1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 //===--------------------------------------------------------------------===//
39 //                        Miscellaneous Helper Methods
40 //===--------------------------------------------------------------------===//
41 
42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
43   unsigned addressSpace =
44     cast<llvm::PointerType>(value->getType())->getAddressSpace();
45 
46   llvm::PointerType *destType = Int8PtrTy;
47   if (addressSpace)
48     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
49 
50   if (value->getType() == destType) return value;
51   return Builder.CreateBitCast(value, destType);
52 }
53 
54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
55 /// block.
56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
57                                                     const Twine &Name) {
58   if (!Builder.isNamePreserving())
59     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
60   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
61 }
62 
63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
64                                      llvm::Value *Init) {
65   auto *Store = new llvm::StoreInst(Init, Var);
66   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
67   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
68 }
69 
70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
71                                                 const Twine &Name) {
72   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
73   // FIXME: Should we prefer the preferred type alignment here?
74   CharUnits Align = getContext().getTypeAlignInChars(Ty);
75   Alloc->setAlignment(Align.getQuantity());
76   return Alloc;
77 }
78 
79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
80                                                  const Twine &Name) {
81   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
82   // FIXME: Should we prefer the preferred type alignment here?
83   CharUnits Align = getContext().getTypeAlignInChars(Ty);
84   Alloc->setAlignment(Align.getQuantity());
85   return Alloc;
86 }
87 
88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
89 /// expression and compare the result against zero, returning an Int1Ty value.
90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
91   PGO.setCurrentStmt(E);
92   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
93     llvm::Value *MemPtr = EmitScalarExpr(E);
94     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
95   }
96 
97   QualType BoolTy = getContext().BoolTy;
98   if (!E->getType()->isAnyComplexType())
99     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
100 
101   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
102 }
103 
104 /// EmitIgnoredExpr - Emit code to compute the specified expression,
105 /// ignoring the result.
106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
107   if (E->isRValue())
108     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
109 
110   // Just emit it as an l-value and drop the result.
111   EmitLValue(E);
112 }
113 
114 /// EmitAnyExpr - Emit code to compute the specified expression which
115 /// can have any type.  The result is returned as an RValue struct.
116 /// If this is an aggregate expression, AggSlot indicates where the
117 /// result should be returned.
118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
119                                     AggValueSlot aggSlot,
120                                     bool ignoreResult) {
121   switch (getEvaluationKind(E->getType())) {
122   case TEK_Scalar:
123     return RValue::get(EmitScalarExpr(E, ignoreResult));
124   case TEK_Complex:
125     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
126   case TEK_Aggregate:
127     if (!ignoreResult && aggSlot.isIgnored())
128       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
129     EmitAggExpr(E, aggSlot);
130     return aggSlot.asRValue();
131   }
132   llvm_unreachable("bad evaluation kind");
133 }
134 
135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
136 /// always be accessible even if no aggregate location is provided.
137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
138   AggValueSlot AggSlot = AggValueSlot::ignored();
139 
140   if (hasAggregateEvaluationKind(E->getType()))
141     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
142   return EmitAnyExpr(E, AggSlot);
143 }
144 
145 /// EmitAnyExprToMem - Evaluate an expression into a given memory
146 /// location.
147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
148                                        llvm::Value *Location,
149                                        Qualifiers Quals,
150                                        bool IsInit) {
151   // FIXME: This function should take an LValue as an argument.
152   switch (getEvaluationKind(E->getType())) {
153   case TEK_Complex:
154     EmitComplexExprIntoLValue(E,
155                          MakeNaturalAlignAddrLValue(Location, E->getType()),
156                               /*isInit*/ false);
157     return;
158 
159   case TEK_Aggregate: {
160     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
161     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
162                                          AggValueSlot::IsDestructed_t(IsInit),
163                                          AggValueSlot::DoesNotNeedGCBarriers,
164                                          AggValueSlot::IsAliased_t(!IsInit)));
165     return;
166   }
167 
168   case TEK_Scalar: {
169     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
170     LValue LV = MakeAddrLValue(Location, E->getType());
171     EmitStoreThroughLValue(RV, LV);
172     return;
173   }
174   }
175   llvm_unreachable("bad evaluation kind");
176 }
177 
178 static void
179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
180                      const Expr *E, llvm::Value *ReferenceTemporary) {
181   // Objective-C++ ARC:
182   //   If we are binding a reference to a temporary that has ownership, we
183   //   need to perform retain/release operations on the temporary.
184   //
185   // FIXME: This should be looking at E, not M.
186   if (CGF.getLangOpts().ObjCAutoRefCount &&
187       M->getType()->isObjCLifetimeType()) {
188     QualType ObjCARCReferenceLifetimeType = M->getType();
189     switch (Qualifiers::ObjCLifetime Lifetime =
190                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
191     case Qualifiers::OCL_None:
192     case Qualifiers::OCL_ExplicitNone:
193       // Carry on to normal cleanup handling.
194       break;
195 
196     case Qualifiers::OCL_Autoreleasing:
197       // Nothing to do; cleaned up by an autorelease pool.
198       return;
199 
200     case Qualifiers::OCL_Strong:
201     case Qualifiers::OCL_Weak:
202       switch (StorageDuration Duration = M->getStorageDuration()) {
203       case SD_Static:
204         // Note: we intentionally do not register a cleanup to release
205         // the object on program termination.
206         return;
207 
208       case SD_Thread:
209         // FIXME: We should probably register a cleanup in this case.
210         return;
211 
212       case SD_Automatic:
213       case SD_FullExpression:
214         CodeGenFunction::Destroyer *Destroy;
215         CleanupKind CleanupKind;
216         if (Lifetime == Qualifiers::OCL_Strong) {
217           const ValueDecl *VD = M->getExtendingDecl();
218           bool Precise =
219               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
220           CleanupKind = CGF.getARCCleanupKind();
221           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
222                             : &CodeGenFunction::destroyARCStrongImprecise;
223         } else {
224           // __weak objects always get EH cleanups; otherwise, exceptions
225           // could cause really nasty crashes instead of mere leaks.
226           CleanupKind = NormalAndEHCleanup;
227           Destroy = &CodeGenFunction::destroyARCWeak;
228         }
229         if (Duration == SD_FullExpression)
230           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
231                           ObjCARCReferenceLifetimeType, *Destroy,
232                           CleanupKind & EHCleanup);
233         else
234           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
235                                           ObjCARCReferenceLifetimeType,
236                                           *Destroy, CleanupKind & EHCleanup);
237         return;
238 
239       case SD_Dynamic:
240         llvm_unreachable("temporary cannot have dynamic storage duration");
241       }
242       llvm_unreachable("unknown storage duration");
243     }
244   }
245 
246   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
247   if (const RecordType *RT =
248           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
249     // Get the destructor for the reference temporary.
250     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
251     if (!ClassDecl->hasTrivialDestructor())
252       ReferenceTemporaryDtor = ClassDecl->getDestructor();
253   }
254 
255   if (!ReferenceTemporaryDtor)
256     return;
257 
258   // Call the destructor for the temporary.
259   switch (M->getStorageDuration()) {
260   case SD_Static:
261   case SD_Thread: {
262     llvm::Constant *CleanupFn;
263     llvm::Constant *CleanupArg;
264     if (E->getType()->isArrayType()) {
265       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
266           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
267           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
268           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
269       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
270     } else {
271       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
272                                                StructorType::Complete);
273       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
274     }
275     CGF.CGM.getCXXABI().registerGlobalDtor(
276         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
277     break;
278   }
279 
280   case SD_FullExpression:
281     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
282                     CodeGenFunction::destroyCXXObject,
283                     CGF.getLangOpts().Exceptions);
284     break;
285 
286   case SD_Automatic:
287     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
288                                     ReferenceTemporary, E->getType(),
289                                     CodeGenFunction::destroyCXXObject,
290                                     CGF.getLangOpts().Exceptions);
291     break;
292 
293   case SD_Dynamic:
294     llvm_unreachable("temporary cannot have dynamic storage duration");
295   }
296 }
297 
298 static llvm::Value *
299 createReferenceTemporary(CodeGenFunction &CGF,
300                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
301   switch (M->getStorageDuration()) {
302   case SD_FullExpression:
303   case SD_Automatic:
304     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
305 
306   case SD_Thread:
307   case SD_Static:
308     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
309 
310   case SD_Dynamic:
311     llvm_unreachable("temporary can't have dynamic storage duration");
312   }
313   llvm_unreachable("unknown storage duration");
314 }
315 
316 LValue CodeGenFunction::
317 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
318   const Expr *E = M->GetTemporaryExpr();
319 
320     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
321     // as that will cause the lifetime adjustment to be lost for ARC
322   if (getLangOpts().ObjCAutoRefCount &&
323       M->getType()->isObjCLifetimeType() &&
324       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
325       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
326     llvm::Value *Object = createReferenceTemporary(*this, M, E);
327     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
328 
329     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
330       // We should not have emitted the initializer for this temporary as a
331       // constant.
332       assert(!Var->hasInitializer());
333       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
334     }
335 
336     switch (getEvaluationKind(E->getType())) {
337     default: llvm_unreachable("expected scalar or aggregate expression");
338     case TEK_Scalar:
339       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
340       break;
341     case TEK_Aggregate: {
342       CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
343       EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment,
344                                            E->getType().getQualifiers(),
345                                            AggValueSlot::IsDestructed,
346                                            AggValueSlot::DoesNotNeedGCBarriers,
347                                            AggValueSlot::IsNotAliased));
348       break;
349     }
350     }
351 
352     pushTemporaryCleanup(*this, M, E, Object);
353     return RefTempDst;
354   }
355 
356   SmallVector<const Expr *, 2> CommaLHSs;
357   SmallVector<SubobjectAdjustment, 2> Adjustments;
358   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
359 
360   for (const auto &Ignored : CommaLHSs)
361     EmitIgnoredExpr(Ignored);
362 
363   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
364     if (opaque->getType()->isRecordType()) {
365       assert(Adjustments.empty());
366       return EmitOpaqueValueLValue(opaque);
367     }
368   }
369 
370   // Create and initialize the reference temporary.
371   llvm::Value *Object = createReferenceTemporary(*this, M, E);
372   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
373     // If the temporary is a global and has a constant initializer, we may
374     // have already initialized it.
375     if (!Var->hasInitializer()) {
376       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
377       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
378     }
379   } else {
380     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
381   }
382   pushTemporaryCleanup(*this, M, E, Object);
383 
384   // Perform derived-to-base casts and/or field accesses, to get from the
385   // temporary object we created (and, potentially, for which we extended
386   // the lifetime) to the subobject we're binding the reference to.
387   for (unsigned I = Adjustments.size(); I != 0; --I) {
388     SubobjectAdjustment &Adjustment = Adjustments[I-1];
389     switch (Adjustment.Kind) {
390     case SubobjectAdjustment::DerivedToBaseAdjustment:
391       Object =
392           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
393                                 Adjustment.DerivedToBase.BasePath->path_begin(),
394                                 Adjustment.DerivedToBase.BasePath->path_end(),
395                                 /*NullCheckValue=*/ false, E->getExprLoc());
396       break;
397 
398     case SubobjectAdjustment::FieldAdjustment: {
399       LValue LV = MakeAddrLValue(Object, E->getType());
400       LV = EmitLValueForField(LV, Adjustment.Field);
401       assert(LV.isSimple() &&
402              "materialized temporary field is not a simple lvalue");
403       Object = LV.getAddress();
404       break;
405     }
406 
407     case SubobjectAdjustment::MemberPointerAdjustment: {
408       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
409       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
410           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
411       break;
412     }
413     }
414   }
415 
416   return MakeAddrLValue(Object, M->getType());
417 }
418 
419 RValue
420 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
421   // Emit the expression as an lvalue.
422   LValue LV = EmitLValue(E);
423   assert(LV.isSimple());
424   llvm::Value *Value = LV.getAddress();
425 
426   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
427     // C++11 [dcl.ref]p5 (as amended by core issue 453):
428     //   If a glvalue to which a reference is directly bound designates neither
429     //   an existing object or function of an appropriate type nor a region of
430     //   storage of suitable size and alignment to contain an object of the
431     //   reference's type, the behavior is undefined.
432     QualType Ty = E->getType();
433     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
434   }
435 
436   return RValue::get(Value);
437 }
438 
439 
440 /// getAccessedFieldNo - Given an encoded value and a result number, return the
441 /// input field number being accessed.
442 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
443                                              const llvm::Constant *Elts) {
444   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
445       ->getZExtValue();
446 }
447 
448 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
449 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
450                                     llvm::Value *High) {
451   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
452   llvm::Value *K47 = Builder.getInt64(47);
453   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
454   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
455   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
456   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
457   return Builder.CreateMul(B1, KMul);
458 }
459 
460 bool CodeGenFunction::sanitizePerformTypeCheck() const {
461   return SanOpts.has(SanitizerKind::Null) |
462          SanOpts.has(SanitizerKind::Alignment) |
463          SanOpts.has(SanitizerKind::ObjectSize) |
464          SanOpts.has(SanitizerKind::Vptr);
465 }
466 
467 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
468                                     llvm::Value *Address, QualType Ty,
469                                     CharUnits Alignment, bool SkipNullCheck) {
470   if (!sanitizePerformTypeCheck())
471     return;
472 
473   // Don't check pointers outside the default address space. The null check
474   // isn't correct, the object-size check isn't supported by LLVM, and we can't
475   // communicate the addresses to the runtime handler for the vptr check.
476   if (Address->getType()->getPointerAddressSpace())
477     return;
478 
479   SanitizerScope SanScope(this);
480 
481   SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks;
482   llvm::BasicBlock *Done = nullptr;
483 
484   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
485                            TCK == TCK_UpcastToVirtualBase;
486   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
487       !SkipNullCheck) {
488     // The glvalue must not be an empty glvalue.
489     llvm::Value *IsNonNull = Builder.CreateICmpNE(
490         Address, llvm::Constant::getNullValue(Address->getType()));
491 
492     if (AllowNullPointers) {
493       // When performing pointer casts, it's OK if the value is null.
494       // Skip the remaining checks in that case.
495       Done = createBasicBlock("null");
496       llvm::BasicBlock *Rest = createBasicBlock("not.null");
497       Builder.CreateCondBr(IsNonNull, Rest, Done);
498       EmitBlock(Rest);
499     } else {
500       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
501     }
502   }
503 
504   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
505     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
506 
507     // The glvalue must refer to a large enough storage region.
508     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
509     //        to check this.
510     // FIXME: Get object address space
511     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
512     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
513     llvm::Value *Min = Builder.getFalse();
514     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
515     llvm::Value *LargeEnough =
516         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
517                               llvm::ConstantInt::get(IntPtrTy, Size));
518     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
519   }
520 
521   uint64_t AlignVal = 0;
522 
523   if (SanOpts.has(SanitizerKind::Alignment)) {
524     AlignVal = Alignment.getQuantity();
525     if (!Ty->isIncompleteType() && !AlignVal)
526       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
527 
528     // The glvalue must be suitably aligned.
529     if (AlignVal) {
530       llvm::Value *Align =
531           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
532                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
533       llvm::Value *Aligned =
534         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
535       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
536     }
537   }
538 
539   if (Checks.size() > 0) {
540     llvm::Constant *StaticData[] = {
541       EmitCheckSourceLocation(Loc),
542       EmitCheckTypeDescriptor(Ty),
543       llvm::ConstantInt::get(SizeTy, AlignVal),
544       llvm::ConstantInt::get(Int8Ty, TCK)
545     };
546     EmitCheck(Checks, "type_mismatch", StaticData, Address);
547   }
548 
549   // If possible, check that the vptr indicates that there is a subobject of
550   // type Ty at offset zero within this object.
551   //
552   // C++11 [basic.life]p5,6:
553   //   [For storage which does not refer to an object within its lifetime]
554   //   The program has undefined behavior if:
555   //    -- the [pointer or glvalue] is used to access a non-static data member
556   //       or call a non-static member function
557   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
558   if (SanOpts.has(SanitizerKind::Vptr) &&
559       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
560        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
561        TCK == TCK_UpcastToVirtualBase) &&
562       RD && RD->hasDefinition() && RD->isDynamicClass()) {
563     // Compute a hash of the mangled name of the type.
564     //
565     // FIXME: This is not guaranteed to be deterministic! Move to a
566     //        fingerprinting mechanism once LLVM provides one. For the time
567     //        being the implementation happens to be deterministic.
568     SmallString<64> MangledName;
569     llvm::raw_svector_ostream Out(MangledName);
570     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
571                                                      Out);
572 
573     // Blacklist based on the mangled type.
574     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
575             Out.str())) {
576       llvm::hash_code TypeHash = hash_value(Out.str());
577 
578       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
579       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
580       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
581       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
582       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
583       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
584 
585       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
586       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
587 
588       // Look the hash up in our cache.
589       const int CacheSize = 128;
590       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
591       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
592                                                      "__ubsan_vptr_type_cache");
593       llvm::Value *Slot = Builder.CreateAnd(Hash,
594                                             llvm::ConstantInt::get(IntPtrTy,
595                                                                    CacheSize-1));
596       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
597       llvm::Value *CacheVal =
598         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
599 
600       // If the hash isn't in the cache, call a runtime handler to perform the
601       // hard work of checking whether the vptr is for an object of the right
602       // type. This will either fill in the cache and return, or produce a
603       // diagnostic.
604       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
605       llvm::Constant *StaticData[] = {
606         EmitCheckSourceLocation(Loc),
607         EmitCheckTypeDescriptor(Ty),
608         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
609         llvm::ConstantInt::get(Int8Ty, TCK)
610       };
611       llvm::Value *DynamicData[] = { Address, Hash };
612       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
613                 "dynamic_type_cache_miss", StaticData, DynamicData);
614     }
615   }
616 
617   if (Done) {
618     Builder.CreateBr(Done);
619     EmitBlock(Done);
620   }
621 }
622 
623 /// Determine whether this expression refers to a flexible array member in a
624 /// struct. We disable array bounds checks for such members.
625 static bool isFlexibleArrayMemberExpr(const Expr *E) {
626   // For compatibility with existing code, we treat arrays of length 0 or
627   // 1 as flexible array members.
628   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
629   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
630     if (CAT->getSize().ugt(1))
631       return false;
632   } else if (!isa<IncompleteArrayType>(AT))
633     return false;
634 
635   E = E->IgnoreParens();
636 
637   // A flexible array member must be the last member in the class.
638   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
639     // FIXME: If the base type of the member expr is not FD->getParent(),
640     // this should not be treated as a flexible array member access.
641     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
642       RecordDecl::field_iterator FI(
643           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
644       return ++FI == FD->getParent()->field_end();
645     }
646   }
647 
648   return false;
649 }
650 
651 /// If Base is known to point to the start of an array, return the length of
652 /// that array. Return 0 if the length cannot be determined.
653 static llvm::Value *getArrayIndexingBound(
654     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
655   // For the vector indexing extension, the bound is the number of elements.
656   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
657     IndexedType = Base->getType();
658     return CGF.Builder.getInt32(VT->getNumElements());
659   }
660 
661   Base = Base->IgnoreParens();
662 
663   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
664     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
665         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
666       IndexedType = CE->getSubExpr()->getType();
667       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
668       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
669         return CGF.Builder.getInt(CAT->getSize());
670       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
671         return CGF.getVLASize(VAT).first;
672     }
673   }
674 
675   return nullptr;
676 }
677 
678 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
679                                       llvm::Value *Index, QualType IndexType,
680                                       bool Accessed) {
681   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
682          "should not be called unless adding bounds checks");
683   SanitizerScope SanScope(this);
684 
685   QualType IndexedType;
686   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
687   if (!Bound)
688     return;
689 
690   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
691   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
692   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
693 
694   llvm::Constant *StaticData[] = {
695     EmitCheckSourceLocation(E->getExprLoc()),
696     EmitCheckTypeDescriptor(IndexedType),
697     EmitCheckTypeDescriptor(IndexType)
698   };
699   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
700                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
701   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
702             StaticData, Index);
703 }
704 
705 
706 CodeGenFunction::ComplexPairTy CodeGenFunction::
707 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
708                          bool isInc, bool isPre) {
709   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
710 
711   llvm::Value *NextVal;
712   if (isa<llvm::IntegerType>(InVal.first->getType())) {
713     uint64_t AmountVal = isInc ? 1 : -1;
714     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
715 
716     // Add the inc/dec to the real part.
717     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
718   } else {
719     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
720     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
721     if (!isInc)
722       FVal.changeSign();
723     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
724 
725     // Add the inc/dec to the real part.
726     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
727   }
728 
729   ComplexPairTy IncVal(NextVal, InVal.second);
730 
731   // Store the updated result through the lvalue.
732   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
733 
734   // If this is a postinc, return the value read from memory, otherwise use the
735   // updated value.
736   return isPre ? IncVal : InVal;
737 }
738 
739 //===----------------------------------------------------------------------===//
740 //                         LValue Expression Emission
741 //===----------------------------------------------------------------------===//
742 
743 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
744   if (Ty->isVoidType())
745     return RValue::get(nullptr);
746 
747   switch (getEvaluationKind(Ty)) {
748   case TEK_Complex: {
749     llvm::Type *EltTy =
750       ConvertType(Ty->castAs<ComplexType>()->getElementType());
751     llvm::Value *U = llvm::UndefValue::get(EltTy);
752     return RValue::getComplex(std::make_pair(U, U));
753   }
754 
755   // If this is a use of an undefined aggregate type, the aggregate must have an
756   // identifiable address.  Just because the contents of the value are undefined
757   // doesn't mean that the address can't be taken and compared.
758   case TEK_Aggregate: {
759     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
760     return RValue::getAggregate(DestPtr);
761   }
762 
763   case TEK_Scalar:
764     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
765   }
766   llvm_unreachable("bad evaluation kind");
767 }
768 
769 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
770                                               const char *Name) {
771   ErrorUnsupported(E, Name);
772   return GetUndefRValue(E->getType());
773 }
774 
775 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
776                                               const char *Name) {
777   ErrorUnsupported(E, Name);
778   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
779   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
780 }
781 
782 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
783   LValue LV;
784   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
785     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
786   else
787     LV = EmitLValue(E);
788   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
789     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
790                   E->getType(), LV.getAlignment());
791   return LV;
792 }
793 
794 /// EmitLValue - Emit code to compute a designator that specifies the location
795 /// of the expression.
796 ///
797 /// This can return one of two things: a simple address or a bitfield reference.
798 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
799 /// an LLVM pointer type.
800 ///
801 /// If this returns a bitfield reference, nothing about the pointee type of the
802 /// LLVM value is known: For example, it may not be a pointer to an integer.
803 ///
804 /// If this returns a normal address, and if the lvalue's C type is fixed size,
805 /// this method guarantees that the returned pointer type will point to an LLVM
806 /// type of the same size of the lvalue's type.  If the lvalue has a variable
807 /// length type, this is not possible.
808 ///
809 LValue CodeGenFunction::EmitLValue(const Expr *E) {
810   ApplyDebugLocation DL(*this, E);
811   switch (E->getStmtClass()) {
812   default: return EmitUnsupportedLValue(E, "l-value expression");
813 
814   case Expr::ObjCPropertyRefExprClass:
815     llvm_unreachable("cannot emit a property reference directly");
816 
817   case Expr::ObjCSelectorExprClass:
818     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
819   case Expr::ObjCIsaExprClass:
820     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
821   case Expr::BinaryOperatorClass:
822     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
823   case Expr::CompoundAssignOperatorClass: {
824     QualType Ty = E->getType();
825     if (const AtomicType *AT = Ty->getAs<AtomicType>())
826       Ty = AT->getValueType();
827     if (!Ty->isAnyComplexType())
828       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
829     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
830   }
831   case Expr::CallExprClass:
832   case Expr::CXXMemberCallExprClass:
833   case Expr::CXXOperatorCallExprClass:
834   case Expr::UserDefinedLiteralClass:
835     return EmitCallExprLValue(cast<CallExpr>(E));
836   case Expr::VAArgExprClass:
837     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
838   case Expr::DeclRefExprClass:
839     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
840   case Expr::ParenExprClass:
841     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
842   case Expr::GenericSelectionExprClass:
843     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
844   case Expr::PredefinedExprClass:
845     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
846   case Expr::StringLiteralClass:
847     return EmitStringLiteralLValue(cast<StringLiteral>(E));
848   case Expr::ObjCEncodeExprClass:
849     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
850   case Expr::PseudoObjectExprClass:
851     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
852   case Expr::InitListExprClass:
853     return EmitInitListLValue(cast<InitListExpr>(E));
854   case Expr::CXXTemporaryObjectExprClass:
855   case Expr::CXXConstructExprClass:
856     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
857   case Expr::CXXBindTemporaryExprClass:
858     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
859   case Expr::CXXUuidofExprClass:
860     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
861   case Expr::LambdaExprClass:
862     return EmitLambdaLValue(cast<LambdaExpr>(E));
863 
864   case Expr::ExprWithCleanupsClass: {
865     const auto *cleanups = cast<ExprWithCleanups>(E);
866     enterFullExpression(cleanups);
867     RunCleanupsScope Scope(*this);
868     return EmitLValue(cleanups->getSubExpr());
869   }
870 
871   case Expr::CXXDefaultArgExprClass:
872     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
873   case Expr::CXXDefaultInitExprClass: {
874     CXXDefaultInitExprScope Scope(*this);
875     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
876   }
877   case Expr::CXXTypeidExprClass:
878     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
879 
880   case Expr::ObjCMessageExprClass:
881     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
882   case Expr::ObjCIvarRefExprClass:
883     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
884   case Expr::StmtExprClass:
885     return EmitStmtExprLValue(cast<StmtExpr>(E));
886   case Expr::UnaryOperatorClass:
887     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
888   case Expr::ArraySubscriptExprClass:
889     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
890   case Expr::ExtVectorElementExprClass:
891     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
892   case Expr::MemberExprClass:
893     return EmitMemberExpr(cast<MemberExpr>(E));
894   case Expr::CompoundLiteralExprClass:
895     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
896   case Expr::ConditionalOperatorClass:
897     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
898   case Expr::BinaryConditionalOperatorClass:
899     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
900   case Expr::ChooseExprClass:
901     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
902   case Expr::OpaqueValueExprClass:
903     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
904   case Expr::SubstNonTypeTemplateParmExprClass:
905     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
906   case Expr::ImplicitCastExprClass:
907   case Expr::CStyleCastExprClass:
908   case Expr::CXXFunctionalCastExprClass:
909   case Expr::CXXStaticCastExprClass:
910   case Expr::CXXDynamicCastExprClass:
911   case Expr::CXXReinterpretCastExprClass:
912   case Expr::CXXConstCastExprClass:
913   case Expr::ObjCBridgedCastExprClass:
914     return EmitCastLValue(cast<CastExpr>(E));
915 
916   case Expr::MaterializeTemporaryExprClass:
917     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
918   }
919 }
920 
921 /// Given an object of the given canonical type, can we safely copy a
922 /// value out of it based on its initializer?
923 static bool isConstantEmittableObjectType(QualType type) {
924   assert(type.isCanonical());
925   assert(!type->isReferenceType());
926 
927   // Must be const-qualified but non-volatile.
928   Qualifiers qs = type.getLocalQualifiers();
929   if (!qs.hasConst() || qs.hasVolatile()) return false;
930 
931   // Otherwise, all object types satisfy this except C++ classes with
932   // mutable subobjects or non-trivial copy/destroy behavior.
933   if (const auto *RT = dyn_cast<RecordType>(type))
934     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
935       if (RD->hasMutableFields() || !RD->isTrivial())
936         return false;
937 
938   return true;
939 }
940 
941 /// Can we constant-emit a load of a reference to a variable of the
942 /// given type?  This is different from predicates like
943 /// Decl::isUsableInConstantExpressions because we do want it to apply
944 /// in situations that don't necessarily satisfy the language's rules
945 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
946 /// to do this with const float variables even if those variables
947 /// aren't marked 'constexpr'.
948 enum ConstantEmissionKind {
949   CEK_None,
950   CEK_AsReferenceOnly,
951   CEK_AsValueOrReference,
952   CEK_AsValueOnly
953 };
954 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
955   type = type.getCanonicalType();
956   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
957     if (isConstantEmittableObjectType(ref->getPointeeType()))
958       return CEK_AsValueOrReference;
959     return CEK_AsReferenceOnly;
960   }
961   if (isConstantEmittableObjectType(type))
962     return CEK_AsValueOnly;
963   return CEK_None;
964 }
965 
966 /// Try to emit a reference to the given value without producing it as
967 /// an l-value.  This is actually more than an optimization: we can't
968 /// produce an l-value for variables that we never actually captured
969 /// in a block or lambda, which means const int variables or constexpr
970 /// literals or similar.
971 CodeGenFunction::ConstantEmission
972 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
973   ValueDecl *value = refExpr->getDecl();
974 
975   // The value needs to be an enum constant or a constant variable.
976   ConstantEmissionKind CEK;
977   if (isa<ParmVarDecl>(value)) {
978     CEK = CEK_None;
979   } else if (auto *var = dyn_cast<VarDecl>(value)) {
980     CEK = checkVarTypeForConstantEmission(var->getType());
981   } else if (isa<EnumConstantDecl>(value)) {
982     CEK = CEK_AsValueOnly;
983   } else {
984     CEK = CEK_None;
985   }
986   if (CEK == CEK_None) return ConstantEmission();
987 
988   Expr::EvalResult result;
989   bool resultIsReference;
990   QualType resultType;
991 
992   // It's best to evaluate all the way as an r-value if that's permitted.
993   if (CEK != CEK_AsReferenceOnly &&
994       refExpr->EvaluateAsRValue(result, getContext())) {
995     resultIsReference = false;
996     resultType = refExpr->getType();
997 
998   // Otherwise, try to evaluate as an l-value.
999   } else if (CEK != CEK_AsValueOnly &&
1000              refExpr->EvaluateAsLValue(result, getContext())) {
1001     resultIsReference = true;
1002     resultType = value->getType();
1003 
1004   // Failure.
1005   } else {
1006     return ConstantEmission();
1007   }
1008 
1009   // In any case, if the initializer has side-effects, abandon ship.
1010   if (result.HasSideEffects)
1011     return ConstantEmission();
1012 
1013   // Emit as a constant.
1014   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1015 
1016   // Make sure we emit a debug reference to the global variable.
1017   // This should probably fire even for
1018   if (isa<VarDecl>(value)) {
1019     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1020       EmitDeclRefExprDbgValue(refExpr, C);
1021   } else {
1022     assert(isa<EnumConstantDecl>(value));
1023     EmitDeclRefExprDbgValue(refExpr, C);
1024   }
1025 
1026   // If we emitted a reference constant, we need to dereference that.
1027   if (resultIsReference)
1028     return ConstantEmission::forReference(C);
1029 
1030   return ConstantEmission::forValue(C);
1031 }
1032 
1033 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1034                                                SourceLocation Loc) {
1035   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1036                           lvalue.getAlignment().getQuantity(),
1037                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1038                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1039 }
1040 
1041 static bool hasBooleanRepresentation(QualType Ty) {
1042   if (Ty->isBooleanType())
1043     return true;
1044 
1045   if (const EnumType *ET = Ty->getAs<EnumType>())
1046     return ET->getDecl()->getIntegerType()->isBooleanType();
1047 
1048   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1049     return hasBooleanRepresentation(AT->getValueType());
1050 
1051   return false;
1052 }
1053 
1054 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1055                             llvm::APInt &Min, llvm::APInt &End,
1056                             bool StrictEnums) {
1057   const EnumType *ET = Ty->getAs<EnumType>();
1058   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1059                                 ET && !ET->getDecl()->isFixed();
1060   bool IsBool = hasBooleanRepresentation(Ty);
1061   if (!IsBool && !IsRegularCPlusPlusEnum)
1062     return false;
1063 
1064   if (IsBool) {
1065     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1066     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1067   } else {
1068     const EnumDecl *ED = ET->getDecl();
1069     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1070     unsigned Bitwidth = LTy->getScalarSizeInBits();
1071     unsigned NumNegativeBits = ED->getNumNegativeBits();
1072     unsigned NumPositiveBits = ED->getNumPositiveBits();
1073 
1074     if (NumNegativeBits) {
1075       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1076       assert(NumBits <= Bitwidth);
1077       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1078       Min = -End;
1079     } else {
1080       assert(NumPositiveBits <= Bitwidth);
1081       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1082       Min = llvm::APInt(Bitwidth, 0);
1083     }
1084   }
1085   return true;
1086 }
1087 
1088 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1089   llvm::APInt Min, End;
1090   if (!getRangeForType(*this, Ty, Min, End,
1091                        CGM.getCodeGenOpts().StrictEnums))
1092     return nullptr;
1093 
1094   llvm::MDBuilder MDHelper(getLLVMContext());
1095   return MDHelper.createRange(Min, End);
1096 }
1097 
1098 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1099                                                unsigned Alignment, QualType Ty,
1100                                                SourceLocation Loc,
1101                                                llvm::MDNode *TBAAInfo,
1102                                                QualType TBAABaseType,
1103                                                uint64_t TBAAOffset) {
1104   // For better performance, handle vector loads differently.
1105   if (Ty->isVectorType()) {
1106     llvm::Value *V;
1107     const llvm::Type *EltTy =
1108     cast<llvm::PointerType>(Addr->getType())->getElementType();
1109 
1110     const auto *VTy = cast<llvm::VectorType>(EltTy);
1111 
1112     // Handle vectors of size 3, like size 4 for better performance.
1113     if (VTy->getNumElements() == 3) {
1114 
1115       // Bitcast to vec4 type.
1116       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1117                                                          4);
1118       llvm::PointerType *ptVec4Ty =
1119       llvm::PointerType::get(vec4Ty,
1120                              (cast<llvm::PointerType>(
1121                                       Addr->getType()))->getAddressSpace());
1122       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1123                                                 "castToVec4");
1124       // Now load value.
1125       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1126 
1127       // Shuffle vector to get vec3.
1128       llvm::Constant *Mask[] = {
1129         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1130         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1131         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1132       };
1133 
1134       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1135       V = Builder.CreateShuffleVector(LoadVal,
1136                                       llvm::UndefValue::get(vec4Ty),
1137                                       MaskV, "extractVec");
1138       return EmitFromMemory(V, Ty);
1139     }
1140   }
1141 
1142   // Atomic operations have to be done on integral types.
1143   if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
1144     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1145                                      CharUnits::fromQuantity(Alignment),
1146                                      getContext(), TBAAInfo);
1147     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1148   }
1149 
1150   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1151   if (Volatile)
1152     Load->setVolatile(true);
1153   if (Alignment)
1154     Load->setAlignment(Alignment);
1155   if (TBAAInfo) {
1156     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1157                                                       TBAAOffset);
1158     if (TBAAPath)
1159       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1160   }
1161 
1162   bool NeedsBoolCheck =
1163       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1164   bool NeedsEnumCheck =
1165       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1166   if (NeedsBoolCheck || NeedsEnumCheck) {
1167     SanitizerScope SanScope(this);
1168     llvm::APInt Min, End;
1169     if (getRangeForType(*this, Ty, Min, End, true)) {
1170       --End;
1171       llvm::Value *Check;
1172       if (!Min)
1173         Check = Builder.CreateICmpULE(
1174           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1175       else {
1176         llvm::Value *Upper = Builder.CreateICmpSLE(
1177           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1178         llvm::Value *Lower = Builder.CreateICmpSGE(
1179           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1180         Check = Builder.CreateAnd(Upper, Lower);
1181       }
1182       llvm::Constant *StaticArgs[] = {
1183         EmitCheckSourceLocation(Loc),
1184         EmitCheckTypeDescriptor(Ty)
1185       };
1186       SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1187       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1188                 EmitCheckValue(Load));
1189     }
1190   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1191     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1192       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1193 
1194   return EmitFromMemory(Load, Ty);
1195 }
1196 
1197 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1198   // Bool has a different representation in memory than in registers.
1199   if (hasBooleanRepresentation(Ty)) {
1200     // This should really always be an i1, but sometimes it's already
1201     // an i8, and it's awkward to track those cases down.
1202     if (Value->getType()->isIntegerTy(1))
1203       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1204     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1205            "wrong value rep of bool");
1206   }
1207 
1208   return Value;
1209 }
1210 
1211 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1212   // Bool has a different representation in memory than in registers.
1213   if (hasBooleanRepresentation(Ty)) {
1214     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1215            "wrong value rep of bool");
1216     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1217   }
1218 
1219   return Value;
1220 }
1221 
1222 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1223                                         bool Volatile, unsigned Alignment,
1224                                         QualType Ty, llvm::MDNode *TBAAInfo,
1225                                         bool isInit, QualType TBAABaseType,
1226                                         uint64_t TBAAOffset) {
1227 
1228   // Handle vectors differently to get better performance.
1229   if (Ty->isVectorType()) {
1230     llvm::Type *SrcTy = Value->getType();
1231     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1232     // Handle vec3 special.
1233     if (VecTy->getNumElements() == 3) {
1234       llvm::LLVMContext &VMContext = getLLVMContext();
1235 
1236       // Our source is a vec3, do a shuffle vector to make it a vec4.
1237       SmallVector<llvm::Constant*, 4> Mask;
1238       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1239                                             0));
1240       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1241                                             1));
1242       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1243                                             2));
1244       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1245 
1246       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1247       Value = Builder.CreateShuffleVector(Value,
1248                                           llvm::UndefValue::get(VecTy),
1249                                           MaskV, "extractVec");
1250       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1251     }
1252     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1253     if (DstPtr->getElementType() != SrcTy) {
1254       llvm::Type *MemTy =
1255       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1256       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1257     }
1258   }
1259 
1260   Value = EmitToMemory(Value, Ty);
1261 
1262   if (Ty->isAtomicType() ||
1263       (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
1264     EmitAtomicStore(RValue::get(Value),
1265                     LValue::MakeAddr(Addr, Ty,
1266                                      CharUnits::fromQuantity(Alignment),
1267                                      getContext(), TBAAInfo),
1268                     isInit);
1269     return;
1270   }
1271 
1272   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1273   if (Alignment)
1274     Store->setAlignment(Alignment);
1275   if (TBAAInfo) {
1276     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1277                                                       TBAAOffset);
1278     if (TBAAPath)
1279       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1280   }
1281 }
1282 
1283 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1284                                         bool isInit) {
1285   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1286                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1287                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1288                     lvalue.getTBAAOffset());
1289 }
1290 
1291 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1292 /// method emits the address of the lvalue, then loads the result as an rvalue,
1293 /// returning the rvalue.
1294 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1295   if (LV.isObjCWeak()) {
1296     // load of a __weak object.
1297     llvm::Value *AddrWeakObj = LV.getAddress();
1298     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1299                                                              AddrWeakObj));
1300   }
1301   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1302     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1303     Object = EmitObjCConsumeObject(LV.getType(), Object);
1304     return RValue::get(Object);
1305   }
1306 
1307   if (LV.isSimple()) {
1308     assert(!LV.getType()->isFunctionType());
1309 
1310     // Everything needs a load.
1311     return RValue::get(EmitLoadOfScalar(LV, Loc));
1312   }
1313 
1314   if (LV.isVectorElt()) {
1315     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1316                                               LV.isVolatileQualified());
1317     Load->setAlignment(LV.getAlignment().getQuantity());
1318     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1319                                                     "vecext"));
1320   }
1321 
1322   // If this is a reference to a subset of the elements of a vector, either
1323   // shuffle the input or extract/insert them as appropriate.
1324   if (LV.isExtVectorElt())
1325     return EmitLoadOfExtVectorElementLValue(LV);
1326 
1327   // Global Register variables always invoke intrinsics
1328   if (LV.isGlobalReg())
1329     return EmitLoadOfGlobalRegLValue(LV);
1330 
1331   assert(LV.isBitField() && "Unknown LValue type!");
1332   return EmitLoadOfBitfieldLValue(LV);
1333 }
1334 
1335 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1336   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1337 
1338   // Get the output type.
1339   llvm::Type *ResLTy = ConvertType(LV.getType());
1340 
1341   llvm::Value *Ptr = LV.getBitFieldAddr();
1342   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1343                                         "bf.load");
1344   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1345 
1346   if (Info.IsSigned) {
1347     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1348     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1349     if (HighBits)
1350       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1351     if (Info.Offset + HighBits)
1352       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1353   } else {
1354     if (Info.Offset)
1355       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1356     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1357       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1358                                                               Info.Size),
1359                               "bf.clear");
1360   }
1361   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1362 
1363   return RValue::get(Val);
1364 }
1365 
1366 // If this is a reference to a subset of the elements of a vector, create an
1367 // appropriate shufflevector.
1368 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1369   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1370                                             LV.isVolatileQualified());
1371   Load->setAlignment(LV.getAlignment().getQuantity());
1372   llvm::Value *Vec = Load;
1373 
1374   const llvm::Constant *Elts = LV.getExtVectorElts();
1375 
1376   // If the result of the expression is a non-vector type, we must be extracting
1377   // a single element.  Just codegen as an extractelement.
1378   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1379   if (!ExprVT) {
1380     unsigned InIdx = getAccessedFieldNo(0, Elts);
1381     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1382     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1383   }
1384 
1385   // Always use shuffle vector to try to retain the original program structure
1386   unsigned NumResultElts = ExprVT->getNumElements();
1387 
1388   SmallVector<llvm::Constant*, 4> Mask;
1389   for (unsigned i = 0; i != NumResultElts; ++i)
1390     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1391 
1392   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1393   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1394                                     MaskV);
1395   return RValue::get(Vec);
1396 }
1397 
1398 /// @brief Generates lvalue for partial ext_vector access.
1399 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1400   llvm::Value *VectorAddress = LV.getExtVectorAddr();
1401   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1402   QualType EQT = ExprVT->getElementType();
1403   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1404   llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
1405 
1406   llvm::Value *CastToPointerElement =
1407     Builder.CreateBitCast(VectorAddress,
1408                           VectorElementPtrToTy, "conv.ptr.element");
1409 
1410   const llvm::Constant *Elts = LV.getExtVectorElts();
1411   unsigned ix = getAccessedFieldNo(0, Elts);
1412 
1413   llvm::Value *VectorBasePtrPlusIx =
1414     Builder.CreateInBoundsGEP(CastToPointerElement,
1415                               llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
1416 
1417   return VectorBasePtrPlusIx;
1418 }
1419 
1420 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1421 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1422   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1423          "Bad type for register variable");
1424   llvm::MDNode *RegName = cast<llvm::MDNode>(
1425       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1426 
1427   // We accept integer and pointer types only
1428   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1429   llvm::Type *Ty = OrigTy;
1430   if (OrigTy->isPointerTy())
1431     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1432   llvm::Type *Types[] = { Ty };
1433 
1434   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1435   llvm::Value *Call = Builder.CreateCall(
1436       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1437   if (OrigTy->isPointerTy())
1438     Call = Builder.CreateIntToPtr(Call, OrigTy);
1439   return RValue::get(Call);
1440 }
1441 
1442 
1443 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1444 /// lvalue, where both are guaranteed to the have the same type, and that type
1445 /// is 'Ty'.
1446 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1447                                              bool isInit) {
1448   if (!Dst.isSimple()) {
1449     if (Dst.isVectorElt()) {
1450       // Read/modify/write the vector, inserting the new element.
1451       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1452                                                 Dst.isVolatileQualified());
1453       Load->setAlignment(Dst.getAlignment().getQuantity());
1454       llvm::Value *Vec = Load;
1455       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1456                                         Dst.getVectorIdx(), "vecins");
1457       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1458                                                    Dst.isVolatileQualified());
1459       Store->setAlignment(Dst.getAlignment().getQuantity());
1460       return;
1461     }
1462 
1463     // If this is an update of extended vector elements, insert them as
1464     // appropriate.
1465     if (Dst.isExtVectorElt())
1466       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1467 
1468     if (Dst.isGlobalReg())
1469       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1470 
1471     assert(Dst.isBitField() && "Unknown LValue type");
1472     return EmitStoreThroughBitfieldLValue(Src, Dst);
1473   }
1474 
1475   // There's special magic for assigning into an ARC-qualified l-value.
1476   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1477     switch (Lifetime) {
1478     case Qualifiers::OCL_None:
1479       llvm_unreachable("present but none");
1480 
1481     case Qualifiers::OCL_ExplicitNone:
1482       // nothing special
1483       break;
1484 
1485     case Qualifiers::OCL_Strong:
1486       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1487       return;
1488 
1489     case Qualifiers::OCL_Weak:
1490       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1491       return;
1492 
1493     case Qualifiers::OCL_Autoreleasing:
1494       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1495                                                      Src.getScalarVal()));
1496       // fall into the normal path
1497       break;
1498     }
1499   }
1500 
1501   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1502     // load of a __weak object.
1503     llvm::Value *LvalueDst = Dst.getAddress();
1504     llvm::Value *src = Src.getScalarVal();
1505      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1506     return;
1507   }
1508 
1509   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1510     // load of a __strong object.
1511     llvm::Value *LvalueDst = Dst.getAddress();
1512     llvm::Value *src = Src.getScalarVal();
1513     if (Dst.isObjCIvar()) {
1514       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1515       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1516       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1517       llvm::Value *dst = RHS;
1518       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1519       llvm::Value *LHS =
1520         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1521       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1522       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1523                                               BytesBetween);
1524     } else if (Dst.isGlobalObjCRef()) {
1525       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1526                                                 Dst.isThreadLocalRef());
1527     }
1528     else
1529       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1530     return;
1531   }
1532 
1533   assert(Src.isScalar() && "Can't emit an agg store with this method");
1534   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1535 }
1536 
1537 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1538                                                      llvm::Value **Result) {
1539   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1540   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1541   llvm::Value *Ptr = Dst.getBitFieldAddr();
1542 
1543   // Get the source value, truncated to the width of the bit-field.
1544   llvm::Value *SrcVal = Src.getScalarVal();
1545 
1546   // Cast the source to the storage type and shift it into place.
1547   SrcVal = Builder.CreateIntCast(SrcVal,
1548                                  Ptr->getType()->getPointerElementType(),
1549                                  /*IsSigned=*/false);
1550   llvm::Value *MaskedVal = SrcVal;
1551 
1552   // See if there are other bits in the bitfield's storage we'll need to load
1553   // and mask together with source before storing.
1554   if (Info.StorageSize != Info.Size) {
1555     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1556     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1557                                           "bf.load");
1558     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1559 
1560     // Mask the source value as needed.
1561     if (!hasBooleanRepresentation(Dst.getType()))
1562       SrcVal = Builder.CreateAnd(SrcVal,
1563                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1564                                                             Info.Size),
1565                                  "bf.value");
1566     MaskedVal = SrcVal;
1567     if (Info.Offset)
1568       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1569 
1570     // Mask out the original value.
1571     Val = Builder.CreateAnd(Val,
1572                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1573                                                      Info.Offset,
1574                                                      Info.Offset + Info.Size),
1575                             "bf.clear");
1576 
1577     // Or together the unchanged values and the source value.
1578     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1579   } else {
1580     assert(Info.Offset == 0);
1581   }
1582 
1583   // Write the new value back out.
1584   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1585                                                Dst.isVolatileQualified());
1586   Store->setAlignment(Info.StorageAlignment);
1587 
1588   // Return the new value of the bit-field, if requested.
1589   if (Result) {
1590     llvm::Value *ResultVal = MaskedVal;
1591 
1592     // Sign extend the value if needed.
1593     if (Info.IsSigned) {
1594       assert(Info.Size <= Info.StorageSize);
1595       unsigned HighBits = Info.StorageSize - Info.Size;
1596       if (HighBits) {
1597         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1598         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1599       }
1600     }
1601 
1602     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1603                                       "bf.result.cast");
1604     *Result = EmitFromMemory(ResultVal, Dst.getType());
1605   }
1606 }
1607 
1608 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1609                                                                LValue Dst) {
1610   // This access turns into a read/modify/write of the vector.  Load the input
1611   // value now.
1612   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1613                                             Dst.isVolatileQualified());
1614   Load->setAlignment(Dst.getAlignment().getQuantity());
1615   llvm::Value *Vec = Load;
1616   const llvm::Constant *Elts = Dst.getExtVectorElts();
1617 
1618   llvm::Value *SrcVal = Src.getScalarVal();
1619 
1620   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1621     unsigned NumSrcElts = VTy->getNumElements();
1622     unsigned NumDstElts =
1623        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1624     if (NumDstElts == NumSrcElts) {
1625       // Use shuffle vector is the src and destination are the same number of
1626       // elements and restore the vector mask since it is on the side it will be
1627       // stored.
1628       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1629       for (unsigned i = 0; i != NumSrcElts; ++i)
1630         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1631 
1632       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1633       Vec = Builder.CreateShuffleVector(SrcVal,
1634                                         llvm::UndefValue::get(Vec->getType()),
1635                                         MaskV);
1636     } else if (NumDstElts > NumSrcElts) {
1637       // Extended the source vector to the same length and then shuffle it
1638       // into the destination.
1639       // FIXME: since we're shuffling with undef, can we just use the indices
1640       //        into that?  This could be simpler.
1641       SmallVector<llvm::Constant*, 4> ExtMask;
1642       for (unsigned i = 0; i != NumSrcElts; ++i)
1643         ExtMask.push_back(Builder.getInt32(i));
1644       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1645       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1646       llvm::Value *ExtSrcVal =
1647         Builder.CreateShuffleVector(SrcVal,
1648                                     llvm::UndefValue::get(SrcVal->getType()),
1649                                     ExtMaskV);
1650       // build identity
1651       SmallVector<llvm::Constant*, 4> Mask;
1652       for (unsigned i = 0; i != NumDstElts; ++i)
1653         Mask.push_back(Builder.getInt32(i));
1654 
1655       // When the vector size is odd and .odd or .hi is used, the last element
1656       // of the Elts constant array will be one past the size of the vector.
1657       // Ignore the last element here, if it is greater than the mask size.
1658       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1659         NumSrcElts--;
1660 
1661       // modify when what gets shuffled in
1662       for (unsigned i = 0; i != NumSrcElts; ++i)
1663         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1664       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1665       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1666     } else {
1667       // We should never shorten the vector
1668       llvm_unreachable("unexpected shorten vector length");
1669     }
1670   } else {
1671     // If the Src is a scalar (not a vector) it must be updating one element.
1672     unsigned InIdx = getAccessedFieldNo(0, Elts);
1673     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1674     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1675   }
1676 
1677   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1678                                                Dst.isVolatileQualified());
1679   Store->setAlignment(Dst.getAlignment().getQuantity());
1680 }
1681 
1682 /// @brief Store of global named registers are always calls to intrinsics.
1683 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1684   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1685          "Bad type for register variable");
1686   llvm::MDNode *RegName = cast<llvm::MDNode>(
1687       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1688   assert(RegName && "Register LValue is not metadata");
1689 
1690   // We accept integer and pointer types only
1691   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1692   llvm::Type *Ty = OrigTy;
1693   if (OrigTy->isPointerTy())
1694     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1695   llvm::Type *Types[] = { Ty };
1696 
1697   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1698   llvm::Value *Value = Src.getScalarVal();
1699   if (OrigTy->isPointerTy())
1700     Value = Builder.CreatePtrToInt(Value, Ty);
1701   Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName),
1702                       Value);
1703 }
1704 
1705 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1706 // generating write-barries API. It is currently a global, ivar,
1707 // or neither.
1708 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1709                                  LValue &LV,
1710                                  bool IsMemberAccess=false) {
1711   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1712     return;
1713 
1714   if (isa<ObjCIvarRefExpr>(E)) {
1715     QualType ExpTy = E->getType();
1716     if (IsMemberAccess && ExpTy->isPointerType()) {
1717       // If ivar is a structure pointer, assigning to field of
1718       // this struct follows gcc's behavior and makes it a non-ivar
1719       // writer-barrier conservatively.
1720       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1721       if (ExpTy->isRecordType()) {
1722         LV.setObjCIvar(false);
1723         return;
1724       }
1725     }
1726     LV.setObjCIvar(true);
1727     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1728     LV.setBaseIvarExp(Exp->getBase());
1729     LV.setObjCArray(E->getType()->isArrayType());
1730     return;
1731   }
1732 
1733   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1734     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1735       if (VD->hasGlobalStorage()) {
1736         LV.setGlobalObjCRef(true);
1737         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1738       }
1739     }
1740     LV.setObjCArray(E->getType()->isArrayType());
1741     return;
1742   }
1743 
1744   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1745     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1746     return;
1747   }
1748 
1749   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1750     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1751     if (LV.isObjCIvar()) {
1752       // If cast is to a structure pointer, follow gcc's behavior and make it
1753       // a non-ivar write-barrier.
1754       QualType ExpTy = E->getType();
1755       if (ExpTy->isPointerType())
1756         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1757       if (ExpTy->isRecordType())
1758         LV.setObjCIvar(false);
1759     }
1760     return;
1761   }
1762 
1763   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1764     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1765     return;
1766   }
1767 
1768   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1769     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1770     return;
1771   }
1772 
1773   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1774     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1775     return;
1776   }
1777 
1778   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1779     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1780     return;
1781   }
1782 
1783   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1784     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1785     if (LV.isObjCIvar() && !LV.isObjCArray())
1786       // Using array syntax to assigning to what an ivar points to is not
1787       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1788       LV.setObjCIvar(false);
1789     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1790       // Using array syntax to assigning to what global points to is not
1791       // same as assigning to the global itself. {id *G;} G[i] = 0;
1792       LV.setGlobalObjCRef(false);
1793     return;
1794   }
1795 
1796   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1797     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1798     // We don't know if member is an 'ivar', but this flag is looked at
1799     // only in the context of LV.isObjCIvar().
1800     LV.setObjCArray(E->getType()->isArrayType());
1801     return;
1802   }
1803 }
1804 
1805 static llvm::Value *
1806 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1807                                 llvm::Value *V, llvm::Type *IRType,
1808                                 StringRef Name = StringRef()) {
1809   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1810   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1811 }
1812 
1813 static LValue EmitThreadPrivateVarDeclLValue(
1814     CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V,
1815     llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) {
1816   V = CGF.CGM.getOpenMPRuntime().getOMPAddrOfThreadPrivate(CGF, VD, V, Loc);
1817   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1818   return CGF.MakeAddrLValue(V, T, Alignment);
1819 }
1820 
1821 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1822                                       const Expr *E, const VarDecl *VD) {
1823   QualType T = E->getType();
1824 
1825   // If it's thread_local, emit a call to its wrapper function instead.
1826   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1827       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1828     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1829 
1830   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1831   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1832   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1833   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1834   LValue LV;
1835   // Emit reference to the private copy of the variable if it is an OpenMP
1836   // threadprivate variable.
1837   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1838     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment,
1839                                           E->getExprLoc());
1840   if (VD->getType()->isReferenceType()) {
1841     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1842     LI->setAlignment(Alignment.getQuantity());
1843     V = LI;
1844     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1845   } else {
1846     LV = CGF.MakeAddrLValue(V, T, Alignment);
1847   }
1848   setObjCGCLValueClass(CGF.getContext(), E, LV);
1849   return LV;
1850 }
1851 
1852 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1853                                      const Expr *E, const FunctionDecl *FD) {
1854   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1855   if (!FD->hasPrototype()) {
1856     if (const FunctionProtoType *Proto =
1857             FD->getType()->getAs<FunctionProtoType>()) {
1858       // Ugly case: for a K&R-style definition, the type of the definition
1859       // isn't the same as the type of a use.  Correct for this with a
1860       // bitcast.
1861       QualType NoProtoType =
1862           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1863       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1864       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1865     }
1866   }
1867   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1868   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1869 }
1870 
1871 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1872                                       llvm::Value *ThisValue) {
1873   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1874   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1875   return CGF.EmitLValueForField(LV, FD);
1876 }
1877 
1878 /// Named Registers are named metadata pointing to the register name
1879 /// which will be read from/written to as an argument to the intrinsic
1880 /// @llvm.read/write_register.
1881 /// So far, only the name is being passed down, but other options such as
1882 /// register type, allocation type or even optimization options could be
1883 /// passed down via the metadata node.
1884 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1885                                       CodeGenModule &CGM,
1886                                       CharUnits Alignment) {
1887   SmallString<64> Name("llvm.named.register.");
1888   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1889   assert(Asm->getLabel().size() < 64-Name.size() &&
1890       "Register name too big");
1891   Name.append(Asm->getLabel());
1892   llvm::NamedMDNode *M =
1893     CGM.getModule().getOrInsertNamedMetadata(Name);
1894   if (M->getNumOperands() == 0) {
1895     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1896                                               Asm->getLabel());
1897     llvm::Metadata *Ops[] = {Str};
1898     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1899   }
1900   return LValue::MakeGlobalReg(
1901       llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)),
1902       VD->getType(), Alignment);
1903 }
1904 
1905 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1906   const NamedDecl *ND = E->getDecl();
1907   CharUnits Alignment = getContext().getDeclAlign(ND);
1908   QualType T = E->getType();
1909 
1910   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1911     // Global Named registers access via intrinsics only
1912     if (VD->getStorageClass() == SC_Register &&
1913         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1914       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1915 
1916     // A DeclRefExpr for a reference initialized by a constant expression can
1917     // appear without being odr-used. Directly emit the constant initializer.
1918     const Expr *Init = VD->getAnyInitializer(VD);
1919     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1920         VD->isUsableInConstantExpressions(getContext()) &&
1921         VD->checkInitIsICE()) {
1922       llvm::Constant *Val =
1923         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1924       assert(Val && "failed to emit reference constant expression");
1925       // FIXME: Eventually we will want to emit vector element references.
1926       return MakeAddrLValue(Val, T, Alignment);
1927     }
1928 
1929     // Check for captured variables.
1930     if (E->refersToEnclosingVariableOrCapture()) {
1931       if (auto *FD = LambdaCaptureFields.lookup(VD))
1932         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1933       else if (CapturedStmtInfo) {
1934         if (auto *V = LocalDeclMap.lookup(VD))
1935           return MakeAddrLValue(V, T, Alignment);
1936         else
1937           return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
1938                                          CapturedStmtInfo->getContextValue());
1939       }
1940       assert(isa<BlockDecl>(CurCodeDecl));
1941       return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()),
1942                             T, Alignment);
1943     }
1944   }
1945 
1946   // FIXME: We should be able to assert this for FunctionDecls as well!
1947   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1948   // those with a valid source location.
1949   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1950           !E->getLocation().isValid()) &&
1951          "Should not use decl without marking it used!");
1952 
1953   if (ND->hasAttr<WeakRefAttr>()) {
1954     const auto *VD = cast<ValueDecl>(ND);
1955     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1956     return MakeAddrLValue(Aliasee, T, Alignment);
1957   }
1958 
1959   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1960     // Check if this is a global variable.
1961     if (VD->hasLinkage() || VD->isStaticDataMember())
1962       return EmitGlobalVarDeclLValue(*this, E, VD);
1963 
1964     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1965 
1966     llvm::Value *V = LocalDeclMap.lookup(VD);
1967     if (!V && VD->isStaticLocal())
1968       V = CGM.getOrCreateStaticVarDecl(
1969           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1970 
1971     // Check if variable is threadprivate.
1972     if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1973       return EmitThreadPrivateVarDeclLValue(
1974           *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()),
1975           Alignment, E->getExprLoc());
1976 
1977     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1978 
1979     if (isBlockVariable)
1980       V = BuildBlockByrefAddress(V, VD);
1981 
1982     LValue LV;
1983     if (VD->getType()->isReferenceType()) {
1984       llvm::LoadInst *LI = Builder.CreateLoad(V);
1985       LI->setAlignment(Alignment.getQuantity());
1986       V = LI;
1987       LV = MakeNaturalAlignAddrLValue(V, T);
1988     } else {
1989       LV = MakeAddrLValue(V, T, Alignment);
1990     }
1991 
1992     bool isLocalStorage = VD->hasLocalStorage();
1993 
1994     bool NonGCable = isLocalStorage &&
1995                      !VD->getType()->isReferenceType() &&
1996                      !isBlockVariable;
1997     if (NonGCable) {
1998       LV.getQuals().removeObjCGCAttr();
1999       LV.setNonGC(true);
2000     }
2001 
2002     bool isImpreciseLifetime =
2003       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2004     if (isImpreciseLifetime)
2005       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2006     setObjCGCLValueClass(getContext(), E, LV);
2007     return LV;
2008   }
2009 
2010   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2011     return EmitFunctionDeclLValue(*this, E, FD);
2012 
2013   llvm_unreachable("Unhandled DeclRefExpr");
2014 }
2015 
2016 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2017   // __extension__ doesn't affect lvalue-ness.
2018   if (E->getOpcode() == UO_Extension)
2019     return EmitLValue(E->getSubExpr());
2020 
2021   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2022   switch (E->getOpcode()) {
2023   default: llvm_unreachable("Unknown unary operator lvalue!");
2024   case UO_Deref: {
2025     QualType T = E->getSubExpr()->getType()->getPointeeType();
2026     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2027 
2028     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
2029     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2030 
2031     // We should not generate __weak write barrier on indirect reference
2032     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2033     // But, we continue to generate __strong write barrier on indirect write
2034     // into a pointer to object.
2035     if (getLangOpts().ObjC1 &&
2036         getLangOpts().getGC() != LangOptions::NonGC &&
2037         LV.isObjCWeak())
2038       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2039     return LV;
2040   }
2041   case UO_Real:
2042   case UO_Imag: {
2043     LValue LV = EmitLValue(E->getSubExpr());
2044     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2045     llvm::Value *Addr = LV.getAddress();
2046 
2047     // __real is valid on scalars.  This is a faster way of testing that.
2048     // __imag can only produce an rvalue on scalars.
2049     if (E->getOpcode() == UO_Real &&
2050         !cast<llvm::PointerType>(Addr->getType())
2051            ->getElementType()->isStructTy()) {
2052       assert(E->getSubExpr()->getType()->isArithmeticType());
2053       return LV;
2054     }
2055 
2056     assert(E->getSubExpr()->getType()->isAnyComplexType());
2057 
2058     unsigned Idx = E->getOpcode() == UO_Imag;
2059     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
2060                                                   Idx, "idx"),
2061                           ExprTy);
2062   }
2063   case UO_PreInc:
2064   case UO_PreDec: {
2065     LValue LV = EmitLValue(E->getSubExpr());
2066     bool isInc = E->getOpcode() == UO_PreInc;
2067 
2068     if (E->getType()->isAnyComplexType())
2069       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2070     else
2071       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2072     return LV;
2073   }
2074   }
2075 }
2076 
2077 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2078   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2079                         E->getType());
2080 }
2081 
2082 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2083   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2084                         E->getType());
2085 }
2086 
2087 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2088   auto SL = E->getFunctionName();
2089   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2090   StringRef FnName = CurFn->getName();
2091   if (FnName.startswith("\01"))
2092     FnName = FnName.substr(1);
2093   StringRef NameItems[] = {
2094       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2095   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2096   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2097     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1);
2098     return MakeAddrLValue(C, E->getType());
2099   }
2100   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2101   return MakeAddrLValue(C, E->getType());
2102 }
2103 
2104 /// Emit a type description suitable for use by a runtime sanitizer library. The
2105 /// format of a type descriptor is
2106 ///
2107 /// \code
2108 ///   { i16 TypeKind, i16 TypeInfo }
2109 /// \endcode
2110 ///
2111 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2112 /// integer, 1 for a floating point value, and -1 for anything else.
2113 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2114   // Only emit each type's descriptor once.
2115   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2116     return C;
2117 
2118   uint16_t TypeKind = -1;
2119   uint16_t TypeInfo = 0;
2120 
2121   if (T->isIntegerType()) {
2122     TypeKind = 0;
2123     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2124                (T->isSignedIntegerType() ? 1 : 0);
2125   } else if (T->isFloatingType()) {
2126     TypeKind = 1;
2127     TypeInfo = getContext().getTypeSize(T);
2128   }
2129 
2130   // Format the type name as if for a diagnostic, including quotes and
2131   // optionally an 'aka'.
2132   SmallString<32> Buffer;
2133   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2134                                     (intptr_t)T.getAsOpaquePtr(),
2135                                     StringRef(), StringRef(), None, Buffer,
2136                                     None);
2137 
2138   llvm::Constant *Components[] = {
2139     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2140     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2141   };
2142   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2143 
2144   auto *GV = new llvm::GlobalVariable(
2145       CGM.getModule(), Descriptor->getType(),
2146       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2147   GV->setUnnamedAddr(true);
2148   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2149 
2150   // Remember the descriptor for this type.
2151   CGM.setTypeDescriptorInMap(T, GV);
2152 
2153   return GV;
2154 }
2155 
2156 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2157   llvm::Type *TargetTy = IntPtrTy;
2158 
2159   // Floating-point types which fit into intptr_t are bitcast to integers
2160   // and then passed directly (after zero-extension, if necessary).
2161   if (V->getType()->isFloatingPointTy()) {
2162     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2163     if (Bits <= TargetTy->getIntegerBitWidth())
2164       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2165                                                          Bits));
2166   }
2167 
2168   // Integers which fit in intptr_t are zero-extended and passed directly.
2169   if (V->getType()->isIntegerTy() &&
2170       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2171     return Builder.CreateZExt(V, TargetTy);
2172 
2173   // Pointers are passed directly, everything else is passed by address.
2174   if (!V->getType()->isPointerTy()) {
2175     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2176     Builder.CreateStore(V, Ptr);
2177     V = Ptr;
2178   }
2179   return Builder.CreatePtrToInt(V, TargetTy);
2180 }
2181 
2182 /// \brief Emit a representation of a SourceLocation for passing to a handler
2183 /// in a sanitizer runtime library. The format for this data is:
2184 /// \code
2185 ///   struct SourceLocation {
2186 ///     const char *Filename;
2187 ///     int32_t Line, Column;
2188 ///   };
2189 /// \endcode
2190 /// For an invalid SourceLocation, the Filename pointer is null.
2191 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2192   llvm::Constant *Filename;
2193   int Line, Column;
2194 
2195   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2196   if (PLoc.isValid()) {
2197     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2198     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
2199     Filename = FilenameGV;
2200     Line = PLoc.getLine();
2201     Column = PLoc.getColumn();
2202   } else {
2203     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2204     Line = Column = 0;
2205   }
2206 
2207   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2208                             Builder.getInt32(Column)};
2209 
2210   return llvm::ConstantStruct::getAnon(Data);
2211 }
2212 
2213 namespace {
2214 /// \brief Specify under what conditions this check can be recovered
2215 enum class CheckRecoverableKind {
2216   /// Always terminate program execution if this check fails.
2217   Unrecoverable,
2218   /// Check supports recovering, runtime has both fatal (noreturn) and
2219   /// non-fatal handlers for this check.
2220   Recoverable,
2221   /// Runtime conditionally aborts, always need to support recovery.
2222   AlwaysRecoverable
2223 };
2224 }
2225 
2226 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) {
2227   switch (Kind) {
2228   case SanitizerKind::Vptr:
2229     return CheckRecoverableKind::AlwaysRecoverable;
2230   case SanitizerKind::Return:
2231   case SanitizerKind::Unreachable:
2232     return CheckRecoverableKind::Unrecoverable;
2233   default:
2234     return CheckRecoverableKind::Recoverable;
2235   }
2236 }
2237 
2238 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2239                                  llvm::FunctionType *FnType,
2240                                  ArrayRef<llvm::Value *> FnArgs,
2241                                  StringRef CheckName,
2242                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2243                                  llvm::BasicBlock *ContBB) {
2244   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2245   bool NeedsAbortSuffix =
2246       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2247   std::string FnName = ("__ubsan_handle_" + CheckName +
2248                         (NeedsAbortSuffix ? "_abort" : "")).str();
2249   bool MayReturn =
2250       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2251 
2252   llvm::AttrBuilder B;
2253   if (!MayReturn) {
2254     B.addAttribute(llvm::Attribute::NoReturn)
2255         .addAttribute(llvm::Attribute::NoUnwind);
2256   }
2257   B.addAttribute(llvm::Attribute::UWTable);
2258 
2259   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2260       FnType, FnName,
2261       llvm::AttributeSet::get(CGF.getLLVMContext(),
2262                               llvm::AttributeSet::FunctionIndex, B));
2263   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2264   if (!MayReturn) {
2265     HandlerCall->setDoesNotReturn();
2266     CGF.Builder.CreateUnreachable();
2267   } else {
2268     CGF.Builder.CreateBr(ContBB);
2269   }
2270 }
2271 
2272 void CodeGenFunction::EmitCheck(
2273     ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2274     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2275     ArrayRef<llvm::Value *> DynamicArgs) {
2276   assert(IsSanitizerScope);
2277   assert(Checked.size() > 0);
2278 
2279   llvm::Value *FatalCond = nullptr;
2280   llvm::Value *RecoverableCond = nullptr;
2281   for (int i = 0, n = Checked.size(); i < n; ++i) {
2282     llvm::Value *Check = Checked[i].first;
2283     llvm::Value *&Cond =
2284         CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2285             ? RecoverableCond
2286             : FatalCond;
2287     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2288   }
2289 
2290   llvm::Value *JointCond;
2291   if (FatalCond && RecoverableCond)
2292     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2293   else
2294     JointCond = FatalCond ? FatalCond : RecoverableCond;
2295   assert(JointCond);
2296 
2297   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2298   assert(SanOpts.has(Checked[0].second));
2299 #ifndef NDEBUG
2300   for (int i = 1, n = Checked.size(); i < n; ++i) {
2301     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2302            "All recoverable kinds in a single check must be same!");
2303     assert(SanOpts.has(Checked[i].second));
2304   }
2305 #endif
2306 
2307   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2308     assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable &&
2309            "Runtime call required for AlwaysRecoverable kind!");
2310     // Assume that -fsanitize-undefined-trap-on-error overrides
2311     // -fsanitize-recover= options, as we can only print meaningful error
2312     // message and recover if we have a runtime support.
2313     return EmitTrapCheck(JointCond);
2314   }
2315 
2316   llvm::BasicBlock *Cont = createBasicBlock("cont");
2317   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2318   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2319   // Give hint that we very much don't expect to execute the handler
2320   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2321   llvm::MDBuilder MDHelper(getLLVMContext());
2322   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2323   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2324   EmitBlock(Handlers);
2325 
2326   // Emit handler arguments and create handler function type.
2327   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2328   auto *InfoPtr =
2329       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2330                                llvm::GlobalVariable::PrivateLinkage, Info);
2331   InfoPtr->setUnnamedAddr(true);
2332   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2333 
2334   SmallVector<llvm::Value *, 4> Args;
2335   SmallVector<llvm::Type *, 4> ArgTypes;
2336   Args.reserve(DynamicArgs.size() + 1);
2337   ArgTypes.reserve(DynamicArgs.size() + 1);
2338 
2339   // Handler functions take an i8* pointing to the (handler-specific) static
2340   // information block, followed by a sequence of intptr_t arguments
2341   // representing operand values.
2342   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2343   ArgTypes.push_back(Int8PtrTy);
2344   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2345     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2346     ArgTypes.push_back(IntPtrTy);
2347   }
2348 
2349   llvm::FunctionType *FnType =
2350     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2351 
2352   if (!FatalCond || !RecoverableCond) {
2353     // Simple case: we need to generate a single handler call, either
2354     // fatal, or non-fatal.
2355     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2356                          (FatalCond != nullptr), Cont);
2357   } else {
2358     // Emit two handler calls: first one for set of unrecoverable checks,
2359     // another one for recoverable.
2360     llvm::BasicBlock *NonFatalHandlerBB =
2361         createBasicBlock("non_fatal." + CheckName);
2362     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2363     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2364     EmitBlock(FatalHandlerBB);
2365     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2366                          NonFatalHandlerBB);
2367     EmitBlock(NonFatalHandlerBB);
2368     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2369                          Cont);
2370   }
2371 
2372   EmitBlock(Cont);
2373 }
2374 
2375 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2376   llvm::BasicBlock *Cont = createBasicBlock("cont");
2377 
2378   // If we're optimizing, collapse all calls to trap down to just one per
2379   // function to save on code size.
2380   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2381     TrapBB = createBasicBlock("trap");
2382     Builder.CreateCondBr(Checked, Cont, TrapBB);
2383     EmitBlock(TrapBB);
2384     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2385     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2386     TrapCall->setDoesNotReturn();
2387     TrapCall->setDoesNotThrow();
2388     Builder.CreateUnreachable();
2389   } else {
2390     Builder.CreateCondBr(Checked, Cont, TrapBB);
2391   }
2392 
2393   EmitBlock(Cont);
2394 }
2395 
2396 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2397 /// array to pointer, return the array subexpression.
2398 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2399   // If this isn't just an array->pointer decay, bail out.
2400   const auto *CE = dyn_cast<CastExpr>(E);
2401   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2402     return nullptr;
2403 
2404   // If this is a decay from variable width array, bail out.
2405   const Expr *SubExpr = CE->getSubExpr();
2406   if (SubExpr->getType()->isVariableArrayType())
2407     return nullptr;
2408 
2409   return SubExpr;
2410 }
2411 
2412 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2413                                                bool Accessed) {
2414   // The index must always be an integer, which is not an aggregate.  Emit it.
2415   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2416   QualType IdxTy  = E->getIdx()->getType();
2417   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2418 
2419   if (SanOpts.has(SanitizerKind::ArrayBounds))
2420     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2421 
2422   // If the base is a vector type, then we are forming a vector element lvalue
2423   // with this subscript.
2424   if (E->getBase()->getType()->isVectorType() &&
2425       !isa<ExtVectorElementExpr>(E->getBase())) {
2426     // Emit the vector as an lvalue to get its address.
2427     LValue LHS = EmitLValue(E->getBase());
2428     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2429     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2430                                  E->getBase()->getType(), LHS.getAlignment());
2431   }
2432 
2433   // Extend or truncate the index type to 32 or 64-bits.
2434   if (Idx->getType() != IntPtrTy)
2435     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2436 
2437   // We know that the pointer points to a type of the correct size, unless the
2438   // size is a VLA or Objective-C interface.
2439   llvm::Value *Address = nullptr;
2440   CharUnits ArrayAlignment;
2441   if (isa<ExtVectorElementExpr>(E->getBase())) {
2442     LValue LV = EmitLValue(E->getBase());
2443     Address = EmitExtVectorElementLValue(LV);
2444     Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2445     const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2446     QualType EQT = ExprVT->getElementType();
2447     return MakeAddrLValue(Address, EQT,
2448                           getContext().getTypeAlignInChars(EQT));
2449   }
2450   else if (const VariableArrayType *vla =
2451            getContext().getAsVariableArrayType(E->getType())) {
2452     // The base must be a pointer, which is not an aggregate.  Emit
2453     // it.  It needs to be emitted first in case it's what captures
2454     // the VLA bounds.
2455     Address = EmitScalarExpr(E->getBase());
2456 
2457     // The element count here is the total number of non-VLA elements.
2458     llvm::Value *numElements = getVLASize(vla).first;
2459 
2460     // Effectively, the multiply by the VLA size is part of the GEP.
2461     // GEP indexes are signed, and scaling an index isn't permitted to
2462     // signed-overflow, so we use the same semantics for our explicit
2463     // multiply.  We suppress this if overflow is not undefined behavior.
2464     if (getLangOpts().isSignedOverflowDefined()) {
2465       Idx = Builder.CreateMul(Idx, numElements);
2466       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2467     } else {
2468       Idx = Builder.CreateNSWMul(Idx, numElements);
2469       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2470     }
2471   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2472     // Indexing over an interface, as in "NSString *P; P[4];"
2473     llvm::Value *InterfaceSize =
2474       llvm::ConstantInt::get(Idx->getType(),
2475           getContext().getTypeSizeInChars(OIT).getQuantity());
2476 
2477     Idx = Builder.CreateMul(Idx, InterfaceSize);
2478 
2479     // The base must be a pointer, which is not an aggregate.  Emit it.
2480     llvm::Value *Base = EmitScalarExpr(E->getBase());
2481     Address = EmitCastToVoidPtr(Base);
2482     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2483     Address = Builder.CreateBitCast(Address, Base->getType());
2484   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2485     // If this is A[i] where A is an array, the frontend will have decayed the
2486     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2487     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2488     // "gep x, i" here.  Emit one "gep A, 0, i".
2489     assert(Array->getType()->isArrayType() &&
2490            "Array to pointer decay must have array source type!");
2491     LValue ArrayLV;
2492     // For simple multidimensional array indexing, set the 'accessed' flag for
2493     // better bounds-checking of the base expression.
2494     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2495       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2496     else
2497       ArrayLV = EmitLValue(Array);
2498     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2499     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2500     llvm::Value *Args[] = { Zero, Idx };
2501 
2502     // Propagate the alignment from the array itself to the result.
2503     ArrayAlignment = ArrayLV.getAlignment();
2504 
2505     if (getLangOpts().isSignedOverflowDefined())
2506       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2507     else
2508       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2509   } else {
2510     // The base must be a pointer, which is not an aggregate.  Emit it.
2511     llvm::Value *Base = EmitScalarExpr(E->getBase());
2512     if (getLangOpts().isSignedOverflowDefined())
2513       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2514     else
2515       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2516   }
2517 
2518   QualType T = E->getBase()->getType()->getPointeeType();
2519   assert(!T.isNull() &&
2520          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2521 
2522 
2523   // Limit the alignment to that of the result type.
2524   LValue LV;
2525   if (!ArrayAlignment.isZero()) {
2526     CharUnits Align = getContext().getTypeAlignInChars(T);
2527     ArrayAlignment = std::min(Align, ArrayAlignment);
2528     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2529   } else {
2530     LV = MakeNaturalAlignAddrLValue(Address, T);
2531   }
2532 
2533   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2534 
2535   if (getLangOpts().ObjC1 &&
2536       getLangOpts().getGC() != LangOptions::NonGC) {
2537     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2538     setObjCGCLValueClass(getContext(), E, LV);
2539   }
2540   return LV;
2541 }
2542 
2543 static
2544 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2545                                        SmallVectorImpl<unsigned> &Elts) {
2546   SmallVector<llvm::Constant*, 4> CElts;
2547   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2548     CElts.push_back(Builder.getInt32(Elts[i]));
2549 
2550   return llvm::ConstantVector::get(CElts);
2551 }
2552 
2553 LValue CodeGenFunction::
2554 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2555   // Emit the base vector as an l-value.
2556   LValue Base;
2557 
2558   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2559   if (E->isArrow()) {
2560     // If it is a pointer to a vector, emit the address and form an lvalue with
2561     // it.
2562     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2563     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2564     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2565     Base.getQuals().removeObjCGCAttr();
2566   } else if (E->getBase()->isGLValue()) {
2567     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2568     // emit the base as an lvalue.
2569     assert(E->getBase()->getType()->isVectorType());
2570     Base = EmitLValue(E->getBase());
2571   } else {
2572     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2573     assert(E->getBase()->getType()->isVectorType() &&
2574            "Result must be a vector");
2575     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2576 
2577     // Store the vector to memory (because LValue wants an address).
2578     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2579     Builder.CreateStore(Vec, VecMem);
2580     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2581   }
2582 
2583   QualType type =
2584     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2585 
2586   // Encode the element access list into a vector of unsigned indices.
2587   SmallVector<unsigned, 4> Indices;
2588   E->getEncodedElementAccess(Indices);
2589 
2590   if (Base.isSimple()) {
2591     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2592     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2593                                     Base.getAlignment());
2594   }
2595   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2596 
2597   llvm::Constant *BaseElts = Base.getExtVectorElts();
2598   SmallVector<llvm::Constant *, 4> CElts;
2599 
2600   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2601     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2602   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2603   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2604                                   Base.getAlignment());
2605 }
2606 
2607 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2608   Expr *BaseExpr = E->getBase();
2609 
2610   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2611   LValue BaseLV;
2612   if (E->isArrow()) {
2613     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2614     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2615     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2616     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2617   } else
2618     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2619 
2620   NamedDecl *ND = E->getMemberDecl();
2621   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2622     LValue LV = EmitLValueForField(BaseLV, Field);
2623     setObjCGCLValueClass(getContext(), E, LV);
2624     return LV;
2625   }
2626 
2627   if (auto *VD = dyn_cast<VarDecl>(ND))
2628     return EmitGlobalVarDeclLValue(*this, E, VD);
2629 
2630   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2631     return EmitFunctionDeclLValue(*this, E, FD);
2632 
2633   llvm_unreachable("Unhandled member declaration!");
2634 }
2635 
2636 /// Given that we are currently emitting a lambda, emit an l-value for
2637 /// one of its members.
2638 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2639   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2640   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2641   QualType LambdaTagType =
2642     getContext().getTagDeclType(Field->getParent());
2643   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2644   return EmitLValueForField(LambdaLV, Field);
2645 }
2646 
2647 LValue CodeGenFunction::EmitLValueForField(LValue base,
2648                                            const FieldDecl *field) {
2649   if (field->isBitField()) {
2650     const CGRecordLayout &RL =
2651       CGM.getTypes().getCGRecordLayout(field->getParent());
2652     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2653     llvm::Value *Addr = base.getAddress();
2654     unsigned Idx = RL.getLLVMFieldNo(field);
2655     if (Idx != 0)
2656       // For structs, we GEP to the field that the record layout suggests.
2657       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2658     // Get the access type.
2659     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2660       getLLVMContext(), Info.StorageSize,
2661       CGM.getContext().getTargetAddressSpace(base.getType()));
2662     if (Addr->getType() != PtrTy)
2663       Addr = Builder.CreateBitCast(Addr, PtrTy);
2664 
2665     QualType fieldType =
2666       field->getType().withCVRQualifiers(base.getVRQualifiers());
2667     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2668   }
2669 
2670   const RecordDecl *rec = field->getParent();
2671   QualType type = field->getType();
2672   CharUnits alignment = getContext().getDeclAlign(field);
2673 
2674   // FIXME: It should be impossible to have an LValue without alignment for a
2675   // complete type.
2676   if (!base.getAlignment().isZero())
2677     alignment = std::min(alignment, base.getAlignment());
2678 
2679   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2680 
2681   llvm::Value *addr = base.getAddress();
2682   unsigned cvr = base.getVRQualifiers();
2683   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2684   if (rec->isUnion()) {
2685     // For unions, there is no pointer adjustment.
2686     assert(!type->isReferenceType() && "union has reference member");
2687     // TODO: handle path-aware TBAA for union.
2688     TBAAPath = false;
2689   } else {
2690     // For structs, we GEP to the field that the record layout suggests.
2691     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2692     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2693 
2694     // If this is a reference field, load the reference right now.
2695     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2696       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2697       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2698       load->setAlignment(alignment.getQuantity());
2699 
2700       // Loading the reference will disable path-aware TBAA.
2701       TBAAPath = false;
2702       if (CGM.shouldUseTBAA()) {
2703         llvm::MDNode *tbaa;
2704         if (mayAlias)
2705           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2706         else
2707           tbaa = CGM.getTBAAInfo(type);
2708         if (tbaa)
2709           CGM.DecorateInstruction(load, tbaa);
2710       }
2711 
2712       addr = load;
2713       mayAlias = false;
2714       type = refType->getPointeeType();
2715       if (type->isIncompleteType())
2716         alignment = CharUnits();
2717       else
2718         alignment = getContext().getTypeAlignInChars(type);
2719       cvr = 0; // qualifiers don't recursively apply to referencee
2720     }
2721   }
2722 
2723   // Make sure that the address is pointing to the right type.  This is critical
2724   // for both unions and structs.  A union needs a bitcast, a struct element
2725   // will need a bitcast if the LLVM type laid out doesn't match the desired
2726   // type.
2727   addr = EmitBitCastOfLValueToProperType(*this, addr,
2728                                          CGM.getTypes().ConvertTypeForMem(type),
2729                                          field->getName());
2730 
2731   if (field->hasAttr<AnnotateAttr>())
2732     addr = EmitFieldAnnotations(field, addr);
2733 
2734   LValue LV = MakeAddrLValue(addr, type, alignment);
2735   LV.getQuals().addCVRQualifiers(cvr);
2736   if (TBAAPath) {
2737     const ASTRecordLayout &Layout =
2738         getContext().getASTRecordLayout(field->getParent());
2739     // Set the base type to be the base type of the base LValue and
2740     // update offset to be relative to the base type.
2741     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2742     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2743                      Layout.getFieldOffset(field->getFieldIndex()) /
2744                                            getContext().getCharWidth());
2745   }
2746 
2747   // __weak attribute on a field is ignored.
2748   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2749     LV.getQuals().removeObjCGCAttr();
2750 
2751   // Fields of may_alias structs act like 'char' for TBAA purposes.
2752   // FIXME: this should get propagated down through anonymous structs
2753   // and unions.
2754   if (mayAlias && LV.getTBAAInfo())
2755     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2756 
2757   return LV;
2758 }
2759 
2760 LValue
2761 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2762                                                   const FieldDecl *Field) {
2763   QualType FieldType = Field->getType();
2764 
2765   if (!FieldType->isReferenceType())
2766     return EmitLValueForField(Base, Field);
2767 
2768   const CGRecordLayout &RL =
2769     CGM.getTypes().getCGRecordLayout(Field->getParent());
2770   unsigned idx = RL.getLLVMFieldNo(Field);
2771   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2772   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2773 
2774   // Make sure that the address is pointing to the right type.  This is critical
2775   // for both unions and structs.  A union needs a bitcast, a struct element
2776   // will need a bitcast if the LLVM type laid out doesn't match the desired
2777   // type.
2778   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2779   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2780 
2781   CharUnits Alignment = getContext().getDeclAlign(Field);
2782 
2783   // FIXME: It should be impossible to have an LValue without alignment for a
2784   // complete type.
2785   if (!Base.getAlignment().isZero())
2786     Alignment = std::min(Alignment, Base.getAlignment());
2787 
2788   return MakeAddrLValue(V, FieldType, Alignment);
2789 }
2790 
2791 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2792   if (E->isFileScope()) {
2793     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2794     return MakeAddrLValue(GlobalPtr, E->getType());
2795   }
2796   if (E->getType()->isVariablyModifiedType())
2797     // make sure to emit the VLA size.
2798     EmitVariablyModifiedType(E->getType());
2799 
2800   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2801   const Expr *InitExpr = E->getInitializer();
2802   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2803 
2804   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2805                    /*Init*/ true);
2806 
2807   return Result;
2808 }
2809 
2810 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2811   if (!E->isGLValue())
2812     // Initializing an aggregate temporary in C++11: T{...}.
2813     return EmitAggExprToLValue(E);
2814 
2815   // An lvalue initializer list must be initializing a reference.
2816   assert(E->getNumInits() == 1 && "reference init with multiple values");
2817   return EmitLValue(E->getInit(0));
2818 }
2819 
2820 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2821 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2822 /// LValue is returned and the current block has been terminated.
2823 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2824                                                     const Expr *Operand) {
2825   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2826     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2827     return None;
2828   }
2829 
2830   return CGF.EmitLValue(Operand);
2831 }
2832 
2833 LValue CodeGenFunction::
2834 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2835   if (!expr->isGLValue()) {
2836     // ?: here should be an aggregate.
2837     assert(hasAggregateEvaluationKind(expr->getType()) &&
2838            "Unexpected conditional operator!");
2839     return EmitAggExprToLValue(expr);
2840   }
2841 
2842   OpaqueValueMapping binding(*this, expr);
2843   RegionCounter Cnt = getPGORegionCounter(expr);
2844 
2845   const Expr *condExpr = expr->getCond();
2846   bool CondExprBool;
2847   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2848     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2849     if (!CondExprBool) std::swap(live, dead);
2850 
2851     if (!ContainsLabel(dead)) {
2852       // If the true case is live, we need to track its region.
2853       if (CondExprBool)
2854         Cnt.beginRegion(Builder);
2855       return EmitLValue(live);
2856     }
2857   }
2858 
2859   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2860   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2861   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2862 
2863   ConditionalEvaluation eval(*this);
2864   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2865 
2866   // Any temporaries created here are conditional.
2867   EmitBlock(lhsBlock);
2868   Cnt.beginRegion(Builder);
2869   eval.begin(*this);
2870   Optional<LValue> lhs =
2871       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2872   eval.end(*this);
2873 
2874   if (lhs && !lhs->isSimple())
2875     return EmitUnsupportedLValue(expr, "conditional operator");
2876 
2877   lhsBlock = Builder.GetInsertBlock();
2878   if (lhs)
2879     Builder.CreateBr(contBlock);
2880 
2881   // Any temporaries created here are conditional.
2882   EmitBlock(rhsBlock);
2883   eval.begin(*this);
2884   Optional<LValue> rhs =
2885       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2886   eval.end(*this);
2887   if (rhs && !rhs->isSimple())
2888     return EmitUnsupportedLValue(expr, "conditional operator");
2889   rhsBlock = Builder.GetInsertBlock();
2890 
2891   EmitBlock(contBlock);
2892 
2893   if (lhs && rhs) {
2894     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2895                                            2, "cond-lvalue");
2896     phi->addIncoming(lhs->getAddress(), lhsBlock);
2897     phi->addIncoming(rhs->getAddress(), rhsBlock);
2898     return MakeAddrLValue(phi, expr->getType());
2899   } else {
2900     assert((lhs || rhs) &&
2901            "both operands of glvalue conditional are throw-expressions?");
2902     return lhs ? *lhs : *rhs;
2903   }
2904 }
2905 
2906 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2907 /// type. If the cast is to a reference, we can have the usual lvalue result,
2908 /// otherwise if a cast is needed by the code generator in an lvalue context,
2909 /// then it must mean that we need the address of an aggregate in order to
2910 /// access one of its members.  This can happen for all the reasons that casts
2911 /// are permitted with aggregate result, including noop aggregate casts, and
2912 /// cast from scalar to union.
2913 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2914   switch (E->getCastKind()) {
2915   case CK_ToVoid:
2916   case CK_BitCast:
2917   case CK_ArrayToPointerDecay:
2918   case CK_FunctionToPointerDecay:
2919   case CK_NullToMemberPointer:
2920   case CK_NullToPointer:
2921   case CK_IntegralToPointer:
2922   case CK_PointerToIntegral:
2923   case CK_PointerToBoolean:
2924   case CK_VectorSplat:
2925   case CK_IntegralCast:
2926   case CK_IntegralToBoolean:
2927   case CK_IntegralToFloating:
2928   case CK_FloatingToIntegral:
2929   case CK_FloatingToBoolean:
2930   case CK_FloatingCast:
2931   case CK_FloatingRealToComplex:
2932   case CK_FloatingComplexToReal:
2933   case CK_FloatingComplexToBoolean:
2934   case CK_FloatingComplexCast:
2935   case CK_FloatingComplexToIntegralComplex:
2936   case CK_IntegralRealToComplex:
2937   case CK_IntegralComplexToReal:
2938   case CK_IntegralComplexToBoolean:
2939   case CK_IntegralComplexCast:
2940   case CK_IntegralComplexToFloatingComplex:
2941   case CK_DerivedToBaseMemberPointer:
2942   case CK_BaseToDerivedMemberPointer:
2943   case CK_MemberPointerToBoolean:
2944   case CK_ReinterpretMemberPointer:
2945   case CK_AnyPointerToBlockPointerCast:
2946   case CK_ARCProduceObject:
2947   case CK_ARCConsumeObject:
2948   case CK_ARCReclaimReturnedObject:
2949   case CK_ARCExtendBlockObject:
2950   case CK_CopyAndAutoreleaseBlockObject:
2951   case CK_AddressSpaceConversion:
2952     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2953 
2954   case CK_Dependent:
2955     llvm_unreachable("dependent cast kind in IR gen!");
2956 
2957   case CK_BuiltinFnToFnPtr:
2958     llvm_unreachable("builtin functions are handled elsewhere");
2959 
2960   // These are never l-values; just use the aggregate emission code.
2961   case CK_NonAtomicToAtomic:
2962   case CK_AtomicToNonAtomic:
2963     return EmitAggExprToLValue(E);
2964 
2965   case CK_Dynamic: {
2966     LValue LV = EmitLValue(E->getSubExpr());
2967     llvm::Value *V = LV.getAddress();
2968     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2969     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2970   }
2971 
2972   case CK_ConstructorConversion:
2973   case CK_UserDefinedConversion:
2974   case CK_CPointerToObjCPointerCast:
2975   case CK_BlockPointerToObjCPointerCast:
2976   case CK_NoOp:
2977   case CK_LValueToRValue:
2978     return EmitLValue(E->getSubExpr());
2979 
2980   case CK_UncheckedDerivedToBase:
2981   case CK_DerivedToBase: {
2982     const RecordType *DerivedClassTy =
2983       E->getSubExpr()->getType()->getAs<RecordType>();
2984     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2985 
2986     LValue LV = EmitLValue(E->getSubExpr());
2987     llvm::Value *This = LV.getAddress();
2988 
2989     // Perform the derived-to-base conversion
2990     llvm::Value *Base = GetAddressOfBaseClass(
2991         This, DerivedClassDecl, E->path_begin(), E->path_end(),
2992         /*NullCheckValue=*/false, E->getExprLoc());
2993 
2994     return MakeAddrLValue(Base, E->getType());
2995   }
2996   case CK_ToUnion:
2997     return EmitAggExprToLValue(E);
2998   case CK_BaseToDerived: {
2999     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3000     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3001 
3002     LValue LV = EmitLValue(E->getSubExpr());
3003 
3004     // Perform the base-to-derived conversion
3005     llvm::Value *Derived =
3006       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3007                                E->path_begin(), E->path_end(),
3008                                /*NullCheckValue=*/false);
3009 
3010     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3011     // performed and the object is not of the derived type.
3012     if (sanitizePerformTypeCheck())
3013       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3014                     Derived, E->getType());
3015 
3016     return MakeAddrLValue(Derived, E->getType());
3017   }
3018   case CK_LValueBitCast: {
3019     // This must be a reinterpret_cast (or c-style equivalent).
3020     const auto *CE = cast<ExplicitCastExpr>(E);
3021 
3022     LValue LV = EmitLValue(E->getSubExpr());
3023     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3024                                            ConvertType(CE->getTypeAsWritten()));
3025     return MakeAddrLValue(V, E->getType());
3026   }
3027   case CK_ObjCObjectLValueCast: {
3028     LValue LV = EmitLValue(E->getSubExpr());
3029     QualType ToType = getContext().getLValueReferenceType(E->getType());
3030     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3031                                            ConvertType(ToType));
3032     return MakeAddrLValue(V, E->getType());
3033   }
3034   case CK_ZeroToOCLEvent:
3035     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3036   }
3037 
3038   llvm_unreachable("Unhandled lvalue cast kind?");
3039 }
3040 
3041 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3042   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3043   return getOpaqueLValueMapping(e);
3044 }
3045 
3046 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3047                                            const FieldDecl *FD,
3048                                            SourceLocation Loc) {
3049   QualType FT = FD->getType();
3050   LValue FieldLV = EmitLValueForField(LV, FD);
3051   switch (getEvaluationKind(FT)) {
3052   case TEK_Complex:
3053     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3054   case TEK_Aggregate:
3055     return FieldLV.asAggregateRValue();
3056   case TEK_Scalar:
3057     return EmitLoadOfLValue(FieldLV, Loc);
3058   }
3059   llvm_unreachable("bad evaluation kind");
3060 }
3061 
3062 //===--------------------------------------------------------------------===//
3063 //                             Expression Emission
3064 //===--------------------------------------------------------------------===//
3065 
3066 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3067                                      ReturnValueSlot ReturnValue) {
3068   // Builtins never have block type.
3069   if (E->getCallee()->getType()->isBlockPointerType())
3070     return EmitBlockCallExpr(E, ReturnValue);
3071 
3072   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3073     return EmitCXXMemberCallExpr(CE, ReturnValue);
3074 
3075   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3076     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3077 
3078   const Decl *TargetDecl = E->getCalleeDecl();
3079   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3080     if (unsigned builtinID = FD->getBuiltinID())
3081       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3082   }
3083 
3084   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3085     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3086       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3087 
3088   if (const auto *PseudoDtor =
3089           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3090     QualType DestroyedType = PseudoDtor->getDestroyedType();
3091     if (getLangOpts().ObjCAutoRefCount &&
3092         DestroyedType->isObjCLifetimeType() &&
3093         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3094          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3095       // Automatic Reference Counting:
3096       //   If the pseudo-expression names a retainable object with weak or
3097       //   strong lifetime, the object shall be released.
3098       Expr *BaseExpr = PseudoDtor->getBase();
3099       llvm::Value *BaseValue = nullptr;
3100       Qualifiers BaseQuals;
3101 
3102       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3103       if (PseudoDtor->isArrow()) {
3104         BaseValue = EmitScalarExpr(BaseExpr);
3105         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3106         BaseQuals = PTy->getPointeeType().getQualifiers();
3107       } else {
3108         LValue BaseLV = EmitLValue(BaseExpr);
3109         BaseValue = BaseLV.getAddress();
3110         QualType BaseTy = BaseExpr->getType();
3111         BaseQuals = BaseTy.getQualifiers();
3112       }
3113 
3114       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3115       case Qualifiers::OCL_None:
3116       case Qualifiers::OCL_ExplicitNone:
3117       case Qualifiers::OCL_Autoreleasing:
3118         break;
3119 
3120       case Qualifiers::OCL_Strong:
3121         EmitARCRelease(Builder.CreateLoad(BaseValue,
3122                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3123                        ARCPreciseLifetime);
3124         break;
3125 
3126       case Qualifiers::OCL_Weak:
3127         EmitARCDestroyWeak(BaseValue);
3128         break;
3129       }
3130     } else {
3131       // C++ [expr.pseudo]p1:
3132       //   The result shall only be used as the operand for the function call
3133       //   operator (), and the result of such a call has type void. The only
3134       //   effect is the evaluation of the postfix-expression before the dot or
3135       //   arrow.
3136       EmitScalarExpr(E->getCallee());
3137     }
3138 
3139     return RValue::get(nullptr);
3140   }
3141 
3142   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3143   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3144                   TargetDecl);
3145 }
3146 
3147 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3148   // Comma expressions just emit their LHS then their RHS as an l-value.
3149   if (E->getOpcode() == BO_Comma) {
3150     EmitIgnoredExpr(E->getLHS());
3151     EnsureInsertPoint();
3152     return EmitLValue(E->getRHS());
3153   }
3154 
3155   if (E->getOpcode() == BO_PtrMemD ||
3156       E->getOpcode() == BO_PtrMemI)
3157     return EmitPointerToDataMemberBinaryExpr(E);
3158 
3159   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3160 
3161   // Note that in all of these cases, __block variables need the RHS
3162   // evaluated first just in case the variable gets moved by the RHS.
3163 
3164   switch (getEvaluationKind(E->getType())) {
3165   case TEK_Scalar: {
3166     switch (E->getLHS()->getType().getObjCLifetime()) {
3167     case Qualifiers::OCL_Strong:
3168       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3169 
3170     case Qualifiers::OCL_Autoreleasing:
3171       return EmitARCStoreAutoreleasing(E).first;
3172 
3173     // No reason to do any of these differently.
3174     case Qualifiers::OCL_None:
3175     case Qualifiers::OCL_ExplicitNone:
3176     case Qualifiers::OCL_Weak:
3177       break;
3178     }
3179 
3180     RValue RV = EmitAnyExpr(E->getRHS());
3181     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3182     EmitStoreThroughLValue(RV, LV);
3183     return LV;
3184   }
3185 
3186   case TEK_Complex:
3187     return EmitComplexAssignmentLValue(E);
3188 
3189   case TEK_Aggregate:
3190     return EmitAggExprToLValue(E);
3191   }
3192   llvm_unreachable("bad evaluation kind");
3193 }
3194 
3195 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3196   RValue RV = EmitCallExpr(E);
3197 
3198   if (!RV.isScalar())
3199     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3200 
3201   assert(E->getCallReturnType()->isReferenceType() &&
3202          "Can't have a scalar return unless the return type is a "
3203          "reference type!");
3204 
3205   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3206 }
3207 
3208 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3209   // FIXME: This shouldn't require another copy.
3210   return EmitAggExprToLValue(E);
3211 }
3212 
3213 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3214   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3215          && "binding l-value to type which needs a temporary");
3216   AggValueSlot Slot = CreateAggTemp(E->getType());
3217   EmitCXXConstructExpr(E, Slot);
3218   return MakeAddrLValue(Slot.getAddr(), E->getType());
3219 }
3220 
3221 LValue
3222 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3223   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3224 }
3225 
3226 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3227   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3228                                ConvertType(E->getType())->getPointerTo());
3229 }
3230 
3231 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3232   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3233 }
3234 
3235 LValue
3236 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3237   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3238   Slot.setExternallyDestructed();
3239   EmitAggExpr(E->getSubExpr(), Slot);
3240   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3241   return MakeAddrLValue(Slot.getAddr(), E->getType());
3242 }
3243 
3244 LValue
3245 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3246   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3247   EmitLambdaExpr(E, Slot);
3248   return MakeAddrLValue(Slot.getAddr(), E->getType());
3249 }
3250 
3251 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3252   RValue RV = EmitObjCMessageExpr(E);
3253 
3254   if (!RV.isScalar())
3255     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3256 
3257   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3258          "Can't have a scalar return unless the return type is a "
3259          "reference type!");
3260 
3261   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3262 }
3263 
3264 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3265   llvm::Value *V =
3266     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3267   return MakeAddrLValue(V, E->getType());
3268 }
3269 
3270 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3271                                              const ObjCIvarDecl *Ivar) {
3272   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3273 }
3274 
3275 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3276                                           llvm::Value *BaseValue,
3277                                           const ObjCIvarDecl *Ivar,
3278                                           unsigned CVRQualifiers) {
3279   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3280                                                    Ivar, CVRQualifiers);
3281 }
3282 
3283 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3284   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3285   llvm::Value *BaseValue = nullptr;
3286   const Expr *BaseExpr = E->getBase();
3287   Qualifiers BaseQuals;
3288   QualType ObjectTy;
3289   if (E->isArrow()) {
3290     BaseValue = EmitScalarExpr(BaseExpr);
3291     ObjectTy = BaseExpr->getType()->getPointeeType();
3292     BaseQuals = ObjectTy.getQualifiers();
3293   } else {
3294     LValue BaseLV = EmitLValue(BaseExpr);
3295     // FIXME: this isn't right for bitfields.
3296     BaseValue = BaseLV.getAddress();
3297     ObjectTy = BaseExpr->getType();
3298     BaseQuals = ObjectTy.getQualifiers();
3299   }
3300 
3301   LValue LV =
3302     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3303                       BaseQuals.getCVRQualifiers());
3304   setObjCGCLValueClass(getContext(), E, LV);
3305   return LV;
3306 }
3307 
3308 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3309   // Can only get l-value for message expression returning aggregate type
3310   RValue RV = EmitAnyExprToTemp(E);
3311   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3312 }
3313 
3314 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3315                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3316                                  const Decl *TargetDecl, llvm::Value *Chain) {
3317   // Get the actual function type. The callee type will always be a pointer to
3318   // function type or a block pointer type.
3319   assert(CalleeType->isFunctionPointerType() &&
3320          "Call must have function pointer type!");
3321 
3322   CalleeType = getContext().getCanonicalType(CalleeType);
3323 
3324   const auto *FnType =
3325       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3326 
3327   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3328       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3329     if (llvm::Constant *PrefixSig =
3330             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3331       SanitizerScope SanScope(this);
3332       llvm::Constant *FTRTTIConst =
3333           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3334       llvm::Type *PrefixStructTyElems[] = {
3335         PrefixSig->getType(),
3336         FTRTTIConst->getType()
3337       };
3338       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3339           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3340 
3341       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3342           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3343       llvm::Value *CalleeSigPtr =
3344           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3345       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3346       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3347 
3348       llvm::BasicBlock *Cont = createBasicBlock("cont");
3349       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3350       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3351 
3352       EmitBlock(TypeCheck);
3353       llvm::Value *CalleeRTTIPtr =
3354           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3355       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3356       llvm::Value *CalleeRTTIMatch =
3357           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3358       llvm::Constant *StaticData[] = {
3359         EmitCheckSourceLocation(E->getLocStart()),
3360         EmitCheckTypeDescriptor(CalleeType)
3361       };
3362       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3363                 "function_type_mismatch", StaticData, Callee);
3364 
3365       Builder.CreateBr(Cont);
3366       EmitBlock(Cont);
3367     }
3368   }
3369 
3370   CallArgList Args;
3371   if (Chain)
3372     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3373              CGM.getContext().VoidPtrTy);
3374   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(),
3375                E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0);
3376 
3377   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3378       Args, FnType, /*isChainCall=*/Chain);
3379 
3380   // C99 6.5.2.2p6:
3381   //   If the expression that denotes the called function has a type
3382   //   that does not include a prototype, [the default argument
3383   //   promotions are performed]. If the number of arguments does not
3384   //   equal the number of parameters, the behavior is undefined. If
3385   //   the function is defined with a type that includes a prototype,
3386   //   and either the prototype ends with an ellipsis (, ...) or the
3387   //   types of the arguments after promotion are not compatible with
3388   //   the types of the parameters, the behavior is undefined. If the
3389   //   function is defined with a type that does not include a
3390   //   prototype, and the types of the arguments after promotion are
3391   //   not compatible with those of the parameters after promotion,
3392   //   the behavior is undefined [except in some trivial cases].
3393   // That is, in the general case, we should assume that a call
3394   // through an unprototyped function type works like a *non-variadic*
3395   // call.  The way we make this work is to cast to the exact type
3396   // of the promoted arguments.
3397   //
3398   // Chain calls use this same code path to add the invisible chain parameter
3399   // to the function type.
3400   if (isa<FunctionNoProtoType>(FnType) || Chain) {
3401     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3402     CalleeTy = CalleeTy->getPointerTo();
3403     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3404   }
3405 
3406   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3407 }
3408 
3409 LValue CodeGenFunction::
3410 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3411   llvm::Value *BaseV;
3412   if (E->getOpcode() == BO_PtrMemI)
3413     BaseV = EmitScalarExpr(E->getLHS());
3414   else
3415     BaseV = EmitLValue(E->getLHS()).getAddress();
3416 
3417   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3418 
3419   const MemberPointerType *MPT
3420     = E->getRHS()->getType()->getAs<MemberPointerType>();
3421 
3422   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3423       *this, E, BaseV, OffsetV, MPT);
3424 
3425   return MakeAddrLValue(AddV, MPT->getPointeeType());
3426 }
3427 
3428 /// Given the address of a temporary variable, produce an r-value of
3429 /// its type.
3430 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3431                                             QualType type,
3432                                             SourceLocation loc) {
3433   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3434   switch (getEvaluationKind(type)) {
3435   case TEK_Complex:
3436     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3437   case TEK_Aggregate:
3438     return lvalue.asAggregateRValue();
3439   case TEK_Scalar:
3440     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3441   }
3442   llvm_unreachable("bad evaluation kind");
3443 }
3444 
3445 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3446   assert(Val->getType()->isFPOrFPVectorTy());
3447   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3448     return;
3449 
3450   llvm::MDBuilder MDHelper(getLLVMContext());
3451   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3452 
3453   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3454 }
3455 
3456 namespace {
3457   struct LValueOrRValue {
3458     LValue LV;
3459     RValue RV;
3460   };
3461 }
3462 
3463 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3464                                            const PseudoObjectExpr *E,
3465                                            bool forLValue,
3466                                            AggValueSlot slot) {
3467   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3468 
3469   // Find the result expression, if any.
3470   const Expr *resultExpr = E->getResultExpr();
3471   LValueOrRValue result;
3472 
3473   for (PseudoObjectExpr::const_semantics_iterator
3474          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3475     const Expr *semantic = *i;
3476 
3477     // If this semantic expression is an opaque value, bind it
3478     // to the result of its source expression.
3479     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3480 
3481       // If this is the result expression, we may need to evaluate
3482       // directly into the slot.
3483       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3484       OVMA opaqueData;
3485       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3486           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3487         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3488 
3489         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3490         opaqueData = OVMA::bind(CGF, ov, LV);
3491         result.RV = slot.asRValue();
3492 
3493       // Otherwise, emit as normal.
3494       } else {
3495         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3496 
3497         // If this is the result, also evaluate the result now.
3498         if (ov == resultExpr) {
3499           if (forLValue)
3500             result.LV = CGF.EmitLValue(ov);
3501           else
3502             result.RV = CGF.EmitAnyExpr(ov, slot);
3503         }
3504       }
3505 
3506       opaques.push_back(opaqueData);
3507 
3508     // Otherwise, if the expression is the result, evaluate it
3509     // and remember the result.
3510     } else if (semantic == resultExpr) {
3511       if (forLValue)
3512         result.LV = CGF.EmitLValue(semantic);
3513       else
3514         result.RV = CGF.EmitAnyExpr(semantic, slot);
3515 
3516     // Otherwise, evaluate the expression in an ignored context.
3517     } else {
3518       CGF.EmitIgnoredExpr(semantic);
3519     }
3520   }
3521 
3522   // Unbind all the opaques now.
3523   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3524     opaques[i].unbind(CGF);
3525 
3526   return result;
3527 }
3528 
3529 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3530                                                AggValueSlot slot) {
3531   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3532 }
3533 
3534 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3535   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3536 }
3537