1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 78 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 79 // otherwise alloca is inserted at the current insertion point of the 80 // builder. 81 if (!ArraySize) 82 Builder.SetInsertPoint(AllocaInsertPt); 83 V = getTargetHooks().performAddrSpaceCast( 84 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 85 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 86 } 87 88 return Address(V, Align); 89 } 90 91 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 92 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 93 /// insertion point of the builder. 94 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 95 const Twine &Name, 96 llvm::Value *ArraySize) { 97 if (ArraySize) 98 return Builder.CreateAlloca(Ty, ArraySize, Name); 99 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 100 ArraySize, Name, AllocaInsertPt); 101 } 102 103 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 104 /// default alignment of the corresponding LLVM type, which is *not* 105 /// guaranteed to be related in any way to the expected alignment of 106 /// an AST type that might have been lowered to Ty. 107 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 108 const Twine &Name) { 109 CharUnits Align = 110 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 111 return CreateTempAlloca(Ty, Align, Name); 112 } 113 114 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 115 assert(isa<llvm::AllocaInst>(Var.getPointer())); 116 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 117 Store->setAlignment(Var.getAlignment().getQuantity()); 118 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 119 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 120 } 121 122 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 123 CharUnits Align = getContext().getTypeAlignInChars(Ty); 124 return CreateTempAlloca(ConvertType(Ty), Align, Name); 125 } 126 127 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 128 bool CastToDefaultAddrSpace) { 129 // FIXME: Should we prefer the preferred type alignment here? 130 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 131 CastToDefaultAddrSpace); 132 } 133 134 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 135 const Twine &Name, 136 bool CastToDefaultAddrSpace) { 137 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 138 CastToDefaultAddrSpace); 139 } 140 141 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 142 /// expression and compare the result against zero, returning an Int1Ty value. 143 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 144 PGO.setCurrentStmt(E); 145 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 146 llvm::Value *MemPtr = EmitScalarExpr(E); 147 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 148 } 149 150 QualType BoolTy = getContext().BoolTy; 151 SourceLocation Loc = E->getExprLoc(); 152 if (!E->getType()->isAnyComplexType()) 153 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 154 155 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 156 Loc); 157 } 158 159 /// EmitIgnoredExpr - Emit code to compute the specified expression, 160 /// ignoring the result. 161 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 162 if (E->isRValue()) 163 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 164 165 // Just emit it as an l-value and drop the result. 166 EmitLValue(E); 167 } 168 169 /// EmitAnyExpr - Emit code to compute the specified expression which 170 /// can have any type. The result is returned as an RValue struct. 171 /// If this is an aggregate expression, AggSlot indicates where the 172 /// result should be returned. 173 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 174 AggValueSlot aggSlot, 175 bool ignoreResult) { 176 switch (getEvaluationKind(E->getType())) { 177 case TEK_Scalar: 178 return RValue::get(EmitScalarExpr(E, ignoreResult)); 179 case TEK_Complex: 180 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 181 case TEK_Aggregate: 182 if (!ignoreResult && aggSlot.isIgnored()) 183 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 184 EmitAggExpr(E, aggSlot); 185 return aggSlot.asRValue(); 186 } 187 llvm_unreachable("bad evaluation kind"); 188 } 189 190 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 191 /// always be accessible even if no aggregate location is provided. 192 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 193 AggValueSlot AggSlot = AggValueSlot::ignored(); 194 195 if (hasAggregateEvaluationKind(E->getType())) 196 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 197 return EmitAnyExpr(E, AggSlot); 198 } 199 200 /// EmitAnyExprToMem - Evaluate an expression into a given memory 201 /// location. 202 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 203 Address Location, 204 Qualifiers Quals, 205 bool IsInit) { 206 // FIXME: This function should take an LValue as an argument. 207 switch (getEvaluationKind(E->getType())) { 208 case TEK_Complex: 209 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 210 /*isInit*/ false); 211 return; 212 213 case TEK_Aggregate: { 214 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 215 AggValueSlot::IsDestructed_t(IsInit), 216 AggValueSlot::DoesNotNeedGCBarriers, 217 AggValueSlot::IsAliased_t(!IsInit))); 218 return; 219 } 220 221 case TEK_Scalar: { 222 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 223 LValue LV = MakeAddrLValue(Location, E->getType()); 224 EmitStoreThroughLValue(RV, LV); 225 return; 226 } 227 } 228 llvm_unreachable("bad evaluation kind"); 229 } 230 231 static void 232 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 233 const Expr *E, Address ReferenceTemporary) { 234 // Objective-C++ ARC: 235 // If we are binding a reference to a temporary that has ownership, we 236 // need to perform retain/release operations on the temporary. 237 // 238 // FIXME: This should be looking at E, not M. 239 if (auto Lifetime = M->getType().getObjCLifetime()) { 240 switch (Lifetime) { 241 case Qualifiers::OCL_None: 242 case Qualifiers::OCL_ExplicitNone: 243 // Carry on to normal cleanup handling. 244 break; 245 246 case Qualifiers::OCL_Autoreleasing: 247 // Nothing to do; cleaned up by an autorelease pool. 248 return; 249 250 case Qualifiers::OCL_Strong: 251 case Qualifiers::OCL_Weak: 252 switch (StorageDuration Duration = M->getStorageDuration()) { 253 case SD_Static: 254 // Note: we intentionally do not register a cleanup to release 255 // the object on program termination. 256 return; 257 258 case SD_Thread: 259 // FIXME: We should probably register a cleanup in this case. 260 return; 261 262 case SD_Automatic: 263 case SD_FullExpression: 264 CodeGenFunction::Destroyer *Destroy; 265 CleanupKind CleanupKind; 266 if (Lifetime == Qualifiers::OCL_Strong) { 267 const ValueDecl *VD = M->getExtendingDecl(); 268 bool Precise = 269 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 270 CleanupKind = CGF.getARCCleanupKind(); 271 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 272 : &CodeGenFunction::destroyARCStrongImprecise; 273 } else { 274 // __weak objects always get EH cleanups; otherwise, exceptions 275 // could cause really nasty crashes instead of mere leaks. 276 CleanupKind = NormalAndEHCleanup; 277 Destroy = &CodeGenFunction::destroyARCWeak; 278 } 279 if (Duration == SD_FullExpression) 280 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 281 M->getType(), *Destroy, 282 CleanupKind & EHCleanup); 283 else 284 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 285 M->getType(), 286 *Destroy, CleanupKind & EHCleanup); 287 return; 288 289 case SD_Dynamic: 290 llvm_unreachable("temporary cannot have dynamic storage duration"); 291 } 292 llvm_unreachable("unknown storage duration"); 293 } 294 } 295 296 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 297 if (const RecordType *RT = 298 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 299 // Get the destructor for the reference temporary. 300 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 301 if (!ClassDecl->hasTrivialDestructor()) 302 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 303 } 304 305 if (!ReferenceTemporaryDtor) 306 return; 307 308 // Call the destructor for the temporary. 309 switch (M->getStorageDuration()) { 310 case SD_Static: 311 case SD_Thread: { 312 llvm::Constant *CleanupFn; 313 llvm::Constant *CleanupArg; 314 if (E->getType()->isArrayType()) { 315 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 316 ReferenceTemporary, E->getType(), 317 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 318 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 319 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 320 } else { 321 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 322 StructorType::Complete); 323 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 324 } 325 CGF.CGM.getCXXABI().registerGlobalDtor( 326 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 327 break; 328 } 329 330 case SD_FullExpression: 331 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 332 CodeGenFunction::destroyCXXObject, 333 CGF.getLangOpts().Exceptions); 334 break; 335 336 case SD_Automatic: 337 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, 340 CGF.getLangOpts().Exceptions); 341 break; 342 343 case SD_Dynamic: 344 llvm_unreachable("temporary cannot have dynamic storage duration"); 345 } 346 } 347 348 static Address createReferenceTemporary(CodeGenFunction &CGF, 349 const MaterializeTemporaryExpr *M, 350 const Expr *Inner) { 351 auto &TCG = CGF.getTargetHooks(); 352 switch (M->getStorageDuration()) { 353 case SD_FullExpression: 354 case SD_Automatic: { 355 // If we have a constant temporary array or record try to promote it into a 356 // constant global under the same rules a normal constant would've been 357 // promoted. This is easier on the optimizer and generally emits fewer 358 // instructions. 359 QualType Ty = Inner->getType(); 360 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 361 (Ty->isArrayType() || Ty->isRecordType()) && 362 CGF.CGM.isTypeConstant(Ty, true)) 363 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 364 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 365 auto AS = AddrSpace.getValue(); 366 auto *GV = new llvm::GlobalVariable( 367 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 368 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 369 llvm::GlobalValue::NotThreadLocal, 370 CGF.getContext().getTargetAddressSpace(AS)); 371 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 372 GV->setAlignment(alignment.getQuantity()); 373 llvm::Constant *C = GV; 374 if (AS != LangAS::Default) 375 C = TCG.performAddrSpaceCast( 376 CGF.CGM, GV, AS, LangAS::Default, 377 GV->getValueType()->getPointerTo( 378 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 379 // FIXME: Should we put the new global into a COMDAT? 380 return Address(C, alignment); 381 } 382 } 383 return CGF.CreateMemTemp(Ty, "ref.tmp"); 384 } 385 case SD_Thread: 386 case SD_Static: 387 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 388 389 case SD_Dynamic: 390 llvm_unreachable("temporary can't have dynamic storage duration"); 391 } 392 llvm_unreachable("unknown storage duration"); 393 } 394 395 LValue CodeGenFunction:: 396 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 397 const Expr *E = M->GetTemporaryExpr(); 398 399 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 400 // as that will cause the lifetime adjustment to be lost for ARC 401 auto ownership = M->getType().getObjCLifetime(); 402 if (ownership != Qualifiers::OCL_None && 403 ownership != Qualifiers::OCL_ExplicitNone) { 404 Address Object = createReferenceTemporary(*this, M, E); 405 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 406 Object = Address(llvm::ConstantExpr::getBitCast(Var, 407 ConvertTypeForMem(E->getType()) 408 ->getPointerTo(Object.getAddressSpace())), 409 Object.getAlignment()); 410 411 // createReferenceTemporary will promote the temporary to a global with a 412 // constant initializer if it can. It can only do this to a value of 413 // ARC-manageable type if the value is global and therefore "immune" to 414 // ref-counting operations. Therefore we have no need to emit either a 415 // dynamic initialization or a cleanup and we can just return the address 416 // of the temporary. 417 if (Var->hasInitializer()) 418 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 419 420 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 421 } 422 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 423 AlignmentSource::Decl); 424 425 switch (getEvaluationKind(E->getType())) { 426 default: llvm_unreachable("expected scalar or aggregate expression"); 427 case TEK_Scalar: 428 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 429 break; 430 case TEK_Aggregate: { 431 EmitAggExpr(E, AggValueSlot::forAddr(Object, 432 E->getType().getQualifiers(), 433 AggValueSlot::IsDestructed, 434 AggValueSlot::DoesNotNeedGCBarriers, 435 AggValueSlot::IsNotAliased)); 436 break; 437 } 438 } 439 440 pushTemporaryCleanup(*this, M, E, Object); 441 return RefTempDst; 442 } 443 444 SmallVector<const Expr *, 2> CommaLHSs; 445 SmallVector<SubobjectAdjustment, 2> Adjustments; 446 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 447 448 for (const auto &Ignored : CommaLHSs) 449 EmitIgnoredExpr(Ignored); 450 451 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 452 if (opaque->getType()->isRecordType()) { 453 assert(Adjustments.empty()); 454 return EmitOpaqueValueLValue(opaque); 455 } 456 } 457 458 // Create and initialize the reference temporary. 459 Address Object = createReferenceTemporary(*this, M, E); 460 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 461 Object.getPointer()->stripPointerCasts())) { 462 Object = Address(llvm::ConstantExpr::getBitCast( 463 cast<llvm::Constant>(Object.getPointer()), 464 ConvertTypeForMem(E->getType())->getPointerTo()), 465 Object.getAlignment()); 466 // If the temporary is a global and has a constant initializer or is a 467 // constant temporary that we promoted to a global, we may have already 468 // initialized it. 469 if (!Var->hasInitializer()) { 470 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 471 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 472 } 473 } else { 474 switch (M->getStorageDuration()) { 475 case SD_Automatic: 476 case SD_FullExpression: 477 if (auto *Size = EmitLifetimeStart( 478 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 479 Object.getPointer())) { 480 if (M->getStorageDuration() == SD_Automatic) 481 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 482 Object, Size); 483 else 484 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 485 Size); 486 } 487 break; 488 default: 489 break; 490 } 491 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 492 } 493 pushTemporaryCleanup(*this, M, E, Object); 494 495 // Perform derived-to-base casts and/or field accesses, to get from the 496 // temporary object we created (and, potentially, for which we extended 497 // the lifetime) to the subobject we're binding the reference to. 498 for (unsigned I = Adjustments.size(); I != 0; --I) { 499 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 500 switch (Adjustment.Kind) { 501 case SubobjectAdjustment::DerivedToBaseAdjustment: 502 Object = 503 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 504 Adjustment.DerivedToBase.BasePath->path_begin(), 505 Adjustment.DerivedToBase.BasePath->path_end(), 506 /*NullCheckValue=*/ false, E->getExprLoc()); 507 break; 508 509 case SubobjectAdjustment::FieldAdjustment: { 510 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 511 LV = EmitLValueForField(LV, Adjustment.Field); 512 assert(LV.isSimple() && 513 "materialized temporary field is not a simple lvalue"); 514 Object = LV.getAddress(); 515 break; 516 } 517 518 case SubobjectAdjustment::MemberPointerAdjustment: { 519 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 520 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 521 Adjustment.Ptr.MPT); 522 break; 523 } 524 } 525 } 526 527 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 528 } 529 530 RValue 531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 532 // Emit the expression as an lvalue. 533 LValue LV = EmitLValue(E); 534 assert(LV.isSimple()); 535 llvm::Value *Value = LV.getPointer(); 536 537 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 538 // C++11 [dcl.ref]p5 (as amended by core issue 453): 539 // If a glvalue to which a reference is directly bound designates neither 540 // an existing object or function of an appropriate type nor a region of 541 // storage of suitable size and alignment to contain an object of the 542 // reference's type, the behavior is undefined. 543 QualType Ty = E->getType(); 544 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 545 } 546 547 return RValue::get(Value); 548 } 549 550 551 /// getAccessedFieldNo - Given an encoded value and a result number, return the 552 /// input field number being accessed. 553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 554 const llvm::Constant *Elts) { 555 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 556 ->getZExtValue(); 557 } 558 559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 561 llvm::Value *High) { 562 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 563 llvm::Value *K47 = Builder.getInt64(47); 564 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 565 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 566 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 567 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 568 return Builder.CreateMul(B1, KMul); 569 } 570 571 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 572 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 573 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 574 } 575 576 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 577 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 578 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 579 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 580 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 581 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 582 } 583 584 bool CodeGenFunction::sanitizePerformTypeCheck() const { 585 return SanOpts.has(SanitizerKind::Null) | 586 SanOpts.has(SanitizerKind::Alignment) | 587 SanOpts.has(SanitizerKind::ObjectSize) | 588 SanOpts.has(SanitizerKind::Vptr); 589 } 590 591 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 592 llvm::Value *Ptr, QualType Ty, 593 CharUnits Alignment, 594 SanitizerSet SkippedChecks) { 595 if (!sanitizePerformTypeCheck()) 596 return; 597 598 // Don't check pointers outside the default address space. The null check 599 // isn't correct, the object-size check isn't supported by LLVM, and we can't 600 // communicate the addresses to the runtime handler for the vptr check. 601 if (Ptr->getType()->getPointerAddressSpace()) 602 return; 603 604 // Don't check pointers to volatile data. The behavior here is implementation- 605 // defined. 606 if (Ty.isVolatileQualified()) 607 return; 608 609 SanitizerScope SanScope(this); 610 611 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 612 llvm::BasicBlock *Done = nullptr; 613 614 // Quickly determine whether we have a pointer to an alloca. It's possible 615 // to skip null checks, and some alignment checks, for these pointers. This 616 // can reduce compile-time significantly. 617 auto PtrToAlloca = 618 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 619 620 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 621 llvm::Value *IsNonNull = nullptr; 622 bool IsGuaranteedNonNull = 623 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 624 bool AllowNullPointers = isNullPointerAllowed(TCK); 625 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 626 !IsGuaranteedNonNull) { 627 // The glvalue must not be an empty glvalue. 628 IsNonNull = Builder.CreateIsNotNull(Ptr); 629 630 // The IR builder can constant-fold the null check if the pointer points to 631 // a constant. 632 IsGuaranteedNonNull = IsNonNull == True; 633 634 // Skip the null check if the pointer is known to be non-null. 635 if (!IsGuaranteedNonNull) { 636 if (AllowNullPointers) { 637 // When performing pointer casts, it's OK if the value is null. 638 // Skip the remaining checks in that case. 639 Done = createBasicBlock("null"); 640 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 641 Builder.CreateCondBr(IsNonNull, Rest, Done); 642 EmitBlock(Rest); 643 } else { 644 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 645 } 646 } 647 } 648 649 if (SanOpts.has(SanitizerKind::ObjectSize) && 650 !SkippedChecks.has(SanitizerKind::ObjectSize) && 651 !Ty->isIncompleteType()) { 652 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 653 654 // The glvalue must refer to a large enough storage region. 655 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 656 // to check this. 657 // FIXME: Get object address space 658 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 659 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 660 llvm::Value *Min = Builder.getFalse(); 661 llvm::Value *NullIsUnknown = Builder.getFalse(); 662 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 663 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 664 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 665 llvm::ConstantInt::get(IntPtrTy, Size)); 666 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 667 } 668 669 uint64_t AlignVal = 0; 670 llvm::Value *PtrAsInt = nullptr; 671 672 if (SanOpts.has(SanitizerKind::Alignment) && 673 !SkippedChecks.has(SanitizerKind::Alignment)) { 674 AlignVal = Alignment.getQuantity(); 675 if (!Ty->isIncompleteType() && !AlignVal) 676 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 677 678 // The glvalue must be suitably aligned. 679 if (AlignVal > 1 && 680 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 681 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 682 llvm::Value *Align = Builder.CreateAnd( 683 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 684 llvm::Value *Aligned = 685 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 686 if (Aligned != True) 687 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 688 } 689 } 690 691 if (Checks.size() > 0) { 692 // Make sure we're not losing information. Alignment needs to be a power of 693 // 2 694 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 695 llvm::Constant *StaticData[] = { 696 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 697 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 698 llvm::ConstantInt::get(Int8Ty, TCK)}; 699 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 700 PtrAsInt ? PtrAsInt : Ptr); 701 } 702 703 // If possible, check that the vptr indicates that there is a subobject of 704 // type Ty at offset zero within this object. 705 // 706 // C++11 [basic.life]p5,6: 707 // [For storage which does not refer to an object within its lifetime] 708 // The program has undefined behavior if: 709 // -- the [pointer or glvalue] is used to access a non-static data member 710 // or call a non-static member function 711 if (SanOpts.has(SanitizerKind::Vptr) && 712 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 713 // Ensure that the pointer is non-null before loading it. If there is no 714 // compile-time guarantee, reuse the run-time null check or emit a new one. 715 if (!IsGuaranteedNonNull) { 716 if (!IsNonNull) 717 IsNonNull = Builder.CreateIsNotNull(Ptr); 718 if (!Done) 719 Done = createBasicBlock("vptr.null"); 720 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 721 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 722 EmitBlock(VptrNotNull); 723 } 724 725 // Compute a hash of the mangled name of the type. 726 // 727 // FIXME: This is not guaranteed to be deterministic! Move to a 728 // fingerprinting mechanism once LLVM provides one. For the time 729 // being the implementation happens to be deterministic. 730 SmallString<64> MangledName; 731 llvm::raw_svector_ostream Out(MangledName); 732 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 733 Out); 734 735 // Blacklist based on the mangled type. 736 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 737 SanitizerKind::Vptr, Out.str())) { 738 llvm::hash_code TypeHash = hash_value(Out.str()); 739 740 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 741 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 742 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 743 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 744 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 745 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 746 747 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 748 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 749 750 // Look the hash up in our cache. 751 const int CacheSize = 128; 752 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 753 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 754 "__ubsan_vptr_type_cache"); 755 llvm::Value *Slot = Builder.CreateAnd(Hash, 756 llvm::ConstantInt::get(IntPtrTy, 757 CacheSize-1)); 758 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 759 llvm::Value *CacheVal = 760 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 761 getPointerAlign()); 762 763 // If the hash isn't in the cache, call a runtime handler to perform the 764 // hard work of checking whether the vptr is for an object of the right 765 // type. This will either fill in the cache and return, or produce a 766 // diagnostic. 767 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 768 llvm::Constant *StaticData[] = { 769 EmitCheckSourceLocation(Loc), 770 EmitCheckTypeDescriptor(Ty), 771 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 772 llvm::ConstantInt::get(Int8Ty, TCK) 773 }; 774 llvm::Value *DynamicData[] = { Ptr, Hash }; 775 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 776 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 777 DynamicData); 778 } 779 } 780 781 if (Done) { 782 Builder.CreateBr(Done); 783 EmitBlock(Done); 784 } 785 } 786 787 /// Determine whether this expression refers to a flexible array member in a 788 /// struct. We disable array bounds checks for such members. 789 static bool isFlexibleArrayMemberExpr(const Expr *E) { 790 // For compatibility with existing code, we treat arrays of length 0 or 791 // 1 as flexible array members. 792 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 793 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 794 if (CAT->getSize().ugt(1)) 795 return false; 796 } else if (!isa<IncompleteArrayType>(AT)) 797 return false; 798 799 E = E->IgnoreParens(); 800 801 // A flexible array member must be the last member in the class. 802 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 803 // FIXME: If the base type of the member expr is not FD->getParent(), 804 // this should not be treated as a flexible array member access. 805 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 806 RecordDecl::field_iterator FI( 807 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 808 return ++FI == FD->getParent()->field_end(); 809 } 810 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 811 return IRE->getDecl()->getNextIvar() == nullptr; 812 } 813 814 return false; 815 } 816 817 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 818 QualType EltTy) { 819 ASTContext &C = getContext(); 820 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 821 if (!EltSize) 822 return nullptr; 823 824 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 825 if (!ArrayDeclRef) 826 return nullptr; 827 828 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 829 if (!ParamDecl) 830 return nullptr; 831 832 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 833 if (!POSAttr) 834 return nullptr; 835 836 // Don't load the size if it's a lower bound. 837 int POSType = POSAttr->getType(); 838 if (POSType != 0 && POSType != 1) 839 return nullptr; 840 841 // Find the implicit size parameter. 842 auto PassedSizeIt = SizeArguments.find(ParamDecl); 843 if (PassedSizeIt == SizeArguments.end()) 844 return nullptr; 845 846 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 847 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 848 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 849 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 850 C.getSizeType(), E->getExprLoc()); 851 llvm::Value *SizeOfElement = 852 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 853 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 854 } 855 856 /// If Base is known to point to the start of an array, return the length of 857 /// that array. Return 0 if the length cannot be determined. 858 static llvm::Value *getArrayIndexingBound( 859 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 860 // For the vector indexing extension, the bound is the number of elements. 861 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 862 IndexedType = Base->getType(); 863 return CGF.Builder.getInt32(VT->getNumElements()); 864 } 865 866 Base = Base->IgnoreParens(); 867 868 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 869 if (CE->getCastKind() == CK_ArrayToPointerDecay && 870 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 871 IndexedType = CE->getSubExpr()->getType(); 872 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 873 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 874 return CGF.Builder.getInt(CAT->getSize()); 875 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 876 return CGF.getVLASize(VAT).NumElts; 877 // Ignore pass_object_size here. It's not applicable on decayed pointers. 878 } 879 } 880 881 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 882 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 883 IndexedType = Base->getType(); 884 return POS; 885 } 886 887 return nullptr; 888 } 889 890 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 891 llvm::Value *Index, QualType IndexType, 892 bool Accessed) { 893 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 894 "should not be called unless adding bounds checks"); 895 SanitizerScope SanScope(this); 896 897 QualType IndexedType; 898 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 899 if (!Bound) 900 return; 901 902 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 903 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 904 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 905 906 llvm::Constant *StaticData[] = { 907 EmitCheckSourceLocation(E->getExprLoc()), 908 EmitCheckTypeDescriptor(IndexedType), 909 EmitCheckTypeDescriptor(IndexType) 910 }; 911 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 912 : Builder.CreateICmpULE(IndexVal, BoundVal); 913 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 914 SanitizerHandler::OutOfBounds, StaticData, Index); 915 } 916 917 918 CodeGenFunction::ComplexPairTy CodeGenFunction:: 919 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 920 bool isInc, bool isPre) { 921 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 922 923 llvm::Value *NextVal; 924 if (isa<llvm::IntegerType>(InVal.first->getType())) { 925 uint64_t AmountVal = isInc ? 1 : -1; 926 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 927 928 // Add the inc/dec to the real part. 929 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 930 } else { 931 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 932 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 933 if (!isInc) 934 FVal.changeSign(); 935 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 936 937 // Add the inc/dec to the real part. 938 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 939 } 940 941 ComplexPairTy IncVal(NextVal, InVal.second); 942 943 // Store the updated result through the lvalue. 944 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 945 946 // If this is a postinc, return the value read from memory, otherwise use the 947 // updated value. 948 return isPre ? IncVal : InVal; 949 } 950 951 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 952 CodeGenFunction *CGF) { 953 // Bind VLAs in the cast type. 954 if (CGF && E->getType()->isVariablyModifiedType()) 955 CGF->EmitVariablyModifiedType(E->getType()); 956 957 if (CGDebugInfo *DI = getModuleDebugInfo()) 958 DI->EmitExplicitCastType(E->getType()); 959 } 960 961 //===----------------------------------------------------------------------===// 962 // LValue Expression Emission 963 //===----------------------------------------------------------------------===// 964 965 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 966 /// derive a more accurate bound on the alignment of the pointer. 967 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 968 LValueBaseInfo *BaseInfo, 969 TBAAAccessInfo *TBAAInfo) { 970 // We allow this with ObjC object pointers because of fragile ABIs. 971 assert(E->getType()->isPointerType() || 972 E->getType()->isObjCObjectPointerType()); 973 E = E->IgnoreParens(); 974 975 // Casts: 976 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 977 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 978 CGM.EmitExplicitCastExprType(ECE, this); 979 980 switch (CE->getCastKind()) { 981 // Non-converting casts (but not C's implicit conversion from void*). 982 case CK_BitCast: 983 case CK_NoOp: 984 case CK_AddressSpaceConversion: 985 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 986 if (PtrTy->getPointeeType()->isVoidType()) 987 break; 988 989 LValueBaseInfo InnerBaseInfo; 990 TBAAAccessInfo InnerTBAAInfo; 991 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 992 &InnerBaseInfo, 993 &InnerTBAAInfo); 994 if (BaseInfo) *BaseInfo = InnerBaseInfo; 995 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 996 997 if (isa<ExplicitCastExpr>(CE)) { 998 LValueBaseInfo TargetTypeBaseInfo; 999 TBAAAccessInfo TargetTypeTBAAInfo; 1000 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1001 &TargetTypeBaseInfo, 1002 &TargetTypeTBAAInfo); 1003 if (TBAAInfo) 1004 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1005 TargetTypeTBAAInfo); 1006 // If the source l-value is opaque, honor the alignment of the 1007 // casted-to type. 1008 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1009 if (BaseInfo) 1010 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1011 Addr = Address(Addr.getPointer(), Align); 1012 } 1013 } 1014 1015 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1016 CE->getCastKind() == CK_BitCast) { 1017 if (auto PT = E->getType()->getAs<PointerType>()) 1018 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1019 /*MayBeNull=*/true, 1020 CodeGenFunction::CFITCK_UnrelatedCast, 1021 CE->getLocStart()); 1022 } 1023 return CE->getCastKind() != CK_AddressSpaceConversion 1024 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1025 : Builder.CreateAddrSpaceCast(Addr, 1026 ConvertType(E->getType())); 1027 } 1028 break; 1029 1030 // Array-to-pointer decay. 1031 case CK_ArrayToPointerDecay: 1032 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1033 1034 // Derived-to-base conversions. 1035 case CK_UncheckedDerivedToBase: 1036 case CK_DerivedToBase: { 1037 // TODO: Support accesses to members of base classes in TBAA. For now, we 1038 // conservatively pretend that the complete object is of the base class 1039 // type. 1040 if (TBAAInfo) 1041 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1042 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1043 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1044 return GetAddressOfBaseClass(Addr, Derived, 1045 CE->path_begin(), CE->path_end(), 1046 ShouldNullCheckClassCastValue(CE), 1047 CE->getExprLoc()); 1048 } 1049 1050 // TODO: Is there any reason to treat base-to-derived conversions 1051 // specially? 1052 default: 1053 break; 1054 } 1055 } 1056 1057 // Unary &. 1058 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1059 if (UO->getOpcode() == UO_AddrOf) { 1060 LValue LV = EmitLValue(UO->getSubExpr()); 1061 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1062 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1063 return LV.getAddress(); 1064 } 1065 } 1066 1067 // TODO: conditional operators, comma. 1068 1069 // Otherwise, use the alignment of the type. 1070 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1071 TBAAInfo); 1072 return Address(EmitScalarExpr(E), Align); 1073 } 1074 1075 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1076 if (Ty->isVoidType()) 1077 return RValue::get(nullptr); 1078 1079 switch (getEvaluationKind(Ty)) { 1080 case TEK_Complex: { 1081 llvm::Type *EltTy = 1082 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1083 llvm::Value *U = llvm::UndefValue::get(EltTy); 1084 return RValue::getComplex(std::make_pair(U, U)); 1085 } 1086 1087 // If this is a use of an undefined aggregate type, the aggregate must have an 1088 // identifiable address. Just because the contents of the value are undefined 1089 // doesn't mean that the address can't be taken and compared. 1090 case TEK_Aggregate: { 1091 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1092 return RValue::getAggregate(DestPtr); 1093 } 1094 1095 case TEK_Scalar: 1096 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1097 } 1098 llvm_unreachable("bad evaluation kind"); 1099 } 1100 1101 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1102 const char *Name) { 1103 ErrorUnsupported(E, Name); 1104 return GetUndefRValue(E->getType()); 1105 } 1106 1107 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1108 const char *Name) { 1109 ErrorUnsupported(E, Name); 1110 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1111 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1112 E->getType()); 1113 } 1114 1115 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1116 const Expr *Base = Obj; 1117 while (!isa<CXXThisExpr>(Base)) { 1118 // The result of a dynamic_cast can be null. 1119 if (isa<CXXDynamicCastExpr>(Base)) 1120 return false; 1121 1122 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1123 Base = CE->getSubExpr(); 1124 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1125 Base = PE->getSubExpr(); 1126 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1127 if (UO->getOpcode() == UO_Extension) 1128 Base = UO->getSubExpr(); 1129 else 1130 return false; 1131 } else { 1132 return false; 1133 } 1134 } 1135 return true; 1136 } 1137 1138 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1139 LValue LV; 1140 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1141 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1142 else 1143 LV = EmitLValue(E); 1144 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1145 SanitizerSet SkippedChecks; 1146 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1147 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1148 if (IsBaseCXXThis) 1149 SkippedChecks.set(SanitizerKind::Alignment, true); 1150 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1151 SkippedChecks.set(SanitizerKind::Null, true); 1152 } 1153 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1154 E->getType(), LV.getAlignment(), SkippedChecks); 1155 } 1156 return LV; 1157 } 1158 1159 /// EmitLValue - Emit code to compute a designator that specifies the location 1160 /// of the expression. 1161 /// 1162 /// This can return one of two things: a simple address or a bitfield reference. 1163 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1164 /// an LLVM pointer type. 1165 /// 1166 /// If this returns a bitfield reference, nothing about the pointee type of the 1167 /// LLVM value is known: For example, it may not be a pointer to an integer. 1168 /// 1169 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1170 /// this method guarantees that the returned pointer type will point to an LLVM 1171 /// type of the same size of the lvalue's type. If the lvalue has a variable 1172 /// length type, this is not possible. 1173 /// 1174 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1175 ApplyDebugLocation DL(*this, E); 1176 switch (E->getStmtClass()) { 1177 default: return EmitUnsupportedLValue(E, "l-value expression"); 1178 1179 case Expr::ObjCPropertyRefExprClass: 1180 llvm_unreachable("cannot emit a property reference directly"); 1181 1182 case Expr::ObjCSelectorExprClass: 1183 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1184 case Expr::ObjCIsaExprClass: 1185 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1186 case Expr::BinaryOperatorClass: 1187 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1188 case Expr::CompoundAssignOperatorClass: { 1189 QualType Ty = E->getType(); 1190 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1191 Ty = AT->getValueType(); 1192 if (!Ty->isAnyComplexType()) 1193 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1194 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1195 } 1196 case Expr::CallExprClass: 1197 case Expr::CXXMemberCallExprClass: 1198 case Expr::CXXOperatorCallExprClass: 1199 case Expr::UserDefinedLiteralClass: 1200 return EmitCallExprLValue(cast<CallExpr>(E)); 1201 case Expr::VAArgExprClass: 1202 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1203 case Expr::DeclRefExprClass: 1204 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1205 case Expr::ParenExprClass: 1206 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1207 case Expr::GenericSelectionExprClass: 1208 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1209 case Expr::PredefinedExprClass: 1210 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1211 case Expr::StringLiteralClass: 1212 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1213 case Expr::ObjCEncodeExprClass: 1214 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1215 case Expr::PseudoObjectExprClass: 1216 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1217 case Expr::InitListExprClass: 1218 return EmitInitListLValue(cast<InitListExpr>(E)); 1219 case Expr::CXXTemporaryObjectExprClass: 1220 case Expr::CXXConstructExprClass: 1221 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1222 case Expr::CXXBindTemporaryExprClass: 1223 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1224 case Expr::CXXUuidofExprClass: 1225 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1226 case Expr::LambdaExprClass: 1227 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1228 1229 case Expr::ExprWithCleanupsClass: { 1230 const auto *cleanups = cast<ExprWithCleanups>(E); 1231 enterFullExpression(cleanups); 1232 RunCleanupsScope Scope(*this); 1233 LValue LV = EmitLValue(cleanups->getSubExpr()); 1234 if (LV.isSimple()) { 1235 // Defend against branches out of gnu statement expressions surrounded by 1236 // cleanups. 1237 llvm::Value *V = LV.getPointer(); 1238 Scope.ForceCleanup({&V}); 1239 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1240 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1241 } 1242 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1243 // bitfield lvalue or some other non-simple lvalue? 1244 return LV; 1245 } 1246 1247 case Expr::CXXDefaultArgExprClass: 1248 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1249 case Expr::CXXDefaultInitExprClass: { 1250 CXXDefaultInitExprScope Scope(*this); 1251 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1252 } 1253 case Expr::CXXTypeidExprClass: 1254 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1255 1256 case Expr::ObjCMessageExprClass: 1257 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1258 case Expr::ObjCIvarRefExprClass: 1259 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1260 case Expr::StmtExprClass: 1261 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1262 case Expr::UnaryOperatorClass: 1263 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1264 case Expr::ArraySubscriptExprClass: 1265 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1266 case Expr::OMPArraySectionExprClass: 1267 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1268 case Expr::ExtVectorElementExprClass: 1269 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1270 case Expr::MemberExprClass: 1271 return EmitMemberExpr(cast<MemberExpr>(E)); 1272 case Expr::CompoundLiteralExprClass: 1273 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1274 case Expr::ConditionalOperatorClass: 1275 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1276 case Expr::BinaryConditionalOperatorClass: 1277 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1278 case Expr::ChooseExprClass: 1279 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1280 case Expr::OpaqueValueExprClass: 1281 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1282 case Expr::SubstNonTypeTemplateParmExprClass: 1283 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1284 case Expr::ImplicitCastExprClass: 1285 case Expr::CStyleCastExprClass: 1286 case Expr::CXXFunctionalCastExprClass: 1287 case Expr::CXXStaticCastExprClass: 1288 case Expr::CXXDynamicCastExprClass: 1289 case Expr::CXXReinterpretCastExprClass: 1290 case Expr::CXXConstCastExprClass: 1291 case Expr::ObjCBridgedCastExprClass: 1292 return EmitCastLValue(cast<CastExpr>(E)); 1293 1294 case Expr::MaterializeTemporaryExprClass: 1295 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1296 1297 case Expr::CoawaitExprClass: 1298 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1299 case Expr::CoyieldExprClass: 1300 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1301 } 1302 } 1303 1304 /// Given an object of the given canonical type, can we safely copy a 1305 /// value out of it based on its initializer? 1306 static bool isConstantEmittableObjectType(QualType type) { 1307 assert(type.isCanonical()); 1308 assert(!type->isReferenceType()); 1309 1310 // Must be const-qualified but non-volatile. 1311 Qualifiers qs = type.getLocalQualifiers(); 1312 if (!qs.hasConst() || qs.hasVolatile()) return false; 1313 1314 // Otherwise, all object types satisfy this except C++ classes with 1315 // mutable subobjects or non-trivial copy/destroy behavior. 1316 if (const auto *RT = dyn_cast<RecordType>(type)) 1317 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1318 if (RD->hasMutableFields() || !RD->isTrivial()) 1319 return false; 1320 1321 return true; 1322 } 1323 1324 /// Can we constant-emit a load of a reference to a variable of the 1325 /// given type? This is different from predicates like 1326 /// Decl::isUsableInConstantExpressions because we do want it to apply 1327 /// in situations that don't necessarily satisfy the language's rules 1328 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1329 /// to do this with const float variables even if those variables 1330 /// aren't marked 'constexpr'. 1331 enum ConstantEmissionKind { 1332 CEK_None, 1333 CEK_AsReferenceOnly, 1334 CEK_AsValueOrReference, 1335 CEK_AsValueOnly 1336 }; 1337 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1338 type = type.getCanonicalType(); 1339 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1340 if (isConstantEmittableObjectType(ref->getPointeeType())) 1341 return CEK_AsValueOrReference; 1342 return CEK_AsReferenceOnly; 1343 } 1344 if (isConstantEmittableObjectType(type)) 1345 return CEK_AsValueOnly; 1346 return CEK_None; 1347 } 1348 1349 /// Try to emit a reference to the given value without producing it as 1350 /// an l-value. This is actually more than an optimization: we can't 1351 /// produce an l-value for variables that we never actually captured 1352 /// in a block or lambda, which means const int variables or constexpr 1353 /// literals or similar. 1354 CodeGenFunction::ConstantEmission 1355 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1356 ValueDecl *value = refExpr->getDecl(); 1357 1358 // The value needs to be an enum constant or a constant variable. 1359 ConstantEmissionKind CEK; 1360 if (isa<ParmVarDecl>(value)) { 1361 CEK = CEK_None; 1362 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1363 CEK = checkVarTypeForConstantEmission(var->getType()); 1364 } else if (isa<EnumConstantDecl>(value)) { 1365 CEK = CEK_AsValueOnly; 1366 } else { 1367 CEK = CEK_None; 1368 } 1369 if (CEK == CEK_None) return ConstantEmission(); 1370 1371 Expr::EvalResult result; 1372 bool resultIsReference; 1373 QualType resultType; 1374 1375 // It's best to evaluate all the way as an r-value if that's permitted. 1376 if (CEK != CEK_AsReferenceOnly && 1377 refExpr->EvaluateAsRValue(result, getContext())) { 1378 resultIsReference = false; 1379 resultType = refExpr->getType(); 1380 1381 // Otherwise, try to evaluate as an l-value. 1382 } else if (CEK != CEK_AsValueOnly && 1383 refExpr->EvaluateAsLValue(result, getContext())) { 1384 resultIsReference = true; 1385 resultType = value->getType(); 1386 1387 // Failure. 1388 } else { 1389 return ConstantEmission(); 1390 } 1391 1392 // In any case, if the initializer has side-effects, abandon ship. 1393 if (result.HasSideEffects) 1394 return ConstantEmission(); 1395 1396 // Emit as a constant. 1397 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1398 result.Val, resultType); 1399 1400 // Make sure we emit a debug reference to the global variable. 1401 // This should probably fire even for 1402 if (isa<VarDecl>(value)) { 1403 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1404 EmitDeclRefExprDbgValue(refExpr, result.Val); 1405 } else { 1406 assert(isa<EnumConstantDecl>(value)); 1407 EmitDeclRefExprDbgValue(refExpr, result.Val); 1408 } 1409 1410 // If we emitted a reference constant, we need to dereference that. 1411 if (resultIsReference) 1412 return ConstantEmission::forReference(C); 1413 1414 return ConstantEmission::forValue(C); 1415 } 1416 1417 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1418 const MemberExpr *ME) { 1419 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1420 // Try to emit static variable member expressions as DREs. 1421 return DeclRefExpr::Create( 1422 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1423 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1424 ME->getType(), ME->getValueKind()); 1425 } 1426 return nullptr; 1427 } 1428 1429 CodeGenFunction::ConstantEmission 1430 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1431 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1432 return tryEmitAsConstant(DRE); 1433 return ConstantEmission(); 1434 } 1435 1436 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1437 SourceLocation Loc) { 1438 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1439 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1440 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1441 } 1442 1443 static bool hasBooleanRepresentation(QualType Ty) { 1444 if (Ty->isBooleanType()) 1445 return true; 1446 1447 if (const EnumType *ET = Ty->getAs<EnumType>()) 1448 return ET->getDecl()->getIntegerType()->isBooleanType(); 1449 1450 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1451 return hasBooleanRepresentation(AT->getValueType()); 1452 1453 return false; 1454 } 1455 1456 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1457 llvm::APInt &Min, llvm::APInt &End, 1458 bool StrictEnums, bool IsBool) { 1459 const EnumType *ET = Ty->getAs<EnumType>(); 1460 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1461 ET && !ET->getDecl()->isFixed(); 1462 if (!IsBool && !IsRegularCPlusPlusEnum) 1463 return false; 1464 1465 if (IsBool) { 1466 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1467 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1468 } else { 1469 const EnumDecl *ED = ET->getDecl(); 1470 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1471 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1472 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1473 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1474 1475 if (NumNegativeBits) { 1476 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1477 assert(NumBits <= Bitwidth); 1478 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1479 Min = -End; 1480 } else { 1481 assert(NumPositiveBits <= Bitwidth); 1482 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1483 Min = llvm::APInt(Bitwidth, 0); 1484 } 1485 } 1486 return true; 1487 } 1488 1489 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1490 llvm::APInt Min, End; 1491 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1492 hasBooleanRepresentation(Ty))) 1493 return nullptr; 1494 1495 llvm::MDBuilder MDHelper(getLLVMContext()); 1496 return MDHelper.createRange(Min, End); 1497 } 1498 1499 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1500 SourceLocation Loc) { 1501 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1502 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1503 if (!HasBoolCheck && !HasEnumCheck) 1504 return false; 1505 1506 bool IsBool = hasBooleanRepresentation(Ty) || 1507 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1508 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1509 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1510 if (!NeedsBoolCheck && !NeedsEnumCheck) 1511 return false; 1512 1513 // Single-bit booleans don't need to be checked. Special-case this to avoid 1514 // a bit width mismatch when handling bitfield values. This is handled by 1515 // EmitFromMemory for the non-bitfield case. 1516 if (IsBool && 1517 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1518 return false; 1519 1520 llvm::APInt Min, End; 1521 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1522 return true; 1523 1524 auto &Ctx = getLLVMContext(); 1525 SanitizerScope SanScope(this); 1526 llvm::Value *Check; 1527 --End; 1528 if (!Min) { 1529 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1530 } else { 1531 llvm::Value *Upper = 1532 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1533 llvm::Value *Lower = 1534 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1535 Check = Builder.CreateAnd(Upper, Lower); 1536 } 1537 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1538 EmitCheckTypeDescriptor(Ty)}; 1539 SanitizerMask Kind = 1540 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1541 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1542 StaticArgs, EmitCheckValue(Value)); 1543 return true; 1544 } 1545 1546 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1547 QualType Ty, 1548 SourceLocation Loc, 1549 LValueBaseInfo BaseInfo, 1550 TBAAAccessInfo TBAAInfo, 1551 bool isNontemporal) { 1552 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1553 // For better performance, handle vector loads differently. 1554 if (Ty->isVectorType()) { 1555 const llvm::Type *EltTy = Addr.getElementType(); 1556 1557 const auto *VTy = cast<llvm::VectorType>(EltTy); 1558 1559 // Handle vectors of size 3 like size 4 for better performance. 1560 if (VTy->getNumElements() == 3) { 1561 1562 // Bitcast to vec4 type. 1563 llvm::VectorType *vec4Ty = 1564 llvm::VectorType::get(VTy->getElementType(), 4); 1565 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1566 // Now load value. 1567 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1568 1569 // Shuffle vector to get vec3. 1570 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1571 {0, 1, 2}, "extractVec"); 1572 return EmitFromMemory(V, Ty); 1573 } 1574 } 1575 } 1576 1577 // Atomic operations have to be done on integral types. 1578 LValue AtomicLValue = 1579 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1580 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1581 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1582 } 1583 1584 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1585 if (isNontemporal) { 1586 llvm::MDNode *Node = llvm::MDNode::get( 1587 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1588 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1589 } 1590 1591 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1592 1593 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1594 // In order to prevent the optimizer from throwing away the check, don't 1595 // attach range metadata to the load. 1596 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1597 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1598 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1599 1600 return EmitFromMemory(Load, Ty); 1601 } 1602 1603 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1604 // Bool has a different representation in memory than in registers. 1605 if (hasBooleanRepresentation(Ty)) { 1606 // This should really always be an i1, but sometimes it's already 1607 // an i8, and it's awkward to track those cases down. 1608 if (Value->getType()->isIntegerTy(1)) 1609 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1610 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1611 "wrong value rep of bool"); 1612 } 1613 1614 return Value; 1615 } 1616 1617 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1618 // Bool has a different representation in memory than in registers. 1619 if (hasBooleanRepresentation(Ty)) { 1620 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1621 "wrong value rep of bool"); 1622 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1623 } 1624 1625 return Value; 1626 } 1627 1628 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1629 bool Volatile, QualType Ty, 1630 LValueBaseInfo BaseInfo, 1631 TBAAAccessInfo TBAAInfo, 1632 bool isInit, bool isNontemporal) { 1633 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1634 // Handle vectors differently to get better performance. 1635 if (Ty->isVectorType()) { 1636 llvm::Type *SrcTy = Value->getType(); 1637 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1638 // Handle vec3 special. 1639 if (VecTy && VecTy->getNumElements() == 3) { 1640 // Our source is a vec3, do a shuffle vector to make it a vec4. 1641 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1642 Builder.getInt32(2), 1643 llvm::UndefValue::get(Builder.getInt32Ty())}; 1644 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1645 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1646 MaskV, "extractVec"); 1647 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1648 } 1649 if (Addr.getElementType() != SrcTy) { 1650 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1651 } 1652 } 1653 } 1654 1655 Value = EmitToMemory(Value, Ty); 1656 1657 LValue AtomicLValue = 1658 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1659 if (Ty->isAtomicType() || 1660 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1661 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1662 return; 1663 } 1664 1665 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1666 if (isNontemporal) { 1667 llvm::MDNode *Node = 1668 llvm::MDNode::get(Store->getContext(), 1669 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1670 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1671 } 1672 1673 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1674 } 1675 1676 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1677 bool isInit) { 1678 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1679 lvalue.getType(), lvalue.getBaseInfo(), 1680 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1681 } 1682 1683 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1684 /// method emits the address of the lvalue, then loads the result as an rvalue, 1685 /// returning the rvalue. 1686 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1687 if (LV.isObjCWeak()) { 1688 // load of a __weak object. 1689 Address AddrWeakObj = LV.getAddress(); 1690 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1691 AddrWeakObj)); 1692 } 1693 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1694 // In MRC mode, we do a load+autorelease. 1695 if (!getLangOpts().ObjCAutoRefCount) { 1696 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1697 } 1698 1699 // In ARC mode, we load retained and then consume the value. 1700 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1701 Object = EmitObjCConsumeObject(LV.getType(), Object); 1702 return RValue::get(Object); 1703 } 1704 1705 if (LV.isSimple()) { 1706 assert(!LV.getType()->isFunctionType()); 1707 1708 // Everything needs a load. 1709 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1710 } 1711 1712 if (LV.isVectorElt()) { 1713 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1714 LV.isVolatileQualified()); 1715 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1716 "vecext")); 1717 } 1718 1719 // If this is a reference to a subset of the elements of a vector, either 1720 // shuffle the input or extract/insert them as appropriate. 1721 if (LV.isExtVectorElt()) 1722 return EmitLoadOfExtVectorElementLValue(LV); 1723 1724 // Global Register variables always invoke intrinsics 1725 if (LV.isGlobalReg()) 1726 return EmitLoadOfGlobalRegLValue(LV); 1727 1728 assert(LV.isBitField() && "Unknown LValue type!"); 1729 return EmitLoadOfBitfieldLValue(LV, Loc); 1730 } 1731 1732 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1733 SourceLocation Loc) { 1734 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1735 1736 // Get the output type. 1737 llvm::Type *ResLTy = ConvertType(LV.getType()); 1738 1739 Address Ptr = LV.getBitFieldAddress(); 1740 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1741 1742 if (Info.IsSigned) { 1743 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1744 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1745 if (HighBits) 1746 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1747 if (Info.Offset + HighBits) 1748 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1749 } else { 1750 if (Info.Offset) 1751 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1752 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1753 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1754 Info.Size), 1755 "bf.clear"); 1756 } 1757 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1758 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1759 return RValue::get(Val); 1760 } 1761 1762 // If this is a reference to a subset of the elements of a vector, create an 1763 // appropriate shufflevector. 1764 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1765 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1766 LV.isVolatileQualified()); 1767 1768 const llvm::Constant *Elts = LV.getExtVectorElts(); 1769 1770 // If the result of the expression is a non-vector type, we must be extracting 1771 // a single element. Just codegen as an extractelement. 1772 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1773 if (!ExprVT) { 1774 unsigned InIdx = getAccessedFieldNo(0, Elts); 1775 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1776 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1777 } 1778 1779 // Always use shuffle vector to try to retain the original program structure 1780 unsigned NumResultElts = ExprVT->getNumElements(); 1781 1782 SmallVector<llvm::Constant*, 4> Mask; 1783 for (unsigned i = 0; i != NumResultElts; ++i) 1784 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1785 1786 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1787 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1788 MaskV); 1789 return RValue::get(Vec); 1790 } 1791 1792 /// @brief Generates lvalue for partial ext_vector access. 1793 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1794 Address VectorAddress = LV.getExtVectorAddress(); 1795 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1796 QualType EQT = ExprVT->getElementType(); 1797 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1798 1799 Address CastToPointerElement = 1800 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1801 "conv.ptr.element"); 1802 1803 const llvm::Constant *Elts = LV.getExtVectorElts(); 1804 unsigned ix = getAccessedFieldNo(0, Elts); 1805 1806 Address VectorBasePtrPlusIx = 1807 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1808 getContext().getTypeSizeInChars(EQT), 1809 "vector.elt"); 1810 1811 return VectorBasePtrPlusIx; 1812 } 1813 1814 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1815 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1816 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1817 "Bad type for register variable"); 1818 llvm::MDNode *RegName = cast<llvm::MDNode>( 1819 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1820 1821 // We accept integer and pointer types only 1822 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1823 llvm::Type *Ty = OrigTy; 1824 if (OrigTy->isPointerTy()) 1825 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1826 llvm::Type *Types[] = { Ty }; 1827 1828 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1829 llvm::Value *Call = Builder.CreateCall( 1830 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1831 if (OrigTy->isPointerTy()) 1832 Call = Builder.CreateIntToPtr(Call, OrigTy); 1833 return RValue::get(Call); 1834 } 1835 1836 1837 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1838 /// lvalue, where both are guaranteed to the have the same type, and that type 1839 /// is 'Ty'. 1840 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1841 bool isInit) { 1842 if (!Dst.isSimple()) { 1843 if (Dst.isVectorElt()) { 1844 // Read/modify/write the vector, inserting the new element. 1845 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1846 Dst.isVolatileQualified()); 1847 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1848 Dst.getVectorIdx(), "vecins"); 1849 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1850 Dst.isVolatileQualified()); 1851 return; 1852 } 1853 1854 // If this is an update of extended vector elements, insert them as 1855 // appropriate. 1856 if (Dst.isExtVectorElt()) 1857 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1858 1859 if (Dst.isGlobalReg()) 1860 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1861 1862 assert(Dst.isBitField() && "Unknown LValue type"); 1863 return EmitStoreThroughBitfieldLValue(Src, Dst); 1864 } 1865 1866 // There's special magic for assigning into an ARC-qualified l-value. 1867 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1868 switch (Lifetime) { 1869 case Qualifiers::OCL_None: 1870 llvm_unreachable("present but none"); 1871 1872 case Qualifiers::OCL_ExplicitNone: 1873 // nothing special 1874 break; 1875 1876 case Qualifiers::OCL_Strong: 1877 if (isInit) { 1878 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1879 break; 1880 } 1881 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1882 return; 1883 1884 case Qualifiers::OCL_Weak: 1885 if (isInit) 1886 // Initialize and then skip the primitive store. 1887 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1888 else 1889 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1890 return; 1891 1892 case Qualifiers::OCL_Autoreleasing: 1893 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1894 Src.getScalarVal())); 1895 // fall into the normal path 1896 break; 1897 } 1898 } 1899 1900 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1901 // load of a __weak object. 1902 Address LvalueDst = Dst.getAddress(); 1903 llvm::Value *src = Src.getScalarVal(); 1904 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1905 return; 1906 } 1907 1908 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1909 // load of a __strong object. 1910 Address LvalueDst = Dst.getAddress(); 1911 llvm::Value *src = Src.getScalarVal(); 1912 if (Dst.isObjCIvar()) { 1913 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1914 llvm::Type *ResultType = IntPtrTy; 1915 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1916 llvm::Value *RHS = dst.getPointer(); 1917 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1918 llvm::Value *LHS = 1919 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1920 "sub.ptr.lhs.cast"); 1921 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1922 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1923 BytesBetween); 1924 } else if (Dst.isGlobalObjCRef()) { 1925 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1926 Dst.isThreadLocalRef()); 1927 } 1928 else 1929 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1930 return; 1931 } 1932 1933 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1934 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1935 } 1936 1937 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1938 llvm::Value **Result) { 1939 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1940 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1941 Address Ptr = Dst.getBitFieldAddress(); 1942 1943 // Get the source value, truncated to the width of the bit-field. 1944 llvm::Value *SrcVal = Src.getScalarVal(); 1945 1946 // Cast the source to the storage type and shift it into place. 1947 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1948 /*IsSigned=*/false); 1949 llvm::Value *MaskedVal = SrcVal; 1950 1951 // See if there are other bits in the bitfield's storage we'll need to load 1952 // and mask together with source before storing. 1953 if (Info.StorageSize != Info.Size) { 1954 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1955 llvm::Value *Val = 1956 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1957 1958 // Mask the source value as needed. 1959 if (!hasBooleanRepresentation(Dst.getType())) 1960 SrcVal = Builder.CreateAnd(SrcVal, 1961 llvm::APInt::getLowBitsSet(Info.StorageSize, 1962 Info.Size), 1963 "bf.value"); 1964 MaskedVal = SrcVal; 1965 if (Info.Offset) 1966 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1967 1968 // Mask out the original value. 1969 Val = Builder.CreateAnd(Val, 1970 ~llvm::APInt::getBitsSet(Info.StorageSize, 1971 Info.Offset, 1972 Info.Offset + Info.Size), 1973 "bf.clear"); 1974 1975 // Or together the unchanged values and the source value. 1976 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1977 } else { 1978 assert(Info.Offset == 0); 1979 } 1980 1981 // Write the new value back out. 1982 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1983 1984 // Return the new value of the bit-field, if requested. 1985 if (Result) { 1986 llvm::Value *ResultVal = MaskedVal; 1987 1988 // Sign extend the value if needed. 1989 if (Info.IsSigned) { 1990 assert(Info.Size <= Info.StorageSize); 1991 unsigned HighBits = Info.StorageSize - Info.Size; 1992 if (HighBits) { 1993 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1994 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1995 } 1996 } 1997 1998 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1999 "bf.result.cast"); 2000 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2001 } 2002 } 2003 2004 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2005 LValue Dst) { 2006 // This access turns into a read/modify/write of the vector. Load the input 2007 // value now. 2008 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2009 Dst.isVolatileQualified()); 2010 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2011 2012 llvm::Value *SrcVal = Src.getScalarVal(); 2013 2014 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2015 unsigned NumSrcElts = VTy->getNumElements(); 2016 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2017 if (NumDstElts == NumSrcElts) { 2018 // Use shuffle vector is the src and destination are the same number of 2019 // elements and restore the vector mask since it is on the side it will be 2020 // stored. 2021 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2022 for (unsigned i = 0; i != NumSrcElts; ++i) 2023 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2024 2025 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2026 Vec = Builder.CreateShuffleVector(SrcVal, 2027 llvm::UndefValue::get(Vec->getType()), 2028 MaskV); 2029 } else if (NumDstElts > NumSrcElts) { 2030 // Extended the source vector to the same length and then shuffle it 2031 // into the destination. 2032 // FIXME: since we're shuffling with undef, can we just use the indices 2033 // into that? This could be simpler. 2034 SmallVector<llvm::Constant*, 4> ExtMask; 2035 for (unsigned i = 0; i != NumSrcElts; ++i) 2036 ExtMask.push_back(Builder.getInt32(i)); 2037 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2038 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2039 llvm::Value *ExtSrcVal = 2040 Builder.CreateShuffleVector(SrcVal, 2041 llvm::UndefValue::get(SrcVal->getType()), 2042 ExtMaskV); 2043 // build identity 2044 SmallVector<llvm::Constant*, 4> Mask; 2045 for (unsigned i = 0; i != NumDstElts; ++i) 2046 Mask.push_back(Builder.getInt32(i)); 2047 2048 // When the vector size is odd and .odd or .hi is used, the last element 2049 // of the Elts constant array will be one past the size of the vector. 2050 // Ignore the last element here, if it is greater than the mask size. 2051 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2052 NumSrcElts--; 2053 2054 // modify when what gets shuffled in 2055 for (unsigned i = 0; i != NumSrcElts; ++i) 2056 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2057 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2058 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2059 } else { 2060 // We should never shorten the vector 2061 llvm_unreachable("unexpected shorten vector length"); 2062 } 2063 } else { 2064 // If the Src is a scalar (not a vector) it must be updating one element. 2065 unsigned InIdx = getAccessedFieldNo(0, Elts); 2066 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2067 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2068 } 2069 2070 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2071 Dst.isVolatileQualified()); 2072 } 2073 2074 /// @brief Store of global named registers are always calls to intrinsics. 2075 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2076 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2077 "Bad type for register variable"); 2078 llvm::MDNode *RegName = cast<llvm::MDNode>( 2079 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2080 assert(RegName && "Register LValue is not metadata"); 2081 2082 // We accept integer and pointer types only 2083 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2084 llvm::Type *Ty = OrigTy; 2085 if (OrigTy->isPointerTy()) 2086 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2087 llvm::Type *Types[] = { Ty }; 2088 2089 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2090 llvm::Value *Value = Src.getScalarVal(); 2091 if (OrigTy->isPointerTy()) 2092 Value = Builder.CreatePtrToInt(Value, Ty); 2093 Builder.CreateCall( 2094 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2095 } 2096 2097 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2098 // generating write-barries API. It is currently a global, ivar, 2099 // or neither. 2100 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2101 LValue &LV, 2102 bool IsMemberAccess=false) { 2103 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2104 return; 2105 2106 if (isa<ObjCIvarRefExpr>(E)) { 2107 QualType ExpTy = E->getType(); 2108 if (IsMemberAccess && ExpTy->isPointerType()) { 2109 // If ivar is a structure pointer, assigning to field of 2110 // this struct follows gcc's behavior and makes it a non-ivar 2111 // writer-barrier conservatively. 2112 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2113 if (ExpTy->isRecordType()) { 2114 LV.setObjCIvar(false); 2115 return; 2116 } 2117 } 2118 LV.setObjCIvar(true); 2119 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2120 LV.setBaseIvarExp(Exp->getBase()); 2121 LV.setObjCArray(E->getType()->isArrayType()); 2122 return; 2123 } 2124 2125 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2126 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2127 if (VD->hasGlobalStorage()) { 2128 LV.setGlobalObjCRef(true); 2129 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2130 } 2131 } 2132 LV.setObjCArray(E->getType()->isArrayType()); 2133 return; 2134 } 2135 2136 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2137 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2138 return; 2139 } 2140 2141 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2142 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2143 if (LV.isObjCIvar()) { 2144 // If cast is to a structure pointer, follow gcc's behavior and make it 2145 // a non-ivar write-barrier. 2146 QualType ExpTy = E->getType(); 2147 if (ExpTy->isPointerType()) 2148 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2149 if (ExpTy->isRecordType()) 2150 LV.setObjCIvar(false); 2151 } 2152 return; 2153 } 2154 2155 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2156 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2157 return; 2158 } 2159 2160 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2161 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2162 return; 2163 } 2164 2165 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2166 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2167 return; 2168 } 2169 2170 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2171 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2172 return; 2173 } 2174 2175 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2176 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2177 if (LV.isObjCIvar() && !LV.isObjCArray()) 2178 // Using array syntax to assigning to what an ivar points to is not 2179 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2180 LV.setObjCIvar(false); 2181 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2182 // Using array syntax to assigning to what global points to is not 2183 // same as assigning to the global itself. {id *G;} G[i] = 0; 2184 LV.setGlobalObjCRef(false); 2185 return; 2186 } 2187 2188 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2189 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2190 // We don't know if member is an 'ivar', but this flag is looked at 2191 // only in the context of LV.isObjCIvar(). 2192 LV.setObjCArray(E->getType()->isArrayType()); 2193 return; 2194 } 2195 } 2196 2197 static llvm::Value * 2198 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2199 llvm::Value *V, llvm::Type *IRType, 2200 StringRef Name = StringRef()) { 2201 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2202 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2203 } 2204 2205 static LValue EmitThreadPrivateVarDeclLValue( 2206 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2207 llvm::Type *RealVarTy, SourceLocation Loc) { 2208 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2209 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2210 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2211 } 2212 2213 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2214 const VarDecl *VD, QualType T) { 2215 for (const auto *D : VD->redecls()) { 2216 if (!VD->hasAttrs()) 2217 continue; 2218 if (const auto *Attr = D->getAttr<OMPDeclareTargetDeclAttr>()) 2219 if (Attr->getMapType() == OMPDeclareTargetDeclAttr::MT_Link) { 2220 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2221 Address Addr = 2222 CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2223 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2224 } 2225 } 2226 return Address::invalid(); 2227 } 2228 2229 Address 2230 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2231 LValueBaseInfo *PointeeBaseInfo, 2232 TBAAAccessInfo *PointeeTBAAInfo) { 2233 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2234 RefLVal.isVolatile()); 2235 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2236 2237 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2238 PointeeBaseInfo, PointeeTBAAInfo, 2239 /* forPointeeType= */ true); 2240 return Address(Load, Align); 2241 } 2242 2243 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2244 LValueBaseInfo PointeeBaseInfo; 2245 TBAAAccessInfo PointeeTBAAInfo; 2246 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2247 &PointeeTBAAInfo); 2248 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2249 PointeeBaseInfo, PointeeTBAAInfo); 2250 } 2251 2252 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2253 const PointerType *PtrTy, 2254 LValueBaseInfo *BaseInfo, 2255 TBAAAccessInfo *TBAAInfo) { 2256 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2257 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2258 BaseInfo, TBAAInfo, 2259 /*forPointeeType=*/true)); 2260 } 2261 2262 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2263 const PointerType *PtrTy) { 2264 LValueBaseInfo BaseInfo; 2265 TBAAAccessInfo TBAAInfo; 2266 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2267 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2268 } 2269 2270 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2271 const Expr *E, const VarDecl *VD) { 2272 QualType T = E->getType(); 2273 2274 // If it's thread_local, emit a call to its wrapper function instead. 2275 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2276 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2277 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2278 // Check if the variable is marked as declare target with link clause in 2279 // device codegen. 2280 if (CGF.getLangOpts().OpenMPIsDevice) { 2281 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2282 if (Addr.isValid()) 2283 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2284 } 2285 2286 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2287 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2288 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2289 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2290 Address Addr(V, Alignment); 2291 // Emit reference to the private copy of the variable if it is an OpenMP 2292 // threadprivate variable. 2293 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2294 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2295 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2296 E->getExprLoc()); 2297 } 2298 LValue LV = VD->getType()->isReferenceType() ? 2299 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2300 AlignmentSource::Decl) : 2301 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2302 setObjCGCLValueClass(CGF.getContext(), E, LV); 2303 return LV; 2304 } 2305 2306 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2307 const FunctionDecl *FD) { 2308 if (FD->hasAttr<WeakRefAttr>()) { 2309 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2310 return aliasee.getPointer(); 2311 } 2312 2313 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2314 if (!FD->hasPrototype()) { 2315 if (const FunctionProtoType *Proto = 2316 FD->getType()->getAs<FunctionProtoType>()) { 2317 // Ugly case: for a K&R-style definition, the type of the definition 2318 // isn't the same as the type of a use. Correct for this with a 2319 // bitcast. 2320 QualType NoProtoType = 2321 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2322 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2323 V = llvm::ConstantExpr::getBitCast(V, 2324 CGM.getTypes().ConvertType(NoProtoType)); 2325 } 2326 } 2327 return V; 2328 } 2329 2330 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2331 const Expr *E, const FunctionDecl *FD) { 2332 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2333 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2334 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2335 AlignmentSource::Decl); 2336 } 2337 2338 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2339 llvm::Value *ThisValue) { 2340 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2341 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2342 return CGF.EmitLValueForField(LV, FD); 2343 } 2344 2345 /// Named Registers are named metadata pointing to the register name 2346 /// which will be read from/written to as an argument to the intrinsic 2347 /// @llvm.read/write_register. 2348 /// So far, only the name is being passed down, but other options such as 2349 /// register type, allocation type or even optimization options could be 2350 /// passed down via the metadata node. 2351 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2352 SmallString<64> Name("llvm.named.register."); 2353 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2354 assert(Asm->getLabel().size() < 64-Name.size() && 2355 "Register name too big"); 2356 Name.append(Asm->getLabel()); 2357 llvm::NamedMDNode *M = 2358 CGM.getModule().getOrInsertNamedMetadata(Name); 2359 if (M->getNumOperands() == 0) { 2360 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2361 Asm->getLabel()); 2362 llvm::Metadata *Ops[] = {Str}; 2363 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2364 } 2365 2366 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2367 2368 llvm::Value *Ptr = 2369 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2370 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2371 } 2372 2373 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2374 const NamedDecl *ND = E->getDecl(); 2375 QualType T = E->getType(); 2376 2377 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2378 // Global Named registers access via intrinsics only 2379 if (VD->getStorageClass() == SC_Register && 2380 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2381 return EmitGlobalNamedRegister(VD, CGM); 2382 2383 // A DeclRefExpr for a reference initialized by a constant expression can 2384 // appear without being odr-used. Directly emit the constant initializer. 2385 const Expr *Init = VD->getAnyInitializer(VD); 2386 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2387 VD->isUsableInConstantExpressions(getContext()) && 2388 VD->checkInitIsICE() && 2389 // Do not emit if it is private OpenMP variable. 2390 !(E->refersToEnclosingVariableOrCapture() && 2391 ((CapturedStmtInfo && 2392 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2393 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2394 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2395 isa<BlockDecl>(CurCodeDecl)))) { 2396 llvm::Constant *Val = 2397 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2398 *VD->evaluateValue(), 2399 VD->getType()); 2400 assert(Val && "failed to emit reference constant expression"); 2401 // FIXME: Eventually we will want to emit vector element references. 2402 2403 // Should we be using the alignment of the constant pointer we emitted? 2404 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2405 /* BaseInfo= */ nullptr, 2406 /* TBAAInfo= */ nullptr, 2407 /* forPointeeType= */ true); 2408 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2409 } 2410 2411 // Check for captured variables. 2412 if (E->refersToEnclosingVariableOrCapture()) { 2413 VD = VD->getCanonicalDecl(); 2414 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2415 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2416 else if (CapturedStmtInfo) { 2417 auto I = LocalDeclMap.find(VD); 2418 if (I != LocalDeclMap.end()) { 2419 if (VD->getType()->isReferenceType()) 2420 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2421 AlignmentSource::Decl); 2422 return MakeAddrLValue(I->second, T); 2423 } 2424 LValue CapLVal = 2425 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2426 CapturedStmtInfo->getContextValue()); 2427 return MakeAddrLValue( 2428 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2429 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2430 CapLVal.getTBAAInfo()); 2431 } 2432 2433 assert(isa<BlockDecl>(CurCodeDecl)); 2434 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2435 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2436 } 2437 } 2438 2439 // FIXME: We should be able to assert this for FunctionDecls as well! 2440 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2441 // those with a valid source location. 2442 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2443 !E->getLocation().isValid()) && 2444 "Should not use decl without marking it used!"); 2445 2446 if (ND->hasAttr<WeakRefAttr>()) { 2447 const auto *VD = cast<ValueDecl>(ND); 2448 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2449 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2450 } 2451 2452 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2453 // Check if this is a global variable. 2454 if (VD->hasLinkage() || VD->isStaticDataMember()) 2455 return EmitGlobalVarDeclLValue(*this, E, VD); 2456 2457 Address addr = Address::invalid(); 2458 2459 // The variable should generally be present in the local decl map. 2460 auto iter = LocalDeclMap.find(VD); 2461 if (iter != LocalDeclMap.end()) { 2462 addr = iter->second; 2463 2464 // Otherwise, it might be static local we haven't emitted yet for 2465 // some reason; most likely, because it's in an outer function. 2466 } else if (VD->isStaticLocal()) { 2467 addr = Address(CGM.getOrCreateStaticVarDecl( 2468 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2469 getContext().getDeclAlign(VD)); 2470 2471 // No other cases for now. 2472 } else { 2473 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2474 } 2475 2476 2477 // Check for OpenMP threadprivate variables. 2478 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2479 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2480 return EmitThreadPrivateVarDeclLValue( 2481 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2482 E->getExprLoc()); 2483 } 2484 2485 // Drill into block byref variables. 2486 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2487 if (isBlockByref) { 2488 addr = emitBlockByrefAddress(addr, VD); 2489 } 2490 2491 // Drill into reference types. 2492 LValue LV = VD->getType()->isReferenceType() ? 2493 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2494 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2495 2496 bool isLocalStorage = VD->hasLocalStorage(); 2497 2498 bool NonGCable = isLocalStorage && 2499 !VD->getType()->isReferenceType() && 2500 !isBlockByref; 2501 if (NonGCable) { 2502 LV.getQuals().removeObjCGCAttr(); 2503 LV.setNonGC(true); 2504 } 2505 2506 bool isImpreciseLifetime = 2507 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2508 if (isImpreciseLifetime) 2509 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2510 setObjCGCLValueClass(getContext(), E, LV); 2511 return LV; 2512 } 2513 2514 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2515 return EmitFunctionDeclLValue(*this, E, FD); 2516 2517 // FIXME: While we're emitting a binding from an enclosing scope, all other 2518 // DeclRefExprs we see should be implicitly treated as if they also refer to 2519 // an enclosing scope. 2520 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2521 return EmitLValue(BD->getBinding()); 2522 2523 llvm_unreachable("Unhandled DeclRefExpr"); 2524 } 2525 2526 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2527 // __extension__ doesn't affect lvalue-ness. 2528 if (E->getOpcode() == UO_Extension) 2529 return EmitLValue(E->getSubExpr()); 2530 2531 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2532 switch (E->getOpcode()) { 2533 default: llvm_unreachable("Unknown unary operator lvalue!"); 2534 case UO_Deref: { 2535 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2536 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2537 2538 LValueBaseInfo BaseInfo; 2539 TBAAAccessInfo TBAAInfo; 2540 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2541 &TBAAInfo); 2542 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2543 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2544 2545 // We should not generate __weak write barrier on indirect reference 2546 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2547 // But, we continue to generate __strong write barrier on indirect write 2548 // into a pointer to object. 2549 if (getLangOpts().ObjC1 && 2550 getLangOpts().getGC() != LangOptions::NonGC && 2551 LV.isObjCWeak()) 2552 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2553 return LV; 2554 } 2555 case UO_Real: 2556 case UO_Imag: { 2557 LValue LV = EmitLValue(E->getSubExpr()); 2558 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2559 2560 // __real is valid on scalars. This is a faster way of testing that. 2561 // __imag can only produce an rvalue on scalars. 2562 if (E->getOpcode() == UO_Real && 2563 !LV.getAddress().getElementType()->isStructTy()) { 2564 assert(E->getSubExpr()->getType()->isArithmeticType()); 2565 return LV; 2566 } 2567 2568 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2569 2570 Address Component = 2571 (E->getOpcode() == UO_Real 2572 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2573 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2574 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2575 CGM.getTBAAInfoForSubobject(LV, T)); 2576 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2577 return ElemLV; 2578 } 2579 case UO_PreInc: 2580 case UO_PreDec: { 2581 LValue LV = EmitLValue(E->getSubExpr()); 2582 bool isInc = E->getOpcode() == UO_PreInc; 2583 2584 if (E->getType()->isAnyComplexType()) 2585 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2586 else 2587 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2588 return LV; 2589 } 2590 } 2591 } 2592 2593 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2594 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2595 E->getType(), AlignmentSource::Decl); 2596 } 2597 2598 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2599 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2600 E->getType(), AlignmentSource::Decl); 2601 } 2602 2603 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2604 auto SL = E->getFunctionName(); 2605 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2606 StringRef FnName = CurFn->getName(); 2607 if (FnName.startswith("\01")) 2608 FnName = FnName.substr(1); 2609 StringRef NameItems[] = { 2610 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2611 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2612 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2613 std::string Name = SL->getString(); 2614 if (!Name.empty()) { 2615 unsigned Discriminator = 2616 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2617 if (Discriminator) 2618 Name += "_" + Twine(Discriminator + 1).str(); 2619 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2620 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2621 } else { 2622 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2623 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2624 } 2625 } 2626 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2627 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2628 } 2629 2630 /// Emit a type description suitable for use by a runtime sanitizer library. The 2631 /// format of a type descriptor is 2632 /// 2633 /// \code 2634 /// { i16 TypeKind, i16 TypeInfo } 2635 /// \endcode 2636 /// 2637 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2638 /// integer, 1 for a floating point value, and -1 for anything else. 2639 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2640 // Only emit each type's descriptor once. 2641 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2642 return C; 2643 2644 uint16_t TypeKind = -1; 2645 uint16_t TypeInfo = 0; 2646 2647 if (T->isIntegerType()) { 2648 TypeKind = 0; 2649 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2650 (T->isSignedIntegerType() ? 1 : 0); 2651 } else if (T->isFloatingType()) { 2652 TypeKind = 1; 2653 TypeInfo = getContext().getTypeSize(T); 2654 } 2655 2656 // Format the type name as if for a diagnostic, including quotes and 2657 // optionally an 'aka'. 2658 SmallString<32> Buffer; 2659 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2660 (intptr_t)T.getAsOpaquePtr(), 2661 StringRef(), StringRef(), None, Buffer, 2662 None); 2663 2664 llvm::Constant *Components[] = { 2665 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2666 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2667 }; 2668 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2669 2670 auto *GV = new llvm::GlobalVariable( 2671 CGM.getModule(), Descriptor->getType(), 2672 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2673 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2674 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2675 2676 // Remember the descriptor for this type. 2677 CGM.setTypeDescriptorInMap(T, GV); 2678 2679 return GV; 2680 } 2681 2682 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2683 llvm::Type *TargetTy = IntPtrTy; 2684 2685 if (V->getType() == TargetTy) 2686 return V; 2687 2688 // Floating-point types which fit into intptr_t are bitcast to integers 2689 // and then passed directly (after zero-extension, if necessary). 2690 if (V->getType()->isFloatingPointTy()) { 2691 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2692 if (Bits <= TargetTy->getIntegerBitWidth()) 2693 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2694 Bits)); 2695 } 2696 2697 // Integers which fit in intptr_t are zero-extended and passed directly. 2698 if (V->getType()->isIntegerTy() && 2699 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2700 return Builder.CreateZExt(V, TargetTy); 2701 2702 // Pointers are passed directly, everything else is passed by address. 2703 if (!V->getType()->isPointerTy()) { 2704 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2705 Builder.CreateStore(V, Ptr); 2706 V = Ptr.getPointer(); 2707 } 2708 return Builder.CreatePtrToInt(V, TargetTy); 2709 } 2710 2711 /// \brief Emit a representation of a SourceLocation for passing to a handler 2712 /// in a sanitizer runtime library. The format for this data is: 2713 /// \code 2714 /// struct SourceLocation { 2715 /// const char *Filename; 2716 /// int32_t Line, Column; 2717 /// }; 2718 /// \endcode 2719 /// For an invalid SourceLocation, the Filename pointer is null. 2720 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2721 llvm::Constant *Filename; 2722 int Line, Column; 2723 2724 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2725 if (PLoc.isValid()) { 2726 StringRef FilenameString = PLoc.getFilename(); 2727 2728 int PathComponentsToStrip = 2729 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2730 if (PathComponentsToStrip < 0) { 2731 assert(PathComponentsToStrip != INT_MIN); 2732 int PathComponentsToKeep = -PathComponentsToStrip; 2733 auto I = llvm::sys::path::rbegin(FilenameString); 2734 auto E = llvm::sys::path::rend(FilenameString); 2735 while (I != E && --PathComponentsToKeep) 2736 ++I; 2737 2738 FilenameString = FilenameString.substr(I - E); 2739 } else if (PathComponentsToStrip > 0) { 2740 auto I = llvm::sys::path::begin(FilenameString); 2741 auto E = llvm::sys::path::end(FilenameString); 2742 while (I != E && PathComponentsToStrip--) 2743 ++I; 2744 2745 if (I != E) 2746 FilenameString = 2747 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2748 else 2749 FilenameString = llvm::sys::path::filename(FilenameString); 2750 } 2751 2752 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2753 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2754 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2755 Filename = FilenameGV.getPointer(); 2756 Line = PLoc.getLine(); 2757 Column = PLoc.getColumn(); 2758 } else { 2759 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2760 Line = Column = 0; 2761 } 2762 2763 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2764 Builder.getInt32(Column)}; 2765 2766 return llvm::ConstantStruct::getAnon(Data); 2767 } 2768 2769 namespace { 2770 /// \brief Specify under what conditions this check can be recovered 2771 enum class CheckRecoverableKind { 2772 /// Always terminate program execution if this check fails. 2773 Unrecoverable, 2774 /// Check supports recovering, runtime has both fatal (noreturn) and 2775 /// non-fatal handlers for this check. 2776 Recoverable, 2777 /// Runtime conditionally aborts, always need to support recovery. 2778 AlwaysRecoverable 2779 }; 2780 } 2781 2782 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2783 assert(llvm::countPopulation(Kind) == 1); 2784 switch (Kind) { 2785 case SanitizerKind::Vptr: 2786 return CheckRecoverableKind::AlwaysRecoverable; 2787 case SanitizerKind::Return: 2788 case SanitizerKind::Unreachable: 2789 return CheckRecoverableKind::Unrecoverable; 2790 default: 2791 return CheckRecoverableKind::Recoverable; 2792 } 2793 } 2794 2795 namespace { 2796 struct SanitizerHandlerInfo { 2797 char const *const Name; 2798 unsigned Version; 2799 }; 2800 } 2801 2802 const SanitizerHandlerInfo SanitizerHandlers[] = { 2803 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2804 LIST_SANITIZER_CHECKS 2805 #undef SANITIZER_CHECK 2806 }; 2807 2808 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2809 llvm::FunctionType *FnType, 2810 ArrayRef<llvm::Value *> FnArgs, 2811 SanitizerHandler CheckHandler, 2812 CheckRecoverableKind RecoverKind, bool IsFatal, 2813 llvm::BasicBlock *ContBB) { 2814 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2815 bool NeedsAbortSuffix = 2816 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2817 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2818 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2819 const StringRef CheckName = CheckInfo.Name; 2820 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2821 if (CheckInfo.Version && !MinimalRuntime) 2822 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2823 if (MinimalRuntime) 2824 FnName += "_minimal"; 2825 if (NeedsAbortSuffix) 2826 FnName += "_abort"; 2827 bool MayReturn = 2828 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2829 2830 llvm::AttrBuilder B; 2831 if (!MayReturn) { 2832 B.addAttribute(llvm::Attribute::NoReturn) 2833 .addAttribute(llvm::Attribute::NoUnwind); 2834 } 2835 B.addAttribute(llvm::Attribute::UWTable); 2836 2837 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2838 FnType, FnName, 2839 llvm::AttributeList::get(CGF.getLLVMContext(), 2840 llvm::AttributeList::FunctionIndex, B), 2841 /*Local=*/true); 2842 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2843 if (!MayReturn) { 2844 HandlerCall->setDoesNotReturn(); 2845 CGF.Builder.CreateUnreachable(); 2846 } else { 2847 CGF.Builder.CreateBr(ContBB); 2848 } 2849 } 2850 2851 void CodeGenFunction::EmitCheck( 2852 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2853 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2854 ArrayRef<llvm::Value *> DynamicArgs) { 2855 assert(IsSanitizerScope); 2856 assert(Checked.size() > 0); 2857 assert(CheckHandler >= 0 && 2858 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2859 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2860 2861 llvm::Value *FatalCond = nullptr; 2862 llvm::Value *RecoverableCond = nullptr; 2863 llvm::Value *TrapCond = nullptr; 2864 for (int i = 0, n = Checked.size(); i < n; ++i) { 2865 llvm::Value *Check = Checked[i].first; 2866 // -fsanitize-trap= overrides -fsanitize-recover=. 2867 llvm::Value *&Cond = 2868 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2869 ? TrapCond 2870 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2871 ? RecoverableCond 2872 : FatalCond; 2873 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2874 } 2875 2876 if (TrapCond) 2877 EmitTrapCheck(TrapCond); 2878 if (!FatalCond && !RecoverableCond) 2879 return; 2880 2881 llvm::Value *JointCond; 2882 if (FatalCond && RecoverableCond) 2883 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2884 else 2885 JointCond = FatalCond ? FatalCond : RecoverableCond; 2886 assert(JointCond); 2887 2888 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2889 assert(SanOpts.has(Checked[0].second)); 2890 #ifndef NDEBUG 2891 for (int i = 1, n = Checked.size(); i < n; ++i) { 2892 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2893 "All recoverable kinds in a single check must be same!"); 2894 assert(SanOpts.has(Checked[i].second)); 2895 } 2896 #endif 2897 2898 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2899 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2900 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2901 // Give hint that we very much don't expect to execute the handler 2902 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2903 llvm::MDBuilder MDHelper(getLLVMContext()); 2904 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2905 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2906 EmitBlock(Handlers); 2907 2908 // Handler functions take an i8* pointing to the (handler-specific) static 2909 // information block, followed by a sequence of intptr_t arguments 2910 // representing operand values. 2911 SmallVector<llvm::Value *, 4> Args; 2912 SmallVector<llvm::Type *, 4> ArgTypes; 2913 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2914 Args.reserve(DynamicArgs.size() + 1); 2915 ArgTypes.reserve(DynamicArgs.size() + 1); 2916 2917 // Emit handler arguments and create handler function type. 2918 if (!StaticArgs.empty()) { 2919 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2920 auto *InfoPtr = 2921 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2922 llvm::GlobalVariable::PrivateLinkage, Info); 2923 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2924 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2925 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2926 ArgTypes.push_back(Int8PtrTy); 2927 } 2928 2929 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2930 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2931 ArgTypes.push_back(IntPtrTy); 2932 } 2933 } 2934 2935 llvm::FunctionType *FnType = 2936 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2937 2938 if (!FatalCond || !RecoverableCond) { 2939 // Simple case: we need to generate a single handler call, either 2940 // fatal, or non-fatal. 2941 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2942 (FatalCond != nullptr), Cont); 2943 } else { 2944 // Emit two handler calls: first one for set of unrecoverable checks, 2945 // another one for recoverable. 2946 llvm::BasicBlock *NonFatalHandlerBB = 2947 createBasicBlock("non_fatal." + CheckName); 2948 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2949 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2950 EmitBlock(FatalHandlerBB); 2951 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2952 NonFatalHandlerBB); 2953 EmitBlock(NonFatalHandlerBB); 2954 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2955 Cont); 2956 } 2957 2958 EmitBlock(Cont); 2959 } 2960 2961 void CodeGenFunction::EmitCfiSlowPathCheck( 2962 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2963 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2964 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2965 2966 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2967 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2968 2969 llvm::MDBuilder MDHelper(getLLVMContext()); 2970 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2971 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2972 2973 EmitBlock(CheckBB); 2974 2975 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2976 2977 llvm::CallInst *CheckCall; 2978 llvm::Constant *SlowPathFn; 2979 if (WithDiag) { 2980 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2981 auto *InfoPtr = 2982 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2983 llvm::GlobalVariable::PrivateLinkage, Info); 2984 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2985 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2986 2987 SlowPathFn = CGM.getModule().getOrInsertFunction( 2988 "__cfi_slowpath_diag", 2989 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2990 false)); 2991 CheckCall = Builder.CreateCall( 2992 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2993 } else { 2994 SlowPathFn = CGM.getModule().getOrInsertFunction( 2995 "__cfi_slowpath", 2996 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2997 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2998 } 2999 3000 CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); 3001 CheckCall->setDoesNotThrow(); 3002 3003 EmitBlock(Cont); 3004 } 3005 3006 // Emit a stub for __cfi_check function so that the linker knows about this 3007 // symbol in LTO mode. 3008 void CodeGenFunction::EmitCfiCheckStub() { 3009 llvm::Module *M = &CGM.getModule(); 3010 auto &Ctx = M->getContext(); 3011 llvm::Function *F = llvm::Function::Create( 3012 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3013 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3014 CGM.setDSOLocal(F); 3015 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3016 // FIXME: consider emitting an intrinsic call like 3017 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3018 // which can be lowered in CrossDSOCFI pass to the actual contents of 3019 // __cfi_check. This would allow inlining of __cfi_check calls. 3020 llvm::CallInst::Create( 3021 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3022 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3023 } 3024 3025 // This function is basically a switch over the CFI failure kind, which is 3026 // extracted from CFICheckFailData (1st function argument). Each case is either 3027 // llvm.trap or a call to one of the two runtime handlers, based on 3028 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3029 // failure kind) traps, but this should really never happen. CFICheckFailData 3030 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3031 // check kind; in this case __cfi_check_fail traps as well. 3032 void CodeGenFunction::EmitCfiCheckFail() { 3033 SanitizerScope SanScope(this); 3034 FunctionArgList Args; 3035 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3036 ImplicitParamDecl::Other); 3037 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3038 ImplicitParamDecl::Other); 3039 Args.push_back(&ArgData); 3040 Args.push_back(&ArgAddr); 3041 3042 const CGFunctionInfo &FI = 3043 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3044 3045 llvm::Function *F = llvm::Function::Create( 3046 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3047 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3048 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3049 3050 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3051 SourceLocation()); 3052 3053 llvm::Value *Data = 3054 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3055 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3056 llvm::Value *Addr = 3057 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3058 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3059 3060 // Data == nullptr means the calling module has trap behaviour for this check. 3061 llvm::Value *DataIsNotNullPtr = 3062 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3063 EmitTrapCheck(DataIsNotNullPtr); 3064 3065 llvm::StructType *SourceLocationTy = 3066 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3067 llvm::StructType *CfiCheckFailDataTy = 3068 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3069 3070 llvm::Value *V = Builder.CreateConstGEP2_32( 3071 CfiCheckFailDataTy, 3072 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3073 0); 3074 Address CheckKindAddr(V, getIntAlign()); 3075 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3076 3077 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3078 CGM.getLLVMContext(), 3079 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3080 llvm::Value *ValidVtable = Builder.CreateZExt( 3081 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3082 {Addr, AllVtables}), 3083 IntPtrTy); 3084 3085 const std::pair<int, SanitizerMask> CheckKinds[] = { 3086 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3087 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3088 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3089 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3090 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3091 3092 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3093 for (auto CheckKindMaskPair : CheckKinds) { 3094 int Kind = CheckKindMaskPair.first; 3095 SanitizerMask Mask = CheckKindMaskPair.second; 3096 llvm::Value *Cond = 3097 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3098 if (CGM.getLangOpts().Sanitize.has(Mask)) 3099 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3100 {Data, Addr, ValidVtable}); 3101 else 3102 EmitTrapCheck(Cond); 3103 } 3104 3105 FinishFunction(); 3106 // The only reference to this function will be created during LTO link. 3107 // Make sure it survives until then. 3108 CGM.addUsedGlobal(F); 3109 } 3110 3111 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3112 if (SanOpts.has(SanitizerKind::Unreachable)) { 3113 SanitizerScope SanScope(this); 3114 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3115 SanitizerKind::Unreachable), 3116 SanitizerHandler::BuiltinUnreachable, 3117 EmitCheckSourceLocation(Loc), None); 3118 } 3119 Builder.CreateUnreachable(); 3120 } 3121 3122 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3123 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3124 3125 // If we're optimizing, collapse all calls to trap down to just one per 3126 // function to save on code size. 3127 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3128 TrapBB = createBasicBlock("trap"); 3129 Builder.CreateCondBr(Checked, Cont, TrapBB); 3130 EmitBlock(TrapBB); 3131 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3132 TrapCall->setDoesNotReturn(); 3133 TrapCall->setDoesNotThrow(); 3134 Builder.CreateUnreachable(); 3135 } else { 3136 Builder.CreateCondBr(Checked, Cont, TrapBB); 3137 } 3138 3139 EmitBlock(Cont); 3140 } 3141 3142 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3143 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3144 3145 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3146 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3147 CGM.getCodeGenOpts().TrapFuncName); 3148 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3149 } 3150 3151 return TrapCall; 3152 } 3153 3154 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3155 LValueBaseInfo *BaseInfo, 3156 TBAAAccessInfo *TBAAInfo) { 3157 assert(E->getType()->isArrayType() && 3158 "Array to pointer decay must have array source type!"); 3159 3160 // Expressions of array type can't be bitfields or vector elements. 3161 LValue LV = EmitLValue(E); 3162 Address Addr = LV.getAddress(); 3163 3164 // If the array type was an incomplete type, we need to make sure 3165 // the decay ends up being the right type. 3166 llvm::Type *NewTy = ConvertType(E->getType()); 3167 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3168 3169 // Note that VLA pointers are always decayed, so we don't need to do 3170 // anything here. 3171 if (!E->getType()->isVariableArrayType()) { 3172 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3173 "Expected pointer to array"); 3174 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3175 } 3176 3177 // The result of this decay conversion points to an array element within the 3178 // base lvalue. However, since TBAA currently does not support representing 3179 // accesses to elements of member arrays, we conservatively represent accesses 3180 // to the pointee object as if it had no any base lvalue specified. 3181 // TODO: Support TBAA for member arrays. 3182 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3183 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3184 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3185 3186 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3187 } 3188 3189 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3190 /// array to pointer, return the array subexpression. 3191 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3192 // If this isn't just an array->pointer decay, bail out. 3193 const auto *CE = dyn_cast<CastExpr>(E); 3194 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3195 return nullptr; 3196 3197 // If this is a decay from variable width array, bail out. 3198 const Expr *SubExpr = CE->getSubExpr(); 3199 if (SubExpr->getType()->isVariableArrayType()) 3200 return nullptr; 3201 3202 return SubExpr; 3203 } 3204 3205 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3206 llvm::Value *ptr, 3207 ArrayRef<llvm::Value*> indices, 3208 bool inbounds, 3209 bool signedIndices, 3210 SourceLocation loc, 3211 const llvm::Twine &name = "arrayidx") { 3212 if (inbounds) { 3213 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3214 CodeGenFunction::NotSubtraction, loc, 3215 name); 3216 } else { 3217 return CGF.Builder.CreateGEP(ptr, indices, name); 3218 } 3219 } 3220 3221 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3222 llvm::Value *idx, 3223 CharUnits eltSize) { 3224 // If we have a constant index, we can use the exact offset of the 3225 // element we're accessing. 3226 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3227 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3228 return arrayAlign.alignmentAtOffset(offset); 3229 3230 // Otherwise, use the worst-case alignment for any element. 3231 } else { 3232 return arrayAlign.alignmentOfArrayElement(eltSize); 3233 } 3234 } 3235 3236 static QualType getFixedSizeElementType(const ASTContext &ctx, 3237 const VariableArrayType *vla) { 3238 QualType eltType; 3239 do { 3240 eltType = vla->getElementType(); 3241 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3242 return eltType; 3243 } 3244 3245 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3246 ArrayRef<llvm::Value *> indices, 3247 QualType eltType, bool inbounds, 3248 bool signedIndices, SourceLocation loc, 3249 const llvm::Twine &name = "arrayidx") { 3250 // All the indices except that last must be zero. 3251 #ifndef NDEBUG 3252 for (auto idx : indices.drop_back()) 3253 assert(isa<llvm::ConstantInt>(idx) && 3254 cast<llvm::ConstantInt>(idx)->isZero()); 3255 #endif 3256 3257 // Determine the element size of the statically-sized base. This is 3258 // the thing that the indices are expressed in terms of. 3259 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3260 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3261 } 3262 3263 // We can use that to compute the best alignment of the element. 3264 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3265 CharUnits eltAlign = 3266 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3267 3268 llvm::Value *eltPtr = emitArraySubscriptGEP( 3269 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3270 return Address(eltPtr, eltAlign); 3271 } 3272 3273 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3274 bool Accessed) { 3275 // The index must always be an integer, which is not an aggregate. Emit it 3276 // in lexical order (this complexity is, sadly, required by C++17). 3277 llvm::Value *IdxPre = 3278 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3279 bool SignedIndices = false; 3280 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3281 auto *Idx = IdxPre; 3282 if (E->getLHS() != E->getIdx()) { 3283 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3284 Idx = EmitScalarExpr(E->getIdx()); 3285 } 3286 3287 QualType IdxTy = E->getIdx()->getType(); 3288 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3289 SignedIndices |= IdxSigned; 3290 3291 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3292 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3293 3294 // Extend or truncate the index type to 32 or 64-bits. 3295 if (Promote && Idx->getType() != IntPtrTy) 3296 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3297 3298 return Idx; 3299 }; 3300 IdxPre = nullptr; 3301 3302 // If the base is a vector type, then we are forming a vector element lvalue 3303 // with this subscript. 3304 if (E->getBase()->getType()->isVectorType() && 3305 !isa<ExtVectorElementExpr>(E->getBase())) { 3306 // Emit the vector as an lvalue to get its address. 3307 LValue LHS = EmitLValue(E->getBase()); 3308 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3309 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3310 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3311 LHS.getBaseInfo(), TBAAAccessInfo()); 3312 } 3313 3314 // All the other cases basically behave like simple offsetting. 3315 3316 // Handle the extvector case we ignored above. 3317 if (isa<ExtVectorElementExpr>(E->getBase())) { 3318 LValue LV = EmitLValue(E->getBase()); 3319 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3320 Address Addr = EmitExtVectorElementLValue(LV); 3321 3322 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3323 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3324 SignedIndices, E->getExprLoc()); 3325 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3326 CGM.getTBAAInfoForSubobject(LV, EltType)); 3327 } 3328 3329 LValueBaseInfo EltBaseInfo; 3330 TBAAAccessInfo EltTBAAInfo; 3331 Address Addr = Address::invalid(); 3332 if (const VariableArrayType *vla = 3333 getContext().getAsVariableArrayType(E->getType())) { 3334 // The base must be a pointer, which is not an aggregate. Emit 3335 // it. It needs to be emitted first in case it's what captures 3336 // the VLA bounds. 3337 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3338 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3339 3340 // The element count here is the total number of non-VLA elements. 3341 llvm::Value *numElements = getVLASize(vla).NumElts; 3342 3343 // Effectively, the multiply by the VLA size is part of the GEP. 3344 // GEP indexes are signed, and scaling an index isn't permitted to 3345 // signed-overflow, so we use the same semantics for our explicit 3346 // multiply. We suppress this if overflow is not undefined behavior. 3347 if (getLangOpts().isSignedOverflowDefined()) { 3348 Idx = Builder.CreateMul(Idx, numElements); 3349 } else { 3350 Idx = Builder.CreateNSWMul(Idx, numElements); 3351 } 3352 3353 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3354 !getLangOpts().isSignedOverflowDefined(), 3355 SignedIndices, E->getExprLoc()); 3356 3357 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3358 // Indexing over an interface, as in "NSString *P; P[4];" 3359 3360 // Emit the base pointer. 3361 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3362 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3363 3364 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3365 llvm::Value *InterfaceSizeVal = 3366 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3367 3368 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3369 3370 // We don't necessarily build correct LLVM struct types for ObjC 3371 // interfaces, so we can't rely on GEP to do this scaling 3372 // correctly, so we need to cast to i8*. FIXME: is this actually 3373 // true? A lot of other things in the fragile ABI would break... 3374 llvm::Type *OrigBaseTy = Addr.getType(); 3375 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3376 3377 // Do the GEP. 3378 CharUnits EltAlign = 3379 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3380 llvm::Value *EltPtr = 3381 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3382 SignedIndices, E->getExprLoc()); 3383 Addr = Address(EltPtr, EltAlign); 3384 3385 // Cast back. 3386 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3387 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3388 // If this is A[i] where A is an array, the frontend will have decayed the 3389 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3390 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3391 // "gep x, i" here. Emit one "gep A, 0, i". 3392 assert(Array->getType()->isArrayType() && 3393 "Array to pointer decay must have array source type!"); 3394 LValue ArrayLV; 3395 // For simple multidimensional array indexing, set the 'accessed' flag for 3396 // better bounds-checking of the base expression. 3397 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3398 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3399 else 3400 ArrayLV = EmitLValue(Array); 3401 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3402 3403 // Propagate the alignment from the array itself to the result. 3404 Addr = emitArraySubscriptGEP( 3405 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3406 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3407 E->getExprLoc()); 3408 EltBaseInfo = ArrayLV.getBaseInfo(); 3409 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3410 } else { 3411 // The base must be a pointer; emit it with an estimate of its alignment. 3412 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3413 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3414 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3415 !getLangOpts().isSignedOverflowDefined(), 3416 SignedIndices, E->getExprLoc()); 3417 } 3418 3419 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3420 3421 if (getLangOpts().ObjC1 && 3422 getLangOpts().getGC() != LangOptions::NonGC) { 3423 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3424 setObjCGCLValueClass(getContext(), E, LV); 3425 } 3426 return LV; 3427 } 3428 3429 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3430 LValueBaseInfo &BaseInfo, 3431 TBAAAccessInfo &TBAAInfo, 3432 QualType BaseTy, QualType ElTy, 3433 bool IsLowerBound) { 3434 LValue BaseLVal; 3435 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3436 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3437 if (BaseTy->isArrayType()) { 3438 Address Addr = BaseLVal.getAddress(); 3439 BaseInfo = BaseLVal.getBaseInfo(); 3440 3441 // If the array type was an incomplete type, we need to make sure 3442 // the decay ends up being the right type. 3443 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3444 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3445 3446 // Note that VLA pointers are always decayed, so we don't need to do 3447 // anything here. 3448 if (!BaseTy->isVariableArrayType()) { 3449 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3450 "Expected pointer to array"); 3451 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3452 "arraydecay"); 3453 } 3454 3455 return CGF.Builder.CreateElementBitCast(Addr, 3456 CGF.ConvertTypeForMem(ElTy)); 3457 } 3458 LValueBaseInfo TypeBaseInfo; 3459 TBAAAccessInfo TypeTBAAInfo; 3460 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3461 &TypeTBAAInfo); 3462 BaseInfo.mergeForCast(TypeBaseInfo); 3463 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3464 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3465 } 3466 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3467 } 3468 3469 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3470 bool IsLowerBound) { 3471 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3472 QualType ResultExprTy; 3473 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3474 ResultExprTy = AT->getElementType(); 3475 else 3476 ResultExprTy = BaseTy->getPointeeType(); 3477 llvm::Value *Idx = nullptr; 3478 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3479 // Requesting lower bound or upper bound, but without provided length and 3480 // without ':' symbol for the default length -> length = 1. 3481 // Idx = LowerBound ?: 0; 3482 if (auto *LowerBound = E->getLowerBound()) { 3483 Idx = Builder.CreateIntCast( 3484 EmitScalarExpr(LowerBound), IntPtrTy, 3485 LowerBound->getType()->hasSignedIntegerRepresentation()); 3486 } else 3487 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3488 } else { 3489 // Try to emit length or lower bound as constant. If this is possible, 1 3490 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3491 // IR (LB + Len) - 1. 3492 auto &C = CGM.getContext(); 3493 auto *Length = E->getLength(); 3494 llvm::APSInt ConstLength; 3495 if (Length) { 3496 // Idx = LowerBound + Length - 1; 3497 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3498 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3499 Length = nullptr; 3500 } 3501 auto *LowerBound = E->getLowerBound(); 3502 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3503 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3504 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3505 LowerBound = nullptr; 3506 } 3507 if (!Length) 3508 --ConstLength; 3509 else if (!LowerBound) 3510 --ConstLowerBound; 3511 3512 if (Length || LowerBound) { 3513 auto *LowerBoundVal = 3514 LowerBound 3515 ? Builder.CreateIntCast( 3516 EmitScalarExpr(LowerBound), IntPtrTy, 3517 LowerBound->getType()->hasSignedIntegerRepresentation()) 3518 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3519 auto *LengthVal = 3520 Length 3521 ? Builder.CreateIntCast( 3522 EmitScalarExpr(Length), IntPtrTy, 3523 Length->getType()->hasSignedIntegerRepresentation()) 3524 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3525 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3526 /*HasNUW=*/false, 3527 !getLangOpts().isSignedOverflowDefined()); 3528 if (Length && LowerBound) { 3529 Idx = Builder.CreateSub( 3530 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3531 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3532 } 3533 } else 3534 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3535 } else { 3536 // Idx = ArraySize - 1; 3537 QualType ArrayTy = BaseTy->isPointerType() 3538 ? E->getBase()->IgnoreParenImpCasts()->getType() 3539 : BaseTy; 3540 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3541 Length = VAT->getSizeExpr(); 3542 if (Length->isIntegerConstantExpr(ConstLength, C)) 3543 Length = nullptr; 3544 } else { 3545 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3546 ConstLength = CAT->getSize(); 3547 } 3548 if (Length) { 3549 auto *LengthVal = Builder.CreateIntCast( 3550 EmitScalarExpr(Length), IntPtrTy, 3551 Length->getType()->hasSignedIntegerRepresentation()); 3552 Idx = Builder.CreateSub( 3553 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3554 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3555 } else { 3556 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3557 --ConstLength; 3558 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3559 } 3560 } 3561 } 3562 assert(Idx); 3563 3564 Address EltPtr = Address::invalid(); 3565 LValueBaseInfo BaseInfo; 3566 TBAAAccessInfo TBAAInfo; 3567 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3568 // The base must be a pointer, which is not an aggregate. Emit 3569 // it. It needs to be emitted first in case it's what captures 3570 // the VLA bounds. 3571 Address Base = 3572 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3573 BaseTy, VLA->getElementType(), IsLowerBound); 3574 // The element count here is the total number of non-VLA elements. 3575 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3576 3577 // Effectively, the multiply by the VLA size is part of the GEP. 3578 // GEP indexes are signed, and scaling an index isn't permitted to 3579 // signed-overflow, so we use the same semantics for our explicit 3580 // multiply. We suppress this if overflow is not undefined behavior. 3581 if (getLangOpts().isSignedOverflowDefined()) 3582 Idx = Builder.CreateMul(Idx, NumElements); 3583 else 3584 Idx = Builder.CreateNSWMul(Idx, NumElements); 3585 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3586 !getLangOpts().isSignedOverflowDefined(), 3587 /*SignedIndices=*/false, E->getExprLoc()); 3588 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3589 // If this is A[i] where A is an array, the frontend will have decayed the 3590 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3591 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3592 // "gep x, i" here. Emit one "gep A, 0, i". 3593 assert(Array->getType()->isArrayType() && 3594 "Array to pointer decay must have array source type!"); 3595 LValue ArrayLV; 3596 // For simple multidimensional array indexing, set the 'accessed' flag for 3597 // better bounds-checking of the base expression. 3598 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3599 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3600 else 3601 ArrayLV = EmitLValue(Array); 3602 3603 // Propagate the alignment from the array itself to the result. 3604 EltPtr = emitArraySubscriptGEP( 3605 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3606 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3607 /*SignedIndices=*/false, E->getExprLoc()); 3608 BaseInfo = ArrayLV.getBaseInfo(); 3609 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3610 } else { 3611 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3612 TBAAInfo, BaseTy, ResultExprTy, 3613 IsLowerBound); 3614 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3615 !getLangOpts().isSignedOverflowDefined(), 3616 /*SignedIndices=*/false, E->getExprLoc()); 3617 } 3618 3619 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3620 } 3621 3622 LValue CodeGenFunction:: 3623 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3624 // Emit the base vector as an l-value. 3625 LValue Base; 3626 3627 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3628 if (E->isArrow()) { 3629 // If it is a pointer to a vector, emit the address and form an lvalue with 3630 // it. 3631 LValueBaseInfo BaseInfo; 3632 TBAAAccessInfo TBAAInfo; 3633 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3634 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3635 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3636 Base.getQuals().removeObjCGCAttr(); 3637 } else if (E->getBase()->isGLValue()) { 3638 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3639 // emit the base as an lvalue. 3640 assert(E->getBase()->getType()->isVectorType()); 3641 Base = EmitLValue(E->getBase()); 3642 } else { 3643 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3644 assert(E->getBase()->getType()->isVectorType() && 3645 "Result must be a vector"); 3646 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3647 3648 // Store the vector to memory (because LValue wants an address). 3649 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3650 Builder.CreateStore(Vec, VecMem); 3651 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3652 AlignmentSource::Decl); 3653 } 3654 3655 QualType type = 3656 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3657 3658 // Encode the element access list into a vector of unsigned indices. 3659 SmallVector<uint32_t, 4> Indices; 3660 E->getEncodedElementAccess(Indices); 3661 3662 if (Base.isSimple()) { 3663 llvm::Constant *CV = 3664 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3665 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3666 Base.getBaseInfo(), TBAAAccessInfo()); 3667 } 3668 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3669 3670 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3671 SmallVector<llvm::Constant *, 4> CElts; 3672 3673 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3674 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3675 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3676 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3677 Base.getBaseInfo(), TBAAAccessInfo()); 3678 } 3679 3680 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3681 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3682 EmitIgnoredExpr(E->getBase()); 3683 return EmitDeclRefLValue(DRE); 3684 } 3685 3686 Expr *BaseExpr = E->getBase(); 3687 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3688 LValue BaseLV; 3689 if (E->isArrow()) { 3690 LValueBaseInfo BaseInfo; 3691 TBAAAccessInfo TBAAInfo; 3692 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3693 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3694 SanitizerSet SkippedChecks; 3695 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3696 if (IsBaseCXXThis) 3697 SkippedChecks.set(SanitizerKind::Alignment, true); 3698 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3699 SkippedChecks.set(SanitizerKind::Null, true); 3700 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3701 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3702 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3703 } else 3704 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3705 3706 NamedDecl *ND = E->getMemberDecl(); 3707 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3708 LValue LV = EmitLValueForField(BaseLV, Field); 3709 setObjCGCLValueClass(getContext(), E, LV); 3710 return LV; 3711 } 3712 3713 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3714 return EmitFunctionDeclLValue(*this, E, FD); 3715 3716 llvm_unreachable("Unhandled member declaration!"); 3717 } 3718 3719 /// Given that we are currently emitting a lambda, emit an l-value for 3720 /// one of its members. 3721 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3722 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3723 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3724 QualType LambdaTagType = 3725 getContext().getTagDeclType(Field->getParent()); 3726 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3727 return EmitLValueForField(LambdaLV, Field); 3728 } 3729 3730 /// Drill down to the storage of a field without walking into 3731 /// reference types. 3732 /// 3733 /// The resulting address doesn't necessarily have the right type. 3734 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3735 const FieldDecl *field) { 3736 const RecordDecl *rec = field->getParent(); 3737 3738 unsigned idx = 3739 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3740 3741 CharUnits offset; 3742 // Adjust the alignment down to the given offset. 3743 // As a special case, if the LLVM field index is 0, we know that this 3744 // is zero. 3745 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3746 .getFieldOffset(field->getFieldIndex()) == 0) && 3747 "LLVM field at index zero had non-zero offset?"); 3748 if (idx != 0) { 3749 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3750 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3751 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3752 } 3753 3754 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3755 } 3756 3757 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3758 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3759 if (!RD) 3760 return false; 3761 3762 if (RD->isDynamicClass()) 3763 return true; 3764 3765 for (const auto &Base : RD->bases()) 3766 if (hasAnyVptr(Base.getType(), Context)) 3767 return true; 3768 3769 for (const FieldDecl *Field : RD->fields()) 3770 if (hasAnyVptr(Field->getType(), Context)) 3771 return true; 3772 3773 return false; 3774 } 3775 3776 LValue CodeGenFunction::EmitLValueForField(LValue base, 3777 const FieldDecl *field) { 3778 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3779 3780 if (field->isBitField()) { 3781 const CGRecordLayout &RL = 3782 CGM.getTypes().getCGRecordLayout(field->getParent()); 3783 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3784 Address Addr = base.getAddress(); 3785 unsigned Idx = RL.getLLVMFieldNo(field); 3786 if (Idx != 0) 3787 // For structs, we GEP to the field that the record layout suggests. 3788 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3789 field->getName()); 3790 // Get the access type. 3791 llvm::Type *FieldIntTy = 3792 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3793 if (Addr.getElementType() != FieldIntTy) 3794 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3795 3796 QualType fieldType = 3797 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3798 // TODO: Support TBAA for bit fields. 3799 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3800 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3801 TBAAAccessInfo()); 3802 } 3803 3804 // Fields of may-alias structures are may-alias themselves. 3805 // FIXME: this should get propagated down through anonymous structs 3806 // and unions. 3807 QualType FieldType = field->getType(); 3808 const RecordDecl *rec = field->getParent(); 3809 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3810 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3811 TBAAAccessInfo FieldTBAAInfo; 3812 if (base.getTBAAInfo().isMayAlias() || 3813 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3814 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3815 } else if (rec->isUnion()) { 3816 // TODO: Support TBAA for unions. 3817 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3818 } else { 3819 // If no base type been assigned for the base access, then try to generate 3820 // one for this base lvalue. 3821 FieldTBAAInfo = base.getTBAAInfo(); 3822 if (!FieldTBAAInfo.BaseType) { 3823 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3824 assert(!FieldTBAAInfo.Offset && 3825 "Nonzero offset for an access with no base type!"); 3826 } 3827 3828 // Adjust offset to be relative to the base type. 3829 const ASTRecordLayout &Layout = 3830 getContext().getASTRecordLayout(field->getParent()); 3831 unsigned CharWidth = getContext().getCharWidth(); 3832 if (FieldTBAAInfo.BaseType) 3833 FieldTBAAInfo.Offset += 3834 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3835 3836 // Update the final access type and size. 3837 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3838 FieldTBAAInfo.Size = 3839 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3840 } 3841 3842 Address addr = base.getAddress(); 3843 unsigned RecordCVR = base.getVRQualifiers(); 3844 if (rec->isUnion()) { 3845 // For unions, there is no pointer adjustment. 3846 assert(!FieldType->isReferenceType() && "union has reference member"); 3847 if (CGM.getCodeGenOpts().StrictVTablePointers && 3848 hasAnyVptr(FieldType, getContext())) 3849 // Because unions can easily skip invariant.barriers, we need to add 3850 // a barrier every time CXXRecord field with vptr is referenced. 3851 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3852 addr.getAlignment()); 3853 } else { 3854 // For structs, we GEP to the field that the record layout suggests. 3855 addr = emitAddrOfFieldStorage(*this, addr, field); 3856 3857 // If this is a reference field, load the reference right now. 3858 if (FieldType->isReferenceType()) { 3859 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3860 FieldTBAAInfo); 3861 if (RecordCVR & Qualifiers::Volatile) 3862 RefLVal.getQuals().setVolatile(true); 3863 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3864 3865 // Qualifiers on the struct don't apply to the referencee. 3866 RecordCVR = 0; 3867 FieldType = FieldType->getPointeeType(); 3868 } 3869 } 3870 3871 // Make sure that the address is pointing to the right type. This is critical 3872 // for both unions and structs. A union needs a bitcast, a struct element 3873 // will need a bitcast if the LLVM type laid out doesn't match the desired 3874 // type. 3875 addr = Builder.CreateElementBitCast( 3876 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3877 3878 if (field->hasAttr<AnnotateAttr>()) 3879 addr = EmitFieldAnnotations(field, addr); 3880 3881 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3882 LV.getQuals().addCVRQualifiers(RecordCVR); 3883 3884 // __weak attribute on a field is ignored. 3885 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3886 LV.getQuals().removeObjCGCAttr(); 3887 3888 return LV; 3889 } 3890 3891 LValue 3892 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3893 const FieldDecl *Field) { 3894 QualType FieldType = Field->getType(); 3895 3896 if (!FieldType->isReferenceType()) 3897 return EmitLValueForField(Base, Field); 3898 3899 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3900 3901 // Make sure that the address is pointing to the right type. 3902 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3903 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3904 3905 // TODO: Generate TBAA information that describes this access as a structure 3906 // member access and not just an access to an object of the field's type. This 3907 // should be similar to what we do in EmitLValueForField(). 3908 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3909 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3910 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3911 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3912 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3913 } 3914 3915 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3916 if (E->isFileScope()) { 3917 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3918 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3919 } 3920 if (E->getType()->isVariablyModifiedType()) 3921 // make sure to emit the VLA size. 3922 EmitVariablyModifiedType(E->getType()); 3923 3924 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3925 const Expr *InitExpr = E->getInitializer(); 3926 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3927 3928 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3929 /*Init*/ true); 3930 3931 return Result; 3932 } 3933 3934 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3935 if (!E->isGLValue()) 3936 // Initializing an aggregate temporary in C++11: T{...}. 3937 return EmitAggExprToLValue(E); 3938 3939 // An lvalue initializer list must be initializing a reference. 3940 assert(E->isTransparent() && "non-transparent glvalue init list"); 3941 return EmitLValue(E->getInit(0)); 3942 } 3943 3944 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3945 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3946 /// LValue is returned and the current block has been terminated. 3947 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3948 const Expr *Operand) { 3949 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3950 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3951 return None; 3952 } 3953 3954 return CGF.EmitLValue(Operand); 3955 } 3956 3957 LValue CodeGenFunction:: 3958 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3959 if (!expr->isGLValue()) { 3960 // ?: here should be an aggregate. 3961 assert(hasAggregateEvaluationKind(expr->getType()) && 3962 "Unexpected conditional operator!"); 3963 return EmitAggExprToLValue(expr); 3964 } 3965 3966 OpaqueValueMapping binding(*this, expr); 3967 3968 const Expr *condExpr = expr->getCond(); 3969 bool CondExprBool; 3970 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3971 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3972 if (!CondExprBool) std::swap(live, dead); 3973 3974 if (!ContainsLabel(dead)) { 3975 // If the true case is live, we need to track its region. 3976 if (CondExprBool) 3977 incrementProfileCounter(expr); 3978 return EmitLValue(live); 3979 } 3980 } 3981 3982 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3983 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3984 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3985 3986 ConditionalEvaluation eval(*this); 3987 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3988 3989 // Any temporaries created here are conditional. 3990 EmitBlock(lhsBlock); 3991 incrementProfileCounter(expr); 3992 eval.begin(*this); 3993 Optional<LValue> lhs = 3994 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3995 eval.end(*this); 3996 3997 if (lhs && !lhs->isSimple()) 3998 return EmitUnsupportedLValue(expr, "conditional operator"); 3999 4000 lhsBlock = Builder.GetInsertBlock(); 4001 if (lhs) 4002 Builder.CreateBr(contBlock); 4003 4004 // Any temporaries created here are conditional. 4005 EmitBlock(rhsBlock); 4006 eval.begin(*this); 4007 Optional<LValue> rhs = 4008 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4009 eval.end(*this); 4010 if (rhs && !rhs->isSimple()) 4011 return EmitUnsupportedLValue(expr, "conditional operator"); 4012 rhsBlock = Builder.GetInsertBlock(); 4013 4014 EmitBlock(contBlock); 4015 4016 if (lhs && rhs) { 4017 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4018 2, "cond-lvalue"); 4019 phi->addIncoming(lhs->getPointer(), lhsBlock); 4020 phi->addIncoming(rhs->getPointer(), rhsBlock); 4021 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4022 AlignmentSource alignSource = 4023 std::max(lhs->getBaseInfo().getAlignmentSource(), 4024 rhs->getBaseInfo().getAlignmentSource()); 4025 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4026 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4027 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4028 TBAAInfo); 4029 } else { 4030 assert((lhs || rhs) && 4031 "both operands of glvalue conditional are throw-expressions?"); 4032 return lhs ? *lhs : *rhs; 4033 } 4034 } 4035 4036 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4037 /// type. If the cast is to a reference, we can have the usual lvalue result, 4038 /// otherwise if a cast is needed by the code generator in an lvalue context, 4039 /// then it must mean that we need the address of an aggregate in order to 4040 /// access one of its members. This can happen for all the reasons that casts 4041 /// are permitted with aggregate result, including noop aggregate casts, and 4042 /// cast from scalar to union. 4043 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4044 switch (E->getCastKind()) { 4045 case CK_ToVoid: 4046 case CK_BitCast: 4047 case CK_ArrayToPointerDecay: 4048 case CK_FunctionToPointerDecay: 4049 case CK_NullToMemberPointer: 4050 case CK_NullToPointer: 4051 case CK_IntegralToPointer: 4052 case CK_PointerToIntegral: 4053 case CK_PointerToBoolean: 4054 case CK_VectorSplat: 4055 case CK_IntegralCast: 4056 case CK_BooleanToSignedIntegral: 4057 case CK_IntegralToBoolean: 4058 case CK_IntegralToFloating: 4059 case CK_FloatingToIntegral: 4060 case CK_FloatingToBoolean: 4061 case CK_FloatingCast: 4062 case CK_FloatingRealToComplex: 4063 case CK_FloatingComplexToReal: 4064 case CK_FloatingComplexToBoolean: 4065 case CK_FloatingComplexCast: 4066 case CK_FloatingComplexToIntegralComplex: 4067 case CK_IntegralRealToComplex: 4068 case CK_IntegralComplexToReal: 4069 case CK_IntegralComplexToBoolean: 4070 case CK_IntegralComplexCast: 4071 case CK_IntegralComplexToFloatingComplex: 4072 case CK_DerivedToBaseMemberPointer: 4073 case CK_BaseToDerivedMemberPointer: 4074 case CK_MemberPointerToBoolean: 4075 case CK_ReinterpretMemberPointer: 4076 case CK_AnyPointerToBlockPointerCast: 4077 case CK_ARCProduceObject: 4078 case CK_ARCConsumeObject: 4079 case CK_ARCReclaimReturnedObject: 4080 case CK_ARCExtendBlockObject: 4081 case CK_CopyAndAutoreleaseBlockObject: 4082 case CK_AddressSpaceConversion: 4083 case CK_IntToOCLSampler: 4084 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4085 4086 case CK_Dependent: 4087 llvm_unreachable("dependent cast kind in IR gen!"); 4088 4089 case CK_BuiltinFnToFnPtr: 4090 llvm_unreachable("builtin functions are handled elsewhere"); 4091 4092 // These are never l-values; just use the aggregate emission code. 4093 case CK_NonAtomicToAtomic: 4094 case CK_AtomicToNonAtomic: 4095 return EmitAggExprToLValue(E); 4096 4097 case CK_Dynamic: { 4098 LValue LV = EmitLValue(E->getSubExpr()); 4099 Address V = LV.getAddress(); 4100 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4101 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4102 } 4103 4104 case CK_ConstructorConversion: 4105 case CK_UserDefinedConversion: 4106 case CK_CPointerToObjCPointerCast: 4107 case CK_BlockPointerToObjCPointerCast: 4108 case CK_NoOp: 4109 case CK_LValueToRValue: 4110 return EmitLValue(E->getSubExpr()); 4111 4112 case CK_UncheckedDerivedToBase: 4113 case CK_DerivedToBase: { 4114 const RecordType *DerivedClassTy = 4115 E->getSubExpr()->getType()->getAs<RecordType>(); 4116 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4117 4118 LValue LV = EmitLValue(E->getSubExpr()); 4119 Address This = LV.getAddress(); 4120 4121 // Perform the derived-to-base conversion 4122 Address Base = GetAddressOfBaseClass( 4123 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4124 /*NullCheckValue=*/false, E->getExprLoc()); 4125 4126 // TODO: Support accesses to members of base classes in TBAA. For now, we 4127 // conservatively pretend that the complete object is of the base class 4128 // type. 4129 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4130 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4131 } 4132 case CK_ToUnion: 4133 return EmitAggExprToLValue(E); 4134 case CK_BaseToDerived: { 4135 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4136 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4137 4138 LValue LV = EmitLValue(E->getSubExpr()); 4139 4140 // Perform the base-to-derived conversion 4141 Address Derived = 4142 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4143 E->path_begin(), E->path_end(), 4144 /*NullCheckValue=*/false); 4145 4146 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4147 // performed and the object is not of the derived type. 4148 if (sanitizePerformTypeCheck()) 4149 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4150 Derived.getPointer(), E->getType()); 4151 4152 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4153 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4154 /*MayBeNull=*/false, 4155 CFITCK_DerivedCast, E->getLocStart()); 4156 4157 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4158 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4159 } 4160 case CK_LValueBitCast: { 4161 // This must be a reinterpret_cast (or c-style equivalent). 4162 const auto *CE = cast<ExplicitCastExpr>(E); 4163 4164 CGM.EmitExplicitCastExprType(CE, this); 4165 LValue LV = EmitLValue(E->getSubExpr()); 4166 Address V = Builder.CreateBitCast(LV.getAddress(), 4167 ConvertType(CE->getTypeAsWritten())); 4168 4169 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4170 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4171 /*MayBeNull=*/false, 4172 CFITCK_UnrelatedCast, E->getLocStart()); 4173 4174 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4175 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4176 } 4177 case CK_ObjCObjectLValueCast: { 4178 LValue LV = EmitLValue(E->getSubExpr()); 4179 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4180 ConvertType(E->getType())); 4181 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4182 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4183 } 4184 case CK_ZeroToOCLQueue: 4185 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4186 case CK_ZeroToOCLEvent: 4187 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4188 } 4189 4190 llvm_unreachable("Unhandled lvalue cast kind?"); 4191 } 4192 4193 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4194 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4195 return getOrCreateOpaqueLValueMapping(e); 4196 } 4197 4198 LValue 4199 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4200 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4201 4202 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4203 it = OpaqueLValues.find(e); 4204 4205 if (it != OpaqueLValues.end()) 4206 return it->second; 4207 4208 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4209 return EmitLValue(e->getSourceExpr()); 4210 } 4211 4212 RValue 4213 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4214 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4215 4216 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4217 it = OpaqueRValues.find(e); 4218 4219 if (it != OpaqueRValues.end()) 4220 return it->second; 4221 4222 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4223 return EmitAnyExpr(e->getSourceExpr()); 4224 } 4225 4226 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4227 const FieldDecl *FD, 4228 SourceLocation Loc) { 4229 QualType FT = FD->getType(); 4230 LValue FieldLV = EmitLValueForField(LV, FD); 4231 switch (getEvaluationKind(FT)) { 4232 case TEK_Complex: 4233 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4234 case TEK_Aggregate: 4235 return FieldLV.asAggregateRValue(); 4236 case TEK_Scalar: 4237 // This routine is used to load fields one-by-one to perform a copy, so 4238 // don't load reference fields. 4239 if (FD->getType()->isReferenceType()) 4240 return RValue::get(FieldLV.getPointer()); 4241 return EmitLoadOfLValue(FieldLV, Loc); 4242 } 4243 llvm_unreachable("bad evaluation kind"); 4244 } 4245 4246 //===--------------------------------------------------------------------===// 4247 // Expression Emission 4248 //===--------------------------------------------------------------------===// 4249 4250 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4251 ReturnValueSlot ReturnValue) { 4252 // Builtins never have block type. 4253 if (E->getCallee()->getType()->isBlockPointerType()) 4254 return EmitBlockCallExpr(E, ReturnValue); 4255 4256 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4257 return EmitCXXMemberCallExpr(CE, ReturnValue); 4258 4259 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4260 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4261 4262 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4263 if (const CXXMethodDecl *MD = 4264 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4265 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4266 4267 CGCallee callee = EmitCallee(E->getCallee()); 4268 4269 if (callee.isBuiltin()) { 4270 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4271 E, ReturnValue); 4272 } 4273 4274 if (callee.isPseudoDestructor()) { 4275 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4276 } 4277 4278 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4279 } 4280 4281 /// Emit a CallExpr without considering whether it might be a subclass. 4282 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4283 ReturnValueSlot ReturnValue) { 4284 CGCallee Callee = EmitCallee(E->getCallee()); 4285 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4286 } 4287 4288 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4289 if (auto builtinID = FD->getBuiltinID()) { 4290 return CGCallee::forBuiltin(builtinID, FD); 4291 } 4292 4293 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4294 return CGCallee::forDirect(calleePtr, FD); 4295 } 4296 4297 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4298 E = E->IgnoreParens(); 4299 4300 // Look through function-to-pointer decay. 4301 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4302 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4303 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4304 return EmitCallee(ICE->getSubExpr()); 4305 } 4306 4307 // Resolve direct calls. 4308 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4309 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4310 return EmitDirectCallee(*this, FD); 4311 } 4312 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4313 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4314 EmitIgnoredExpr(ME->getBase()); 4315 return EmitDirectCallee(*this, FD); 4316 } 4317 4318 // Look through template substitutions. 4319 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4320 return EmitCallee(NTTP->getReplacement()); 4321 4322 // Treat pseudo-destructor calls differently. 4323 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4324 return CGCallee::forPseudoDestructor(PDE); 4325 } 4326 4327 // Otherwise, we have an indirect reference. 4328 llvm::Value *calleePtr; 4329 QualType functionType; 4330 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4331 calleePtr = EmitScalarExpr(E); 4332 functionType = ptrType->getPointeeType(); 4333 } else { 4334 functionType = E->getType(); 4335 calleePtr = EmitLValue(E).getPointer(); 4336 } 4337 assert(functionType->isFunctionType()); 4338 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4339 E->getReferencedDeclOfCallee()); 4340 CGCallee callee(calleeInfo, calleePtr); 4341 return callee; 4342 } 4343 4344 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4345 // Comma expressions just emit their LHS then their RHS as an l-value. 4346 if (E->getOpcode() == BO_Comma) { 4347 EmitIgnoredExpr(E->getLHS()); 4348 EnsureInsertPoint(); 4349 return EmitLValue(E->getRHS()); 4350 } 4351 4352 if (E->getOpcode() == BO_PtrMemD || 4353 E->getOpcode() == BO_PtrMemI) 4354 return EmitPointerToDataMemberBinaryExpr(E); 4355 4356 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4357 4358 // Note that in all of these cases, __block variables need the RHS 4359 // evaluated first just in case the variable gets moved by the RHS. 4360 4361 switch (getEvaluationKind(E->getType())) { 4362 case TEK_Scalar: { 4363 switch (E->getLHS()->getType().getObjCLifetime()) { 4364 case Qualifiers::OCL_Strong: 4365 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4366 4367 case Qualifiers::OCL_Autoreleasing: 4368 return EmitARCStoreAutoreleasing(E).first; 4369 4370 // No reason to do any of these differently. 4371 case Qualifiers::OCL_None: 4372 case Qualifiers::OCL_ExplicitNone: 4373 case Qualifiers::OCL_Weak: 4374 break; 4375 } 4376 4377 RValue RV = EmitAnyExpr(E->getRHS()); 4378 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4379 if (RV.isScalar()) 4380 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4381 EmitStoreThroughLValue(RV, LV); 4382 return LV; 4383 } 4384 4385 case TEK_Complex: 4386 return EmitComplexAssignmentLValue(E); 4387 4388 case TEK_Aggregate: 4389 return EmitAggExprToLValue(E); 4390 } 4391 llvm_unreachable("bad evaluation kind"); 4392 } 4393 4394 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4395 RValue RV = EmitCallExpr(E); 4396 4397 if (!RV.isScalar()) 4398 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4399 AlignmentSource::Decl); 4400 4401 assert(E->getCallReturnType(getContext())->isReferenceType() && 4402 "Can't have a scalar return unless the return type is a " 4403 "reference type!"); 4404 4405 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4406 } 4407 4408 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4409 // FIXME: This shouldn't require another copy. 4410 return EmitAggExprToLValue(E); 4411 } 4412 4413 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4414 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4415 && "binding l-value to type which needs a temporary"); 4416 AggValueSlot Slot = CreateAggTemp(E->getType()); 4417 EmitCXXConstructExpr(E, Slot); 4418 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4419 } 4420 4421 LValue 4422 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4423 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4424 } 4425 4426 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4427 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4428 ConvertType(E->getType())); 4429 } 4430 4431 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4432 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4433 AlignmentSource::Decl); 4434 } 4435 4436 LValue 4437 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4438 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4439 Slot.setExternallyDestructed(); 4440 EmitAggExpr(E->getSubExpr(), Slot); 4441 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4442 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4443 } 4444 4445 LValue 4446 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4447 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4448 EmitLambdaExpr(E, Slot); 4449 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4450 } 4451 4452 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4453 RValue RV = EmitObjCMessageExpr(E); 4454 4455 if (!RV.isScalar()) 4456 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4457 AlignmentSource::Decl); 4458 4459 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4460 "Can't have a scalar return unless the return type is a " 4461 "reference type!"); 4462 4463 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4464 } 4465 4466 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4467 Address V = 4468 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4469 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4470 } 4471 4472 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4473 const ObjCIvarDecl *Ivar) { 4474 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4475 } 4476 4477 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4478 llvm::Value *BaseValue, 4479 const ObjCIvarDecl *Ivar, 4480 unsigned CVRQualifiers) { 4481 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4482 Ivar, CVRQualifiers); 4483 } 4484 4485 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4486 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4487 llvm::Value *BaseValue = nullptr; 4488 const Expr *BaseExpr = E->getBase(); 4489 Qualifiers BaseQuals; 4490 QualType ObjectTy; 4491 if (E->isArrow()) { 4492 BaseValue = EmitScalarExpr(BaseExpr); 4493 ObjectTy = BaseExpr->getType()->getPointeeType(); 4494 BaseQuals = ObjectTy.getQualifiers(); 4495 } else { 4496 LValue BaseLV = EmitLValue(BaseExpr); 4497 BaseValue = BaseLV.getPointer(); 4498 ObjectTy = BaseExpr->getType(); 4499 BaseQuals = ObjectTy.getQualifiers(); 4500 } 4501 4502 LValue LV = 4503 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4504 BaseQuals.getCVRQualifiers()); 4505 setObjCGCLValueClass(getContext(), E, LV); 4506 return LV; 4507 } 4508 4509 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4510 // Can only get l-value for message expression returning aggregate type 4511 RValue RV = EmitAnyExprToTemp(E); 4512 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4513 AlignmentSource::Decl); 4514 } 4515 4516 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4517 const CallExpr *E, ReturnValueSlot ReturnValue, 4518 llvm::Value *Chain) { 4519 // Get the actual function type. The callee type will always be a pointer to 4520 // function type or a block pointer type. 4521 assert(CalleeType->isFunctionPointerType() && 4522 "Call must have function pointer type!"); 4523 4524 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4525 4526 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4527 // We can only guarantee that a function is called from the correct 4528 // context/function based on the appropriate target attributes, 4529 // so only check in the case where we have both always_inline and target 4530 // since otherwise we could be making a conditional call after a check for 4531 // the proper cpu features (and it won't cause code generation issues due to 4532 // function based code generation). 4533 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4534 TargetDecl->hasAttr<TargetAttr>()) 4535 checkTargetFeatures(E, FD); 4536 4537 CalleeType = getContext().getCanonicalType(CalleeType); 4538 4539 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4540 4541 CGCallee Callee = OrigCallee; 4542 4543 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4544 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4545 if (llvm::Constant *PrefixSig = 4546 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4547 SanitizerScope SanScope(this); 4548 // Remove any (C++17) exception specifications, to allow calling e.g. a 4549 // noexcept function through a non-noexcept pointer. 4550 auto ProtoTy = 4551 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4552 llvm::Constant *FTRTTIConst = 4553 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4554 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4555 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4556 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4557 4558 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4559 4560 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4561 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4562 llvm::Value *CalleeSigPtr = 4563 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4564 llvm::Value *CalleeSig = 4565 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4566 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4567 4568 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4569 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4570 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4571 4572 EmitBlock(TypeCheck); 4573 llvm::Value *CalleeRTTIPtr = 4574 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4575 llvm::Value *CalleeRTTIEncoded = 4576 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4577 llvm::Value *CalleeRTTI = 4578 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4579 llvm::Value *CalleeRTTIMatch = 4580 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4581 llvm::Constant *StaticData[] = { 4582 EmitCheckSourceLocation(E->getLocStart()), 4583 EmitCheckTypeDescriptor(CalleeType) 4584 }; 4585 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4586 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4587 4588 Builder.CreateBr(Cont); 4589 EmitBlock(Cont); 4590 } 4591 } 4592 4593 const auto *FnType = cast<FunctionType>(PointeeType); 4594 4595 // If we are checking indirect calls and this call is indirect, check that the 4596 // function pointer is a member of the bit set for the function type. 4597 if (SanOpts.has(SanitizerKind::CFIICall) && 4598 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4599 SanitizerScope SanScope(this); 4600 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4601 4602 llvm::Metadata *MD; 4603 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4604 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4605 else 4606 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4607 4608 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4609 4610 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4611 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4612 llvm::Value *TypeTest = Builder.CreateCall( 4613 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4614 4615 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4616 llvm::Constant *StaticData[] = { 4617 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4618 EmitCheckSourceLocation(E->getLocStart()), 4619 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4620 }; 4621 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4622 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4623 CastedCallee, StaticData); 4624 } else { 4625 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4626 SanitizerHandler::CFICheckFail, StaticData, 4627 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4628 } 4629 } 4630 4631 CallArgList Args; 4632 if (Chain) 4633 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4634 CGM.getContext().VoidPtrTy); 4635 4636 // C++17 requires that we evaluate arguments to a call using assignment syntax 4637 // right-to-left, and that we evaluate arguments to certain other operators 4638 // left-to-right. Note that we allow this to override the order dictated by 4639 // the calling convention on the MS ABI, which means that parameter 4640 // destruction order is not necessarily reverse construction order. 4641 // FIXME: Revisit this based on C++ committee response to unimplementability. 4642 EvaluationOrder Order = EvaluationOrder::Default; 4643 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4644 if (OCE->isAssignmentOp()) 4645 Order = EvaluationOrder::ForceRightToLeft; 4646 else { 4647 switch (OCE->getOperator()) { 4648 case OO_LessLess: 4649 case OO_GreaterGreater: 4650 case OO_AmpAmp: 4651 case OO_PipePipe: 4652 case OO_Comma: 4653 case OO_ArrowStar: 4654 Order = EvaluationOrder::ForceLeftToRight; 4655 break; 4656 default: 4657 break; 4658 } 4659 } 4660 } 4661 4662 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4663 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4664 4665 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4666 Args, FnType, /*isChainCall=*/Chain); 4667 4668 // C99 6.5.2.2p6: 4669 // If the expression that denotes the called function has a type 4670 // that does not include a prototype, [the default argument 4671 // promotions are performed]. If the number of arguments does not 4672 // equal the number of parameters, the behavior is undefined. If 4673 // the function is defined with a type that includes a prototype, 4674 // and either the prototype ends with an ellipsis (, ...) or the 4675 // types of the arguments after promotion are not compatible with 4676 // the types of the parameters, the behavior is undefined. If the 4677 // function is defined with a type that does not include a 4678 // prototype, and the types of the arguments after promotion are 4679 // not compatible with those of the parameters after promotion, 4680 // the behavior is undefined [except in some trivial cases]. 4681 // That is, in the general case, we should assume that a call 4682 // through an unprototyped function type works like a *non-variadic* 4683 // call. The way we make this work is to cast to the exact type 4684 // of the promoted arguments. 4685 // 4686 // Chain calls use this same code path to add the invisible chain parameter 4687 // to the function type. 4688 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4689 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4690 CalleeTy = CalleeTy->getPointerTo(); 4691 4692 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4693 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4694 Callee.setFunctionPointer(CalleePtr); 4695 } 4696 4697 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4698 } 4699 4700 LValue CodeGenFunction:: 4701 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4702 Address BaseAddr = Address::invalid(); 4703 if (E->getOpcode() == BO_PtrMemI) { 4704 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4705 } else { 4706 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4707 } 4708 4709 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4710 4711 const MemberPointerType *MPT 4712 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4713 4714 LValueBaseInfo BaseInfo; 4715 TBAAAccessInfo TBAAInfo; 4716 Address MemberAddr = 4717 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4718 &TBAAInfo); 4719 4720 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4721 } 4722 4723 /// Given the address of a temporary variable, produce an r-value of 4724 /// its type. 4725 RValue CodeGenFunction::convertTempToRValue(Address addr, 4726 QualType type, 4727 SourceLocation loc) { 4728 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4729 switch (getEvaluationKind(type)) { 4730 case TEK_Complex: 4731 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4732 case TEK_Aggregate: 4733 return lvalue.asAggregateRValue(); 4734 case TEK_Scalar: 4735 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4736 } 4737 llvm_unreachable("bad evaluation kind"); 4738 } 4739 4740 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4741 assert(Val->getType()->isFPOrFPVectorTy()); 4742 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4743 return; 4744 4745 llvm::MDBuilder MDHelper(getLLVMContext()); 4746 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4747 4748 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4749 } 4750 4751 namespace { 4752 struct LValueOrRValue { 4753 LValue LV; 4754 RValue RV; 4755 }; 4756 } 4757 4758 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4759 const PseudoObjectExpr *E, 4760 bool forLValue, 4761 AggValueSlot slot) { 4762 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4763 4764 // Find the result expression, if any. 4765 const Expr *resultExpr = E->getResultExpr(); 4766 LValueOrRValue result; 4767 4768 for (PseudoObjectExpr::const_semantics_iterator 4769 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4770 const Expr *semantic = *i; 4771 4772 // If this semantic expression is an opaque value, bind it 4773 // to the result of its source expression. 4774 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4775 // Skip unique OVEs. 4776 if (ov->isUnique()) { 4777 assert(ov != resultExpr && 4778 "A unique OVE cannot be used as the result expression"); 4779 continue; 4780 } 4781 4782 // If this is the result expression, we may need to evaluate 4783 // directly into the slot. 4784 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4785 OVMA opaqueData; 4786 if (ov == resultExpr && ov->isRValue() && !forLValue && 4787 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4788 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4789 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4790 AlignmentSource::Decl); 4791 opaqueData = OVMA::bind(CGF, ov, LV); 4792 result.RV = slot.asRValue(); 4793 4794 // Otherwise, emit as normal. 4795 } else { 4796 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4797 4798 // If this is the result, also evaluate the result now. 4799 if (ov == resultExpr) { 4800 if (forLValue) 4801 result.LV = CGF.EmitLValue(ov); 4802 else 4803 result.RV = CGF.EmitAnyExpr(ov, slot); 4804 } 4805 } 4806 4807 opaques.push_back(opaqueData); 4808 4809 // Otherwise, if the expression is the result, evaluate it 4810 // and remember the result. 4811 } else if (semantic == resultExpr) { 4812 if (forLValue) 4813 result.LV = CGF.EmitLValue(semantic); 4814 else 4815 result.RV = CGF.EmitAnyExpr(semantic, slot); 4816 4817 // Otherwise, evaluate the expression in an ignored context. 4818 } else { 4819 CGF.EmitIgnoredExpr(semantic); 4820 } 4821 } 4822 4823 // Unbind all the opaques now. 4824 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4825 opaques[i].unbind(CGF); 4826 4827 return result; 4828 } 4829 4830 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4831 AggValueSlot slot) { 4832 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4833 } 4834 4835 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4836 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4837 } 4838