1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 auto CurIP = Builder.saveIP(); 78 Builder.SetInsertPoint(AllocaInsertPt); 79 V = getTargetHooks().performAddrSpaceCast( 80 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 81 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 82 Builder.restoreIP(CurIP); 83 } 84 85 return Address(V, Align); 86 } 87 88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 90 /// insertion point of the builder. 91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 92 const Twine &Name, 93 llvm::Value *ArraySize) { 94 if (ArraySize) 95 return Builder.CreateAlloca(Ty, ArraySize, Name); 96 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 97 ArraySize, Name, AllocaInsertPt); 98 } 99 100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 101 /// default alignment of the corresponding LLVM type, which is *not* 102 /// guaranteed to be related in any way to the expected alignment of 103 /// an AST type that might have been lowered to Ty. 104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 105 const Twine &Name) { 106 CharUnits Align = 107 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 108 return CreateTempAlloca(Ty, Align, Name); 109 } 110 111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 112 assert(isa<llvm::AllocaInst>(Var.getPointer())); 113 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 114 Store->setAlignment(Var.getAlignment().getQuantity()); 115 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 116 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 117 } 118 119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 120 CharUnits Align = getContext().getTypeAlignInChars(Ty); 121 return CreateTempAlloca(ConvertType(Ty), Align, Name); 122 } 123 124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 125 bool CastToDefaultAddrSpace) { 126 // FIXME: Should we prefer the preferred type alignment here? 127 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 128 CastToDefaultAddrSpace); 129 } 130 131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 132 const Twine &Name, 133 bool CastToDefaultAddrSpace) { 134 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 135 CastToDefaultAddrSpace); 136 } 137 138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 139 /// expression and compare the result against zero, returning an Int1Ty value. 140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 141 PGO.setCurrentStmt(E); 142 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 143 llvm::Value *MemPtr = EmitScalarExpr(E); 144 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 145 } 146 147 QualType BoolTy = getContext().BoolTy; 148 SourceLocation Loc = E->getExprLoc(); 149 if (!E->getType()->isAnyComplexType()) 150 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 151 152 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 153 Loc); 154 } 155 156 /// EmitIgnoredExpr - Emit code to compute the specified expression, 157 /// ignoring the result. 158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 159 if (E->isRValue()) 160 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 161 162 // Just emit it as an l-value and drop the result. 163 EmitLValue(E); 164 } 165 166 /// EmitAnyExpr - Emit code to compute the specified expression which 167 /// can have any type. The result is returned as an RValue struct. 168 /// If this is an aggregate expression, AggSlot indicates where the 169 /// result should be returned. 170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 171 AggValueSlot aggSlot, 172 bool ignoreResult) { 173 switch (getEvaluationKind(E->getType())) { 174 case TEK_Scalar: 175 return RValue::get(EmitScalarExpr(E, ignoreResult)); 176 case TEK_Complex: 177 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 178 case TEK_Aggregate: 179 if (!ignoreResult && aggSlot.isIgnored()) 180 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 181 EmitAggExpr(E, aggSlot); 182 return aggSlot.asRValue(); 183 } 184 llvm_unreachable("bad evaluation kind"); 185 } 186 187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 188 /// always be accessible even if no aggregate location is provided. 189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 190 AggValueSlot AggSlot = AggValueSlot::ignored(); 191 192 if (hasAggregateEvaluationKind(E->getType())) 193 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 194 return EmitAnyExpr(E, AggSlot); 195 } 196 197 /// EmitAnyExprToMem - Evaluate an expression into a given memory 198 /// location. 199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 200 Address Location, 201 Qualifiers Quals, 202 bool IsInit) { 203 // FIXME: This function should take an LValue as an argument. 204 switch (getEvaluationKind(E->getType())) { 205 case TEK_Complex: 206 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 207 /*isInit*/ false); 208 return; 209 210 case TEK_Aggregate: { 211 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 212 AggValueSlot::IsDestructed_t(IsInit), 213 AggValueSlot::DoesNotNeedGCBarriers, 214 AggValueSlot::IsAliased_t(!IsInit))); 215 return; 216 } 217 218 case TEK_Scalar: { 219 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 220 LValue LV = MakeAddrLValue(Location, E->getType()); 221 EmitStoreThroughLValue(RV, LV); 222 return; 223 } 224 } 225 llvm_unreachable("bad evaluation kind"); 226 } 227 228 static void 229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 230 const Expr *E, Address ReferenceTemporary) { 231 // Objective-C++ ARC: 232 // If we are binding a reference to a temporary that has ownership, we 233 // need to perform retain/release operations on the temporary. 234 // 235 // FIXME: This should be looking at E, not M. 236 if (auto Lifetime = M->getType().getObjCLifetime()) { 237 switch (Lifetime) { 238 case Qualifiers::OCL_None: 239 case Qualifiers::OCL_ExplicitNone: 240 // Carry on to normal cleanup handling. 241 break; 242 243 case Qualifiers::OCL_Autoreleasing: 244 // Nothing to do; cleaned up by an autorelease pool. 245 return; 246 247 case Qualifiers::OCL_Strong: 248 case Qualifiers::OCL_Weak: 249 switch (StorageDuration Duration = M->getStorageDuration()) { 250 case SD_Static: 251 // Note: we intentionally do not register a cleanup to release 252 // the object on program termination. 253 return; 254 255 case SD_Thread: 256 // FIXME: We should probably register a cleanup in this case. 257 return; 258 259 case SD_Automatic: 260 case SD_FullExpression: 261 CodeGenFunction::Destroyer *Destroy; 262 CleanupKind CleanupKind; 263 if (Lifetime == Qualifiers::OCL_Strong) { 264 const ValueDecl *VD = M->getExtendingDecl(); 265 bool Precise = 266 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 267 CleanupKind = CGF.getARCCleanupKind(); 268 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 269 : &CodeGenFunction::destroyARCStrongImprecise; 270 } else { 271 // __weak objects always get EH cleanups; otherwise, exceptions 272 // could cause really nasty crashes instead of mere leaks. 273 CleanupKind = NormalAndEHCleanup; 274 Destroy = &CodeGenFunction::destroyARCWeak; 275 } 276 if (Duration == SD_FullExpression) 277 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 278 M->getType(), *Destroy, 279 CleanupKind & EHCleanup); 280 else 281 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 282 M->getType(), 283 *Destroy, CleanupKind & EHCleanup); 284 return; 285 286 case SD_Dynamic: 287 llvm_unreachable("temporary cannot have dynamic storage duration"); 288 } 289 llvm_unreachable("unknown storage duration"); 290 } 291 } 292 293 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 294 if (const RecordType *RT = 295 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 296 // Get the destructor for the reference temporary. 297 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 298 if (!ClassDecl->hasTrivialDestructor()) 299 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 300 } 301 302 if (!ReferenceTemporaryDtor) 303 return; 304 305 // Call the destructor for the temporary. 306 switch (M->getStorageDuration()) { 307 case SD_Static: 308 case SD_Thread: { 309 llvm::Constant *CleanupFn; 310 llvm::Constant *CleanupArg; 311 if (E->getType()->isArrayType()) { 312 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 313 ReferenceTemporary, E->getType(), 314 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 315 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 316 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 317 } else { 318 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 319 StructorType::Complete); 320 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 321 } 322 CGF.CGM.getCXXABI().registerGlobalDtor( 323 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 324 break; 325 } 326 327 case SD_FullExpression: 328 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 329 CodeGenFunction::destroyCXXObject, 330 CGF.getLangOpts().Exceptions); 331 break; 332 333 case SD_Automatic: 334 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 335 ReferenceTemporary, E->getType(), 336 CodeGenFunction::destroyCXXObject, 337 CGF.getLangOpts().Exceptions); 338 break; 339 340 case SD_Dynamic: 341 llvm_unreachable("temporary cannot have dynamic storage duration"); 342 } 343 } 344 345 static Address createReferenceTemporary(CodeGenFunction &CGF, 346 const MaterializeTemporaryExpr *M, 347 const Expr *Inner) { 348 auto &TCG = CGF.getTargetHooks(); 349 switch (M->getStorageDuration()) { 350 case SD_FullExpression: 351 case SD_Automatic: { 352 // If we have a constant temporary array or record try to promote it into a 353 // constant global under the same rules a normal constant would've been 354 // promoted. This is easier on the optimizer and generally emits fewer 355 // instructions. 356 QualType Ty = Inner->getType(); 357 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 358 (Ty->isArrayType() || Ty->isRecordType()) && 359 CGF.CGM.isTypeConstant(Ty, true)) 360 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 361 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 362 auto AS = AddrSpace.getValue(); 363 auto *GV = new llvm::GlobalVariable( 364 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 365 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 366 llvm::GlobalValue::NotThreadLocal, 367 CGF.getContext().getTargetAddressSpace(AS)); 368 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 369 GV->setAlignment(alignment.getQuantity()); 370 llvm::Constant *C = GV; 371 if (AS != LangAS::Default) 372 C = TCG.performAddrSpaceCast( 373 CGF.CGM, GV, AS, LangAS::Default, 374 GV->getValueType()->getPointerTo( 375 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 376 // FIXME: Should we put the new global into a COMDAT? 377 return Address(C, alignment); 378 } 379 } 380 return CGF.CreateMemTemp(Ty, "ref.tmp"); 381 } 382 case SD_Thread: 383 case SD_Static: 384 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 385 386 case SD_Dynamic: 387 llvm_unreachable("temporary can't have dynamic storage duration"); 388 } 389 llvm_unreachable("unknown storage duration"); 390 } 391 392 LValue CodeGenFunction:: 393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 394 const Expr *E = M->GetTemporaryExpr(); 395 396 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 397 // as that will cause the lifetime adjustment to be lost for ARC 398 auto ownership = M->getType().getObjCLifetime(); 399 if (ownership != Qualifiers::OCL_None && 400 ownership != Qualifiers::OCL_ExplicitNone) { 401 Address Object = createReferenceTemporary(*this, M, E); 402 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 403 Object = Address(llvm::ConstantExpr::getBitCast(Var, 404 ConvertTypeForMem(E->getType()) 405 ->getPointerTo(Object.getAddressSpace())), 406 Object.getAlignment()); 407 408 // createReferenceTemporary will promote the temporary to a global with a 409 // constant initializer if it can. It can only do this to a value of 410 // ARC-manageable type if the value is global and therefore "immune" to 411 // ref-counting operations. Therefore we have no need to emit either a 412 // dynamic initialization or a cleanup and we can just return the address 413 // of the temporary. 414 if (Var->hasInitializer()) 415 return MakeAddrLValue(Object, M->getType(), 416 LValueBaseInfo(AlignmentSource::Decl, false)); 417 418 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 419 } 420 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 421 LValueBaseInfo(AlignmentSource::Decl, 422 false)); 423 424 switch (getEvaluationKind(E->getType())) { 425 default: llvm_unreachable("expected scalar or aggregate expression"); 426 case TEK_Scalar: 427 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 428 break; 429 case TEK_Aggregate: { 430 EmitAggExpr(E, AggValueSlot::forAddr(Object, 431 E->getType().getQualifiers(), 432 AggValueSlot::IsDestructed, 433 AggValueSlot::DoesNotNeedGCBarriers, 434 AggValueSlot::IsNotAliased)); 435 break; 436 } 437 } 438 439 pushTemporaryCleanup(*this, M, E, Object); 440 return RefTempDst; 441 } 442 443 SmallVector<const Expr *, 2> CommaLHSs; 444 SmallVector<SubobjectAdjustment, 2> Adjustments; 445 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 446 447 for (const auto &Ignored : CommaLHSs) 448 EmitIgnoredExpr(Ignored); 449 450 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 451 if (opaque->getType()->isRecordType()) { 452 assert(Adjustments.empty()); 453 return EmitOpaqueValueLValue(opaque); 454 } 455 } 456 457 // Create and initialize the reference temporary. 458 Address Object = createReferenceTemporary(*this, M, E); 459 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 460 Object.getPointer()->stripPointerCasts())) { 461 Object = Address(llvm::ConstantExpr::getBitCast( 462 cast<llvm::Constant>(Object.getPointer()), 463 ConvertTypeForMem(E->getType())->getPointerTo()), 464 Object.getAlignment()); 465 // If the temporary is a global and has a constant initializer or is a 466 // constant temporary that we promoted to a global, we may have already 467 // initialized it. 468 if (!Var->hasInitializer()) { 469 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 470 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 471 } 472 } else { 473 switch (M->getStorageDuration()) { 474 case SD_Automatic: 475 case SD_FullExpression: 476 if (auto *Size = EmitLifetimeStart( 477 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 478 Object.getPointer())) { 479 if (M->getStorageDuration() == SD_Automatic) 480 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 481 Object, Size); 482 else 483 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 484 Size); 485 } 486 break; 487 default: 488 break; 489 } 490 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 491 } 492 pushTemporaryCleanup(*this, M, E, Object); 493 494 // Perform derived-to-base casts and/or field accesses, to get from the 495 // temporary object we created (and, potentially, for which we extended 496 // the lifetime) to the subobject we're binding the reference to. 497 for (unsigned I = Adjustments.size(); I != 0; --I) { 498 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 499 switch (Adjustment.Kind) { 500 case SubobjectAdjustment::DerivedToBaseAdjustment: 501 Object = 502 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 503 Adjustment.DerivedToBase.BasePath->path_begin(), 504 Adjustment.DerivedToBase.BasePath->path_end(), 505 /*NullCheckValue=*/ false, E->getExprLoc()); 506 break; 507 508 case SubobjectAdjustment::FieldAdjustment: { 509 LValue LV = MakeAddrLValue(Object, E->getType(), 510 LValueBaseInfo(AlignmentSource::Decl, false)); 511 LV = EmitLValueForField(LV, Adjustment.Field); 512 assert(LV.isSimple() && 513 "materialized temporary field is not a simple lvalue"); 514 Object = LV.getAddress(); 515 break; 516 } 517 518 case SubobjectAdjustment::MemberPointerAdjustment: { 519 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 520 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 521 Adjustment.Ptr.MPT); 522 break; 523 } 524 } 525 } 526 527 return MakeAddrLValue(Object, M->getType(), 528 LValueBaseInfo(AlignmentSource::Decl, false)); 529 } 530 531 RValue 532 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 533 // Emit the expression as an lvalue. 534 LValue LV = EmitLValue(E); 535 assert(LV.isSimple()); 536 llvm::Value *Value = LV.getPointer(); 537 538 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 539 // C++11 [dcl.ref]p5 (as amended by core issue 453): 540 // If a glvalue to which a reference is directly bound designates neither 541 // an existing object or function of an appropriate type nor a region of 542 // storage of suitable size and alignment to contain an object of the 543 // reference's type, the behavior is undefined. 544 QualType Ty = E->getType(); 545 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 546 } 547 548 return RValue::get(Value); 549 } 550 551 552 /// getAccessedFieldNo - Given an encoded value and a result number, return the 553 /// input field number being accessed. 554 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 555 const llvm::Constant *Elts) { 556 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 557 ->getZExtValue(); 558 } 559 560 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 561 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 562 llvm::Value *High) { 563 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 564 llvm::Value *K47 = Builder.getInt64(47); 565 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 566 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 567 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 568 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 569 return Builder.CreateMul(B1, KMul); 570 } 571 572 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 573 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 574 TCK == TCK_UpcastToVirtualBase; 575 } 576 577 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 578 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 579 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 580 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 581 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 582 TCK == TCK_UpcastToVirtualBase); 583 } 584 585 bool CodeGenFunction::sanitizePerformTypeCheck() const { 586 return SanOpts.has(SanitizerKind::Null) | 587 SanOpts.has(SanitizerKind::Alignment) | 588 SanOpts.has(SanitizerKind::ObjectSize) | 589 SanOpts.has(SanitizerKind::Vptr); 590 } 591 592 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 593 llvm::Value *Ptr, QualType Ty, 594 CharUnits Alignment, 595 SanitizerSet SkippedChecks) { 596 if (!sanitizePerformTypeCheck()) 597 return; 598 599 // Don't check pointers outside the default address space. The null check 600 // isn't correct, the object-size check isn't supported by LLVM, and we can't 601 // communicate the addresses to the runtime handler for the vptr check. 602 if (Ptr->getType()->getPointerAddressSpace()) 603 return; 604 605 // Don't check pointers to volatile data. The behavior here is implementation- 606 // defined. 607 if (Ty.isVolatileQualified()) 608 return; 609 610 SanitizerScope SanScope(this); 611 612 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 613 llvm::BasicBlock *Done = nullptr; 614 615 // Quickly determine whether we have a pointer to an alloca. It's possible 616 // to skip null checks, and some alignment checks, for these pointers. This 617 // can reduce compile-time significantly. 618 auto PtrToAlloca = 619 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 620 621 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 622 llvm::Value *IsNonNull = nullptr; 623 bool IsGuaranteedNonNull = 624 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 625 bool AllowNullPointers = isNullPointerAllowed(TCK); 626 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 627 !IsGuaranteedNonNull) { 628 // The glvalue must not be an empty glvalue. 629 IsNonNull = Builder.CreateIsNotNull(Ptr); 630 631 // The IR builder can constant-fold the null check if the pointer points to 632 // a constant. 633 IsGuaranteedNonNull = IsNonNull == True; 634 635 // Skip the null check if the pointer is known to be non-null. 636 if (!IsGuaranteedNonNull) { 637 if (AllowNullPointers) { 638 // When performing pointer casts, it's OK if the value is null. 639 // Skip the remaining checks in that case. 640 Done = createBasicBlock("null"); 641 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 642 Builder.CreateCondBr(IsNonNull, Rest, Done); 643 EmitBlock(Rest); 644 } else { 645 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 646 } 647 } 648 } 649 650 if (SanOpts.has(SanitizerKind::ObjectSize) && 651 !SkippedChecks.has(SanitizerKind::ObjectSize) && 652 !Ty->isIncompleteType()) { 653 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 654 655 // The glvalue must refer to a large enough storage region. 656 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 657 // to check this. 658 // FIXME: Get object address space 659 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 660 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 661 llvm::Value *Min = Builder.getFalse(); 662 llvm::Value *NullIsUnknown = Builder.getFalse(); 663 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 664 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 665 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 666 llvm::ConstantInt::get(IntPtrTy, Size)); 667 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 668 } 669 670 uint64_t AlignVal = 0; 671 llvm::Value *PtrAsInt = nullptr; 672 673 if (SanOpts.has(SanitizerKind::Alignment) && 674 !SkippedChecks.has(SanitizerKind::Alignment)) { 675 AlignVal = Alignment.getQuantity(); 676 if (!Ty->isIncompleteType() && !AlignVal) 677 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 678 679 // The glvalue must be suitably aligned. 680 if (AlignVal > 1 && 681 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 682 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 683 llvm::Value *Align = Builder.CreateAnd( 684 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 685 llvm::Value *Aligned = 686 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 687 if (Aligned != True) 688 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 689 } 690 } 691 692 if (Checks.size() > 0) { 693 // Make sure we're not losing information. Alignment needs to be a power of 694 // 2 695 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 696 llvm::Constant *StaticData[] = { 697 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 698 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 699 llvm::ConstantInt::get(Int8Ty, TCK)}; 700 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 701 PtrAsInt ? PtrAsInt : Ptr); 702 } 703 704 // If possible, check that the vptr indicates that there is a subobject of 705 // type Ty at offset zero within this object. 706 // 707 // C++11 [basic.life]p5,6: 708 // [For storage which does not refer to an object within its lifetime] 709 // The program has undefined behavior if: 710 // -- the [pointer or glvalue] is used to access a non-static data member 711 // or call a non-static member function 712 if (SanOpts.has(SanitizerKind::Vptr) && 713 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 714 // Ensure that the pointer is non-null before loading it. If there is no 715 // compile-time guarantee, reuse the run-time null check or emit a new one. 716 if (!IsGuaranteedNonNull) { 717 if (!IsNonNull) 718 IsNonNull = Builder.CreateIsNotNull(Ptr); 719 if (!Done) 720 Done = createBasicBlock("vptr.null"); 721 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 722 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 723 EmitBlock(VptrNotNull); 724 } 725 726 // Compute a hash of the mangled name of the type. 727 // 728 // FIXME: This is not guaranteed to be deterministic! Move to a 729 // fingerprinting mechanism once LLVM provides one. For the time 730 // being the implementation happens to be deterministic. 731 SmallString<64> MangledName; 732 llvm::raw_svector_ostream Out(MangledName); 733 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 734 Out); 735 736 // Blacklist based on the mangled type. 737 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 738 SanitizerKind::Vptr, Out.str())) { 739 llvm::hash_code TypeHash = hash_value(Out.str()); 740 741 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 742 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 743 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 744 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 745 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 746 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 747 748 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 749 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 750 751 // Look the hash up in our cache. 752 const int CacheSize = 128; 753 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 754 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 755 "__ubsan_vptr_type_cache"); 756 llvm::Value *Slot = Builder.CreateAnd(Hash, 757 llvm::ConstantInt::get(IntPtrTy, 758 CacheSize-1)); 759 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 760 llvm::Value *CacheVal = 761 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 762 getPointerAlign()); 763 764 // If the hash isn't in the cache, call a runtime handler to perform the 765 // hard work of checking whether the vptr is for an object of the right 766 // type. This will either fill in the cache and return, or produce a 767 // diagnostic. 768 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 769 llvm::Constant *StaticData[] = { 770 EmitCheckSourceLocation(Loc), 771 EmitCheckTypeDescriptor(Ty), 772 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 773 llvm::ConstantInt::get(Int8Ty, TCK) 774 }; 775 llvm::Value *DynamicData[] = { Ptr, Hash }; 776 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 777 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 778 DynamicData); 779 } 780 } 781 782 if (Done) { 783 Builder.CreateBr(Done); 784 EmitBlock(Done); 785 } 786 } 787 788 /// Determine whether this expression refers to a flexible array member in a 789 /// struct. We disable array bounds checks for such members. 790 static bool isFlexibleArrayMemberExpr(const Expr *E) { 791 // For compatibility with existing code, we treat arrays of length 0 or 792 // 1 as flexible array members. 793 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 794 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 795 if (CAT->getSize().ugt(1)) 796 return false; 797 } else if (!isa<IncompleteArrayType>(AT)) 798 return false; 799 800 E = E->IgnoreParens(); 801 802 // A flexible array member must be the last member in the class. 803 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 804 // FIXME: If the base type of the member expr is not FD->getParent(), 805 // this should not be treated as a flexible array member access. 806 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 807 RecordDecl::field_iterator FI( 808 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 809 return ++FI == FD->getParent()->field_end(); 810 } 811 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 812 return IRE->getDecl()->getNextIvar() == nullptr; 813 } 814 815 return false; 816 } 817 818 /// If Base is known to point to the start of an array, return the length of 819 /// that array. Return 0 if the length cannot be determined. 820 static llvm::Value *getArrayIndexingBound( 821 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 822 // For the vector indexing extension, the bound is the number of elements. 823 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 824 IndexedType = Base->getType(); 825 return CGF.Builder.getInt32(VT->getNumElements()); 826 } 827 828 Base = Base->IgnoreParens(); 829 830 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 831 if (CE->getCastKind() == CK_ArrayToPointerDecay && 832 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 833 IndexedType = CE->getSubExpr()->getType(); 834 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 835 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 836 return CGF.Builder.getInt(CAT->getSize()); 837 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 838 return CGF.getVLASize(VAT).first; 839 } 840 } 841 842 return nullptr; 843 } 844 845 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 846 llvm::Value *Index, QualType IndexType, 847 bool Accessed) { 848 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 849 "should not be called unless adding bounds checks"); 850 SanitizerScope SanScope(this); 851 852 QualType IndexedType; 853 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 854 if (!Bound) 855 return; 856 857 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 858 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 859 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 860 861 llvm::Constant *StaticData[] = { 862 EmitCheckSourceLocation(E->getExprLoc()), 863 EmitCheckTypeDescriptor(IndexedType), 864 EmitCheckTypeDescriptor(IndexType) 865 }; 866 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 867 : Builder.CreateICmpULE(IndexVal, BoundVal); 868 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 869 SanitizerHandler::OutOfBounds, StaticData, Index); 870 } 871 872 873 CodeGenFunction::ComplexPairTy CodeGenFunction:: 874 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 875 bool isInc, bool isPre) { 876 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 877 878 llvm::Value *NextVal; 879 if (isa<llvm::IntegerType>(InVal.first->getType())) { 880 uint64_t AmountVal = isInc ? 1 : -1; 881 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 882 883 // Add the inc/dec to the real part. 884 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 885 } else { 886 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 887 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 888 if (!isInc) 889 FVal.changeSign(); 890 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 891 892 // Add the inc/dec to the real part. 893 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 894 } 895 896 ComplexPairTy IncVal(NextVal, InVal.second); 897 898 // Store the updated result through the lvalue. 899 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 900 901 // If this is a postinc, return the value read from memory, otherwise use the 902 // updated value. 903 return isPre ? IncVal : InVal; 904 } 905 906 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 907 CodeGenFunction *CGF) { 908 // Bind VLAs in the cast type. 909 if (CGF && E->getType()->isVariablyModifiedType()) 910 CGF->EmitVariablyModifiedType(E->getType()); 911 912 if (CGDebugInfo *DI = getModuleDebugInfo()) 913 DI->EmitExplicitCastType(E->getType()); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // LValue Expression Emission 918 //===----------------------------------------------------------------------===// 919 920 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 921 /// derive a more accurate bound on the alignment of the pointer. 922 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 923 LValueBaseInfo *BaseInfo) { 924 // We allow this with ObjC object pointers because of fragile ABIs. 925 assert(E->getType()->isPointerType() || 926 E->getType()->isObjCObjectPointerType()); 927 E = E->IgnoreParens(); 928 929 // Casts: 930 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 931 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 932 CGM.EmitExplicitCastExprType(ECE, this); 933 934 switch (CE->getCastKind()) { 935 // Non-converting casts (but not C's implicit conversion from void*). 936 case CK_BitCast: 937 case CK_NoOp: 938 case CK_AddressSpaceConversion: 939 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 940 if (PtrTy->getPointeeType()->isVoidType()) 941 break; 942 943 LValueBaseInfo InnerInfo; 944 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo); 945 if (BaseInfo) *BaseInfo = InnerInfo; 946 947 // If this is an explicit bitcast, and the source l-value is 948 // opaque, honor the alignment of the casted-to type. 949 if (isa<ExplicitCastExpr>(CE) && 950 InnerInfo.getAlignmentSource() != AlignmentSource::Decl) { 951 LValueBaseInfo ExpInfo; 952 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 953 &ExpInfo); 954 if (BaseInfo) 955 BaseInfo->mergeForCast(ExpInfo); 956 Addr = Address(Addr.getPointer(), Align); 957 } 958 959 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 960 CE->getCastKind() == CK_BitCast) { 961 if (auto PT = E->getType()->getAs<PointerType>()) 962 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 963 /*MayBeNull=*/true, 964 CodeGenFunction::CFITCK_UnrelatedCast, 965 CE->getLocStart()); 966 } 967 return CE->getCastKind() != CK_AddressSpaceConversion 968 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 969 : Builder.CreateAddrSpaceCast(Addr, 970 ConvertType(E->getType())); 971 } 972 break; 973 974 // Array-to-pointer decay. 975 case CK_ArrayToPointerDecay: 976 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo); 977 978 // Derived-to-base conversions. 979 case CK_UncheckedDerivedToBase: 980 case CK_DerivedToBase: { 981 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 982 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 983 return GetAddressOfBaseClass(Addr, Derived, 984 CE->path_begin(), CE->path_end(), 985 ShouldNullCheckClassCastValue(CE), 986 CE->getExprLoc()); 987 } 988 989 // TODO: Is there any reason to treat base-to-derived conversions 990 // specially? 991 default: 992 break; 993 } 994 } 995 996 // Unary &. 997 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 998 if (UO->getOpcode() == UO_AddrOf) { 999 LValue LV = EmitLValue(UO->getSubExpr()); 1000 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1001 return LV.getAddress(); 1002 } 1003 } 1004 1005 // TODO: conditional operators, comma. 1006 1007 // Otherwise, use the alignment of the type. 1008 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo); 1009 return Address(EmitScalarExpr(E), Align); 1010 } 1011 1012 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1013 if (Ty->isVoidType()) 1014 return RValue::get(nullptr); 1015 1016 switch (getEvaluationKind(Ty)) { 1017 case TEK_Complex: { 1018 llvm::Type *EltTy = 1019 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1020 llvm::Value *U = llvm::UndefValue::get(EltTy); 1021 return RValue::getComplex(std::make_pair(U, U)); 1022 } 1023 1024 // If this is a use of an undefined aggregate type, the aggregate must have an 1025 // identifiable address. Just because the contents of the value are undefined 1026 // doesn't mean that the address can't be taken and compared. 1027 case TEK_Aggregate: { 1028 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1029 return RValue::getAggregate(DestPtr); 1030 } 1031 1032 case TEK_Scalar: 1033 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1034 } 1035 llvm_unreachable("bad evaluation kind"); 1036 } 1037 1038 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1039 const char *Name) { 1040 ErrorUnsupported(E, Name); 1041 return GetUndefRValue(E->getType()); 1042 } 1043 1044 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1045 const char *Name) { 1046 ErrorUnsupported(E, Name); 1047 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1048 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1049 E->getType()); 1050 } 1051 1052 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1053 const Expr *Base = Obj; 1054 while (!isa<CXXThisExpr>(Base)) { 1055 // The result of a dynamic_cast can be null. 1056 if (isa<CXXDynamicCastExpr>(Base)) 1057 return false; 1058 1059 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1060 Base = CE->getSubExpr(); 1061 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1062 Base = PE->getSubExpr(); 1063 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1064 if (UO->getOpcode() == UO_Extension) 1065 Base = UO->getSubExpr(); 1066 else 1067 return false; 1068 } else { 1069 return false; 1070 } 1071 } 1072 return true; 1073 } 1074 1075 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1076 LValue LV; 1077 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1078 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1079 else 1080 LV = EmitLValue(E); 1081 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1082 SanitizerSet SkippedChecks; 1083 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1084 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1085 if (IsBaseCXXThis) 1086 SkippedChecks.set(SanitizerKind::Alignment, true); 1087 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1088 SkippedChecks.set(SanitizerKind::Null, true); 1089 } 1090 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1091 E->getType(), LV.getAlignment(), SkippedChecks); 1092 } 1093 return LV; 1094 } 1095 1096 /// EmitLValue - Emit code to compute a designator that specifies the location 1097 /// of the expression. 1098 /// 1099 /// This can return one of two things: a simple address or a bitfield reference. 1100 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1101 /// an LLVM pointer type. 1102 /// 1103 /// If this returns a bitfield reference, nothing about the pointee type of the 1104 /// LLVM value is known: For example, it may not be a pointer to an integer. 1105 /// 1106 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1107 /// this method guarantees that the returned pointer type will point to an LLVM 1108 /// type of the same size of the lvalue's type. If the lvalue has a variable 1109 /// length type, this is not possible. 1110 /// 1111 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1112 ApplyDebugLocation DL(*this, E); 1113 switch (E->getStmtClass()) { 1114 default: return EmitUnsupportedLValue(E, "l-value expression"); 1115 1116 case Expr::ObjCPropertyRefExprClass: 1117 llvm_unreachable("cannot emit a property reference directly"); 1118 1119 case Expr::ObjCSelectorExprClass: 1120 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1121 case Expr::ObjCIsaExprClass: 1122 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1123 case Expr::BinaryOperatorClass: 1124 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1125 case Expr::CompoundAssignOperatorClass: { 1126 QualType Ty = E->getType(); 1127 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1128 Ty = AT->getValueType(); 1129 if (!Ty->isAnyComplexType()) 1130 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1131 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1132 } 1133 case Expr::CallExprClass: 1134 case Expr::CXXMemberCallExprClass: 1135 case Expr::CXXOperatorCallExprClass: 1136 case Expr::UserDefinedLiteralClass: 1137 return EmitCallExprLValue(cast<CallExpr>(E)); 1138 case Expr::VAArgExprClass: 1139 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1140 case Expr::DeclRefExprClass: 1141 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1142 case Expr::ParenExprClass: 1143 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1144 case Expr::GenericSelectionExprClass: 1145 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1146 case Expr::PredefinedExprClass: 1147 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1148 case Expr::StringLiteralClass: 1149 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1150 case Expr::ObjCEncodeExprClass: 1151 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1152 case Expr::PseudoObjectExprClass: 1153 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1154 case Expr::InitListExprClass: 1155 return EmitInitListLValue(cast<InitListExpr>(E)); 1156 case Expr::CXXTemporaryObjectExprClass: 1157 case Expr::CXXConstructExprClass: 1158 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1159 case Expr::CXXBindTemporaryExprClass: 1160 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1161 case Expr::CXXUuidofExprClass: 1162 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1163 case Expr::LambdaExprClass: 1164 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1165 1166 case Expr::ExprWithCleanupsClass: { 1167 const auto *cleanups = cast<ExprWithCleanups>(E); 1168 enterFullExpression(cleanups); 1169 RunCleanupsScope Scope(*this); 1170 LValue LV = EmitLValue(cleanups->getSubExpr()); 1171 if (LV.isSimple()) { 1172 // Defend against branches out of gnu statement expressions surrounded by 1173 // cleanups. 1174 llvm::Value *V = LV.getPointer(); 1175 Scope.ForceCleanup({&V}); 1176 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1177 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1178 } 1179 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1180 // bitfield lvalue or some other non-simple lvalue? 1181 return LV; 1182 } 1183 1184 case Expr::CXXDefaultArgExprClass: 1185 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1186 case Expr::CXXDefaultInitExprClass: { 1187 CXXDefaultInitExprScope Scope(*this); 1188 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1189 } 1190 case Expr::CXXTypeidExprClass: 1191 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1192 1193 case Expr::ObjCMessageExprClass: 1194 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1195 case Expr::ObjCIvarRefExprClass: 1196 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1197 case Expr::StmtExprClass: 1198 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1199 case Expr::UnaryOperatorClass: 1200 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1201 case Expr::ArraySubscriptExprClass: 1202 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1203 case Expr::OMPArraySectionExprClass: 1204 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1205 case Expr::ExtVectorElementExprClass: 1206 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1207 case Expr::MemberExprClass: 1208 return EmitMemberExpr(cast<MemberExpr>(E)); 1209 case Expr::CompoundLiteralExprClass: 1210 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1211 case Expr::ConditionalOperatorClass: 1212 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1213 case Expr::BinaryConditionalOperatorClass: 1214 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1215 case Expr::ChooseExprClass: 1216 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1217 case Expr::OpaqueValueExprClass: 1218 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1219 case Expr::SubstNonTypeTemplateParmExprClass: 1220 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1221 case Expr::ImplicitCastExprClass: 1222 case Expr::CStyleCastExprClass: 1223 case Expr::CXXFunctionalCastExprClass: 1224 case Expr::CXXStaticCastExprClass: 1225 case Expr::CXXDynamicCastExprClass: 1226 case Expr::CXXReinterpretCastExprClass: 1227 case Expr::CXXConstCastExprClass: 1228 case Expr::ObjCBridgedCastExprClass: 1229 return EmitCastLValue(cast<CastExpr>(E)); 1230 1231 case Expr::MaterializeTemporaryExprClass: 1232 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1233 1234 case Expr::CoawaitExprClass: 1235 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1236 case Expr::CoyieldExprClass: 1237 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1238 } 1239 } 1240 1241 /// Given an object of the given canonical type, can we safely copy a 1242 /// value out of it based on its initializer? 1243 static bool isConstantEmittableObjectType(QualType type) { 1244 assert(type.isCanonical()); 1245 assert(!type->isReferenceType()); 1246 1247 // Must be const-qualified but non-volatile. 1248 Qualifiers qs = type.getLocalQualifiers(); 1249 if (!qs.hasConst() || qs.hasVolatile()) return false; 1250 1251 // Otherwise, all object types satisfy this except C++ classes with 1252 // mutable subobjects or non-trivial copy/destroy behavior. 1253 if (const auto *RT = dyn_cast<RecordType>(type)) 1254 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1255 if (RD->hasMutableFields() || !RD->isTrivial()) 1256 return false; 1257 1258 return true; 1259 } 1260 1261 /// Can we constant-emit a load of a reference to a variable of the 1262 /// given type? This is different from predicates like 1263 /// Decl::isUsableInConstantExpressions because we do want it to apply 1264 /// in situations that don't necessarily satisfy the language's rules 1265 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1266 /// to do this with const float variables even if those variables 1267 /// aren't marked 'constexpr'. 1268 enum ConstantEmissionKind { 1269 CEK_None, 1270 CEK_AsReferenceOnly, 1271 CEK_AsValueOrReference, 1272 CEK_AsValueOnly 1273 }; 1274 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1275 type = type.getCanonicalType(); 1276 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1277 if (isConstantEmittableObjectType(ref->getPointeeType())) 1278 return CEK_AsValueOrReference; 1279 return CEK_AsReferenceOnly; 1280 } 1281 if (isConstantEmittableObjectType(type)) 1282 return CEK_AsValueOnly; 1283 return CEK_None; 1284 } 1285 1286 /// Try to emit a reference to the given value without producing it as 1287 /// an l-value. This is actually more than an optimization: we can't 1288 /// produce an l-value for variables that we never actually captured 1289 /// in a block or lambda, which means const int variables or constexpr 1290 /// literals or similar. 1291 CodeGenFunction::ConstantEmission 1292 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1293 ValueDecl *value = refExpr->getDecl(); 1294 1295 // The value needs to be an enum constant or a constant variable. 1296 ConstantEmissionKind CEK; 1297 if (isa<ParmVarDecl>(value)) { 1298 CEK = CEK_None; 1299 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1300 CEK = checkVarTypeForConstantEmission(var->getType()); 1301 } else if (isa<EnumConstantDecl>(value)) { 1302 CEK = CEK_AsValueOnly; 1303 } else { 1304 CEK = CEK_None; 1305 } 1306 if (CEK == CEK_None) return ConstantEmission(); 1307 1308 Expr::EvalResult result; 1309 bool resultIsReference; 1310 QualType resultType; 1311 1312 // It's best to evaluate all the way as an r-value if that's permitted. 1313 if (CEK != CEK_AsReferenceOnly && 1314 refExpr->EvaluateAsRValue(result, getContext())) { 1315 resultIsReference = false; 1316 resultType = refExpr->getType(); 1317 1318 // Otherwise, try to evaluate as an l-value. 1319 } else if (CEK != CEK_AsValueOnly && 1320 refExpr->EvaluateAsLValue(result, getContext())) { 1321 resultIsReference = true; 1322 resultType = value->getType(); 1323 1324 // Failure. 1325 } else { 1326 return ConstantEmission(); 1327 } 1328 1329 // In any case, if the initializer has side-effects, abandon ship. 1330 if (result.HasSideEffects) 1331 return ConstantEmission(); 1332 1333 // Emit as a constant. 1334 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1335 result.Val, resultType); 1336 1337 // Make sure we emit a debug reference to the global variable. 1338 // This should probably fire even for 1339 if (isa<VarDecl>(value)) { 1340 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1341 EmitDeclRefExprDbgValue(refExpr, result.Val); 1342 } else { 1343 assert(isa<EnumConstantDecl>(value)); 1344 EmitDeclRefExprDbgValue(refExpr, result.Val); 1345 } 1346 1347 // If we emitted a reference constant, we need to dereference that. 1348 if (resultIsReference) 1349 return ConstantEmission::forReference(C); 1350 1351 return ConstantEmission::forValue(C); 1352 } 1353 1354 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1355 const MemberExpr *ME) { 1356 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1357 // Try to emit static variable member expressions as DREs. 1358 return DeclRefExpr::Create( 1359 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1360 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1361 ME->getType(), ME->getValueKind()); 1362 } 1363 return nullptr; 1364 } 1365 1366 CodeGenFunction::ConstantEmission 1367 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1368 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1369 return tryEmitAsConstant(DRE); 1370 return ConstantEmission(); 1371 } 1372 1373 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1374 SourceLocation Loc) { 1375 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1376 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1377 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1378 } 1379 1380 static bool hasBooleanRepresentation(QualType Ty) { 1381 if (Ty->isBooleanType()) 1382 return true; 1383 1384 if (const EnumType *ET = Ty->getAs<EnumType>()) 1385 return ET->getDecl()->getIntegerType()->isBooleanType(); 1386 1387 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1388 return hasBooleanRepresentation(AT->getValueType()); 1389 1390 return false; 1391 } 1392 1393 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1394 llvm::APInt &Min, llvm::APInt &End, 1395 bool StrictEnums, bool IsBool) { 1396 const EnumType *ET = Ty->getAs<EnumType>(); 1397 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1398 ET && !ET->getDecl()->isFixed(); 1399 if (!IsBool && !IsRegularCPlusPlusEnum) 1400 return false; 1401 1402 if (IsBool) { 1403 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1404 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1405 } else { 1406 const EnumDecl *ED = ET->getDecl(); 1407 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1408 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1409 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1410 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1411 1412 if (NumNegativeBits) { 1413 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1414 assert(NumBits <= Bitwidth); 1415 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1416 Min = -End; 1417 } else { 1418 assert(NumPositiveBits <= Bitwidth); 1419 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1420 Min = llvm::APInt(Bitwidth, 0); 1421 } 1422 } 1423 return true; 1424 } 1425 1426 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1427 llvm::APInt Min, End; 1428 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1429 hasBooleanRepresentation(Ty))) 1430 return nullptr; 1431 1432 llvm::MDBuilder MDHelper(getLLVMContext()); 1433 return MDHelper.createRange(Min, End); 1434 } 1435 1436 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1437 SourceLocation Loc) { 1438 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1439 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1440 if (!HasBoolCheck && !HasEnumCheck) 1441 return false; 1442 1443 bool IsBool = hasBooleanRepresentation(Ty) || 1444 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1445 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1446 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1447 if (!NeedsBoolCheck && !NeedsEnumCheck) 1448 return false; 1449 1450 // Single-bit booleans don't need to be checked. Special-case this to avoid 1451 // a bit width mismatch when handling bitfield values. This is handled by 1452 // EmitFromMemory for the non-bitfield case. 1453 if (IsBool && 1454 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1455 return false; 1456 1457 llvm::APInt Min, End; 1458 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1459 return true; 1460 1461 auto &Ctx = getLLVMContext(); 1462 SanitizerScope SanScope(this); 1463 llvm::Value *Check; 1464 --End; 1465 if (!Min) { 1466 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1467 } else { 1468 llvm::Value *Upper = 1469 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1470 llvm::Value *Lower = 1471 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1472 Check = Builder.CreateAnd(Upper, Lower); 1473 } 1474 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1475 EmitCheckTypeDescriptor(Ty)}; 1476 SanitizerMask Kind = 1477 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1478 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1479 StaticArgs, EmitCheckValue(Value)); 1480 return true; 1481 } 1482 1483 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1484 QualType Ty, 1485 SourceLocation Loc, 1486 LValueBaseInfo BaseInfo, 1487 TBAAAccessInfo TBAAInfo, 1488 bool isNontemporal) { 1489 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1490 // For better performance, handle vector loads differently. 1491 if (Ty->isVectorType()) { 1492 const llvm::Type *EltTy = Addr.getElementType(); 1493 1494 const auto *VTy = cast<llvm::VectorType>(EltTy); 1495 1496 // Handle vectors of size 3 like size 4 for better performance. 1497 if (VTy->getNumElements() == 3) { 1498 1499 // Bitcast to vec4 type. 1500 llvm::VectorType *vec4Ty = 1501 llvm::VectorType::get(VTy->getElementType(), 4); 1502 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1503 // Now load value. 1504 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1505 1506 // Shuffle vector to get vec3. 1507 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1508 {0, 1, 2}, "extractVec"); 1509 return EmitFromMemory(V, Ty); 1510 } 1511 } 1512 } 1513 1514 // Atomic operations have to be done on integral types. 1515 LValue AtomicLValue = 1516 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1517 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1518 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1519 } 1520 1521 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1522 if (isNontemporal) { 1523 llvm::MDNode *Node = llvm::MDNode::get( 1524 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1525 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1526 } 1527 1528 if (BaseInfo.getMayAlias()) 1529 TBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 1530 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1531 1532 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1533 // In order to prevent the optimizer from throwing away the check, don't 1534 // attach range metadata to the load. 1535 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1536 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1537 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1538 1539 return EmitFromMemory(Load, Ty); 1540 } 1541 1542 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1543 // Bool has a different representation in memory than in registers. 1544 if (hasBooleanRepresentation(Ty)) { 1545 // This should really always be an i1, but sometimes it's already 1546 // an i8, and it's awkward to track those cases down. 1547 if (Value->getType()->isIntegerTy(1)) 1548 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1549 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1550 "wrong value rep of bool"); 1551 } 1552 1553 return Value; 1554 } 1555 1556 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1557 // Bool has a different representation in memory than in registers. 1558 if (hasBooleanRepresentation(Ty)) { 1559 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1560 "wrong value rep of bool"); 1561 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1562 } 1563 1564 return Value; 1565 } 1566 1567 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1568 bool Volatile, QualType Ty, 1569 LValueBaseInfo BaseInfo, 1570 TBAAAccessInfo TBAAInfo, 1571 bool isInit, bool isNontemporal) { 1572 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1573 // Handle vectors differently to get better performance. 1574 if (Ty->isVectorType()) { 1575 llvm::Type *SrcTy = Value->getType(); 1576 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1577 // Handle vec3 special. 1578 if (VecTy && VecTy->getNumElements() == 3) { 1579 // Our source is a vec3, do a shuffle vector to make it a vec4. 1580 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1581 Builder.getInt32(2), 1582 llvm::UndefValue::get(Builder.getInt32Ty())}; 1583 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1584 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1585 MaskV, "extractVec"); 1586 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1587 } 1588 if (Addr.getElementType() != SrcTy) { 1589 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1590 } 1591 } 1592 } 1593 1594 Value = EmitToMemory(Value, Ty); 1595 1596 LValue AtomicLValue = 1597 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1598 if (Ty->isAtomicType() || 1599 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1600 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1601 return; 1602 } 1603 1604 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1605 if (isNontemporal) { 1606 llvm::MDNode *Node = 1607 llvm::MDNode::get(Store->getContext(), 1608 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1609 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1610 } 1611 1612 if (BaseInfo.getMayAlias()) 1613 TBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 1614 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1615 } 1616 1617 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1618 bool isInit) { 1619 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1620 lvalue.getType(), lvalue.getBaseInfo(), 1621 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1622 } 1623 1624 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1625 /// method emits the address of the lvalue, then loads the result as an rvalue, 1626 /// returning the rvalue. 1627 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1628 if (LV.isObjCWeak()) { 1629 // load of a __weak object. 1630 Address AddrWeakObj = LV.getAddress(); 1631 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1632 AddrWeakObj)); 1633 } 1634 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1635 // In MRC mode, we do a load+autorelease. 1636 if (!getLangOpts().ObjCAutoRefCount) { 1637 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1638 } 1639 1640 // In ARC mode, we load retained and then consume the value. 1641 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1642 Object = EmitObjCConsumeObject(LV.getType(), Object); 1643 return RValue::get(Object); 1644 } 1645 1646 if (LV.isSimple()) { 1647 assert(!LV.getType()->isFunctionType()); 1648 1649 // Everything needs a load. 1650 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1651 } 1652 1653 if (LV.isVectorElt()) { 1654 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1655 LV.isVolatileQualified()); 1656 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1657 "vecext")); 1658 } 1659 1660 // If this is a reference to a subset of the elements of a vector, either 1661 // shuffle the input or extract/insert them as appropriate. 1662 if (LV.isExtVectorElt()) 1663 return EmitLoadOfExtVectorElementLValue(LV); 1664 1665 // Global Register variables always invoke intrinsics 1666 if (LV.isGlobalReg()) 1667 return EmitLoadOfGlobalRegLValue(LV); 1668 1669 assert(LV.isBitField() && "Unknown LValue type!"); 1670 return EmitLoadOfBitfieldLValue(LV, Loc); 1671 } 1672 1673 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1674 SourceLocation Loc) { 1675 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1676 1677 // Get the output type. 1678 llvm::Type *ResLTy = ConvertType(LV.getType()); 1679 1680 Address Ptr = LV.getBitFieldAddress(); 1681 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1682 1683 if (Info.IsSigned) { 1684 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1685 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1686 if (HighBits) 1687 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1688 if (Info.Offset + HighBits) 1689 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1690 } else { 1691 if (Info.Offset) 1692 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1693 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1694 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1695 Info.Size), 1696 "bf.clear"); 1697 } 1698 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1699 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1700 return RValue::get(Val); 1701 } 1702 1703 // If this is a reference to a subset of the elements of a vector, create an 1704 // appropriate shufflevector. 1705 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1706 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1707 LV.isVolatileQualified()); 1708 1709 const llvm::Constant *Elts = LV.getExtVectorElts(); 1710 1711 // If the result of the expression is a non-vector type, we must be extracting 1712 // a single element. Just codegen as an extractelement. 1713 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1714 if (!ExprVT) { 1715 unsigned InIdx = getAccessedFieldNo(0, Elts); 1716 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1717 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1718 } 1719 1720 // Always use shuffle vector to try to retain the original program structure 1721 unsigned NumResultElts = ExprVT->getNumElements(); 1722 1723 SmallVector<llvm::Constant*, 4> Mask; 1724 for (unsigned i = 0; i != NumResultElts; ++i) 1725 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1726 1727 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1728 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1729 MaskV); 1730 return RValue::get(Vec); 1731 } 1732 1733 /// @brief Generates lvalue for partial ext_vector access. 1734 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1735 Address VectorAddress = LV.getExtVectorAddress(); 1736 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1737 QualType EQT = ExprVT->getElementType(); 1738 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1739 1740 Address CastToPointerElement = 1741 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1742 "conv.ptr.element"); 1743 1744 const llvm::Constant *Elts = LV.getExtVectorElts(); 1745 unsigned ix = getAccessedFieldNo(0, Elts); 1746 1747 Address VectorBasePtrPlusIx = 1748 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1749 getContext().getTypeSizeInChars(EQT), 1750 "vector.elt"); 1751 1752 return VectorBasePtrPlusIx; 1753 } 1754 1755 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1756 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1757 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1758 "Bad type for register variable"); 1759 llvm::MDNode *RegName = cast<llvm::MDNode>( 1760 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1761 1762 // We accept integer and pointer types only 1763 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1764 llvm::Type *Ty = OrigTy; 1765 if (OrigTy->isPointerTy()) 1766 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1767 llvm::Type *Types[] = { Ty }; 1768 1769 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1770 llvm::Value *Call = Builder.CreateCall( 1771 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1772 if (OrigTy->isPointerTy()) 1773 Call = Builder.CreateIntToPtr(Call, OrigTy); 1774 return RValue::get(Call); 1775 } 1776 1777 1778 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1779 /// lvalue, where both are guaranteed to the have the same type, and that type 1780 /// is 'Ty'. 1781 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1782 bool isInit) { 1783 if (!Dst.isSimple()) { 1784 if (Dst.isVectorElt()) { 1785 // Read/modify/write the vector, inserting the new element. 1786 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1787 Dst.isVolatileQualified()); 1788 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1789 Dst.getVectorIdx(), "vecins"); 1790 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1791 Dst.isVolatileQualified()); 1792 return; 1793 } 1794 1795 // If this is an update of extended vector elements, insert them as 1796 // appropriate. 1797 if (Dst.isExtVectorElt()) 1798 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1799 1800 if (Dst.isGlobalReg()) 1801 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1802 1803 assert(Dst.isBitField() && "Unknown LValue type"); 1804 return EmitStoreThroughBitfieldLValue(Src, Dst); 1805 } 1806 1807 // There's special magic for assigning into an ARC-qualified l-value. 1808 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1809 switch (Lifetime) { 1810 case Qualifiers::OCL_None: 1811 llvm_unreachable("present but none"); 1812 1813 case Qualifiers::OCL_ExplicitNone: 1814 // nothing special 1815 break; 1816 1817 case Qualifiers::OCL_Strong: 1818 if (isInit) { 1819 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1820 break; 1821 } 1822 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1823 return; 1824 1825 case Qualifiers::OCL_Weak: 1826 if (isInit) 1827 // Initialize and then skip the primitive store. 1828 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1829 else 1830 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1831 return; 1832 1833 case Qualifiers::OCL_Autoreleasing: 1834 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1835 Src.getScalarVal())); 1836 // fall into the normal path 1837 break; 1838 } 1839 } 1840 1841 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1842 // load of a __weak object. 1843 Address LvalueDst = Dst.getAddress(); 1844 llvm::Value *src = Src.getScalarVal(); 1845 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1846 return; 1847 } 1848 1849 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1850 // load of a __strong object. 1851 Address LvalueDst = Dst.getAddress(); 1852 llvm::Value *src = Src.getScalarVal(); 1853 if (Dst.isObjCIvar()) { 1854 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1855 llvm::Type *ResultType = IntPtrTy; 1856 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1857 llvm::Value *RHS = dst.getPointer(); 1858 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1859 llvm::Value *LHS = 1860 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1861 "sub.ptr.lhs.cast"); 1862 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1863 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1864 BytesBetween); 1865 } else if (Dst.isGlobalObjCRef()) { 1866 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1867 Dst.isThreadLocalRef()); 1868 } 1869 else 1870 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1871 return; 1872 } 1873 1874 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1875 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1876 } 1877 1878 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1879 llvm::Value **Result) { 1880 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1881 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1882 Address Ptr = Dst.getBitFieldAddress(); 1883 1884 // Get the source value, truncated to the width of the bit-field. 1885 llvm::Value *SrcVal = Src.getScalarVal(); 1886 1887 // Cast the source to the storage type and shift it into place. 1888 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1889 /*IsSigned=*/false); 1890 llvm::Value *MaskedVal = SrcVal; 1891 1892 // See if there are other bits in the bitfield's storage we'll need to load 1893 // and mask together with source before storing. 1894 if (Info.StorageSize != Info.Size) { 1895 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1896 llvm::Value *Val = 1897 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1898 1899 // Mask the source value as needed. 1900 if (!hasBooleanRepresentation(Dst.getType())) 1901 SrcVal = Builder.CreateAnd(SrcVal, 1902 llvm::APInt::getLowBitsSet(Info.StorageSize, 1903 Info.Size), 1904 "bf.value"); 1905 MaskedVal = SrcVal; 1906 if (Info.Offset) 1907 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1908 1909 // Mask out the original value. 1910 Val = Builder.CreateAnd(Val, 1911 ~llvm::APInt::getBitsSet(Info.StorageSize, 1912 Info.Offset, 1913 Info.Offset + Info.Size), 1914 "bf.clear"); 1915 1916 // Or together the unchanged values and the source value. 1917 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1918 } else { 1919 assert(Info.Offset == 0); 1920 } 1921 1922 // Write the new value back out. 1923 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1924 1925 // Return the new value of the bit-field, if requested. 1926 if (Result) { 1927 llvm::Value *ResultVal = MaskedVal; 1928 1929 // Sign extend the value if needed. 1930 if (Info.IsSigned) { 1931 assert(Info.Size <= Info.StorageSize); 1932 unsigned HighBits = Info.StorageSize - Info.Size; 1933 if (HighBits) { 1934 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1935 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1936 } 1937 } 1938 1939 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1940 "bf.result.cast"); 1941 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1942 } 1943 } 1944 1945 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1946 LValue Dst) { 1947 // This access turns into a read/modify/write of the vector. Load the input 1948 // value now. 1949 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1950 Dst.isVolatileQualified()); 1951 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1952 1953 llvm::Value *SrcVal = Src.getScalarVal(); 1954 1955 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1956 unsigned NumSrcElts = VTy->getNumElements(); 1957 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1958 if (NumDstElts == NumSrcElts) { 1959 // Use shuffle vector is the src and destination are the same number of 1960 // elements and restore the vector mask since it is on the side it will be 1961 // stored. 1962 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1963 for (unsigned i = 0; i != NumSrcElts; ++i) 1964 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1965 1966 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1967 Vec = Builder.CreateShuffleVector(SrcVal, 1968 llvm::UndefValue::get(Vec->getType()), 1969 MaskV); 1970 } else if (NumDstElts > NumSrcElts) { 1971 // Extended the source vector to the same length and then shuffle it 1972 // into the destination. 1973 // FIXME: since we're shuffling with undef, can we just use the indices 1974 // into that? This could be simpler. 1975 SmallVector<llvm::Constant*, 4> ExtMask; 1976 for (unsigned i = 0; i != NumSrcElts; ++i) 1977 ExtMask.push_back(Builder.getInt32(i)); 1978 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1979 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1980 llvm::Value *ExtSrcVal = 1981 Builder.CreateShuffleVector(SrcVal, 1982 llvm::UndefValue::get(SrcVal->getType()), 1983 ExtMaskV); 1984 // build identity 1985 SmallVector<llvm::Constant*, 4> Mask; 1986 for (unsigned i = 0; i != NumDstElts; ++i) 1987 Mask.push_back(Builder.getInt32(i)); 1988 1989 // When the vector size is odd and .odd or .hi is used, the last element 1990 // of the Elts constant array will be one past the size of the vector. 1991 // Ignore the last element here, if it is greater than the mask size. 1992 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1993 NumSrcElts--; 1994 1995 // modify when what gets shuffled in 1996 for (unsigned i = 0; i != NumSrcElts; ++i) 1997 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1998 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1999 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2000 } else { 2001 // We should never shorten the vector 2002 llvm_unreachable("unexpected shorten vector length"); 2003 } 2004 } else { 2005 // If the Src is a scalar (not a vector) it must be updating one element. 2006 unsigned InIdx = getAccessedFieldNo(0, Elts); 2007 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2008 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2009 } 2010 2011 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2012 Dst.isVolatileQualified()); 2013 } 2014 2015 /// @brief Store of global named registers are always calls to intrinsics. 2016 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2017 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2018 "Bad type for register variable"); 2019 llvm::MDNode *RegName = cast<llvm::MDNode>( 2020 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2021 assert(RegName && "Register LValue is not metadata"); 2022 2023 // We accept integer and pointer types only 2024 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2025 llvm::Type *Ty = OrigTy; 2026 if (OrigTy->isPointerTy()) 2027 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2028 llvm::Type *Types[] = { Ty }; 2029 2030 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2031 llvm::Value *Value = Src.getScalarVal(); 2032 if (OrigTy->isPointerTy()) 2033 Value = Builder.CreatePtrToInt(Value, Ty); 2034 Builder.CreateCall( 2035 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2036 } 2037 2038 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2039 // generating write-barries API. It is currently a global, ivar, 2040 // or neither. 2041 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2042 LValue &LV, 2043 bool IsMemberAccess=false) { 2044 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2045 return; 2046 2047 if (isa<ObjCIvarRefExpr>(E)) { 2048 QualType ExpTy = E->getType(); 2049 if (IsMemberAccess && ExpTy->isPointerType()) { 2050 // If ivar is a structure pointer, assigning to field of 2051 // this struct follows gcc's behavior and makes it a non-ivar 2052 // writer-barrier conservatively. 2053 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2054 if (ExpTy->isRecordType()) { 2055 LV.setObjCIvar(false); 2056 return; 2057 } 2058 } 2059 LV.setObjCIvar(true); 2060 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2061 LV.setBaseIvarExp(Exp->getBase()); 2062 LV.setObjCArray(E->getType()->isArrayType()); 2063 return; 2064 } 2065 2066 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2067 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2068 if (VD->hasGlobalStorage()) { 2069 LV.setGlobalObjCRef(true); 2070 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2071 } 2072 } 2073 LV.setObjCArray(E->getType()->isArrayType()); 2074 return; 2075 } 2076 2077 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2078 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2079 return; 2080 } 2081 2082 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2083 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2084 if (LV.isObjCIvar()) { 2085 // If cast is to a structure pointer, follow gcc's behavior and make it 2086 // a non-ivar write-barrier. 2087 QualType ExpTy = E->getType(); 2088 if (ExpTy->isPointerType()) 2089 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2090 if (ExpTy->isRecordType()) 2091 LV.setObjCIvar(false); 2092 } 2093 return; 2094 } 2095 2096 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2097 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2098 return; 2099 } 2100 2101 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2102 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2103 return; 2104 } 2105 2106 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2107 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2108 return; 2109 } 2110 2111 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2112 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2113 return; 2114 } 2115 2116 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2117 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2118 if (LV.isObjCIvar() && !LV.isObjCArray()) 2119 // Using array syntax to assigning to what an ivar points to is not 2120 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2121 LV.setObjCIvar(false); 2122 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2123 // Using array syntax to assigning to what global points to is not 2124 // same as assigning to the global itself. {id *G;} G[i] = 0; 2125 LV.setGlobalObjCRef(false); 2126 return; 2127 } 2128 2129 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2130 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2131 // We don't know if member is an 'ivar', but this flag is looked at 2132 // only in the context of LV.isObjCIvar(). 2133 LV.setObjCArray(E->getType()->isArrayType()); 2134 return; 2135 } 2136 } 2137 2138 static llvm::Value * 2139 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2140 llvm::Value *V, llvm::Type *IRType, 2141 StringRef Name = StringRef()) { 2142 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2143 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2144 } 2145 2146 static LValue EmitThreadPrivateVarDeclLValue( 2147 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2148 llvm::Type *RealVarTy, SourceLocation Loc) { 2149 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2150 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2151 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2152 return CGF.MakeAddrLValue(Addr, T, BaseInfo); 2153 } 2154 2155 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2156 const ReferenceType *RefTy, 2157 LValueBaseInfo *BaseInfo) { 2158 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2159 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2160 BaseInfo, /*forPointee*/ true)); 2161 } 2162 2163 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2164 const ReferenceType *RefTy) { 2165 LValueBaseInfo BaseInfo; 2166 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo); 2167 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo); 2168 } 2169 2170 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2171 const PointerType *PtrTy, 2172 LValueBaseInfo *BaseInfo) { 2173 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2174 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2175 BaseInfo, 2176 /*forPointeeType=*/true)); 2177 } 2178 2179 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2180 const PointerType *PtrTy) { 2181 LValueBaseInfo BaseInfo; 2182 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo); 2183 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo); 2184 } 2185 2186 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2187 const Expr *E, const VarDecl *VD) { 2188 QualType T = E->getType(); 2189 2190 // If it's thread_local, emit a call to its wrapper function instead. 2191 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2192 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2193 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2194 2195 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2196 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2197 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2198 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2199 Address Addr(V, Alignment); 2200 LValue LV; 2201 // Emit reference to the private copy of the variable if it is an OpenMP 2202 // threadprivate variable. 2203 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2204 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2205 E->getExprLoc()); 2206 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2207 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2208 } else { 2209 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2210 LV = CGF.MakeAddrLValue(Addr, T, BaseInfo); 2211 } 2212 setObjCGCLValueClass(CGF.getContext(), E, LV); 2213 return LV; 2214 } 2215 2216 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2217 const FunctionDecl *FD) { 2218 if (FD->hasAttr<WeakRefAttr>()) { 2219 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2220 return aliasee.getPointer(); 2221 } 2222 2223 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2224 if (!FD->hasPrototype()) { 2225 if (const FunctionProtoType *Proto = 2226 FD->getType()->getAs<FunctionProtoType>()) { 2227 // Ugly case: for a K&R-style definition, the type of the definition 2228 // isn't the same as the type of a use. Correct for this with a 2229 // bitcast. 2230 QualType NoProtoType = 2231 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2232 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2233 V = llvm::ConstantExpr::getBitCast(V, 2234 CGM.getTypes().ConvertType(NoProtoType)); 2235 } 2236 } 2237 return V; 2238 } 2239 2240 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2241 const Expr *E, const FunctionDecl *FD) { 2242 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2243 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2244 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2245 return CGF.MakeAddrLValue(V, E->getType(), Alignment, BaseInfo); 2246 } 2247 2248 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2249 llvm::Value *ThisValue) { 2250 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2251 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2252 return CGF.EmitLValueForField(LV, FD); 2253 } 2254 2255 /// Named Registers are named metadata pointing to the register name 2256 /// which will be read from/written to as an argument to the intrinsic 2257 /// @llvm.read/write_register. 2258 /// So far, only the name is being passed down, but other options such as 2259 /// register type, allocation type or even optimization options could be 2260 /// passed down via the metadata node. 2261 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2262 SmallString<64> Name("llvm.named.register."); 2263 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2264 assert(Asm->getLabel().size() < 64-Name.size() && 2265 "Register name too big"); 2266 Name.append(Asm->getLabel()); 2267 llvm::NamedMDNode *M = 2268 CGM.getModule().getOrInsertNamedMetadata(Name); 2269 if (M->getNumOperands() == 0) { 2270 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2271 Asm->getLabel()); 2272 llvm::Metadata *Ops[] = {Str}; 2273 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2274 } 2275 2276 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2277 2278 llvm::Value *Ptr = 2279 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2280 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2281 } 2282 2283 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2284 const NamedDecl *ND = E->getDecl(); 2285 QualType T = E->getType(); 2286 2287 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2288 // Global Named registers access via intrinsics only 2289 if (VD->getStorageClass() == SC_Register && 2290 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2291 return EmitGlobalNamedRegister(VD, CGM); 2292 2293 // A DeclRefExpr for a reference initialized by a constant expression can 2294 // appear without being odr-used. Directly emit the constant initializer. 2295 const Expr *Init = VD->getAnyInitializer(VD); 2296 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2297 VD->isUsableInConstantExpressions(getContext()) && 2298 VD->checkInitIsICE() && 2299 // Do not emit if it is private OpenMP variable. 2300 !(E->refersToEnclosingVariableOrCapture() && 2301 ((CapturedStmtInfo && 2302 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2303 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2304 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2305 isa<BlockDecl>(CurCodeDecl)))) { 2306 llvm::Constant *Val = 2307 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2308 *VD->evaluateValue(), 2309 VD->getType()); 2310 assert(Val && "failed to emit reference constant expression"); 2311 // FIXME: Eventually we will want to emit vector element references. 2312 2313 // Should we be using the alignment of the constant pointer we emitted? 2314 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2315 /*pointee*/ true); 2316 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2317 return MakeAddrLValue(Address(Val, Alignment), T, BaseInfo); 2318 } 2319 2320 // Check for captured variables. 2321 if (E->refersToEnclosingVariableOrCapture()) { 2322 VD = VD->getCanonicalDecl(); 2323 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2324 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2325 else if (CapturedStmtInfo) { 2326 auto I = LocalDeclMap.find(VD); 2327 if (I != LocalDeclMap.end()) { 2328 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2329 return EmitLoadOfReferenceLValue(I->second, RefTy); 2330 return MakeAddrLValue(I->second, T); 2331 } 2332 LValue CapLVal = 2333 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2334 CapturedStmtInfo->getContextValue()); 2335 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2336 return MakeAddrLValue( 2337 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2338 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias)); 2339 } 2340 2341 assert(isa<BlockDecl>(CurCodeDecl)); 2342 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2343 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2344 return MakeAddrLValue(addr, T, BaseInfo); 2345 } 2346 } 2347 2348 // FIXME: We should be able to assert this for FunctionDecls as well! 2349 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2350 // those with a valid source location. 2351 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2352 !E->getLocation().isValid()) && 2353 "Should not use decl without marking it used!"); 2354 2355 if (ND->hasAttr<WeakRefAttr>()) { 2356 const auto *VD = cast<ValueDecl>(ND); 2357 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2358 return MakeAddrLValue(Aliasee, T, 2359 LValueBaseInfo(AlignmentSource::Decl, false)); 2360 } 2361 2362 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2363 // Check if this is a global variable. 2364 if (VD->hasLinkage() || VD->isStaticDataMember()) 2365 return EmitGlobalVarDeclLValue(*this, E, VD); 2366 2367 Address addr = Address::invalid(); 2368 2369 // The variable should generally be present in the local decl map. 2370 auto iter = LocalDeclMap.find(VD); 2371 if (iter != LocalDeclMap.end()) { 2372 addr = iter->second; 2373 2374 // Otherwise, it might be static local we haven't emitted yet for 2375 // some reason; most likely, because it's in an outer function. 2376 } else if (VD->isStaticLocal()) { 2377 addr = Address(CGM.getOrCreateStaticVarDecl( 2378 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2379 getContext().getDeclAlign(VD)); 2380 2381 // No other cases for now. 2382 } else { 2383 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2384 } 2385 2386 2387 // Check for OpenMP threadprivate variables. 2388 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2389 return EmitThreadPrivateVarDeclLValue( 2390 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2391 E->getExprLoc()); 2392 } 2393 2394 // Drill into block byref variables. 2395 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2396 if (isBlockByref) { 2397 addr = emitBlockByrefAddress(addr, VD); 2398 } 2399 2400 // Drill into reference types. 2401 LValue LV; 2402 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2403 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2404 } else { 2405 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2406 LV = MakeAddrLValue(addr, T, BaseInfo); 2407 } 2408 2409 bool isLocalStorage = VD->hasLocalStorage(); 2410 2411 bool NonGCable = isLocalStorage && 2412 !VD->getType()->isReferenceType() && 2413 !isBlockByref; 2414 if (NonGCable) { 2415 LV.getQuals().removeObjCGCAttr(); 2416 LV.setNonGC(true); 2417 } 2418 2419 bool isImpreciseLifetime = 2420 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2421 if (isImpreciseLifetime) 2422 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2423 setObjCGCLValueClass(getContext(), E, LV); 2424 return LV; 2425 } 2426 2427 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2428 return EmitFunctionDeclLValue(*this, E, FD); 2429 2430 // FIXME: While we're emitting a binding from an enclosing scope, all other 2431 // DeclRefExprs we see should be implicitly treated as if they also refer to 2432 // an enclosing scope. 2433 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2434 return EmitLValue(BD->getBinding()); 2435 2436 llvm_unreachable("Unhandled DeclRefExpr"); 2437 } 2438 2439 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2440 // __extension__ doesn't affect lvalue-ness. 2441 if (E->getOpcode() == UO_Extension) 2442 return EmitLValue(E->getSubExpr()); 2443 2444 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2445 switch (E->getOpcode()) { 2446 default: llvm_unreachable("Unknown unary operator lvalue!"); 2447 case UO_Deref: { 2448 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2449 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2450 2451 LValueBaseInfo BaseInfo; 2452 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo); 2453 LValue LV = MakeAddrLValue(Addr, T, BaseInfo); 2454 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2455 2456 // We should not generate __weak write barrier on indirect reference 2457 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2458 // But, we continue to generate __strong write barrier on indirect write 2459 // into a pointer to object. 2460 if (getLangOpts().ObjC1 && 2461 getLangOpts().getGC() != LangOptions::NonGC && 2462 LV.isObjCWeak()) 2463 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2464 return LV; 2465 } 2466 case UO_Real: 2467 case UO_Imag: { 2468 LValue LV = EmitLValue(E->getSubExpr()); 2469 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2470 2471 // __real is valid on scalars. This is a faster way of testing that. 2472 // __imag can only produce an rvalue on scalars. 2473 if (E->getOpcode() == UO_Real && 2474 !LV.getAddress().getElementType()->isStructTy()) { 2475 assert(E->getSubExpr()->getType()->isArithmeticType()); 2476 return LV; 2477 } 2478 2479 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2480 2481 Address Component = 2482 (E->getOpcode() == UO_Real 2483 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2484 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2485 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo()); 2486 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2487 return ElemLV; 2488 } 2489 case UO_PreInc: 2490 case UO_PreDec: { 2491 LValue LV = EmitLValue(E->getSubExpr()); 2492 bool isInc = E->getOpcode() == UO_PreInc; 2493 2494 if (E->getType()->isAnyComplexType()) 2495 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2496 else 2497 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2498 return LV; 2499 } 2500 } 2501 } 2502 2503 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2504 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2505 E->getType(), 2506 LValueBaseInfo(AlignmentSource::Decl, false)); 2507 } 2508 2509 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2510 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2511 E->getType(), 2512 LValueBaseInfo(AlignmentSource::Decl, false)); 2513 } 2514 2515 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2516 auto SL = E->getFunctionName(); 2517 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2518 StringRef FnName = CurFn->getName(); 2519 if (FnName.startswith("\01")) 2520 FnName = FnName.substr(1); 2521 StringRef NameItems[] = { 2522 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2523 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2524 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 2525 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2526 std::string Name = SL->getString(); 2527 if (!Name.empty()) { 2528 unsigned Discriminator = 2529 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2530 if (Discriminator) 2531 Name += "_" + Twine(Discriminator + 1).str(); 2532 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2533 return MakeAddrLValue(C, E->getType(), BaseInfo); 2534 } else { 2535 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2536 return MakeAddrLValue(C, E->getType(), BaseInfo); 2537 } 2538 } 2539 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2540 return MakeAddrLValue(C, E->getType(), BaseInfo); 2541 } 2542 2543 /// Emit a type description suitable for use by a runtime sanitizer library. The 2544 /// format of a type descriptor is 2545 /// 2546 /// \code 2547 /// { i16 TypeKind, i16 TypeInfo } 2548 /// \endcode 2549 /// 2550 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2551 /// integer, 1 for a floating point value, and -1 for anything else. 2552 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2553 // Only emit each type's descriptor once. 2554 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2555 return C; 2556 2557 uint16_t TypeKind = -1; 2558 uint16_t TypeInfo = 0; 2559 2560 if (T->isIntegerType()) { 2561 TypeKind = 0; 2562 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2563 (T->isSignedIntegerType() ? 1 : 0); 2564 } else if (T->isFloatingType()) { 2565 TypeKind = 1; 2566 TypeInfo = getContext().getTypeSize(T); 2567 } 2568 2569 // Format the type name as if for a diagnostic, including quotes and 2570 // optionally an 'aka'. 2571 SmallString<32> Buffer; 2572 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2573 (intptr_t)T.getAsOpaquePtr(), 2574 StringRef(), StringRef(), None, Buffer, 2575 None); 2576 2577 llvm::Constant *Components[] = { 2578 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2579 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2580 }; 2581 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2582 2583 auto *GV = new llvm::GlobalVariable( 2584 CGM.getModule(), Descriptor->getType(), 2585 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2586 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2587 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2588 2589 // Remember the descriptor for this type. 2590 CGM.setTypeDescriptorInMap(T, GV); 2591 2592 return GV; 2593 } 2594 2595 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2596 llvm::Type *TargetTy = IntPtrTy; 2597 2598 if (V->getType() == TargetTy) 2599 return V; 2600 2601 // Floating-point types which fit into intptr_t are bitcast to integers 2602 // and then passed directly (after zero-extension, if necessary). 2603 if (V->getType()->isFloatingPointTy()) { 2604 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2605 if (Bits <= TargetTy->getIntegerBitWidth()) 2606 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2607 Bits)); 2608 } 2609 2610 // Integers which fit in intptr_t are zero-extended and passed directly. 2611 if (V->getType()->isIntegerTy() && 2612 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2613 return Builder.CreateZExt(V, TargetTy); 2614 2615 // Pointers are passed directly, everything else is passed by address. 2616 if (!V->getType()->isPointerTy()) { 2617 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2618 Builder.CreateStore(V, Ptr); 2619 V = Ptr.getPointer(); 2620 } 2621 return Builder.CreatePtrToInt(V, TargetTy); 2622 } 2623 2624 /// \brief Emit a representation of a SourceLocation for passing to a handler 2625 /// in a sanitizer runtime library. The format for this data is: 2626 /// \code 2627 /// struct SourceLocation { 2628 /// const char *Filename; 2629 /// int32_t Line, Column; 2630 /// }; 2631 /// \endcode 2632 /// For an invalid SourceLocation, the Filename pointer is null. 2633 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2634 llvm::Constant *Filename; 2635 int Line, Column; 2636 2637 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2638 if (PLoc.isValid()) { 2639 StringRef FilenameString = PLoc.getFilename(); 2640 2641 int PathComponentsToStrip = 2642 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2643 if (PathComponentsToStrip < 0) { 2644 assert(PathComponentsToStrip != INT_MIN); 2645 int PathComponentsToKeep = -PathComponentsToStrip; 2646 auto I = llvm::sys::path::rbegin(FilenameString); 2647 auto E = llvm::sys::path::rend(FilenameString); 2648 while (I != E && --PathComponentsToKeep) 2649 ++I; 2650 2651 FilenameString = FilenameString.substr(I - E); 2652 } else if (PathComponentsToStrip > 0) { 2653 auto I = llvm::sys::path::begin(FilenameString); 2654 auto E = llvm::sys::path::end(FilenameString); 2655 while (I != E && PathComponentsToStrip--) 2656 ++I; 2657 2658 if (I != E) 2659 FilenameString = 2660 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2661 else 2662 FilenameString = llvm::sys::path::filename(FilenameString); 2663 } 2664 2665 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2666 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2667 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2668 Filename = FilenameGV.getPointer(); 2669 Line = PLoc.getLine(); 2670 Column = PLoc.getColumn(); 2671 } else { 2672 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2673 Line = Column = 0; 2674 } 2675 2676 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2677 Builder.getInt32(Column)}; 2678 2679 return llvm::ConstantStruct::getAnon(Data); 2680 } 2681 2682 namespace { 2683 /// \brief Specify under what conditions this check can be recovered 2684 enum class CheckRecoverableKind { 2685 /// Always terminate program execution if this check fails. 2686 Unrecoverable, 2687 /// Check supports recovering, runtime has both fatal (noreturn) and 2688 /// non-fatal handlers for this check. 2689 Recoverable, 2690 /// Runtime conditionally aborts, always need to support recovery. 2691 AlwaysRecoverable 2692 }; 2693 } 2694 2695 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2696 assert(llvm::countPopulation(Kind) == 1); 2697 switch (Kind) { 2698 case SanitizerKind::Vptr: 2699 return CheckRecoverableKind::AlwaysRecoverable; 2700 case SanitizerKind::Return: 2701 case SanitizerKind::Unreachable: 2702 return CheckRecoverableKind::Unrecoverable; 2703 default: 2704 return CheckRecoverableKind::Recoverable; 2705 } 2706 } 2707 2708 namespace { 2709 struct SanitizerHandlerInfo { 2710 char const *const Name; 2711 unsigned Version; 2712 }; 2713 } 2714 2715 const SanitizerHandlerInfo SanitizerHandlers[] = { 2716 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2717 LIST_SANITIZER_CHECKS 2718 #undef SANITIZER_CHECK 2719 }; 2720 2721 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2722 llvm::FunctionType *FnType, 2723 ArrayRef<llvm::Value *> FnArgs, 2724 SanitizerHandler CheckHandler, 2725 CheckRecoverableKind RecoverKind, bool IsFatal, 2726 llvm::BasicBlock *ContBB) { 2727 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2728 bool NeedsAbortSuffix = 2729 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2730 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2731 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2732 const StringRef CheckName = CheckInfo.Name; 2733 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2734 if (CheckInfo.Version && !MinimalRuntime) 2735 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2736 if (MinimalRuntime) 2737 FnName += "_minimal"; 2738 if (NeedsAbortSuffix) 2739 FnName += "_abort"; 2740 bool MayReturn = 2741 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2742 2743 llvm::AttrBuilder B; 2744 if (!MayReturn) { 2745 B.addAttribute(llvm::Attribute::NoReturn) 2746 .addAttribute(llvm::Attribute::NoUnwind); 2747 } 2748 B.addAttribute(llvm::Attribute::UWTable); 2749 2750 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2751 FnType, FnName, 2752 llvm::AttributeList::get(CGF.getLLVMContext(), 2753 llvm::AttributeList::FunctionIndex, B), 2754 /*Local=*/true); 2755 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2756 if (!MayReturn) { 2757 HandlerCall->setDoesNotReturn(); 2758 CGF.Builder.CreateUnreachable(); 2759 } else { 2760 CGF.Builder.CreateBr(ContBB); 2761 } 2762 } 2763 2764 void CodeGenFunction::EmitCheck( 2765 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2766 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2767 ArrayRef<llvm::Value *> DynamicArgs) { 2768 assert(IsSanitizerScope); 2769 assert(Checked.size() > 0); 2770 assert(CheckHandler >= 0 && 2771 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2772 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2773 2774 llvm::Value *FatalCond = nullptr; 2775 llvm::Value *RecoverableCond = nullptr; 2776 llvm::Value *TrapCond = nullptr; 2777 for (int i = 0, n = Checked.size(); i < n; ++i) { 2778 llvm::Value *Check = Checked[i].first; 2779 // -fsanitize-trap= overrides -fsanitize-recover=. 2780 llvm::Value *&Cond = 2781 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2782 ? TrapCond 2783 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2784 ? RecoverableCond 2785 : FatalCond; 2786 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2787 } 2788 2789 if (TrapCond) 2790 EmitTrapCheck(TrapCond); 2791 if (!FatalCond && !RecoverableCond) 2792 return; 2793 2794 llvm::Value *JointCond; 2795 if (FatalCond && RecoverableCond) 2796 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2797 else 2798 JointCond = FatalCond ? FatalCond : RecoverableCond; 2799 assert(JointCond); 2800 2801 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2802 assert(SanOpts.has(Checked[0].second)); 2803 #ifndef NDEBUG 2804 for (int i = 1, n = Checked.size(); i < n; ++i) { 2805 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2806 "All recoverable kinds in a single check must be same!"); 2807 assert(SanOpts.has(Checked[i].second)); 2808 } 2809 #endif 2810 2811 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2812 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2813 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2814 // Give hint that we very much don't expect to execute the handler 2815 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2816 llvm::MDBuilder MDHelper(getLLVMContext()); 2817 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2818 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2819 EmitBlock(Handlers); 2820 2821 // Handler functions take an i8* pointing to the (handler-specific) static 2822 // information block, followed by a sequence of intptr_t arguments 2823 // representing operand values. 2824 SmallVector<llvm::Value *, 4> Args; 2825 SmallVector<llvm::Type *, 4> ArgTypes; 2826 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2827 Args.reserve(DynamicArgs.size() + 1); 2828 ArgTypes.reserve(DynamicArgs.size() + 1); 2829 2830 // Emit handler arguments and create handler function type. 2831 if (!StaticArgs.empty()) { 2832 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2833 auto *InfoPtr = 2834 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2835 llvm::GlobalVariable::PrivateLinkage, Info); 2836 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2837 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2838 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2839 ArgTypes.push_back(Int8PtrTy); 2840 } 2841 2842 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2843 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2844 ArgTypes.push_back(IntPtrTy); 2845 } 2846 } 2847 2848 llvm::FunctionType *FnType = 2849 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2850 2851 if (!FatalCond || !RecoverableCond) { 2852 // Simple case: we need to generate a single handler call, either 2853 // fatal, or non-fatal. 2854 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2855 (FatalCond != nullptr), Cont); 2856 } else { 2857 // Emit two handler calls: first one for set of unrecoverable checks, 2858 // another one for recoverable. 2859 llvm::BasicBlock *NonFatalHandlerBB = 2860 createBasicBlock("non_fatal." + CheckName); 2861 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2862 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2863 EmitBlock(FatalHandlerBB); 2864 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2865 NonFatalHandlerBB); 2866 EmitBlock(NonFatalHandlerBB); 2867 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2868 Cont); 2869 } 2870 2871 EmitBlock(Cont); 2872 } 2873 2874 void CodeGenFunction::EmitCfiSlowPathCheck( 2875 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2876 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2877 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2878 2879 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2880 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2881 2882 llvm::MDBuilder MDHelper(getLLVMContext()); 2883 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2884 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2885 2886 EmitBlock(CheckBB); 2887 2888 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2889 2890 llvm::CallInst *CheckCall; 2891 if (WithDiag) { 2892 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2893 auto *InfoPtr = 2894 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2895 llvm::GlobalVariable::PrivateLinkage, Info); 2896 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2897 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2898 2899 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2900 "__cfi_slowpath_diag", 2901 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2902 false)); 2903 CheckCall = Builder.CreateCall( 2904 SlowPathDiagFn, 2905 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2906 } else { 2907 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2908 "__cfi_slowpath", 2909 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2910 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2911 } 2912 2913 CheckCall->setDoesNotThrow(); 2914 2915 EmitBlock(Cont); 2916 } 2917 2918 // Emit a stub for __cfi_check function so that the linker knows about this 2919 // symbol in LTO mode. 2920 void CodeGenFunction::EmitCfiCheckStub() { 2921 llvm::Module *M = &CGM.getModule(); 2922 auto &Ctx = M->getContext(); 2923 llvm::Function *F = llvm::Function::Create( 2924 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2925 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2926 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2927 // FIXME: consider emitting an intrinsic call like 2928 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2929 // which can be lowered in CrossDSOCFI pass to the actual contents of 2930 // __cfi_check. This would allow inlining of __cfi_check calls. 2931 llvm::CallInst::Create( 2932 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2933 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2934 } 2935 2936 // This function is basically a switch over the CFI failure kind, which is 2937 // extracted from CFICheckFailData (1st function argument). Each case is either 2938 // llvm.trap or a call to one of the two runtime handlers, based on 2939 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2940 // failure kind) traps, but this should really never happen. CFICheckFailData 2941 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2942 // check kind; in this case __cfi_check_fail traps as well. 2943 void CodeGenFunction::EmitCfiCheckFail() { 2944 SanitizerScope SanScope(this); 2945 FunctionArgList Args; 2946 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2947 ImplicitParamDecl::Other); 2948 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2949 ImplicitParamDecl::Other); 2950 Args.push_back(&ArgData); 2951 Args.push_back(&ArgAddr); 2952 2953 const CGFunctionInfo &FI = 2954 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2955 2956 llvm::Function *F = llvm::Function::Create( 2957 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2958 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2959 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2960 2961 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2962 SourceLocation()); 2963 2964 llvm::Value *Data = 2965 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2966 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2967 llvm::Value *Addr = 2968 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2969 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2970 2971 // Data == nullptr means the calling module has trap behaviour for this check. 2972 llvm::Value *DataIsNotNullPtr = 2973 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2974 EmitTrapCheck(DataIsNotNullPtr); 2975 2976 llvm::StructType *SourceLocationTy = 2977 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2978 llvm::StructType *CfiCheckFailDataTy = 2979 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2980 2981 llvm::Value *V = Builder.CreateConstGEP2_32( 2982 CfiCheckFailDataTy, 2983 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2984 0); 2985 Address CheckKindAddr(V, getIntAlign()); 2986 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2987 2988 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2989 CGM.getLLVMContext(), 2990 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2991 llvm::Value *ValidVtable = Builder.CreateZExt( 2992 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2993 {Addr, AllVtables}), 2994 IntPtrTy); 2995 2996 const std::pair<int, SanitizerMask> CheckKinds[] = { 2997 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2998 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2999 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3000 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3001 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3002 3003 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3004 for (auto CheckKindMaskPair : CheckKinds) { 3005 int Kind = CheckKindMaskPair.first; 3006 SanitizerMask Mask = CheckKindMaskPair.second; 3007 llvm::Value *Cond = 3008 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3009 if (CGM.getLangOpts().Sanitize.has(Mask)) 3010 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3011 {Data, Addr, ValidVtable}); 3012 else 3013 EmitTrapCheck(Cond); 3014 } 3015 3016 FinishFunction(); 3017 // The only reference to this function will be created during LTO link. 3018 // Make sure it survives until then. 3019 CGM.addUsedGlobal(F); 3020 } 3021 3022 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3023 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3024 3025 // If we're optimizing, collapse all calls to trap down to just one per 3026 // function to save on code size. 3027 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3028 TrapBB = createBasicBlock("trap"); 3029 Builder.CreateCondBr(Checked, Cont, TrapBB); 3030 EmitBlock(TrapBB); 3031 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3032 TrapCall->setDoesNotReturn(); 3033 TrapCall->setDoesNotThrow(); 3034 Builder.CreateUnreachable(); 3035 } else { 3036 Builder.CreateCondBr(Checked, Cont, TrapBB); 3037 } 3038 3039 EmitBlock(Cont); 3040 } 3041 3042 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3043 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3044 3045 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3046 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3047 CGM.getCodeGenOpts().TrapFuncName); 3048 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3049 } 3050 3051 return TrapCall; 3052 } 3053 3054 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3055 LValueBaseInfo *BaseInfo) { 3056 assert(E->getType()->isArrayType() && 3057 "Array to pointer decay must have array source type!"); 3058 3059 // Expressions of array type can't be bitfields or vector elements. 3060 LValue LV = EmitLValue(E); 3061 Address Addr = LV.getAddress(); 3062 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3063 3064 // If the array type was an incomplete type, we need to make sure 3065 // the decay ends up being the right type. 3066 llvm::Type *NewTy = ConvertType(E->getType()); 3067 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3068 3069 // Note that VLA pointers are always decayed, so we don't need to do 3070 // anything here. 3071 if (!E->getType()->isVariableArrayType()) { 3072 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3073 "Expected pointer to array"); 3074 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3075 } 3076 3077 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3078 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3079 } 3080 3081 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3082 /// array to pointer, return the array subexpression. 3083 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3084 // If this isn't just an array->pointer decay, bail out. 3085 const auto *CE = dyn_cast<CastExpr>(E); 3086 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3087 return nullptr; 3088 3089 // If this is a decay from variable width array, bail out. 3090 const Expr *SubExpr = CE->getSubExpr(); 3091 if (SubExpr->getType()->isVariableArrayType()) 3092 return nullptr; 3093 3094 return SubExpr; 3095 } 3096 3097 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3098 llvm::Value *ptr, 3099 ArrayRef<llvm::Value*> indices, 3100 bool inbounds, 3101 bool signedIndices, 3102 SourceLocation loc, 3103 const llvm::Twine &name = "arrayidx") { 3104 if (inbounds) { 3105 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3106 CodeGenFunction::NotSubtraction, loc, 3107 name); 3108 } else { 3109 return CGF.Builder.CreateGEP(ptr, indices, name); 3110 } 3111 } 3112 3113 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3114 llvm::Value *idx, 3115 CharUnits eltSize) { 3116 // If we have a constant index, we can use the exact offset of the 3117 // element we're accessing. 3118 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3119 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3120 return arrayAlign.alignmentAtOffset(offset); 3121 3122 // Otherwise, use the worst-case alignment for any element. 3123 } else { 3124 return arrayAlign.alignmentOfArrayElement(eltSize); 3125 } 3126 } 3127 3128 static QualType getFixedSizeElementType(const ASTContext &ctx, 3129 const VariableArrayType *vla) { 3130 QualType eltType; 3131 do { 3132 eltType = vla->getElementType(); 3133 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3134 return eltType; 3135 } 3136 3137 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3138 ArrayRef<llvm::Value *> indices, 3139 QualType eltType, bool inbounds, 3140 bool signedIndices, SourceLocation loc, 3141 const llvm::Twine &name = "arrayidx") { 3142 // All the indices except that last must be zero. 3143 #ifndef NDEBUG 3144 for (auto idx : indices.drop_back()) 3145 assert(isa<llvm::ConstantInt>(idx) && 3146 cast<llvm::ConstantInt>(idx)->isZero()); 3147 #endif 3148 3149 // Determine the element size of the statically-sized base. This is 3150 // the thing that the indices are expressed in terms of. 3151 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3152 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3153 } 3154 3155 // We can use that to compute the best alignment of the element. 3156 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3157 CharUnits eltAlign = 3158 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3159 3160 llvm::Value *eltPtr = emitArraySubscriptGEP( 3161 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3162 return Address(eltPtr, eltAlign); 3163 } 3164 3165 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3166 bool Accessed) { 3167 // The index must always be an integer, which is not an aggregate. Emit it 3168 // in lexical order (this complexity is, sadly, required by C++17). 3169 llvm::Value *IdxPre = 3170 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3171 bool SignedIndices = false; 3172 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3173 auto *Idx = IdxPre; 3174 if (E->getLHS() != E->getIdx()) { 3175 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3176 Idx = EmitScalarExpr(E->getIdx()); 3177 } 3178 3179 QualType IdxTy = E->getIdx()->getType(); 3180 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3181 SignedIndices |= IdxSigned; 3182 3183 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3184 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3185 3186 // Extend or truncate the index type to 32 or 64-bits. 3187 if (Promote && Idx->getType() != IntPtrTy) 3188 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3189 3190 return Idx; 3191 }; 3192 IdxPre = nullptr; 3193 3194 // If the base is a vector type, then we are forming a vector element lvalue 3195 // with this subscript. 3196 if (E->getBase()->getType()->isVectorType() && 3197 !isa<ExtVectorElementExpr>(E->getBase())) { 3198 // Emit the vector as an lvalue to get its address. 3199 LValue LHS = EmitLValue(E->getBase()); 3200 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3201 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3202 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3203 E->getBase()->getType(), 3204 LHS.getBaseInfo()); 3205 } 3206 3207 // All the other cases basically behave like simple offsetting. 3208 3209 // Handle the extvector case we ignored above. 3210 if (isa<ExtVectorElementExpr>(E->getBase())) { 3211 LValue LV = EmitLValue(E->getBase()); 3212 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3213 Address Addr = EmitExtVectorElementLValue(LV); 3214 3215 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3216 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3217 SignedIndices, E->getExprLoc()); 3218 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo()); 3219 } 3220 3221 LValueBaseInfo BaseInfo; 3222 Address Addr = Address::invalid(); 3223 if (const VariableArrayType *vla = 3224 getContext().getAsVariableArrayType(E->getType())) { 3225 // The base must be a pointer, which is not an aggregate. Emit 3226 // it. It needs to be emitted first in case it's what captures 3227 // the VLA bounds. 3228 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3229 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3230 3231 // The element count here is the total number of non-VLA elements. 3232 llvm::Value *numElements = getVLASize(vla).first; 3233 3234 // Effectively, the multiply by the VLA size is part of the GEP. 3235 // GEP indexes are signed, and scaling an index isn't permitted to 3236 // signed-overflow, so we use the same semantics for our explicit 3237 // multiply. We suppress this if overflow is not undefined behavior. 3238 if (getLangOpts().isSignedOverflowDefined()) { 3239 Idx = Builder.CreateMul(Idx, numElements); 3240 } else { 3241 Idx = Builder.CreateNSWMul(Idx, numElements); 3242 } 3243 3244 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3245 !getLangOpts().isSignedOverflowDefined(), 3246 SignedIndices, E->getExprLoc()); 3247 3248 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3249 // Indexing over an interface, as in "NSString *P; P[4];" 3250 3251 // Emit the base pointer. 3252 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3253 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3254 3255 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3256 llvm::Value *InterfaceSizeVal = 3257 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3258 3259 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3260 3261 // We don't necessarily build correct LLVM struct types for ObjC 3262 // interfaces, so we can't rely on GEP to do this scaling 3263 // correctly, so we need to cast to i8*. FIXME: is this actually 3264 // true? A lot of other things in the fragile ABI would break... 3265 llvm::Type *OrigBaseTy = Addr.getType(); 3266 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3267 3268 // Do the GEP. 3269 CharUnits EltAlign = 3270 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3271 llvm::Value *EltPtr = 3272 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3273 SignedIndices, E->getExprLoc()); 3274 Addr = Address(EltPtr, EltAlign); 3275 3276 // Cast back. 3277 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3278 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3279 // If this is A[i] where A is an array, the frontend will have decayed the 3280 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3281 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3282 // "gep x, i" here. Emit one "gep A, 0, i". 3283 assert(Array->getType()->isArrayType() && 3284 "Array to pointer decay must have array source type!"); 3285 LValue ArrayLV; 3286 // For simple multidimensional array indexing, set the 'accessed' flag for 3287 // better bounds-checking of the base expression. 3288 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3289 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3290 else 3291 ArrayLV = EmitLValue(Array); 3292 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3293 3294 // Propagate the alignment from the array itself to the result. 3295 Addr = emitArraySubscriptGEP( 3296 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3297 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3298 E->getExprLoc()); 3299 BaseInfo = ArrayLV.getBaseInfo(); 3300 } else { 3301 // The base must be a pointer; emit it with an estimate of its alignment. 3302 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3303 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3304 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3305 !getLangOpts().isSignedOverflowDefined(), 3306 SignedIndices, E->getExprLoc()); 3307 } 3308 3309 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo); 3310 3311 // TODO: Preserve/extend path TBAA metadata? 3312 3313 if (getLangOpts().ObjC1 && 3314 getLangOpts().getGC() != LangOptions::NonGC) { 3315 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3316 setObjCGCLValueClass(getContext(), E, LV); 3317 } 3318 return LV; 3319 } 3320 3321 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3322 LValueBaseInfo &BaseInfo, 3323 QualType BaseTy, QualType ElTy, 3324 bool IsLowerBound) { 3325 LValue BaseLVal; 3326 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3327 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3328 if (BaseTy->isArrayType()) { 3329 Address Addr = BaseLVal.getAddress(); 3330 BaseInfo = BaseLVal.getBaseInfo(); 3331 3332 // If the array type was an incomplete type, we need to make sure 3333 // the decay ends up being the right type. 3334 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3335 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3336 3337 // Note that VLA pointers are always decayed, so we don't need to do 3338 // anything here. 3339 if (!BaseTy->isVariableArrayType()) { 3340 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3341 "Expected pointer to array"); 3342 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3343 "arraydecay"); 3344 } 3345 3346 return CGF.Builder.CreateElementBitCast(Addr, 3347 CGF.ConvertTypeForMem(ElTy)); 3348 } 3349 LValueBaseInfo TypeInfo; 3350 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3351 BaseInfo.mergeForCast(TypeInfo); 3352 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3353 } 3354 return CGF.EmitPointerWithAlignment(Base, &BaseInfo); 3355 } 3356 3357 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3358 bool IsLowerBound) { 3359 QualType BaseTy; 3360 if (auto *ASE = 3361 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3362 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3363 else 3364 BaseTy = E->getBase()->getType(); 3365 QualType ResultExprTy; 3366 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3367 ResultExprTy = AT->getElementType(); 3368 else 3369 ResultExprTy = BaseTy->getPointeeType(); 3370 llvm::Value *Idx = nullptr; 3371 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3372 // Requesting lower bound or upper bound, but without provided length and 3373 // without ':' symbol for the default length -> length = 1. 3374 // Idx = LowerBound ?: 0; 3375 if (auto *LowerBound = E->getLowerBound()) { 3376 Idx = Builder.CreateIntCast( 3377 EmitScalarExpr(LowerBound), IntPtrTy, 3378 LowerBound->getType()->hasSignedIntegerRepresentation()); 3379 } else 3380 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3381 } else { 3382 // Try to emit length or lower bound as constant. If this is possible, 1 3383 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3384 // IR (LB + Len) - 1. 3385 auto &C = CGM.getContext(); 3386 auto *Length = E->getLength(); 3387 llvm::APSInt ConstLength; 3388 if (Length) { 3389 // Idx = LowerBound + Length - 1; 3390 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3391 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3392 Length = nullptr; 3393 } 3394 auto *LowerBound = E->getLowerBound(); 3395 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3396 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3397 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3398 LowerBound = nullptr; 3399 } 3400 if (!Length) 3401 --ConstLength; 3402 else if (!LowerBound) 3403 --ConstLowerBound; 3404 3405 if (Length || LowerBound) { 3406 auto *LowerBoundVal = 3407 LowerBound 3408 ? Builder.CreateIntCast( 3409 EmitScalarExpr(LowerBound), IntPtrTy, 3410 LowerBound->getType()->hasSignedIntegerRepresentation()) 3411 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3412 auto *LengthVal = 3413 Length 3414 ? Builder.CreateIntCast( 3415 EmitScalarExpr(Length), IntPtrTy, 3416 Length->getType()->hasSignedIntegerRepresentation()) 3417 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3418 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3419 /*HasNUW=*/false, 3420 !getLangOpts().isSignedOverflowDefined()); 3421 if (Length && LowerBound) { 3422 Idx = Builder.CreateSub( 3423 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3424 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3425 } 3426 } else 3427 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3428 } else { 3429 // Idx = ArraySize - 1; 3430 QualType ArrayTy = BaseTy->isPointerType() 3431 ? E->getBase()->IgnoreParenImpCasts()->getType() 3432 : BaseTy; 3433 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3434 Length = VAT->getSizeExpr(); 3435 if (Length->isIntegerConstantExpr(ConstLength, C)) 3436 Length = nullptr; 3437 } else { 3438 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3439 ConstLength = CAT->getSize(); 3440 } 3441 if (Length) { 3442 auto *LengthVal = Builder.CreateIntCast( 3443 EmitScalarExpr(Length), IntPtrTy, 3444 Length->getType()->hasSignedIntegerRepresentation()); 3445 Idx = Builder.CreateSub( 3446 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3447 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3448 } else { 3449 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3450 --ConstLength; 3451 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3452 } 3453 } 3454 } 3455 assert(Idx); 3456 3457 Address EltPtr = Address::invalid(); 3458 LValueBaseInfo BaseInfo; 3459 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3460 // The base must be a pointer, which is not an aggregate. Emit 3461 // it. It needs to be emitted first in case it's what captures 3462 // the VLA bounds. 3463 Address Base = 3464 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy, 3465 VLA->getElementType(), IsLowerBound); 3466 // The element count here is the total number of non-VLA elements. 3467 llvm::Value *NumElements = getVLASize(VLA).first; 3468 3469 // Effectively, the multiply by the VLA size is part of the GEP. 3470 // GEP indexes are signed, and scaling an index isn't permitted to 3471 // signed-overflow, so we use the same semantics for our explicit 3472 // multiply. We suppress this if overflow is not undefined behavior. 3473 if (getLangOpts().isSignedOverflowDefined()) 3474 Idx = Builder.CreateMul(Idx, NumElements); 3475 else 3476 Idx = Builder.CreateNSWMul(Idx, NumElements); 3477 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3478 !getLangOpts().isSignedOverflowDefined(), 3479 /*SignedIndices=*/false, E->getExprLoc()); 3480 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3481 // If this is A[i] where A is an array, the frontend will have decayed the 3482 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3483 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3484 // "gep x, i" here. Emit one "gep A, 0, i". 3485 assert(Array->getType()->isArrayType() && 3486 "Array to pointer decay must have array source type!"); 3487 LValue ArrayLV; 3488 // For simple multidimensional array indexing, set the 'accessed' flag for 3489 // better bounds-checking of the base expression. 3490 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3491 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3492 else 3493 ArrayLV = EmitLValue(Array); 3494 3495 // Propagate the alignment from the array itself to the result. 3496 EltPtr = emitArraySubscriptGEP( 3497 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3498 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3499 /*SignedIndices=*/false, E->getExprLoc()); 3500 BaseInfo = ArrayLV.getBaseInfo(); 3501 } else { 3502 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3503 BaseTy, ResultExprTy, IsLowerBound); 3504 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3505 !getLangOpts().isSignedOverflowDefined(), 3506 /*SignedIndices=*/false, E->getExprLoc()); 3507 } 3508 3509 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo); 3510 } 3511 3512 LValue CodeGenFunction:: 3513 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3514 // Emit the base vector as an l-value. 3515 LValue Base; 3516 3517 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3518 if (E->isArrow()) { 3519 // If it is a pointer to a vector, emit the address and form an lvalue with 3520 // it. 3521 LValueBaseInfo BaseInfo; 3522 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3523 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3524 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo); 3525 Base.getQuals().removeObjCGCAttr(); 3526 } else if (E->getBase()->isGLValue()) { 3527 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3528 // emit the base as an lvalue. 3529 assert(E->getBase()->getType()->isVectorType()); 3530 Base = EmitLValue(E->getBase()); 3531 } else { 3532 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3533 assert(E->getBase()->getType()->isVectorType() && 3534 "Result must be a vector"); 3535 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3536 3537 // Store the vector to memory (because LValue wants an address). 3538 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3539 Builder.CreateStore(Vec, VecMem); 3540 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3541 LValueBaseInfo(AlignmentSource::Decl, false)); 3542 } 3543 3544 QualType type = 3545 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3546 3547 // Encode the element access list into a vector of unsigned indices. 3548 SmallVector<uint32_t, 4> Indices; 3549 E->getEncodedElementAccess(Indices); 3550 3551 if (Base.isSimple()) { 3552 llvm::Constant *CV = 3553 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3554 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3555 Base.getBaseInfo()); 3556 } 3557 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3558 3559 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3560 SmallVector<llvm::Constant *, 4> CElts; 3561 3562 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3563 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3564 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3565 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3566 Base.getBaseInfo()); 3567 } 3568 3569 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3570 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3571 EmitIgnoredExpr(E->getBase()); 3572 return EmitDeclRefLValue(DRE); 3573 } 3574 3575 Expr *BaseExpr = E->getBase(); 3576 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3577 LValue BaseLV; 3578 if (E->isArrow()) { 3579 LValueBaseInfo BaseInfo; 3580 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo); 3581 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3582 SanitizerSet SkippedChecks; 3583 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3584 if (IsBaseCXXThis) 3585 SkippedChecks.set(SanitizerKind::Alignment, true); 3586 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3587 SkippedChecks.set(SanitizerKind::Null, true); 3588 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3589 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3590 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo); 3591 } else 3592 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3593 3594 NamedDecl *ND = E->getMemberDecl(); 3595 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3596 LValue LV = EmitLValueForField(BaseLV, Field); 3597 setObjCGCLValueClass(getContext(), E, LV); 3598 return LV; 3599 } 3600 3601 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3602 return EmitFunctionDeclLValue(*this, E, FD); 3603 3604 llvm_unreachable("Unhandled member declaration!"); 3605 } 3606 3607 /// Given that we are currently emitting a lambda, emit an l-value for 3608 /// one of its members. 3609 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3610 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3611 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3612 QualType LambdaTagType = 3613 getContext().getTagDeclType(Field->getParent()); 3614 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3615 return EmitLValueForField(LambdaLV, Field); 3616 } 3617 3618 /// Drill down to the storage of a field without walking into 3619 /// reference types. 3620 /// 3621 /// The resulting address doesn't necessarily have the right type. 3622 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3623 const FieldDecl *field) { 3624 const RecordDecl *rec = field->getParent(); 3625 3626 unsigned idx = 3627 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3628 3629 CharUnits offset; 3630 // Adjust the alignment down to the given offset. 3631 // As a special case, if the LLVM field index is 0, we know that this 3632 // is zero. 3633 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3634 .getFieldOffset(field->getFieldIndex()) == 0) && 3635 "LLVM field at index zero had non-zero offset?"); 3636 if (idx != 0) { 3637 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3638 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3639 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3640 } 3641 3642 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3643 } 3644 3645 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3646 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3647 if (!RD) 3648 return false; 3649 3650 if (RD->isDynamicClass()) 3651 return true; 3652 3653 for (const auto &Base : RD->bases()) 3654 if (hasAnyVptr(Base.getType(), Context)) 3655 return true; 3656 3657 for (const FieldDecl *Field : RD->fields()) 3658 if (hasAnyVptr(Field->getType(), Context)) 3659 return true; 3660 3661 return false; 3662 } 3663 3664 LValue CodeGenFunction::EmitLValueForField(LValue base, 3665 const FieldDecl *field) { 3666 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3667 AlignmentSource fieldAlignSource = 3668 getFieldAlignmentSource(BaseInfo.getAlignmentSource()); 3669 LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias()); 3670 3671 QualType type = field->getType(); 3672 const RecordDecl *rec = field->getParent(); 3673 if (rec->isUnion() || rec->hasAttr<MayAliasAttr>() || type->isVectorType()) 3674 FieldBaseInfo.setMayAlias(true); 3675 bool mayAlias = FieldBaseInfo.getMayAlias(); 3676 3677 if (field->isBitField()) { 3678 const CGRecordLayout &RL = 3679 CGM.getTypes().getCGRecordLayout(field->getParent()); 3680 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3681 Address Addr = base.getAddress(); 3682 unsigned Idx = RL.getLLVMFieldNo(field); 3683 if (Idx != 0) 3684 // For structs, we GEP to the field that the record layout suggests. 3685 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3686 field->getName()); 3687 // Get the access type. 3688 llvm::Type *FieldIntTy = 3689 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3690 if (Addr.getElementType() != FieldIntTy) 3691 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3692 3693 QualType fieldType = 3694 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3695 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo); 3696 } 3697 3698 Address addr = base.getAddress(); 3699 unsigned cvr = base.getVRQualifiers(); 3700 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3701 if (rec->isUnion()) { 3702 // For unions, there is no pointer adjustment. 3703 assert(!type->isReferenceType() && "union has reference member"); 3704 // TODO: handle path-aware TBAA for union. 3705 TBAAPath = false; 3706 3707 const auto FieldType = field->getType(); 3708 if (CGM.getCodeGenOpts().StrictVTablePointers && 3709 hasAnyVptr(FieldType, getContext())) 3710 // Because unions can easily skip invariant.barriers, we need to add 3711 // a barrier every time CXXRecord field with vptr is referenced. 3712 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3713 addr.getAlignment()); 3714 } else { 3715 // For structs, we GEP to the field that the record layout suggests. 3716 addr = emitAddrOfFieldStorage(*this, addr, field); 3717 3718 // If this is a reference field, load the reference right now. 3719 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3720 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3721 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3722 3723 // Loading the reference will disable path-aware TBAA. 3724 TBAAPath = false; 3725 TBAAAccessInfo TBAAInfo = mayAlias ? CGM.getTBAAMayAliasAccessInfo() : 3726 CGM.getTBAAAccessInfo(type); 3727 CGM.DecorateInstructionWithTBAA(load, TBAAInfo); 3728 3729 mayAlias = false; 3730 type = refType->getPointeeType(); 3731 3732 CharUnits alignment = 3733 getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true); 3734 FieldBaseInfo.setMayAlias(false); 3735 addr = Address(load, alignment); 3736 3737 // Qualifiers on the struct don't apply to the referencee, and 3738 // we'll pick up CVR from the actual type later, so reset these 3739 // additional qualifiers now. 3740 cvr = 0; 3741 } 3742 } 3743 3744 // Make sure that the address is pointing to the right type. This is critical 3745 // for both unions and structs. A union needs a bitcast, a struct element 3746 // will need a bitcast if the LLVM type laid out doesn't match the desired 3747 // type. 3748 addr = Builder.CreateElementBitCast(addr, 3749 CGM.getTypes().ConvertTypeForMem(type), 3750 field->getName()); 3751 3752 if (field->hasAttr<AnnotateAttr>()) 3753 addr = EmitFieldAnnotations(field, addr); 3754 3755 LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo); 3756 LV.getQuals().addCVRQualifiers(cvr); 3757 3758 // Fields of may_alias structs act like 'char' for TBAA purposes. 3759 // FIXME: this should get propagated down through anonymous structs 3760 // and unions. 3761 if (mayAlias) { 3762 LV.setTBAAInfo(CGM.getTBAAMayAliasAccessInfo()); 3763 } else if (TBAAPath) { 3764 // If no base type been assigned for the base access, then try to generate 3765 // one for this base lvalue. 3766 TBAAAccessInfo TBAAInfo = base.getTBAAInfo(); 3767 if (!TBAAInfo.BaseType) { 3768 TBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3769 assert(!TBAAInfo.Offset && 3770 "Nonzero offset for an access with no base type!"); 3771 } 3772 3773 // Adjust offset to be relative to the base type. 3774 const ASTRecordLayout &Layout = 3775 getContext().getASTRecordLayout(field->getParent()); 3776 unsigned CharWidth = getContext().getCharWidth(); 3777 if (TBAAInfo.BaseType) 3778 TBAAInfo.Offset += 3779 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3780 3781 // Update the final access type. 3782 TBAAInfo.AccessType = LV.getTBAAInfo().AccessType; 3783 3784 LV.setTBAAInfo(TBAAInfo); 3785 } 3786 3787 // __weak attribute on a field is ignored. 3788 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3789 LV.getQuals().removeObjCGCAttr(); 3790 3791 return LV; 3792 } 3793 3794 LValue 3795 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3796 const FieldDecl *Field) { 3797 QualType FieldType = Field->getType(); 3798 3799 if (!FieldType->isReferenceType()) 3800 return EmitLValueForField(Base, Field); 3801 3802 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3803 3804 // Make sure that the address is pointing to the right type. 3805 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3806 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3807 3808 // TODO: access-path TBAA? 3809 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3810 LValueBaseInfo FieldBaseInfo( 3811 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3812 BaseInfo.getMayAlias()); 3813 return MakeAddrLValue(V, FieldType, FieldBaseInfo); 3814 } 3815 3816 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3817 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 3818 if (E->isFileScope()) { 3819 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3820 return MakeAddrLValue(GlobalPtr, E->getType(), BaseInfo); 3821 } 3822 if (E->getType()->isVariablyModifiedType()) 3823 // make sure to emit the VLA size. 3824 EmitVariablyModifiedType(E->getType()); 3825 3826 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3827 const Expr *InitExpr = E->getInitializer(); 3828 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), BaseInfo); 3829 3830 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3831 /*Init*/ true); 3832 3833 return Result; 3834 } 3835 3836 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3837 if (!E->isGLValue()) 3838 // Initializing an aggregate temporary in C++11: T{...}. 3839 return EmitAggExprToLValue(E); 3840 3841 // An lvalue initializer list must be initializing a reference. 3842 assert(E->isTransparent() && "non-transparent glvalue init list"); 3843 return EmitLValue(E->getInit(0)); 3844 } 3845 3846 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3847 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3848 /// LValue is returned and the current block has been terminated. 3849 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3850 const Expr *Operand) { 3851 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3852 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3853 return None; 3854 } 3855 3856 return CGF.EmitLValue(Operand); 3857 } 3858 3859 LValue CodeGenFunction:: 3860 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3861 if (!expr->isGLValue()) { 3862 // ?: here should be an aggregate. 3863 assert(hasAggregateEvaluationKind(expr->getType()) && 3864 "Unexpected conditional operator!"); 3865 return EmitAggExprToLValue(expr); 3866 } 3867 3868 OpaqueValueMapping binding(*this, expr); 3869 3870 const Expr *condExpr = expr->getCond(); 3871 bool CondExprBool; 3872 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3873 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3874 if (!CondExprBool) std::swap(live, dead); 3875 3876 if (!ContainsLabel(dead)) { 3877 // If the true case is live, we need to track its region. 3878 if (CondExprBool) 3879 incrementProfileCounter(expr); 3880 return EmitLValue(live); 3881 } 3882 } 3883 3884 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3885 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3886 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3887 3888 ConditionalEvaluation eval(*this); 3889 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3890 3891 // Any temporaries created here are conditional. 3892 EmitBlock(lhsBlock); 3893 incrementProfileCounter(expr); 3894 eval.begin(*this); 3895 Optional<LValue> lhs = 3896 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3897 eval.end(*this); 3898 3899 if (lhs && !lhs->isSimple()) 3900 return EmitUnsupportedLValue(expr, "conditional operator"); 3901 3902 lhsBlock = Builder.GetInsertBlock(); 3903 if (lhs) 3904 Builder.CreateBr(contBlock); 3905 3906 // Any temporaries created here are conditional. 3907 EmitBlock(rhsBlock); 3908 eval.begin(*this); 3909 Optional<LValue> rhs = 3910 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3911 eval.end(*this); 3912 if (rhs && !rhs->isSimple()) 3913 return EmitUnsupportedLValue(expr, "conditional operator"); 3914 rhsBlock = Builder.GetInsertBlock(); 3915 3916 EmitBlock(contBlock); 3917 3918 if (lhs && rhs) { 3919 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3920 2, "cond-lvalue"); 3921 phi->addIncoming(lhs->getPointer(), lhsBlock); 3922 phi->addIncoming(rhs->getPointer(), rhsBlock); 3923 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3924 AlignmentSource alignSource = 3925 std::max(lhs->getBaseInfo().getAlignmentSource(), 3926 rhs->getBaseInfo().getAlignmentSource()); 3927 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3928 rhs->getBaseInfo().getMayAlias(); 3929 return MakeAddrLValue(result, expr->getType(), 3930 LValueBaseInfo(alignSource, MayAlias)); 3931 } else { 3932 assert((lhs || rhs) && 3933 "both operands of glvalue conditional are throw-expressions?"); 3934 return lhs ? *lhs : *rhs; 3935 } 3936 } 3937 3938 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3939 /// type. If the cast is to a reference, we can have the usual lvalue result, 3940 /// otherwise if a cast is needed by the code generator in an lvalue context, 3941 /// then it must mean that we need the address of an aggregate in order to 3942 /// access one of its members. This can happen for all the reasons that casts 3943 /// are permitted with aggregate result, including noop aggregate casts, and 3944 /// cast from scalar to union. 3945 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3946 switch (E->getCastKind()) { 3947 case CK_ToVoid: 3948 case CK_BitCast: 3949 case CK_ArrayToPointerDecay: 3950 case CK_FunctionToPointerDecay: 3951 case CK_NullToMemberPointer: 3952 case CK_NullToPointer: 3953 case CK_IntegralToPointer: 3954 case CK_PointerToIntegral: 3955 case CK_PointerToBoolean: 3956 case CK_VectorSplat: 3957 case CK_IntegralCast: 3958 case CK_BooleanToSignedIntegral: 3959 case CK_IntegralToBoolean: 3960 case CK_IntegralToFloating: 3961 case CK_FloatingToIntegral: 3962 case CK_FloatingToBoolean: 3963 case CK_FloatingCast: 3964 case CK_FloatingRealToComplex: 3965 case CK_FloatingComplexToReal: 3966 case CK_FloatingComplexToBoolean: 3967 case CK_FloatingComplexCast: 3968 case CK_FloatingComplexToIntegralComplex: 3969 case CK_IntegralRealToComplex: 3970 case CK_IntegralComplexToReal: 3971 case CK_IntegralComplexToBoolean: 3972 case CK_IntegralComplexCast: 3973 case CK_IntegralComplexToFloatingComplex: 3974 case CK_DerivedToBaseMemberPointer: 3975 case CK_BaseToDerivedMemberPointer: 3976 case CK_MemberPointerToBoolean: 3977 case CK_ReinterpretMemberPointer: 3978 case CK_AnyPointerToBlockPointerCast: 3979 case CK_ARCProduceObject: 3980 case CK_ARCConsumeObject: 3981 case CK_ARCReclaimReturnedObject: 3982 case CK_ARCExtendBlockObject: 3983 case CK_CopyAndAutoreleaseBlockObject: 3984 case CK_AddressSpaceConversion: 3985 case CK_IntToOCLSampler: 3986 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3987 3988 case CK_Dependent: 3989 llvm_unreachable("dependent cast kind in IR gen!"); 3990 3991 case CK_BuiltinFnToFnPtr: 3992 llvm_unreachable("builtin functions are handled elsewhere"); 3993 3994 // These are never l-values; just use the aggregate emission code. 3995 case CK_NonAtomicToAtomic: 3996 case CK_AtomicToNonAtomic: 3997 return EmitAggExprToLValue(E); 3998 3999 case CK_Dynamic: { 4000 LValue LV = EmitLValue(E->getSubExpr()); 4001 Address V = LV.getAddress(); 4002 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4003 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4004 } 4005 4006 case CK_ConstructorConversion: 4007 case CK_UserDefinedConversion: 4008 case CK_CPointerToObjCPointerCast: 4009 case CK_BlockPointerToObjCPointerCast: 4010 case CK_NoOp: 4011 case CK_LValueToRValue: 4012 return EmitLValue(E->getSubExpr()); 4013 4014 case CK_UncheckedDerivedToBase: 4015 case CK_DerivedToBase: { 4016 const RecordType *DerivedClassTy = 4017 E->getSubExpr()->getType()->getAs<RecordType>(); 4018 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4019 4020 LValue LV = EmitLValue(E->getSubExpr()); 4021 Address This = LV.getAddress(); 4022 4023 // Perform the derived-to-base conversion 4024 Address Base = GetAddressOfBaseClass( 4025 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4026 /*NullCheckValue=*/false, E->getExprLoc()); 4027 4028 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo()); 4029 } 4030 case CK_ToUnion: 4031 return EmitAggExprToLValue(E); 4032 case CK_BaseToDerived: { 4033 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4034 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4035 4036 LValue LV = EmitLValue(E->getSubExpr()); 4037 4038 // Perform the base-to-derived conversion 4039 Address Derived = 4040 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4041 E->path_begin(), E->path_end(), 4042 /*NullCheckValue=*/false); 4043 4044 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4045 // performed and the object is not of the derived type. 4046 if (sanitizePerformTypeCheck()) 4047 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4048 Derived.getPointer(), E->getType()); 4049 4050 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4051 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4052 /*MayBeNull=*/false, 4053 CFITCK_DerivedCast, E->getLocStart()); 4054 4055 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo()); 4056 } 4057 case CK_LValueBitCast: { 4058 // This must be a reinterpret_cast (or c-style equivalent). 4059 const auto *CE = cast<ExplicitCastExpr>(E); 4060 4061 CGM.EmitExplicitCastExprType(CE, this); 4062 LValue LV = EmitLValue(E->getSubExpr()); 4063 Address V = Builder.CreateBitCast(LV.getAddress(), 4064 ConvertType(CE->getTypeAsWritten())); 4065 4066 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4067 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4068 /*MayBeNull=*/false, 4069 CFITCK_UnrelatedCast, E->getLocStart()); 4070 4071 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4072 } 4073 case CK_ObjCObjectLValueCast: { 4074 LValue LV = EmitLValue(E->getSubExpr()); 4075 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4076 ConvertType(E->getType())); 4077 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4078 } 4079 case CK_ZeroToOCLQueue: 4080 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4081 case CK_ZeroToOCLEvent: 4082 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4083 } 4084 4085 llvm_unreachable("Unhandled lvalue cast kind?"); 4086 } 4087 4088 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4089 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4090 return getOpaqueLValueMapping(e); 4091 } 4092 4093 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4094 const FieldDecl *FD, 4095 SourceLocation Loc) { 4096 QualType FT = FD->getType(); 4097 LValue FieldLV = EmitLValueForField(LV, FD); 4098 switch (getEvaluationKind(FT)) { 4099 case TEK_Complex: 4100 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4101 case TEK_Aggregate: 4102 return FieldLV.asAggregateRValue(); 4103 case TEK_Scalar: 4104 // This routine is used to load fields one-by-one to perform a copy, so 4105 // don't load reference fields. 4106 if (FD->getType()->isReferenceType()) 4107 return RValue::get(FieldLV.getPointer()); 4108 return EmitLoadOfLValue(FieldLV, Loc); 4109 } 4110 llvm_unreachable("bad evaluation kind"); 4111 } 4112 4113 //===--------------------------------------------------------------------===// 4114 // Expression Emission 4115 //===--------------------------------------------------------------------===// 4116 4117 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4118 ReturnValueSlot ReturnValue) { 4119 // Builtins never have block type. 4120 if (E->getCallee()->getType()->isBlockPointerType()) 4121 return EmitBlockCallExpr(E, ReturnValue); 4122 4123 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4124 return EmitCXXMemberCallExpr(CE, ReturnValue); 4125 4126 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4127 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4128 4129 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4130 if (const CXXMethodDecl *MD = 4131 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4132 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4133 4134 CGCallee callee = EmitCallee(E->getCallee()); 4135 4136 if (callee.isBuiltin()) { 4137 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4138 E, ReturnValue); 4139 } 4140 4141 if (callee.isPseudoDestructor()) { 4142 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4143 } 4144 4145 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4146 } 4147 4148 /// Emit a CallExpr without considering whether it might be a subclass. 4149 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4150 ReturnValueSlot ReturnValue) { 4151 CGCallee Callee = EmitCallee(E->getCallee()); 4152 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4153 } 4154 4155 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4156 if (auto builtinID = FD->getBuiltinID()) { 4157 return CGCallee::forBuiltin(builtinID, FD); 4158 } 4159 4160 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4161 return CGCallee::forDirect(calleePtr, FD); 4162 } 4163 4164 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4165 E = E->IgnoreParens(); 4166 4167 // Look through function-to-pointer decay. 4168 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4169 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4170 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4171 return EmitCallee(ICE->getSubExpr()); 4172 } 4173 4174 // Resolve direct calls. 4175 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4176 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4177 return EmitDirectCallee(*this, FD); 4178 } 4179 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4180 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4181 EmitIgnoredExpr(ME->getBase()); 4182 return EmitDirectCallee(*this, FD); 4183 } 4184 4185 // Look through template substitutions. 4186 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4187 return EmitCallee(NTTP->getReplacement()); 4188 4189 // Treat pseudo-destructor calls differently. 4190 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4191 return CGCallee::forPseudoDestructor(PDE); 4192 } 4193 4194 // Otherwise, we have an indirect reference. 4195 llvm::Value *calleePtr; 4196 QualType functionType; 4197 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4198 calleePtr = EmitScalarExpr(E); 4199 functionType = ptrType->getPointeeType(); 4200 } else { 4201 functionType = E->getType(); 4202 calleePtr = EmitLValue(E).getPointer(); 4203 } 4204 assert(functionType->isFunctionType()); 4205 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4206 E->getReferencedDeclOfCallee()); 4207 CGCallee callee(calleeInfo, calleePtr); 4208 return callee; 4209 } 4210 4211 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4212 // Comma expressions just emit their LHS then their RHS as an l-value. 4213 if (E->getOpcode() == BO_Comma) { 4214 EmitIgnoredExpr(E->getLHS()); 4215 EnsureInsertPoint(); 4216 return EmitLValue(E->getRHS()); 4217 } 4218 4219 if (E->getOpcode() == BO_PtrMemD || 4220 E->getOpcode() == BO_PtrMemI) 4221 return EmitPointerToDataMemberBinaryExpr(E); 4222 4223 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4224 4225 // Note that in all of these cases, __block variables need the RHS 4226 // evaluated first just in case the variable gets moved by the RHS. 4227 4228 switch (getEvaluationKind(E->getType())) { 4229 case TEK_Scalar: { 4230 switch (E->getLHS()->getType().getObjCLifetime()) { 4231 case Qualifiers::OCL_Strong: 4232 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4233 4234 case Qualifiers::OCL_Autoreleasing: 4235 return EmitARCStoreAutoreleasing(E).first; 4236 4237 // No reason to do any of these differently. 4238 case Qualifiers::OCL_None: 4239 case Qualifiers::OCL_ExplicitNone: 4240 case Qualifiers::OCL_Weak: 4241 break; 4242 } 4243 4244 RValue RV = EmitAnyExpr(E->getRHS()); 4245 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4246 if (RV.isScalar()) 4247 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4248 EmitStoreThroughLValue(RV, LV); 4249 return LV; 4250 } 4251 4252 case TEK_Complex: 4253 return EmitComplexAssignmentLValue(E); 4254 4255 case TEK_Aggregate: 4256 return EmitAggExprToLValue(E); 4257 } 4258 llvm_unreachable("bad evaluation kind"); 4259 } 4260 4261 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4262 RValue RV = EmitCallExpr(E); 4263 4264 if (!RV.isScalar()) 4265 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4266 LValueBaseInfo(AlignmentSource::Decl, false)); 4267 4268 assert(E->getCallReturnType(getContext())->isReferenceType() && 4269 "Can't have a scalar return unless the return type is a " 4270 "reference type!"); 4271 4272 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4273 } 4274 4275 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4276 // FIXME: This shouldn't require another copy. 4277 return EmitAggExprToLValue(E); 4278 } 4279 4280 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4281 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4282 && "binding l-value to type which needs a temporary"); 4283 AggValueSlot Slot = CreateAggTemp(E->getType()); 4284 EmitCXXConstructExpr(E, Slot); 4285 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4286 LValueBaseInfo(AlignmentSource::Decl, false)); 4287 } 4288 4289 LValue 4290 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4291 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4292 } 4293 4294 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4295 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4296 ConvertType(E->getType())); 4297 } 4298 4299 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4300 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4301 LValueBaseInfo(AlignmentSource::Decl, false)); 4302 } 4303 4304 LValue 4305 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4306 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4307 Slot.setExternallyDestructed(); 4308 EmitAggExpr(E->getSubExpr(), Slot); 4309 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4310 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4311 LValueBaseInfo(AlignmentSource::Decl, false)); 4312 } 4313 4314 LValue 4315 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4316 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4317 EmitLambdaExpr(E, Slot); 4318 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4319 LValueBaseInfo(AlignmentSource::Decl, false)); 4320 } 4321 4322 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4323 RValue RV = EmitObjCMessageExpr(E); 4324 4325 if (!RV.isScalar()) 4326 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4327 LValueBaseInfo(AlignmentSource::Decl, false)); 4328 4329 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4330 "Can't have a scalar return unless the return type is a " 4331 "reference type!"); 4332 4333 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4334 } 4335 4336 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4337 Address V = 4338 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4339 return MakeAddrLValue(V, E->getType(), 4340 LValueBaseInfo(AlignmentSource::Decl, false)); 4341 } 4342 4343 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4344 const ObjCIvarDecl *Ivar) { 4345 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4346 } 4347 4348 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4349 llvm::Value *BaseValue, 4350 const ObjCIvarDecl *Ivar, 4351 unsigned CVRQualifiers) { 4352 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4353 Ivar, CVRQualifiers); 4354 } 4355 4356 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4357 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4358 llvm::Value *BaseValue = nullptr; 4359 const Expr *BaseExpr = E->getBase(); 4360 Qualifiers BaseQuals; 4361 QualType ObjectTy; 4362 if (E->isArrow()) { 4363 BaseValue = EmitScalarExpr(BaseExpr); 4364 ObjectTy = BaseExpr->getType()->getPointeeType(); 4365 BaseQuals = ObjectTy.getQualifiers(); 4366 } else { 4367 LValue BaseLV = EmitLValue(BaseExpr); 4368 BaseValue = BaseLV.getPointer(); 4369 ObjectTy = BaseExpr->getType(); 4370 BaseQuals = ObjectTy.getQualifiers(); 4371 } 4372 4373 LValue LV = 4374 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4375 BaseQuals.getCVRQualifiers()); 4376 setObjCGCLValueClass(getContext(), E, LV); 4377 return LV; 4378 } 4379 4380 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4381 // Can only get l-value for message expression returning aggregate type 4382 RValue RV = EmitAnyExprToTemp(E); 4383 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4384 LValueBaseInfo(AlignmentSource::Decl, false)); 4385 } 4386 4387 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4388 const CallExpr *E, ReturnValueSlot ReturnValue, 4389 llvm::Value *Chain) { 4390 // Get the actual function type. The callee type will always be a pointer to 4391 // function type or a block pointer type. 4392 assert(CalleeType->isFunctionPointerType() && 4393 "Call must have function pointer type!"); 4394 4395 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4396 4397 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4398 // We can only guarantee that a function is called from the correct 4399 // context/function based on the appropriate target attributes, 4400 // so only check in the case where we have both always_inline and target 4401 // since otherwise we could be making a conditional call after a check for 4402 // the proper cpu features (and it won't cause code generation issues due to 4403 // function based code generation). 4404 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4405 TargetDecl->hasAttr<TargetAttr>()) 4406 checkTargetFeatures(E, FD); 4407 4408 CalleeType = getContext().getCanonicalType(CalleeType); 4409 4410 const auto *FnType = 4411 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4412 4413 CGCallee Callee = OrigCallee; 4414 4415 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4416 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4417 if (llvm::Constant *PrefixSig = 4418 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4419 SanitizerScope SanScope(this); 4420 llvm::Constant *FTRTTIConst = 4421 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4422 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4423 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4424 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4425 4426 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4427 4428 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4429 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4430 llvm::Value *CalleeSigPtr = 4431 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4432 llvm::Value *CalleeSig = 4433 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4434 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4435 4436 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4437 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4438 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4439 4440 EmitBlock(TypeCheck); 4441 llvm::Value *CalleeRTTIPtr = 4442 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4443 llvm::Value *CalleeRTTIEncoded = 4444 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4445 llvm::Value *CalleeRTTI = 4446 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4447 llvm::Value *CalleeRTTIMatch = 4448 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4449 llvm::Constant *StaticData[] = { 4450 EmitCheckSourceLocation(E->getLocStart()), 4451 EmitCheckTypeDescriptor(CalleeType) 4452 }; 4453 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4454 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4455 4456 Builder.CreateBr(Cont); 4457 EmitBlock(Cont); 4458 } 4459 } 4460 4461 // If we are checking indirect calls and this call is indirect, check that the 4462 // function pointer is a member of the bit set for the function type. 4463 if (SanOpts.has(SanitizerKind::CFIICall) && 4464 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4465 SanitizerScope SanScope(this); 4466 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4467 4468 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4469 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4470 4471 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4472 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4473 llvm::Value *TypeTest = Builder.CreateCall( 4474 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4475 4476 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4477 llvm::Constant *StaticData[] = { 4478 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4479 EmitCheckSourceLocation(E->getLocStart()), 4480 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4481 }; 4482 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4483 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4484 CastedCallee, StaticData); 4485 } else { 4486 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4487 SanitizerHandler::CFICheckFail, StaticData, 4488 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4489 } 4490 } 4491 4492 CallArgList Args; 4493 if (Chain) 4494 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4495 CGM.getContext().VoidPtrTy); 4496 4497 // C++17 requires that we evaluate arguments to a call using assignment syntax 4498 // right-to-left, and that we evaluate arguments to certain other operators 4499 // left-to-right. Note that we allow this to override the order dictated by 4500 // the calling convention on the MS ABI, which means that parameter 4501 // destruction order is not necessarily reverse construction order. 4502 // FIXME: Revisit this based on C++ committee response to unimplementability. 4503 EvaluationOrder Order = EvaluationOrder::Default; 4504 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4505 if (OCE->isAssignmentOp()) 4506 Order = EvaluationOrder::ForceRightToLeft; 4507 else { 4508 switch (OCE->getOperator()) { 4509 case OO_LessLess: 4510 case OO_GreaterGreater: 4511 case OO_AmpAmp: 4512 case OO_PipePipe: 4513 case OO_Comma: 4514 case OO_ArrowStar: 4515 Order = EvaluationOrder::ForceLeftToRight; 4516 break; 4517 default: 4518 break; 4519 } 4520 } 4521 } 4522 4523 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4524 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4525 4526 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4527 Args, FnType, /*isChainCall=*/Chain); 4528 4529 // C99 6.5.2.2p6: 4530 // If the expression that denotes the called function has a type 4531 // that does not include a prototype, [the default argument 4532 // promotions are performed]. If the number of arguments does not 4533 // equal the number of parameters, the behavior is undefined. If 4534 // the function is defined with a type that includes a prototype, 4535 // and either the prototype ends with an ellipsis (, ...) or the 4536 // types of the arguments after promotion are not compatible with 4537 // the types of the parameters, the behavior is undefined. If the 4538 // function is defined with a type that does not include a 4539 // prototype, and the types of the arguments after promotion are 4540 // not compatible with those of the parameters after promotion, 4541 // the behavior is undefined [except in some trivial cases]. 4542 // That is, in the general case, we should assume that a call 4543 // through an unprototyped function type works like a *non-variadic* 4544 // call. The way we make this work is to cast to the exact type 4545 // of the promoted arguments. 4546 // 4547 // Chain calls use this same code path to add the invisible chain parameter 4548 // to the function type. 4549 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4550 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4551 CalleeTy = CalleeTy->getPointerTo(); 4552 4553 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4554 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4555 Callee.setFunctionPointer(CalleePtr); 4556 } 4557 4558 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4559 } 4560 4561 LValue CodeGenFunction:: 4562 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4563 Address BaseAddr = Address::invalid(); 4564 if (E->getOpcode() == BO_PtrMemI) { 4565 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4566 } else { 4567 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4568 } 4569 4570 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4571 4572 const MemberPointerType *MPT 4573 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4574 4575 LValueBaseInfo BaseInfo; 4576 Address MemberAddr = 4577 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo); 4578 4579 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo); 4580 } 4581 4582 /// Given the address of a temporary variable, produce an r-value of 4583 /// its type. 4584 RValue CodeGenFunction::convertTempToRValue(Address addr, 4585 QualType type, 4586 SourceLocation loc) { 4587 LValue lvalue = MakeAddrLValue(addr, type, 4588 LValueBaseInfo(AlignmentSource::Decl, false)); 4589 switch (getEvaluationKind(type)) { 4590 case TEK_Complex: 4591 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4592 case TEK_Aggregate: 4593 return lvalue.asAggregateRValue(); 4594 case TEK_Scalar: 4595 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4596 } 4597 llvm_unreachable("bad evaluation kind"); 4598 } 4599 4600 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4601 assert(Val->getType()->isFPOrFPVectorTy()); 4602 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4603 return; 4604 4605 llvm::MDBuilder MDHelper(getLLVMContext()); 4606 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4607 4608 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4609 } 4610 4611 namespace { 4612 struct LValueOrRValue { 4613 LValue LV; 4614 RValue RV; 4615 }; 4616 } 4617 4618 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4619 const PseudoObjectExpr *E, 4620 bool forLValue, 4621 AggValueSlot slot) { 4622 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4623 4624 // Find the result expression, if any. 4625 const Expr *resultExpr = E->getResultExpr(); 4626 LValueOrRValue result; 4627 4628 for (PseudoObjectExpr::const_semantics_iterator 4629 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4630 const Expr *semantic = *i; 4631 4632 // If this semantic expression is an opaque value, bind it 4633 // to the result of its source expression. 4634 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4635 4636 // If this is the result expression, we may need to evaluate 4637 // directly into the slot. 4638 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4639 OVMA opaqueData; 4640 if (ov == resultExpr && ov->isRValue() && !forLValue && 4641 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4642 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4643 LValueBaseInfo BaseInfo(AlignmentSource::Decl, false); 4644 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4645 BaseInfo); 4646 opaqueData = OVMA::bind(CGF, ov, LV); 4647 result.RV = slot.asRValue(); 4648 4649 // Otherwise, emit as normal. 4650 } else { 4651 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4652 4653 // If this is the result, also evaluate the result now. 4654 if (ov == resultExpr) { 4655 if (forLValue) 4656 result.LV = CGF.EmitLValue(ov); 4657 else 4658 result.RV = CGF.EmitAnyExpr(ov, slot); 4659 } 4660 } 4661 4662 opaques.push_back(opaqueData); 4663 4664 // Otherwise, if the expression is the result, evaluate it 4665 // and remember the result. 4666 } else if (semantic == resultExpr) { 4667 if (forLValue) 4668 result.LV = CGF.EmitLValue(semantic); 4669 else 4670 result.RV = CGF.EmitAnyExpr(semantic, slot); 4671 4672 // Otherwise, evaluate the expression in an ignored context. 4673 } else { 4674 CGF.EmitIgnoredExpr(semantic); 4675 } 4676 } 4677 4678 // Unbind all the opaques now. 4679 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4680 opaques[i].unbind(CGF); 4681 4682 return result; 4683 } 4684 4685 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4686 AggValueSlot slot) { 4687 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4688 } 4689 4690 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4691 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4692 } 4693