1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     auto CurIP = Builder.saveIP();
78     Builder.SetInsertPoint(AllocaInsertPt);
79     V = getTargetHooks().performAddrSpaceCast(
80         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
81         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
82     Builder.restoreIP(CurIP);
83   }
84 
85   return Address(V, Align);
86 }
87 
88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
90 /// insertion point of the builder.
91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
92                                                     const Twine &Name,
93                                                     llvm::Value *ArraySize) {
94   if (ArraySize)
95     return Builder.CreateAlloca(Ty, ArraySize, Name);
96   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
97                               ArraySize, Name, AllocaInsertPt);
98 }
99 
100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
101 /// default alignment of the corresponding LLVM type, which is *not*
102 /// guaranteed to be related in any way to the expected alignment of
103 /// an AST type that might have been lowered to Ty.
104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
105                                                       const Twine &Name) {
106   CharUnits Align =
107     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
108   return CreateTempAlloca(Ty, Align, Name);
109 }
110 
111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
112   assert(isa<llvm::AllocaInst>(Var.getPointer()));
113   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
114   Store->setAlignment(Var.getAlignment().getQuantity());
115   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
116   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
117 }
118 
119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
120   CharUnits Align = getContext().getTypeAlignInChars(Ty);
121   return CreateTempAlloca(ConvertType(Ty), Align, Name);
122 }
123 
124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
125                                        bool CastToDefaultAddrSpace) {
126   // FIXME: Should we prefer the preferred type alignment here?
127   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
128                        CastToDefaultAddrSpace);
129 }
130 
131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
132                                        const Twine &Name,
133                                        bool CastToDefaultAddrSpace) {
134   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
135                           CastToDefaultAddrSpace);
136 }
137 
138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
139 /// expression and compare the result against zero, returning an Int1Ty value.
140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
141   PGO.setCurrentStmt(E);
142   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
143     llvm::Value *MemPtr = EmitScalarExpr(E);
144     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
145   }
146 
147   QualType BoolTy = getContext().BoolTy;
148   SourceLocation Loc = E->getExprLoc();
149   if (!E->getType()->isAnyComplexType())
150     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
151 
152   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
153                                        Loc);
154 }
155 
156 /// EmitIgnoredExpr - Emit code to compute the specified expression,
157 /// ignoring the result.
158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
159   if (E->isRValue())
160     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
161 
162   // Just emit it as an l-value and drop the result.
163   EmitLValue(E);
164 }
165 
166 /// EmitAnyExpr - Emit code to compute the specified expression which
167 /// can have any type.  The result is returned as an RValue struct.
168 /// If this is an aggregate expression, AggSlot indicates where the
169 /// result should be returned.
170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
171                                     AggValueSlot aggSlot,
172                                     bool ignoreResult) {
173   switch (getEvaluationKind(E->getType())) {
174   case TEK_Scalar:
175     return RValue::get(EmitScalarExpr(E, ignoreResult));
176   case TEK_Complex:
177     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
178   case TEK_Aggregate:
179     if (!ignoreResult && aggSlot.isIgnored())
180       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
181     EmitAggExpr(E, aggSlot);
182     return aggSlot.asRValue();
183   }
184   llvm_unreachable("bad evaluation kind");
185 }
186 
187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
188 /// always be accessible even if no aggregate location is provided.
189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
190   AggValueSlot AggSlot = AggValueSlot::ignored();
191 
192   if (hasAggregateEvaluationKind(E->getType()))
193     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
194   return EmitAnyExpr(E, AggSlot);
195 }
196 
197 /// EmitAnyExprToMem - Evaluate an expression into a given memory
198 /// location.
199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
200                                        Address Location,
201                                        Qualifiers Quals,
202                                        bool IsInit) {
203   // FIXME: This function should take an LValue as an argument.
204   switch (getEvaluationKind(E->getType())) {
205   case TEK_Complex:
206     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
207                               /*isInit*/ false);
208     return;
209 
210   case TEK_Aggregate: {
211     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
212                                          AggValueSlot::IsDestructed_t(IsInit),
213                                          AggValueSlot::DoesNotNeedGCBarriers,
214                                          AggValueSlot::IsAliased_t(!IsInit)));
215     return;
216   }
217 
218   case TEK_Scalar: {
219     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
220     LValue LV = MakeAddrLValue(Location, E->getType());
221     EmitStoreThroughLValue(RV, LV);
222     return;
223   }
224   }
225   llvm_unreachable("bad evaluation kind");
226 }
227 
228 static void
229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
230                      const Expr *E, Address ReferenceTemporary) {
231   // Objective-C++ ARC:
232   //   If we are binding a reference to a temporary that has ownership, we
233   //   need to perform retain/release operations on the temporary.
234   //
235   // FIXME: This should be looking at E, not M.
236   if (auto Lifetime = M->getType().getObjCLifetime()) {
237     switch (Lifetime) {
238     case Qualifiers::OCL_None:
239     case Qualifiers::OCL_ExplicitNone:
240       // Carry on to normal cleanup handling.
241       break;
242 
243     case Qualifiers::OCL_Autoreleasing:
244       // Nothing to do; cleaned up by an autorelease pool.
245       return;
246 
247     case Qualifiers::OCL_Strong:
248     case Qualifiers::OCL_Weak:
249       switch (StorageDuration Duration = M->getStorageDuration()) {
250       case SD_Static:
251         // Note: we intentionally do not register a cleanup to release
252         // the object on program termination.
253         return;
254 
255       case SD_Thread:
256         // FIXME: We should probably register a cleanup in this case.
257         return;
258 
259       case SD_Automatic:
260       case SD_FullExpression:
261         CodeGenFunction::Destroyer *Destroy;
262         CleanupKind CleanupKind;
263         if (Lifetime == Qualifiers::OCL_Strong) {
264           const ValueDecl *VD = M->getExtendingDecl();
265           bool Precise =
266               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
267           CleanupKind = CGF.getARCCleanupKind();
268           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
269                             : &CodeGenFunction::destroyARCStrongImprecise;
270         } else {
271           // __weak objects always get EH cleanups; otherwise, exceptions
272           // could cause really nasty crashes instead of mere leaks.
273           CleanupKind = NormalAndEHCleanup;
274           Destroy = &CodeGenFunction::destroyARCWeak;
275         }
276         if (Duration == SD_FullExpression)
277           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
278                           M->getType(), *Destroy,
279                           CleanupKind & EHCleanup);
280         else
281           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
282                                           M->getType(),
283                                           *Destroy, CleanupKind & EHCleanup);
284         return;
285 
286       case SD_Dynamic:
287         llvm_unreachable("temporary cannot have dynamic storage duration");
288       }
289       llvm_unreachable("unknown storage duration");
290     }
291   }
292 
293   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
294   if (const RecordType *RT =
295           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
296     // Get the destructor for the reference temporary.
297     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
298     if (!ClassDecl->hasTrivialDestructor())
299       ReferenceTemporaryDtor = ClassDecl->getDestructor();
300   }
301 
302   if (!ReferenceTemporaryDtor)
303     return;
304 
305   // Call the destructor for the temporary.
306   switch (M->getStorageDuration()) {
307   case SD_Static:
308   case SD_Thread: {
309     llvm::Constant *CleanupFn;
310     llvm::Constant *CleanupArg;
311     if (E->getType()->isArrayType()) {
312       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
313           ReferenceTemporary, E->getType(),
314           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
315           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
316       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
317     } else {
318       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
319                                                StructorType::Complete);
320       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
321     }
322     CGF.CGM.getCXXABI().registerGlobalDtor(
323         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
324     break;
325   }
326 
327   case SD_FullExpression:
328     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
329                     CodeGenFunction::destroyCXXObject,
330                     CGF.getLangOpts().Exceptions);
331     break;
332 
333   case SD_Automatic:
334     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
335                                     ReferenceTemporary, E->getType(),
336                                     CodeGenFunction::destroyCXXObject,
337                                     CGF.getLangOpts().Exceptions);
338     break;
339 
340   case SD_Dynamic:
341     llvm_unreachable("temporary cannot have dynamic storage duration");
342   }
343 }
344 
345 static Address createReferenceTemporary(CodeGenFunction &CGF,
346                                         const MaterializeTemporaryExpr *M,
347                                         const Expr *Inner) {
348   auto &TCG = CGF.getTargetHooks();
349   switch (M->getStorageDuration()) {
350   case SD_FullExpression:
351   case SD_Automatic: {
352     // If we have a constant temporary array or record try to promote it into a
353     // constant global under the same rules a normal constant would've been
354     // promoted. This is easier on the optimizer and generally emits fewer
355     // instructions.
356     QualType Ty = Inner->getType();
357     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
358         (Ty->isArrayType() || Ty->isRecordType()) &&
359         CGF.CGM.isTypeConstant(Ty, true))
360       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
361         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
362           auto AS = AddrSpace.getValue();
363           auto *GV = new llvm::GlobalVariable(
364               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
365               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
366               llvm::GlobalValue::NotThreadLocal,
367               CGF.getContext().getTargetAddressSpace(AS));
368           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
369           GV->setAlignment(alignment.getQuantity());
370           llvm::Constant *C = GV;
371           if (AS != LangAS::Default)
372             C = TCG.performAddrSpaceCast(
373                 CGF.CGM, GV, AS, LangAS::Default,
374                 GV->getValueType()->getPointerTo(
375                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
376           // FIXME: Should we put the new global into a COMDAT?
377           return Address(C, alignment);
378         }
379       }
380     return CGF.CreateMemTemp(Ty, "ref.tmp");
381   }
382   case SD_Thread:
383   case SD_Static:
384     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
385 
386   case SD_Dynamic:
387     llvm_unreachable("temporary can't have dynamic storage duration");
388   }
389   llvm_unreachable("unknown storage duration");
390 }
391 
392 LValue CodeGenFunction::
393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
394   const Expr *E = M->GetTemporaryExpr();
395 
396     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
397     // as that will cause the lifetime adjustment to be lost for ARC
398   auto ownership = M->getType().getObjCLifetime();
399   if (ownership != Qualifiers::OCL_None &&
400       ownership != Qualifiers::OCL_ExplicitNone) {
401     Address Object = createReferenceTemporary(*this, M, E);
402     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
403       Object = Address(llvm::ConstantExpr::getBitCast(Var,
404                            ConvertTypeForMem(E->getType())
405                              ->getPointerTo(Object.getAddressSpace())),
406                        Object.getAlignment());
407 
408       // createReferenceTemporary will promote the temporary to a global with a
409       // constant initializer if it can.  It can only do this to a value of
410       // ARC-manageable type if the value is global and therefore "immune" to
411       // ref-counting operations.  Therefore we have no need to emit either a
412       // dynamic initialization or a cleanup and we can just return the address
413       // of the temporary.
414       if (Var->hasInitializer())
415         return MakeAddrLValue(Object, M->getType(),
416                               LValueBaseInfo(AlignmentSource::Decl, false));
417 
418       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
419     }
420     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
421                                        LValueBaseInfo(AlignmentSource::Decl,
422                                                       false));
423 
424     switch (getEvaluationKind(E->getType())) {
425     default: llvm_unreachable("expected scalar or aggregate expression");
426     case TEK_Scalar:
427       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
428       break;
429     case TEK_Aggregate: {
430       EmitAggExpr(E, AggValueSlot::forAddr(Object,
431                                            E->getType().getQualifiers(),
432                                            AggValueSlot::IsDestructed,
433                                            AggValueSlot::DoesNotNeedGCBarriers,
434                                            AggValueSlot::IsNotAliased));
435       break;
436     }
437     }
438 
439     pushTemporaryCleanup(*this, M, E, Object);
440     return RefTempDst;
441   }
442 
443   SmallVector<const Expr *, 2> CommaLHSs;
444   SmallVector<SubobjectAdjustment, 2> Adjustments;
445   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
446 
447   for (const auto &Ignored : CommaLHSs)
448     EmitIgnoredExpr(Ignored);
449 
450   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
451     if (opaque->getType()->isRecordType()) {
452       assert(Adjustments.empty());
453       return EmitOpaqueValueLValue(opaque);
454     }
455   }
456 
457   // Create and initialize the reference temporary.
458   Address Object = createReferenceTemporary(*this, M, E);
459   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
460           Object.getPointer()->stripPointerCasts())) {
461     Object = Address(llvm::ConstantExpr::getBitCast(
462                          cast<llvm::Constant>(Object.getPointer()),
463                          ConvertTypeForMem(E->getType())->getPointerTo()),
464                      Object.getAlignment());
465     // If the temporary is a global and has a constant initializer or is a
466     // constant temporary that we promoted to a global, we may have already
467     // initialized it.
468     if (!Var->hasInitializer()) {
469       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
470       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
471     }
472   } else {
473     switch (M->getStorageDuration()) {
474     case SD_Automatic:
475     case SD_FullExpression:
476       if (auto *Size = EmitLifetimeStart(
477               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
478               Object.getPointer())) {
479         if (M->getStorageDuration() == SD_Automatic)
480           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
481                                                     Object, Size);
482         else
483           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
484                                                Size);
485       }
486       break;
487     default:
488       break;
489     }
490     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
491   }
492   pushTemporaryCleanup(*this, M, E, Object);
493 
494   // Perform derived-to-base casts and/or field accesses, to get from the
495   // temporary object we created (and, potentially, for which we extended
496   // the lifetime) to the subobject we're binding the reference to.
497   for (unsigned I = Adjustments.size(); I != 0; --I) {
498     SubobjectAdjustment &Adjustment = Adjustments[I-1];
499     switch (Adjustment.Kind) {
500     case SubobjectAdjustment::DerivedToBaseAdjustment:
501       Object =
502           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
503                                 Adjustment.DerivedToBase.BasePath->path_begin(),
504                                 Adjustment.DerivedToBase.BasePath->path_end(),
505                                 /*NullCheckValue=*/ false, E->getExprLoc());
506       break;
507 
508     case SubobjectAdjustment::FieldAdjustment: {
509       LValue LV = MakeAddrLValue(Object, E->getType(),
510                                  LValueBaseInfo(AlignmentSource::Decl, false));
511       LV = EmitLValueForField(LV, Adjustment.Field);
512       assert(LV.isSimple() &&
513              "materialized temporary field is not a simple lvalue");
514       Object = LV.getAddress();
515       break;
516     }
517 
518     case SubobjectAdjustment::MemberPointerAdjustment: {
519       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
520       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
521                                                Adjustment.Ptr.MPT);
522       break;
523     }
524     }
525   }
526 
527   return MakeAddrLValue(Object, M->getType(),
528                         LValueBaseInfo(AlignmentSource::Decl, false));
529 }
530 
531 RValue
532 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
533   // Emit the expression as an lvalue.
534   LValue LV = EmitLValue(E);
535   assert(LV.isSimple());
536   llvm::Value *Value = LV.getPointer();
537 
538   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
539     // C++11 [dcl.ref]p5 (as amended by core issue 453):
540     //   If a glvalue to which a reference is directly bound designates neither
541     //   an existing object or function of an appropriate type nor a region of
542     //   storage of suitable size and alignment to contain an object of the
543     //   reference's type, the behavior is undefined.
544     QualType Ty = E->getType();
545     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
546   }
547 
548   return RValue::get(Value);
549 }
550 
551 
552 /// getAccessedFieldNo - Given an encoded value and a result number, return the
553 /// input field number being accessed.
554 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
555                                              const llvm::Constant *Elts) {
556   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
557       ->getZExtValue();
558 }
559 
560 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
561 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
562                                     llvm::Value *High) {
563   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
564   llvm::Value *K47 = Builder.getInt64(47);
565   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
566   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
567   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
568   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
569   return Builder.CreateMul(B1, KMul);
570 }
571 
572 bool CodeGenFunction::sanitizePerformTypeCheck() const {
573   return SanOpts.has(SanitizerKind::Null) |
574          SanOpts.has(SanitizerKind::Alignment) |
575          SanOpts.has(SanitizerKind::ObjectSize) |
576          SanOpts.has(SanitizerKind::Vptr);
577 }
578 
579 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
580                                     llvm::Value *Ptr, QualType Ty,
581                                     CharUnits Alignment,
582                                     SanitizerSet SkippedChecks) {
583   if (!sanitizePerformTypeCheck())
584     return;
585 
586   // Don't check pointers outside the default address space. The null check
587   // isn't correct, the object-size check isn't supported by LLVM, and we can't
588   // communicate the addresses to the runtime handler for the vptr check.
589   if (Ptr->getType()->getPointerAddressSpace())
590     return;
591 
592   // Don't check pointers to volatile data. The behavior here is implementation-
593   // defined.
594   if (Ty.isVolatileQualified())
595     return;
596 
597   SanitizerScope SanScope(this);
598 
599   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
600   llvm::BasicBlock *Done = nullptr;
601 
602   // Quickly determine whether we have a pointer to an alloca. It's possible
603   // to skip null checks, and some alignment checks, for these pointers. This
604   // can reduce compile-time significantly.
605   auto PtrToAlloca =
606       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
607 
608   llvm::Value *IsNonNull = nullptr;
609   bool IsGuaranteedNonNull =
610       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
611   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
612                            TCK == TCK_UpcastToVirtualBase;
613   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
614       !IsGuaranteedNonNull) {
615     // The glvalue must not be an empty glvalue.
616     IsNonNull = Builder.CreateIsNotNull(Ptr);
617 
618     // The IR builder can constant-fold the null check if the pointer points to
619     // a constant.
620     IsGuaranteedNonNull =
621         IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext());
622 
623     // Skip the null check if the pointer is known to be non-null.
624     if (!IsGuaranteedNonNull) {
625       if (AllowNullPointers) {
626         // When performing pointer casts, it's OK if the value is null.
627         // Skip the remaining checks in that case.
628         Done = createBasicBlock("null");
629         llvm::BasicBlock *Rest = createBasicBlock("not.null");
630         Builder.CreateCondBr(IsNonNull, Rest, Done);
631         EmitBlock(Rest);
632       } else {
633         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
634       }
635     }
636   }
637 
638   if (SanOpts.has(SanitizerKind::ObjectSize) &&
639       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
640       !Ty->isIncompleteType()) {
641     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
642 
643     // The glvalue must refer to a large enough storage region.
644     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
645     //        to check this.
646     // FIXME: Get object address space
647     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
648     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
649     llvm::Value *Min = Builder.getFalse();
650     llvm::Value *NullIsUnknown = Builder.getFalse();
651     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
652     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
653         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
654         llvm::ConstantInt::get(IntPtrTy, Size));
655     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
656   }
657 
658   uint64_t AlignVal = 0;
659 
660   if (SanOpts.has(SanitizerKind::Alignment) &&
661       !SkippedChecks.has(SanitizerKind::Alignment)) {
662     AlignVal = Alignment.getQuantity();
663     if (!Ty->isIncompleteType() && !AlignVal)
664       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
665 
666     // The glvalue must be suitably aligned.
667     if (AlignVal > 1 &&
668         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
669       llvm::Value *Align =
670           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
671                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
672       llvm::Value *Aligned =
673         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
674       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
675     }
676   }
677 
678   if (Checks.size() > 0) {
679     // Make sure we're not losing information. Alignment needs to be a power of
680     // 2
681     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
682     llvm::Constant *StaticData[] = {
683         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
684         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
685         llvm::ConstantInt::get(Int8Ty, TCK)};
686     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr);
687   }
688 
689   // If possible, check that the vptr indicates that there is a subobject of
690   // type Ty at offset zero within this object.
691   //
692   // C++11 [basic.life]p5,6:
693   //   [For storage which does not refer to an object within its lifetime]
694   //   The program has undefined behavior if:
695   //    -- the [pointer or glvalue] is used to access a non-static data member
696   //       or call a non-static member function
697   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
698   if (SanOpts.has(SanitizerKind::Vptr) &&
699       !SkippedChecks.has(SanitizerKind::Vptr) &&
700       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
701        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
702        TCK == TCK_UpcastToVirtualBase) &&
703       RD && RD->hasDefinition() && RD->isDynamicClass()) {
704     // Ensure that the pointer is non-null before loading it. If there is no
705     // compile-time guarantee, reuse the run-time null check or emit a new one.
706     if (!IsGuaranteedNonNull) {
707       if (!IsNonNull)
708         IsNonNull = Builder.CreateIsNotNull(Ptr);
709       if (!Done)
710         Done = createBasicBlock("vptr.null");
711       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
712       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
713       EmitBlock(VptrNotNull);
714     }
715 
716     // Compute a hash of the mangled name of the type.
717     //
718     // FIXME: This is not guaranteed to be deterministic! Move to a
719     //        fingerprinting mechanism once LLVM provides one. For the time
720     //        being the implementation happens to be deterministic.
721     SmallString<64> MangledName;
722     llvm::raw_svector_ostream Out(MangledName);
723     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
724                                                      Out);
725 
726     // Blacklist based on the mangled type.
727     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
728             Out.str())) {
729       llvm::hash_code TypeHash = hash_value(Out.str());
730 
731       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
732       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
733       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
734       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
735       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
736       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
737 
738       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
739       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
740 
741       // Look the hash up in our cache.
742       const int CacheSize = 128;
743       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
744       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
745                                                      "__ubsan_vptr_type_cache");
746       llvm::Value *Slot = Builder.CreateAnd(Hash,
747                                             llvm::ConstantInt::get(IntPtrTy,
748                                                                    CacheSize-1));
749       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
750       llvm::Value *CacheVal =
751         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
752                                   getPointerAlign());
753 
754       // If the hash isn't in the cache, call a runtime handler to perform the
755       // hard work of checking whether the vptr is for an object of the right
756       // type. This will either fill in the cache and return, or produce a
757       // diagnostic.
758       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
759       llvm::Constant *StaticData[] = {
760         EmitCheckSourceLocation(Loc),
761         EmitCheckTypeDescriptor(Ty),
762         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
763         llvm::ConstantInt::get(Int8Ty, TCK)
764       };
765       llvm::Value *DynamicData[] = { Ptr, Hash };
766       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
767                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
768                 DynamicData);
769     }
770   }
771 
772   if (Done) {
773     Builder.CreateBr(Done);
774     EmitBlock(Done);
775   }
776 }
777 
778 /// Determine whether this expression refers to a flexible array member in a
779 /// struct. We disable array bounds checks for such members.
780 static bool isFlexibleArrayMemberExpr(const Expr *E) {
781   // For compatibility with existing code, we treat arrays of length 0 or
782   // 1 as flexible array members.
783   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
784   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
785     if (CAT->getSize().ugt(1))
786       return false;
787   } else if (!isa<IncompleteArrayType>(AT))
788     return false;
789 
790   E = E->IgnoreParens();
791 
792   // A flexible array member must be the last member in the class.
793   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
794     // FIXME: If the base type of the member expr is not FD->getParent(),
795     // this should not be treated as a flexible array member access.
796     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
797       RecordDecl::field_iterator FI(
798           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
799       return ++FI == FD->getParent()->field_end();
800     }
801   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
802     return IRE->getDecl()->getNextIvar() == nullptr;
803   }
804 
805   return false;
806 }
807 
808 /// If Base is known to point to the start of an array, return the length of
809 /// that array. Return 0 if the length cannot be determined.
810 static llvm::Value *getArrayIndexingBound(
811     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
812   // For the vector indexing extension, the bound is the number of elements.
813   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
814     IndexedType = Base->getType();
815     return CGF.Builder.getInt32(VT->getNumElements());
816   }
817 
818   Base = Base->IgnoreParens();
819 
820   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
821     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
822         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
823       IndexedType = CE->getSubExpr()->getType();
824       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
825       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
826         return CGF.Builder.getInt(CAT->getSize());
827       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
828         return CGF.getVLASize(VAT).first;
829     }
830   }
831 
832   return nullptr;
833 }
834 
835 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
836                                       llvm::Value *Index, QualType IndexType,
837                                       bool Accessed) {
838   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
839          "should not be called unless adding bounds checks");
840   SanitizerScope SanScope(this);
841 
842   QualType IndexedType;
843   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
844   if (!Bound)
845     return;
846 
847   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
848   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
849   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
850 
851   llvm::Constant *StaticData[] = {
852     EmitCheckSourceLocation(E->getExprLoc()),
853     EmitCheckTypeDescriptor(IndexedType),
854     EmitCheckTypeDescriptor(IndexType)
855   };
856   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
857                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
858   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
859             SanitizerHandler::OutOfBounds, StaticData, Index);
860 }
861 
862 
863 CodeGenFunction::ComplexPairTy CodeGenFunction::
864 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
865                          bool isInc, bool isPre) {
866   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
867 
868   llvm::Value *NextVal;
869   if (isa<llvm::IntegerType>(InVal.first->getType())) {
870     uint64_t AmountVal = isInc ? 1 : -1;
871     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
872 
873     // Add the inc/dec to the real part.
874     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
875   } else {
876     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
877     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
878     if (!isInc)
879       FVal.changeSign();
880     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
881 
882     // Add the inc/dec to the real part.
883     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
884   }
885 
886   ComplexPairTy IncVal(NextVal, InVal.second);
887 
888   // Store the updated result through the lvalue.
889   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
890 
891   // If this is a postinc, return the value read from memory, otherwise use the
892   // updated value.
893   return isPre ? IncVal : InVal;
894 }
895 
896 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
897                                              CodeGenFunction *CGF) {
898   // Bind VLAs in the cast type.
899   if (CGF && E->getType()->isVariablyModifiedType())
900     CGF->EmitVariablyModifiedType(E->getType());
901 
902   if (CGDebugInfo *DI = getModuleDebugInfo())
903     DI->EmitExplicitCastType(E->getType());
904 }
905 
906 //===----------------------------------------------------------------------===//
907 //                         LValue Expression Emission
908 //===----------------------------------------------------------------------===//
909 
910 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
911 /// derive a more accurate bound on the alignment of the pointer.
912 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
913                                                   LValueBaseInfo *BaseInfo) {
914   // We allow this with ObjC object pointers because of fragile ABIs.
915   assert(E->getType()->isPointerType() ||
916          E->getType()->isObjCObjectPointerType());
917   E = E->IgnoreParens();
918 
919   // Casts:
920   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
921     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
922       CGM.EmitExplicitCastExprType(ECE, this);
923 
924     switch (CE->getCastKind()) {
925     // Non-converting casts (but not C's implicit conversion from void*).
926     case CK_BitCast:
927     case CK_NoOp:
928       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
929         if (PtrTy->getPointeeType()->isVoidType())
930           break;
931 
932         LValueBaseInfo InnerInfo;
933         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo);
934         if (BaseInfo) *BaseInfo = InnerInfo;
935 
936         // If this is an explicit bitcast, and the source l-value is
937         // opaque, honor the alignment of the casted-to type.
938         if (isa<ExplicitCastExpr>(CE) &&
939             InnerInfo.getAlignmentSource() != AlignmentSource::Decl) {
940           LValueBaseInfo ExpInfo;
941           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
942                                                            &ExpInfo);
943           if (BaseInfo)
944             BaseInfo->mergeForCast(ExpInfo);
945           Addr = Address(Addr.getPointer(), Align);
946         }
947 
948         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
949             CE->getCastKind() == CK_BitCast) {
950           if (auto PT = E->getType()->getAs<PointerType>())
951             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
952                                       /*MayBeNull=*/true,
953                                       CodeGenFunction::CFITCK_UnrelatedCast,
954                                       CE->getLocStart());
955         }
956 
957         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
958       }
959       break;
960 
961     // Array-to-pointer decay.
962     case CK_ArrayToPointerDecay:
963       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo);
964 
965     // Derived-to-base conversions.
966     case CK_UncheckedDerivedToBase:
967     case CK_DerivedToBase: {
968       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
969       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
970       return GetAddressOfBaseClass(Addr, Derived,
971                                    CE->path_begin(), CE->path_end(),
972                                    ShouldNullCheckClassCastValue(CE),
973                                    CE->getExprLoc());
974     }
975 
976     // TODO: Is there any reason to treat base-to-derived conversions
977     // specially?
978     default:
979       break;
980     }
981   }
982 
983   // Unary &.
984   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
985     if (UO->getOpcode() == UO_AddrOf) {
986       LValue LV = EmitLValue(UO->getSubExpr());
987       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
988       return LV.getAddress();
989     }
990   }
991 
992   // TODO: conditional operators, comma.
993 
994   // Otherwise, use the alignment of the type.
995   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo);
996   return Address(EmitScalarExpr(E), Align);
997 }
998 
999 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1000   if (Ty->isVoidType())
1001     return RValue::get(nullptr);
1002 
1003   switch (getEvaluationKind(Ty)) {
1004   case TEK_Complex: {
1005     llvm::Type *EltTy =
1006       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1007     llvm::Value *U = llvm::UndefValue::get(EltTy);
1008     return RValue::getComplex(std::make_pair(U, U));
1009   }
1010 
1011   // If this is a use of an undefined aggregate type, the aggregate must have an
1012   // identifiable address.  Just because the contents of the value are undefined
1013   // doesn't mean that the address can't be taken and compared.
1014   case TEK_Aggregate: {
1015     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1016     return RValue::getAggregate(DestPtr);
1017   }
1018 
1019   case TEK_Scalar:
1020     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1021   }
1022   llvm_unreachable("bad evaluation kind");
1023 }
1024 
1025 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1026                                               const char *Name) {
1027   ErrorUnsupported(E, Name);
1028   return GetUndefRValue(E->getType());
1029 }
1030 
1031 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1032                                               const char *Name) {
1033   ErrorUnsupported(E, Name);
1034   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1035   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1036                         E->getType());
1037 }
1038 
1039 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1040   const Expr *Base = Obj;
1041   while (!isa<CXXThisExpr>(Base)) {
1042     // The result of a dynamic_cast can be null.
1043     if (isa<CXXDynamicCastExpr>(Base))
1044       return false;
1045 
1046     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1047       Base = CE->getSubExpr();
1048     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1049       Base = PE->getSubExpr();
1050     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1051       if (UO->getOpcode() == UO_Extension)
1052         Base = UO->getSubExpr();
1053       else
1054         return false;
1055     } else {
1056       return false;
1057     }
1058   }
1059   return true;
1060 }
1061 
1062 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1063   LValue LV;
1064   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1065     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1066   else
1067     LV = EmitLValue(E);
1068   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1069     SanitizerSet SkippedChecks;
1070     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1071       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1072       if (IsBaseCXXThis)
1073         SkippedChecks.set(SanitizerKind::Alignment, true);
1074       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1075         SkippedChecks.set(SanitizerKind::Null, true);
1076     }
1077     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1078                   E->getType(), LV.getAlignment(), SkippedChecks);
1079   }
1080   return LV;
1081 }
1082 
1083 /// EmitLValue - Emit code to compute a designator that specifies the location
1084 /// of the expression.
1085 ///
1086 /// This can return one of two things: a simple address or a bitfield reference.
1087 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1088 /// an LLVM pointer type.
1089 ///
1090 /// If this returns a bitfield reference, nothing about the pointee type of the
1091 /// LLVM value is known: For example, it may not be a pointer to an integer.
1092 ///
1093 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1094 /// this method guarantees that the returned pointer type will point to an LLVM
1095 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1096 /// length type, this is not possible.
1097 ///
1098 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1099   ApplyDebugLocation DL(*this, E);
1100   switch (E->getStmtClass()) {
1101   default: return EmitUnsupportedLValue(E, "l-value expression");
1102 
1103   case Expr::ObjCPropertyRefExprClass:
1104     llvm_unreachable("cannot emit a property reference directly");
1105 
1106   case Expr::ObjCSelectorExprClass:
1107     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1108   case Expr::ObjCIsaExprClass:
1109     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1110   case Expr::BinaryOperatorClass:
1111     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1112   case Expr::CompoundAssignOperatorClass: {
1113     QualType Ty = E->getType();
1114     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1115       Ty = AT->getValueType();
1116     if (!Ty->isAnyComplexType())
1117       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1118     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1119   }
1120   case Expr::CallExprClass:
1121   case Expr::CXXMemberCallExprClass:
1122   case Expr::CXXOperatorCallExprClass:
1123   case Expr::UserDefinedLiteralClass:
1124     return EmitCallExprLValue(cast<CallExpr>(E));
1125   case Expr::VAArgExprClass:
1126     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1127   case Expr::DeclRefExprClass:
1128     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1129   case Expr::ParenExprClass:
1130     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1131   case Expr::GenericSelectionExprClass:
1132     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1133   case Expr::PredefinedExprClass:
1134     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1135   case Expr::StringLiteralClass:
1136     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1137   case Expr::ObjCEncodeExprClass:
1138     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1139   case Expr::PseudoObjectExprClass:
1140     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1141   case Expr::InitListExprClass:
1142     return EmitInitListLValue(cast<InitListExpr>(E));
1143   case Expr::CXXTemporaryObjectExprClass:
1144   case Expr::CXXConstructExprClass:
1145     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1146   case Expr::CXXBindTemporaryExprClass:
1147     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1148   case Expr::CXXUuidofExprClass:
1149     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1150   case Expr::LambdaExprClass:
1151     return EmitLambdaLValue(cast<LambdaExpr>(E));
1152 
1153   case Expr::ExprWithCleanupsClass: {
1154     const auto *cleanups = cast<ExprWithCleanups>(E);
1155     enterFullExpression(cleanups);
1156     RunCleanupsScope Scope(*this);
1157     LValue LV = EmitLValue(cleanups->getSubExpr());
1158     if (LV.isSimple()) {
1159       // Defend against branches out of gnu statement expressions surrounded by
1160       // cleanups.
1161       llvm::Value *V = LV.getPointer();
1162       Scope.ForceCleanup({&V});
1163       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1164                               getContext(), LV.getBaseInfo(),
1165                               LV.getTBAAInfo());
1166     }
1167     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1168     // bitfield lvalue or some other non-simple lvalue?
1169     return LV;
1170   }
1171 
1172   case Expr::CXXDefaultArgExprClass:
1173     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1174   case Expr::CXXDefaultInitExprClass: {
1175     CXXDefaultInitExprScope Scope(*this);
1176     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1177   }
1178   case Expr::CXXTypeidExprClass:
1179     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1180 
1181   case Expr::ObjCMessageExprClass:
1182     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1183   case Expr::ObjCIvarRefExprClass:
1184     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1185   case Expr::StmtExprClass:
1186     return EmitStmtExprLValue(cast<StmtExpr>(E));
1187   case Expr::UnaryOperatorClass:
1188     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1189   case Expr::ArraySubscriptExprClass:
1190     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1191   case Expr::OMPArraySectionExprClass:
1192     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1193   case Expr::ExtVectorElementExprClass:
1194     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1195   case Expr::MemberExprClass:
1196     return EmitMemberExpr(cast<MemberExpr>(E));
1197   case Expr::CompoundLiteralExprClass:
1198     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1199   case Expr::ConditionalOperatorClass:
1200     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1201   case Expr::BinaryConditionalOperatorClass:
1202     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1203   case Expr::ChooseExprClass:
1204     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1205   case Expr::OpaqueValueExprClass:
1206     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1207   case Expr::SubstNonTypeTemplateParmExprClass:
1208     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1209   case Expr::ImplicitCastExprClass:
1210   case Expr::CStyleCastExprClass:
1211   case Expr::CXXFunctionalCastExprClass:
1212   case Expr::CXXStaticCastExprClass:
1213   case Expr::CXXDynamicCastExprClass:
1214   case Expr::CXXReinterpretCastExprClass:
1215   case Expr::CXXConstCastExprClass:
1216   case Expr::ObjCBridgedCastExprClass:
1217     return EmitCastLValue(cast<CastExpr>(E));
1218 
1219   case Expr::MaterializeTemporaryExprClass:
1220     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1221 
1222   case Expr::CoawaitExprClass:
1223     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1224   case Expr::CoyieldExprClass:
1225     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1226   }
1227 }
1228 
1229 /// Given an object of the given canonical type, can we safely copy a
1230 /// value out of it based on its initializer?
1231 static bool isConstantEmittableObjectType(QualType type) {
1232   assert(type.isCanonical());
1233   assert(!type->isReferenceType());
1234 
1235   // Must be const-qualified but non-volatile.
1236   Qualifiers qs = type.getLocalQualifiers();
1237   if (!qs.hasConst() || qs.hasVolatile()) return false;
1238 
1239   // Otherwise, all object types satisfy this except C++ classes with
1240   // mutable subobjects or non-trivial copy/destroy behavior.
1241   if (const auto *RT = dyn_cast<RecordType>(type))
1242     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1243       if (RD->hasMutableFields() || !RD->isTrivial())
1244         return false;
1245 
1246   return true;
1247 }
1248 
1249 /// Can we constant-emit a load of a reference to a variable of the
1250 /// given type?  This is different from predicates like
1251 /// Decl::isUsableInConstantExpressions because we do want it to apply
1252 /// in situations that don't necessarily satisfy the language's rules
1253 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1254 /// to do this with const float variables even if those variables
1255 /// aren't marked 'constexpr'.
1256 enum ConstantEmissionKind {
1257   CEK_None,
1258   CEK_AsReferenceOnly,
1259   CEK_AsValueOrReference,
1260   CEK_AsValueOnly
1261 };
1262 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1263   type = type.getCanonicalType();
1264   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1265     if (isConstantEmittableObjectType(ref->getPointeeType()))
1266       return CEK_AsValueOrReference;
1267     return CEK_AsReferenceOnly;
1268   }
1269   if (isConstantEmittableObjectType(type))
1270     return CEK_AsValueOnly;
1271   return CEK_None;
1272 }
1273 
1274 /// Try to emit a reference to the given value without producing it as
1275 /// an l-value.  This is actually more than an optimization: we can't
1276 /// produce an l-value for variables that we never actually captured
1277 /// in a block or lambda, which means const int variables or constexpr
1278 /// literals or similar.
1279 CodeGenFunction::ConstantEmission
1280 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1281   ValueDecl *value = refExpr->getDecl();
1282 
1283   // The value needs to be an enum constant or a constant variable.
1284   ConstantEmissionKind CEK;
1285   if (isa<ParmVarDecl>(value)) {
1286     CEK = CEK_None;
1287   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1288     CEK = checkVarTypeForConstantEmission(var->getType());
1289   } else if (isa<EnumConstantDecl>(value)) {
1290     CEK = CEK_AsValueOnly;
1291   } else {
1292     CEK = CEK_None;
1293   }
1294   if (CEK == CEK_None) return ConstantEmission();
1295 
1296   Expr::EvalResult result;
1297   bool resultIsReference;
1298   QualType resultType;
1299 
1300   // It's best to evaluate all the way as an r-value if that's permitted.
1301   if (CEK != CEK_AsReferenceOnly &&
1302       refExpr->EvaluateAsRValue(result, getContext())) {
1303     resultIsReference = false;
1304     resultType = refExpr->getType();
1305 
1306   // Otherwise, try to evaluate as an l-value.
1307   } else if (CEK != CEK_AsValueOnly &&
1308              refExpr->EvaluateAsLValue(result, getContext())) {
1309     resultIsReference = true;
1310     resultType = value->getType();
1311 
1312   // Failure.
1313   } else {
1314     return ConstantEmission();
1315   }
1316 
1317   // In any case, if the initializer has side-effects, abandon ship.
1318   if (result.HasSideEffects)
1319     return ConstantEmission();
1320 
1321   // Emit as a constant.
1322   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1323                                                result.Val, resultType);
1324 
1325   // Make sure we emit a debug reference to the global variable.
1326   // This should probably fire even for
1327   if (isa<VarDecl>(value)) {
1328     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1329       EmitDeclRefExprDbgValue(refExpr, result.Val);
1330   } else {
1331     assert(isa<EnumConstantDecl>(value));
1332     EmitDeclRefExprDbgValue(refExpr, result.Val);
1333   }
1334 
1335   // If we emitted a reference constant, we need to dereference that.
1336   if (resultIsReference)
1337     return ConstantEmission::forReference(C);
1338 
1339   return ConstantEmission::forValue(C);
1340 }
1341 
1342 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1343                                                         const MemberExpr *ME) {
1344   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1345     // Try to emit static variable member expressions as DREs.
1346     return DeclRefExpr::Create(
1347         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1348         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1349         ME->getType(), ME->getValueKind());
1350   }
1351   return nullptr;
1352 }
1353 
1354 CodeGenFunction::ConstantEmission
1355 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1356   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1357     return tryEmitAsConstant(DRE);
1358   return ConstantEmission();
1359 }
1360 
1361 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1362                                                SourceLocation Loc) {
1363   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1364                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1365                           lvalue.getTBAAInfo(),
1366                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1367                           lvalue.isNontemporal());
1368 }
1369 
1370 static bool hasBooleanRepresentation(QualType Ty) {
1371   if (Ty->isBooleanType())
1372     return true;
1373 
1374   if (const EnumType *ET = Ty->getAs<EnumType>())
1375     return ET->getDecl()->getIntegerType()->isBooleanType();
1376 
1377   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1378     return hasBooleanRepresentation(AT->getValueType());
1379 
1380   return false;
1381 }
1382 
1383 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1384                             llvm::APInt &Min, llvm::APInt &End,
1385                             bool StrictEnums, bool IsBool) {
1386   const EnumType *ET = Ty->getAs<EnumType>();
1387   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1388                                 ET && !ET->getDecl()->isFixed();
1389   if (!IsBool && !IsRegularCPlusPlusEnum)
1390     return false;
1391 
1392   if (IsBool) {
1393     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1394     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1395   } else {
1396     const EnumDecl *ED = ET->getDecl();
1397     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1398     unsigned Bitwidth = LTy->getScalarSizeInBits();
1399     unsigned NumNegativeBits = ED->getNumNegativeBits();
1400     unsigned NumPositiveBits = ED->getNumPositiveBits();
1401 
1402     if (NumNegativeBits) {
1403       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1404       assert(NumBits <= Bitwidth);
1405       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1406       Min = -End;
1407     } else {
1408       assert(NumPositiveBits <= Bitwidth);
1409       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1410       Min = llvm::APInt(Bitwidth, 0);
1411     }
1412   }
1413   return true;
1414 }
1415 
1416 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1417   llvm::APInt Min, End;
1418   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1419                        hasBooleanRepresentation(Ty)))
1420     return nullptr;
1421 
1422   llvm::MDBuilder MDHelper(getLLVMContext());
1423   return MDHelper.createRange(Min, End);
1424 }
1425 
1426 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1427                                            SourceLocation Loc) {
1428   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1429   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1430   if (!HasBoolCheck && !HasEnumCheck)
1431     return false;
1432 
1433   bool IsBool = hasBooleanRepresentation(Ty) ||
1434                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1435   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1436   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1437   if (!NeedsBoolCheck && !NeedsEnumCheck)
1438     return false;
1439 
1440   // Single-bit booleans don't need to be checked. Special-case this to avoid
1441   // a bit width mismatch when handling bitfield values. This is handled by
1442   // EmitFromMemory for the non-bitfield case.
1443   if (IsBool &&
1444       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1445     return false;
1446 
1447   llvm::APInt Min, End;
1448   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1449     return true;
1450 
1451   SanitizerScope SanScope(this);
1452   llvm::Value *Check;
1453   --End;
1454   if (!Min) {
1455     Check = Builder.CreateICmpULE(
1456         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1457   } else {
1458     llvm::Value *Upper = Builder.CreateICmpSLE(
1459         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1460     llvm::Value *Lower = Builder.CreateICmpSGE(
1461         Value, llvm::ConstantInt::get(getLLVMContext(), Min));
1462     Check = Builder.CreateAnd(Upper, Lower);
1463   }
1464   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1465                                   EmitCheckTypeDescriptor(Ty)};
1466   SanitizerMask Kind =
1467       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1468   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1469             StaticArgs, EmitCheckValue(Value));
1470   return true;
1471 }
1472 
1473 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1474                                                QualType Ty,
1475                                                SourceLocation Loc,
1476                                                LValueBaseInfo BaseInfo,
1477                                                llvm::MDNode *TBAAInfo,
1478                                                QualType TBAABaseType,
1479                                                uint64_t TBAAOffset,
1480                                                bool isNontemporal) {
1481   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1482     // For better performance, handle vector loads differently.
1483     if (Ty->isVectorType()) {
1484       const llvm::Type *EltTy = Addr.getElementType();
1485 
1486       const auto *VTy = cast<llvm::VectorType>(EltTy);
1487 
1488       // Handle vectors of size 3 like size 4 for better performance.
1489       if (VTy->getNumElements() == 3) {
1490 
1491         // Bitcast to vec4 type.
1492         llvm::VectorType *vec4Ty =
1493             llvm::VectorType::get(VTy->getElementType(), 4);
1494         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1495         // Now load value.
1496         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1497 
1498         // Shuffle vector to get vec3.
1499         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1500                                         {0, 1, 2}, "extractVec");
1501         return EmitFromMemory(V, Ty);
1502       }
1503     }
1504   }
1505 
1506   // Atomic operations have to be done on integral types.
1507   LValue AtomicLValue =
1508       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1509   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1510     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1511   }
1512 
1513   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1514   if (isNontemporal) {
1515     llvm::MDNode *Node = llvm::MDNode::get(
1516         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1517     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1518   }
1519   if (TBAAInfo) {
1520     bool MayAlias = BaseInfo.getMayAlias();
1521     llvm::MDNode *TBAA = MayAlias
1522         ? CGM.getTBAAInfo(getContext().CharTy)
1523         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset);
1524     if (TBAA)
1525       CGM.DecorateInstructionWithTBAA(Load, TBAA, MayAlias);
1526   }
1527 
1528   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1529     // In order to prevent the optimizer from throwing away the check, don't
1530     // attach range metadata to the load.
1531   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1532     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1533       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1534 
1535   return EmitFromMemory(Load, Ty);
1536 }
1537 
1538 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1539   // Bool has a different representation in memory than in registers.
1540   if (hasBooleanRepresentation(Ty)) {
1541     // This should really always be an i1, but sometimes it's already
1542     // an i8, and it's awkward to track those cases down.
1543     if (Value->getType()->isIntegerTy(1))
1544       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1545     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1546            "wrong value rep of bool");
1547   }
1548 
1549   return Value;
1550 }
1551 
1552 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1553   // Bool has a different representation in memory than in registers.
1554   if (hasBooleanRepresentation(Ty)) {
1555     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1556            "wrong value rep of bool");
1557     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1558   }
1559 
1560   return Value;
1561 }
1562 
1563 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1564                                         bool Volatile, QualType Ty,
1565                                         LValueBaseInfo BaseInfo,
1566                                         llvm::MDNode *TBAAInfo,
1567                                         bool isInit, QualType TBAABaseType,
1568                                         uint64_t TBAAOffset,
1569                                         bool isNontemporal) {
1570 
1571   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1572     // Handle vectors differently to get better performance.
1573     if (Ty->isVectorType()) {
1574       llvm::Type *SrcTy = Value->getType();
1575       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1576       // Handle vec3 special.
1577       if (VecTy && VecTy->getNumElements() == 3) {
1578         // Our source is a vec3, do a shuffle vector to make it a vec4.
1579         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1580                                   Builder.getInt32(2),
1581                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1582         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1583         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1584                                             MaskV, "extractVec");
1585         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1586       }
1587       if (Addr.getElementType() != SrcTy) {
1588         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1589       }
1590     }
1591   }
1592 
1593   Value = EmitToMemory(Value, Ty);
1594 
1595   LValue AtomicLValue =
1596       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1597   if (Ty->isAtomicType() ||
1598       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1599     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1600     return;
1601   }
1602 
1603   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1604   if (isNontemporal) {
1605     llvm::MDNode *Node =
1606         llvm::MDNode::get(Store->getContext(),
1607                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1608     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1609   }
1610   if (TBAAInfo) {
1611     bool MayAlias = BaseInfo.getMayAlias();
1612     llvm::MDNode *TBAA = MayAlias
1613         ? CGM.getTBAAInfo(getContext().CharTy)
1614         : CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset);
1615     if (TBAA)
1616       CGM.DecorateInstructionWithTBAA(Store, TBAA, MayAlias);
1617   }
1618 }
1619 
1620 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1621                                         bool isInit) {
1622   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1623                     lvalue.getType(), lvalue.getBaseInfo(),
1624                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1625                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1626 }
1627 
1628 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1629 /// method emits the address of the lvalue, then loads the result as an rvalue,
1630 /// returning the rvalue.
1631 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1632   if (LV.isObjCWeak()) {
1633     // load of a __weak object.
1634     Address AddrWeakObj = LV.getAddress();
1635     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1636                                                              AddrWeakObj));
1637   }
1638   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1639     // In MRC mode, we do a load+autorelease.
1640     if (!getLangOpts().ObjCAutoRefCount) {
1641       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1642     }
1643 
1644     // In ARC mode, we load retained and then consume the value.
1645     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1646     Object = EmitObjCConsumeObject(LV.getType(), Object);
1647     return RValue::get(Object);
1648   }
1649 
1650   if (LV.isSimple()) {
1651     assert(!LV.getType()->isFunctionType());
1652 
1653     // Everything needs a load.
1654     return RValue::get(EmitLoadOfScalar(LV, Loc));
1655   }
1656 
1657   if (LV.isVectorElt()) {
1658     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1659                                               LV.isVolatileQualified());
1660     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1661                                                     "vecext"));
1662   }
1663 
1664   // If this is a reference to a subset of the elements of a vector, either
1665   // shuffle the input or extract/insert them as appropriate.
1666   if (LV.isExtVectorElt())
1667     return EmitLoadOfExtVectorElementLValue(LV);
1668 
1669   // Global Register variables always invoke intrinsics
1670   if (LV.isGlobalReg())
1671     return EmitLoadOfGlobalRegLValue(LV);
1672 
1673   assert(LV.isBitField() && "Unknown LValue type!");
1674   return EmitLoadOfBitfieldLValue(LV, Loc);
1675 }
1676 
1677 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1678                                                  SourceLocation Loc) {
1679   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1680 
1681   // Get the output type.
1682   llvm::Type *ResLTy = ConvertType(LV.getType());
1683 
1684   Address Ptr = LV.getBitFieldAddress();
1685   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1686 
1687   if (Info.IsSigned) {
1688     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1689     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1690     if (HighBits)
1691       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1692     if (Info.Offset + HighBits)
1693       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1694   } else {
1695     if (Info.Offset)
1696       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1697     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1698       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1699                                                               Info.Size),
1700                               "bf.clear");
1701   }
1702   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1703   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1704   return RValue::get(Val);
1705 }
1706 
1707 // If this is a reference to a subset of the elements of a vector, create an
1708 // appropriate shufflevector.
1709 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1710   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1711                                         LV.isVolatileQualified());
1712 
1713   const llvm::Constant *Elts = LV.getExtVectorElts();
1714 
1715   // If the result of the expression is a non-vector type, we must be extracting
1716   // a single element.  Just codegen as an extractelement.
1717   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1718   if (!ExprVT) {
1719     unsigned InIdx = getAccessedFieldNo(0, Elts);
1720     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1721     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1722   }
1723 
1724   // Always use shuffle vector to try to retain the original program structure
1725   unsigned NumResultElts = ExprVT->getNumElements();
1726 
1727   SmallVector<llvm::Constant*, 4> Mask;
1728   for (unsigned i = 0; i != NumResultElts; ++i)
1729     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1730 
1731   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1732   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1733                                     MaskV);
1734   return RValue::get(Vec);
1735 }
1736 
1737 /// @brief Generates lvalue for partial ext_vector access.
1738 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1739   Address VectorAddress = LV.getExtVectorAddress();
1740   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1741   QualType EQT = ExprVT->getElementType();
1742   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1743 
1744   Address CastToPointerElement =
1745     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1746                                  "conv.ptr.element");
1747 
1748   const llvm::Constant *Elts = LV.getExtVectorElts();
1749   unsigned ix = getAccessedFieldNo(0, Elts);
1750 
1751   Address VectorBasePtrPlusIx =
1752     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1753                                    getContext().getTypeSizeInChars(EQT),
1754                                    "vector.elt");
1755 
1756   return VectorBasePtrPlusIx;
1757 }
1758 
1759 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1760 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1761   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1762          "Bad type for register variable");
1763   llvm::MDNode *RegName = cast<llvm::MDNode>(
1764       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1765 
1766   // We accept integer and pointer types only
1767   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1768   llvm::Type *Ty = OrigTy;
1769   if (OrigTy->isPointerTy())
1770     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1771   llvm::Type *Types[] = { Ty };
1772 
1773   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1774   llvm::Value *Call = Builder.CreateCall(
1775       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1776   if (OrigTy->isPointerTy())
1777     Call = Builder.CreateIntToPtr(Call, OrigTy);
1778   return RValue::get(Call);
1779 }
1780 
1781 
1782 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1783 /// lvalue, where both are guaranteed to the have the same type, and that type
1784 /// is 'Ty'.
1785 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1786                                              bool isInit) {
1787   if (!Dst.isSimple()) {
1788     if (Dst.isVectorElt()) {
1789       // Read/modify/write the vector, inserting the new element.
1790       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1791                                             Dst.isVolatileQualified());
1792       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1793                                         Dst.getVectorIdx(), "vecins");
1794       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1795                           Dst.isVolatileQualified());
1796       return;
1797     }
1798 
1799     // If this is an update of extended vector elements, insert them as
1800     // appropriate.
1801     if (Dst.isExtVectorElt())
1802       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1803 
1804     if (Dst.isGlobalReg())
1805       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1806 
1807     assert(Dst.isBitField() && "Unknown LValue type");
1808     return EmitStoreThroughBitfieldLValue(Src, Dst);
1809   }
1810 
1811   // There's special magic for assigning into an ARC-qualified l-value.
1812   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1813     switch (Lifetime) {
1814     case Qualifiers::OCL_None:
1815       llvm_unreachable("present but none");
1816 
1817     case Qualifiers::OCL_ExplicitNone:
1818       // nothing special
1819       break;
1820 
1821     case Qualifiers::OCL_Strong:
1822       if (isInit) {
1823         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1824         break;
1825       }
1826       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1827       return;
1828 
1829     case Qualifiers::OCL_Weak:
1830       if (isInit)
1831         // Initialize and then skip the primitive store.
1832         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1833       else
1834         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1835       return;
1836 
1837     case Qualifiers::OCL_Autoreleasing:
1838       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1839                                                      Src.getScalarVal()));
1840       // fall into the normal path
1841       break;
1842     }
1843   }
1844 
1845   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1846     // load of a __weak object.
1847     Address LvalueDst = Dst.getAddress();
1848     llvm::Value *src = Src.getScalarVal();
1849      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1850     return;
1851   }
1852 
1853   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1854     // load of a __strong object.
1855     Address LvalueDst = Dst.getAddress();
1856     llvm::Value *src = Src.getScalarVal();
1857     if (Dst.isObjCIvar()) {
1858       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1859       llvm::Type *ResultType = IntPtrTy;
1860       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1861       llvm::Value *RHS = dst.getPointer();
1862       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1863       llvm::Value *LHS =
1864         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1865                                "sub.ptr.lhs.cast");
1866       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1867       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1868                                               BytesBetween);
1869     } else if (Dst.isGlobalObjCRef()) {
1870       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1871                                                 Dst.isThreadLocalRef());
1872     }
1873     else
1874       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1875     return;
1876   }
1877 
1878   assert(Src.isScalar() && "Can't emit an agg store with this method");
1879   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1880 }
1881 
1882 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1883                                                      llvm::Value **Result) {
1884   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1885   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1886   Address Ptr = Dst.getBitFieldAddress();
1887 
1888   // Get the source value, truncated to the width of the bit-field.
1889   llvm::Value *SrcVal = Src.getScalarVal();
1890 
1891   // Cast the source to the storage type and shift it into place.
1892   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1893                                  /*IsSigned=*/false);
1894   llvm::Value *MaskedVal = SrcVal;
1895 
1896   // See if there are other bits in the bitfield's storage we'll need to load
1897   // and mask together with source before storing.
1898   if (Info.StorageSize != Info.Size) {
1899     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1900     llvm::Value *Val =
1901       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1902 
1903     // Mask the source value as needed.
1904     if (!hasBooleanRepresentation(Dst.getType()))
1905       SrcVal = Builder.CreateAnd(SrcVal,
1906                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1907                                                             Info.Size),
1908                                  "bf.value");
1909     MaskedVal = SrcVal;
1910     if (Info.Offset)
1911       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1912 
1913     // Mask out the original value.
1914     Val = Builder.CreateAnd(Val,
1915                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1916                                                      Info.Offset,
1917                                                      Info.Offset + Info.Size),
1918                             "bf.clear");
1919 
1920     // Or together the unchanged values and the source value.
1921     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1922   } else {
1923     assert(Info.Offset == 0);
1924   }
1925 
1926   // Write the new value back out.
1927   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1928 
1929   // Return the new value of the bit-field, if requested.
1930   if (Result) {
1931     llvm::Value *ResultVal = MaskedVal;
1932 
1933     // Sign extend the value if needed.
1934     if (Info.IsSigned) {
1935       assert(Info.Size <= Info.StorageSize);
1936       unsigned HighBits = Info.StorageSize - Info.Size;
1937       if (HighBits) {
1938         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1939         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1940       }
1941     }
1942 
1943     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1944                                       "bf.result.cast");
1945     *Result = EmitFromMemory(ResultVal, Dst.getType());
1946   }
1947 }
1948 
1949 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1950                                                                LValue Dst) {
1951   // This access turns into a read/modify/write of the vector.  Load the input
1952   // value now.
1953   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1954                                         Dst.isVolatileQualified());
1955   const llvm::Constant *Elts = Dst.getExtVectorElts();
1956 
1957   llvm::Value *SrcVal = Src.getScalarVal();
1958 
1959   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1960     unsigned NumSrcElts = VTy->getNumElements();
1961     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1962     if (NumDstElts == NumSrcElts) {
1963       // Use shuffle vector is the src and destination are the same number of
1964       // elements and restore the vector mask since it is on the side it will be
1965       // stored.
1966       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1967       for (unsigned i = 0; i != NumSrcElts; ++i)
1968         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1969 
1970       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1971       Vec = Builder.CreateShuffleVector(SrcVal,
1972                                         llvm::UndefValue::get(Vec->getType()),
1973                                         MaskV);
1974     } else if (NumDstElts > NumSrcElts) {
1975       // Extended the source vector to the same length and then shuffle it
1976       // into the destination.
1977       // FIXME: since we're shuffling with undef, can we just use the indices
1978       //        into that?  This could be simpler.
1979       SmallVector<llvm::Constant*, 4> ExtMask;
1980       for (unsigned i = 0; i != NumSrcElts; ++i)
1981         ExtMask.push_back(Builder.getInt32(i));
1982       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1983       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1984       llvm::Value *ExtSrcVal =
1985         Builder.CreateShuffleVector(SrcVal,
1986                                     llvm::UndefValue::get(SrcVal->getType()),
1987                                     ExtMaskV);
1988       // build identity
1989       SmallVector<llvm::Constant*, 4> Mask;
1990       for (unsigned i = 0; i != NumDstElts; ++i)
1991         Mask.push_back(Builder.getInt32(i));
1992 
1993       // When the vector size is odd and .odd or .hi is used, the last element
1994       // of the Elts constant array will be one past the size of the vector.
1995       // Ignore the last element here, if it is greater than the mask size.
1996       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1997         NumSrcElts--;
1998 
1999       // modify when what gets shuffled in
2000       for (unsigned i = 0; i != NumSrcElts; ++i)
2001         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2002       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2003       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2004     } else {
2005       // We should never shorten the vector
2006       llvm_unreachable("unexpected shorten vector length");
2007     }
2008   } else {
2009     // If the Src is a scalar (not a vector) it must be updating one element.
2010     unsigned InIdx = getAccessedFieldNo(0, Elts);
2011     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2012     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2013   }
2014 
2015   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2016                       Dst.isVolatileQualified());
2017 }
2018 
2019 /// @brief Store of global named registers are always calls to intrinsics.
2020 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2021   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2022          "Bad type for register variable");
2023   llvm::MDNode *RegName = cast<llvm::MDNode>(
2024       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2025   assert(RegName && "Register LValue is not metadata");
2026 
2027   // We accept integer and pointer types only
2028   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2029   llvm::Type *Ty = OrigTy;
2030   if (OrigTy->isPointerTy())
2031     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2032   llvm::Type *Types[] = { Ty };
2033 
2034   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2035   llvm::Value *Value = Src.getScalarVal();
2036   if (OrigTy->isPointerTy())
2037     Value = Builder.CreatePtrToInt(Value, Ty);
2038   Builder.CreateCall(
2039       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2040 }
2041 
2042 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2043 // generating write-barries API. It is currently a global, ivar,
2044 // or neither.
2045 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2046                                  LValue &LV,
2047                                  bool IsMemberAccess=false) {
2048   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2049     return;
2050 
2051   if (isa<ObjCIvarRefExpr>(E)) {
2052     QualType ExpTy = E->getType();
2053     if (IsMemberAccess && ExpTy->isPointerType()) {
2054       // If ivar is a structure pointer, assigning to field of
2055       // this struct follows gcc's behavior and makes it a non-ivar
2056       // writer-barrier conservatively.
2057       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2058       if (ExpTy->isRecordType()) {
2059         LV.setObjCIvar(false);
2060         return;
2061       }
2062     }
2063     LV.setObjCIvar(true);
2064     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2065     LV.setBaseIvarExp(Exp->getBase());
2066     LV.setObjCArray(E->getType()->isArrayType());
2067     return;
2068   }
2069 
2070   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2071     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2072       if (VD->hasGlobalStorage()) {
2073         LV.setGlobalObjCRef(true);
2074         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2075       }
2076     }
2077     LV.setObjCArray(E->getType()->isArrayType());
2078     return;
2079   }
2080 
2081   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2082     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2083     return;
2084   }
2085 
2086   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2087     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2088     if (LV.isObjCIvar()) {
2089       // If cast is to a structure pointer, follow gcc's behavior and make it
2090       // a non-ivar write-barrier.
2091       QualType ExpTy = E->getType();
2092       if (ExpTy->isPointerType())
2093         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2094       if (ExpTy->isRecordType())
2095         LV.setObjCIvar(false);
2096     }
2097     return;
2098   }
2099 
2100   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2101     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2102     return;
2103   }
2104 
2105   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2106     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2107     return;
2108   }
2109 
2110   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2111     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2112     return;
2113   }
2114 
2115   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2116     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2117     return;
2118   }
2119 
2120   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2121     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2122     if (LV.isObjCIvar() && !LV.isObjCArray())
2123       // Using array syntax to assigning to what an ivar points to is not
2124       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2125       LV.setObjCIvar(false);
2126     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2127       // Using array syntax to assigning to what global points to is not
2128       // same as assigning to the global itself. {id *G;} G[i] = 0;
2129       LV.setGlobalObjCRef(false);
2130     return;
2131   }
2132 
2133   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2134     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2135     // We don't know if member is an 'ivar', but this flag is looked at
2136     // only in the context of LV.isObjCIvar().
2137     LV.setObjCArray(E->getType()->isArrayType());
2138     return;
2139   }
2140 }
2141 
2142 static llvm::Value *
2143 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2144                                 llvm::Value *V, llvm::Type *IRType,
2145                                 StringRef Name = StringRef()) {
2146   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2147   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2148 }
2149 
2150 static LValue EmitThreadPrivateVarDeclLValue(
2151     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2152     llvm::Type *RealVarTy, SourceLocation Loc) {
2153   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2154   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2155   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2156   return CGF.MakeAddrLValue(Addr, T, BaseInfo);
2157 }
2158 
2159 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2160                                              const ReferenceType *RefTy,
2161                                              LValueBaseInfo *BaseInfo) {
2162   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2163   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2164                                               BaseInfo, /*forPointee*/ true));
2165 }
2166 
2167 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2168                                                   const ReferenceType *RefTy) {
2169   LValueBaseInfo BaseInfo;
2170   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo);
2171   return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo);
2172 }
2173 
2174 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2175                                            const PointerType *PtrTy,
2176                                            LValueBaseInfo *BaseInfo) {
2177   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2178   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2179                                                BaseInfo,
2180                                                /*forPointeeType=*/true));
2181 }
2182 
2183 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2184                                                 const PointerType *PtrTy) {
2185   LValueBaseInfo BaseInfo;
2186   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo);
2187   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo);
2188 }
2189 
2190 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2191                                       const Expr *E, const VarDecl *VD) {
2192   QualType T = E->getType();
2193 
2194   // If it's thread_local, emit a call to its wrapper function instead.
2195   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2196       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2197     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2198 
2199   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2200   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2201   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2202   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2203   Address Addr(V, Alignment);
2204   LValue LV;
2205   // Emit reference to the private copy of the variable if it is an OpenMP
2206   // threadprivate variable.
2207   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2208     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2209                                           E->getExprLoc());
2210   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2211     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2212   } else {
2213     LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2214     LV = CGF.MakeAddrLValue(Addr, T, BaseInfo);
2215   }
2216   setObjCGCLValueClass(CGF.getContext(), E, LV);
2217   return LV;
2218 }
2219 
2220 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2221                                                const FunctionDecl *FD) {
2222   if (FD->hasAttr<WeakRefAttr>()) {
2223     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2224     return aliasee.getPointer();
2225   }
2226 
2227   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2228   if (!FD->hasPrototype()) {
2229     if (const FunctionProtoType *Proto =
2230             FD->getType()->getAs<FunctionProtoType>()) {
2231       // Ugly case: for a K&R-style definition, the type of the definition
2232       // isn't the same as the type of a use.  Correct for this with a
2233       // bitcast.
2234       QualType NoProtoType =
2235           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2236       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2237       V = llvm::ConstantExpr::getBitCast(V,
2238                                       CGM.getTypes().ConvertType(NoProtoType));
2239     }
2240   }
2241   return V;
2242 }
2243 
2244 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2245                                      const Expr *E, const FunctionDecl *FD) {
2246   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2247   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2248   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2249   return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo);
2250 }
2251 
2252 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2253                                       llvm::Value *ThisValue) {
2254   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2255   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2256   return CGF.EmitLValueForField(LV, FD);
2257 }
2258 
2259 /// Named Registers are named metadata pointing to the register name
2260 /// which will be read from/written to as an argument to the intrinsic
2261 /// @llvm.read/write_register.
2262 /// So far, only the name is being passed down, but other options such as
2263 /// register type, allocation type or even optimization options could be
2264 /// passed down via the metadata node.
2265 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2266   SmallString<64> Name("llvm.named.register.");
2267   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2268   assert(Asm->getLabel().size() < 64-Name.size() &&
2269       "Register name too big");
2270   Name.append(Asm->getLabel());
2271   llvm::NamedMDNode *M =
2272     CGM.getModule().getOrInsertNamedMetadata(Name);
2273   if (M->getNumOperands() == 0) {
2274     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2275                                               Asm->getLabel());
2276     llvm::Metadata *Ops[] = {Str};
2277     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2278   }
2279 
2280   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2281 
2282   llvm::Value *Ptr =
2283     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2284   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2285 }
2286 
2287 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2288   const NamedDecl *ND = E->getDecl();
2289   QualType T = E->getType();
2290 
2291   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2292     // Global Named registers access via intrinsics only
2293     if (VD->getStorageClass() == SC_Register &&
2294         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2295       return EmitGlobalNamedRegister(VD, CGM);
2296 
2297     // A DeclRefExpr for a reference initialized by a constant expression can
2298     // appear without being odr-used. Directly emit the constant initializer.
2299     const Expr *Init = VD->getAnyInitializer(VD);
2300     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2301         VD->isUsableInConstantExpressions(getContext()) &&
2302         VD->checkInitIsICE() &&
2303         // Do not emit if it is private OpenMP variable.
2304         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2305           LocalDeclMap.count(VD))) {
2306       llvm::Constant *Val =
2307         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2308                                             *VD->evaluateValue(),
2309                                             VD->getType());
2310       assert(Val && "failed to emit reference constant expression");
2311       // FIXME: Eventually we will want to emit vector element references.
2312 
2313       // Should we be using the alignment of the constant pointer we emitted?
2314       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2315                                                     /*pointee*/ true);
2316       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2317       return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo);
2318     }
2319 
2320     // Check for captured variables.
2321     if (E->refersToEnclosingVariableOrCapture()) {
2322       VD = VD->getCanonicalDecl();
2323       if (auto *FD = LambdaCaptureFields.lookup(VD))
2324         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2325       else if (CapturedStmtInfo) {
2326         auto I = LocalDeclMap.find(VD);
2327         if (I != LocalDeclMap.end()) {
2328           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2329             return EmitLoadOfReferenceLValue(I->second, RefTy);
2330           return MakeAddrLValue(I->second, T);
2331         }
2332         LValue CapLVal =
2333             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2334                                     CapturedStmtInfo->getContextValue());
2335         bool MayAlias = CapLVal.getBaseInfo().getMayAlias();
2336         return MakeAddrLValue(
2337             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2338             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias));
2339       }
2340 
2341       assert(isa<BlockDecl>(CurCodeDecl));
2342       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2343       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2344       return MakeAddrLValue(addr, T, BaseInfo);
2345     }
2346   }
2347 
2348   // FIXME: We should be able to assert this for FunctionDecls as well!
2349   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2350   // those with a valid source location.
2351   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2352           !E->getLocation().isValid()) &&
2353          "Should not use decl without marking it used!");
2354 
2355   if (ND->hasAttr<WeakRefAttr>()) {
2356     const auto *VD = cast<ValueDecl>(ND);
2357     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2358     return MakeAddrLValue(Aliasee, T,
2359                           LValueBaseInfo(AlignmentSource::Decl, false));
2360   }
2361 
2362   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2363     // Check if this is a global variable.
2364     if (VD->hasLinkage() || VD->isStaticDataMember())
2365       return EmitGlobalVarDeclLValue(*this, E, VD);
2366 
2367     Address addr = Address::invalid();
2368 
2369     // The variable should generally be present in the local decl map.
2370     auto iter = LocalDeclMap.find(VD);
2371     if (iter != LocalDeclMap.end()) {
2372       addr = iter->second;
2373 
2374     // Otherwise, it might be static local we haven't emitted yet for
2375     // some reason; most likely, because it's in an outer function.
2376     } else if (VD->isStaticLocal()) {
2377       addr = Address(CGM.getOrCreateStaticVarDecl(
2378           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2379                      getContext().getDeclAlign(VD));
2380 
2381     // No other cases for now.
2382     } else {
2383       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2384     }
2385 
2386 
2387     // Check for OpenMP threadprivate variables.
2388     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2389       return EmitThreadPrivateVarDeclLValue(
2390           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2391           E->getExprLoc());
2392     }
2393 
2394     // Drill into block byref variables.
2395     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2396     if (isBlockByref) {
2397       addr = emitBlockByrefAddress(addr, VD);
2398     }
2399 
2400     // Drill into reference types.
2401     LValue LV;
2402     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2403       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2404     } else {
2405       LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2406       LV = MakeAddrLValue(addr, T, BaseInfo);
2407     }
2408 
2409     bool isLocalStorage = VD->hasLocalStorage();
2410 
2411     bool NonGCable = isLocalStorage &&
2412                      !VD->getType()->isReferenceType() &&
2413                      !isBlockByref;
2414     if (NonGCable) {
2415       LV.getQuals().removeObjCGCAttr();
2416       LV.setNonGC(true);
2417     }
2418 
2419     bool isImpreciseLifetime =
2420       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2421     if (isImpreciseLifetime)
2422       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2423     setObjCGCLValueClass(getContext(), E, LV);
2424     return LV;
2425   }
2426 
2427   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2428     return EmitFunctionDeclLValue(*this, E, FD);
2429 
2430   // FIXME: While we're emitting a binding from an enclosing scope, all other
2431   // DeclRefExprs we see should be implicitly treated as if they also refer to
2432   // an enclosing scope.
2433   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2434     return EmitLValue(BD->getBinding());
2435 
2436   llvm_unreachable("Unhandled DeclRefExpr");
2437 }
2438 
2439 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2440   // __extension__ doesn't affect lvalue-ness.
2441   if (E->getOpcode() == UO_Extension)
2442     return EmitLValue(E->getSubExpr());
2443 
2444   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2445   switch (E->getOpcode()) {
2446   default: llvm_unreachable("Unknown unary operator lvalue!");
2447   case UO_Deref: {
2448     QualType T = E->getSubExpr()->getType()->getPointeeType();
2449     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2450 
2451     LValueBaseInfo BaseInfo;
2452     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo);
2453     LValue LV = MakeAddrLValue(Addr, T, BaseInfo);
2454     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2455 
2456     // We should not generate __weak write barrier on indirect reference
2457     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2458     // But, we continue to generate __strong write barrier on indirect write
2459     // into a pointer to object.
2460     if (getLangOpts().ObjC1 &&
2461         getLangOpts().getGC() != LangOptions::NonGC &&
2462         LV.isObjCWeak())
2463       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2464     return LV;
2465   }
2466   case UO_Real:
2467   case UO_Imag: {
2468     LValue LV = EmitLValue(E->getSubExpr());
2469     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2470 
2471     // __real is valid on scalars.  This is a faster way of testing that.
2472     // __imag can only produce an rvalue on scalars.
2473     if (E->getOpcode() == UO_Real &&
2474         !LV.getAddress().getElementType()->isStructTy()) {
2475       assert(E->getSubExpr()->getType()->isArithmeticType());
2476       return LV;
2477     }
2478 
2479     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2480 
2481     Address Component =
2482       (E->getOpcode() == UO_Real
2483          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2484          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2485     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo());
2486     ElemLV.getQuals().addQualifiers(LV.getQuals());
2487     return ElemLV;
2488   }
2489   case UO_PreInc:
2490   case UO_PreDec: {
2491     LValue LV = EmitLValue(E->getSubExpr());
2492     bool isInc = E->getOpcode() == UO_PreInc;
2493 
2494     if (E->getType()->isAnyComplexType())
2495       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2496     else
2497       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2498     return LV;
2499   }
2500   }
2501 }
2502 
2503 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2504   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2505                         E->getType(),
2506                         LValueBaseInfo(AlignmentSource::Decl, false));
2507 }
2508 
2509 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2510   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2511                         E->getType(),
2512                         LValueBaseInfo(AlignmentSource::Decl, false));
2513 }
2514 
2515 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2516   auto SL = E->getFunctionName();
2517   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2518   StringRef FnName = CurFn->getName();
2519   if (FnName.startswith("\01"))
2520     FnName = FnName.substr(1);
2521   StringRef NameItems[] = {
2522       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2523   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2524   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
2525   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2526     std::string Name = SL->getString();
2527     if (!Name.empty()) {
2528       unsigned Discriminator =
2529           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2530       if (Discriminator)
2531         Name += "_" + Twine(Discriminator + 1).str();
2532       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2533       return MakeAddrLValue(C, E->getType(), BaseInfo);
2534     } else {
2535       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2536       return MakeAddrLValue(C, E->getType(), BaseInfo);
2537     }
2538   }
2539   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2540   return MakeAddrLValue(C, E->getType(), BaseInfo);
2541 }
2542 
2543 /// Emit a type description suitable for use by a runtime sanitizer library. The
2544 /// format of a type descriptor is
2545 ///
2546 /// \code
2547 ///   { i16 TypeKind, i16 TypeInfo }
2548 /// \endcode
2549 ///
2550 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2551 /// integer, 1 for a floating point value, and -1 for anything else.
2552 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2553   // Only emit each type's descriptor once.
2554   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2555     return C;
2556 
2557   uint16_t TypeKind = -1;
2558   uint16_t TypeInfo = 0;
2559 
2560   if (T->isIntegerType()) {
2561     TypeKind = 0;
2562     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2563                (T->isSignedIntegerType() ? 1 : 0);
2564   } else if (T->isFloatingType()) {
2565     TypeKind = 1;
2566     TypeInfo = getContext().getTypeSize(T);
2567   }
2568 
2569   // Format the type name as if for a diagnostic, including quotes and
2570   // optionally an 'aka'.
2571   SmallString<32> Buffer;
2572   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2573                                     (intptr_t)T.getAsOpaquePtr(),
2574                                     StringRef(), StringRef(), None, Buffer,
2575                                     None);
2576 
2577   llvm::Constant *Components[] = {
2578     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2579     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2580   };
2581   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2582 
2583   auto *GV = new llvm::GlobalVariable(
2584       CGM.getModule(), Descriptor->getType(),
2585       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2586   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2587   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2588 
2589   // Remember the descriptor for this type.
2590   CGM.setTypeDescriptorInMap(T, GV);
2591 
2592   return GV;
2593 }
2594 
2595 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2596   llvm::Type *TargetTy = IntPtrTy;
2597 
2598   // Floating-point types which fit into intptr_t are bitcast to integers
2599   // and then passed directly (after zero-extension, if necessary).
2600   if (V->getType()->isFloatingPointTy()) {
2601     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2602     if (Bits <= TargetTy->getIntegerBitWidth())
2603       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2604                                                          Bits));
2605   }
2606 
2607   // Integers which fit in intptr_t are zero-extended and passed directly.
2608   if (V->getType()->isIntegerTy() &&
2609       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2610     return Builder.CreateZExt(V, TargetTy);
2611 
2612   // Pointers are passed directly, everything else is passed by address.
2613   if (!V->getType()->isPointerTy()) {
2614     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2615     Builder.CreateStore(V, Ptr);
2616     V = Ptr.getPointer();
2617   }
2618   return Builder.CreatePtrToInt(V, TargetTy);
2619 }
2620 
2621 /// \brief Emit a representation of a SourceLocation for passing to a handler
2622 /// in a sanitizer runtime library. The format for this data is:
2623 /// \code
2624 ///   struct SourceLocation {
2625 ///     const char *Filename;
2626 ///     int32_t Line, Column;
2627 ///   };
2628 /// \endcode
2629 /// For an invalid SourceLocation, the Filename pointer is null.
2630 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2631   llvm::Constant *Filename;
2632   int Line, Column;
2633 
2634   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2635   if (PLoc.isValid()) {
2636     StringRef FilenameString = PLoc.getFilename();
2637 
2638     int PathComponentsToStrip =
2639         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2640     if (PathComponentsToStrip < 0) {
2641       assert(PathComponentsToStrip != INT_MIN);
2642       int PathComponentsToKeep = -PathComponentsToStrip;
2643       auto I = llvm::sys::path::rbegin(FilenameString);
2644       auto E = llvm::sys::path::rend(FilenameString);
2645       while (I != E && --PathComponentsToKeep)
2646         ++I;
2647 
2648       FilenameString = FilenameString.substr(I - E);
2649     } else if (PathComponentsToStrip > 0) {
2650       auto I = llvm::sys::path::begin(FilenameString);
2651       auto E = llvm::sys::path::end(FilenameString);
2652       while (I != E && PathComponentsToStrip--)
2653         ++I;
2654 
2655       if (I != E)
2656         FilenameString =
2657             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2658       else
2659         FilenameString = llvm::sys::path::filename(FilenameString);
2660     }
2661 
2662     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2663     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2664                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2665     Filename = FilenameGV.getPointer();
2666     Line = PLoc.getLine();
2667     Column = PLoc.getColumn();
2668   } else {
2669     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2670     Line = Column = 0;
2671   }
2672 
2673   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2674                             Builder.getInt32(Column)};
2675 
2676   return llvm::ConstantStruct::getAnon(Data);
2677 }
2678 
2679 namespace {
2680 /// \brief Specify under what conditions this check can be recovered
2681 enum class CheckRecoverableKind {
2682   /// Always terminate program execution if this check fails.
2683   Unrecoverable,
2684   /// Check supports recovering, runtime has both fatal (noreturn) and
2685   /// non-fatal handlers for this check.
2686   Recoverable,
2687   /// Runtime conditionally aborts, always need to support recovery.
2688   AlwaysRecoverable
2689 };
2690 }
2691 
2692 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2693   assert(llvm::countPopulation(Kind) == 1);
2694   switch (Kind) {
2695   case SanitizerKind::Vptr:
2696     return CheckRecoverableKind::AlwaysRecoverable;
2697   case SanitizerKind::Return:
2698   case SanitizerKind::Unreachable:
2699     return CheckRecoverableKind::Unrecoverable;
2700   default:
2701     return CheckRecoverableKind::Recoverable;
2702   }
2703 }
2704 
2705 namespace {
2706 struct SanitizerHandlerInfo {
2707   char const *const Name;
2708   unsigned Version;
2709 };
2710 }
2711 
2712 const SanitizerHandlerInfo SanitizerHandlers[] = {
2713 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2714     LIST_SANITIZER_CHECKS
2715 #undef SANITIZER_CHECK
2716 };
2717 
2718 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2719                                  llvm::FunctionType *FnType,
2720                                  ArrayRef<llvm::Value *> FnArgs,
2721                                  SanitizerHandler CheckHandler,
2722                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2723                                  llvm::BasicBlock *ContBB) {
2724   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2725   bool NeedsAbortSuffix =
2726       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2727   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2728   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2729   const StringRef CheckName = CheckInfo.Name;
2730   std::string FnName = "__ubsan_handle_" + CheckName.str();
2731   if (CheckInfo.Version && !MinimalRuntime)
2732     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2733   if (MinimalRuntime)
2734     FnName += "_minimal";
2735   if (NeedsAbortSuffix)
2736     FnName += "_abort";
2737   bool MayReturn =
2738       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2739 
2740   llvm::AttrBuilder B;
2741   if (!MayReturn) {
2742     B.addAttribute(llvm::Attribute::NoReturn)
2743         .addAttribute(llvm::Attribute::NoUnwind);
2744   }
2745   B.addAttribute(llvm::Attribute::UWTable);
2746 
2747   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2748       FnType, FnName,
2749       llvm::AttributeList::get(CGF.getLLVMContext(),
2750                                llvm::AttributeList::FunctionIndex, B),
2751       /*Local=*/true);
2752   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2753   if (!MayReturn) {
2754     HandlerCall->setDoesNotReturn();
2755     CGF.Builder.CreateUnreachable();
2756   } else {
2757     CGF.Builder.CreateBr(ContBB);
2758   }
2759 }
2760 
2761 void CodeGenFunction::EmitCheck(
2762     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2763     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2764     ArrayRef<llvm::Value *> DynamicArgs) {
2765   assert(IsSanitizerScope);
2766   assert(Checked.size() > 0);
2767   assert(CheckHandler >= 0 &&
2768          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2769   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2770 
2771   llvm::Value *FatalCond = nullptr;
2772   llvm::Value *RecoverableCond = nullptr;
2773   llvm::Value *TrapCond = nullptr;
2774   for (int i = 0, n = Checked.size(); i < n; ++i) {
2775     llvm::Value *Check = Checked[i].first;
2776     // -fsanitize-trap= overrides -fsanitize-recover=.
2777     llvm::Value *&Cond =
2778         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2779             ? TrapCond
2780             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2781                   ? RecoverableCond
2782                   : FatalCond;
2783     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2784   }
2785 
2786   if (TrapCond)
2787     EmitTrapCheck(TrapCond);
2788   if (!FatalCond && !RecoverableCond)
2789     return;
2790 
2791   llvm::Value *JointCond;
2792   if (FatalCond && RecoverableCond)
2793     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2794   else
2795     JointCond = FatalCond ? FatalCond : RecoverableCond;
2796   assert(JointCond);
2797 
2798   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2799   assert(SanOpts.has(Checked[0].second));
2800 #ifndef NDEBUG
2801   for (int i = 1, n = Checked.size(); i < n; ++i) {
2802     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2803            "All recoverable kinds in a single check must be same!");
2804     assert(SanOpts.has(Checked[i].second));
2805   }
2806 #endif
2807 
2808   llvm::BasicBlock *Cont = createBasicBlock("cont");
2809   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2810   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2811   // Give hint that we very much don't expect to execute the handler
2812   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2813   llvm::MDBuilder MDHelper(getLLVMContext());
2814   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2815   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2816   EmitBlock(Handlers);
2817 
2818   // Handler functions take an i8* pointing to the (handler-specific) static
2819   // information block, followed by a sequence of intptr_t arguments
2820   // representing operand values.
2821   SmallVector<llvm::Value *, 4> Args;
2822   SmallVector<llvm::Type *, 4> ArgTypes;
2823   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2824     Args.reserve(DynamicArgs.size() + 1);
2825     ArgTypes.reserve(DynamicArgs.size() + 1);
2826 
2827     // Emit handler arguments and create handler function type.
2828     if (!StaticArgs.empty()) {
2829       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2830       auto *InfoPtr =
2831           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2832                                    llvm::GlobalVariable::PrivateLinkage, Info);
2833       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2834       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2835       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2836       ArgTypes.push_back(Int8PtrTy);
2837     }
2838 
2839     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2840       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2841       ArgTypes.push_back(IntPtrTy);
2842     }
2843   }
2844 
2845   llvm::FunctionType *FnType =
2846     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2847 
2848   if (!FatalCond || !RecoverableCond) {
2849     // Simple case: we need to generate a single handler call, either
2850     // fatal, or non-fatal.
2851     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2852                          (FatalCond != nullptr), Cont);
2853   } else {
2854     // Emit two handler calls: first one for set of unrecoverable checks,
2855     // another one for recoverable.
2856     llvm::BasicBlock *NonFatalHandlerBB =
2857         createBasicBlock("non_fatal." + CheckName);
2858     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2859     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2860     EmitBlock(FatalHandlerBB);
2861     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2862                          NonFatalHandlerBB);
2863     EmitBlock(NonFatalHandlerBB);
2864     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2865                          Cont);
2866   }
2867 
2868   EmitBlock(Cont);
2869 }
2870 
2871 void CodeGenFunction::EmitCfiSlowPathCheck(
2872     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2873     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2874   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2875 
2876   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2877   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2878 
2879   llvm::MDBuilder MDHelper(getLLVMContext());
2880   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2881   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2882 
2883   EmitBlock(CheckBB);
2884 
2885   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2886 
2887   llvm::CallInst *CheckCall;
2888   if (WithDiag) {
2889     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2890     auto *InfoPtr =
2891         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2892                                  llvm::GlobalVariable::PrivateLinkage, Info);
2893     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2894     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2895 
2896     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2897         "__cfi_slowpath_diag",
2898         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2899                                 false));
2900     CheckCall = Builder.CreateCall(
2901         SlowPathDiagFn,
2902         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2903   } else {
2904     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2905         "__cfi_slowpath",
2906         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2907     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2908   }
2909 
2910   CheckCall->setDoesNotThrow();
2911 
2912   EmitBlock(Cont);
2913 }
2914 
2915 // Emit a stub for __cfi_check function so that the linker knows about this
2916 // symbol in LTO mode.
2917 void CodeGenFunction::EmitCfiCheckStub() {
2918   llvm::Module *M = &CGM.getModule();
2919   auto &Ctx = M->getContext();
2920   llvm::Function *F = llvm::Function::Create(
2921       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2922       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2923   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2924   // FIXME: consider emitting an intrinsic call like
2925   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2926   // which can be lowered in CrossDSOCFI pass to the actual contents of
2927   // __cfi_check. This would allow inlining of __cfi_check calls.
2928   llvm::CallInst::Create(
2929       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2930   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2931 }
2932 
2933 // This function is basically a switch over the CFI failure kind, which is
2934 // extracted from CFICheckFailData (1st function argument). Each case is either
2935 // llvm.trap or a call to one of the two runtime handlers, based on
2936 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2937 // failure kind) traps, but this should really never happen.  CFICheckFailData
2938 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2939 // check kind; in this case __cfi_check_fail traps as well.
2940 void CodeGenFunction::EmitCfiCheckFail() {
2941   SanitizerScope SanScope(this);
2942   FunctionArgList Args;
2943   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
2944                             ImplicitParamDecl::Other);
2945   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
2946                             ImplicitParamDecl::Other);
2947   Args.push_back(&ArgData);
2948   Args.push_back(&ArgAddr);
2949 
2950   const CGFunctionInfo &FI =
2951     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2952 
2953   llvm::Function *F = llvm::Function::Create(
2954       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2955       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2956   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2957 
2958   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2959                 SourceLocation());
2960 
2961   llvm::Value *Data =
2962       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2963                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2964   llvm::Value *Addr =
2965       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2966                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2967 
2968   // Data == nullptr means the calling module has trap behaviour for this check.
2969   llvm::Value *DataIsNotNullPtr =
2970       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2971   EmitTrapCheck(DataIsNotNullPtr);
2972 
2973   llvm::StructType *SourceLocationTy =
2974       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
2975   llvm::StructType *CfiCheckFailDataTy =
2976       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
2977 
2978   llvm::Value *V = Builder.CreateConstGEP2_32(
2979       CfiCheckFailDataTy,
2980       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2981       0);
2982   Address CheckKindAddr(V, getIntAlign());
2983   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2984 
2985   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2986       CGM.getLLVMContext(),
2987       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2988   llvm::Value *ValidVtable = Builder.CreateZExt(
2989       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2990                          {Addr, AllVtables}),
2991       IntPtrTy);
2992 
2993   const std::pair<int, SanitizerMask> CheckKinds[] = {
2994       {CFITCK_VCall, SanitizerKind::CFIVCall},
2995       {CFITCK_NVCall, SanitizerKind::CFINVCall},
2996       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
2997       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
2998       {CFITCK_ICall, SanitizerKind::CFIICall}};
2999 
3000   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3001   for (auto CheckKindMaskPair : CheckKinds) {
3002     int Kind = CheckKindMaskPair.first;
3003     SanitizerMask Mask = CheckKindMaskPair.second;
3004     llvm::Value *Cond =
3005         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3006     if (CGM.getLangOpts().Sanitize.has(Mask))
3007       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3008                 {Data, Addr, ValidVtable});
3009     else
3010       EmitTrapCheck(Cond);
3011   }
3012 
3013   FinishFunction();
3014   // The only reference to this function will be created during LTO link.
3015   // Make sure it survives until then.
3016   CGM.addUsedGlobal(F);
3017 }
3018 
3019 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3020   llvm::BasicBlock *Cont = createBasicBlock("cont");
3021 
3022   // If we're optimizing, collapse all calls to trap down to just one per
3023   // function to save on code size.
3024   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3025     TrapBB = createBasicBlock("trap");
3026     Builder.CreateCondBr(Checked, Cont, TrapBB);
3027     EmitBlock(TrapBB);
3028     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3029     TrapCall->setDoesNotReturn();
3030     TrapCall->setDoesNotThrow();
3031     Builder.CreateUnreachable();
3032   } else {
3033     Builder.CreateCondBr(Checked, Cont, TrapBB);
3034   }
3035 
3036   EmitBlock(Cont);
3037 }
3038 
3039 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3040   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3041 
3042   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3043     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3044                                   CGM.getCodeGenOpts().TrapFuncName);
3045     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3046   }
3047 
3048   return TrapCall;
3049 }
3050 
3051 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3052                                                  LValueBaseInfo *BaseInfo) {
3053   assert(E->getType()->isArrayType() &&
3054          "Array to pointer decay must have array source type!");
3055 
3056   // Expressions of array type can't be bitfields or vector elements.
3057   LValue LV = EmitLValue(E);
3058   Address Addr = LV.getAddress();
3059   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3060 
3061   // If the array type was an incomplete type, we need to make sure
3062   // the decay ends up being the right type.
3063   llvm::Type *NewTy = ConvertType(E->getType());
3064   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3065 
3066   // Note that VLA pointers are always decayed, so we don't need to do
3067   // anything here.
3068   if (!E->getType()->isVariableArrayType()) {
3069     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3070            "Expected pointer to array");
3071     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3072   }
3073 
3074   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3075   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3076 }
3077 
3078 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3079 /// array to pointer, return the array subexpression.
3080 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3081   // If this isn't just an array->pointer decay, bail out.
3082   const auto *CE = dyn_cast<CastExpr>(E);
3083   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3084     return nullptr;
3085 
3086   // If this is a decay from variable width array, bail out.
3087   const Expr *SubExpr = CE->getSubExpr();
3088   if (SubExpr->getType()->isVariableArrayType())
3089     return nullptr;
3090 
3091   return SubExpr;
3092 }
3093 
3094 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3095                                           llvm::Value *ptr,
3096                                           ArrayRef<llvm::Value*> indices,
3097                                           bool inbounds,
3098                                           bool signedIndices,
3099                                           SourceLocation loc,
3100                                     const llvm::Twine &name = "arrayidx") {
3101   if (inbounds) {
3102     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3103                                       CodeGenFunction::NotSubtraction, loc,
3104                                       name);
3105   } else {
3106     return CGF.Builder.CreateGEP(ptr, indices, name);
3107   }
3108 }
3109 
3110 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3111                                       llvm::Value *idx,
3112                                       CharUnits eltSize) {
3113   // If we have a constant index, we can use the exact offset of the
3114   // element we're accessing.
3115   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3116     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3117     return arrayAlign.alignmentAtOffset(offset);
3118 
3119   // Otherwise, use the worst-case alignment for any element.
3120   } else {
3121     return arrayAlign.alignmentOfArrayElement(eltSize);
3122   }
3123 }
3124 
3125 static QualType getFixedSizeElementType(const ASTContext &ctx,
3126                                         const VariableArrayType *vla) {
3127   QualType eltType;
3128   do {
3129     eltType = vla->getElementType();
3130   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3131   return eltType;
3132 }
3133 
3134 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3135                                      ArrayRef<llvm::Value *> indices,
3136                                      QualType eltType, bool inbounds,
3137                                      bool signedIndices, SourceLocation loc,
3138                                      const llvm::Twine &name = "arrayidx") {
3139   // All the indices except that last must be zero.
3140 #ifndef NDEBUG
3141   for (auto idx : indices.drop_back())
3142     assert(isa<llvm::ConstantInt>(idx) &&
3143            cast<llvm::ConstantInt>(idx)->isZero());
3144 #endif
3145 
3146   // Determine the element size of the statically-sized base.  This is
3147   // the thing that the indices are expressed in terms of.
3148   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3149     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3150   }
3151 
3152   // We can use that to compute the best alignment of the element.
3153   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3154   CharUnits eltAlign =
3155     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3156 
3157   llvm::Value *eltPtr = emitArraySubscriptGEP(
3158       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3159   return Address(eltPtr, eltAlign);
3160 }
3161 
3162 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3163                                                bool Accessed) {
3164   // The index must always be an integer, which is not an aggregate.  Emit it
3165   // in lexical order (this complexity is, sadly, required by C++17).
3166   llvm::Value *IdxPre =
3167       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3168   bool SignedIndices = false;
3169   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3170     auto *Idx = IdxPre;
3171     if (E->getLHS() != E->getIdx()) {
3172       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3173       Idx = EmitScalarExpr(E->getIdx());
3174     }
3175 
3176     QualType IdxTy = E->getIdx()->getType();
3177     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3178     SignedIndices |= IdxSigned;
3179 
3180     if (SanOpts.has(SanitizerKind::ArrayBounds))
3181       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3182 
3183     // Extend or truncate the index type to 32 or 64-bits.
3184     if (Promote && Idx->getType() != IntPtrTy)
3185       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3186 
3187     return Idx;
3188   };
3189   IdxPre = nullptr;
3190 
3191   // If the base is a vector type, then we are forming a vector element lvalue
3192   // with this subscript.
3193   if (E->getBase()->getType()->isVectorType() &&
3194       !isa<ExtVectorElementExpr>(E->getBase())) {
3195     // Emit the vector as an lvalue to get its address.
3196     LValue LHS = EmitLValue(E->getBase());
3197     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3198     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3199     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
3200                                  E->getBase()->getType(),
3201                                  LHS.getBaseInfo());
3202   }
3203 
3204   // All the other cases basically behave like simple offsetting.
3205 
3206   // Handle the extvector case we ignored above.
3207   if (isa<ExtVectorElementExpr>(E->getBase())) {
3208     LValue LV = EmitLValue(E->getBase());
3209     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3210     Address Addr = EmitExtVectorElementLValue(LV);
3211 
3212     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3213     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3214                                  SignedIndices, E->getExprLoc());
3215     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo());
3216   }
3217 
3218   LValueBaseInfo BaseInfo;
3219   Address Addr = Address::invalid();
3220   if (const VariableArrayType *vla =
3221            getContext().getAsVariableArrayType(E->getType())) {
3222     // The base must be a pointer, which is not an aggregate.  Emit
3223     // it.  It needs to be emitted first in case it's what captures
3224     // the VLA bounds.
3225     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3226     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3227 
3228     // The element count here is the total number of non-VLA elements.
3229     llvm::Value *numElements = getVLASize(vla).first;
3230 
3231     // Effectively, the multiply by the VLA size is part of the GEP.
3232     // GEP indexes are signed, and scaling an index isn't permitted to
3233     // signed-overflow, so we use the same semantics for our explicit
3234     // multiply.  We suppress this if overflow is not undefined behavior.
3235     if (getLangOpts().isSignedOverflowDefined()) {
3236       Idx = Builder.CreateMul(Idx, numElements);
3237     } else {
3238       Idx = Builder.CreateNSWMul(Idx, numElements);
3239     }
3240 
3241     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3242                                  !getLangOpts().isSignedOverflowDefined(),
3243                                  SignedIndices, E->getExprLoc());
3244 
3245   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3246     // Indexing over an interface, as in "NSString *P; P[4];"
3247 
3248     // Emit the base pointer.
3249     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3250     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3251 
3252     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3253     llvm::Value *InterfaceSizeVal =
3254         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3255 
3256     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3257 
3258     // We don't necessarily build correct LLVM struct types for ObjC
3259     // interfaces, so we can't rely on GEP to do this scaling
3260     // correctly, so we need to cast to i8*.  FIXME: is this actually
3261     // true?  A lot of other things in the fragile ABI would break...
3262     llvm::Type *OrigBaseTy = Addr.getType();
3263     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3264 
3265     // Do the GEP.
3266     CharUnits EltAlign =
3267       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3268     llvm::Value *EltPtr =
3269         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3270                               SignedIndices, E->getExprLoc());
3271     Addr = Address(EltPtr, EltAlign);
3272 
3273     // Cast back.
3274     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3275   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3276     // If this is A[i] where A is an array, the frontend will have decayed the
3277     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3278     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3279     // "gep x, i" here.  Emit one "gep A, 0, i".
3280     assert(Array->getType()->isArrayType() &&
3281            "Array to pointer decay must have array source type!");
3282     LValue ArrayLV;
3283     // For simple multidimensional array indexing, set the 'accessed' flag for
3284     // better bounds-checking of the base expression.
3285     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3286       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3287     else
3288       ArrayLV = EmitLValue(Array);
3289     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3290 
3291     // Propagate the alignment from the array itself to the result.
3292     Addr = emitArraySubscriptGEP(
3293         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3294         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3295         E->getExprLoc());
3296     BaseInfo = ArrayLV.getBaseInfo();
3297   } else {
3298     // The base must be a pointer; emit it with an estimate of its alignment.
3299     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3300     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3301     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3302                                  !getLangOpts().isSignedOverflowDefined(),
3303                                  SignedIndices, E->getExprLoc());
3304   }
3305 
3306   LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo);
3307 
3308   // TODO: Preserve/extend path TBAA metadata?
3309 
3310   if (getLangOpts().ObjC1 &&
3311       getLangOpts().getGC() != LangOptions::NonGC) {
3312     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3313     setObjCGCLValueClass(getContext(), E, LV);
3314   }
3315   return LV;
3316 }
3317 
3318 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3319                                        LValueBaseInfo &BaseInfo,
3320                                        QualType BaseTy, QualType ElTy,
3321                                        bool IsLowerBound) {
3322   LValue BaseLVal;
3323   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3324     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3325     if (BaseTy->isArrayType()) {
3326       Address Addr = BaseLVal.getAddress();
3327       BaseInfo = BaseLVal.getBaseInfo();
3328 
3329       // If the array type was an incomplete type, we need to make sure
3330       // the decay ends up being the right type.
3331       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3332       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3333 
3334       // Note that VLA pointers are always decayed, so we don't need to do
3335       // anything here.
3336       if (!BaseTy->isVariableArrayType()) {
3337         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3338                "Expected pointer to array");
3339         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3340                                            "arraydecay");
3341       }
3342 
3343       return CGF.Builder.CreateElementBitCast(Addr,
3344                                               CGF.ConvertTypeForMem(ElTy));
3345     }
3346     LValueBaseInfo TypeInfo;
3347     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo);
3348     BaseInfo.mergeForCast(TypeInfo);
3349     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3350   }
3351   return CGF.EmitPointerWithAlignment(Base, &BaseInfo);
3352 }
3353 
3354 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3355                                                 bool IsLowerBound) {
3356   QualType BaseTy;
3357   if (auto *ASE =
3358           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3359     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3360   else
3361     BaseTy = E->getBase()->getType();
3362   QualType ResultExprTy;
3363   if (auto *AT = getContext().getAsArrayType(BaseTy))
3364     ResultExprTy = AT->getElementType();
3365   else
3366     ResultExprTy = BaseTy->getPointeeType();
3367   llvm::Value *Idx = nullptr;
3368   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3369     // Requesting lower bound or upper bound, but without provided length and
3370     // without ':' symbol for the default length -> length = 1.
3371     // Idx = LowerBound ?: 0;
3372     if (auto *LowerBound = E->getLowerBound()) {
3373       Idx = Builder.CreateIntCast(
3374           EmitScalarExpr(LowerBound), IntPtrTy,
3375           LowerBound->getType()->hasSignedIntegerRepresentation());
3376     } else
3377       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3378   } else {
3379     // Try to emit length or lower bound as constant. If this is possible, 1
3380     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3381     // IR (LB + Len) - 1.
3382     auto &C = CGM.getContext();
3383     auto *Length = E->getLength();
3384     llvm::APSInt ConstLength;
3385     if (Length) {
3386       // Idx = LowerBound + Length - 1;
3387       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3388         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3389         Length = nullptr;
3390       }
3391       auto *LowerBound = E->getLowerBound();
3392       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3393       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3394         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3395         LowerBound = nullptr;
3396       }
3397       if (!Length)
3398         --ConstLength;
3399       else if (!LowerBound)
3400         --ConstLowerBound;
3401 
3402       if (Length || LowerBound) {
3403         auto *LowerBoundVal =
3404             LowerBound
3405                 ? Builder.CreateIntCast(
3406                       EmitScalarExpr(LowerBound), IntPtrTy,
3407                       LowerBound->getType()->hasSignedIntegerRepresentation())
3408                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3409         auto *LengthVal =
3410             Length
3411                 ? Builder.CreateIntCast(
3412                       EmitScalarExpr(Length), IntPtrTy,
3413                       Length->getType()->hasSignedIntegerRepresentation())
3414                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3415         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3416                                 /*HasNUW=*/false,
3417                                 !getLangOpts().isSignedOverflowDefined());
3418         if (Length && LowerBound) {
3419           Idx = Builder.CreateSub(
3420               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3421               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3422         }
3423       } else
3424         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3425     } else {
3426       // Idx = ArraySize - 1;
3427       QualType ArrayTy = BaseTy->isPointerType()
3428                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3429                              : BaseTy;
3430       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3431         Length = VAT->getSizeExpr();
3432         if (Length->isIntegerConstantExpr(ConstLength, C))
3433           Length = nullptr;
3434       } else {
3435         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3436         ConstLength = CAT->getSize();
3437       }
3438       if (Length) {
3439         auto *LengthVal = Builder.CreateIntCast(
3440             EmitScalarExpr(Length), IntPtrTy,
3441             Length->getType()->hasSignedIntegerRepresentation());
3442         Idx = Builder.CreateSub(
3443             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3444             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3445       } else {
3446         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3447         --ConstLength;
3448         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3449       }
3450     }
3451   }
3452   assert(Idx);
3453 
3454   Address EltPtr = Address::invalid();
3455   LValueBaseInfo BaseInfo;
3456   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3457     // The base must be a pointer, which is not an aggregate.  Emit
3458     // it.  It needs to be emitted first in case it's what captures
3459     // the VLA bounds.
3460     Address Base =
3461         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy,
3462                                 VLA->getElementType(), IsLowerBound);
3463     // The element count here is the total number of non-VLA elements.
3464     llvm::Value *NumElements = getVLASize(VLA).first;
3465 
3466     // Effectively, the multiply by the VLA size is part of the GEP.
3467     // GEP indexes are signed, and scaling an index isn't permitted to
3468     // signed-overflow, so we use the same semantics for our explicit
3469     // multiply.  We suppress this if overflow is not undefined behavior.
3470     if (getLangOpts().isSignedOverflowDefined())
3471       Idx = Builder.CreateMul(Idx, NumElements);
3472     else
3473       Idx = Builder.CreateNSWMul(Idx, NumElements);
3474     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3475                                    !getLangOpts().isSignedOverflowDefined(),
3476                                    /*SignedIndices=*/false, E->getExprLoc());
3477   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3478     // If this is A[i] where A is an array, the frontend will have decayed the
3479     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3480     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3481     // "gep x, i" here.  Emit one "gep A, 0, i".
3482     assert(Array->getType()->isArrayType() &&
3483            "Array to pointer decay must have array source type!");
3484     LValue ArrayLV;
3485     // For simple multidimensional array indexing, set the 'accessed' flag for
3486     // better bounds-checking of the base expression.
3487     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3488       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3489     else
3490       ArrayLV = EmitLValue(Array);
3491 
3492     // Propagate the alignment from the array itself to the result.
3493     EltPtr = emitArraySubscriptGEP(
3494         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3495         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3496         /*SignedIndices=*/false, E->getExprLoc());
3497     BaseInfo = ArrayLV.getBaseInfo();
3498   } else {
3499     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3500                                            BaseTy, ResultExprTy, IsLowerBound);
3501     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3502                                    !getLangOpts().isSignedOverflowDefined(),
3503                                    /*SignedIndices=*/false, E->getExprLoc());
3504   }
3505 
3506   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo);
3507 }
3508 
3509 LValue CodeGenFunction::
3510 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3511   // Emit the base vector as an l-value.
3512   LValue Base;
3513 
3514   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3515   if (E->isArrow()) {
3516     // If it is a pointer to a vector, emit the address and form an lvalue with
3517     // it.
3518     LValueBaseInfo BaseInfo;
3519     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo);
3520     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3521     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo);
3522     Base.getQuals().removeObjCGCAttr();
3523   } else if (E->getBase()->isGLValue()) {
3524     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3525     // emit the base as an lvalue.
3526     assert(E->getBase()->getType()->isVectorType());
3527     Base = EmitLValue(E->getBase());
3528   } else {
3529     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3530     assert(E->getBase()->getType()->isVectorType() &&
3531            "Result must be a vector");
3532     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3533 
3534     // Store the vector to memory (because LValue wants an address).
3535     Address VecMem = CreateMemTemp(E->getBase()->getType());
3536     Builder.CreateStore(Vec, VecMem);
3537     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3538                           LValueBaseInfo(AlignmentSource::Decl, false));
3539   }
3540 
3541   QualType type =
3542     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3543 
3544   // Encode the element access list into a vector of unsigned indices.
3545   SmallVector<uint32_t, 4> Indices;
3546   E->getEncodedElementAccess(Indices);
3547 
3548   if (Base.isSimple()) {
3549     llvm::Constant *CV =
3550         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3551     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3552                                     Base.getBaseInfo());
3553   }
3554   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3555 
3556   llvm::Constant *BaseElts = Base.getExtVectorElts();
3557   SmallVector<llvm::Constant *, 4> CElts;
3558 
3559   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3560     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3561   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3562   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3563                                   Base.getBaseInfo());
3564 }
3565 
3566 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3567   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3568     EmitIgnoredExpr(E->getBase());
3569     return EmitDeclRefLValue(DRE);
3570   }
3571 
3572   Expr *BaseExpr = E->getBase();
3573   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3574   LValue BaseLV;
3575   if (E->isArrow()) {
3576     LValueBaseInfo BaseInfo;
3577     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo);
3578     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3579     SanitizerSet SkippedChecks;
3580     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3581     if (IsBaseCXXThis)
3582       SkippedChecks.set(SanitizerKind::Alignment, true);
3583     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3584       SkippedChecks.set(SanitizerKind::Null, true);
3585     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3586                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3587     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo);
3588   } else
3589     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3590 
3591   NamedDecl *ND = E->getMemberDecl();
3592   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3593     LValue LV = EmitLValueForField(BaseLV, Field);
3594     setObjCGCLValueClass(getContext(), E, LV);
3595     return LV;
3596   }
3597 
3598   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3599     return EmitFunctionDeclLValue(*this, E, FD);
3600 
3601   llvm_unreachable("Unhandled member declaration!");
3602 }
3603 
3604 /// Given that we are currently emitting a lambda, emit an l-value for
3605 /// one of its members.
3606 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3607   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3608   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3609   QualType LambdaTagType =
3610     getContext().getTagDeclType(Field->getParent());
3611   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3612   return EmitLValueForField(LambdaLV, Field);
3613 }
3614 
3615 /// Drill down to the storage of a field without walking into
3616 /// reference types.
3617 ///
3618 /// The resulting address doesn't necessarily have the right type.
3619 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3620                                       const FieldDecl *field) {
3621   const RecordDecl *rec = field->getParent();
3622 
3623   unsigned idx =
3624     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3625 
3626   CharUnits offset;
3627   // Adjust the alignment down to the given offset.
3628   // As a special case, if the LLVM field index is 0, we know that this
3629   // is zero.
3630   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3631                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3632          "LLVM field at index zero had non-zero offset?");
3633   if (idx != 0) {
3634     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3635     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3636     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3637   }
3638 
3639   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3640 }
3641 
3642 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3643   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3644   if (!RD)
3645     return false;
3646 
3647   if (RD->isDynamicClass())
3648     return true;
3649 
3650   for (const auto &Base : RD->bases())
3651     if (hasAnyVptr(Base.getType(), Context))
3652       return true;
3653 
3654   for (const FieldDecl *Field : RD->fields())
3655     if (hasAnyVptr(Field->getType(), Context))
3656       return true;
3657 
3658   return false;
3659 }
3660 
3661 LValue CodeGenFunction::EmitLValueForField(LValue base,
3662                                            const FieldDecl *field) {
3663   LValueBaseInfo BaseInfo = base.getBaseInfo();
3664   AlignmentSource fieldAlignSource =
3665     getFieldAlignmentSource(BaseInfo.getAlignmentSource());
3666   LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias());
3667 
3668   QualType type = field->getType();
3669   const RecordDecl *rec = field->getParent();
3670   if (rec->isUnion() || rec->hasAttr<MayAliasAttr>() || type->isVectorType())
3671     FieldBaseInfo.setMayAlias(true);
3672   bool mayAlias = FieldBaseInfo.getMayAlias();
3673 
3674   if (field->isBitField()) {
3675     const CGRecordLayout &RL =
3676       CGM.getTypes().getCGRecordLayout(field->getParent());
3677     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3678     Address Addr = base.getAddress();
3679     unsigned Idx = RL.getLLVMFieldNo(field);
3680     if (Idx != 0)
3681       // For structs, we GEP to the field that the record layout suggests.
3682       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3683                                      field->getName());
3684     // Get the access type.
3685     llvm::Type *FieldIntTy =
3686       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3687     if (Addr.getElementType() != FieldIntTy)
3688       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3689 
3690     QualType fieldType =
3691       field->getType().withCVRQualifiers(base.getVRQualifiers());
3692     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo);
3693   }
3694 
3695   Address addr = base.getAddress();
3696   unsigned cvr = base.getVRQualifiers();
3697   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3698   if (rec->isUnion()) {
3699     // For unions, there is no pointer adjustment.
3700     assert(!type->isReferenceType() && "union has reference member");
3701     // TODO: handle path-aware TBAA for union.
3702     TBAAPath = false;
3703 
3704     const auto FieldType = field->getType();
3705     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3706         hasAnyVptr(FieldType, getContext()))
3707       // Because unions can easily skip invariant.barriers, we need to add
3708       // a barrier every time CXXRecord field with vptr is referenced.
3709       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3710                      addr.getAlignment());
3711   } else {
3712     // For structs, we GEP to the field that the record layout suggests.
3713     addr = emitAddrOfFieldStorage(*this, addr, field);
3714 
3715     // If this is a reference field, load the reference right now.
3716     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3717       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3718       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3719 
3720       // Loading the reference will disable path-aware TBAA.
3721       TBAAPath = false;
3722       if (CGM.shouldUseTBAA()) {
3723         llvm::MDNode *tbaa;
3724         if (mayAlias)
3725           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3726         else
3727           tbaa = CGM.getTBAAInfo(type);
3728         if (tbaa)
3729           CGM.DecorateInstructionWithTBAA(load, tbaa);
3730       }
3731 
3732       mayAlias = false;
3733       type = refType->getPointeeType();
3734 
3735       CharUnits alignment =
3736         getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true);
3737       FieldBaseInfo.setMayAlias(false);
3738       addr = Address(load, alignment);
3739 
3740       // Qualifiers on the struct don't apply to the referencee, and
3741       // we'll pick up CVR from the actual type later, so reset these
3742       // additional qualifiers now.
3743       cvr = 0;
3744     }
3745   }
3746 
3747   // Make sure that the address is pointing to the right type.  This is critical
3748   // for both unions and structs.  A union needs a bitcast, a struct element
3749   // will need a bitcast if the LLVM type laid out doesn't match the desired
3750   // type.
3751   addr = Builder.CreateElementBitCast(addr,
3752                                       CGM.getTypes().ConvertTypeForMem(type),
3753                                       field->getName());
3754 
3755   if (field->hasAttr<AnnotateAttr>())
3756     addr = EmitFieldAnnotations(field, addr);
3757 
3758   LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo);
3759   LV.getQuals().addCVRQualifiers(cvr);
3760   if (TBAAPath) {
3761     const ASTRecordLayout &Layout =
3762         getContext().getASTRecordLayout(field->getParent());
3763     // Set the base type to be the base type of the base LValue and
3764     // update offset to be relative to the base type.
3765     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3766     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3767                      Layout.getFieldOffset(field->getFieldIndex()) /
3768                                            getContext().getCharWidth());
3769   }
3770 
3771   // __weak attribute on a field is ignored.
3772   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3773     LV.getQuals().removeObjCGCAttr();
3774 
3775   // Fields of may_alias structs act like 'char' for TBAA purposes.
3776   // FIXME: this should get propagated down through anonymous structs
3777   // and unions.
3778   if (mayAlias && LV.getTBAAInfo())
3779     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3780 
3781   return LV;
3782 }
3783 
3784 LValue
3785 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3786                                                   const FieldDecl *Field) {
3787   QualType FieldType = Field->getType();
3788 
3789   if (!FieldType->isReferenceType())
3790     return EmitLValueForField(Base, Field);
3791 
3792   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3793 
3794   // Make sure that the address is pointing to the right type.
3795   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3796   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3797 
3798   // TODO: access-path TBAA?
3799   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3800   LValueBaseInfo FieldBaseInfo(
3801       getFieldAlignmentSource(BaseInfo.getAlignmentSource()),
3802       BaseInfo.getMayAlias());
3803   return MakeAddrLValue(V, FieldType, FieldBaseInfo);
3804 }
3805 
3806 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3807   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
3808   if (E->isFileScope()) {
3809     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3810     return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo);
3811   }
3812   if (E->getType()->isVariablyModifiedType())
3813     // make sure to emit the VLA size.
3814     EmitVariablyModifiedType(E->getType());
3815 
3816   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3817   const Expr *InitExpr = E->getInitializer();
3818   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo);
3819 
3820   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3821                    /*Init*/ true);
3822 
3823   return Result;
3824 }
3825 
3826 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3827   if (!E->isGLValue())
3828     // Initializing an aggregate temporary in C++11: T{...}.
3829     return EmitAggExprToLValue(E);
3830 
3831   // An lvalue initializer list must be initializing a reference.
3832   assert(E->isTransparent() && "non-transparent glvalue init list");
3833   return EmitLValue(E->getInit(0));
3834 }
3835 
3836 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3837 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3838 /// LValue is returned and the current block has been terminated.
3839 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3840                                                     const Expr *Operand) {
3841   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3842     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3843     return None;
3844   }
3845 
3846   return CGF.EmitLValue(Operand);
3847 }
3848 
3849 LValue CodeGenFunction::
3850 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3851   if (!expr->isGLValue()) {
3852     // ?: here should be an aggregate.
3853     assert(hasAggregateEvaluationKind(expr->getType()) &&
3854            "Unexpected conditional operator!");
3855     return EmitAggExprToLValue(expr);
3856   }
3857 
3858   OpaqueValueMapping binding(*this, expr);
3859 
3860   const Expr *condExpr = expr->getCond();
3861   bool CondExprBool;
3862   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3863     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3864     if (!CondExprBool) std::swap(live, dead);
3865 
3866     if (!ContainsLabel(dead)) {
3867       // If the true case is live, we need to track its region.
3868       if (CondExprBool)
3869         incrementProfileCounter(expr);
3870       return EmitLValue(live);
3871     }
3872   }
3873 
3874   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3875   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3876   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3877 
3878   ConditionalEvaluation eval(*this);
3879   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3880 
3881   // Any temporaries created here are conditional.
3882   EmitBlock(lhsBlock);
3883   incrementProfileCounter(expr);
3884   eval.begin(*this);
3885   Optional<LValue> lhs =
3886       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3887   eval.end(*this);
3888 
3889   if (lhs && !lhs->isSimple())
3890     return EmitUnsupportedLValue(expr, "conditional operator");
3891 
3892   lhsBlock = Builder.GetInsertBlock();
3893   if (lhs)
3894     Builder.CreateBr(contBlock);
3895 
3896   // Any temporaries created here are conditional.
3897   EmitBlock(rhsBlock);
3898   eval.begin(*this);
3899   Optional<LValue> rhs =
3900       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3901   eval.end(*this);
3902   if (rhs && !rhs->isSimple())
3903     return EmitUnsupportedLValue(expr, "conditional operator");
3904   rhsBlock = Builder.GetInsertBlock();
3905 
3906   EmitBlock(contBlock);
3907 
3908   if (lhs && rhs) {
3909     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3910                                            2, "cond-lvalue");
3911     phi->addIncoming(lhs->getPointer(), lhsBlock);
3912     phi->addIncoming(rhs->getPointer(), rhsBlock);
3913     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3914     AlignmentSource alignSource =
3915       std::max(lhs->getBaseInfo().getAlignmentSource(),
3916                rhs->getBaseInfo().getAlignmentSource());
3917     bool MayAlias = lhs->getBaseInfo().getMayAlias() ||
3918                     rhs->getBaseInfo().getMayAlias();
3919     return MakeAddrLValue(result, expr->getType(),
3920                           LValueBaseInfo(alignSource, MayAlias));
3921   } else {
3922     assert((lhs || rhs) &&
3923            "both operands of glvalue conditional are throw-expressions?");
3924     return lhs ? *lhs : *rhs;
3925   }
3926 }
3927 
3928 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3929 /// type. If the cast is to a reference, we can have the usual lvalue result,
3930 /// otherwise if a cast is needed by the code generator in an lvalue context,
3931 /// then it must mean that we need the address of an aggregate in order to
3932 /// access one of its members.  This can happen for all the reasons that casts
3933 /// are permitted with aggregate result, including noop aggregate casts, and
3934 /// cast from scalar to union.
3935 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3936   switch (E->getCastKind()) {
3937   case CK_ToVoid:
3938   case CK_BitCast:
3939   case CK_ArrayToPointerDecay:
3940   case CK_FunctionToPointerDecay:
3941   case CK_NullToMemberPointer:
3942   case CK_NullToPointer:
3943   case CK_IntegralToPointer:
3944   case CK_PointerToIntegral:
3945   case CK_PointerToBoolean:
3946   case CK_VectorSplat:
3947   case CK_IntegralCast:
3948   case CK_BooleanToSignedIntegral:
3949   case CK_IntegralToBoolean:
3950   case CK_IntegralToFloating:
3951   case CK_FloatingToIntegral:
3952   case CK_FloatingToBoolean:
3953   case CK_FloatingCast:
3954   case CK_FloatingRealToComplex:
3955   case CK_FloatingComplexToReal:
3956   case CK_FloatingComplexToBoolean:
3957   case CK_FloatingComplexCast:
3958   case CK_FloatingComplexToIntegralComplex:
3959   case CK_IntegralRealToComplex:
3960   case CK_IntegralComplexToReal:
3961   case CK_IntegralComplexToBoolean:
3962   case CK_IntegralComplexCast:
3963   case CK_IntegralComplexToFloatingComplex:
3964   case CK_DerivedToBaseMemberPointer:
3965   case CK_BaseToDerivedMemberPointer:
3966   case CK_MemberPointerToBoolean:
3967   case CK_ReinterpretMemberPointer:
3968   case CK_AnyPointerToBlockPointerCast:
3969   case CK_ARCProduceObject:
3970   case CK_ARCConsumeObject:
3971   case CK_ARCReclaimReturnedObject:
3972   case CK_ARCExtendBlockObject:
3973   case CK_CopyAndAutoreleaseBlockObject:
3974   case CK_AddressSpaceConversion:
3975   case CK_IntToOCLSampler:
3976     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3977 
3978   case CK_Dependent:
3979     llvm_unreachable("dependent cast kind in IR gen!");
3980 
3981   case CK_BuiltinFnToFnPtr:
3982     llvm_unreachable("builtin functions are handled elsewhere");
3983 
3984   // These are never l-values; just use the aggregate emission code.
3985   case CK_NonAtomicToAtomic:
3986   case CK_AtomicToNonAtomic:
3987     return EmitAggExprToLValue(E);
3988 
3989   case CK_Dynamic: {
3990     LValue LV = EmitLValue(E->getSubExpr());
3991     Address V = LV.getAddress();
3992     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3993     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3994   }
3995 
3996   case CK_ConstructorConversion:
3997   case CK_UserDefinedConversion:
3998   case CK_CPointerToObjCPointerCast:
3999   case CK_BlockPointerToObjCPointerCast:
4000   case CK_NoOp:
4001   case CK_LValueToRValue:
4002     return EmitLValue(E->getSubExpr());
4003 
4004   case CK_UncheckedDerivedToBase:
4005   case CK_DerivedToBase: {
4006     const RecordType *DerivedClassTy =
4007       E->getSubExpr()->getType()->getAs<RecordType>();
4008     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4009 
4010     LValue LV = EmitLValue(E->getSubExpr());
4011     Address This = LV.getAddress();
4012 
4013     // Perform the derived-to-base conversion
4014     Address Base = GetAddressOfBaseClass(
4015         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4016         /*NullCheckValue=*/false, E->getExprLoc());
4017 
4018     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo());
4019   }
4020   case CK_ToUnion:
4021     return EmitAggExprToLValue(E);
4022   case CK_BaseToDerived: {
4023     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4024     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4025 
4026     LValue LV = EmitLValue(E->getSubExpr());
4027 
4028     // Perform the base-to-derived conversion
4029     Address Derived =
4030       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4031                                E->path_begin(), E->path_end(),
4032                                /*NullCheckValue=*/false);
4033 
4034     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4035     // performed and the object is not of the derived type.
4036     if (sanitizePerformTypeCheck())
4037       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4038                     Derived.getPointer(), E->getType());
4039 
4040     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4041       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4042                                 /*MayBeNull=*/false,
4043                                 CFITCK_DerivedCast, E->getLocStart());
4044 
4045     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo());
4046   }
4047   case CK_LValueBitCast: {
4048     // This must be a reinterpret_cast (or c-style equivalent).
4049     const auto *CE = cast<ExplicitCastExpr>(E);
4050 
4051     CGM.EmitExplicitCastExprType(CE, this);
4052     LValue LV = EmitLValue(E->getSubExpr());
4053     Address V = Builder.CreateBitCast(LV.getAddress(),
4054                                       ConvertType(CE->getTypeAsWritten()));
4055 
4056     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4057       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4058                                 /*MayBeNull=*/false,
4059                                 CFITCK_UnrelatedCast, E->getLocStart());
4060 
4061     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4062   }
4063   case CK_ObjCObjectLValueCast: {
4064     LValue LV = EmitLValue(E->getSubExpr());
4065     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4066                                              ConvertType(E->getType()));
4067     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo());
4068   }
4069   case CK_ZeroToOCLQueue:
4070     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4071   case CK_ZeroToOCLEvent:
4072     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4073   }
4074 
4075   llvm_unreachable("Unhandled lvalue cast kind?");
4076 }
4077 
4078 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4079   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4080   return getOpaqueLValueMapping(e);
4081 }
4082 
4083 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4084                                            const FieldDecl *FD,
4085                                            SourceLocation Loc) {
4086   QualType FT = FD->getType();
4087   LValue FieldLV = EmitLValueForField(LV, FD);
4088   switch (getEvaluationKind(FT)) {
4089   case TEK_Complex:
4090     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4091   case TEK_Aggregate:
4092     return FieldLV.asAggregateRValue();
4093   case TEK_Scalar:
4094     // This routine is used to load fields one-by-one to perform a copy, so
4095     // don't load reference fields.
4096     if (FD->getType()->isReferenceType())
4097       return RValue::get(FieldLV.getPointer());
4098     return EmitLoadOfLValue(FieldLV, Loc);
4099   }
4100   llvm_unreachable("bad evaluation kind");
4101 }
4102 
4103 //===--------------------------------------------------------------------===//
4104 //                             Expression Emission
4105 //===--------------------------------------------------------------------===//
4106 
4107 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4108                                      ReturnValueSlot ReturnValue) {
4109   // Builtins never have block type.
4110   if (E->getCallee()->getType()->isBlockPointerType())
4111     return EmitBlockCallExpr(E, ReturnValue);
4112 
4113   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4114     return EmitCXXMemberCallExpr(CE, ReturnValue);
4115 
4116   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4117     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4118 
4119   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4120     if (const CXXMethodDecl *MD =
4121           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4122       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4123 
4124   CGCallee callee = EmitCallee(E->getCallee());
4125 
4126   if (callee.isBuiltin()) {
4127     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4128                            E, ReturnValue);
4129   }
4130 
4131   if (callee.isPseudoDestructor()) {
4132     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4133   }
4134 
4135   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4136 }
4137 
4138 /// Emit a CallExpr without considering whether it might be a subclass.
4139 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4140                                            ReturnValueSlot ReturnValue) {
4141   CGCallee Callee = EmitCallee(E->getCallee());
4142   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4143 }
4144 
4145 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4146   if (auto builtinID = FD->getBuiltinID()) {
4147     return CGCallee::forBuiltin(builtinID, FD);
4148   }
4149 
4150   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4151   return CGCallee::forDirect(calleePtr, FD);
4152 }
4153 
4154 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4155   E = E->IgnoreParens();
4156 
4157   // Look through function-to-pointer decay.
4158   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4159     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4160         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4161       return EmitCallee(ICE->getSubExpr());
4162     }
4163 
4164   // Resolve direct calls.
4165   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4166     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4167       return EmitDirectCallee(*this, FD);
4168     }
4169   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4170     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4171       EmitIgnoredExpr(ME->getBase());
4172       return EmitDirectCallee(*this, FD);
4173     }
4174 
4175   // Look through template substitutions.
4176   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4177     return EmitCallee(NTTP->getReplacement());
4178 
4179   // Treat pseudo-destructor calls differently.
4180   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4181     return CGCallee::forPseudoDestructor(PDE);
4182   }
4183 
4184   // Otherwise, we have an indirect reference.
4185   llvm::Value *calleePtr;
4186   QualType functionType;
4187   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4188     calleePtr = EmitScalarExpr(E);
4189     functionType = ptrType->getPointeeType();
4190   } else {
4191     functionType = E->getType();
4192     calleePtr = EmitLValue(E).getPointer();
4193   }
4194   assert(functionType->isFunctionType());
4195   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4196                           E->getReferencedDeclOfCallee());
4197   CGCallee callee(calleeInfo, calleePtr);
4198   return callee;
4199 }
4200 
4201 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4202   // Comma expressions just emit their LHS then their RHS as an l-value.
4203   if (E->getOpcode() == BO_Comma) {
4204     EmitIgnoredExpr(E->getLHS());
4205     EnsureInsertPoint();
4206     return EmitLValue(E->getRHS());
4207   }
4208 
4209   if (E->getOpcode() == BO_PtrMemD ||
4210       E->getOpcode() == BO_PtrMemI)
4211     return EmitPointerToDataMemberBinaryExpr(E);
4212 
4213   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4214 
4215   // Note that in all of these cases, __block variables need the RHS
4216   // evaluated first just in case the variable gets moved by the RHS.
4217 
4218   switch (getEvaluationKind(E->getType())) {
4219   case TEK_Scalar: {
4220     switch (E->getLHS()->getType().getObjCLifetime()) {
4221     case Qualifiers::OCL_Strong:
4222       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4223 
4224     case Qualifiers::OCL_Autoreleasing:
4225       return EmitARCStoreAutoreleasing(E).first;
4226 
4227     // No reason to do any of these differently.
4228     case Qualifiers::OCL_None:
4229     case Qualifiers::OCL_ExplicitNone:
4230     case Qualifiers::OCL_Weak:
4231       break;
4232     }
4233 
4234     RValue RV = EmitAnyExpr(E->getRHS());
4235     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4236     if (RV.isScalar())
4237       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4238     EmitStoreThroughLValue(RV, LV);
4239     return LV;
4240   }
4241 
4242   case TEK_Complex:
4243     return EmitComplexAssignmentLValue(E);
4244 
4245   case TEK_Aggregate:
4246     return EmitAggExprToLValue(E);
4247   }
4248   llvm_unreachable("bad evaluation kind");
4249 }
4250 
4251 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4252   RValue RV = EmitCallExpr(E);
4253 
4254   if (!RV.isScalar())
4255     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4256                           LValueBaseInfo(AlignmentSource::Decl, false));
4257 
4258   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4259          "Can't have a scalar return unless the return type is a "
4260          "reference type!");
4261 
4262   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4263 }
4264 
4265 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4266   // FIXME: This shouldn't require another copy.
4267   return EmitAggExprToLValue(E);
4268 }
4269 
4270 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4271   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4272          && "binding l-value to type which needs a temporary");
4273   AggValueSlot Slot = CreateAggTemp(E->getType());
4274   EmitCXXConstructExpr(E, Slot);
4275   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4276                         LValueBaseInfo(AlignmentSource::Decl, false));
4277 }
4278 
4279 LValue
4280 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4281   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4282 }
4283 
4284 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4285   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4286                                       ConvertType(E->getType()));
4287 }
4288 
4289 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4290   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4291                         LValueBaseInfo(AlignmentSource::Decl, false));
4292 }
4293 
4294 LValue
4295 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4296   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4297   Slot.setExternallyDestructed();
4298   EmitAggExpr(E->getSubExpr(), Slot);
4299   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4300   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4301                         LValueBaseInfo(AlignmentSource::Decl, false));
4302 }
4303 
4304 LValue
4305 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4306   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4307   EmitLambdaExpr(E, Slot);
4308   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4309                         LValueBaseInfo(AlignmentSource::Decl, false));
4310 }
4311 
4312 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4313   RValue RV = EmitObjCMessageExpr(E);
4314 
4315   if (!RV.isScalar())
4316     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4317                           LValueBaseInfo(AlignmentSource::Decl, false));
4318 
4319   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4320          "Can't have a scalar return unless the return type is a "
4321          "reference type!");
4322 
4323   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4324 }
4325 
4326 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4327   Address V =
4328     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4329   return MakeAddrLValue(V, E->getType(),
4330                         LValueBaseInfo(AlignmentSource::Decl, false));
4331 }
4332 
4333 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4334                                              const ObjCIvarDecl *Ivar) {
4335   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4336 }
4337 
4338 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4339                                           llvm::Value *BaseValue,
4340                                           const ObjCIvarDecl *Ivar,
4341                                           unsigned CVRQualifiers) {
4342   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4343                                                    Ivar, CVRQualifiers);
4344 }
4345 
4346 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4347   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4348   llvm::Value *BaseValue = nullptr;
4349   const Expr *BaseExpr = E->getBase();
4350   Qualifiers BaseQuals;
4351   QualType ObjectTy;
4352   if (E->isArrow()) {
4353     BaseValue = EmitScalarExpr(BaseExpr);
4354     ObjectTy = BaseExpr->getType()->getPointeeType();
4355     BaseQuals = ObjectTy.getQualifiers();
4356   } else {
4357     LValue BaseLV = EmitLValue(BaseExpr);
4358     BaseValue = BaseLV.getPointer();
4359     ObjectTy = BaseExpr->getType();
4360     BaseQuals = ObjectTy.getQualifiers();
4361   }
4362 
4363   LValue LV =
4364     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4365                       BaseQuals.getCVRQualifiers());
4366   setObjCGCLValueClass(getContext(), E, LV);
4367   return LV;
4368 }
4369 
4370 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4371   // Can only get l-value for message expression returning aggregate type
4372   RValue RV = EmitAnyExprToTemp(E);
4373   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4374                         LValueBaseInfo(AlignmentSource::Decl, false));
4375 }
4376 
4377 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4378                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4379                                  llvm::Value *Chain) {
4380   // Get the actual function type. The callee type will always be a pointer to
4381   // function type or a block pointer type.
4382   assert(CalleeType->isFunctionPointerType() &&
4383          "Call must have function pointer type!");
4384 
4385   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4386 
4387   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4388     // We can only guarantee that a function is called from the correct
4389     // context/function based on the appropriate target attributes,
4390     // so only check in the case where we have both always_inline and target
4391     // since otherwise we could be making a conditional call after a check for
4392     // the proper cpu features (and it won't cause code generation issues due to
4393     // function based code generation).
4394     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4395         TargetDecl->hasAttr<TargetAttr>())
4396       checkTargetFeatures(E, FD);
4397 
4398   CalleeType = getContext().getCanonicalType(CalleeType);
4399 
4400   const auto *FnType =
4401       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4402 
4403   CGCallee Callee = OrigCallee;
4404 
4405   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4406       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4407     if (llvm::Constant *PrefixSig =
4408             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4409       SanitizerScope SanScope(this);
4410       llvm::Constant *FTRTTIConst =
4411           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4412       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4413       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4414           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4415 
4416       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4417 
4418       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4419           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4420       llvm::Value *CalleeSigPtr =
4421           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4422       llvm::Value *CalleeSig =
4423           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4424       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4425 
4426       llvm::BasicBlock *Cont = createBasicBlock("cont");
4427       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4428       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4429 
4430       EmitBlock(TypeCheck);
4431       llvm::Value *CalleeRTTIPtr =
4432           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4433       llvm::Value *CalleeRTTIEncoded =
4434           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4435       llvm::Value *CalleeRTTI =
4436           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4437       llvm::Value *CalleeRTTIMatch =
4438           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4439       llvm::Constant *StaticData[] = {
4440         EmitCheckSourceLocation(E->getLocStart()),
4441         EmitCheckTypeDescriptor(CalleeType)
4442       };
4443       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4444                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4445 
4446       Builder.CreateBr(Cont);
4447       EmitBlock(Cont);
4448     }
4449   }
4450 
4451   // If we are checking indirect calls and this call is indirect, check that the
4452   // function pointer is a member of the bit set for the function type.
4453   if (SanOpts.has(SanitizerKind::CFIICall) &&
4454       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4455     SanitizerScope SanScope(this);
4456     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4457 
4458     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4459     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4460 
4461     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4462     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4463     llvm::Value *TypeTest = Builder.CreateCall(
4464         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4465 
4466     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4467     llvm::Constant *StaticData[] = {
4468         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4469         EmitCheckSourceLocation(E->getLocStart()),
4470         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4471     };
4472     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4473       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4474                            CastedCallee, StaticData);
4475     } else {
4476       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4477                 SanitizerHandler::CFICheckFail, StaticData,
4478                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4479     }
4480   }
4481 
4482   CallArgList Args;
4483   if (Chain)
4484     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4485              CGM.getContext().VoidPtrTy);
4486 
4487   // C++17 requires that we evaluate arguments to a call using assignment syntax
4488   // right-to-left, and that we evaluate arguments to certain other operators
4489   // left-to-right. Note that we allow this to override the order dictated by
4490   // the calling convention on the MS ABI, which means that parameter
4491   // destruction order is not necessarily reverse construction order.
4492   // FIXME: Revisit this based on C++ committee response to unimplementability.
4493   EvaluationOrder Order = EvaluationOrder::Default;
4494   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4495     if (OCE->isAssignmentOp())
4496       Order = EvaluationOrder::ForceRightToLeft;
4497     else {
4498       switch (OCE->getOperator()) {
4499       case OO_LessLess:
4500       case OO_GreaterGreater:
4501       case OO_AmpAmp:
4502       case OO_PipePipe:
4503       case OO_Comma:
4504       case OO_ArrowStar:
4505         Order = EvaluationOrder::ForceLeftToRight;
4506         break;
4507       default:
4508         break;
4509       }
4510     }
4511   }
4512 
4513   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4514                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4515 
4516   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4517       Args, FnType, /*isChainCall=*/Chain);
4518 
4519   // C99 6.5.2.2p6:
4520   //   If the expression that denotes the called function has a type
4521   //   that does not include a prototype, [the default argument
4522   //   promotions are performed]. If the number of arguments does not
4523   //   equal the number of parameters, the behavior is undefined. If
4524   //   the function is defined with a type that includes a prototype,
4525   //   and either the prototype ends with an ellipsis (, ...) or the
4526   //   types of the arguments after promotion are not compatible with
4527   //   the types of the parameters, the behavior is undefined. If the
4528   //   function is defined with a type that does not include a
4529   //   prototype, and the types of the arguments after promotion are
4530   //   not compatible with those of the parameters after promotion,
4531   //   the behavior is undefined [except in some trivial cases].
4532   // That is, in the general case, we should assume that a call
4533   // through an unprototyped function type works like a *non-variadic*
4534   // call.  The way we make this work is to cast to the exact type
4535   // of the promoted arguments.
4536   //
4537   // Chain calls use this same code path to add the invisible chain parameter
4538   // to the function type.
4539   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4540     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4541     CalleeTy = CalleeTy->getPointerTo();
4542 
4543     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4544     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4545     Callee.setFunctionPointer(CalleePtr);
4546   }
4547 
4548   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4549 }
4550 
4551 LValue CodeGenFunction::
4552 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4553   Address BaseAddr = Address::invalid();
4554   if (E->getOpcode() == BO_PtrMemI) {
4555     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4556   } else {
4557     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4558   }
4559 
4560   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4561 
4562   const MemberPointerType *MPT
4563     = E->getRHS()->getType()->getAs<MemberPointerType>();
4564 
4565   LValueBaseInfo BaseInfo;
4566   Address MemberAddr =
4567     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo);
4568 
4569   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo);
4570 }
4571 
4572 /// Given the address of a temporary variable, produce an r-value of
4573 /// its type.
4574 RValue CodeGenFunction::convertTempToRValue(Address addr,
4575                                             QualType type,
4576                                             SourceLocation loc) {
4577   LValue lvalue = MakeAddrLValue(addr, type,
4578                                  LValueBaseInfo(AlignmentSource::Decl, false));
4579   switch (getEvaluationKind(type)) {
4580   case TEK_Complex:
4581     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4582   case TEK_Aggregate:
4583     return lvalue.asAggregateRValue();
4584   case TEK_Scalar:
4585     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4586   }
4587   llvm_unreachable("bad evaluation kind");
4588 }
4589 
4590 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4591   assert(Val->getType()->isFPOrFPVectorTy());
4592   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4593     return;
4594 
4595   llvm::MDBuilder MDHelper(getLLVMContext());
4596   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4597 
4598   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4599 }
4600 
4601 namespace {
4602   struct LValueOrRValue {
4603     LValue LV;
4604     RValue RV;
4605   };
4606 }
4607 
4608 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4609                                            const PseudoObjectExpr *E,
4610                                            bool forLValue,
4611                                            AggValueSlot slot) {
4612   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4613 
4614   // Find the result expression, if any.
4615   const Expr *resultExpr = E->getResultExpr();
4616   LValueOrRValue result;
4617 
4618   for (PseudoObjectExpr::const_semantics_iterator
4619          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4620     const Expr *semantic = *i;
4621 
4622     // If this semantic expression is an opaque value, bind it
4623     // to the result of its source expression.
4624     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4625 
4626       // If this is the result expression, we may need to evaluate
4627       // directly into the slot.
4628       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4629       OVMA opaqueData;
4630       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4631           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4632         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4633         LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
4634         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4635                                        BaseInfo);
4636         opaqueData = OVMA::bind(CGF, ov, LV);
4637         result.RV = slot.asRValue();
4638 
4639       // Otherwise, emit as normal.
4640       } else {
4641         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4642 
4643         // If this is the result, also evaluate the result now.
4644         if (ov == resultExpr) {
4645           if (forLValue)
4646             result.LV = CGF.EmitLValue(ov);
4647           else
4648             result.RV = CGF.EmitAnyExpr(ov, slot);
4649         }
4650       }
4651 
4652       opaques.push_back(opaqueData);
4653 
4654     // Otherwise, if the expression is the result, evaluate it
4655     // and remember the result.
4656     } else if (semantic == resultExpr) {
4657       if (forLValue)
4658         result.LV = CGF.EmitLValue(semantic);
4659       else
4660         result.RV = CGF.EmitAnyExpr(semantic, slot);
4661 
4662     // Otherwise, evaluate the expression in an ignored context.
4663     } else {
4664       CGF.EmitIgnoredExpr(semantic);
4665     }
4666   }
4667 
4668   // Unbind all the opaques now.
4669   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4670     opaques[i].unbind(CGF);
4671 
4672   return result;
4673 }
4674 
4675 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4676                                                AggValueSlot slot) {
4677   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4678 }
4679 
4680 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4681   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4682 }
4683