 
2613     // If this DeclRefExpr does not constitute an odr-use of the variable,
2614     // we're not permitted to emit a reference to it in general, and it might
2615     // not be captured if capture would be necessary for a use. Emit the
2616     // constant value directly instead.
2617     if (E->isNonOdrUse() == NOUR_Constant &&
2618         (VD->getType()->isReferenceType() ||
2619          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2620       VD->getAnyInitializer(VD);
2621       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2622           E->getLocation(), *VD->evaluateValue(), VD->getType());
2623       assert(Val && "failed to emit constant expression");
2624 
2625       Address Addr = Address::invalid();
2626       if (!VD->getType()->isReferenceType()) {
2627         // Spill the constant value to a global.
2628         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2629                                            getContext().getDeclAlign(VD));
2630         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2631         auto *PTy = llvm::PointerType::get(
2632             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2633         if (PTy != Addr.getType())
2634           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2635       } else {
2636         // Should we be using the alignment of the constant pointer we emitted?
2637         CharUnits Alignment =
2638             getNaturalTypeAlignment(E->getType(),
2639                                     /* BaseInfo= */ nullptr,
2640                                     /* TBAAInfo= */ nullptr,
2641                                     /* forPointeeType= */ true);
2642         Addr = Address(Val, Alignment);
2643       }
2644       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2645     }
2646 
2647     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2648 
2649     // Check for captured variables.
2650     if (E->refersToEnclosingVariableOrCapture()) {
2651       VD = VD->getCanonicalDecl();
2652       if (auto *FD = LambdaCaptureFields.lookup(VD))
2653         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2654       if (CapturedStmtInfo) {
2655         auto I = LocalDeclMap.find(VD);
2656         if (I != LocalDeclMap.end()) {
2657           LValue CapLVal;
2658           if (VD->getType()->isReferenceType())
2659             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2660                                                 AlignmentSource::Decl);
2661           else
2662             CapLVal = MakeAddrLValue(I->second, T);
2663           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2664           // in simd context.
2665           if (getLangOpts().OpenMP &&
2666               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2667             CapLVal.setNontemporal(/*Value=*/true);
2668           return CapLVal;
2669         }
2670         LValue CapLVal =
2671             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2672                                     CapturedStmtInfo->getContextValue());
2673         CapLVal = MakeAddrLValue(
2674             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2675             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2676             CapLVal.getTBAAInfo());
2677         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2678         // in simd context.
2679         if (getLangOpts().OpenMP &&
2680             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2681           CapLVal.setNontemporal(/*Value=*/true);
2682         return CapLVal;
2683       }
2684 
2685       assert(isa<BlockDecl>(CurCodeDecl));
2686       Address addr = GetAddrOfBlockDecl(VD);
2687       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2688     }
2689   }
2690 
2691   // FIXME: We should be able to assert this for FunctionDecls as well!
2692   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2693   // those with a valid source location.
2694   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2695           !E->getLocation().isValid()) &&
2696          "Should not use decl without marking it used!");
2697 
2698   if (ND->hasAttr<WeakRefAttr>()) {
2699     const auto *VD = cast<ValueDecl>(ND);
2700     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2701     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2702   }
2703 
2704   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2705     // Check if this is a global variable.
2706     if (VD->hasLinkage() || VD->isStaticDataMember())
2707       return EmitGlobalVarDeclLValue(*this, E, VD);
2708 
2709     Address addr = Address::invalid();
2710 
2711     // The variable should generally be present in the local decl map.
2712     auto iter = LocalDeclMap.find(VD);
2713     if (iter != LocalDeclMap.end()) {
2714       addr = iter->second;
2715 
2716     // Otherwise, it might be static local we haven't emitted yet for
2717     // some reason; most likely, because it's in an outer function.
2718     } else if (VD->isStaticLocal()) {
2719       addr = Address(CGM.getOrCreateStaticVarDecl(
2720           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2721                      getContext().getDeclAlign(VD));
2722 
2723     // No other cases for now.
2724     } else {
2725       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2726     }
2727 
2728 
2729     // Check for OpenMP threadprivate variables.
2730     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2731         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2732       return EmitThreadPrivateVarDeclLValue(
2733           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2734           E->getExprLoc());
2735     }
2736 
2737     // Drill into block byref variables.
2738     bool isBlockByref = VD->isEscapingByref();
2739     if (isBlockByref) {
2740       addr = emitBlockByrefAddress(addr, VD);
2741     }
2742 
2743     // Drill into reference types.
2744     LValue LV = VD->getType()->isReferenceType() ?
2745         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2746         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2747 
2748     bool isLocalStorage = VD->hasLocalStorage();
2749 
2750     bool NonGCable = isLocalStorage &&
2751                      !VD->getType()->isReferenceType() &&
2752                      !isBlockByref;
2753     if (NonGCable) {
2754       LV.getQuals().removeObjCGCAttr();
2755       LV.setNonGC(true);
2756     }
2757 
2758     bool isImpreciseLifetime =
2759       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2760     if (isImpreciseLifetime)
2761       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2762     setObjCGCLValueClass(getContext(), E, LV);
2763     return LV;
2764   }
2765 
2766   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2767     return EmitFunctionDeclLValue(*this, E, FD);
2768 
2769   // FIXME: While we're emitting a binding from an enclosing scope, all other
2770   // DeclRefExprs we see should be implicitly treated as if they also refer to
2771   // an enclosing scope.
2772   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2773     return EmitLValue(BD->getBinding());
2774 
2775   // We can form DeclRefExprs naming GUID declarations when reconstituting
2776   // non-type template parameters into expressions.
2777   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2778     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2779                           AlignmentSource::Decl);
2780 
2781   llvm_unreachable("Unhandled DeclRefExpr");
2782 }
2783 
2784 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2785   // __extension__ doesn't affect lvalue-ness.
2786   if (E->getOpcode() == UO_Extension)
2787     return EmitLValue(E->getSubExpr());
2788 
2789   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2790   switch (E->getOpcode()) {
2791   default: llvm_unreachable("Unknown unary operator lvalue!");
2792   case UO_Deref: {
2793     QualType T = E->getSubExpr()->getType()->getPointeeType();
2794     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2795 
2796     LValueBaseInfo BaseInfo;
2797     TBAAAccessInfo TBAAInfo;
2798     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2799                                             &TBAAInfo);
2800     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2801     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2802 
2803     // We should not generate __weak write barrier on indirect reference
2804     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2805     // But, we continue to generate __strong write barrier on indirect write
2806     // into a pointer to object.
2807     if (getLangOpts().ObjC &&
2808         getLangOpts().getGC() != LangOptions::NonGC &&
2809         LV.isObjCWeak())
2810       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2811     return LV;
2812   }
2813   case UO_Real:
2814   case UO_Imag: {
2815     LValue LV = EmitLValue(E->getSubExpr());
2816     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2817 
2818     // __real is valid on scalars.  This is a faster way of testing that.
2819     // __imag can only produce an rvalue on scalars.
2820     if (E->getOpcode() == UO_Real &&
2821         !LV.getAddress(*this).getElementType()->isStructTy()) {
2822       assert(E->getSubExpr()->getType()->isArithmeticType());
2823       return LV;
2824     }
2825 
2826     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2827 
2828     Address Component =
2829         (E->getOpcode() == UO_Real
2830              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2831              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2832     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2833                                    CGM.getTBAAInfoForSubobject(LV, T));
2834     ElemLV.getQuals().addQualifiers(LV.getQuals());
2835     return ElemLV;
2836   }
2837   case UO_PreInc:
2838   case UO_PreDec: {
2839     LValue LV = EmitLValue(E->getSubExpr());
2840     bool isInc = E->getOpcode() == UO_PreInc;
2841 
2842     if (E->getType()->isAnyComplexType())
2843       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2844     else
2845       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2846     return LV;
2847   }
2848   }
2849 }
2850 
2851 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2852   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2853                         E->getType(), AlignmentSource::Decl);
2854 }
2855 
2856 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2857   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2858                         E->getType(), AlignmentSource::Decl);
2859 }
2860 
2861 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2862   auto SL = E->getFunctionName();
2863   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2864   StringRef FnName = CurFn->getName();
2865   if (FnName.startswith("\01"))
2866     FnName = FnName.substr(1);
2867   StringRef NameItems[] = {
2868       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2869   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2870   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2871     std::string Name = std::string(SL->getString());
2872     if (!Name.empty()) {
2873       unsigned Discriminator =
2874           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2875       if (Discriminator)
2876         Name += "_" + Twine(Discriminator + 1).str();
2877       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2878       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2879     } else {
2880       auto C =
2881           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2882       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2883     }
2884   }
2885   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2886   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2887 }
2888 
2889 /// Emit a type description suitable for use by a runtime sanitizer library. The
2890 /// format of a type descriptor is
2891 ///
2892 /// \code
2893 ///   { i16 TypeKind, i16 TypeInfo }
2894 /// \endcode
2895 ///
2896 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2897 /// integer, 1 for a floating point value, and -1 for anything else.
2898 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2899   // Only emit each type's descriptor once.
2900   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2901     return C;
2902 
2903   uint16_t TypeKind = -1;
2904   uint16_t TypeInfo = 0;
2905 
2906   if (T->isIntegerType()) {
2907     TypeKind = 0;
2908     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2909                (T->isSignedIntegerType() ? 1 : 0);
2910   } else if (T->isFloatingType()) {
2911     TypeKind = 1;
2912     TypeInfo = getContext().getTypeSize(T);
2913   }
2914 
2915   // Format the type name as if for a diagnostic, including quotes and
2916   // optionally an 'aka'.
2917   SmallString<32> Buffer;
2918   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2919                                     (intptr_t)T.getAsOpaquePtr(),
2920                                     StringRef(), StringRef(), None, Buffer,
2921                                     None);
2922 
2923   llvm::Constant *Components[] = {
2924     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2925     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2926   };
2927   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2928 
2929   auto *GV = new llvm::GlobalVariable(
2930       CGM.getModule(), Descriptor->getType(),
2931       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2932   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2933   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2934 
2935   // Remember the descriptor for this type.
2936   CGM.setTypeDescriptorInMap(T, GV);
2937 
2938   return GV;
2939 }
2940 
2941 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2942   llvm::Type *TargetTy = IntPtrTy;
2943 
2944   if (V->getType() == TargetTy)
2945     return V;
2946 
2947   // Floating-point types which fit into intptr_t are bitcast to integers
2948   // and then passed directly (after zero-extension, if necessary).
2949   if (V->getType()->isFloatingPointTy()) {
2950     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2951     if (Bits <= TargetTy->getIntegerBitWidth())
2952       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2953                                                          Bits));
2954   }
2955 
2956   // Integers which fit in intptr_t are zero-extended and passed directly.
2957   if (V->getType()->isIntegerTy() &&
2958       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2959     return Builder.CreateZExt(V, TargetTy);
2960 
2961   // Pointers are passed directly, everything else is passed by address.
2962   if (!V->getType()->isPointerTy()) {
2963     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2964     Builder.CreateStore(V, Ptr);
2965     V = Ptr.getPointer();
2966   }
2967   return Builder.CreatePtrToInt(V, TargetTy);
2968 }
2969 
2970 /// Emit a representation of a SourceLocation for passing to a handler
2971 /// in a sanitizer runtime library. The format for this data is:
2972 /// \code
2973 ///   struct SourceLocation {
2974 ///     const char *Filename;
2975 ///     int32_t Line, Column;
2976 ///   };
2977 /// \endcode
2978 /// For an invalid SourceLocation, the Filename pointer is null.
2979 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2980   llvm::Constant *Filename;
2981   int Line, Column;
2982 
2983   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2984   if (PLoc.isValid()) {
2985     StringRef FilenameString = PLoc.getFilename();
2986 
2987     int PathComponentsToStrip =
2988         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2989     if (PathComponentsToStrip < 0) {
2990       assert(PathComponentsToStrip != INT_MIN);
2991       int PathComponentsToKeep = -PathComponentsToStrip;
2992       auto I = llvm::sys::path::rbegin(FilenameString);
2993       auto E = llvm::sys::path::rend(FilenameString);
2994       while (I != E && --PathComponentsToKeep)
2995         ++I;
2996 
2997       FilenameString = FilenameString.substr(I - E);
2998     } else if (PathComponentsToStrip > 0) {
2999       auto I = llvm::sys::path::begin(FilenameString);
3000       auto E = llvm::sys::path::end(FilenameString);
3001       while (I != E && PathComponentsToStrip--)
3002         ++I;
3003 
3004       if (I != E)
3005         FilenameString =
3006             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3007       else
3008         FilenameString = llvm::sys::path::filename(FilenameString);
3009     }
3010 
3011     auto FilenameGV =
3012         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3013     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3014                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3015     Filename = FilenameGV.getPointer();
3016     Line = PLoc.getLine();
3017     Column = PLoc.getColumn();
3018   } else {
3019     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3020     Line = Column = 0;
3021   }
3022 
3023   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3024                             Builder.getInt32(Column)};
3025 
3026   return llvm::ConstantStruct::getAnon(Data);
3027 }
3028 
3029 namespace {
3030 /// Specify under what conditions this check can be recovered
3031 enum class CheckRecoverableKind {
3032   /// Always terminate program execution if this check fails.
3033   Unrecoverable,
3034   /// Check supports recovering, runtime has both fatal (noreturn) and
3035   /// non-fatal handlers for this check.
3036   Recoverable,
3037   /// Runtime conditionally aborts, always need to support recovery.
3038   AlwaysRecoverable
3039 };
3040 }
3041 
3042 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3043   assert(Kind.countPopulation() == 1);
3044   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3045     return CheckRecoverableKind::AlwaysRecoverable;
3046   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3047     return CheckRecoverableKind::Unrecoverable;
3048   else
3049     return CheckRecoverableKind::Recoverable;
3050 }
3051 
3052 namespace {
3053 struct SanitizerHandlerInfo {
3054   char const *const Name;
3055   unsigned Version;
3056 };
3057 }
3058 
3059 const SanitizerHandlerInfo SanitizerHandlers[] = {
3060 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3061     LIST_SANITIZER_CHECKS
3062 #undef SANITIZER_CHECK
3063 };
3064 
3065 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3066                                  llvm::FunctionType *FnType,
3067                                  ArrayRef<llvm::Value *> FnArgs,
3068                                  SanitizerHandler CheckHandler,
3069                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3070                                  llvm::BasicBlock *ContBB) {
3071   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3072   Optional<ApplyDebugLocation> DL;
3073   if (!CGF.Builder.getCurrentDebugLocation()) {
3074     // Ensure that the call has at least an artificial debug location.
3075     DL.emplace(CGF, SourceLocation());
3076   }
3077   bool NeedsAbortSuffix =
3078       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3079   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3080   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3081   const StringRef CheckName = CheckInfo.Name;
3082   std::string FnName = "__ubsan_handle_" + CheckName.str();
3083   if (CheckInfo.Version && !MinimalRuntime)
3084     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3085   if (MinimalRuntime)
3086     FnName += "_minimal";
3087   if (NeedsAbortSuffix)
3088     FnName += "_abort";
3089   bool MayReturn =
3090       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3091 
3092   llvm::AttrBuilder B;
3093   if (!MayReturn) {
3094     B.addAttribute(llvm::Attribute::NoReturn)
3095         .addAttribute(llvm::Attribute::NoUnwind);
3096   }
3097   B.addAttribute(llvm::Attribute::UWTable);
3098 
3099   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3100       FnType, FnName,
3101       llvm::AttributeList::get(CGF.getLLVMContext(),
3102                                llvm::AttributeList::FunctionIndex, B),
3103       /*Local=*/true);
3104   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3105   if (!MayReturn) {
3106     HandlerCall->setDoesNotReturn();
3107     CGF.Builder.CreateUnreachable();
3108   } else {
3109     CGF.Builder.CreateBr(ContBB);
3110   }
3111 }
3112 
3113 void CodeGenFunction::EmitCheck(
3114     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3115     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3116     ArrayRef<llvm::Value *> DynamicArgs) {
3117   assert(IsSanitizerScope);
3118   assert(Checked.size() > 0);
3119   assert(CheckHandler >= 0 &&
3120          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3121   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3122 
3123   llvm::Value *FatalCond = nullptr;
3124   llvm::Value *RecoverableCond = nullptr;
3125   llvm::Value *TrapCond = nullptr;
3126   for (int i = 0, n = Checked.size(); i < n; ++i) {
3127     llvm::Value *Check = Checked[i].first;
3128     // -fsanitize-trap= overrides -fsanitize-recover=.
3129     llvm::Value *&Cond =
3130         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3131             ? TrapCond
3132             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3133                   ? RecoverableCond
3134                   : FatalCond;
3135     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3136   }
3137 
3138   if (TrapCond)
3139     EmitTrapCheck(TrapCond);
3140   if (!FatalCond && !RecoverableCond)
3141     return;
3142 
3143   llvm::Value *JointCond;
3144   if (FatalCond && RecoverableCond)
3145     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3146   else
3147     JointCond = FatalCond ? FatalCond : RecoverableCond;
3148   assert(JointCond);
3149 
3150   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3151   assert(SanOpts.has(Checked[0].second));
3152 #ifndef NDEBUG
3153   for (int i = 1, n = Checked.size(); i < n; ++i) {
3154     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3155            "All recoverable kinds in a single check must be same!");
3156     assert(SanOpts.has(Checked[i].second));
3157   }
3158 #endif
3159 
3160   llvm::BasicBlock *Cont = createBasicBlock("cont");
3161   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3162   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3163   // Give hint that we very much don't expect to execute the handler
3164   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3165   llvm::MDBuilder MDHelper(getLLVMContext());
3166   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3167   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3168   EmitBlock(Handlers);
3169 
3170   // Handler functions take an i8* pointing to the (handler-specific) static
3171   // information block, followed by a sequence of intptr_t arguments
3172   // representing operand values.
3173   SmallVector<llvm::Value *, 4> Args;
3174   SmallVector<llvm::Type *, 4> ArgTypes;
3175   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3176     Args.reserve(DynamicArgs.size() + 1);
3177     ArgTypes.reserve(DynamicArgs.size() + 1);
3178 
3179     // Emit handler arguments and create handler function type.
3180     if (!StaticArgs.empty()) {
3181       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3182       auto *InfoPtr =
3183           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3184                                    llvm::GlobalVariable::PrivateLinkage, Info);
3185       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3186       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3187       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3188       ArgTypes.push_back(Int8PtrTy);
3189     }
3190 
3191     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3192       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3193       ArgTypes.push_back(IntPtrTy);
3194     }
3195   }
3196 
3197   llvm::FunctionType *FnType =
3198     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3199 
3200   if (!FatalCond || !RecoverableCond) {
3201     // Simple case: we need to generate a single handler call, either
3202     // fatal, or non-fatal.
3203     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3204                          (FatalCond != nullptr), Cont);
3205   } else {
3206     // Emit two handler calls: first one for set of unrecoverable checks,
3207     // another one for recoverable.
3208     llvm::BasicBlock *NonFatalHandlerBB =
3209         createBasicBlock("non_fatal." + CheckName);
3210     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3211     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3212     EmitBlock(FatalHandlerBB);
3213     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3214                          NonFatalHandlerBB);
3215     EmitBlock(NonFatalHandlerBB);
3216     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3217                          Cont);
3218   }
3219 
3220   EmitBlock(Cont);
3221 }
3222 
3223 void CodeGenFunction::EmitCfiSlowPathCheck(
3224     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3225     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3226   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3227 
3228   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3229   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3230 
3231   llvm::MDBuilder MDHelper(getLLVMContext());
3232   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3233   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3234 
3235   EmitBlock(CheckBB);
3236 
3237   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3238 
3239   llvm::CallInst *CheckCall;
3240   llvm::FunctionCallee SlowPathFn;
3241   if (WithDiag) {
3242     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3243     auto *InfoPtr =
3244         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3245                                  llvm::GlobalVariable::PrivateLinkage, Info);
3246     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3247     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3248 
3249     SlowPathFn = CGM.getModule().getOrInsertFunction(
3250         "__cfi_slowpath_diag",
3251         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3252                                 false));
3253     CheckCall = Builder.CreateCall(
3254         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3255   } else {
3256     SlowPathFn = CGM.getModule().getOrInsertFunction(
3257         "__cfi_slowpath",
3258         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3259     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3260   }
3261 
3262   CGM.setDSOLocal(
3263       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3264   CheckCall->setDoesNotThrow();
3265 
3266   EmitBlock(Cont);
3267 }
3268 
3269 // Emit a stub for __cfi_check function so that the linker knows about this
3270 // symbol in LTO mode.
3271 void CodeGenFunction::EmitCfiCheckStub() {
3272   llvm::Module *M = &CGM.getModule();
3273   auto &Ctx = M->getContext();
3274   llvm::Function *F = llvm::Function::Create(
3275       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3276       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3277   CGM.setDSOLocal(F);
3278   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3279   // FIXME: consider emitting an intrinsic call like
3280   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3281   // which can be lowered in CrossDSOCFI pass to the actual contents of
3282   // __cfi_check. This would allow inlining of __cfi_check calls.
3283   llvm::CallInst::Create(
3284       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3285   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3286 }
3287 
3288 // This function is basically a switch over the CFI failure kind, which is
3289 // extracted from CFICheckFailData (1st function argument). Each case is either
3290 // llvm.trap or a call to one of the two runtime handlers, based on
3291 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3292 // failure kind) traps, but this should really never happen.  CFICheckFailData
3293 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3294 // check kind; in this case __cfi_check_fail traps as well.
3295 void CodeGenFunction::EmitCfiCheckFail() {
3296   SanitizerScope SanScope(this);
3297   FunctionArgList Args;
3298   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3299                             ImplicitParamDecl::Other);
3300   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3301                             ImplicitParamDecl::Other);
3302   Args.push_back(&ArgData);
3303   Args.push_back(&ArgAddr);
3304 
3305   const CGFunctionInfo &FI =
3306     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3307 
3308   llvm::Function *F = llvm::Function::Create(
3309       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3310       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3311 
3312   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3313   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3314   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3315 
3316   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3317                 SourceLocation());
3318 
3319   // This function should not be affected by blacklist. This function does
3320   // not have a source location, but "src:*" would still apply. Revert any
3321   // changes to SanOpts made in StartFunction.
3322   SanOpts = CGM.getLangOpts().Sanitize;
3323 
3324   llvm::Value *Data =
3325       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3326                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3327   llvm::Value *Addr =
3328       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3329                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3330 
3331   // Data == nullptr means the calling module has trap behaviour for this check.
3332   llvm::Value *DataIsNotNullPtr =
3333       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3334   EmitTrapCheck(DataIsNotNullPtr);
3335 
3336   llvm::StructType *SourceLocationTy =
3337       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3338   llvm::StructType *CfiCheckFailDataTy =
3339       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3340 
3341   llvm::Value *V = Builder.CreateConstGEP2_32(
3342       CfiCheckFailDataTy,
3343       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3344       0);
3345   Address CheckKindAddr(V, getIntAlign());
3346   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3347 
3348   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3349       CGM.getLLVMContext(),
3350       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3351   llvm::Value *ValidVtable = Builder.CreateZExt(
3352       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3353                          {Addr, AllVtables}),
3354       IntPtrTy);
3355 
3356   const std::pair<int, SanitizerMask> CheckKinds[] = {
3357       {CFITCK_VCall, SanitizerKind::CFIVCall},
3358       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3359       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3360       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3361       {CFITCK_ICall, SanitizerKind::CFIICall}};
3362 
3363   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3364   for (auto CheckKindMaskPair : CheckKinds) {
3365     int Kind = CheckKindMaskPair.first;
3366     SanitizerMask Mask = CheckKindMaskPair.second;
3367     llvm::Value *Cond =
3368         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3369     if (CGM.getLangOpts().Sanitize.has(Mask))
3370       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3371                 {Data, Addr, ValidVtable});
3372     else
3373       EmitTrapCheck(Cond);
3374   }
3375 
3376   FinishFunction();
3377   // The only reference to this function will be created during LTO link.
3378   // Make sure it survives until then.
3379   CGM.addUsedGlobal(F);
3380 }
3381 
3382 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3383   if (SanOpts.has(SanitizerKind::Unreachable)) {
3384     SanitizerScope SanScope(this);
3385     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3386                              SanitizerKind::Unreachable),
3387               SanitizerHandler::BuiltinUnreachable,
3388               EmitCheckSourceLocation(Loc), None);
3389   }
3390   Builder.CreateUnreachable();
3391 }
3392 
3393 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3394   llvm::BasicBlock *Cont = createBasicBlock("cont");
3395 
3396   // If we're optimizing, collapse all calls to trap down to just one per
3397   // function to save on code size.
3398   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3399     TrapBB = createBasicBlock("trap");
3400     Builder.CreateCondBr(Checked, Cont, TrapBB);
3401     EmitBlock(TrapBB);
3402     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3403     TrapCall->setDoesNotReturn();
3404     TrapCall->setDoesNotThrow();
3405     Builder.CreateUnreachable();
3406   } else {
3407     Builder.CreateCondBr(Checked, Cont, TrapBB);
3408   }
3409 
3410   EmitBlock(Cont);
3411 }
3412 
3413 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3414   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3415 
3416   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3417     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3418                                   CGM.getCodeGenOpts().TrapFuncName);
3419     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3420   }
3421 
3422   return TrapCall;
3423 }
3424 
3425 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3426                                                  LValueBaseInfo *BaseInfo,
3427                                                  TBAAAccessInfo *TBAAInfo) {
3428   assert(E->getType()->isArrayType() &&
3429          "Array to pointer decay must have array source type!");
3430 
3431   // Expressions of array type can't be bitfields or vector elements.
3432   LValue LV = EmitLValue(E);
3433   Address Addr = LV.getAddress(*this);
3434 
3435   // If the array type was an incomplete type, we need to make sure
3436   // the decay ends up being the right type.
3437   llvm::Type *NewTy = ConvertType(E->getType());
3438   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3439 
3440   // Note that VLA pointers are always decayed, so we don't need to do
3441   // anything here.
3442   if (!E->getType()->isVariableArrayType()) {
3443     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3444            "Expected pointer to array");
3445     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3446   }
3447 
3448   // The result of this decay conversion points to an array element within the
3449   // base lvalue. However, since TBAA currently does not support representing
3450   // accesses to elements of member arrays, we conservatively represent accesses
3451   // to the pointee object as if it had no any base lvalue specified.
3452   // TODO: Support TBAA for member arrays.
3453   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3454   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3455   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3456 
3457   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3458 }
3459 
3460 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3461 /// array to pointer, return the array subexpression.
3462 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3463   // If this isn't just an array->pointer decay, bail out.
3464   const auto *CE = dyn_cast<CastExpr>(E);
3465   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3466     return nullptr;
3467 
3468   // If this is a decay from variable width array, bail out.
3469   const Expr *SubExpr = CE->getSubExpr();
3470   if (SubExpr->getType()->isVariableArrayType())
3471     return nullptr;
3472 
3473   return SubExpr;
3474 }
3475 
3476 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3477                                           llvm::Value *ptr,
3478                                           ArrayRef<llvm::Value*> indices,
3479                                           bool inbounds,
3480                                           bool signedIndices,
3481                                           SourceLocation loc,
3482                                     const llvm::Twine &name = "arrayidx") {
3483   if (inbounds) {
3484     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3485                                       CodeGenFunction::NotSubtraction, loc,
3486                                       name);
3487   } else {
3488     return CGF.Builder.CreateGEP(ptr, indices, name);
3489   }
3490 }
3491 
3492 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3493                                       llvm::Value *idx,
3494                                       CharUnits eltSize) {
3495   // If we have a constant index, we can use the exact offset of the
3496   // element we're accessing.
3497   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3498     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3499     return arrayAlign.alignmentAtOffset(offset);
3500 
3501   // Otherwise, use the worst-case alignment for any element.
3502   } else {
3503     return arrayAlign.alignmentOfArrayElement(eltSize);
3504   }
3505 }
3506 
3507 static QualType getFixedSizeElementType(const ASTContext &ctx,
3508                                         const VariableArrayType *vla) {
3509   QualType eltType;
3510   do {
3511     eltType = vla->getElementType();
3512   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3513   return eltType;
3514 }
3515 
3516 /// Given an array base, check whether its member access belongs to a record
3517 /// with preserve_access_index attribute or not.
3518 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3519   if (!ArrayBase || !CGF.getDebugInfo())
3520     return false;
3521 
3522   // Only support base as either a MemberExpr or DeclRefExpr.
3523   // DeclRefExpr to cover cases like:
3524   //    struct s { int a; int b[10]; };
3525   //    struct s *p;
3526   //    p[1].a
3527   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3528   // p->b[5] is a MemberExpr example.
3529   const Expr *E = ArrayBase->IgnoreImpCasts();
3530   if (const auto *ME = dyn_cast<MemberExpr>(E))
3531     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3532 
3533   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3534     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3535     if (!VarDef)
3536       return false;
3537 
3538     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3539     if (!PtrT)
3540       return false;
3541 
3542     const auto *PointeeT = PtrT->getPointeeType()
3543                              ->getUnqualifiedDesugaredType();
3544     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3545       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3546     return false;
3547   }
3548 
3549   return false;
3550 }
3551 
3552 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3553                                      ArrayRef<llvm::Value *> indices,
3554                                      QualType eltType, bool inbounds,
3555                                      bool signedIndices, SourceLocation loc,
3556                                      QualType *arrayType = nullptr,
3557                                      const Expr *Base = nullptr,
3558                                      const llvm::Twine &name = "arrayidx") {
3559   // All the indices except that last must be zero.
3560 #ifndef NDEBUG
3561   for (auto idx : indices.drop_back())
3562     assert(isa<llvm::ConstantInt>(idx) &&
3563            cast<llvm::ConstantInt>(idx)->isZero());
3564 #endif
3565 
3566   // Determine the element size of the statically-sized base.  This is
3567   // the thing that the indices are expressed in terms of.
3568   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3569     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3570   }
3571 
3572   // We can use that to compute the best alignment of the element.
3573   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3574   CharUnits eltAlign =
3575     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3576 
3577   llvm::Value *eltPtr;
3578   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3579   if (!LastIndex ||
3580       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3581     eltPtr = emitArraySubscriptGEP(
3582         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3583         loc, name);
3584   } else {
3585     // Remember the original array subscript for bpf target
3586     unsigned idx = LastIndex->getZExtValue();
3587     llvm::DIType *DbgInfo = nullptr;
3588     if (arrayType)
3589       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3590     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3591                                                         addr.getPointer(),
3592                                                         indices.size() - 1,
3593                                                         idx, DbgInfo);
3594   }
3595 
3596   return Address(eltPtr, eltAlign);
3597 }
3598 
3599 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3600                                                bool Accessed) {
3601   // The index must always be an integer, which is not an aggregate.  Emit it
3602   // in lexical order (this complexity is, sadly, required by C++17).
3603   llvm::Value *IdxPre =
3604       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3605   bool SignedIndices = false;
3606   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3607     auto *Idx = IdxPre;
3608     if (E->getLHS() != E->getIdx()) {
3609       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3610       Idx = EmitScalarExpr(E->getIdx());
3611     }
3612 
3613     QualType IdxTy = E->getIdx()->getType();
3614     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3615     SignedIndices |= IdxSigned;
3616 
3617     if (SanOpts.has(SanitizerKind::ArrayBounds))
3618       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3619 
3620     // Extend or truncate the index type to 32 or 64-bits.
3621     if (Promote && Idx->getType() != IntPtrTy)
3622       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3623 
3624     return Idx;
3625   };
3626   IdxPre = nullptr;
3627 
3628   // If the base is a vector type, then we are forming a vector element lvalue
3629   // with this subscript.
3630   if (E->getBase()->getType()->isVectorType() &&
3631       !isa<ExtVectorElementExpr>(E->getBase())) {
3632     // Emit the vector as an lvalue to get its address.
3633     LValue LHS = EmitLValue(E->getBase());
3634     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3635     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3636     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3637                                  E->getBase()->getType(), LHS.getBaseInfo(),
3638                                  TBAAAccessInfo());
3639   }
3640 
3641   // All the other cases basically behave like simple offsetting.
3642 
3643   // Handle the extvector case we ignored above.
3644   if (isa<ExtVectorElementExpr>(E->getBase())) {
3645     LValue LV = EmitLValue(E->getBase());
3646     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3647     Address Addr = EmitExtVectorElementLValue(LV);
3648 
3649     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3650     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3651                                  SignedIndices, E->getExprLoc());
3652     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3653                           CGM.getTBAAInfoForSubobject(LV, EltType));
3654   }
3655 
3656   LValueBaseInfo EltBaseInfo;
3657   TBAAAccessInfo EltTBAAInfo;
3658   Address Addr = Address::invalid();
3659   if (const VariableArrayType *vla =
3660            getContext().getAsVariableArrayType(E->getType())) {
3661     // The base must be a pointer, which is not an aggregate.  Emit
3662     // it.  It needs to be emitted first in case it's what captures
3663     // the VLA bounds.
3664     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3665     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3666 
3667     // The element count here is the total number of non-VLA elements.
3668     llvm::Value *numElements = getVLASize(vla).NumElts;
3669 
3670     // Effectively, the multiply by the VLA size is part of the GEP.
3671     // GEP indexes are signed, and scaling an index isn't permitted to
3672     // signed-overflow, so we use the same semantics for our explicit
3673     // multiply.  We suppress this if overflow is not undefined behavior.
3674     if (getLangOpts().isSignedOverflowDefined()) {
3675       Idx = Builder.CreateMul(Idx, numElements);
3676     } else {
3677       Idx = Builder.CreateNSWMul(Idx, numElements);
3678     }
3679 
3680     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3681                                  !getLangOpts().isSignedOverflowDefined(),
3682                                  SignedIndices, E->getExprLoc());
3683 
3684   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3685     // Indexing over an interface, as in "NSString *P; P[4];"
3686 
3687     // Emit the base pointer.
3688     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3689     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3690 
3691     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3692     llvm::Value *InterfaceSizeVal =
3693         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3694 
3695     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3696 
3697     // We don't necessarily build correct LLVM struct types for ObjC
3698     // interfaces, so we can't rely on GEP to do this scaling
3699     // correctly, so we need to cast to i8*.  FIXME: is this actually
3700     // true?  A lot of other things in the fragile ABI would break...
3701     llvm::Type *OrigBaseTy = Addr.getType();
3702     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3703 
3704     // Do the GEP.
3705     CharUnits EltAlign =
3706       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3707     llvm::Value *EltPtr =
3708         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3709                               SignedIndices, E->getExprLoc());
3710     Addr = Address(EltPtr, EltAlign);
3711 
3712     // Cast back.
3713     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3714   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3715     // If this is A[i] where A is an array, the frontend will have decayed the
3716     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3717     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3718     // "gep x, i" here.  Emit one "gep A, 0, i".
3719     assert(Array->getType()->isArrayType() &&
3720            "Array to pointer decay must have array source type!");
3721     LValue ArrayLV;
3722     // For simple multidimensional array indexing, set the 'accessed' flag for
3723     // better bounds-checking of the base expression.
3724     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3725       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3726     else
3727       ArrayLV = EmitLValue(Array);
3728     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3729 
3730     // Propagate the alignment from the array itself to the result.
3731     QualType arrayType = Array->getType();
3732     Addr = emitArraySubscriptGEP(
3733         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3734         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3735         E->getExprLoc(), &arrayType, E->getBase());
3736     EltBaseInfo = ArrayLV.getBaseInfo();
3737     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3738   } else {
3739     // The base must be a pointer; emit it with an estimate of its alignment.
3740     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3741     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3742     QualType ptrType = E->getBase()->getType();
3743     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3744                                  !getLangOpts().isSignedOverflowDefined(),
3745                                  SignedIndices, E->getExprLoc(), &ptrType,
3746                                  E->getBase());
3747   }
3748 
3749   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3750 
3751   if (getLangOpts().ObjC &&
3752       getLangOpts().getGC() != LangOptions::NonGC) {
3753     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3754     setObjCGCLValueClass(getContext(), E, LV);
3755   }
3756   return LV;
3757 }
3758 
3759 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3760                                        LValueBaseInfo &BaseInfo,
3761                                        TBAAAccessInfo &TBAAInfo,
3762                                        QualType BaseTy, QualType ElTy,
3763                                        bool IsLowerBound) {
3764   LValue BaseLVal;
3765   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3766     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3767     if (BaseTy->isArrayType()) {
3768       Address Addr = BaseLVal.getAddress(CGF);
3769       BaseInfo = BaseLVal.getBaseInfo();
3770 
3771       // If the array type was an incomplete type, we need to make sure
3772       // the decay ends up being the right type.
3773       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3774       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3775 
3776       // Note that VLA pointers are always decayed, so we don't need to do
3777       // anything here.
3778       if (!BaseTy->isVariableArrayType()) {
3779         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3780                "Expected pointer to array");
3781         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3782       }
3783 
3784       return CGF.Builder.CreateElementBitCast(Addr,
3785                                               CGF.ConvertTypeForMem(ElTy));
3786     }
3787     LValueBaseInfo TypeBaseInfo;
3788     TBAAAccessInfo TypeTBAAInfo;
3789     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3790                                                   &TypeTBAAInfo);
3791     BaseInfo.mergeForCast(TypeBaseInfo);
3792     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3793     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3794   }
3795   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3796 }
3797 
3798 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3799                                                 bool IsLowerBound) {
3800   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3801   QualType ResultExprTy;
3802   if (auto *AT = getContext().getAsArrayType(BaseTy))
3803     ResultExprTy = AT->getElementType();
3804   else
3805     ResultExprTy = BaseTy->getPointeeType();
3806   llvm::Value *Idx = nullptr;
3807   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3808     // Requesting lower bound or upper bound, but without provided length and
3809     // without ':' symbol for the default length -> length = 1.
3810     // Idx = LowerBound ?: 0;
3811     if (auto *LowerBound = E->getLowerBound()) {
3812       Idx = Builder.CreateIntCast(
3813           EmitScalarExpr(LowerBound), IntPtrTy,
3814           LowerBound->getType()->hasSignedIntegerRepresentation());
3815     } else
3816       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3817   } else {
3818     // Try to emit length or lower bound as constant. If this is possible, 1
3819     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3820     // IR (LB + Len) - 1.
3821     auto &C = CGM.getContext();
3822     auto *Length = E->getLength();
3823     llvm::APSInt ConstLength;
3824     if (Length) {
3825       // Idx = LowerBound + Length - 1;
3826       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3827         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3828         Length = nullptr;
3829       }
3830       auto *LowerBound = E->getLowerBound();
3831       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3832       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3833         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3834         LowerBound = nullptr;
3835       }
3836       if (!Length)
3837         --ConstLength;
3838       else if (!LowerBound)
3839         --ConstLowerBound;
3840 
3841       if (Length || LowerBound) {
3842         auto *LowerBoundVal =
3843             LowerBound
3844                 ? Builder.CreateIntCast(
3845                       EmitScalarExpr(LowerBound), IntPtrTy,
3846                       LowerBound->getType()->hasSignedIntegerRepresentation())
3847                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3848         auto *LengthVal =
3849             Length
3850                 ? Builder.CreateIntCast(
3851                       EmitScalarExpr(Length), IntPtrTy,
3852                       Length->getType()->hasSignedIntegerRepresentation())
3853                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3854         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3855                                 /*HasNUW=*/false,
3856                                 !getLangOpts().isSignedOverflowDefined());
3857         if (Length && LowerBound) {
3858           Idx = Builder.CreateSub(
3859               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3860               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3861         }
3862       } else
3863         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3864     } else {
3865       // Idx = ArraySize - 1;
3866       QualType ArrayTy = BaseTy->isPointerType()
3867                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3868                              : BaseTy;
3869       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3870         Length = VAT->getSizeExpr();
3871         if (Length->isIntegerConstantExpr(ConstLength, C))
3872           Length = nullptr;
3873       } else {
3874         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3875         ConstLength = CAT->getSize();
3876       }
3877       if (Length) {
3878         auto *LengthVal = Builder.CreateIntCast(
3879             EmitScalarExpr(Length), IntPtrTy,
3880             Length->getType()->hasSignedIntegerRepresentation());
3881         Idx = Builder.CreateSub(
3882             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3883             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3884       } else {
3885         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3886         --ConstLength;
3887         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3888       }
3889     }
3890   }
3891   assert(Idx);
3892 
3893   Address EltPtr = Address::invalid();
3894   LValueBaseInfo BaseInfo;
3895   TBAAAccessInfo TBAAInfo;
3896   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3897     // The base must be a pointer, which is not an aggregate.  Emit
3898     // it.  It needs to be emitted first in case it's what captures
3899     // the VLA bounds.
3900     Address Base =
3901         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3902                                 BaseTy, VLA->getElementType(), IsLowerBound);
3903     // The element count here is the total number of non-VLA elements.
3904     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3905 
3906     // Effectively, the multiply by the VLA size is part of the GEP.
3907     // GEP indexes are signed, and scaling an index isn't permitted to
3908     // signed-overflow, so we use the same semantics for our explicit
3909     // multiply.  We suppress this if overflow is not undefined behavior.
3910     if (getLangOpts().isSignedOverflowDefined())
3911       Idx = Builder.CreateMul(Idx, NumElements);
3912     else
3913       Idx = Builder.CreateNSWMul(Idx, NumElements);
3914     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3915                                    !getLangOpts().isSignedOverflowDefined(),
3916                                    /*signedIndices=*/false, E->getExprLoc());
3917   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3918     // If this is A[i] where A is an array, the frontend will have decayed the
3919     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3920     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3921     // "gep x, i" here.  Emit one "gep A, 0, i".
3922     assert(Array->getType()->isArrayType() &&
3923            "Array to pointer decay must have array source type!");
3924     LValue ArrayLV;
3925     // For simple multidimensional array indexing, set the 'accessed' flag for
3926     // better bounds-checking of the base expression.
3927     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3928       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3929     else
3930       ArrayLV = EmitLValue(Array);
3931 
3932     // Propagate the alignment from the array itself to the result.
3933     EltPtr = emitArraySubscriptGEP(
3934         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3935         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3936         /*signedIndices=*/false, E->getExprLoc());
3937     BaseInfo = ArrayLV.getBaseInfo();
3938     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3939   } else {
3940     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3941                                            TBAAInfo, BaseTy, ResultExprTy,
3942                                            IsLowerBound);
3943     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3944                                    !getLangOpts().isSignedOverflowDefined(),
3945                                    /*signedIndices=*/false, E->getExprLoc());
3946   }
3947 
3948   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3949 }
3950 
3951 LValue CodeGenFunction::
3952 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3953   // Emit the base vector as an l-value.
3954   LValue Base;
3955 
3956   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3957   if (E->isArrow()) {
3958     // If it is a pointer to a vector, emit the address and form an lvalue with
3959     // it.
3960     LValueBaseInfo BaseInfo;
3961     TBAAAccessInfo TBAAInfo;
3962     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3963     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3964     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3965     Base.getQuals().removeObjCGCAttr();
3966   } else if (E->getBase()->isGLValue()) {
3967     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3968     // emit the base as an lvalue.
3969     assert(E->getBase()->getType()->isVectorType());
3970     Base = EmitLValue(E->getBase());
3971   } else {
3972     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3973     assert(E->getBase()->getType()->isVectorType() &&
3974            "Result must be a vector");
3975     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3976 
3977     // Store the vector to memory (because LValue wants an address).
3978     Address VecMem = CreateMemTemp(E->getBase()->getType());
3979     Builder.CreateStore(Vec, VecMem);
3980     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3981                           AlignmentSource::Decl);
3982   }
3983 
3984   QualType type =
3985     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3986 
3987   // Encode the element access list into a vector of unsigned indices.
3988   SmallVector<uint32_t, 4> Indices;
3989   E->getEncodedElementAccess(Indices);
3990 
3991   if (Base.isSimple()) {
3992     llvm::Constant *CV =
3993         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3994     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3995                                     Base.getBaseInfo(), TBAAAccessInfo());
3996   }
3997   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3998 
3999   llvm::Constant *BaseElts = Base.getExtVectorElts();
4000   SmallVector<llvm::Constant *, 4> CElts;
4001 
4002   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4003     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4004   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4005   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4006                                   Base.getBaseInfo(), TBAAAccessInfo());
4007 }
4008 
4009 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4010   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4011     EmitIgnoredExpr(E->getBase());
4012     return EmitDeclRefLValue(DRE);
4013   }
4014 
4015   Expr *BaseExpr = E->getBase();
4016   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4017   LValue BaseLV;
4018   if (E->isArrow()) {
4019     LValueBaseInfo BaseInfo;
4020     TBAAAccessInfo TBAAInfo;
4021     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4022     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4023     SanitizerSet SkippedChecks;
4024     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4025     if (IsBaseCXXThis)
4026       SkippedChecks.set(SanitizerKind::Alignment, true);
4027     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4028       SkippedChecks.set(SanitizerKind::Null, true);
4029     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4030                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4031     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4032   } else
4033     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4034 
4035   NamedDecl *ND = E->getMemberDecl();
4036   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4037     LValue LV = EmitLValueForField(BaseLV, Field);
4038     setObjCGCLValueClass(getContext(), E, LV);
4039     if (getLangOpts().OpenMP) {
4040       // If the member was explicitly marked as nontemporal, mark it as
4041       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4042       // to children as nontemporal too.
4043       if ((IsWrappedCXXThis(BaseExpr) &&
4044            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4045           BaseLV.isNontemporal())
4046         LV.setNontemporal(/*Value=*/true);
4047     }
4048     return LV;
4049   }
4050 
4051   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4052     return EmitFunctionDeclLValue(*this, E, FD);
4053 
4054   llvm_unreachable("Unhandled member declaration!");
4055 }
4056 
4057 /// Given that we are currently emitting a lambda, emit an l-value for
4058 /// one of its members.
4059 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4060   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4061   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4062   QualType LambdaTagType =
4063     getContext().getTagDeclType(Field->getParent());
4064   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4065   return EmitLValueForField(LambdaLV, Field);
4066 }
4067 
4068 /// Get the field index in the debug info. The debug info structure/union
4069 /// will ignore the unnamed bitfields.
4070 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4071                                              unsigned FieldIndex) {
4072   unsigned I = 0, Skipped = 0;
4073 
4074   for (auto F : Rec->getDefinition()->fields()) {
4075     if (I == FieldIndex)
4076       break;
4077     if (F->isUnnamedBitfield())
4078       Skipped++;
4079     I++;
4080   }
4081 
4082   return FieldIndex - Skipped;
4083 }
4084 
4085 /// Get the address of a zero-sized field within a record. The resulting
4086 /// address doesn't necessarily have the right type.
4087 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4088                                        const FieldDecl *Field) {
4089   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4090       CGF.getContext().getFieldOffset(Field));
4091   if (Offset.isZero())
4092     return Base;
4093   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4094   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4095 }
4096 
4097 /// Drill down to the storage of a field without walking into
4098 /// reference types.
4099 ///
4100 /// The resulting address doesn't necessarily have the right type.
4101 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4102                                       const FieldDecl *field) {
4103   if (field->isZeroSize(CGF.getContext()))
4104     return emitAddrOfZeroSizeField(CGF, base, field);
4105 
4106   const RecordDecl *rec = field->getParent();
4107 
4108   unsigned idx =
4109     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4110 
4111   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4112 }
4113 
4114 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4115                                         Address addr, const FieldDecl *field) {
4116   const RecordDecl *rec = field->getParent();
4117   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4118       base.getType(), rec->getLocation());
4119 
4120   unsigned idx =
4121       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4122 
4123   return CGF.Builder.CreatePreserveStructAccessIndex(
4124       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4125 }
4126 
4127 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4128   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4129   if (!RD)
4130     return false;
4131 
4132   if (RD->isDynamicClass())
4133     return true;
4134 
4135   for (const auto &Base : RD->bases())
4136     if (hasAnyVptr(Base.getType(), Context))
4137       return true;
4138 
4139   for (const FieldDecl *Field : RD->fields())
4140     if (hasAnyVptr(Field->getType(), Context))
4141       return true;
4142 
4143   return false;
4144 }
4145 
4146 LValue CodeGenFunction::EmitLValueForField(LValue base,
4147                                            const FieldDecl *field) {
4148   LValueBaseInfo BaseInfo = base.getBaseInfo();
4149 
4150   if (field->isBitField()) {
4151     const CGRecordLayout &RL =
4152       CGM.getTypes().getCGRecordLayout(field->getParent());
4153     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4154     Address Addr = base.getAddress(*this);
4155     unsigned Idx = RL.getLLVMFieldNo(field);
4156     const RecordDecl *rec = field->getParent();
4157     if (!IsInPreservedAIRegion &&
4158         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4159       if (Idx != 0)
4160         // For structs, we GEP to the field that the record layout suggests.
4161         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4162     } else {
4163       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4164           getContext().getRecordType(rec), rec->getLocation());
4165       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4166           getDebugInfoFIndex(rec, field->getFieldIndex()),
4167           DbgInfo);
4168     }
4169 
4170     // Get the access type.
4171     llvm::Type *FieldIntTy =
4172       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4173     if (Addr.getElementType() != FieldIntTy)
4174       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4175 
4176     QualType fieldType =
4177       field->getType().withCVRQualifiers(base.getVRQualifiers());
4178     // TODO: Support TBAA for bit fields.
4179     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4180     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4181                                 TBAAAccessInfo());
4182   }
4183 
4184   // Fields of may-alias structures are may-alias themselves.
4185   // FIXME: this should get propagated down through anonymous structs
4186   // and unions.
4187   QualType FieldType = field->getType();
4188   const RecordDecl *rec = field->getParent();
4189   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4190   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4191   TBAAAccessInfo FieldTBAAInfo;
4192   if (base.getTBAAInfo().isMayAlias() ||
4193           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4194     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4195   } else if (rec->isUnion()) {
4196     // TODO: Support TBAA for unions.
4197     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4198   } else {
4199     // If no base type been assigned for the base access, then try to generate
4200     // one for this base lvalue.
4201     FieldTBAAInfo = base.getTBAAInfo();
4202     if (!FieldTBAAInfo.BaseType) {
4203         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4204         assert(!FieldTBAAInfo.Offset &&
4205                "Nonzero offset for an access with no base type!");
4206     }
4207 
4208     // Adjust offset to be relative to the base type.
4209     const ASTRecordLayout &Layout =
4210         getContext().getASTRecordLayout(field->getParent());
4211     unsigned CharWidth = getContext().getCharWidth();
4212     if (FieldTBAAInfo.BaseType)
4213       FieldTBAAInfo.Offset +=
4214           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4215 
4216     // Update the final access type and size.
4217     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4218     FieldTBAAInfo.Size =
4219         getContext().getTypeSizeInChars(FieldType).getQuantity();
4220   }
4221 
4222   Address addr = base.getAddress(*this);
4223   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4224     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4225         ClassDef->isDynamicClass()) {
4226       // Getting to any field of dynamic object requires stripping dynamic
4227       // information provided by invariant.group.  This is because accessing
4228       // fields may leak the real address of dynamic object, which could result
4229       // in miscompilation when leaked pointer would be compared.
4230       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4231       addr = Address(stripped, addr.getAlignment());
4232     }
4233   }
4234 
4235   unsigned RecordCVR = base.getVRQualifiers();
4236   if (rec->isUnion()) {
4237     // For unions, there is no pointer adjustment.
4238     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4239         hasAnyVptr(FieldType, getContext()))
4240       // Because unions can easily skip invariant.barriers, we need to add
4241       // a barrier every time CXXRecord field with vptr is referenced.
4242       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4243                      addr.getAlignment());
4244 
4245     if (IsInPreservedAIRegion ||
4246         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4247       // Remember the original union field index
4248       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4249           rec->getLocation());
4250       addr = Address(
4251           Builder.CreatePreserveUnionAccessIndex(
4252               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4253           addr.getAlignment());
4254     }
4255 
4256     if (FieldType->isReferenceType())
4257       addr = Builder.CreateElementBitCast(
4258           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4259   } else {
4260     if (!IsInPreservedAIRegion &&
4261         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4262       // For structs, we GEP to the field that the record layout suggests.
4263       addr = emitAddrOfFieldStorage(*this, addr, field);
4264     else
4265       // Remember the original struct field index
4266       addr = emitPreserveStructAccess(*this, base, addr, field);
4267   }
4268 
4269   // If this is a reference field, load the reference right now.
4270   if (FieldType->isReferenceType()) {
4271     LValue RefLVal =
4272         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4273     if (RecordCVR & Qualifiers::Volatile)
4274       RefLVal.getQuals().addVolatile();
4275     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4276 
4277     // Qualifiers on the struct don't apply to the referencee.
4278     RecordCVR = 0;
4279     FieldType = FieldType->getPointeeType();
4280   }
4281 
4282   // Make sure that the address is pointing to the right type.  This is critical
4283   // for both unions and structs.  A union needs a bitcast, a struct element
4284   // will need a bitcast if the LLVM type laid out doesn't match the desired
4285   // type.
4286   addr = Builder.CreateElementBitCast(
4287       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4288 
4289   if (field->hasAttr<AnnotateAttr>())
4290     addr = EmitFieldAnnotations(field, addr);
4291 
4292   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4293   LV.getQuals().addCVRQualifiers(RecordCVR);
4294 
4295   // __weak attribute on a field is ignored.
4296   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4297     LV.getQuals().removeObjCGCAttr();
4298 
4299   return LV;
4300 }
4301 
4302 LValue
4303 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4304                                                   const FieldDecl *Field) {
4305   QualType FieldType = Field->getType();
4306 
4307   if (!FieldType->isReferenceType())
4308     return EmitLValueForField(Base, Field);
4309 
4310   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4311 
4312   // Make sure that the address is pointing to the right type.
4313   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4314   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4315 
4316   // TODO: Generate TBAA information that describes this access as a structure
4317   // member access and not just an access to an object of the field's type. This
4318   // should be similar to what we do in EmitLValueForField().
4319   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4320   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4321   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4322   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4323                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4324 }
4325 
4326 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4327   if (E->isFileScope()) {
4328     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4329     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4330   }
4331   if (E->getType()->isVariablyModifiedType())
4332     // make sure to emit the VLA size.
4333     EmitVariablyModifiedType(E->getType());
4334 
4335   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4336   const Expr *InitExpr = E->getInitializer();
4337   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4338 
4339   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4340                    /*Init*/ true);
4341 
4342   // Block-scope compound literals are destroyed at the end of the enclosing
4343   // scope in C.
4344   if (!getLangOpts().CPlusPlus)
4345     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4346       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4347                                   E->getType(), getDestroyer(DtorKind),
4348                                   DtorKind & EHCleanup);
4349 
4350   return Result;
4351 }
4352 
4353 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4354   if (!E->isGLValue())
4355     // Initializing an aggregate temporary in C++11: T{...}.
4356     return EmitAggExprToLValue(E);
4357 
4358   // An lvalue initializer list must be initializing a reference.
4359   assert(E->isTransparent() && "non-transparent glvalue init list");
4360   return EmitLValue(E->getInit(0));
4361 }
4362 
4363 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4364 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4365 /// LValue is returned and the current block has been terminated.
4366 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4367                                                     const Expr *Operand) {
4368   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4369     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4370     return None;
4371   }
4372 
4373   return CGF.EmitLValue(Operand);
4374 }
4375 
4376 LValue CodeGenFunction::
4377 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4378   if (!expr->isGLValue()) {
4379     // ?: here should be an aggregate.
4380     assert(hasAggregateEvaluationKind(expr->getType()) &&
4381            "Unexpected conditional operator!");
4382     return EmitAggExprToLValue(expr);
4383   }
4384 
4385   OpaqueValueMapping binding(*this, expr);
4386 
4387   const Expr *condExpr = expr->getCond();
4388   bool CondExprBool;
4389   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4390     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4391     if (!CondExprBool) std::swap(live, dead);
4392 
4393     if (!ContainsLabel(dead)) {
4394       // If the true case is live, we need to track its region.
4395       if (CondExprBool)
4396         incrementProfileCounter(expr);
4397       // If a throw expression we emit it and return an undefined lvalue
4398       // because it can't be used.
4399       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4400         EmitCXXThrowExpr(ThrowExpr);
4401         llvm::Type *Ty =
4402             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4403         return MakeAddrLValue(
4404             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4405             dead->getType());
4406       }
4407       return EmitLValue(live);
4408     }
4409   }
4410 
4411   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4412   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4413   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4414 
4415   ConditionalEvaluation eval(*this);
4416   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4417 
4418   // Any temporaries created here are conditional.
4419   EmitBlock(lhsBlock);
4420   incrementProfileCounter(expr);
4421   eval.begin(*this);
4422   Optional<LValue> lhs =
4423       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4424   eval.end(*this);
4425 
4426   if (lhs && !lhs->isSimple())
4427     return EmitUnsupportedLValue(expr, "conditional operator");
4428 
4429   lhsBlock = Builder.GetInsertBlock();
4430   if (lhs)
4431     Builder.CreateBr(contBlock);
4432 
4433   // Any temporaries created here are conditional.
4434   EmitBlock(rhsBlock);
4435   eval.begin(*this);
4436   Optional<LValue> rhs =
4437       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4438   eval.end(*this);
4439   if (rhs && !rhs->isSimple())
4440     return EmitUnsupportedLValue(expr, "conditional operator");
4441   rhsBlock = Builder.GetInsertBlock();
4442 
4443   EmitBlock(contBlock);
4444 
4445   if (lhs && rhs) {
4446     llvm::PHINode *phi =
4447         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4448     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4449     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4450     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4451     AlignmentSource alignSource =
4452       std::max(lhs->getBaseInfo().getAlignmentSource(),
4453                rhs->getBaseInfo().getAlignmentSource());
4454     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4455         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4456     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4457                           TBAAInfo);
4458   } else {
4459     assert((lhs || rhs) &&
4460            "both operands of glvalue conditional are throw-expressions?");
4461     return lhs ? *lhs : *rhs;
4462   }
4463 }
4464 
4465 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4466 /// type. If the cast is to a reference, we can have the usual lvalue result,
4467 /// otherwise if a cast is needed by the code generator in an lvalue context,
4468 /// then it must mean that we need the address of an aggregate in order to
4469 /// access one of its members.  This can happen for all the reasons that casts
4470 /// are permitted with aggregate result, including noop aggregate casts, and
4471 /// cast from scalar to union.
4472 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4473   switch (E->getCastKind()) {
4474   case CK_ToVoid:
4475   case CK_BitCast:
4476   case CK_LValueToRValueBitCast:
4477   case CK_ArrayToPointerDecay:
4478   case CK_FunctionToPointerDecay:
4479   case CK_NullToMemberPointer:
4480   case CK_NullToPointer:
4481   case CK_IntegralToPointer:
4482   case CK_PointerToIntegral:
4483   case CK_PointerToBoolean:
4484   case CK_VectorSplat:
4485   case CK_IntegralCast:
4486   case CK_BooleanToSignedIntegral:
4487   case CK_IntegralToBoolean:
4488   case CK_IntegralToFloating:
4489   case CK_FloatingToIntegral:
4490   case CK_FloatingToBoolean:
4491   case CK_FloatingCast:
4492   case CK_FloatingRealToComplex:
4493   case CK_FloatingComplexToReal:
4494   case CK_FloatingComplexToBoolean:
4495   case CK_FloatingComplexCast:
4496   case CK_FloatingComplexToIntegralComplex:
4497   case CK_IntegralRealToComplex:
4498   case CK_IntegralComplexToReal:
4499   case CK_IntegralComplexToBoolean:
4500   case CK_IntegralComplexCast:
4501   case CK_IntegralComplexToFloatingComplex:
4502   case CK_DerivedToBaseMemberPointer:
4503   case CK_BaseToDerivedMemberPointer:
4504   case CK_MemberPointerToBoolean:
4505   case CK_ReinterpretMemberPointer:
4506   case CK_AnyPointerToBlockPointerCast:
4507   case CK_ARCProduceObject:
4508   case CK_ARCConsumeObject:
4509   case CK_ARCReclaimReturnedObject:
4510   case CK_ARCExtendBlockObject:
4511   case CK_CopyAndAutoreleaseBlockObject:
4512   case CK_IntToOCLSampler:
4513   case CK_FixedPointCast:
4514   case CK_FixedPointToBoolean:
4515   case CK_FixedPointToIntegral:
4516   case CK_IntegralToFixedPoint:
4517     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4518 
4519   case CK_Dependent:
4520     llvm_unreachable("dependent cast kind in IR gen!");
4521 
4522   case CK_BuiltinFnToFnPtr:
4523     llvm_unreachable("builtin functions are handled elsewhere");
4524 
4525   // These are never l-values; just use the aggregate emission code.
4526   case CK_NonAtomicToAtomic:
4527   case CK_AtomicToNonAtomic:
4528     return EmitAggExprToLValue(E);
4529 
4530   case CK_Dynamic: {
4531     LValue LV = EmitLValue(E->getSubExpr());
4532     Address V = LV.getAddress(*this);
4533     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4534     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4535   }
4536 
4537   case CK_ConstructorConversion:
4538   case CK_UserDefinedConversion:
4539   case CK_CPointerToObjCPointerCast:
4540   case CK_BlockPointerToObjCPointerCast:
4541   case CK_NoOp:
4542   case CK_LValueToRValue:
4543     return EmitLValue(E->getSubExpr());
4544 
4545   case CK_UncheckedDerivedToBase:
4546   case CK_DerivedToBase: {
4547     const auto *DerivedClassTy =
4548         E->getSubExpr()->getType()->castAs<RecordType>();
4549     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4550 
4551     LValue LV = EmitLValue(E->getSubExpr());
4552     Address This = LV.getAddress(*this);
4553 
4554     // Perform the derived-to-base conversion
4555     Address Base = GetAddressOfBaseClass(
4556         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4557         /*NullCheckValue=*/false, E->getExprLoc());
4558 
4559     // TODO: Support accesses to members of base classes in TBAA. For now, we
4560     // conservatively pretend that the complete object is of the base class
4561     // type.
4562     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4563                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4564   }
4565   case CK_ToUnion:
4566     return EmitAggExprToLValue(E);
4567   case CK_BaseToDerived: {
4568     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4569     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4570 
4571     LValue LV = EmitLValue(E->getSubExpr());
4572 
4573     // Perform the base-to-derived conversion
4574     Address Derived = GetAddressOfDerivedClass(
4575         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4576         /*NullCheckValue=*/false);
4577 
4578     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4579     // performed and the object is not of the derived type.
4580     if (sanitizePerformTypeCheck())
4581       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4582                     Derived.getPointer(), E->getType());
4583 
4584     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4585       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4586                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4587                                 E->getBeginLoc());
4588 
4589     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4590                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4591   }
4592   case CK_LValueBitCast: {
4593     // This must be a reinterpret_cast (or c-style equivalent).
4594     const auto *CE = cast<ExplicitCastExpr>(E);
4595 
4596     CGM.EmitExplicitCastExprType(CE, this);
4597     LValue LV = EmitLValue(E->getSubExpr());
4598     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4599                                       ConvertType(CE->getTypeAsWritten()));
4600 
4601     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4602       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4603                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4604                                 E->getBeginLoc());
4605 
4606     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4607                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4608   }
4609   case CK_AddressSpaceConversion: {
4610     LValue LV = EmitLValue(E->getSubExpr());
4611     QualType DestTy = getContext().getPointerType(E->getType());
4612     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4613         *this, LV.getPointer(*this),
4614         E->getSubExpr()->getType().getAddressSpace(),
4615         E->getType().getAddressSpace(), ConvertType(DestTy));
4616     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4617                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4618   }
4619   case CK_ObjCObjectLValueCast: {
4620     LValue LV = EmitLValue(E->getSubExpr());
4621     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4622                                              ConvertType(E->getType()));
4623     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4624                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4625   }
4626   case CK_ZeroToOCLOpaqueType:
4627     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4628   }
4629 
4630   llvm_unreachable("Unhandled lvalue cast kind?");
4631 }
4632 
4633 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4634   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4635   return getOrCreateOpaqueLValueMapping(e);
4636 }
4637 
4638 LValue
4639 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4640   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4641 
4642   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4643       it = OpaqueLValues.find(e);
4644 
4645   if (it != OpaqueLValues.end())
4646     return it->second;
4647 
4648   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4649   return EmitLValue(e->getSourceExpr());
4650 }
4651 
4652 RValue
4653 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4654   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4655 
4656   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4657       it = OpaqueRValues.find(e);
4658 
4659   if (it != OpaqueRValues.end())
4660     return it->second;
4661 
4662   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4663   return EmitAnyExpr(e->getSourceExpr());
4664 }
4665 
4666 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4667                                            const FieldDecl *FD,
4668                                            SourceLocation Loc) {
4669   QualType FT = FD->getType();
4670   LValue FieldLV = EmitLValueForField(LV, FD);
4671   switch (getEvaluationKind(FT)) {
4672   case TEK_Complex:
4673     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4674   case TEK_Aggregate:
4675     return FieldLV.asAggregateRValue(*this);
4676   case TEK_Scalar:
4677     // This routine is used to load fields one-by-one to perform a copy, so
4678     // don't load reference fields.
4679     if (FD->getType()->isReferenceType())
4680       return RValue::get(FieldLV.getPointer(*this));
4681     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4682     // primitive load.
4683     if (FieldLV.isBitField())
4684       return EmitLoadOfLValue(FieldLV, Loc);
4685     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4686   }
4687   llvm_unreachable("bad evaluation kind");
4688 }
4689 
4690 //===--------------------------------------------------------------------===//
4691 //                             Expression Emission
4692 //===--------------------------------------------------------------------===//
4693 
4694 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4695                                      ReturnValueSlot ReturnValue) {
4696   // Builtins never have block type.
4697   if (E->getCallee()->getType()->isBlockPointerType())
4698     return EmitBlockCallExpr(E, ReturnValue);
4699 
4700   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4701     return EmitCXXMemberCallExpr(CE, ReturnValue);
4702 
4703   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4704     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4705 
4706   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4707     if (const CXXMethodDecl *MD =
4708           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4709       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4710 
4711   CGCallee callee = EmitCallee(E->getCallee());
4712 
4713   if (callee.isBuiltin()) {
4714     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4715                            E, ReturnValue);
4716   }
4717 
4718   if (callee.isPseudoDestructor()) {
4719     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4720   }
4721 
4722   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4723 }
4724 
4725 /// Emit a CallExpr without considering whether it might be a subclass.
4726 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4727                                            ReturnValueSlot ReturnValue) {
4728   CGCallee Callee = EmitCallee(E->getCallee());
4729   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4730 }
4731 
4732 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4733   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4734 
4735   if (auto builtinID = FD->getBuiltinID()) {
4736     // Replaceable builtin provide their own implementation of a builtin. Unless
4737     // we are in the builtin implementation itself, don't call the actual
4738     // builtin. If we are in the builtin implementation, avoid trivial infinite
4739     // recursion.
4740     if (!FD->isInlineBuiltinDeclaration() ||
4741         CGF.CurFn->getName() == FD->getName())
4742       return CGCallee::forBuiltin(builtinID, FD);
4743   }
4744 
4745   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4746   return CGCallee::forDirect(calleePtr, GD);
4747 }
4748 
4749 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4750   E = E->IgnoreParens();
4751 
4752   // Look through function-to-pointer decay.
4753   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4754     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4755         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4756       return EmitCallee(ICE->getSubExpr());
4757     }
4758 
4759   // Resolve direct calls.
4760   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4761     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4762       return EmitDirectCallee(*this, FD);
4763     }
4764   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4765     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4766       EmitIgnoredExpr(ME->getBase());
4767       return EmitDirectCallee(*this, FD);
4768     }
4769 
4770   // Look through template substitutions.
4771   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4772     return EmitCallee(NTTP->getReplacement());
4773 
4774   // Treat pseudo-destructor calls differently.
4775   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4776     return CGCallee::forPseudoDestructor(PDE);
4777   }
4778 
4779   // Otherwise, we have an indirect reference.
4780   llvm::Value *calleePtr;
4781   QualType functionType;
4782   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4783     calleePtr = EmitScalarExpr(E);
4784     functionType = ptrType->getPointeeType();
4785   } else {
4786     functionType = E->getType();
4787     calleePtr = EmitLValue(E).getPointer(*this);
4788   }
4789   assert(functionType->isFunctionType());
4790 
4791   GlobalDecl GD;
4792   if (const auto *VD =
4793           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4794     GD = GlobalDecl(VD);
4795 
4796   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4797   CGCallee callee(calleeInfo, calleePtr);
4798   return callee;
4799 }
4800 
4801 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4802   // Comma expressions just emit their LHS then their RHS as an l-value.
4803   if (E->getOpcode() == BO_Comma) {
4804     EmitIgnoredExpr(E->getLHS());
4805     EnsureInsertPoint();
4806     return EmitLValue(E->getRHS());
4807   }
4808 
4809   if (E->getOpcode() == BO_PtrMemD ||
4810       E->getOpcode() == BO_PtrMemI)
4811     return EmitPointerToDataMemberBinaryExpr(E);
4812 
4813   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4814 
4815   // Note that in all of these cases, __block variables need the RHS
4816   // evaluated first just in case the variable gets moved by the RHS.
4817 
4818   switch (getEvaluationKind(E->getType())) {
4819   case TEK_Scalar: {
4820     switch (E->getLHS()->getType().getObjCLifetime()) {
4821     case Qualifiers::OCL_Strong:
4822       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4823 
4824     case Qualifiers::OCL_Autoreleasing:
4825       return EmitARCStoreAutoreleasing(E).first;
4826 
4827     // No reason to do any of these differently.
4828     case Qualifiers::OCL_None:
4829     case Qualifiers::OCL_ExplicitNone:
4830     case Qualifiers::OCL_Weak:
4831       break;
4832     }
4833 
4834     RValue RV = EmitAnyExpr(E->getRHS());
4835     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4836     if (RV.isScalar())
4837       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4838     EmitStoreThroughLValue(RV, LV);
4839     if (getLangOpts().OpenMP)
4840       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4841                                                                 E->getLHS());
4842     return LV;
4843   }
4844 
4845   case TEK_Complex:
4846     return EmitComplexAssignmentLValue(E);
4847 
4848   case TEK_Aggregate:
4849     return EmitAggExprToLValue(E);
4850   }
4851   llvm_unreachable("bad evaluation kind");
4852 }
4853 
4854 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4855   RValue RV = EmitCallExpr(E);
4856 
4857   if (!RV.isScalar())
4858     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4859                           AlignmentSource::Decl);
4860 
4861   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4862          "Can't have a scalar return unless the return type is a "
4863          "reference type!");
4864 
4865   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4866 }
4867 
4868 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4869   // FIXME: This shouldn't require another copy.
4870   return EmitAggExprToLValue(E);
4871 }
4872 
4873 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4874   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4875          && "binding l-value to type which needs a temporary");
4876   AggValueSlot Slot = CreateAggTemp(E->getType());
4877   EmitCXXConstructExpr(E, Slot);
4878   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4879 }
4880 
4881 LValue
4882 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4883   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4884 }
4885 
4886 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4887   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
4888                                       ConvertType(E->getType()));
4889 }
4890 
4891 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4892   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4893                         AlignmentSource::Decl);
4894 }
4895 
4896 LValue
4897 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4898   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4899   Slot.setExternallyDestructed();
4900   EmitAggExpr(E->getSubExpr(), Slot);
4901   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4902   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4903 }
4904 
4905 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4906   RValue RV = EmitObjCMessageExpr(E);
4907 
4908   if (!RV.isScalar())
4909     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4910                           AlignmentSource::Decl);
4911 
4912   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4913          "Can't have a scalar return unless the return type is a "
4914          "reference type!");
4915 
4916   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4917 }
4918 
4919 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4920   Address V =
4921     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4922   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4923 }
4924 
4925 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4926                                              const ObjCIvarDecl *Ivar) {
4927   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4928 }
4929 
4930 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4931                                           llvm::Value *BaseValue,
4932                                           const ObjCIvarDecl *Ivar,
4933                                           unsigned CVRQualifiers) {
4934   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4935                                                    Ivar, CVRQualifiers);
4936 }
4937 
4938 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4939   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4940   llvm::Value *BaseValue = nullptr;
4941   const Expr *BaseExpr = E->getBase();
4942   Qualifiers BaseQuals;
4943   QualType ObjectTy;
4944   if (E->isArrow()) {
4945     BaseValue = EmitScalarExpr(BaseExpr);
4946     ObjectTy = BaseExpr->getType()->getPointeeType();
4947     BaseQuals = ObjectTy.getQualifiers();
4948   } else {
4949     LValue BaseLV = EmitLValue(BaseExpr);
4950     BaseValue = BaseLV.getPointer(*this);
4951     ObjectTy = BaseExpr->getType();
4952     BaseQuals = ObjectTy.getQualifiers();
4953   }
4954 
4955   LValue LV =
4956     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4957                       BaseQuals.getCVRQualifiers());
4958   setObjCGCLValueClass(getContext(), E, LV);
4959   return LV;
4960 }
4961 
4962 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4963   // Can only get l-value for message expression returning aggregate type
4964   RValue RV = EmitAnyExprToTemp(E);
4965   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4966                         AlignmentSource::Decl);
4967 }
4968 
4969 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4970                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4971                                  llvm::Value *Chain) {
4972   // Get the actual function type. The callee type will always be a pointer to
4973   // function type or a block pointer type.
4974   assert(CalleeType->isFunctionPointerType() &&
4975          "Call must have function pointer type!");
4976 
4977   const Decl *TargetDecl =
4978       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4979 
4980   CalleeType = getContext().getCanonicalType(CalleeType);
4981 
4982   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4983 
4984   CGCallee Callee = OrigCallee;
4985 
4986   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4987       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4988     if (llvm::Constant *PrefixSig =
4989             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4990       SanitizerScope SanScope(this);
4991       // Remove any (C++17) exception specifications, to allow calling e.g. a
4992       // noexcept function through a non-noexcept pointer.
4993       auto ProtoTy =
4994         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4995       llvm::Constant *FTRTTIConst =
4996           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4997       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4998       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4999           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
5000 
5001       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5002 
5003       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5004           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5005       llvm::Value *CalleeSigPtr =
5006           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5007       llvm::Value *CalleeSig =
5008           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5009       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5010 
5011       llvm::BasicBlock *Cont = createBasicBlock("cont");
5012       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5013       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5014 
5015       EmitBlock(TypeCheck);
5016       llvm::Value *CalleeRTTIPtr =
5017           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5018       llvm::Value *CalleeRTTIEncoded =
5019           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5020       llvm::Value *CalleeRTTI =
5021           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5022       llvm::Value *CalleeRTTIMatch =
5023           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5024       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5025                                       EmitCheckTypeDescriptor(CalleeType)};
5026       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5027                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5028                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5029 
5030       Builder.CreateBr(Cont);
5031       EmitBlock(Cont);
5032     }
5033   }
5034 
5035   const auto *FnType = cast<FunctionType>(PointeeType);
5036 
5037   // If we are checking indirect calls and this call is indirect, check that the
5038   // function pointer is a member of the bit set for the function type.
5039   if (SanOpts.has(SanitizerKind::CFIICall) &&
5040       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5041     SanitizerScope SanScope(this);
5042     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5043 
5044     llvm::Metadata *MD;
5045     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5046       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5047     else
5048       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5049 
5050     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5051 
5052     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5053     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5054     llvm::Value *TypeTest = Builder.CreateCall(
5055         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5056 
5057     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5058     llvm::Constant *StaticData[] = {
5059         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5060         EmitCheckSourceLocation(E->getBeginLoc()),
5061         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5062     };
5063     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5064       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5065                            CastedCallee, StaticData);
5066     } else {
5067       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5068                 SanitizerHandler::CFICheckFail, StaticData,
5069                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5070     }
5071   }
5072 
5073   CallArgList Args;
5074   if (Chain)
5075     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5076              CGM.getContext().VoidPtrTy);
5077 
5078   // C++17 requires that we evaluate arguments to a call using assignment syntax
5079   // right-to-left, and that we evaluate arguments to certain other operators
5080   // left-to-right. Note that we allow this to override the order dictated by
5081   // the calling convention on the MS ABI, which means that parameter
5082   // destruction order is not necessarily reverse construction order.
5083   // FIXME: Revisit this based on C++ committee response to unimplementability.
5084   EvaluationOrder Order = EvaluationOrder::Default;
5085   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5086     if (OCE->isAssignmentOp())
5087       Order = EvaluationOrder::ForceRightToLeft;
5088     else {
5089       switch (OCE->getOperator()) {
5090       case OO_LessLess:
5091       case OO_GreaterGreater:
5092       case OO_AmpAmp:
5093       case OO_PipePipe:
5094       case OO_Comma:
5095       case OO_ArrowStar:
5096         Order = EvaluationOrder::ForceLeftToRight;
5097         break;
5098       default:
5099         break;
5100       }
5101     }
5102   }
5103 
5104   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5105                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5106 
5107   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5108       Args, FnType, /*ChainCall=*/Chain);
5109 
5110   // C99 6.5.2.2p6:
5111   //   If the expression that denotes the called function has a type
5112   //   that does not include a prototype, [the default argument
5113   //   promotions are performed]. If the number of arguments does not
5114   //   equal the number of parameters, the behavior is undefined. If
5115   //   the function is defined with a type that includes a prototype,
5116   //   and either the prototype ends with an ellipsis (, ...) or the
5117   //   types of the arguments after promotion are not compatible with
5118   //   the types of the parameters, the behavior is undefined. If the
5119   //   function is defined with a type that does not include a
5120   //   prototype, and the types of the arguments after promotion are
5121   //   not compatible with those of the parameters after promotion,
5122   //   the behavior is undefined [except in some trivial cases].
5123   // That is, in the general case, we should assume that a call
5124   // through an unprototyped function type works like a *non-variadic*
5125   // call.  The way we make this work is to cast to the exact type
5126   // of the promoted arguments.
5127   //
5128   // Chain calls use this same code path to add the invisible chain parameter
5129   // to the function type.
5130   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5131     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5132     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5133     CalleeTy = CalleeTy->getPointerTo(AS);
5134 
5135     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5136     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5137     Callee.setFunctionPointer(CalleePtr);
5138   }
5139 
5140   llvm::CallBase *CallOrInvoke = nullptr;
5141   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5142                          E->getExprLoc());
5143 
5144   // Generate function declaration DISuprogram in order to be used
5145   // in debug info about call sites.
5146   if (CGDebugInfo *DI = getDebugInfo()) {
5147     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5148       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5149                                   CalleeDecl);
5150   }
5151 
5152   return Call;
5153 }
5154 
5155 LValue CodeGenFunction::
5156 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5157   Address BaseAddr = Address::invalid();
5158   if (E->getOpcode() == BO_PtrMemI) {
5159     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5160   } else {
5161     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5162   }
5163 
5164   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5165   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5166 
5167   LValueBaseInfo BaseInfo;
5168   TBAAAccessInfo TBAAInfo;
5169   Address MemberAddr =
5170     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5171                                     &TBAAInfo);
5172 
5173   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5174 }
5175 
5176 /// Given the address of a temporary variable, produce an r-value of
5177 /// its type.
5178 RValue CodeGenFunction::convertTempToRValue(Address addr,
5179                                             QualType type,
5180                                             SourceLocation loc) {
5181   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5182   switch (getEvaluationKind(type)) {
5183   case TEK_Complex:
5184     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5185   case TEK_Aggregate:
5186     return lvalue.asAggregateRValue(*this);
5187   case TEK_Scalar:
5188     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5189   }
5190   llvm_unreachable("bad evaluation kind");
5191 }
5192 
5193 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5194   assert(Val->getType()->isFPOrFPVectorTy());
5195   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5196     return;
5197 
5198   llvm::MDBuilder MDHelper(getLLVMContext());
5199   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5200 
5201   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5202 }
5203 
5204 namespace {
5205   struct LValueOrRValue {
5206     LValue LV;
5207     RValue RV;
5208   };
5209 }
5210 
5211 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5212                                            const PseudoObjectExpr *E,
5213                                            bool forLValue,
5214                                            AggValueSlot slot) {
5215   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5216 
5217   // Find the result expression, if any.
5218   const Expr *resultExpr = E->getResultExpr();
5219   LValueOrRValue result;
5220 
5221   for (PseudoObjectExpr::const_semantics_iterator
5222          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5223     const Expr *semantic = *i;
5224 
5225     // If this semantic expression is an opaque value, bind it
5226     // to the result of its source expression.
5227     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5228       // Skip unique OVEs.
5229       if (ov->isUnique()) {
5230         assert(ov != resultExpr &&
5231                "A unique OVE cannot be used as the result expression");
5232         continue;
5233       }
5234 
5235       // If this is the result expression, we may need to evaluate
5236       // directly into the slot.
5237       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5238       OVMA opaqueData;
5239       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5240           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5241         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5242         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5243                                        AlignmentSource::Decl);
5244         opaqueData = OVMA::bind(CGF, ov, LV);
5245         result.RV = slot.asRValue();
5246 
5247       // Otherwise, emit as normal.
5248       } else {
5249         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5250 
5251         // If this is the result, also evaluate the result now.
5252         if (ov == resultExpr) {
5253           if (forLValue)
5254             result.LV = CGF.EmitLValue(ov);
5255           else
5256             result.RV = CGF.EmitAnyExpr(ov, slot);
5257         }
5258       }
5259 
5260       opaques.push_back(opaqueData);
5261 
5262     // Otherwise, if the expression is the result, evaluate it
5263     // and remember the result.
5264     } else if (semantic == resultExpr) {
5265       if (forLValue)
5266         result.LV = CGF.EmitLValue(semantic);
5267       else
5268         result.RV = CGF.EmitAnyExpr(semantic, slot);
5269 
5270     // Otherwise, evaluate the expression in an ignored context.
5271     } else {
5272       CGF.EmitIgnoredExpr(semantic);
5273     }
5274   }
5275 
5276   // Unbind all the opaques now.
5277   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5278     opaques[i].unbind(CGF);
5279 
5280   return result;
5281 }
5282 
5283 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5284                                                AggValueSlot slot) {
5285   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5286 }
5287 
5288 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5289   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5290 }
5291