1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name) { 65 auto Alloca = CreateTempAlloca(Ty, Name); 66 Alloca->setAlignment(Align.getQuantity()); 67 return Address(Alloca, Align); 68 } 69 70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 71 /// block. 72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 73 const Twine &Name) { 74 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 75 nullptr, Name, AllocaInsertPt); 76 } 77 78 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 79 /// default alignment of the corresponding LLVM type, which is *not* 80 /// guaranteed to be related in any way to the expected alignment of 81 /// an AST type that might have been lowered to Ty. 82 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 83 const Twine &Name) { 84 CharUnits Align = 85 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 86 return CreateTempAlloca(Ty, Align, Name); 87 } 88 89 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 90 assert(isa<llvm::AllocaInst>(Var.getPointer())); 91 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 92 Store->setAlignment(Var.getAlignment().getQuantity()); 93 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 94 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 95 } 96 97 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 98 CharUnits Align = getContext().getTypeAlignInChars(Ty); 99 return CreateTempAlloca(ConvertType(Ty), Align, Name); 100 } 101 102 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 103 // FIXME: Should we prefer the preferred type alignment here? 104 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 105 } 106 107 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 108 const Twine &Name) { 109 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 110 } 111 112 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 113 /// expression and compare the result against zero, returning an Int1Ty value. 114 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 115 PGO.setCurrentStmt(E); 116 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 117 llvm::Value *MemPtr = EmitScalarExpr(E); 118 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 119 } 120 121 QualType BoolTy = getContext().BoolTy; 122 SourceLocation Loc = E->getExprLoc(); 123 if (!E->getType()->isAnyComplexType()) 124 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 125 126 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 127 Loc); 128 } 129 130 /// EmitIgnoredExpr - Emit code to compute the specified expression, 131 /// ignoring the result. 132 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 133 if (E->isRValue()) 134 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 135 136 // Just emit it as an l-value and drop the result. 137 EmitLValue(E); 138 } 139 140 /// EmitAnyExpr - Emit code to compute the specified expression which 141 /// can have any type. The result is returned as an RValue struct. 142 /// If this is an aggregate expression, AggSlot indicates where the 143 /// result should be returned. 144 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 145 AggValueSlot aggSlot, 146 bool ignoreResult) { 147 switch (getEvaluationKind(E->getType())) { 148 case TEK_Scalar: 149 return RValue::get(EmitScalarExpr(E, ignoreResult)); 150 case TEK_Complex: 151 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 152 case TEK_Aggregate: 153 if (!ignoreResult && aggSlot.isIgnored()) 154 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 155 EmitAggExpr(E, aggSlot); 156 return aggSlot.asRValue(); 157 } 158 llvm_unreachable("bad evaluation kind"); 159 } 160 161 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 162 /// always be accessible even if no aggregate location is provided. 163 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 164 AggValueSlot AggSlot = AggValueSlot::ignored(); 165 166 if (hasAggregateEvaluationKind(E->getType())) 167 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 168 return EmitAnyExpr(E, AggSlot); 169 } 170 171 /// EmitAnyExprToMem - Evaluate an expression into a given memory 172 /// location. 173 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 174 Address Location, 175 Qualifiers Quals, 176 bool IsInit) { 177 // FIXME: This function should take an LValue as an argument. 178 switch (getEvaluationKind(E->getType())) { 179 case TEK_Complex: 180 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 181 /*isInit*/ false); 182 return; 183 184 case TEK_Aggregate: { 185 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 186 AggValueSlot::IsDestructed_t(IsInit), 187 AggValueSlot::DoesNotNeedGCBarriers, 188 AggValueSlot::IsAliased_t(!IsInit))); 189 return; 190 } 191 192 case TEK_Scalar: { 193 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 194 LValue LV = MakeAddrLValue(Location, E->getType()); 195 EmitStoreThroughLValue(RV, LV); 196 return; 197 } 198 } 199 llvm_unreachable("bad evaluation kind"); 200 } 201 202 static void 203 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 204 const Expr *E, Address ReferenceTemporary) { 205 // Objective-C++ ARC: 206 // If we are binding a reference to a temporary that has ownership, we 207 // need to perform retain/release operations on the temporary. 208 // 209 // FIXME: This should be looking at E, not M. 210 if (auto Lifetime = M->getType().getObjCLifetime()) { 211 switch (Lifetime) { 212 case Qualifiers::OCL_None: 213 case Qualifiers::OCL_ExplicitNone: 214 // Carry on to normal cleanup handling. 215 break; 216 217 case Qualifiers::OCL_Autoreleasing: 218 // Nothing to do; cleaned up by an autorelease pool. 219 return; 220 221 case Qualifiers::OCL_Strong: 222 case Qualifiers::OCL_Weak: 223 switch (StorageDuration Duration = M->getStorageDuration()) { 224 case SD_Static: 225 // Note: we intentionally do not register a cleanup to release 226 // the object on program termination. 227 return; 228 229 case SD_Thread: 230 // FIXME: We should probably register a cleanup in this case. 231 return; 232 233 case SD_Automatic: 234 case SD_FullExpression: 235 CodeGenFunction::Destroyer *Destroy; 236 CleanupKind CleanupKind; 237 if (Lifetime == Qualifiers::OCL_Strong) { 238 const ValueDecl *VD = M->getExtendingDecl(); 239 bool Precise = 240 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 241 CleanupKind = CGF.getARCCleanupKind(); 242 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 243 : &CodeGenFunction::destroyARCStrongImprecise; 244 } else { 245 // __weak objects always get EH cleanups; otherwise, exceptions 246 // could cause really nasty crashes instead of mere leaks. 247 CleanupKind = NormalAndEHCleanup; 248 Destroy = &CodeGenFunction::destroyARCWeak; 249 } 250 if (Duration == SD_FullExpression) 251 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), *Destroy, 253 CleanupKind & EHCleanup); 254 else 255 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 256 M->getType(), 257 *Destroy, CleanupKind & EHCleanup); 258 return; 259 260 case SD_Dynamic: 261 llvm_unreachable("temporary cannot have dynamic storage duration"); 262 } 263 llvm_unreachable("unknown storage duration"); 264 } 265 } 266 267 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 268 if (const RecordType *RT = 269 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 270 // Get the destructor for the reference temporary. 271 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 272 if (!ClassDecl->hasTrivialDestructor()) 273 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 274 } 275 276 if (!ReferenceTemporaryDtor) 277 return; 278 279 // Call the destructor for the temporary. 280 switch (M->getStorageDuration()) { 281 case SD_Static: 282 case SD_Thread: { 283 llvm::Constant *CleanupFn; 284 llvm::Constant *CleanupArg; 285 if (E->getType()->isArrayType()) { 286 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 287 ReferenceTemporary, E->getType(), 288 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 289 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 290 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 291 } else { 292 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 293 StructorType::Complete); 294 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 295 } 296 CGF.CGM.getCXXABI().registerGlobalDtor( 297 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 298 break; 299 } 300 301 case SD_FullExpression: 302 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 303 CodeGenFunction::destroyCXXObject, 304 CGF.getLangOpts().Exceptions); 305 break; 306 307 case SD_Automatic: 308 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 309 ReferenceTemporary, E->getType(), 310 CodeGenFunction::destroyCXXObject, 311 CGF.getLangOpts().Exceptions); 312 break; 313 314 case SD_Dynamic: 315 llvm_unreachable("temporary cannot have dynamic storage duration"); 316 } 317 } 318 319 static Address 320 createReferenceTemporary(CodeGenFunction &CGF, 321 const MaterializeTemporaryExpr *M, const Expr *Inner) { 322 switch (M->getStorageDuration()) { 323 case SD_FullExpression: 324 case SD_Automatic: { 325 // If we have a constant temporary array or record try to promote it into a 326 // constant global under the same rules a normal constant would've been 327 // promoted. This is easier on the optimizer and generally emits fewer 328 // instructions. 329 QualType Ty = Inner->getType(); 330 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 331 (Ty->isArrayType() || Ty->isRecordType()) && 332 CGF.CGM.isTypeConstant(Ty, true)) 333 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 334 auto *GV = new llvm::GlobalVariable( 335 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 336 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 337 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 338 GV->setAlignment(alignment.getQuantity()); 339 // FIXME: Should we put the new global into a COMDAT? 340 return Address(GV, alignment); 341 } 342 return CGF.CreateMemTemp(Ty, "ref.tmp"); 343 } 344 case SD_Thread: 345 case SD_Static: 346 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 347 348 case SD_Dynamic: 349 llvm_unreachable("temporary can't have dynamic storage duration"); 350 } 351 llvm_unreachable("unknown storage duration"); 352 } 353 354 LValue CodeGenFunction:: 355 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 356 const Expr *E = M->GetTemporaryExpr(); 357 358 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 359 // as that will cause the lifetime adjustment to be lost for ARC 360 auto ownership = M->getType().getObjCLifetime(); 361 if (ownership != Qualifiers::OCL_None && 362 ownership != Qualifiers::OCL_ExplicitNone) { 363 Address Object = createReferenceTemporary(*this, M, E); 364 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 365 Object = Address(llvm::ConstantExpr::getBitCast(Var, 366 ConvertTypeForMem(E->getType()) 367 ->getPointerTo(Object.getAddressSpace())), 368 Object.getAlignment()); 369 370 // createReferenceTemporary will promote the temporary to a global with a 371 // constant initializer if it can. It can only do this to a value of 372 // ARC-manageable type if the value is global and therefore "immune" to 373 // ref-counting operations. Therefore we have no need to emit either a 374 // dynamic initialization or a cleanup and we can just return the address 375 // of the temporary. 376 if (Var->hasInitializer()) 377 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 378 379 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 380 } 381 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 382 AlignmentSource::Decl); 383 384 switch (getEvaluationKind(E->getType())) { 385 default: llvm_unreachable("expected scalar or aggregate expression"); 386 case TEK_Scalar: 387 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 388 break; 389 case TEK_Aggregate: { 390 EmitAggExpr(E, AggValueSlot::forAddr(Object, 391 E->getType().getQualifiers(), 392 AggValueSlot::IsDestructed, 393 AggValueSlot::DoesNotNeedGCBarriers, 394 AggValueSlot::IsNotAliased)); 395 break; 396 } 397 } 398 399 pushTemporaryCleanup(*this, M, E, Object); 400 return RefTempDst; 401 } 402 403 SmallVector<const Expr *, 2> CommaLHSs; 404 SmallVector<SubobjectAdjustment, 2> Adjustments; 405 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 406 407 for (const auto &Ignored : CommaLHSs) 408 EmitIgnoredExpr(Ignored); 409 410 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 411 if (opaque->getType()->isRecordType()) { 412 assert(Adjustments.empty()); 413 return EmitOpaqueValueLValue(opaque); 414 } 415 } 416 417 // Create and initialize the reference temporary. 418 Address Object = createReferenceTemporary(*this, M, E); 419 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 420 Object = Address(llvm::ConstantExpr::getBitCast( 421 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 422 Object.getAlignment()); 423 // If the temporary is a global and has a constant initializer or is a 424 // constant temporary that we promoted to a global, we may have already 425 // initialized it. 426 if (!Var->hasInitializer()) { 427 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 428 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 429 } 430 } else { 431 switch (M->getStorageDuration()) { 432 case SD_Automatic: 433 case SD_FullExpression: 434 if (auto *Size = EmitLifetimeStart( 435 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 436 Object.getPointer())) { 437 if (M->getStorageDuration() == SD_Automatic) 438 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 439 Object, Size); 440 else 441 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 442 Size); 443 } 444 break; 445 default: 446 break; 447 } 448 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 449 } 450 pushTemporaryCleanup(*this, M, E, Object); 451 452 // Perform derived-to-base casts and/or field accesses, to get from the 453 // temporary object we created (and, potentially, for which we extended 454 // the lifetime) to the subobject we're binding the reference to. 455 for (unsigned I = Adjustments.size(); I != 0; --I) { 456 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 457 switch (Adjustment.Kind) { 458 case SubobjectAdjustment::DerivedToBaseAdjustment: 459 Object = 460 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 461 Adjustment.DerivedToBase.BasePath->path_begin(), 462 Adjustment.DerivedToBase.BasePath->path_end(), 463 /*NullCheckValue=*/ false, E->getExprLoc()); 464 break; 465 466 case SubobjectAdjustment::FieldAdjustment: { 467 LValue LV = MakeAddrLValue(Object, E->getType(), 468 AlignmentSource::Decl); 469 LV = EmitLValueForField(LV, Adjustment.Field); 470 assert(LV.isSimple() && 471 "materialized temporary field is not a simple lvalue"); 472 Object = LV.getAddress(); 473 break; 474 } 475 476 case SubobjectAdjustment::MemberPointerAdjustment: { 477 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 478 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 479 Adjustment.Ptr.MPT); 480 break; 481 } 482 } 483 } 484 485 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 486 } 487 488 RValue 489 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 490 // Emit the expression as an lvalue. 491 LValue LV = EmitLValue(E); 492 assert(LV.isSimple()); 493 llvm::Value *Value = LV.getPointer(); 494 495 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 496 // C++11 [dcl.ref]p5 (as amended by core issue 453): 497 // If a glvalue to which a reference is directly bound designates neither 498 // an existing object or function of an appropriate type nor a region of 499 // storage of suitable size and alignment to contain an object of the 500 // reference's type, the behavior is undefined. 501 QualType Ty = E->getType(); 502 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 503 } 504 505 return RValue::get(Value); 506 } 507 508 509 /// getAccessedFieldNo - Given an encoded value and a result number, return the 510 /// input field number being accessed. 511 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 512 const llvm::Constant *Elts) { 513 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 514 ->getZExtValue(); 515 } 516 517 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 518 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 519 llvm::Value *High) { 520 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 521 llvm::Value *K47 = Builder.getInt64(47); 522 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 523 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 524 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 525 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 526 return Builder.CreateMul(B1, KMul); 527 } 528 529 bool CodeGenFunction::sanitizePerformTypeCheck() const { 530 return SanOpts.has(SanitizerKind::Null) | 531 SanOpts.has(SanitizerKind::Alignment) | 532 SanOpts.has(SanitizerKind::ObjectSize) | 533 SanOpts.has(SanitizerKind::Vptr); 534 } 535 536 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 537 llvm::Value *Ptr, QualType Ty, 538 CharUnits Alignment, 539 SanitizerSet SkippedChecks) { 540 if (!sanitizePerformTypeCheck()) 541 return; 542 543 // Don't check pointers outside the default address space. The null check 544 // isn't correct, the object-size check isn't supported by LLVM, and we can't 545 // communicate the addresses to the runtime handler for the vptr check. 546 if (Ptr->getType()->getPointerAddressSpace()) 547 return; 548 549 SanitizerScope SanScope(this); 550 551 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 552 llvm::BasicBlock *Done = nullptr; 553 554 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 555 TCK == TCK_UpcastToVirtualBase; 556 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 557 !SkippedChecks.has(SanitizerKind::Null)) { 558 // The glvalue must not be an empty glvalue. 559 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 560 561 if (AllowNullPointers) { 562 // When performing pointer casts, it's OK if the value is null. 563 // Skip the remaining checks in that case. 564 Done = createBasicBlock("null"); 565 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 566 Builder.CreateCondBr(IsNonNull, Rest, Done); 567 EmitBlock(Rest); 568 } else { 569 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 570 } 571 } 572 573 if (SanOpts.has(SanitizerKind::ObjectSize) && 574 !SkippedChecks.has(SanitizerKind::ObjectSize) && 575 !Ty->isIncompleteType()) { 576 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 577 578 // The glvalue must refer to a large enough storage region. 579 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 580 // to check this. 581 // FIXME: Get object address space 582 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 583 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 584 llvm::Value *Min = Builder.getFalse(); 585 llvm::Value *NullIsUnknown = Builder.getFalse(); 586 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 587 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 588 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 589 llvm::ConstantInt::get(IntPtrTy, Size)); 590 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 591 } 592 593 uint64_t AlignVal = 0; 594 595 if (SanOpts.has(SanitizerKind::Alignment) && 596 !SkippedChecks.has(SanitizerKind::Alignment)) { 597 AlignVal = Alignment.getQuantity(); 598 if (!Ty->isIncompleteType() && !AlignVal) 599 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 600 601 // The glvalue must be suitably aligned. 602 if (AlignVal > 1) { 603 llvm::Value *Align = 604 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 605 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 606 llvm::Value *Aligned = 607 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 608 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 609 } 610 } 611 612 if (Checks.size() > 0) { 613 // Make sure we're not losing information. Alignment needs to be a power of 614 // 2 615 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 616 llvm::Constant *StaticData[] = { 617 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 618 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 619 llvm::ConstantInt::get(Int8Ty, TCK)}; 620 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 621 } 622 623 // If possible, check that the vptr indicates that there is a subobject of 624 // type Ty at offset zero within this object. 625 // 626 // C++11 [basic.life]p5,6: 627 // [For storage which does not refer to an object within its lifetime] 628 // The program has undefined behavior if: 629 // -- the [pointer or glvalue] is used to access a non-static data member 630 // or call a non-static member function 631 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 632 if (SanOpts.has(SanitizerKind::Vptr) && 633 !SkippedChecks.has(SanitizerKind::Vptr) && 634 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 635 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 636 TCK == TCK_UpcastToVirtualBase) && 637 RD && RD->hasDefinition() && RD->isDynamicClass()) { 638 // Compute a hash of the mangled name of the type. 639 // 640 // FIXME: This is not guaranteed to be deterministic! Move to a 641 // fingerprinting mechanism once LLVM provides one. For the time 642 // being the implementation happens to be deterministic. 643 SmallString<64> MangledName; 644 llvm::raw_svector_ostream Out(MangledName); 645 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 646 Out); 647 648 // Blacklist based on the mangled type. 649 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 650 Out.str())) { 651 llvm::hash_code TypeHash = hash_value(Out.str()); 652 653 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 654 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 655 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 656 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 657 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 658 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 659 660 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 661 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 662 663 // Look the hash up in our cache. 664 const int CacheSize = 128; 665 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 666 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 667 "__ubsan_vptr_type_cache"); 668 llvm::Value *Slot = Builder.CreateAnd(Hash, 669 llvm::ConstantInt::get(IntPtrTy, 670 CacheSize-1)); 671 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 672 llvm::Value *CacheVal = 673 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 674 getPointerAlign()); 675 676 // If the hash isn't in the cache, call a runtime handler to perform the 677 // hard work of checking whether the vptr is for an object of the right 678 // type. This will either fill in the cache and return, or produce a 679 // diagnostic. 680 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 681 llvm::Constant *StaticData[] = { 682 EmitCheckSourceLocation(Loc), 683 EmitCheckTypeDescriptor(Ty), 684 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 685 llvm::ConstantInt::get(Int8Ty, TCK) 686 }; 687 llvm::Value *DynamicData[] = { Ptr, Hash }; 688 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 689 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 690 DynamicData); 691 } 692 } 693 694 if (Done) { 695 Builder.CreateBr(Done); 696 EmitBlock(Done); 697 } 698 } 699 700 /// Determine whether this expression refers to a flexible array member in a 701 /// struct. We disable array bounds checks for such members. 702 static bool isFlexibleArrayMemberExpr(const Expr *E) { 703 // For compatibility with existing code, we treat arrays of length 0 or 704 // 1 as flexible array members. 705 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 706 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 707 if (CAT->getSize().ugt(1)) 708 return false; 709 } else if (!isa<IncompleteArrayType>(AT)) 710 return false; 711 712 E = E->IgnoreParens(); 713 714 // A flexible array member must be the last member in the class. 715 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 716 // FIXME: If the base type of the member expr is not FD->getParent(), 717 // this should not be treated as a flexible array member access. 718 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 719 RecordDecl::field_iterator FI( 720 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 721 return ++FI == FD->getParent()->field_end(); 722 } 723 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 724 return IRE->getDecl()->getNextIvar() == nullptr; 725 } 726 727 return false; 728 } 729 730 /// If Base is known to point to the start of an array, return the length of 731 /// that array. Return 0 if the length cannot be determined. 732 static llvm::Value *getArrayIndexingBound( 733 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 734 // For the vector indexing extension, the bound is the number of elements. 735 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 736 IndexedType = Base->getType(); 737 return CGF.Builder.getInt32(VT->getNumElements()); 738 } 739 740 Base = Base->IgnoreParens(); 741 742 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 743 if (CE->getCastKind() == CK_ArrayToPointerDecay && 744 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 745 IndexedType = CE->getSubExpr()->getType(); 746 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 747 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 748 return CGF.Builder.getInt(CAT->getSize()); 749 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 750 return CGF.getVLASize(VAT).first; 751 } 752 } 753 754 return nullptr; 755 } 756 757 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 758 llvm::Value *Index, QualType IndexType, 759 bool Accessed) { 760 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 761 "should not be called unless adding bounds checks"); 762 SanitizerScope SanScope(this); 763 764 QualType IndexedType; 765 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 766 if (!Bound) 767 return; 768 769 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 770 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 771 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 772 773 llvm::Constant *StaticData[] = { 774 EmitCheckSourceLocation(E->getExprLoc()), 775 EmitCheckTypeDescriptor(IndexedType), 776 EmitCheckTypeDescriptor(IndexType) 777 }; 778 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 779 : Builder.CreateICmpULE(IndexVal, BoundVal); 780 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 781 SanitizerHandler::OutOfBounds, StaticData, Index); 782 } 783 784 785 CodeGenFunction::ComplexPairTy CodeGenFunction:: 786 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 787 bool isInc, bool isPre) { 788 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 789 790 llvm::Value *NextVal; 791 if (isa<llvm::IntegerType>(InVal.first->getType())) { 792 uint64_t AmountVal = isInc ? 1 : -1; 793 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 794 795 // Add the inc/dec to the real part. 796 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 797 } else { 798 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 799 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 800 if (!isInc) 801 FVal.changeSign(); 802 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 803 804 // Add the inc/dec to the real part. 805 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 806 } 807 808 ComplexPairTy IncVal(NextVal, InVal.second); 809 810 // Store the updated result through the lvalue. 811 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 812 813 // If this is a postinc, return the value read from memory, otherwise use the 814 // updated value. 815 return isPre ? IncVal : InVal; 816 } 817 818 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 819 CodeGenFunction *CGF) { 820 // Bind VLAs in the cast type. 821 if (CGF && E->getType()->isVariablyModifiedType()) 822 CGF->EmitVariablyModifiedType(E->getType()); 823 824 if (CGDebugInfo *DI = getModuleDebugInfo()) 825 DI->EmitExplicitCastType(E->getType()); 826 } 827 828 //===----------------------------------------------------------------------===// 829 // LValue Expression Emission 830 //===----------------------------------------------------------------------===// 831 832 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 833 /// derive a more accurate bound on the alignment of the pointer. 834 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 835 AlignmentSource *Source) { 836 // We allow this with ObjC object pointers because of fragile ABIs. 837 assert(E->getType()->isPointerType() || 838 E->getType()->isObjCObjectPointerType()); 839 E = E->IgnoreParens(); 840 841 // Casts: 842 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 843 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 844 CGM.EmitExplicitCastExprType(ECE, this); 845 846 switch (CE->getCastKind()) { 847 // Non-converting casts (but not C's implicit conversion from void*). 848 case CK_BitCast: 849 case CK_NoOp: 850 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 851 if (PtrTy->getPointeeType()->isVoidType()) 852 break; 853 854 AlignmentSource InnerSource; 855 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 856 if (Source) *Source = InnerSource; 857 858 // If this is an explicit bitcast, and the source l-value is 859 // opaque, honor the alignment of the casted-to type. 860 if (isa<ExplicitCastExpr>(CE) && 861 InnerSource != AlignmentSource::Decl) { 862 Addr = Address(Addr.getPointer(), 863 getNaturalPointeeTypeAlignment(E->getType(), Source)); 864 } 865 866 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 867 CE->getCastKind() == CK_BitCast) { 868 if (auto PT = E->getType()->getAs<PointerType>()) 869 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 870 /*MayBeNull=*/true, 871 CodeGenFunction::CFITCK_UnrelatedCast, 872 CE->getLocStart()); 873 } 874 875 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 876 } 877 break; 878 879 // Array-to-pointer decay. 880 case CK_ArrayToPointerDecay: 881 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 882 883 // Derived-to-base conversions. 884 case CK_UncheckedDerivedToBase: 885 case CK_DerivedToBase: { 886 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 887 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 888 return GetAddressOfBaseClass(Addr, Derived, 889 CE->path_begin(), CE->path_end(), 890 ShouldNullCheckClassCastValue(CE), 891 CE->getExprLoc()); 892 } 893 894 // TODO: Is there any reason to treat base-to-derived conversions 895 // specially? 896 default: 897 break; 898 } 899 } 900 901 // Unary &. 902 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 903 if (UO->getOpcode() == UO_AddrOf) { 904 LValue LV = EmitLValue(UO->getSubExpr()); 905 if (Source) *Source = LV.getAlignmentSource(); 906 return LV.getAddress(); 907 } 908 } 909 910 // TODO: conditional operators, comma. 911 912 // Otherwise, use the alignment of the type. 913 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 914 return Address(EmitScalarExpr(E), Align); 915 } 916 917 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 918 if (Ty->isVoidType()) 919 return RValue::get(nullptr); 920 921 switch (getEvaluationKind(Ty)) { 922 case TEK_Complex: { 923 llvm::Type *EltTy = 924 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 925 llvm::Value *U = llvm::UndefValue::get(EltTy); 926 return RValue::getComplex(std::make_pair(U, U)); 927 } 928 929 // If this is a use of an undefined aggregate type, the aggregate must have an 930 // identifiable address. Just because the contents of the value are undefined 931 // doesn't mean that the address can't be taken and compared. 932 case TEK_Aggregate: { 933 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 934 return RValue::getAggregate(DestPtr); 935 } 936 937 case TEK_Scalar: 938 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 939 } 940 llvm_unreachable("bad evaluation kind"); 941 } 942 943 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 944 const char *Name) { 945 ErrorUnsupported(E, Name); 946 return GetUndefRValue(E->getType()); 947 } 948 949 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 950 const char *Name) { 951 ErrorUnsupported(E, Name); 952 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 953 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 954 E->getType()); 955 } 956 957 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 958 const Expr *Base = Obj; 959 while (!isa<CXXThisExpr>(Base)) { 960 // The result of a dynamic_cast can be null. 961 if (isa<CXXDynamicCastExpr>(Base)) 962 return false; 963 964 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 965 Base = CE->getSubExpr(); 966 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 967 Base = PE->getSubExpr(); 968 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 969 if (UO->getOpcode() == UO_Extension) 970 Base = UO->getSubExpr(); 971 else 972 return false; 973 } else { 974 return false; 975 } 976 } 977 return true; 978 } 979 980 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 981 LValue LV; 982 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 983 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 984 else 985 LV = EmitLValue(E); 986 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 987 SanitizerSet SkippedChecks; 988 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 989 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 990 if (IsBaseCXXThis) 991 SkippedChecks.set(SanitizerKind::Alignment, true); 992 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 993 SkippedChecks.set(SanitizerKind::Null, true); 994 } 995 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 996 E->getType(), LV.getAlignment(), SkippedChecks); 997 } 998 return LV; 999 } 1000 1001 /// EmitLValue - Emit code to compute a designator that specifies the location 1002 /// of the expression. 1003 /// 1004 /// This can return one of two things: a simple address or a bitfield reference. 1005 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1006 /// an LLVM pointer type. 1007 /// 1008 /// If this returns a bitfield reference, nothing about the pointee type of the 1009 /// LLVM value is known: For example, it may not be a pointer to an integer. 1010 /// 1011 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1012 /// this method guarantees that the returned pointer type will point to an LLVM 1013 /// type of the same size of the lvalue's type. If the lvalue has a variable 1014 /// length type, this is not possible. 1015 /// 1016 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1017 ApplyDebugLocation DL(*this, E); 1018 switch (E->getStmtClass()) { 1019 default: return EmitUnsupportedLValue(E, "l-value expression"); 1020 1021 case Expr::ObjCPropertyRefExprClass: 1022 llvm_unreachable("cannot emit a property reference directly"); 1023 1024 case Expr::ObjCSelectorExprClass: 1025 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1026 case Expr::ObjCIsaExprClass: 1027 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1028 case Expr::BinaryOperatorClass: 1029 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1030 case Expr::CompoundAssignOperatorClass: { 1031 QualType Ty = E->getType(); 1032 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1033 Ty = AT->getValueType(); 1034 if (!Ty->isAnyComplexType()) 1035 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1036 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1037 } 1038 case Expr::CallExprClass: 1039 case Expr::CXXMemberCallExprClass: 1040 case Expr::CXXOperatorCallExprClass: 1041 case Expr::UserDefinedLiteralClass: 1042 return EmitCallExprLValue(cast<CallExpr>(E)); 1043 case Expr::VAArgExprClass: 1044 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1045 case Expr::DeclRefExprClass: 1046 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1047 case Expr::ParenExprClass: 1048 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1049 case Expr::GenericSelectionExprClass: 1050 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1051 case Expr::PredefinedExprClass: 1052 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1053 case Expr::StringLiteralClass: 1054 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1055 case Expr::ObjCEncodeExprClass: 1056 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1057 case Expr::PseudoObjectExprClass: 1058 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1059 case Expr::InitListExprClass: 1060 return EmitInitListLValue(cast<InitListExpr>(E)); 1061 case Expr::CXXTemporaryObjectExprClass: 1062 case Expr::CXXConstructExprClass: 1063 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1064 case Expr::CXXBindTemporaryExprClass: 1065 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1066 case Expr::CXXUuidofExprClass: 1067 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1068 case Expr::LambdaExprClass: 1069 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1070 1071 case Expr::ExprWithCleanupsClass: { 1072 const auto *cleanups = cast<ExprWithCleanups>(E); 1073 enterFullExpression(cleanups); 1074 RunCleanupsScope Scope(*this); 1075 LValue LV = EmitLValue(cleanups->getSubExpr()); 1076 if (LV.isSimple()) { 1077 // Defend against branches out of gnu statement expressions surrounded by 1078 // cleanups. 1079 llvm::Value *V = LV.getPointer(); 1080 Scope.ForceCleanup({&V}); 1081 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1082 getContext(), LV.getAlignmentSource(), 1083 LV.getTBAAInfo()); 1084 } 1085 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1086 // bitfield lvalue or some other non-simple lvalue? 1087 return LV; 1088 } 1089 1090 case Expr::CXXDefaultArgExprClass: 1091 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1092 case Expr::CXXDefaultInitExprClass: { 1093 CXXDefaultInitExprScope Scope(*this); 1094 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1095 } 1096 case Expr::CXXTypeidExprClass: 1097 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1098 1099 case Expr::ObjCMessageExprClass: 1100 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1101 case Expr::ObjCIvarRefExprClass: 1102 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1103 case Expr::StmtExprClass: 1104 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1105 case Expr::UnaryOperatorClass: 1106 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1107 case Expr::ArraySubscriptExprClass: 1108 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1109 case Expr::OMPArraySectionExprClass: 1110 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1111 case Expr::ExtVectorElementExprClass: 1112 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1113 case Expr::MemberExprClass: 1114 return EmitMemberExpr(cast<MemberExpr>(E)); 1115 case Expr::CompoundLiteralExprClass: 1116 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1117 case Expr::ConditionalOperatorClass: 1118 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1119 case Expr::BinaryConditionalOperatorClass: 1120 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1121 case Expr::ChooseExprClass: 1122 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1123 case Expr::OpaqueValueExprClass: 1124 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1125 case Expr::SubstNonTypeTemplateParmExprClass: 1126 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1127 case Expr::ImplicitCastExprClass: 1128 case Expr::CStyleCastExprClass: 1129 case Expr::CXXFunctionalCastExprClass: 1130 case Expr::CXXStaticCastExprClass: 1131 case Expr::CXXDynamicCastExprClass: 1132 case Expr::CXXReinterpretCastExprClass: 1133 case Expr::CXXConstCastExprClass: 1134 case Expr::ObjCBridgedCastExprClass: 1135 return EmitCastLValue(cast<CastExpr>(E)); 1136 1137 case Expr::MaterializeTemporaryExprClass: 1138 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1139 } 1140 } 1141 1142 /// Given an object of the given canonical type, can we safely copy a 1143 /// value out of it based on its initializer? 1144 static bool isConstantEmittableObjectType(QualType type) { 1145 assert(type.isCanonical()); 1146 assert(!type->isReferenceType()); 1147 1148 // Must be const-qualified but non-volatile. 1149 Qualifiers qs = type.getLocalQualifiers(); 1150 if (!qs.hasConst() || qs.hasVolatile()) return false; 1151 1152 // Otherwise, all object types satisfy this except C++ classes with 1153 // mutable subobjects or non-trivial copy/destroy behavior. 1154 if (const auto *RT = dyn_cast<RecordType>(type)) 1155 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1156 if (RD->hasMutableFields() || !RD->isTrivial()) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 /// Can we constant-emit a load of a reference to a variable of the 1163 /// given type? This is different from predicates like 1164 /// Decl::isUsableInConstantExpressions because we do want it to apply 1165 /// in situations that don't necessarily satisfy the language's rules 1166 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1167 /// to do this with const float variables even if those variables 1168 /// aren't marked 'constexpr'. 1169 enum ConstantEmissionKind { 1170 CEK_None, 1171 CEK_AsReferenceOnly, 1172 CEK_AsValueOrReference, 1173 CEK_AsValueOnly 1174 }; 1175 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1176 type = type.getCanonicalType(); 1177 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1178 if (isConstantEmittableObjectType(ref->getPointeeType())) 1179 return CEK_AsValueOrReference; 1180 return CEK_AsReferenceOnly; 1181 } 1182 if (isConstantEmittableObjectType(type)) 1183 return CEK_AsValueOnly; 1184 return CEK_None; 1185 } 1186 1187 /// Try to emit a reference to the given value without producing it as 1188 /// an l-value. This is actually more than an optimization: we can't 1189 /// produce an l-value for variables that we never actually captured 1190 /// in a block or lambda, which means const int variables or constexpr 1191 /// literals or similar. 1192 CodeGenFunction::ConstantEmission 1193 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1194 ValueDecl *value = refExpr->getDecl(); 1195 1196 // The value needs to be an enum constant or a constant variable. 1197 ConstantEmissionKind CEK; 1198 if (isa<ParmVarDecl>(value)) { 1199 CEK = CEK_None; 1200 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1201 CEK = checkVarTypeForConstantEmission(var->getType()); 1202 } else if (isa<EnumConstantDecl>(value)) { 1203 CEK = CEK_AsValueOnly; 1204 } else { 1205 CEK = CEK_None; 1206 } 1207 if (CEK == CEK_None) return ConstantEmission(); 1208 1209 Expr::EvalResult result; 1210 bool resultIsReference; 1211 QualType resultType; 1212 1213 // It's best to evaluate all the way as an r-value if that's permitted. 1214 if (CEK != CEK_AsReferenceOnly && 1215 refExpr->EvaluateAsRValue(result, getContext())) { 1216 resultIsReference = false; 1217 resultType = refExpr->getType(); 1218 1219 // Otherwise, try to evaluate as an l-value. 1220 } else if (CEK != CEK_AsValueOnly && 1221 refExpr->EvaluateAsLValue(result, getContext())) { 1222 resultIsReference = true; 1223 resultType = value->getType(); 1224 1225 // Failure. 1226 } else { 1227 return ConstantEmission(); 1228 } 1229 1230 // In any case, if the initializer has side-effects, abandon ship. 1231 if (result.HasSideEffects) 1232 return ConstantEmission(); 1233 1234 // Emit as a constant. 1235 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1236 1237 // Make sure we emit a debug reference to the global variable. 1238 // This should probably fire even for 1239 if (isa<VarDecl>(value)) { 1240 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1241 EmitDeclRefExprDbgValue(refExpr, result.Val); 1242 } else { 1243 assert(isa<EnumConstantDecl>(value)); 1244 EmitDeclRefExprDbgValue(refExpr, result.Val); 1245 } 1246 1247 // If we emitted a reference constant, we need to dereference that. 1248 if (resultIsReference) 1249 return ConstantEmission::forReference(C); 1250 1251 return ConstantEmission::forValue(C); 1252 } 1253 1254 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1255 SourceLocation Loc) { 1256 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1257 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1258 lvalue.getTBAAInfo(), 1259 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1260 lvalue.isNontemporal()); 1261 } 1262 1263 static bool hasBooleanRepresentation(QualType Ty) { 1264 if (Ty->isBooleanType()) 1265 return true; 1266 1267 if (const EnumType *ET = Ty->getAs<EnumType>()) 1268 return ET->getDecl()->getIntegerType()->isBooleanType(); 1269 1270 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1271 return hasBooleanRepresentation(AT->getValueType()); 1272 1273 return false; 1274 } 1275 1276 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1277 llvm::APInt &Min, llvm::APInt &End, 1278 bool StrictEnums, bool IsBool) { 1279 const EnumType *ET = Ty->getAs<EnumType>(); 1280 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1281 ET && !ET->getDecl()->isFixed(); 1282 if (!IsBool && !IsRegularCPlusPlusEnum) 1283 return false; 1284 1285 if (IsBool) { 1286 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1287 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1288 } else { 1289 const EnumDecl *ED = ET->getDecl(); 1290 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1291 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1292 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1293 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1294 1295 if (NumNegativeBits) { 1296 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1297 assert(NumBits <= Bitwidth); 1298 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1299 Min = -End; 1300 } else { 1301 assert(NumPositiveBits <= Bitwidth); 1302 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1303 Min = llvm::APInt(Bitwidth, 0); 1304 } 1305 } 1306 return true; 1307 } 1308 1309 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1310 llvm::APInt Min, End; 1311 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1312 hasBooleanRepresentation(Ty))) 1313 return nullptr; 1314 1315 llvm::MDBuilder MDHelper(getLLVMContext()); 1316 return MDHelper.createRange(Min, End); 1317 } 1318 1319 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1320 SourceLocation Loc) { 1321 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1322 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1323 if (!HasBoolCheck && !HasEnumCheck) 1324 return false; 1325 1326 bool IsBool = hasBooleanRepresentation(Ty) || 1327 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1328 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1329 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1330 if (!NeedsBoolCheck && !NeedsEnumCheck) 1331 return false; 1332 1333 // Single-bit booleans don't need to be checked. Special-case this to avoid 1334 // a bit width mismatch when handling bitfield values. This is handled by 1335 // EmitFromMemory for the non-bitfield case. 1336 if (IsBool && 1337 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1338 return false; 1339 1340 llvm::APInt Min, End; 1341 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1342 return true; 1343 1344 SanitizerScope SanScope(this); 1345 llvm::Value *Check; 1346 --End; 1347 if (!Min) { 1348 Check = Builder.CreateICmpULE( 1349 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1350 } else { 1351 llvm::Value *Upper = Builder.CreateICmpSLE( 1352 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1353 llvm::Value *Lower = Builder.CreateICmpSGE( 1354 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1355 Check = Builder.CreateAnd(Upper, Lower); 1356 } 1357 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1358 EmitCheckTypeDescriptor(Ty)}; 1359 SanitizerMask Kind = 1360 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1361 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1362 StaticArgs, EmitCheckValue(Value)); 1363 return true; 1364 } 1365 1366 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1367 QualType Ty, 1368 SourceLocation Loc, 1369 AlignmentSource AlignSource, 1370 llvm::MDNode *TBAAInfo, 1371 QualType TBAABaseType, 1372 uint64_t TBAAOffset, 1373 bool isNontemporal) { 1374 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1375 // For better performance, handle vector loads differently. 1376 if (Ty->isVectorType()) { 1377 const llvm::Type *EltTy = Addr.getElementType(); 1378 1379 const auto *VTy = cast<llvm::VectorType>(EltTy); 1380 1381 // Handle vectors of size 3 like size 4 for better performance. 1382 if (VTy->getNumElements() == 3) { 1383 1384 // Bitcast to vec4 type. 1385 llvm::VectorType *vec4Ty = 1386 llvm::VectorType::get(VTy->getElementType(), 4); 1387 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1388 // Now load value. 1389 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1390 1391 // Shuffle vector to get vec3. 1392 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1393 {0, 1, 2}, "extractVec"); 1394 return EmitFromMemory(V, Ty); 1395 } 1396 } 1397 } 1398 1399 // Atomic operations have to be done on integral types. 1400 LValue AtomicLValue = 1401 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1402 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1403 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1404 } 1405 1406 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1407 if (isNontemporal) { 1408 llvm::MDNode *Node = llvm::MDNode::get( 1409 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1410 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1411 } 1412 if (TBAAInfo) { 1413 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1414 TBAAOffset); 1415 if (TBAAPath) 1416 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1417 false /*ConvertTypeToTag*/); 1418 } 1419 1420 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1421 // In order to prevent the optimizer from throwing away the check, don't 1422 // attach range metadata to the load. 1423 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1424 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1425 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1426 1427 return EmitFromMemory(Load, Ty); 1428 } 1429 1430 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1431 // Bool has a different representation in memory than in registers. 1432 if (hasBooleanRepresentation(Ty)) { 1433 // This should really always be an i1, but sometimes it's already 1434 // an i8, and it's awkward to track those cases down. 1435 if (Value->getType()->isIntegerTy(1)) 1436 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1437 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1438 "wrong value rep of bool"); 1439 } 1440 1441 return Value; 1442 } 1443 1444 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1445 // Bool has a different representation in memory than in registers. 1446 if (hasBooleanRepresentation(Ty)) { 1447 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1448 "wrong value rep of bool"); 1449 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1450 } 1451 1452 return Value; 1453 } 1454 1455 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1456 bool Volatile, QualType Ty, 1457 AlignmentSource AlignSource, 1458 llvm::MDNode *TBAAInfo, 1459 bool isInit, QualType TBAABaseType, 1460 uint64_t TBAAOffset, 1461 bool isNontemporal) { 1462 1463 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1464 // Handle vectors differently to get better performance. 1465 if (Ty->isVectorType()) { 1466 llvm::Type *SrcTy = Value->getType(); 1467 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1468 // Handle vec3 special. 1469 if (VecTy->getNumElements() == 3) { 1470 // Our source is a vec3, do a shuffle vector to make it a vec4. 1471 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1472 Builder.getInt32(2), 1473 llvm::UndefValue::get(Builder.getInt32Ty())}; 1474 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1475 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1476 MaskV, "extractVec"); 1477 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1478 } 1479 if (Addr.getElementType() != SrcTy) { 1480 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1481 } 1482 } 1483 } 1484 1485 Value = EmitToMemory(Value, Ty); 1486 1487 LValue AtomicLValue = 1488 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1489 if (Ty->isAtomicType() || 1490 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1491 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1492 return; 1493 } 1494 1495 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1496 if (isNontemporal) { 1497 llvm::MDNode *Node = 1498 llvm::MDNode::get(Store->getContext(), 1499 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1500 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1501 } 1502 if (TBAAInfo) { 1503 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1504 TBAAOffset); 1505 if (TBAAPath) 1506 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1507 false /*ConvertTypeToTag*/); 1508 } 1509 } 1510 1511 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1512 bool isInit) { 1513 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1514 lvalue.getType(), lvalue.getAlignmentSource(), 1515 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1516 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1517 } 1518 1519 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1520 /// method emits the address of the lvalue, then loads the result as an rvalue, 1521 /// returning the rvalue. 1522 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1523 if (LV.isObjCWeak()) { 1524 // load of a __weak object. 1525 Address AddrWeakObj = LV.getAddress(); 1526 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1527 AddrWeakObj)); 1528 } 1529 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1530 // In MRC mode, we do a load+autorelease. 1531 if (!getLangOpts().ObjCAutoRefCount) { 1532 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1533 } 1534 1535 // In ARC mode, we load retained and then consume the value. 1536 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1537 Object = EmitObjCConsumeObject(LV.getType(), Object); 1538 return RValue::get(Object); 1539 } 1540 1541 if (LV.isSimple()) { 1542 assert(!LV.getType()->isFunctionType()); 1543 1544 // Everything needs a load. 1545 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1546 } 1547 1548 if (LV.isVectorElt()) { 1549 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1550 LV.isVolatileQualified()); 1551 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1552 "vecext")); 1553 } 1554 1555 // If this is a reference to a subset of the elements of a vector, either 1556 // shuffle the input or extract/insert them as appropriate. 1557 if (LV.isExtVectorElt()) 1558 return EmitLoadOfExtVectorElementLValue(LV); 1559 1560 // Global Register variables always invoke intrinsics 1561 if (LV.isGlobalReg()) 1562 return EmitLoadOfGlobalRegLValue(LV); 1563 1564 assert(LV.isBitField() && "Unknown LValue type!"); 1565 return EmitLoadOfBitfieldLValue(LV, Loc); 1566 } 1567 1568 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1569 SourceLocation Loc) { 1570 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1571 1572 // Get the output type. 1573 llvm::Type *ResLTy = ConvertType(LV.getType()); 1574 1575 Address Ptr = LV.getBitFieldAddress(); 1576 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1577 1578 if (Info.IsSigned) { 1579 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1580 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1581 if (HighBits) 1582 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1583 if (Info.Offset + HighBits) 1584 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1585 } else { 1586 if (Info.Offset) 1587 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1588 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1589 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1590 Info.Size), 1591 "bf.clear"); 1592 } 1593 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1594 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1595 return RValue::get(Val); 1596 } 1597 1598 // If this is a reference to a subset of the elements of a vector, create an 1599 // appropriate shufflevector. 1600 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1601 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1602 LV.isVolatileQualified()); 1603 1604 const llvm::Constant *Elts = LV.getExtVectorElts(); 1605 1606 // If the result of the expression is a non-vector type, we must be extracting 1607 // a single element. Just codegen as an extractelement. 1608 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1609 if (!ExprVT) { 1610 unsigned InIdx = getAccessedFieldNo(0, Elts); 1611 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1612 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1613 } 1614 1615 // Always use shuffle vector to try to retain the original program structure 1616 unsigned NumResultElts = ExprVT->getNumElements(); 1617 1618 SmallVector<llvm::Constant*, 4> Mask; 1619 for (unsigned i = 0; i != NumResultElts; ++i) 1620 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1621 1622 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1623 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1624 MaskV); 1625 return RValue::get(Vec); 1626 } 1627 1628 /// @brief Generates lvalue for partial ext_vector access. 1629 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1630 Address VectorAddress = LV.getExtVectorAddress(); 1631 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1632 QualType EQT = ExprVT->getElementType(); 1633 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1634 1635 Address CastToPointerElement = 1636 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1637 "conv.ptr.element"); 1638 1639 const llvm::Constant *Elts = LV.getExtVectorElts(); 1640 unsigned ix = getAccessedFieldNo(0, Elts); 1641 1642 Address VectorBasePtrPlusIx = 1643 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1644 getContext().getTypeSizeInChars(EQT), 1645 "vector.elt"); 1646 1647 return VectorBasePtrPlusIx; 1648 } 1649 1650 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1651 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1652 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1653 "Bad type for register variable"); 1654 llvm::MDNode *RegName = cast<llvm::MDNode>( 1655 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1656 1657 // We accept integer and pointer types only 1658 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1659 llvm::Type *Ty = OrigTy; 1660 if (OrigTy->isPointerTy()) 1661 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1662 llvm::Type *Types[] = { Ty }; 1663 1664 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1665 llvm::Value *Call = Builder.CreateCall( 1666 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1667 if (OrigTy->isPointerTy()) 1668 Call = Builder.CreateIntToPtr(Call, OrigTy); 1669 return RValue::get(Call); 1670 } 1671 1672 1673 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1674 /// lvalue, where both are guaranteed to the have the same type, and that type 1675 /// is 'Ty'. 1676 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1677 bool isInit) { 1678 if (!Dst.isSimple()) { 1679 if (Dst.isVectorElt()) { 1680 // Read/modify/write the vector, inserting the new element. 1681 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1682 Dst.isVolatileQualified()); 1683 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1684 Dst.getVectorIdx(), "vecins"); 1685 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1686 Dst.isVolatileQualified()); 1687 return; 1688 } 1689 1690 // If this is an update of extended vector elements, insert them as 1691 // appropriate. 1692 if (Dst.isExtVectorElt()) 1693 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1694 1695 if (Dst.isGlobalReg()) 1696 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1697 1698 assert(Dst.isBitField() && "Unknown LValue type"); 1699 return EmitStoreThroughBitfieldLValue(Src, Dst); 1700 } 1701 1702 // There's special magic for assigning into an ARC-qualified l-value. 1703 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1704 switch (Lifetime) { 1705 case Qualifiers::OCL_None: 1706 llvm_unreachable("present but none"); 1707 1708 case Qualifiers::OCL_ExplicitNone: 1709 // nothing special 1710 break; 1711 1712 case Qualifiers::OCL_Strong: 1713 if (isInit) { 1714 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1715 break; 1716 } 1717 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1718 return; 1719 1720 case Qualifiers::OCL_Weak: 1721 if (isInit) 1722 // Initialize and then skip the primitive store. 1723 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1724 else 1725 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1726 return; 1727 1728 case Qualifiers::OCL_Autoreleasing: 1729 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1730 Src.getScalarVal())); 1731 // fall into the normal path 1732 break; 1733 } 1734 } 1735 1736 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1737 // load of a __weak object. 1738 Address LvalueDst = Dst.getAddress(); 1739 llvm::Value *src = Src.getScalarVal(); 1740 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1741 return; 1742 } 1743 1744 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1745 // load of a __strong object. 1746 Address LvalueDst = Dst.getAddress(); 1747 llvm::Value *src = Src.getScalarVal(); 1748 if (Dst.isObjCIvar()) { 1749 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1750 llvm::Type *ResultType = IntPtrTy; 1751 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1752 llvm::Value *RHS = dst.getPointer(); 1753 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1754 llvm::Value *LHS = 1755 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1756 "sub.ptr.lhs.cast"); 1757 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1758 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1759 BytesBetween); 1760 } else if (Dst.isGlobalObjCRef()) { 1761 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1762 Dst.isThreadLocalRef()); 1763 } 1764 else 1765 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1766 return; 1767 } 1768 1769 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1770 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1771 } 1772 1773 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1774 llvm::Value **Result) { 1775 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1776 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1777 Address Ptr = Dst.getBitFieldAddress(); 1778 1779 // Get the source value, truncated to the width of the bit-field. 1780 llvm::Value *SrcVal = Src.getScalarVal(); 1781 1782 // Cast the source to the storage type and shift it into place. 1783 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1784 /*IsSigned=*/false); 1785 llvm::Value *MaskedVal = SrcVal; 1786 1787 // See if there are other bits in the bitfield's storage we'll need to load 1788 // and mask together with source before storing. 1789 if (Info.StorageSize != Info.Size) { 1790 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1791 llvm::Value *Val = 1792 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1793 1794 // Mask the source value as needed. 1795 if (!hasBooleanRepresentation(Dst.getType())) 1796 SrcVal = Builder.CreateAnd(SrcVal, 1797 llvm::APInt::getLowBitsSet(Info.StorageSize, 1798 Info.Size), 1799 "bf.value"); 1800 MaskedVal = SrcVal; 1801 if (Info.Offset) 1802 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1803 1804 // Mask out the original value. 1805 Val = Builder.CreateAnd(Val, 1806 ~llvm::APInt::getBitsSet(Info.StorageSize, 1807 Info.Offset, 1808 Info.Offset + Info.Size), 1809 "bf.clear"); 1810 1811 // Or together the unchanged values and the source value. 1812 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1813 } else { 1814 assert(Info.Offset == 0); 1815 } 1816 1817 // Write the new value back out. 1818 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1819 1820 // Return the new value of the bit-field, if requested. 1821 if (Result) { 1822 llvm::Value *ResultVal = MaskedVal; 1823 1824 // Sign extend the value if needed. 1825 if (Info.IsSigned) { 1826 assert(Info.Size <= Info.StorageSize); 1827 unsigned HighBits = Info.StorageSize - Info.Size; 1828 if (HighBits) { 1829 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1830 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1831 } 1832 } 1833 1834 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1835 "bf.result.cast"); 1836 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1837 } 1838 } 1839 1840 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1841 LValue Dst) { 1842 // This access turns into a read/modify/write of the vector. Load the input 1843 // value now. 1844 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1845 Dst.isVolatileQualified()); 1846 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1847 1848 llvm::Value *SrcVal = Src.getScalarVal(); 1849 1850 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1851 unsigned NumSrcElts = VTy->getNumElements(); 1852 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1853 if (NumDstElts == NumSrcElts) { 1854 // Use shuffle vector is the src and destination are the same number of 1855 // elements and restore the vector mask since it is on the side it will be 1856 // stored. 1857 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1858 for (unsigned i = 0; i != NumSrcElts; ++i) 1859 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1860 1861 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1862 Vec = Builder.CreateShuffleVector(SrcVal, 1863 llvm::UndefValue::get(Vec->getType()), 1864 MaskV); 1865 } else if (NumDstElts > NumSrcElts) { 1866 // Extended the source vector to the same length and then shuffle it 1867 // into the destination. 1868 // FIXME: since we're shuffling with undef, can we just use the indices 1869 // into that? This could be simpler. 1870 SmallVector<llvm::Constant*, 4> ExtMask; 1871 for (unsigned i = 0; i != NumSrcElts; ++i) 1872 ExtMask.push_back(Builder.getInt32(i)); 1873 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1874 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1875 llvm::Value *ExtSrcVal = 1876 Builder.CreateShuffleVector(SrcVal, 1877 llvm::UndefValue::get(SrcVal->getType()), 1878 ExtMaskV); 1879 // build identity 1880 SmallVector<llvm::Constant*, 4> Mask; 1881 for (unsigned i = 0; i != NumDstElts; ++i) 1882 Mask.push_back(Builder.getInt32(i)); 1883 1884 // When the vector size is odd and .odd or .hi is used, the last element 1885 // of the Elts constant array will be one past the size of the vector. 1886 // Ignore the last element here, if it is greater than the mask size. 1887 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1888 NumSrcElts--; 1889 1890 // modify when what gets shuffled in 1891 for (unsigned i = 0; i != NumSrcElts; ++i) 1892 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1893 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1894 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1895 } else { 1896 // We should never shorten the vector 1897 llvm_unreachable("unexpected shorten vector length"); 1898 } 1899 } else { 1900 // If the Src is a scalar (not a vector) it must be updating one element. 1901 unsigned InIdx = getAccessedFieldNo(0, Elts); 1902 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1903 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1904 } 1905 1906 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1907 Dst.isVolatileQualified()); 1908 } 1909 1910 /// @brief Store of global named registers are always calls to intrinsics. 1911 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1912 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1913 "Bad type for register variable"); 1914 llvm::MDNode *RegName = cast<llvm::MDNode>( 1915 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1916 assert(RegName && "Register LValue is not metadata"); 1917 1918 // We accept integer and pointer types only 1919 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1920 llvm::Type *Ty = OrigTy; 1921 if (OrigTy->isPointerTy()) 1922 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1923 llvm::Type *Types[] = { Ty }; 1924 1925 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1926 llvm::Value *Value = Src.getScalarVal(); 1927 if (OrigTy->isPointerTy()) 1928 Value = Builder.CreatePtrToInt(Value, Ty); 1929 Builder.CreateCall( 1930 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1931 } 1932 1933 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1934 // generating write-barries API. It is currently a global, ivar, 1935 // or neither. 1936 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1937 LValue &LV, 1938 bool IsMemberAccess=false) { 1939 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1940 return; 1941 1942 if (isa<ObjCIvarRefExpr>(E)) { 1943 QualType ExpTy = E->getType(); 1944 if (IsMemberAccess && ExpTy->isPointerType()) { 1945 // If ivar is a structure pointer, assigning to field of 1946 // this struct follows gcc's behavior and makes it a non-ivar 1947 // writer-barrier conservatively. 1948 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1949 if (ExpTy->isRecordType()) { 1950 LV.setObjCIvar(false); 1951 return; 1952 } 1953 } 1954 LV.setObjCIvar(true); 1955 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1956 LV.setBaseIvarExp(Exp->getBase()); 1957 LV.setObjCArray(E->getType()->isArrayType()); 1958 return; 1959 } 1960 1961 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1962 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1963 if (VD->hasGlobalStorage()) { 1964 LV.setGlobalObjCRef(true); 1965 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1966 } 1967 } 1968 LV.setObjCArray(E->getType()->isArrayType()); 1969 return; 1970 } 1971 1972 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1973 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1974 return; 1975 } 1976 1977 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1978 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1979 if (LV.isObjCIvar()) { 1980 // If cast is to a structure pointer, follow gcc's behavior and make it 1981 // a non-ivar write-barrier. 1982 QualType ExpTy = E->getType(); 1983 if (ExpTy->isPointerType()) 1984 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1985 if (ExpTy->isRecordType()) 1986 LV.setObjCIvar(false); 1987 } 1988 return; 1989 } 1990 1991 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1992 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1993 return; 1994 } 1995 1996 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1997 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1998 return; 1999 } 2000 2001 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2002 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2003 return; 2004 } 2005 2006 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2007 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2008 return; 2009 } 2010 2011 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2012 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2013 if (LV.isObjCIvar() && !LV.isObjCArray()) 2014 // Using array syntax to assigning to what an ivar points to is not 2015 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2016 LV.setObjCIvar(false); 2017 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2018 // Using array syntax to assigning to what global points to is not 2019 // same as assigning to the global itself. {id *G;} G[i] = 0; 2020 LV.setGlobalObjCRef(false); 2021 return; 2022 } 2023 2024 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2025 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2026 // We don't know if member is an 'ivar', but this flag is looked at 2027 // only in the context of LV.isObjCIvar(). 2028 LV.setObjCArray(E->getType()->isArrayType()); 2029 return; 2030 } 2031 } 2032 2033 static llvm::Value * 2034 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2035 llvm::Value *V, llvm::Type *IRType, 2036 StringRef Name = StringRef()) { 2037 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2038 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2039 } 2040 2041 static LValue EmitThreadPrivateVarDeclLValue( 2042 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2043 llvm::Type *RealVarTy, SourceLocation Loc) { 2044 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2045 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2046 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2047 } 2048 2049 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2050 const ReferenceType *RefTy, 2051 AlignmentSource *Source) { 2052 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2053 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2054 Source, /*forPointee*/ true)); 2055 2056 } 2057 2058 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2059 const ReferenceType *RefTy) { 2060 AlignmentSource Source; 2061 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 2062 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 2063 } 2064 2065 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2066 const PointerType *PtrTy, 2067 AlignmentSource *Source) { 2068 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2069 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 2070 /*forPointeeType=*/true)); 2071 } 2072 2073 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2074 const PointerType *PtrTy) { 2075 AlignmentSource Source; 2076 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 2077 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 2078 } 2079 2080 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2081 const Expr *E, const VarDecl *VD) { 2082 QualType T = E->getType(); 2083 2084 // If it's thread_local, emit a call to its wrapper function instead. 2085 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2086 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2087 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2088 2089 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2090 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2091 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2092 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2093 Address Addr(V, Alignment); 2094 LValue LV; 2095 // Emit reference to the private copy of the variable if it is an OpenMP 2096 // threadprivate variable. 2097 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2098 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2099 E->getExprLoc()); 2100 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2101 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2102 } else { 2103 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2104 } 2105 setObjCGCLValueClass(CGF.getContext(), E, LV); 2106 return LV; 2107 } 2108 2109 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2110 const FunctionDecl *FD) { 2111 if (FD->hasAttr<WeakRefAttr>()) { 2112 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2113 return aliasee.getPointer(); 2114 } 2115 2116 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2117 if (!FD->hasPrototype()) { 2118 if (const FunctionProtoType *Proto = 2119 FD->getType()->getAs<FunctionProtoType>()) { 2120 // Ugly case: for a K&R-style definition, the type of the definition 2121 // isn't the same as the type of a use. Correct for this with a 2122 // bitcast. 2123 QualType NoProtoType = 2124 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2125 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2126 V = llvm::ConstantExpr::getBitCast(V, 2127 CGM.getTypes().ConvertType(NoProtoType)); 2128 } 2129 } 2130 return V; 2131 } 2132 2133 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2134 const Expr *E, const FunctionDecl *FD) { 2135 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2136 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2137 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2138 } 2139 2140 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2141 llvm::Value *ThisValue) { 2142 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2143 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2144 return CGF.EmitLValueForField(LV, FD); 2145 } 2146 2147 /// Named Registers are named metadata pointing to the register name 2148 /// which will be read from/written to as an argument to the intrinsic 2149 /// @llvm.read/write_register. 2150 /// So far, only the name is being passed down, but other options such as 2151 /// register type, allocation type or even optimization options could be 2152 /// passed down via the metadata node. 2153 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2154 SmallString<64> Name("llvm.named.register."); 2155 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2156 assert(Asm->getLabel().size() < 64-Name.size() && 2157 "Register name too big"); 2158 Name.append(Asm->getLabel()); 2159 llvm::NamedMDNode *M = 2160 CGM.getModule().getOrInsertNamedMetadata(Name); 2161 if (M->getNumOperands() == 0) { 2162 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2163 Asm->getLabel()); 2164 llvm::Metadata *Ops[] = {Str}; 2165 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2166 } 2167 2168 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2169 2170 llvm::Value *Ptr = 2171 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2172 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2173 } 2174 2175 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2176 const NamedDecl *ND = E->getDecl(); 2177 QualType T = E->getType(); 2178 2179 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2180 // Global Named registers access via intrinsics only 2181 if (VD->getStorageClass() == SC_Register && 2182 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2183 return EmitGlobalNamedRegister(VD, CGM); 2184 2185 // A DeclRefExpr for a reference initialized by a constant expression can 2186 // appear without being odr-used. Directly emit the constant initializer. 2187 const Expr *Init = VD->getAnyInitializer(VD); 2188 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2189 VD->isUsableInConstantExpressions(getContext()) && 2190 VD->checkInitIsICE() && 2191 // Do not emit if it is private OpenMP variable. 2192 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2193 LocalDeclMap.count(VD))) { 2194 llvm::Constant *Val = 2195 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2196 assert(Val && "failed to emit reference constant expression"); 2197 // FIXME: Eventually we will want to emit vector element references. 2198 2199 // Should we be using the alignment of the constant pointer we emitted? 2200 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2201 /*pointee*/ true); 2202 2203 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2204 } 2205 2206 // Check for captured variables. 2207 if (E->refersToEnclosingVariableOrCapture()) { 2208 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2209 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2210 else if (CapturedStmtInfo) { 2211 auto I = LocalDeclMap.find(VD); 2212 if (I != LocalDeclMap.end()) { 2213 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2214 return EmitLoadOfReferenceLValue(I->second, RefTy); 2215 return MakeAddrLValue(I->second, T); 2216 } 2217 LValue CapLVal = 2218 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2219 CapturedStmtInfo->getContextValue()); 2220 return MakeAddrLValue( 2221 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2222 CapLVal.getType(), AlignmentSource::Decl); 2223 } 2224 2225 assert(isa<BlockDecl>(CurCodeDecl)); 2226 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2227 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2228 } 2229 } 2230 2231 // FIXME: We should be able to assert this for FunctionDecls as well! 2232 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2233 // those with a valid source location. 2234 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2235 !E->getLocation().isValid()) && 2236 "Should not use decl without marking it used!"); 2237 2238 if (ND->hasAttr<WeakRefAttr>()) { 2239 const auto *VD = cast<ValueDecl>(ND); 2240 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2241 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2242 } 2243 2244 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2245 // Check if this is a global variable. 2246 if (VD->hasLinkage() || VD->isStaticDataMember()) 2247 return EmitGlobalVarDeclLValue(*this, E, VD); 2248 2249 Address addr = Address::invalid(); 2250 2251 // The variable should generally be present in the local decl map. 2252 auto iter = LocalDeclMap.find(VD); 2253 if (iter != LocalDeclMap.end()) { 2254 addr = iter->second; 2255 2256 // Otherwise, it might be static local we haven't emitted yet for 2257 // some reason; most likely, because it's in an outer function. 2258 } else if (VD->isStaticLocal()) { 2259 addr = Address(CGM.getOrCreateStaticVarDecl( 2260 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2261 getContext().getDeclAlign(VD)); 2262 2263 // No other cases for now. 2264 } else { 2265 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2266 } 2267 2268 2269 // Check for OpenMP threadprivate variables. 2270 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2271 return EmitThreadPrivateVarDeclLValue( 2272 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2273 E->getExprLoc()); 2274 } 2275 2276 // Drill into block byref variables. 2277 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2278 if (isBlockByref) { 2279 addr = emitBlockByrefAddress(addr, VD); 2280 } 2281 2282 // Drill into reference types. 2283 LValue LV; 2284 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2285 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2286 } else { 2287 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2288 } 2289 2290 bool isLocalStorage = VD->hasLocalStorage(); 2291 2292 bool NonGCable = isLocalStorage && 2293 !VD->getType()->isReferenceType() && 2294 !isBlockByref; 2295 if (NonGCable) { 2296 LV.getQuals().removeObjCGCAttr(); 2297 LV.setNonGC(true); 2298 } 2299 2300 bool isImpreciseLifetime = 2301 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2302 if (isImpreciseLifetime) 2303 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2304 setObjCGCLValueClass(getContext(), E, LV); 2305 return LV; 2306 } 2307 2308 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2309 return EmitFunctionDeclLValue(*this, E, FD); 2310 2311 // FIXME: While we're emitting a binding from an enclosing scope, all other 2312 // DeclRefExprs we see should be implicitly treated as if they also refer to 2313 // an enclosing scope. 2314 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2315 return EmitLValue(BD->getBinding()); 2316 2317 llvm_unreachable("Unhandled DeclRefExpr"); 2318 } 2319 2320 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2321 // __extension__ doesn't affect lvalue-ness. 2322 if (E->getOpcode() == UO_Extension) 2323 return EmitLValue(E->getSubExpr()); 2324 2325 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2326 switch (E->getOpcode()) { 2327 default: llvm_unreachable("Unknown unary operator lvalue!"); 2328 case UO_Deref: { 2329 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2330 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2331 2332 AlignmentSource AlignSource; 2333 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2334 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2335 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2336 2337 // We should not generate __weak write barrier on indirect reference 2338 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2339 // But, we continue to generate __strong write barrier on indirect write 2340 // into a pointer to object. 2341 if (getLangOpts().ObjC1 && 2342 getLangOpts().getGC() != LangOptions::NonGC && 2343 LV.isObjCWeak()) 2344 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2345 return LV; 2346 } 2347 case UO_Real: 2348 case UO_Imag: { 2349 LValue LV = EmitLValue(E->getSubExpr()); 2350 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2351 2352 // __real is valid on scalars. This is a faster way of testing that. 2353 // __imag can only produce an rvalue on scalars. 2354 if (E->getOpcode() == UO_Real && 2355 !LV.getAddress().getElementType()->isStructTy()) { 2356 assert(E->getSubExpr()->getType()->isArithmeticType()); 2357 return LV; 2358 } 2359 2360 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2361 2362 Address Component = 2363 (E->getOpcode() == UO_Real 2364 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2365 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2366 LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource()); 2367 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2368 return ElemLV; 2369 } 2370 case UO_PreInc: 2371 case UO_PreDec: { 2372 LValue LV = EmitLValue(E->getSubExpr()); 2373 bool isInc = E->getOpcode() == UO_PreInc; 2374 2375 if (E->getType()->isAnyComplexType()) 2376 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2377 else 2378 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2379 return LV; 2380 } 2381 } 2382 } 2383 2384 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2385 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2386 E->getType(), AlignmentSource::Decl); 2387 } 2388 2389 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2390 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2391 E->getType(), AlignmentSource::Decl); 2392 } 2393 2394 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2395 auto SL = E->getFunctionName(); 2396 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2397 StringRef FnName = CurFn->getName(); 2398 if (FnName.startswith("\01")) 2399 FnName = FnName.substr(1); 2400 StringRef NameItems[] = { 2401 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2402 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2403 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2404 std::string Name = SL->getString(); 2405 if (!Name.empty()) { 2406 unsigned Discriminator = 2407 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2408 if (Discriminator) 2409 Name += "_" + Twine(Discriminator + 1).str(); 2410 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2411 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2412 } else { 2413 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2414 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2415 } 2416 } 2417 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2418 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2419 } 2420 2421 /// Emit a type description suitable for use by a runtime sanitizer library. The 2422 /// format of a type descriptor is 2423 /// 2424 /// \code 2425 /// { i16 TypeKind, i16 TypeInfo } 2426 /// \endcode 2427 /// 2428 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2429 /// integer, 1 for a floating point value, and -1 for anything else. 2430 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2431 // Only emit each type's descriptor once. 2432 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2433 return C; 2434 2435 uint16_t TypeKind = -1; 2436 uint16_t TypeInfo = 0; 2437 2438 if (T->isIntegerType()) { 2439 TypeKind = 0; 2440 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2441 (T->isSignedIntegerType() ? 1 : 0); 2442 } else if (T->isFloatingType()) { 2443 TypeKind = 1; 2444 TypeInfo = getContext().getTypeSize(T); 2445 } 2446 2447 // Format the type name as if for a diagnostic, including quotes and 2448 // optionally an 'aka'. 2449 SmallString<32> Buffer; 2450 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2451 (intptr_t)T.getAsOpaquePtr(), 2452 StringRef(), StringRef(), None, Buffer, 2453 None); 2454 2455 llvm::Constant *Components[] = { 2456 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2457 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2458 }; 2459 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2460 2461 auto *GV = new llvm::GlobalVariable( 2462 CGM.getModule(), Descriptor->getType(), 2463 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2464 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2465 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2466 2467 // Remember the descriptor for this type. 2468 CGM.setTypeDescriptorInMap(T, GV); 2469 2470 return GV; 2471 } 2472 2473 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2474 llvm::Type *TargetTy = IntPtrTy; 2475 2476 // Floating-point types which fit into intptr_t are bitcast to integers 2477 // and then passed directly (after zero-extension, if necessary). 2478 if (V->getType()->isFloatingPointTy()) { 2479 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2480 if (Bits <= TargetTy->getIntegerBitWidth()) 2481 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2482 Bits)); 2483 } 2484 2485 // Integers which fit in intptr_t are zero-extended and passed directly. 2486 if (V->getType()->isIntegerTy() && 2487 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2488 return Builder.CreateZExt(V, TargetTy); 2489 2490 // Pointers are passed directly, everything else is passed by address. 2491 if (!V->getType()->isPointerTy()) { 2492 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2493 Builder.CreateStore(V, Ptr); 2494 V = Ptr.getPointer(); 2495 } 2496 return Builder.CreatePtrToInt(V, TargetTy); 2497 } 2498 2499 /// \brief Emit a representation of a SourceLocation for passing to a handler 2500 /// in a sanitizer runtime library. The format for this data is: 2501 /// \code 2502 /// struct SourceLocation { 2503 /// const char *Filename; 2504 /// int32_t Line, Column; 2505 /// }; 2506 /// \endcode 2507 /// For an invalid SourceLocation, the Filename pointer is null. 2508 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2509 llvm::Constant *Filename; 2510 int Line, Column; 2511 2512 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2513 if (PLoc.isValid()) { 2514 StringRef FilenameString = PLoc.getFilename(); 2515 2516 int PathComponentsToStrip = 2517 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2518 if (PathComponentsToStrip < 0) { 2519 assert(PathComponentsToStrip != INT_MIN); 2520 int PathComponentsToKeep = -PathComponentsToStrip; 2521 auto I = llvm::sys::path::rbegin(FilenameString); 2522 auto E = llvm::sys::path::rend(FilenameString); 2523 while (I != E && --PathComponentsToKeep) 2524 ++I; 2525 2526 FilenameString = FilenameString.substr(I - E); 2527 } else if (PathComponentsToStrip > 0) { 2528 auto I = llvm::sys::path::begin(FilenameString); 2529 auto E = llvm::sys::path::end(FilenameString); 2530 while (I != E && PathComponentsToStrip--) 2531 ++I; 2532 2533 if (I != E) 2534 FilenameString = 2535 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2536 else 2537 FilenameString = llvm::sys::path::filename(FilenameString); 2538 } 2539 2540 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2541 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2542 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2543 Filename = FilenameGV.getPointer(); 2544 Line = PLoc.getLine(); 2545 Column = PLoc.getColumn(); 2546 } else { 2547 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2548 Line = Column = 0; 2549 } 2550 2551 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2552 Builder.getInt32(Column)}; 2553 2554 return llvm::ConstantStruct::getAnon(Data); 2555 } 2556 2557 namespace { 2558 /// \brief Specify under what conditions this check can be recovered 2559 enum class CheckRecoverableKind { 2560 /// Always terminate program execution if this check fails. 2561 Unrecoverable, 2562 /// Check supports recovering, runtime has both fatal (noreturn) and 2563 /// non-fatal handlers for this check. 2564 Recoverable, 2565 /// Runtime conditionally aborts, always need to support recovery. 2566 AlwaysRecoverable 2567 }; 2568 } 2569 2570 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2571 assert(llvm::countPopulation(Kind) == 1); 2572 switch (Kind) { 2573 case SanitizerKind::Vptr: 2574 return CheckRecoverableKind::AlwaysRecoverable; 2575 case SanitizerKind::Return: 2576 case SanitizerKind::Unreachable: 2577 return CheckRecoverableKind::Unrecoverable; 2578 default: 2579 return CheckRecoverableKind::Recoverable; 2580 } 2581 } 2582 2583 namespace { 2584 struct SanitizerHandlerInfo { 2585 char const *const Name; 2586 unsigned Version; 2587 }; 2588 } 2589 2590 const SanitizerHandlerInfo SanitizerHandlers[] = { 2591 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2592 LIST_SANITIZER_CHECKS 2593 #undef SANITIZER_CHECK 2594 }; 2595 2596 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2597 llvm::FunctionType *FnType, 2598 ArrayRef<llvm::Value *> FnArgs, 2599 SanitizerHandler CheckHandler, 2600 CheckRecoverableKind RecoverKind, bool IsFatal, 2601 llvm::BasicBlock *ContBB) { 2602 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2603 bool NeedsAbortSuffix = 2604 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2605 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2606 const StringRef CheckName = CheckInfo.Name; 2607 std::string FnName = 2608 ("__ubsan_handle_" + CheckName + 2609 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2610 (NeedsAbortSuffix ? "_abort" : "")) 2611 .str(); 2612 bool MayReturn = 2613 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2614 2615 llvm::AttrBuilder B; 2616 if (!MayReturn) { 2617 B.addAttribute(llvm::Attribute::NoReturn) 2618 .addAttribute(llvm::Attribute::NoUnwind); 2619 } 2620 B.addAttribute(llvm::Attribute::UWTable); 2621 2622 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2623 FnType, FnName, 2624 llvm::AttributeList::get(CGF.getLLVMContext(), 2625 llvm::AttributeList::FunctionIndex, B), 2626 /*Local=*/true); 2627 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2628 if (!MayReturn) { 2629 HandlerCall->setDoesNotReturn(); 2630 CGF.Builder.CreateUnreachable(); 2631 } else { 2632 CGF.Builder.CreateBr(ContBB); 2633 } 2634 } 2635 2636 void CodeGenFunction::EmitCheck( 2637 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2638 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2639 ArrayRef<llvm::Value *> DynamicArgs) { 2640 assert(IsSanitizerScope); 2641 assert(Checked.size() > 0); 2642 assert(CheckHandler >= 0 && 2643 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2644 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2645 2646 llvm::Value *FatalCond = nullptr; 2647 llvm::Value *RecoverableCond = nullptr; 2648 llvm::Value *TrapCond = nullptr; 2649 for (int i = 0, n = Checked.size(); i < n; ++i) { 2650 llvm::Value *Check = Checked[i].first; 2651 // -fsanitize-trap= overrides -fsanitize-recover=. 2652 llvm::Value *&Cond = 2653 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2654 ? TrapCond 2655 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2656 ? RecoverableCond 2657 : FatalCond; 2658 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2659 } 2660 2661 if (TrapCond) 2662 EmitTrapCheck(TrapCond); 2663 if (!FatalCond && !RecoverableCond) 2664 return; 2665 2666 llvm::Value *JointCond; 2667 if (FatalCond && RecoverableCond) 2668 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2669 else 2670 JointCond = FatalCond ? FatalCond : RecoverableCond; 2671 assert(JointCond); 2672 2673 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2674 assert(SanOpts.has(Checked[0].second)); 2675 #ifndef NDEBUG 2676 for (int i = 1, n = Checked.size(); i < n; ++i) { 2677 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2678 "All recoverable kinds in a single check must be same!"); 2679 assert(SanOpts.has(Checked[i].second)); 2680 } 2681 #endif 2682 2683 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2684 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2685 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2686 // Give hint that we very much don't expect to execute the handler 2687 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2688 llvm::MDBuilder MDHelper(getLLVMContext()); 2689 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2690 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2691 EmitBlock(Handlers); 2692 2693 // Handler functions take an i8* pointing to the (handler-specific) static 2694 // information block, followed by a sequence of intptr_t arguments 2695 // representing operand values. 2696 SmallVector<llvm::Value *, 4> Args; 2697 SmallVector<llvm::Type *, 4> ArgTypes; 2698 Args.reserve(DynamicArgs.size() + 1); 2699 ArgTypes.reserve(DynamicArgs.size() + 1); 2700 2701 // Emit handler arguments and create handler function type. 2702 if (!StaticArgs.empty()) { 2703 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2704 auto *InfoPtr = 2705 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2706 llvm::GlobalVariable::PrivateLinkage, Info); 2707 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2708 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2709 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2710 ArgTypes.push_back(Int8PtrTy); 2711 } 2712 2713 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2714 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2715 ArgTypes.push_back(IntPtrTy); 2716 } 2717 2718 llvm::FunctionType *FnType = 2719 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2720 2721 if (!FatalCond || !RecoverableCond) { 2722 // Simple case: we need to generate a single handler call, either 2723 // fatal, or non-fatal. 2724 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2725 (FatalCond != nullptr), Cont); 2726 } else { 2727 // Emit two handler calls: first one for set of unrecoverable checks, 2728 // another one for recoverable. 2729 llvm::BasicBlock *NonFatalHandlerBB = 2730 createBasicBlock("non_fatal." + CheckName); 2731 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2732 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2733 EmitBlock(FatalHandlerBB); 2734 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2735 NonFatalHandlerBB); 2736 EmitBlock(NonFatalHandlerBB); 2737 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2738 Cont); 2739 } 2740 2741 EmitBlock(Cont); 2742 } 2743 2744 void CodeGenFunction::EmitCfiSlowPathCheck( 2745 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2746 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2747 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2748 2749 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2750 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2751 2752 llvm::MDBuilder MDHelper(getLLVMContext()); 2753 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2754 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2755 2756 EmitBlock(CheckBB); 2757 2758 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2759 2760 llvm::CallInst *CheckCall; 2761 if (WithDiag) { 2762 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2763 auto *InfoPtr = 2764 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2765 llvm::GlobalVariable::PrivateLinkage, Info); 2766 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2767 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2768 2769 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2770 "__cfi_slowpath_diag", 2771 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2772 false)); 2773 CheckCall = Builder.CreateCall( 2774 SlowPathDiagFn, 2775 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2776 } else { 2777 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2778 "__cfi_slowpath", 2779 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2780 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2781 } 2782 2783 CheckCall->setDoesNotThrow(); 2784 2785 EmitBlock(Cont); 2786 } 2787 2788 // Emit a stub for __cfi_check function so that the linker knows about this 2789 // symbol in LTO mode. 2790 void CodeGenFunction::EmitCfiCheckStub() { 2791 llvm::Module *M = &CGM.getModule(); 2792 auto &Ctx = M->getContext(); 2793 llvm::Function *F = llvm::Function::Create( 2794 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2795 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2796 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2797 // FIXME: consider emitting an intrinsic call like 2798 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2799 // which can be lowered in CrossDSOCFI pass to the actual contents of 2800 // __cfi_check. This would allow inlining of __cfi_check calls. 2801 llvm::CallInst::Create( 2802 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2803 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2804 } 2805 2806 // This function is basically a switch over the CFI failure kind, which is 2807 // extracted from CFICheckFailData (1st function argument). Each case is either 2808 // llvm.trap or a call to one of the two runtime handlers, based on 2809 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2810 // failure kind) traps, but this should really never happen. CFICheckFailData 2811 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2812 // check kind; in this case __cfi_check_fail traps as well. 2813 void CodeGenFunction::EmitCfiCheckFail() { 2814 SanitizerScope SanScope(this); 2815 FunctionArgList Args; 2816 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2817 getContext().VoidPtrTy); 2818 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2819 getContext().VoidPtrTy); 2820 Args.push_back(&ArgData); 2821 Args.push_back(&ArgAddr); 2822 2823 const CGFunctionInfo &FI = 2824 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2825 2826 llvm::Function *F = llvm::Function::Create( 2827 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2828 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2829 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2830 2831 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2832 SourceLocation()); 2833 2834 llvm::Value *Data = 2835 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2836 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2837 llvm::Value *Addr = 2838 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2839 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2840 2841 // Data == nullptr means the calling module has trap behaviour for this check. 2842 llvm::Value *DataIsNotNullPtr = 2843 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2844 EmitTrapCheck(DataIsNotNullPtr); 2845 2846 llvm::StructType *SourceLocationTy = 2847 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2848 llvm::StructType *CfiCheckFailDataTy = 2849 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2850 2851 llvm::Value *V = Builder.CreateConstGEP2_32( 2852 CfiCheckFailDataTy, 2853 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2854 0); 2855 Address CheckKindAddr(V, getIntAlign()); 2856 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2857 2858 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2859 CGM.getLLVMContext(), 2860 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2861 llvm::Value *ValidVtable = Builder.CreateZExt( 2862 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2863 {Addr, AllVtables}), 2864 IntPtrTy); 2865 2866 const std::pair<int, SanitizerMask> CheckKinds[] = { 2867 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2868 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2869 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2870 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2871 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2872 2873 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2874 for (auto CheckKindMaskPair : CheckKinds) { 2875 int Kind = CheckKindMaskPair.first; 2876 SanitizerMask Mask = CheckKindMaskPair.second; 2877 llvm::Value *Cond = 2878 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2879 if (CGM.getLangOpts().Sanitize.has(Mask)) 2880 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2881 {Data, Addr, ValidVtable}); 2882 else 2883 EmitTrapCheck(Cond); 2884 } 2885 2886 FinishFunction(); 2887 // The only reference to this function will be created during LTO link. 2888 // Make sure it survives until then. 2889 CGM.addUsedGlobal(F); 2890 } 2891 2892 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2893 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2894 2895 // If we're optimizing, collapse all calls to trap down to just one per 2896 // function to save on code size. 2897 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2898 TrapBB = createBasicBlock("trap"); 2899 Builder.CreateCondBr(Checked, Cont, TrapBB); 2900 EmitBlock(TrapBB); 2901 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2902 TrapCall->setDoesNotReturn(); 2903 TrapCall->setDoesNotThrow(); 2904 Builder.CreateUnreachable(); 2905 } else { 2906 Builder.CreateCondBr(Checked, Cont, TrapBB); 2907 } 2908 2909 EmitBlock(Cont); 2910 } 2911 2912 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2913 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2914 2915 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2916 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2917 CGM.getCodeGenOpts().TrapFuncName); 2918 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 2919 } 2920 2921 return TrapCall; 2922 } 2923 2924 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2925 AlignmentSource *AlignSource) { 2926 assert(E->getType()->isArrayType() && 2927 "Array to pointer decay must have array source type!"); 2928 2929 // Expressions of array type can't be bitfields or vector elements. 2930 LValue LV = EmitLValue(E); 2931 Address Addr = LV.getAddress(); 2932 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2933 2934 // If the array type was an incomplete type, we need to make sure 2935 // the decay ends up being the right type. 2936 llvm::Type *NewTy = ConvertType(E->getType()); 2937 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2938 2939 // Note that VLA pointers are always decayed, so we don't need to do 2940 // anything here. 2941 if (!E->getType()->isVariableArrayType()) { 2942 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2943 "Expected pointer to array"); 2944 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2945 } 2946 2947 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2948 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2949 } 2950 2951 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2952 /// array to pointer, return the array subexpression. 2953 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2954 // If this isn't just an array->pointer decay, bail out. 2955 const auto *CE = dyn_cast<CastExpr>(E); 2956 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2957 return nullptr; 2958 2959 // If this is a decay from variable width array, bail out. 2960 const Expr *SubExpr = CE->getSubExpr(); 2961 if (SubExpr->getType()->isVariableArrayType()) 2962 return nullptr; 2963 2964 return SubExpr; 2965 } 2966 2967 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2968 llvm::Value *ptr, 2969 ArrayRef<llvm::Value*> indices, 2970 bool inbounds, 2971 const llvm::Twine &name = "arrayidx") { 2972 if (inbounds) { 2973 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2974 } else { 2975 return CGF.Builder.CreateGEP(ptr, indices, name); 2976 } 2977 } 2978 2979 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2980 llvm::Value *idx, 2981 CharUnits eltSize) { 2982 // If we have a constant index, we can use the exact offset of the 2983 // element we're accessing. 2984 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 2985 CharUnits offset = constantIdx->getZExtValue() * eltSize; 2986 return arrayAlign.alignmentAtOffset(offset); 2987 2988 // Otherwise, use the worst-case alignment for any element. 2989 } else { 2990 return arrayAlign.alignmentOfArrayElement(eltSize); 2991 } 2992 } 2993 2994 static QualType getFixedSizeElementType(const ASTContext &ctx, 2995 const VariableArrayType *vla) { 2996 QualType eltType; 2997 do { 2998 eltType = vla->getElementType(); 2999 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3000 return eltType; 3001 } 3002 3003 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3004 ArrayRef<llvm::Value*> indices, 3005 QualType eltType, bool inbounds, 3006 const llvm::Twine &name = "arrayidx") { 3007 // All the indices except that last must be zero. 3008 #ifndef NDEBUG 3009 for (auto idx : indices.drop_back()) 3010 assert(isa<llvm::ConstantInt>(idx) && 3011 cast<llvm::ConstantInt>(idx)->isZero()); 3012 #endif 3013 3014 // Determine the element size of the statically-sized base. This is 3015 // the thing that the indices are expressed in terms of. 3016 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3017 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3018 } 3019 3020 // We can use that to compute the best alignment of the element. 3021 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3022 CharUnits eltAlign = 3023 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3024 3025 llvm::Value *eltPtr = 3026 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 3027 return Address(eltPtr, eltAlign); 3028 } 3029 3030 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3031 bool Accessed) { 3032 // The index must always be an integer, which is not an aggregate. Emit it 3033 // in lexical order (this complexity is, sadly, required by C++17). 3034 llvm::Value *IdxPre = 3035 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3036 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3037 auto *Idx = IdxPre; 3038 if (E->getLHS() != E->getIdx()) { 3039 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3040 Idx = EmitScalarExpr(E->getIdx()); 3041 } 3042 3043 QualType IdxTy = E->getIdx()->getType(); 3044 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3045 3046 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3047 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3048 3049 // Extend or truncate the index type to 32 or 64-bits. 3050 if (Promote && Idx->getType() != IntPtrTy) 3051 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3052 3053 return Idx; 3054 }; 3055 IdxPre = nullptr; 3056 3057 // If the base is a vector type, then we are forming a vector element lvalue 3058 // with this subscript. 3059 if (E->getBase()->getType()->isVectorType() && 3060 !isa<ExtVectorElementExpr>(E->getBase())) { 3061 // Emit the vector as an lvalue to get its address. 3062 LValue LHS = EmitLValue(E->getBase()); 3063 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3064 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3065 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3066 E->getBase()->getType(), 3067 LHS.getAlignmentSource()); 3068 } 3069 3070 // All the other cases basically behave like simple offsetting. 3071 3072 // Handle the extvector case we ignored above. 3073 if (isa<ExtVectorElementExpr>(E->getBase())) { 3074 LValue LV = EmitLValue(E->getBase()); 3075 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3076 Address Addr = EmitExtVectorElementLValue(LV); 3077 3078 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3079 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 3080 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 3081 } 3082 3083 AlignmentSource AlignSource; 3084 Address Addr = Address::invalid(); 3085 if (const VariableArrayType *vla = 3086 getContext().getAsVariableArrayType(E->getType())) { 3087 // The base must be a pointer, which is not an aggregate. Emit 3088 // it. It needs to be emitted first in case it's what captures 3089 // the VLA bounds. 3090 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3091 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3092 3093 // The element count here is the total number of non-VLA elements. 3094 llvm::Value *numElements = getVLASize(vla).first; 3095 3096 // Effectively, the multiply by the VLA size is part of the GEP. 3097 // GEP indexes are signed, and scaling an index isn't permitted to 3098 // signed-overflow, so we use the same semantics for our explicit 3099 // multiply. We suppress this if overflow is not undefined behavior. 3100 if (getLangOpts().isSignedOverflowDefined()) { 3101 Idx = Builder.CreateMul(Idx, numElements); 3102 } else { 3103 Idx = Builder.CreateNSWMul(Idx, numElements); 3104 } 3105 3106 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3107 !getLangOpts().isSignedOverflowDefined()); 3108 3109 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3110 // Indexing over an interface, as in "NSString *P; P[4];" 3111 3112 // Emit the base pointer. 3113 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3114 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3115 3116 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3117 llvm::Value *InterfaceSizeVal = 3118 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3119 3120 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3121 3122 // We don't necessarily build correct LLVM struct types for ObjC 3123 // interfaces, so we can't rely on GEP to do this scaling 3124 // correctly, so we need to cast to i8*. FIXME: is this actually 3125 // true? A lot of other things in the fragile ABI would break... 3126 llvm::Type *OrigBaseTy = Addr.getType(); 3127 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3128 3129 // Do the GEP. 3130 CharUnits EltAlign = 3131 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3132 llvm::Value *EltPtr = 3133 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 3134 Addr = Address(EltPtr, EltAlign); 3135 3136 // Cast back. 3137 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3138 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3139 // If this is A[i] where A is an array, the frontend will have decayed the 3140 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3141 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3142 // "gep x, i" here. Emit one "gep A, 0, i". 3143 assert(Array->getType()->isArrayType() && 3144 "Array to pointer decay must have array source type!"); 3145 LValue ArrayLV; 3146 // For simple multidimensional array indexing, set the 'accessed' flag for 3147 // better bounds-checking of the base expression. 3148 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3149 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3150 else 3151 ArrayLV = EmitLValue(Array); 3152 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3153 3154 // Propagate the alignment from the array itself to the result. 3155 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 3156 {CGM.getSize(CharUnits::Zero()), Idx}, 3157 E->getType(), 3158 !getLangOpts().isSignedOverflowDefined()); 3159 AlignSource = ArrayLV.getAlignmentSource(); 3160 } else { 3161 // The base must be a pointer; emit it with an estimate of its alignment. 3162 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3163 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3164 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3165 !getLangOpts().isSignedOverflowDefined()); 3166 } 3167 3168 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 3169 3170 // TODO: Preserve/extend path TBAA metadata? 3171 3172 if (getLangOpts().ObjC1 && 3173 getLangOpts().getGC() != LangOptions::NonGC) { 3174 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3175 setObjCGCLValueClass(getContext(), E, LV); 3176 } 3177 return LV; 3178 } 3179 3180 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3181 AlignmentSource &AlignSource, 3182 QualType BaseTy, QualType ElTy, 3183 bool IsLowerBound) { 3184 LValue BaseLVal; 3185 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3186 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3187 if (BaseTy->isArrayType()) { 3188 Address Addr = BaseLVal.getAddress(); 3189 AlignSource = BaseLVal.getAlignmentSource(); 3190 3191 // If the array type was an incomplete type, we need to make sure 3192 // the decay ends up being the right type. 3193 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3194 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3195 3196 // Note that VLA pointers are always decayed, so we don't need to do 3197 // anything here. 3198 if (!BaseTy->isVariableArrayType()) { 3199 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3200 "Expected pointer to array"); 3201 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3202 "arraydecay"); 3203 } 3204 3205 return CGF.Builder.CreateElementBitCast(Addr, 3206 CGF.ConvertTypeForMem(ElTy)); 3207 } 3208 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3209 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3210 } 3211 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3212 } 3213 3214 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3215 bool IsLowerBound) { 3216 QualType BaseTy; 3217 if (auto *ASE = 3218 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3219 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3220 else 3221 BaseTy = E->getBase()->getType(); 3222 QualType ResultExprTy; 3223 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3224 ResultExprTy = AT->getElementType(); 3225 else 3226 ResultExprTy = BaseTy->getPointeeType(); 3227 llvm::Value *Idx = nullptr; 3228 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3229 // Requesting lower bound or upper bound, but without provided length and 3230 // without ':' symbol for the default length -> length = 1. 3231 // Idx = LowerBound ?: 0; 3232 if (auto *LowerBound = E->getLowerBound()) { 3233 Idx = Builder.CreateIntCast( 3234 EmitScalarExpr(LowerBound), IntPtrTy, 3235 LowerBound->getType()->hasSignedIntegerRepresentation()); 3236 } else 3237 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3238 } else { 3239 // Try to emit length or lower bound as constant. If this is possible, 1 3240 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3241 // IR (LB + Len) - 1. 3242 auto &C = CGM.getContext(); 3243 auto *Length = E->getLength(); 3244 llvm::APSInt ConstLength; 3245 if (Length) { 3246 // Idx = LowerBound + Length - 1; 3247 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3248 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3249 Length = nullptr; 3250 } 3251 auto *LowerBound = E->getLowerBound(); 3252 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3253 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3254 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3255 LowerBound = nullptr; 3256 } 3257 if (!Length) 3258 --ConstLength; 3259 else if (!LowerBound) 3260 --ConstLowerBound; 3261 3262 if (Length || LowerBound) { 3263 auto *LowerBoundVal = 3264 LowerBound 3265 ? Builder.CreateIntCast( 3266 EmitScalarExpr(LowerBound), IntPtrTy, 3267 LowerBound->getType()->hasSignedIntegerRepresentation()) 3268 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3269 auto *LengthVal = 3270 Length 3271 ? Builder.CreateIntCast( 3272 EmitScalarExpr(Length), IntPtrTy, 3273 Length->getType()->hasSignedIntegerRepresentation()) 3274 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3275 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3276 /*HasNUW=*/false, 3277 !getLangOpts().isSignedOverflowDefined()); 3278 if (Length && LowerBound) { 3279 Idx = Builder.CreateSub( 3280 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3281 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3282 } 3283 } else 3284 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3285 } else { 3286 // Idx = ArraySize - 1; 3287 QualType ArrayTy = BaseTy->isPointerType() 3288 ? E->getBase()->IgnoreParenImpCasts()->getType() 3289 : BaseTy; 3290 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3291 Length = VAT->getSizeExpr(); 3292 if (Length->isIntegerConstantExpr(ConstLength, C)) 3293 Length = nullptr; 3294 } else { 3295 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3296 ConstLength = CAT->getSize(); 3297 } 3298 if (Length) { 3299 auto *LengthVal = Builder.CreateIntCast( 3300 EmitScalarExpr(Length), IntPtrTy, 3301 Length->getType()->hasSignedIntegerRepresentation()); 3302 Idx = Builder.CreateSub( 3303 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3304 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3305 } else { 3306 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3307 --ConstLength; 3308 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3309 } 3310 } 3311 } 3312 assert(Idx); 3313 3314 Address EltPtr = Address::invalid(); 3315 AlignmentSource AlignSource; 3316 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3317 // The base must be a pointer, which is not an aggregate. Emit 3318 // it. It needs to be emitted first in case it's what captures 3319 // the VLA bounds. 3320 Address Base = 3321 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3322 VLA->getElementType(), IsLowerBound); 3323 // The element count here is the total number of non-VLA elements. 3324 llvm::Value *NumElements = getVLASize(VLA).first; 3325 3326 // Effectively, the multiply by the VLA size is part of the GEP. 3327 // GEP indexes are signed, and scaling an index isn't permitted to 3328 // signed-overflow, so we use the same semantics for our explicit 3329 // multiply. We suppress this if overflow is not undefined behavior. 3330 if (getLangOpts().isSignedOverflowDefined()) 3331 Idx = Builder.CreateMul(Idx, NumElements); 3332 else 3333 Idx = Builder.CreateNSWMul(Idx, NumElements); 3334 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3335 !getLangOpts().isSignedOverflowDefined()); 3336 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3337 // If this is A[i] where A is an array, the frontend will have decayed the 3338 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3339 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3340 // "gep x, i" here. Emit one "gep A, 0, i". 3341 assert(Array->getType()->isArrayType() && 3342 "Array to pointer decay must have array source type!"); 3343 LValue ArrayLV; 3344 // For simple multidimensional array indexing, set the 'accessed' flag for 3345 // better bounds-checking of the base expression. 3346 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3347 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3348 else 3349 ArrayLV = EmitLValue(Array); 3350 3351 // Propagate the alignment from the array itself to the result. 3352 EltPtr = emitArraySubscriptGEP( 3353 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3354 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3355 AlignSource = ArrayLV.getAlignmentSource(); 3356 } else { 3357 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3358 BaseTy, ResultExprTy, IsLowerBound); 3359 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3360 !getLangOpts().isSignedOverflowDefined()); 3361 } 3362 3363 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3364 } 3365 3366 LValue CodeGenFunction:: 3367 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3368 // Emit the base vector as an l-value. 3369 LValue Base; 3370 3371 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3372 if (E->isArrow()) { 3373 // If it is a pointer to a vector, emit the address and form an lvalue with 3374 // it. 3375 AlignmentSource AlignSource; 3376 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3377 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3378 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3379 Base.getQuals().removeObjCGCAttr(); 3380 } else if (E->getBase()->isGLValue()) { 3381 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3382 // emit the base as an lvalue. 3383 assert(E->getBase()->getType()->isVectorType()); 3384 Base = EmitLValue(E->getBase()); 3385 } else { 3386 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3387 assert(E->getBase()->getType()->isVectorType() && 3388 "Result must be a vector"); 3389 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3390 3391 // Store the vector to memory (because LValue wants an address). 3392 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3393 Builder.CreateStore(Vec, VecMem); 3394 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3395 AlignmentSource::Decl); 3396 } 3397 3398 QualType type = 3399 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3400 3401 // Encode the element access list into a vector of unsigned indices. 3402 SmallVector<uint32_t, 4> Indices; 3403 E->getEncodedElementAccess(Indices); 3404 3405 if (Base.isSimple()) { 3406 llvm::Constant *CV = 3407 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3408 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3409 Base.getAlignmentSource()); 3410 } 3411 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3412 3413 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3414 SmallVector<llvm::Constant *, 4> CElts; 3415 3416 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3417 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3418 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3419 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3420 Base.getAlignmentSource()); 3421 } 3422 3423 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3424 Expr *BaseExpr = E->getBase(); 3425 3426 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3427 LValue BaseLV; 3428 if (E->isArrow()) { 3429 AlignmentSource AlignSource; 3430 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3431 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3432 SanitizerSet SkippedChecks; 3433 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3434 if (IsBaseCXXThis) 3435 SkippedChecks.set(SanitizerKind::Alignment, true); 3436 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3437 SkippedChecks.set(SanitizerKind::Null, true); 3438 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3439 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3440 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3441 } else 3442 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3443 3444 NamedDecl *ND = E->getMemberDecl(); 3445 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3446 LValue LV = EmitLValueForField(BaseLV, Field); 3447 setObjCGCLValueClass(getContext(), E, LV); 3448 return LV; 3449 } 3450 3451 if (auto *VD = dyn_cast<VarDecl>(ND)) 3452 return EmitGlobalVarDeclLValue(*this, E, VD); 3453 3454 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3455 return EmitFunctionDeclLValue(*this, E, FD); 3456 3457 llvm_unreachable("Unhandled member declaration!"); 3458 } 3459 3460 /// Given that we are currently emitting a lambda, emit an l-value for 3461 /// one of its members. 3462 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3463 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3464 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3465 QualType LambdaTagType = 3466 getContext().getTagDeclType(Field->getParent()); 3467 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3468 return EmitLValueForField(LambdaLV, Field); 3469 } 3470 3471 /// Drill down to the storage of a field without walking into 3472 /// reference types. 3473 /// 3474 /// The resulting address doesn't necessarily have the right type. 3475 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3476 const FieldDecl *field) { 3477 const RecordDecl *rec = field->getParent(); 3478 3479 unsigned idx = 3480 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3481 3482 CharUnits offset; 3483 // Adjust the alignment down to the given offset. 3484 // As a special case, if the LLVM field index is 0, we know that this 3485 // is zero. 3486 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3487 .getFieldOffset(field->getFieldIndex()) == 0) && 3488 "LLVM field at index zero had non-zero offset?"); 3489 if (idx != 0) { 3490 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3491 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3492 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3493 } 3494 3495 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3496 } 3497 3498 LValue CodeGenFunction::EmitLValueForField(LValue base, 3499 const FieldDecl *field) { 3500 AlignmentSource fieldAlignSource = 3501 getFieldAlignmentSource(base.getAlignmentSource()); 3502 3503 if (field->isBitField()) { 3504 const CGRecordLayout &RL = 3505 CGM.getTypes().getCGRecordLayout(field->getParent()); 3506 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3507 Address Addr = base.getAddress(); 3508 unsigned Idx = RL.getLLVMFieldNo(field); 3509 if (Idx != 0) 3510 // For structs, we GEP to the field that the record layout suggests. 3511 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3512 field->getName()); 3513 // Get the access type. 3514 llvm::Type *FieldIntTy = 3515 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3516 if (Addr.getElementType() != FieldIntTy) 3517 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3518 3519 QualType fieldType = 3520 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3521 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3522 } 3523 3524 const RecordDecl *rec = field->getParent(); 3525 QualType type = field->getType(); 3526 3527 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3528 3529 Address addr = base.getAddress(); 3530 unsigned cvr = base.getVRQualifiers(); 3531 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3532 if (rec->isUnion()) { 3533 // For unions, there is no pointer adjustment. 3534 assert(!type->isReferenceType() && "union has reference member"); 3535 // TODO: handle path-aware TBAA for union. 3536 TBAAPath = false; 3537 } else { 3538 // For structs, we GEP to the field that the record layout suggests. 3539 addr = emitAddrOfFieldStorage(*this, addr, field); 3540 3541 // If this is a reference field, load the reference right now. 3542 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3543 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3544 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3545 3546 // Loading the reference will disable path-aware TBAA. 3547 TBAAPath = false; 3548 if (CGM.shouldUseTBAA()) { 3549 llvm::MDNode *tbaa; 3550 if (mayAlias) 3551 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3552 else 3553 tbaa = CGM.getTBAAInfo(type); 3554 if (tbaa) 3555 CGM.DecorateInstructionWithTBAA(load, tbaa); 3556 } 3557 3558 mayAlias = false; 3559 type = refType->getPointeeType(); 3560 3561 CharUnits alignment = 3562 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3563 addr = Address(load, alignment); 3564 3565 // Qualifiers on the struct don't apply to the referencee, and 3566 // we'll pick up CVR from the actual type later, so reset these 3567 // additional qualifiers now. 3568 cvr = 0; 3569 } 3570 } 3571 3572 // Make sure that the address is pointing to the right type. This is critical 3573 // for both unions and structs. A union needs a bitcast, a struct element 3574 // will need a bitcast if the LLVM type laid out doesn't match the desired 3575 // type. 3576 addr = Builder.CreateElementBitCast(addr, 3577 CGM.getTypes().ConvertTypeForMem(type), 3578 field->getName()); 3579 3580 if (field->hasAttr<AnnotateAttr>()) 3581 addr = EmitFieldAnnotations(field, addr); 3582 3583 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3584 LV.getQuals().addCVRQualifiers(cvr); 3585 if (TBAAPath) { 3586 const ASTRecordLayout &Layout = 3587 getContext().getASTRecordLayout(field->getParent()); 3588 // Set the base type to be the base type of the base LValue and 3589 // update offset to be relative to the base type. 3590 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3591 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3592 Layout.getFieldOffset(field->getFieldIndex()) / 3593 getContext().getCharWidth()); 3594 } 3595 3596 // __weak attribute on a field is ignored. 3597 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3598 LV.getQuals().removeObjCGCAttr(); 3599 3600 // Fields of may_alias structs act like 'char' for TBAA purposes. 3601 // FIXME: this should get propagated down through anonymous structs 3602 // and unions. 3603 if (mayAlias && LV.getTBAAInfo()) 3604 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3605 3606 return LV; 3607 } 3608 3609 LValue 3610 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3611 const FieldDecl *Field) { 3612 QualType FieldType = Field->getType(); 3613 3614 if (!FieldType->isReferenceType()) 3615 return EmitLValueForField(Base, Field); 3616 3617 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3618 3619 // Make sure that the address is pointing to the right type. 3620 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3621 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3622 3623 // TODO: access-path TBAA? 3624 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3625 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3626 } 3627 3628 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3629 if (E->isFileScope()) { 3630 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3631 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3632 } 3633 if (E->getType()->isVariablyModifiedType()) 3634 // make sure to emit the VLA size. 3635 EmitVariablyModifiedType(E->getType()); 3636 3637 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3638 const Expr *InitExpr = E->getInitializer(); 3639 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3640 3641 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3642 /*Init*/ true); 3643 3644 return Result; 3645 } 3646 3647 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3648 if (!E->isGLValue()) 3649 // Initializing an aggregate temporary in C++11: T{...}. 3650 return EmitAggExprToLValue(E); 3651 3652 // An lvalue initializer list must be initializing a reference. 3653 assert(E->isTransparent() && "non-transparent glvalue init list"); 3654 return EmitLValue(E->getInit(0)); 3655 } 3656 3657 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3658 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3659 /// LValue is returned and the current block has been terminated. 3660 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3661 const Expr *Operand) { 3662 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3663 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3664 return None; 3665 } 3666 3667 return CGF.EmitLValue(Operand); 3668 } 3669 3670 LValue CodeGenFunction:: 3671 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3672 if (!expr->isGLValue()) { 3673 // ?: here should be an aggregate. 3674 assert(hasAggregateEvaluationKind(expr->getType()) && 3675 "Unexpected conditional operator!"); 3676 return EmitAggExprToLValue(expr); 3677 } 3678 3679 OpaqueValueMapping binding(*this, expr); 3680 3681 const Expr *condExpr = expr->getCond(); 3682 bool CondExprBool; 3683 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3684 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3685 if (!CondExprBool) std::swap(live, dead); 3686 3687 if (!ContainsLabel(dead)) { 3688 // If the true case is live, we need to track its region. 3689 if (CondExprBool) 3690 incrementProfileCounter(expr); 3691 return EmitLValue(live); 3692 } 3693 } 3694 3695 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3696 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3697 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3698 3699 ConditionalEvaluation eval(*this); 3700 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3701 3702 // Any temporaries created here are conditional. 3703 EmitBlock(lhsBlock); 3704 incrementProfileCounter(expr); 3705 eval.begin(*this); 3706 Optional<LValue> lhs = 3707 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3708 eval.end(*this); 3709 3710 if (lhs && !lhs->isSimple()) 3711 return EmitUnsupportedLValue(expr, "conditional operator"); 3712 3713 lhsBlock = Builder.GetInsertBlock(); 3714 if (lhs) 3715 Builder.CreateBr(contBlock); 3716 3717 // Any temporaries created here are conditional. 3718 EmitBlock(rhsBlock); 3719 eval.begin(*this); 3720 Optional<LValue> rhs = 3721 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3722 eval.end(*this); 3723 if (rhs && !rhs->isSimple()) 3724 return EmitUnsupportedLValue(expr, "conditional operator"); 3725 rhsBlock = Builder.GetInsertBlock(); 3726 3727 EmitBlock(contBlock); 3728 3729 if (lhs && rhs) { 3730 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3731 2, "cond-lvalue"); 3732 phi->addIncoming(lhs->getPointer(), lhsBlock); 3733 phi->addIncoming(rhs->getPointer(), rhsBlock); 3734 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3735 AlignmentSource alignSource = 3736 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3737 return MakeAddrLValue(result, expr->getType(), alignSource); 3738 } else { 3739 assert((lhs || rhs) && 3740 "both operands of glvalue conditional are throw-expressions?"); 3741 return lhs ? *lhs : *rhs; 3742 } 3743 } 3744 3745 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3746 /// type. If the cast is to a reference, we can have the usual lvalue result, 3747 /// otherwise if a cast is needed by the code generator in an lvalue context, 3748 /// then it must mean that we need the address of an aggregate in order to 3749 /// access one of its members. This can happen for all the reasons that casts 3750 /// are permitted with aggregate result, including noop aggregate casts, and 3751 /// cast from scalar to union. 3752 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3753 switch (E->getCastKind()) { 3754 case CK_ToVoid: 3755 case CK_BitCast: 3756 case CK_ArrayToPointerDecay: 3757 case CK_FunctionToPointerDecay: 3758 case CK_NullToMemberPointer: 3759 case CK_NullToPointer: 3760 case CK_IntegralToPointer: 3761 case CK_PointerToIntegral: 3762 case CK_PointerToBoolean: 3763 case CK_VectorSplat: 3764 case CK_IntegralCast: 3765 case CK_BooleanToSignedIntegral: 3766 case CK_IntegralToBoolean: 3767 case CK_IntegralToFloating: 3768 case CK_FloatingToIntegral: 3769 case CK_FloatingToBoolean: 3770 case CK_FloatingCast: 3771 case CK_FloatingRealToComplex: 3772 case CK_FloatingComplexToReal: 3773 case CK_FloatingComplexToBoolean: 3774 case CK_FloatingComplexCast: 3775 case CK_FloatingComplexToIntegralComplex: 3776 case CK_IntegralRealToComplex: 3777 case CK_IntegralComplexToReal: 3778 case CK_IntegralComplexToBoolean: 3779 case CK_IntegralComplexCast: 3780 case CK_IntegralComplexToFloatingComplex: 3781 case CK_DerivedToBaseMemberPointer: 3782 case CK_BaseToDerivedMemberPointer: 3783 case CK_MemberPointerToBoolean: 3784 case CK_ReinterpretMemberPointer: 3785 case CK_AnyPointerToBlockPointerCast: 3786 case CK_ARCProduceObject: 3787 case CK_ARCConsumeObject: 3788 case CK_ARCReclaimReturnedObject: 3789 case CK_ARCExtendBlockObject: 3790 case CK_CopyAndAutoreleaseBlockObject: 3791 case CK_AddressSpaceConversion: 3792 case CK_IntToOCLSampler: 3793 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3794 3795 case CK_Dependent: 3796 llvm_unreachable("dependent cast kind in IR gen!"); 3797 3798 case CK_BuiltinFnToFnPtr: 3799 llvm_unreachable("builtin functions are handled elsewhere"); 3800 3801 // These are never l-values; just use the aggregate emission code. 3802 case CK_NonAtomicToAtomic: 3803 case CK_AtomicToNonAtomic: 3804 return EmitAggExprToLValue(E); 3805 3806 case CK_Dynamic: { 3807 LValue LV = EmitLValue(E->getSubExpr()); 3808 Address V = LV.getAddress(); 3809 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3810 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3811 } 3812 3813 case CK_ConstructorConversion: 3814 case CK_UserDefinedConversion: 3815 case CK_CPointerToObjCPointerCast: 3816 case CK_BlockPointerToObjCPointerCast: 3817 case CK_NoOp: 3818 case CK_LValueToRValue: 3819 return EmitLValue(E->getSubExpr()); 3820 3821 case CK_UncheckedDerivedToBase: 3822 case CK_DerivedToBase: { 3823 const RecordType *DerivedClassTy = 3824 E->getSubExpr()->getType()->getAs<RecordType>(); 3825 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3826 3827 LValue LV = EmitLValue(E->getSubExpr()); 3828 Address This = LV.getAddress(); 3829 3830 // Perform the derived-to-base conversion 3831 Address Base = GetAddressOfBaseClass( 3832 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3833 /*NullCheckValue=*/false, E->getExprLoc()); 3834 3835 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3836 } 3837 case CK_ToUnion: 3838 return EmitAggExprToLValue(E); 3839 case CK_BaseToDerived: { 3840 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3841 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3842 3843 LValue LV = EmitLValue(E->getSubExpr()); 3844 3845 // Perform the base-to-derived conversion 3846 Address Derived = 3847 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3848 E->path_begin(), E->path_end(), 3849 /*NullCheckValue=*/false); 3850 3851 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3852 // performed and the object is not of the derived type. 3853 if (sanitizePerformTypeCheck()) 3854 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3855 Derived.getPointer(), E->getType()); 3856 3857 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3858 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3859 /*MayBeNull=*/false, 3860 CFITCK_DerivedCast, E->getLocStart()); 3861 3862 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3863 } 3864 case CK_LValueBitCast: { 3865 // This must be a reinterpret_cast (or c-style equivalent). 3866 const auto *CE = cast<ExplicitCastExpr>(E); 3867 3868 CGM.EmitExplicitCastExprType(CE, this); 3869 LValue LV = EmitLValue(E->getSubExpr()); 3870 Address V = Builder.CreateBitCast(LV.getAddress(), 3871 ConvertType(CE->getTypeAsWritten())); 3872 3873 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3874 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3875 /*MayBeNull=*/false, 3876 CFITCK_UnrelatedCast, E->getLocStart()); 3877 3878 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3879 } 3880 case CK_ObjCObjectLValueCast: { 3881 LValue LV = EmitLValue(E->getSubExpr()); 3882 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3883 ConvertType(E->getType())); 3884 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3885 } 3886 case CK_ZeroToOCLQueue: 3887 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 3888 case CK_ZeroToOCLEvent: 3889 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3890 } 3891 3892 llvm_unreachable("Unhandled lvalue cast kind?"); 3893 } 3894 3895 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3896 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3897 return getOpaqueLValueMapping(e); 3898 } 3899 3900 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3901 const FieldDecl *FD, 3902 SourceLocation Loc) { 3903 QualType FT = FD->getType(); 3904 LValue FieldLV = EmitLValueForField(LV, FD); 3905 switch (getEvaluationKind(FT)) { 3906 case TEK_Complex: 3907 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3908 case TEK_Aggregate: 3909 return FieldLV.asAggregateRValue(); 3910 case TEK_Scalar: 3911 // This routine is used to load fields one-by-one to perform a copy, so 3912 // don't load reference fields. 3913 if (FD->getType()->isReferenceType()) 3914 return RValue::get(FieldLV.getPointer()); 3915 return EmitLoadOfLValue(FieldLV, Loc); 3916 } 3917 llvm_unreachable("bad evaluation kind"); 3918 } 3919 3920 //===--------------------------------------------------------------------===// 3921 // Expression Emission 3922 //===--------------------------------------------------------------------===// 3923 3924 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3925 ReturnValueSlot ReturnValue) { 3926 // Builtins never have block type. 3927 if (E->getCallee()->getType()->isBlockPointerType()) 3928 return EmitBlockCallExpr(E, ReturnValue); 3929 3930 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3931 return EmitCXXMemberCallExpr(CE, ReturnValue); 3932 3933 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3934 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3935 3936 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3937 if (const CXXMethodDecl *MD = 3938 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 3939 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3940 3941 CGCallee callee = EmitCallee(E->getCallee()); 3942 3943 if (callee.isBuiltin()) { 3944 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 3945 E, ReturnValue); 3946 } 3947 3948 if (callee.isPseudoDestructor()) { 3949 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 3950 } 3951 3952 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 3953 } 3954 3955 /// Emit a CallExpr without considering whether it might be a subclass. 3956 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 3957 ReturnValueSlot ReturnValue) { 3958 CGCallee Callee = EmitCallee(E->getCallee()); 3959 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 3960 } 3961 3962 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 3963 if (auto builtinID = FD->getBuiltinID()) { 3964 return CGCallee::forBuiltin(builtinID, FD); 3965 } 3966 3967 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 3968 return CGCallee::forDirect(calleePtr, FD); 3969 } 3970 3971 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 3972 E = E->IgnoreParens(); 3973 3974 // Look through function-to-pointer decay. 3975 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 3976 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 3977 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 3978 return EmitCallee(ICE->getSubExpr()); 3979 } 3980 3981 // Resolve direct calls. 3982 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 3983 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3984 return EmitDirectCallee(*this, FD); 3985 } 3986 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 3987 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 3988 EmitIgnoredExpr(ME->getBase()); 3989 return EmitDirectCallee(*this, FD); 3990 } 3991 3992 // Look through template substitutions. 3993 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 3994 return EmitCallee(NTTP->getReplacement()); 3995 3996 // Treat pseudo-destructor calls differently. 3997 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 3998 return CGCallee::forPseudoDestructor(PDE); 3999 } 4000 4001 // Otherwise, we have an indirect reference. 4002 llvm::Value *calleePtr; 4003 QualType functionType; 4004 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4005 calleePtr = EmitScalarExpr(E); 4006 functionType = ptrType->getPointeeType(); 4007 } else { 4008 functionType = E->getType(); 4009 calleePtr = EmitLValue(E).getPointer(); 4010 } 4011 assert(functionType->isFunctionType()); 4012 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4013 E->getReferencedDeclOfCallee()); 4014 CGCallee callee(calleeInfo, calleePtr); 4015 return callee; 4016 } 4017 4018 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4019 // Comma expressions just emit their LHS then their RHS as an l-value. 4020 if (E->getOpcode() == BO_Comma) { 4021 EmitIgnoredExpr(E->getLHS()); 4022 EnsureInsertPoint(); 4023 return EmitLValue(E->getRHS()); 4024 } 4025 4026 if (E->getOpcode() == BO_PtrMemD || 4027 E->getOpcode() == BO_PtrMemI) 4028 return EmitPointerToDataMemberBinaryExpr(E); 4029 4030 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4031 4032 // Note that in all of these cases, __block variables need the RHS 4033 // evaluated first just in case the variable gets moved by the RHS. 4034 4035 switch (getEvaluationKind(E->getType())) { 4036 case TEK_Scalar: { 4037 switch (E->getLHS()->getType().getObjCLifetime()) { 4038 case Qualifiers::OCL_Strong: 4039 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4040 4041 case Qualifiers::OCL_Autoreleasing: 4042 return EmitARCStoreAutoreleasing(E).first; 4043 4044 // No reason to do any of these differently. 4045 case Qualifiers::OCL_None: 4046 case Qualifiers::OCL_ExplicitNone: 4047 case Qualifiers::OCL_Weak: 4048 break; 4049 } 4050 4051 RValue RV = EmitAnyExpr(E->getRHS()); 4052 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4053 EmitStoreThroughLValue(RV, LV); 4054 return LV; 4055 } 4056 4057 case TEK_Complex: 4058 return EmitComplexAssignmentLValue(E); 4059 4060 case TEK_Aggregate: 4061 return EmitAggExprToLValue(E); 4062 } 4063 llvm_unreachable("bad evaluation kind"); 4064 } 4065 4066 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4067 RValue RV = EmitCallExpr(E); 4068 4069 if (!RV.isScalar()) 4070 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4071 AlignmentSource::Decl); 4072 4073 assert(E->getCallReturnType(getContext())->isReferenceType() && 4074 "Can't have a scalar return unless the return type is a " 4075 "reference type!"); 4076 4077 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4078 } 4079 4080 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4081 // FIXME: This shouldn't require another copy. 4082 return EmitAggExprToLValue(E); 4083 } 4084 4085 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4086 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4087 && "binding l-value to type which needs a temporary"); 4088 AggValueSlot Slot = CreateAggTemp(E->getType()); 4089 EmitCXXConstructExpr(E, Slot); 4090 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4091 AlignmentSource::Decl); 4092 } 4093 4094 LValue 4095 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4096 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4097 } 4098 4099 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4100 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4101 ConvertType(E->getType())); 4102 } 4103 4104 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4105 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4106 AlignmentSource::Decl); 4107 } 4108 4109 LValue 4110 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4111 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4112 Slot.setExternallyDestructed(); 4113 EmitAggExpr(E->getSubExpr(), Slot); 4114 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4115 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4116 AlignmentSource::Decl); 4117 } 4118 4119 LValue 4120 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4121 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4122 EmitLambdaExpr(E, Slot); 4123 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4124 AlignmentSource::Decl); 4125 } 4126 4127 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4128 RValue RV = EmitObjCMessageExpr(E); 4129 4130 if (!RV.isScalar()) 4131 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4132 AlignmentSource::Decl); 4133 4134 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4135 "Can't have a scalar return unless the return type is a " 4136 "reference type!"); 4137 4138 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4139 } 4140 4141 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4142 Address V = 4143 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4144 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4145 } 4146 4147 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4148 const ObjCIvarDecl *Ivar) { 4149 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4150 } 4151 4152 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4153 llvm::Value *BaseValue, 4154 const ObjCIvarDecl *Ivar, 4155 unsigned CVRQualifiers) { 4156 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4157 Ivar, CVRQualifiers); 4158 } 4159 4160 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4161 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4162 llvm::Value *BaseValue = nullptr; 4163 const Expr *BaseExpr = E->getBase(); 4164 Qualifiers BaseQuals; 4165 QualType ObjectTy; 4166 if (E->isArrow()) { 4167 BaseValue = EmitScalarExpr(BaseExpr); 4168 ObjectTy = BaseExpr->getType()->getPointeeType(); 4169 BaseQuals = ObjectTy.getQualifiers(); 4170 } else { 4171 LValue BaseLV = EmitLValue(BaseExpr); 4172 BaseValue = BaseLV.getPointer(); 4173 ObjectTy = BaseExpr->getType(); 4174 BaseQuals = ObjectTy.getQualifiers(); 4175 } 4176 4177 LValue LV = 4178 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4179 BaseQuals.getCVRQualifiers()); 4180 setObjCGCLValueClass(getContext(), E, LV); 4181 return LV; 4182 } 4183 4184 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4185 // Can only get l-value for message expression returning aggregate type 4186 RValue RV = EmitAnyExprToTemp(E); 4187 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4188 AlignmentSource::Decl); 4189 } 4190 4191 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4192 const CallExpr *E, ReturnValueSlot ReturnValue, 4193 llvm::Value *Chain) { 4194 // Get the actual function type. The callee type will always be a pointer to 4195 // function type or a block pointer type. 4196 assert(CalleeType->isFunctionPointerType() && 4197 "Call must have function pointer type!"); 4198 4199 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4200 4201 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4202 // We can only guarantee that a function is called from the correct 4203 // context/function based on the appropriate target attributes, 4204 // so only check in the case where we have both always_inline and target 4205 // since otherwise we could be making a conditional call after a check for 4206 // the proper cpu features (and it won't cause code generation issues due to 4207 // function based code generation). 4208 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4209 TargetDecl->hasAttr<TargetAttr>()) 4210 checkTargetFeatures(E, FD); 4211 4212 CalleeType = getContext().getCanonicalType(CalleeType); 4213 4214 const auto *FnType = 4215 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4216 4217 CGCallee Callee = OrigCallee; 4218 4219 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4220 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4221 if (llvm::Constant *PrefixSig = 4222 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4223 SanitizerScope SanScope(this); 4224 llvm::Constant *FTRTTIConst = 4225 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4226 llvm::Type *PrefixStructTyElems[] = { 4227 PrefixSig->getType(), 4228 FTRTTIConst->getType() 4229 }; 4230 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4231 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4232 4233 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4234 4235 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4236 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4237 llvm::Value *CalleeSigPtr = 4238 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4239 llvm::Value *CalleeSig = 4240 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4241 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4242 4243 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4244 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4245 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4246 4247 EmitBlock(TypeCheck); 4248 llvm::Value *CalleeRTTIPtr = 4249 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4250 llvm::Value *CalleeRTTI = 4251 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4252 llvm::Value *CalleeRTTIMatch = 4253 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4254 llvm::Constant *StaticData[] = { 4255 EmitCheckSourceLocation(E->getLocStart()), 4256 EmitCheckTypeDescriptor(CalleeType) 4257 }; 4258 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4259 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4260 4261 Builder.CreateBr(Cont); 4262 EmitBlock(Cont); 4263 } 4264 } 4265 4266 // If we are checking indirect calls and this call is indirect, check that the 4267 // function pointer is a member of the bit set for the function type. 4268 if (SanOpts.has(SanitizerKind::CFIICall) && 4269 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4270 SanitizerScope SanScope(this); 4271 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4272 4273 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4274 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4275 4276 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4277 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4278 llvm::Value *TypeTest = Builder.CreateCall( 4279 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4280 4281 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4282 llvm::Constant *StaticData[] = { 4283 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4284 EmitCheckSourceLocation(E->getLocStart()), 4285 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4286 }; 4287 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4288 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4289 CastedCallee, StaticData); 4290 } else { 4291 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4292 SanitizerHandler::CFICheckFail, StaticData, 4293 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4294 } 4295 } 4296 4297 CallArgList Args; 4298 if (Chain) 4299 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4300 CGM.getContext().VoidPtrTy); 4301 4302 // C++17 requires that we evaluate arguments to a call using assignment syntax 4303 // right-to-left, and that we evaluate arguments to certain other operators 4304 // left-to-right. Note that we allow this to override the order dictated by 4305 // the calling convention on the MS ABI, which means that parameter 4306 // destruction order is not necessarily reverse construction order. 4307 // FIXME: Revisit this based on C++ committee response to unimplementability. 4308 EvaluationOrder Order = EvaluationOrder::Default; 4309 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4310 if (OCE->isAssignmentOp()) 4311 Order = EvaluationOrder::ForceRightToLeft; 4312 else { 4313 switch (OCE->getOperator()) { 4314 case OO_LessLess: 4315 case OO_GreaterGreater: 4316 case OO_AmpAmp: 4317 case OO_PipePipe: 4318 case OO_Comma: 4319 case OO_ArrowStar: 4320 Order = EvaluationOrder::ForceLeftToRight; 4321 break; 4322 default: 4323 break; 4324 } 4325 } 4326 } 4327 4328 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4329 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4330 4331 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4332 Args, FnType, /*isChainCall=*/Chain); 4333 4334 // C99 6.5.2.2p6: 4335 // If the expression that denotes the called function has a type 4336 // that does not include a prototype, [the default argument 4337 // promotions are performed]. If the number of arguments does not 4338 // equal the number of parameters, the behavior is undefined. If 4339 // the function is defined with a type that includes a prototype, 4340 // and either the prototype ends with an ellipsis (, ...) or the 4341 // types of the arguments after promotion are not compatible with 4342 // the types of the parameters, the behavior is undefined. If the 4343 // function is defined with a type that does not include a 4344 // prototype, and the types of the arguments after promotion are 4345 // not compatible with those of the parameters after promotion, 4346 // the behavior is undefined [except in some trivial cases]. 4347 // That is, in the general case, we should assume that a call 4348 // through an unprototyped function type works like a *non-variadic* 4349 // call. The way we make this work is to cast to the exact type 4350 // of the promoted arguments. 4351 // 4352 // Chain calls use this same code path to add the invisible chain parameter 4353 // to the function type. 4354 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4355 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4356 CalleeTy = CalleeTy->getPointerTo(); 4357 4358 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4359 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4360 Callee.setFunctionPointer(CalleePtr); 4361 } 4362 4363 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4364 } 4365 4366 LValue CodeGenFunction:: 4367 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4368 Address BaseAddr = Address::invalid(); 4369 if (E->getOpcode() == BO_PtrMemI) { 4370 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4371 } else { 4372 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4373 } 4374 4375 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4376 4377 const MemberPointerType *MPT 4378 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4379 4380 AlignmentSource AlignSource; 4381 Address MemberAddr = 4382 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4383 &AlignSource); 4384 4385 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4386 } 4387 4388 /// Given the address of a temporary variable, produce an r-value of 4389 /// its type. 4390 RValue CodeGenFunction::convertTempToRValue(Address addr, 4391 QualType type, 4392 SourceLocation loc) { 4393 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4394 switch (getEvaluationKind(type)) { 4395 case TEK_Complex: 4396 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4397 case TEK_Aggregate: 4398 return lvalue.asAggregateRValue(); 4399 case TEK_Scalar: 4400 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4401 } 4402 llvm_unreachable("bad evaluation kind"); 4403 } 4404 4405 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4406 assert(Val->getType()->isFPOrFPVectorTy()); 4407 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4408 return; 4409 4410 llvm::MDBuilder MDHelper(getLLVMContext()); 4411 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4412 4413 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4414 } 4415 4416 namespace { 4417 struct LValueOrRValue { 4418 LValue LV; 4419 RValue RV; 4420 }; 4421 } 4422 4423 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4424 const PseudoObjectExpr *E, 4425 bool forLValue, 4426 AggValueSlot slot) { 4427 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4428 4429 // Find the result expression, if any. 4430 const Expr *resultExpr = E->getResultExpr(); 4431 LValueOrRValue result; 4432 4433 for (PseudoObjectExpr::const_semantics_iterator 4434 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4435 const Expr *semantic = *i; 4436 4437 // If this semantic expression is an opaque value, bind it 4438 // to the result of its source expression. 4439 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4440 4441 // If this is the result expression, we may need to evaluate 4442 // directly into the slot. 4443 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4444 OVMA opaqueData; 4445 if (ov == resultExpr && ov->isRValue() && !forLValue && 4446 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4447 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4448 4449 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4450 AlignmentSource::Decl); 4451 opaqueData = OVMA::bind(CGF, ov, LV); 4452 result.RV = slot.asRValue(); 4453 4454 // Otherwise, emit as normal. 4455 } else { 4456 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4457 4458 // If this is the result, also evaluate the result now. 4459 if (ov == resultExpr) { 4460 if (forLValue) 4461 result.LV = CGF.EmitLValue(ov); 4462 else 4463 result.RV = CGF.EmitAnyExpr(ov, slot); 4464 } 4465 } 4466 4467 opaques.push_back(opaqueData); 4468 4469 // Otherwise, if the expression is the result, evaluate it 4470 // and remember the result. 4471 } else if (semantic == resultExpr) { 4472 if (forLValue) 4473 result.LV = CGF.EmitLValue(semantic); 4474 else 4475 result.RV = CGF.EmitAnyExpr(semantic, slot); 4476 4477 // Otherwise, evaluate the expression in an ignored context. 4478 } else { 4479 CGF.EmitIgnoredExpr(semantic); 4480 } 4481 } 4482 4483 // Unbind all the opaques now. 4484 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4485 opaques[i].unbind(CGF); 4486 4487 return result; 4488 } 4489 4490 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4491 AggValueSlot slot) { 4492 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4493 } 4494 4495 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4496 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4497 } 4498