1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     auto CurIP = Builder.saveIP();
78     Builder.SetInsertPoint(AllocaInsertPt);
79     V = getTargetHooks().performAddrSpaceCast(
80         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
81         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
82     Builder.restoreIP(CurIP);
83   }
84 
85   return Address(V, Align);
86 }
87 
88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
90 /// insertion point of the builder.
91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
92                                                     const Twine &Name,
93                                                     llvm::Value *ArraySize) {
94   if (ArraySize)
95     return Builder.CreateAlloca(Ty, ArraySize, Name);
96   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
97                               ArraySize, Name, AllocaInsertPt);
98 }
99 
100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
101 /// default alignment of the corresponding LLVM type, which is *not*
102 /// guaranteed to be related in any way to the expected alignment of
103 /// an AST type that might have been lowered to Ty.
104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
105                                                       const Twine &Name) {
106   CharUnits Align =
107     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
108   return CreateTempAlloca(Ty, Align, Name);
109 }
110 
111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
112   assert(isa<llvm::AllocaInst>(Var.getPointer()));
113   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
114   Store->setAlignment(Var.getAlignment().getQuantity());
115   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
116   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
117 }
118 
119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
120   CharUnits Align = getContext().getTypeAlignInChars(Ty);
121   return CreateTempAlloca(ConvertType(Ty), Align, Name);
122 }
123 
124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
125                                        bool CastToDefaultAddrSpace) {
126   // FIXME: Should we prefer the preferred type alignment here?
127   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
128                        CastToDefaultAddrSpace);
129 }
130 
131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
132                                        const Twine &Name,
133                                        bool CastToDefaultAddrSpace) {
134   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
135                           CastToDefaultAddrSpace);
136 }
137 
138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
139 /// expression and compare the result against zero, returning an Int1Ty value.
140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
141   PGO.setCurrentStmt(E);
142   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
143     llvm::Value *MemPtr = EmitScalarExpr(E);
144     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
145   }
146 
147   QualType BoolTy = getContext().BoolTy;
148   SourceLocation Loc = E->getExprLoc();
149   if (!E->getType()->isAnyComplexType())
150     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
151 
152   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
153                                        Loc);
154 }
155 
156 /// EmitIgnoredExpr - Emit code to compute the specified expression,
157 /// ignoring the result.
158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
159   if (E->isRValue())
160     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
161 
162   // Just emit it as an l-value and drop the result.
163   EmitLValue(E);
164 }
165 
166 /// EmitAnyExpr - Emit code to compute the specified expression which
167 /// can have any type.  The result is returned as an RValue struct.
168 /// If this is an aggregate expression, AggSlot indicates where the
169 /// result should be returned.
170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
171                                     AggValueSlot aggSlot,
172                                     bool ignoreResult) {
173   switch (getEvaluationKind(E->getType())) {
174   case TEK_Scalar:
175     return RValue::get(EmitScalarExpr(E, ignoreResult));
176   case TEK_Complex:
177     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
178   case TEK_Aggregate:
179     if (!ignoreResult && aggSlot.isIgnored())
180       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
181     EmitAggExpr(E, aggSlot);
182     return aggSlot.asRValue();
183   }
184   llvm_unreachable("bad evaluation kind");
185 }
186 
187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
188 /// always be accessible even if no aggregate location is provided.
189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
190   AggValueSlot AggSlot = AggValueSlot::ignored();
191 
192   if (hasAggregateEvaluationKind(E->getType()))
193     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
194   return EmitAnyExpr(E, AggSlot);
195 }
196 
197 /// EmitAnyExprToMem - Evaluate an expression into a given memory
198 /// location.
199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
200                                        Address Location,
201                                        Qualifiers Quals,
202                                        bool IsInit) {
203   // FIXME: This function should take an LValue as an argument.
204   switch (getEvaluationKind(E->getType())) {
205   case TEK_Complex:
206     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
207                               /*isInit*/ false);
208     return;
209 
210   case TEK_Aggregate: {
211     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
212                                          AggValueSlot::IsDestructed_t(IsInit),
213                                          AggValueSlot::DoesNotNeedGCBarriers,
214                                          AggValueSlot::IsAliased_t(!IsInit)));
215     return;
216   }
217 
218   case TEK_Scalar: {
219     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
220     LValue LV = MakeAddrLValue(Location, E->getType());
221     EmitStoreThroughLValue(RV, LV);
222     return;
223   }
224   }
225   llvm_unreachable("bad evaluation kind");
226 }
227 
228 static void
229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
230                      const Expr *E, Address ReferenceTemporary) {
231   // Objective-C++ ARC:
232   //   If we are binding a reference to a temporary that has ownership, we
233   //   need to perform retain/release operations on the temporary.
234   //
235   // FIXME: This should be looking at E, not M.
236   if (auto Lifetime = M->getType().getObjCLifetime()) {
237     switch (Lifetime) {
238     case Qualifiers::OCL_None:
239     case Qualifiers::OCL_ExplicitNone:
240       // Carry on to normal cleanup handling.
241       break;
242 
243     case Qualifiers::OCL_Autoreleasing:
244       // Nothing to do; cleaned up by an autorelease pool.
245       return;
246 
247     case Qualifiers::OCL_Strong:
248     case Qualifiers::OCL_Weak:
249       switch (StorageDuration Duration = M->getStorageDuration()) {
250       case SD_Static:
251         // Note: we intentionally do not register a cleanup to release
252         // the object on program termination.
253         return;
254 
255       case SD_Thread:
256         // FIXME: We should probably register a cleanup in this case.
257         return;
258 
259       case SD_Automatic:
260       case SD_FullExpression:
261         CodeGenFunction::Destroyer *Destroy;
262         CleanupKind CleanupKind;
263         if (Lifetime == Qualifiers::OCL_Strong) {
264           const ValueDecl *VD = M->getExtendingDecl();
265           bool Precise =
266               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
267           CleanupKind = CGF.getARCCleanupKind();
268           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
269                             : &CodeGenFunction::destroyARCStrongImprecise;
270         } else {
271           // __weak objects always get EH cleanups; otherwise, exceptions
272           // could cause really nasty crashes instead of mere leaks.
273           CleanupKind = NormalAndEHCleanup;
274           Destroy = &CodeGenFunction::destroyARCWeak;
275         }
276         if (Duration == SD_FullExpression)
277           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
278                           M->getType(), *Destroy,
279                           CleanupKind & EHCleanup);
280         else
281           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
282                                           M->getType(),
283                                           *Destroy, CleanupKind & EHCleanup);
284         return;
285 
286       case SD_Dynamic:
287         llvm_unreachable("temporary cannot have dynamic storage duration");
288       }
289       llvm_unreachable("unknown storage duration");
290     }
291   }
292 
293   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
294   if (const RecordType *RT =
295           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
296     // Get the destructor for the reference temporary.
297     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
298     if (!ClassDecl->hasTrivialDestructor())
299       ReferenceTemporaryDtor = ClassDecl->getDestructor();
300   }
301 
302   if (!ReferenceTemporaryDtor)
303     return;
304 
305   // Call the destructor for the temporary.
306   switch (M->getStorageDuration()) {
307   case SD_Static:
308   case SD_Thread: {
309     llvm::Constant *CleanupFn;
310     llvm::Constant *CleanupArg;
311     if (E->getType()->isArrayType()) {
312       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
313           ReferenceTemporary, E->getType(),
314           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
315           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
316       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
317     } else {
318       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
319                                                StructorType::Complete);
320       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
321     }
322     CGF.CGM.getCXXABI().registerGlobalDtor(
323         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
324     break;
325   }
326 
327   case SD_FullExpression:
328     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
329                     CodeGenFunction::destroyCXXObject,
330                     CGF.getLangOpts().Exceptions);
331     break;
332 
333   case SD_Automatic:
334     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
335                                     ReferenceTemporary, E->getType(),
336                                     CodeGenFunction::destroyCXXObject,
337                                     CGF.getLangOpts().Exceptions);
338     break;
339 
340   case SD_Dynamic:
341     llvm_unreachable("temporary cannot have dynamic storage duration");
342   }
343 }
344 
345 static Address createReferenceTemporary(CodeGenFunction &CGF,
346                                         const MaterializeTemporaryExpr *M,
347                                         const Expr *Inner) {
348   auto &TCG = CGF.getTargetHooks();
349   switch (M->getStorageDuration()) {
350   case SD_FullExpression:
351   case SD_Automatic: {
352     // If we have a constant temporary array or record try to promote it into a
353     // constant global under the same rules a normal constant would've been
354     // promoted. This is easier on the optimizer and generally emits fewer
355     // instructions.
356     QualType Ty = Inner->getType();
357     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
358         (Ty->isArrayType() || Ty->isRecordType()) &&
359         CGF.CGM.isTypeConstant(Ty, true))
360       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
361         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
362           auto AS = AddrSpace.getValue();
363           auto *GV = new llvm::GlobalVariable(
364               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
365               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
366               llvm::GlobalValue::NotThreadLocal,
367               CGF.getContext().getTargetAddressSpace(AS));
368           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
369           GV->setAlignment(alignment.getQuantity());
370           llvm::Constant *C = GV;
371           if (AS != LangAS::Default)
372             C = TCG.performAddrSpaceCast(
373                 CGF.CGM, GV, AS, LangAS::Default,
374                 GV->getValueType()->getPointerTo(
375                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
376           // FIXME: Should we put the new global into a COMDAT?
377           return Address(C, alignment);
378         }
379       }
380     return CGF.CreateMemTemp(Ty, "ref.tmp");
381   }
382   case SD_Thread:
383   case SD_Static:
384     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
385 
386   case SD_Dynamic:
387     llvm_unreachable("temporary can't have dynamic storage duration");
388   }
389   llvm_unreachable("unknown storage duration");
390 }
391 
392 LValue CodeGenFunction::
393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
394   const Expr *E = M->GetTemporaryExpr();
395 
396     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
397     // as that will cause the lifetime adjustment to be lost for ARC
398   auto ownership = M->getType().getObjCLifetime();
399   if (ownership != Qualifiers::OCL_None &&
400       ownership != Qualifiers::OCL_ExplicitNone) {
401     Address Object = createReferenceTemporary(*this, M, E);
402     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
403       Object = Address(llvm::ConstantExpr::getBitCast(Var,
404                            ConvertTypeForMem(E->getType())
405                              ->getPointerTo(Object.getAddressSpace())),
406                        Object.getAlignment());
407 
408       // createReferenceTemporary will promote the temporary to a global with a
409       // constant initializer if it can.  It can only do this to a value of
410       // ARC-manageable type if the value is global and therefore "immune" to
411       // ref-counting operations.  Therefore we have no need to emit either a
412       // dynamic initialization or a cleanup and we can just return the address
413       // of the temporary.
414       if (Var->hasInitializer())
415         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
416 
417       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
418     }
419     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
420                                        AlignmentSource::Decl);
421 
422     switch (getEvaluationKind(E->getType())) {
423     default: llvm_unreachable("expected scalar or aggregate expression");
424     case TEK_Scalar:
425       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
426       break;
427     case TEK_Aggregate: {
428       EmitAggExpr(E, AggValueSlot::forAddr(Object,
429                                            E->getType().getQualifiers(),
430                                            AggValueSlot::IsDestructed,
431                                            AggValueSlot::DoesNotNeedGCBarriers,
432                                            AggValueSlot::IsNotAliased));
433       break;
434     }
435     }
436 
437     pushTemporaryCleanup(*this, M, E, Object);
438     return RefTempDst;
439   }
440 
441   SmallVector<const Expr *, 2> CommaLHSs;
442   SmallVector<SubobjectAdjustment, 2> Adjustments;
443   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
444 
445   for (const auto &Ignored : CommaLHSs)
446     EmitIgnoredExpr(Ignored);
447 
448   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
449     if (opaque->getType()->isRecordType()) {
450       assert(Adjustments.empty());
451       return EmitOpaqueValueLValue(opaque);
452     }
453   }
454 
455   // Create and initialize the reference temporary.
456   Address Object = createReferenceTemporary(*this, M, E);
457   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
458           Object.getPointer()->stripPointerCasts())) {
459     Object = Address(llvm::ConstantExpr::getBitCast(
460                          cast<llvm::Constant>(Object.getPointer()),
461                          ConvertTypeForMem(E->getType())->getPointerTo()),
462                      Object.getAlignment());
463     // If the temporary is a global and has a constant initializer or is a
464     // constant temporary that we promoted to a global, we may have already
465     // initialized it.
466     if (!Var->hasInitializer()) {
467       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
468       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
469     }
470   } else {
471     switch (M->getStorageDuration()) {
472     case SD_Automatic:
473     case SD_FullExpression:
474       if (auto *Size = EmitLifetimeStart(
475               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
476               Object.getPointer())) {
477         if (M->getStorageDuration() == SD_Automatic)
478           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
479                                                     Object, Size);
480         else
481           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
482                                                Size);
483       }
484       break;
485     default:
486       break;
487     }
488     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
489   }
490   pushTemporaryCleanup(*this, M, E, Object);
491 
492   // Perform derived-to-base casts and/or field accesses, to get from the
493   // temporary object we created (and, potentially, for which we extended
494   // the lifetime) to the subobject we're binding the reference to.
495   for (unsigned I = Adjustments.size(); I != 0; --I) {
496     SubobjectAdjustment &Adjustment = Adjustments[I-1];
497     switch (Adjustment.Kind) {
498     case SubobjectAdjustment::DerivedToBaseAdjustment:
499       Object =
500           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
501                                 Adjustment.DerivedToBase.BasePath->path_begin(),
502                                 Adjustment.DerivedToBase.BasePath->path_end(),
503                                 /*NullCheckValue=*/ false, E->getExprLoc());
504       break;
505 
506     case SubobjectAdjustment::FieldAdjustment: {
507       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
508       LV = EmitLValueForField(LV, Adjustment.Field);
509       assert(LV.isSimple() &&
510              "materialized temporary field is not a simple lvalue");
511       Object = LV.getAddress();
512       break;
513     }
514 
515     case SubobjectAdjustment::MemberPointerAdjustment: {
516       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
517       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
518                                                Adjustment.Ptr.MPT);
519       break;
520     }
521     }
522   }
523 
524   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
525 }
526 
527 RValue
528 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
529   // Emit the expression as an lvalue.
530   LValue LV = EmitLValue(E);
531   assert(LV.isSimple());
532   llvm::Value *Value = LV.getPointer();
533 
534   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
535     // C++11 [dcl.ref]p5 (as amended by core issue 453):
536     //   If a glvalue to which a reference is directly bound designates neither
537     //   an existing object or function of an appropriate type nor a region of
538     //   storage of suitable size and alignment to contain an object of the
539     //   reference's type, the behavior is undefined.
540     QualType Ty = E->getType();
541     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
542   }
543 
544   return RValue::get(Value);
545 }
546 
547 
548 /// getAccessedFieldNo - Given an encoded value and a result number, return the
549 /// input field number being accessed.
550 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
551                                              const llvm::Constant *Elts) {
552   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
553       ->getZExtValue();
554 }
555 
556 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
557 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
558                                     llvm::Value *High) {
559   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
560   llvm::Value *K47 = Builder.getInt64(47);
561   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
562   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
563   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
564   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
565   return Builder.CreateMul(B1, KMul);
566 }
567 
568 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
569   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
570          TCK == TCK_UpcastToVirtualBase;
571 }
572 
573 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
574   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
575   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
576          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
577           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
578           TCK == TCK_UpcastToVirtualBase);
579 }
580 
581 bool CodeGenFunction::sanitizePerformTypeCheck() const {
582   return SanOpts.has(SanitizerKind::Null) |
583          SanOpts.has(SanitizerKind::Alignment) |
584          SanOpts.has(SanitizerKind::ObjectSize) |
585          SanOpts.has(SanitizerKind::Vptr);
586 }
587 
588 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
589                                     llvm::Value *Ptr, QualType Ty,
590                                     CharUnits Alignment,
591                                     SanitizerSet SkippedChecks) {
592   if (!sanitizePerformTypeCheck())
593     return;
594 
595   // Don't check pointers outside the default address space. The null check
596   // isn't correct, the object-size check isn't supported by LLVM, and we can't
597   // communicate the addresses to the runtime handler for the vptr check.
598   if (Ptr->getType()->getPointerAddressSpace())
599     return;
600 
601   // Don't check pointers to volatile data. The behavior here is implementation-
602   // defined.
603   if (Ty.isVolatileQualified())
604     return;
605 
606   SanitizerScope SanScope(this);
607 
608   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
609   llvm::BasicBlock *Done = nullptr;
610 
611   // Quickly determine whether we have a pointer to an alloca. It's possible
612   // to skip null checks, and some alignment checks, for these pointers. This
613   // can reduce compile-time significantly.
614   auto PtrToAlloca =
615       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
616 
617   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
618   llvm::Value *IsNonNull = nullptr;
619   bool IsGuaranteedNonNull =
620       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
621   bool AllowNullPointers = isNullPointerAllowed(TCK);
622   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
623       !IsGuaranteedNonNull) {
624     // The glvalue must not be an empty glvalue.
625     IsNonNull = Builder.CreateIsNotNull(Ptr);
626 
627     // The IR builder can constant-fold the null check if the pointer points to
628     // a constant.
629     IsGuaranteedNonNull = IsNonNull == True;
630 
631     // Skip the null check if the pointer is known to be non-null.
632     if (!IsGuaranteedNonNull) {
633       if (AllowNullPointers) {
634         // When performing pointer casts, it's OK if the value is null.
635         // Skip the remaining checks in that case.
636         Done = createBasicBlock("null");
637         llvm::BasicBlock *Rest = createBasicBlock("not.null");
638         Builder.CreateCondBr(IsNonNull, Rest, Done);
639         EmitBlock(Rest);
640       } else {
641         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
642       }
643     }
644   }
645 
646   if (SanOpts.has(SanitizerKind::ObjectSize) &&
647       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
648       !Ty->isIncompleteType()) {
649     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
650 
651     // The glvalue must refer to a large enough storage region.
652     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
653     //        to check this.
654     // FIXME: Get object address space
655     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
656     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
657     llvm::Value *Min = Builder.getFalse();
658     llvm::Value *NullIsUnknown = Builder.getFalse();
659     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
660     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
661         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
662         llvm::ConstantInt::get(IntPtrTy, Size));
663     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
664   }
665 
666   uint64_t AlignVal = 0;
667   llvm::Value *PtrAsInt = nullptr;
668 
669   if (SanOpts.has(SanitizerKind::Alignment) &&
670       !SkippedChecks.has(SanitizerKind::Alignment)) {
671     AlignVal = Alignment.getQuantity();
672     if (!Ty->isIncompleteType() && !AlignVal)
673       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
674 
675     // The glvalue must be suitably aligned.
676     if (AlignVal > 1 &&
677         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
678       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
679       llvm::Value *Align = Builder.CreateAnd(
680           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
681       llvm::Value *Aligned =
682           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
683       if (Aligned != True)
684         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
685     }
686   }
687 
688   if (Checks.size() > 0) {
689     // Make sure we're not losing information. Alignment needs to be a power of
690     // 2
691     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
692     llvm::Constant *StaticData[] = {
693         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
694         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
695         llvm::ConstantInt::get(Int8Ty, TCK)};
696     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
697               PtrAsInt ? PtrAsInt : Ptr);
698   }
699 
700   // If possible, check that the vptr indicates that there is a subobject of
701   // type Ty at offset zero within this object.
702   //
703   // C++11 [basic.life]p5,6:
704   //   [For storage which does not refer to an object within its lifetime]
705   //   The program has undefined behavior if:
706   //    -- the [pointer or glvalue] is used to access a non-static data member
707   //       or call a non-static member function
708   if (SanOpts.has(SanitizerKind::Vptr) &&
709       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
710     // Ensure that the pointer is non-null before loading it. If there is no
711     // compile-time guarantee, reuse the run-time null check or emit a new one.
712     if (!IsGuaranteedNonNull) {
713       if (!IsNonNull)
714         IsNonNull = Builder.CreateIsNotNull(Ptr);
715       if (!Done)
716         Done = createBasicBlock("vptr.null");
717       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
718       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
719       EmitBlock(VptrNotNull);
720     }
721 
722     // Compute a hash of the mangled name of the type.
723     //
724     // FIXME: This is not guaranteed to be deterministic! Move to a
725     //        fingerprinting mechanism once LLVM provides one. For the time
726     //        being the implementation happens to be deterministic.
727     SmallString<64> MangledName;
728     llvm::raw_svector_ostream Out(MangledName);
729     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
730                                                      Out);
731 
732     // Blacklist based on the mangled type.
733     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
734             SanitizerKind::Vptr, Out.str())) {
735       llvm::hash_code TypeHash = hash_value(Out.str());
736 
737       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
738       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
739       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
740       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
741       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
742       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
743 
744       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
745       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
746 
747       // Look the hash up in our cache.
748       const int CacheSize = 128;
749       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
750       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
751                                                      "__ubsan_vptr_type_cache");
752       llvm::Value *Slot = Builder.CreateAnd(Hash,
753                                             llvm::ConstantInt::get(IntPtrTy,
754                                                                    CacheSize-1));
755       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
756       llvm::Value *CacheVal =
757         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
758                                   getPointerAlign());
759 
760       // If the hash isn't in the cache, call a runtime handler to perform the
761       // hard work of checking whether the vptr is for an object of the right
762       // type. This will either fill in the cache and return, or produce a
763       // diagnostic.
764       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
765       llvm::Constant *StaticData[] = {
766         EmitCheckSourceLocation(Loc),
767         EmitCheckTypeDescriptor(Ty),
768         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
769         llvm::ConstantInt::get(Int8Ty, TCK)
770       };
771       llvm::Value *DynamicData[] = { Ptr, Hash };
772       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
773                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
774                 DynamicData);
775     }
776   }
777 
778   if (Done) {
779     Builder.CreateBr(Done);
780     EmitBlock(Done);
781   }
782 }
783 
784 /// Determine whether this expression refers to a flexible array member in a
785 /// struct. We disable array bounds checks for such members.
786 static bool isFlexibleArrayMemberExpr(const Expr *E) {
787   // For compatibility with existing code, we treat arrays of length 0 or
788   // 1 as flexible array members.
789   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
790   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
791     if (CAT->getSize().ugt(1))
792       return false;
793   } else if (!isa<IncompleteArrayType>(AT))
794     return false;
795 
796   E = E->IgnoreParens();
797 
798   // A flexible array member must be the last member in the class.
799   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
800     // FIXME: If the base type of the member expr is not FD->getParent(),
801     // this should not be treated as a flexible array member access.
802     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
803       RecordDecl::field_iterator FI(
804           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
805       return ++FI == FD->getParent()->field_end();
806     }
807   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
808     return IRE->getDecl()->getNextIvar() == nullptr;
809   }
810 
811   return false;
812 }
813 
814 /// If Base is known to point to the start of an array, return the length of
815 /// that array. Return 0 if the length cannot be determined.
816 static llvm::Value *getArrayIndexingBound(
817     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
818   // For the vector indexing extension, the bound is the number of elements.
819   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
820     IndexedType = Base->getType();
821     return CGF.Builder.getInt32(VT->getNumElements());
822   }
823 
824   Base = Base->IgnoreParens();
825 
826   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
827     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
828         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
829       IndexedType = CE->getSubExpr()->getType();
830       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
831       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
832         return CGF.Builder.getInt(CAT->getSize());
833       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
834         return CGF.getVLASize(VAT).first;
835     }
836   }
837 
838   return nullptr;
839 }
840 
841 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
842                                       llvm::Value *Index, QualType IndexType,
843                                       bool Accessed) {
844   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
845          "should not be called unless adding bounds checks");
846   SanitizerScope SanScope(this);
847 
848   QualType IndexedType;
849   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
850   if (!Bound)
851     return;
852 
853   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
854   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
855   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
856 
857   llvm::Constant *StaticData[] = {
858     EmitCheckSourceLocation(E->getExprLoc()),
859     EmitCheckTypeDescriptor(IndexedType),
860     EmitCheckTypeDescriptor(IndexType)
861   };
862   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
863                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
864   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
865             SanitizerHandler::OutOfBounds, StaticData, Index);
866 }
867 
868 
869 CodeGenFunction::ComplexPairTy CodeGenFunction::
870 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
871                          bool isInc, bool isPre) {
872   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
873 
874   llvm::Value *NextVal;
875   if (isa<llvm::IntegerType>(InVal.first->getType())) {
876     uint64_t AmountVal = isInc ? 1 : -1;
877     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
878 
879     // Add the inc/dec to the real part.
880     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
881   } else {
882     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
883     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
884     if (!isInc)
885       FVal.changeSign();
886     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
887 
888     // Add the inc/dec to the real part.
889     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
890   }
891 
892   ComplexPairTy IncVal(NextVal, InVal.second);
893 
894   // Store the updated result through the lvalue.
895   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
896 
897   // If this is a postinc, return the value read from memory, otherwise use the
898   // updated value.
899   return isPre ? IncVal : InVal;
900 }
901 
902 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
903                                              CodeGenFunction *CGF) {
904   // Bind VLAs in the cast type.
905   if (CGF && E->getType()->isVariablyModifiedType())
906     CGF->EmitVariablyModifiedType(E->getType());
907 
908   if (CGDebugInfo *DI = getModuleDebugInfo())
909     DI->EmitExplicitCastType(E->getType());
910 }
911 
912 //===----------------------------------------------------------------------===//
913 //                         LValue Expression Emission
914 //===----------------------------------------------------------------------===//
915 
916 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
917 /// derive a more accurate bound on the alignment of the pointer.
918 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
919                                                   LValueBaseInfo *BaseInfo,
920                                                   TBAAAccessInfo *TBAAInfo) {
921   // We allow this with ObjC object pointers because of fragile ABIs.
922   assert(E->getType()->isPointerType() ||
923          E->getType()->isObjCObjectPointerType());
924   E = E->IgnoreParens();
925 
926   // Casts:
927   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
928     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
929       CGM.EmitExplicitCastExprType(ECE, this);
930 
931     switch (CE->getCastKind()) {
932     // Non-converting casts (but not C's implicit conversion from void*).
933     case CK_BitCast:
934     case CK_NoOp:
935     case CK_AddressSpaceConversion:
936       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
937         if (PtrTy->getPointeeType()->isVoidType())
938           break;
939 
940         LValueBaseInfo InnerBaseInfo;
941         TBAAAccessInfo InnerTBAAInfo;
942         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
943                                                 &InnerBaseInfo,
944                                                 &InnerTBAAInfo);
945         if (BaseInfo) *BaseInfo = InnerBaseInfo;
946         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
947 
948         if (isa<ExplicitCastExpr>(CE)) {
949           LValueBaseInfo TargetTypeBaseInfo;
950           TBAAAccessInfo TargetTypeTBAAInfo;
951           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
952                                                            &TargetTypeBaseInfo,
953                                                            &TargetTypeTBAAInfo);
954           if (TBAAInfo)
955             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
956                                                  TargetTypeTBAAInfo);
957           // If the source l-value is opaque, honor the alignment of the
958           // casted-to type.
959           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
960             if (BaseInfo)
961               BaseInfo->mergeForCast(TargetTypeBaseInfo);
962             Addr = Address(Addr.getPointer(), Align);
963           }
964         }
965 
966         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
967             CE->getCastKind() == CK_BitCast) {
968           if (auto PT = E->getType()->getAs<PointerType>())
969             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
970                                       /*MayBeNull=*/true,
971                                       CodeGenFunction::CFITCK_UnrelatedCast,
972                                       CE->getLocStart());
973         }
974         return CE->getCastKind() != CK_AddressSpaceConversion
975                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
976                    : Builder.CreateAddrSpaceCast(Addr,
977                                                  ConvertType(E->getType()));
978       }
979       break;
980 
981     // Array-to-pointer decay.
982     case CK_ArrayToPointerDecay:
983       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
984 
985     // Derived-to-base conversions.
986     case CK_UncheckedDerivedToBase:
987     case CK_DerivedToBase: {
988       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo,
989                                               TBAAInfo);
990       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
991       return GetAddressOfBaseClass(Addr, Derived,
992                                    CE->path_begin(), CE->path_end(),
993                                    ShouldNullCheckClassCastValue(CE),
994                                    CE->getExprLoc());
995     }
996 
997     // TODO: Is there any reason to treat base-to-derived conversions
998     // specially?
999     default:
1000       break;
1001     }
1002   }
1003 
1004   // Unary &.
1005   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1006     if (UO->getOpcode() == UO_AddrOf) {
1007       LValue LV = EmitLValue(UO->getSubExpr());
1008       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1009       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1010       return LV.getAddress();
1011     }
1012   }
1013 
1014   // TODO: conditional operators, comma.
1015 
1016   // Otherwise, use the alignment of the type.
1017   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1018                                                    TBAAInfo);
1019   return Address(EmitScalarExpr(E), Align);
1020 }
1021 
1022 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1023   if (Ty->isVoidType())
1024     return RValue::get(nullptr);
1025 
1026   switch (getEvaluationKind(Ty)) {
1027   case TEK_Complex: {
1028     llvm::Type *EltTy =
1029       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1030     llvm::Value *U = llvm::UndefValue::get(EltTy);
1031     return RValue::getComplex(std::make_pair(U, U));
1032   }
1033 
1034   // If this is a use of an undefined aggregate type, the aggregate must have an
1035   // identifiable address.  Just because the contents of the value are undefined
1036   // doesn't mean that the address can't be taken and compared.
1037   case TEK_Aggregate: {
1038     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1039     return RValue::getAggregate(DestPtr);
1040   }
1041 
1042   case TEK_Scalar:
1043     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1044   }
1045   llvm_unreachable("bad evaluation kind");
1046 }
1047 
1048 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1049                                               const char *Name) {
1050   ErrorUnsupported(E, Name);
1051   return GetUndefRValue(E->getType());
1052 }
1053 
1054 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1055                                               const char *Name) {
1056   ErrorUnsupported(E, Name);
1057   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1058   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1059                         E->getType());
1060 }
1061 
1062 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1063   const Expr *Base = Obj;
1064   while (!isa<CXXThisExpr>(Base)) {
1065     // The result of a dynamic_cast can be null.
1066     if (isa<CXXDynamicCastExpr>(Base))
1067       return false;
1068 
1069     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1070       Base = CE->getSubExpr();
1071     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1072       Base = PE->getSubExpr();
1073     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1074       if (UO->getOpcode() == UO_Extension)
1075         Base = UO->getSubExpr();
1076       else
1077         return false;
1078     } else {
1079       return false;
1080     }
1081   }
1082   return true;
1083 }
1084 
1085 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1086   LValue LV;
1087   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1088     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1089   else
1090     LV = EmitLValue(E);
1091   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1092     SanitizerSet SkippedChecks;
1093     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1094       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1095       if (IsBaseCXXThis)
1096         SkippedChecks.set(SanitizerKind::Alignment, true);
1097       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1098         SkippedChecks.set(SanitizerKind::Null, true);
1099     }
1100     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1101                   E->getType(), LV.getAlignment(), SkippedChecks);
1102   }
1103   return LV;
1104 }
1105 
1106 /// EmitLValue - Emit code to compute a designator that specifies the location
1107 /// of the expression.
1108 ///
1109 /// This can return one of two things: a simple address or a bitfield reference.
1110 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1111 /// an LLVM pointer type.
1112 ///
1113 /// If this returns a bitfield reference, nothing about the pointee type of the
1114 /// LLVM value is known: For example, it may not be a pointer to an integer.
1115 ///
1116 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1117 /// this method guarantees that the returned pointer type will point to an LLVM
1118 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1119 /// length type, this is not possible.
1120 ///
1121 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1122   ApplyDebugLocation DL(*this, E);
1123   switch (E->getStmtClass()) {
1124   default: return EmitUnsupportedLValue(E, "l-value expression");
1125 
1126   case Expr::ObjCPropertyRefExprClass:
1127     llvm_unreachable("cannot emit a property reference directly");
1128 
1129   case Expr::ObjCSelectorExprClass:
1130     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1131   case Expr::ObjCIsaExprClass:
1132     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1133   case Expr::BinaryOperatorClass:
1134     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1135   case Expr::CompoundAssignOperatorClass: {
1136     QualType Ty = E->getType();
1137     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1138       Ty = AT->getValueType();
1139     if (!Ty->isAnyComplexType())
1140       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1141     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1142   }
1143   case Expr::CallExprClass:
1144   case Expr::CXXMemberCallExprClass:
1145   case Expr::CXXOperatorCallExprClass:
1146   case Expr::UserDefinedLiteralClass:
1147     return EmitCallExprLValue(cast<CallExpr>(E));
1148   case Expr::VAArgExprClass:
1149     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1150   case Expr::DeclRefExprClass:
1151     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1152   case Expr::ParenExprClass:
1153     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1154   case Expr::GenericSelectionExprClass:
1155     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1156   case Expr::PredefinedExprClass:
1157     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1158   case Expr::StringLiteralClass:
1159     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1160   case Expr::ObjCEncodeExprClass:
1161     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1162   case Expr::PseudoObjectExprClass:
1163     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1164   case Expr::InitListExprClass:
1165     return EmitInitListLValue(cast<InitListExpr>(E));
1166   case Expr::CXXTemporaryObjectExprClass:
1167   case Expr::CXXConstructExprClass:
1168     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1169   case Expr::CXXBindTemporaryExprClass:
1170     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1171   case Expr::CXXUuidofExprClass:
1172     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1173   case Expr::LambdaExprClass:
1174     return EmitLambdaLValue(cast<LambdaExpr>(E));
1175 
1176   case Expr::ExprWithCleanupsClass: {
1177     const auto *cleanups = cast<ExprWithCleanups>(E);
1178     enterFullExpression(cleanups);
1179     RunCleanupsScope Scope(*this);
1180     LValue LV = EmitLValue(cleanups->getSubExpr());
1181     if (LV.isSimple()) {
1182       // Defend against branches out of gnu statement expressions surrounded by
1183       // cleanups.
1184       llvm::Value *V = LV.getPointer();
1185       Scope.ForceCleanup({&V});
1186       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1187                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1188     }
1189     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1190     // bitfield lvalue or some other non-simple lvalue?
1191     return LV;
1192   }
1193 
1194   case Expr::CXXDefaultArgExprClass:
1195     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1196   case Expr::CXXDefaultInitExprClass: {
1197     CXXDefaultInitExprScope Scope(*this);
1198     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1199   }
1200   case Expr::CXXTypeidExprClass:
1201     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1202 
1203   case Expr::ObjCMessageExprClass:
1204     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1205   case Expr::ObjCIvarRefExprClass:
1206     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1207   case Expr::StmtExprClass:
1208     return EmitStmtExprLValue(cast<StmtExpr>(E));
1209   case Expr::UnaryOperatorClass:
1210     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1211   case Expr::ArraySubscriptExprClass:
1212     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1213   case Expr::OMPArraySectionExprClass:
1214     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1215   case Expr::ExtVectorElementExprClass:
1216     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1217   case Expr::MemberExprClass:
1218     return EmitMemberExpr(cast<MemberExpr>(E));
1219   case Expr::CompoundLiteralExprClass:
1220     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1221   case Expr::ConditionalOperatorClass:
1222     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1223   case Expr::BinaryConditionalOperatorClass:
1224     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1225   case Expr::ChooseExprClass:
1226     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1227   case Expr::OpaqueValueExprClass:
1228     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1229   case Expr::SubstNonTypeTemplateParmExprClass:
1230     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1231   case Expr::ImplicitCastExprClass:
1232   case Expr::CStyleCastExprClass:
1233   case Expr::CXXFunctionalCastExprClass:
1234   case Expr::CXXStaticCastExprClass:
1235   case Expr::CXXDynamicCastExprClass:
1236   case Expr::CXXReinterpretCastExprClass:
1237   case Expr::CXXConstCastExprClass:
1238   case Expr::ObjCBridgedCastExprClass:
1239     return EmitCastLValue(cast<CastExpr>(E));
1240 
1241   case Expr::MaterializeTemporaryExprClass:
1242     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1243 
1244   case Expr::CoawaitExprClass:
1245     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1246   case Expr::CoyieldExprClass:
1247     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1248   }
1249 }
1250 
1251 /// Given an object of the given canonical type, can we safely copy a
1252 /// value out of it based on its initializer?
1253 static bool isConstantEmittableObjectType(QualType type) {
1254   assert(type.isCanonical());
1255   assert(!type->isReferenceType());
1256 
1257   // Must be const-qualified but non-volatile.
1258   Qualifiers qs = type.getLocalQualifiers();
1259   if (!qs.hasConst() || qs.hasVolatile()) return false;
1260 
1261   // Otherwise, all object types satisfy this except C++ classes with
1262   // mutable subobjects or non-trivial copy/destroy behavior.
1263   if (const auto *RT = dyn_cast<RecordType>(type))
1264     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1265       if (RD->hasMutableFields() || !RD->isTrivial())
1266         return false;
1267 
1268   return true;
1269 }
1270 
1271 /// Can we constant-emit a load of a reference to a variable of the
1272 /// given type?  This is different from predicates like
1273 /// Decl::isUsableInConstantExpressions because we do want it to apply
1274 /// in situations that don't necessarily satisfy the language's rules
1275 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1276 /// to do this with const float variables even if those variables
1277 /// aren't marked 'constexpr'.
1278 enum ConstantEmissionKind {
1279   CEK_None,
1280   CEK_AsReferenceOnly,
1281   CEK_AsValueOrReference,
1282   CEK_AsValueOnly
1283 };
1284 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1285   type = type.getCanonicalType();
1286   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1287     if (isConstantEmittableObjectType(ref->getPointeeType()))
1288       return CEK_AsValueOrReference;
1289     return CEK_AsReferenceOnly;
1290   }
1291   if (isConstantEmittableObjectType(type))
1292     return CEK_AsValueOnly;
1293   return CEK_None;
1294 }
1295 
1296 /// Try to emit a reference to the given value without producing it as
1297 /// an l-value.  This is actually more than an optimization: we can't
1298 /// produce an l-value for variables that we never actually captured
1299 /// in a block or lambda, which means const int variables or constexpr
1300 /// literals or similar.
1301 CodeGenFunction::ConstantEmission
1302 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1303   ValueDecl *value = refExpr->getDecl();
1304 
1305   // The value needs to be an enum constant or a constant variable.
1306   ConstantEmissionKind CEK;
1307   if (isa<ParmVarDecl>(value)) {
1308     CEK = CEK_None;
1309   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1310     CEK = checkVarTypeForConstantEmission(var->getType());
1311   } else if (isa<EnumConstantDecl>(value)) {
1312     CEK = CEK_AsValueOnly;
1313   } else {
1314     CEK = CEK_None;
1315   }
1316   if (CEK == CEK_None) return ConstantEmission();
1317 
1318   Expr::EvalResult result;
1319   bool resultIsReference;
1320   QualType resultType;
1321 
1322   // It's best to evaluate all the way as an r-value if that's permitted.
1323   if (CEK != CEK_AsReferenceOnly &&
1324       refExpr->EvaluateAsRValue(result, getContext())) {
1325     resultIsReference = false;
1326     resultType = refExpr->getType();
1327 
1328   // Otherwise, try to evaluate as an l-value.
1329   } else if (CEK != CEK_AsValueOnly &&
1330              refExpr->EvaluateAsLValue(result, getContext())) {
1331     resultIsReference = true;
1332     resultType = value->getType();
1333 
1334   // Failure.
1335   } else {
1336     return ConstantEmission();
1337   }
1338 
1339   // In any case, if the initializer has side-effects, abandon ship.
1340   if (result.HasSideEffects)
1341     return ConstantEmission();
1342 
1343   // Emit as a constant.
1344   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1345                                                result.Val, resultType);
1346 
1347   // Make sure we emit a debug reference to the global variable.
1348   // This should probably fire even for
1349   if (isa<VarDecl>(value)) {
1350     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1351       EmitDeclRefExprDbgValue(refExpr, result.Val);
1352   } else {
1353     assert(isa<EnumConstantDecl>(value));
1354     EmitDeclRefExprDbgValue(refExpr, result.Val);
1355   }
1356 
1357   // If we emitted a reference constant, we need to dereference that.
1358   if (resultIsReference)
1359     return ConstantEmission::forReference(C);
1360 
1361   return ConstantEmission::forValue(C);
1362 }
1363 
1364 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1365                                                         const MemberExpr *ME) {
1366   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1367     // Try to emit static variable member expressions as DREs.
1368     return DeclRefExpr::Create(
1369         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1370         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1371         ME->getType(), ME->getValueKind());
1372   }
1373   return nullptr;
1374 }
1375 
1376 CodeGenFunction::ConstantEmission
1377 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1378   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1379     return tryEmitAsConstant(DRE);
1380   return ConstantEmission();
1381 }
1382 
1383 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1384                                                SourceLocation Loc) {
1385   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1386                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1387                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1388 }
1389 
1390 static bool hasBooleanRepresentation(QualType Ty) {
1391   if (Ty->isBooleanType())
1392     return true;
1393 
1394   if (const EnumType *ET = Ty->getAs<EnumType>())
1395     return ET->getDecl()->getIntegerType()->isBooleanType();
1396 
1397   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1398     return hasBooleanRepresentation(AT->getValueType());
1399 
1400   return false;
1401 }
1402 
1403 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1404                             llvm::APInt &Min, llvm::APInt &End,
1405                             bool StrictEnums, bool IsBool) {
1406   const EnumType *ET = Ty->getAs<EnumType>();
1407   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1408                                 ET && !ET->getDecl()->isFixed();
1409   if (!IsBool && !IsRegularCPlusPlusEnum)
1410     return false;
1411 
1412   if (IsBool) {
1413     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1414     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1415   } else {
1416     const EnumDecl *ED = ET->getDecl();
1417     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1418     unsigned Bitwidth = LTy->getScalarSizeInBits();
1419     unsigned NumNegativeBits = ED->getNumNegativeBits();
1420     unsigned NumPositiveBits = ED->getNumPositiveBits();
1421 
1422     if (NumNegativeBits) {
1423       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1424       assert(NumBits <= Bitwidth);
1425       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1426       Min = -End;
1427     } else {
1428       assert(NumPositiveBits <= Bitwidth);
1429       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1430       Min = llvm::APInt(Bitwidth, 0);
1431     }
1432   }
1433   return true;
1434 }
1435 
1436 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1437   llvm::APInt Min, End;
1438   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1439                        hasBooleanRepresentation(Ty)))
1440     return nullptr;
1441 
1442   llvm::MDBuilder MDHelper(getLLVMContext());
1443   return MDHelper.createRange(Min, End);
1444 }
1445 
1446 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1447                                            SourceLocation Loc) {
1448   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1449   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1450   if (!HasBoolCheck && !HasEnumCheck)
1451     return false;
1452 
1453   bool IsBool = hasBooleanRepresentation(Ty) ||
1454                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1455   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1456   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1457   if (!NeedsBoolCheck && !NeedsEnumCheck)
1458     return false;
1459 
1460   // Single-bit booleans don't need to be checked. Special-case this to avoid
1461   // a bit width mismatch when handling bitfield values. This is handled by
1462   // EmitFromMemory for the non-bitfield case.
1463   if (IsBool &&
1464       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1465     return false;
1466 
1467   llvm::APInt Min, End;
1468   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1469     return true;
1470 
1471   auto &Ctx = getLLVMContext();
1472   SanitizerScope SanScope(this);
1473   llvm::Value *Check;
1474   --End;
1475   if (!Min) {
1476     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1477   } else {
1478     llvm::Value *Upper =
1479         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1480     llvm::Value *Lower =
1481         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1482     Check = Builder.CreateAnd(Upper, Lower);
1483   }
1484   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1485                                   EmitCheckTypeDescriptor(Ty)};
1486   SanitizerMask Kind =
1487       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1488   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1489             StaticArgs, EmitCheckValue(Value));
1490   return true;
1491 }
1492 
1493 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1494                                                QualType Ty,
1495                                                SourceLocation Loc,
1496                                                LValueBaseInfo BaseInfo,
1497                                                TBAAAccessInfo TBAAInfo,
1498                                                bool isNontemporal) {
1499   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1500     // For better performance, handle vector loads differently.
1501     if (Ty->isVectorType()) {
1502       const llvm::Type *EltTy = Addr.getElementType();
1503 
1504       const auto *VTy = cast<llvm::VectorType>(EltTy);
1505 
1506       // Handle vectors of size 3 like size 4 for better performance.
1507       if (VTy->getNumElements() == 3) {
1508 
1509         // Bitcast to vec4 type.
1510         llvm::VectorType *vec4Ty =
1511             llvm::VectorType::get(VTy->getElementType(), 4);
1512         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1513         // Now load value.
1514         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1515 
1516         // Shuffle vector to get vec3.
1517         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1518                                         {0, 1, 2}, "extractVec");
1519         return EmitFromMemory(V, Ty);
1520       }
1521     }
1522   }
1523 
1524   // Atomic operations have to be done on integral types.
1525   LValue AtomicLValue =
1526       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1527   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1528     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1529   }
1530 
1531   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1532   if (isNontemporal) {
1533     llvm::MDNode *Node = llvm::MDNode::get(
1534         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1535     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1536   }
1537 
1538   if (BaseInfo.getMayAlias())
1539     TBAAInfo = CGM.getTBAAMayAliasAccessInfo();
1540   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1541 
1542   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1543     // In order to prevent the optimizer from throwing away the check, don't
1544     // attach range metadata to the load.
1545   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1546     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1547       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1548 
1549   return EmitFromMemory(Load, Ty);
1550 }
1551 
1552 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1553   // Bool has a different representation in memory than in registers.
1554   if (hasBooleanRepresentation(Ty)) {
1555     // This should really always be an i1, but sometimes it's already
1556     // an i8, and it's awkward to track those cases down.
1557     if (Value->getType()->isIntegerTy(1))
1558       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1559     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1560            "wrong value rep of bool");
1561   }
1562 
1563   return Value;
1564 }
1565 
1566 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1567   // Bool has a different representation in memory than in registers.
1568   if (hasBooleanRepresentation(Ty)) {
1569     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1570            "wrong value rep of bool");
1571     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1572   }
1573 
1574   return Value;
1575 }
1576 
1577 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1578                                         bool Volatile, QualType Ty,
1579                                         LValueBaseInfo BaseInfo,
1580                                         TBAAAccessInfo TBAAInfo,
1581                                         bool isInit, bool isNontemporal) {
1582   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1583     // Handle vectors differently to get better performance.
1584     if (Ty->isVectorType()) {
1585       llvm::Type *SrcTy = Value->getType();
1586       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1587       // Handle vec3 special.
1588       if (VecTy && VecTy->getNumElements() == 3) {
1589         // Our source is a vec3, do a shuffle vector to make it a vec4.
1590         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1591                                   Builder.getInt32(2),
1592                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1593         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1594         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1595                                             MaskV, "extractVec");
1596         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1597       }
1598       if (Addr.getElementType() != SrcTy) {
1599         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1600       }
1601     }
1602   }
1603 
1604   Value = EmitToMemory(Value, Ty);
1605 
1606   LValue AtomicLValue =
1607       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1608   if (Ty->isAtomicType() ||
1609       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1610     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1611     return;
1612   }
1613 
1614   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1615   if (isNontemporal) {
1616     llvm::MDNode *Node =
1617         llvm::MDNode::get(Store->getContext(),
1618                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1619     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1620   }
1621 
1622   if (BaseInfo.getMayAlias())
1623     TBAAInfo = CGM.getTBAAMayAliasAccessInfo();
1624   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1625 }
1626 
1627 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1628                                         bool isInit) {
1629   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1630                     lvalue.getType(), lvalue.getBaseInfo(),
1631                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1632 }
1633 
1634 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1635 /// method emits the address of the lvalue, then loads the result as an rvalue,
1636 /// returning the rvalue.
1637 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1638   if (LV.isObjCWeak()) {
1639     // load of a __weak object.
1640     Address AddrWeakObj = LV.getAddress();
1641     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1642                                                              AddrWeakObj));
1643   }
1644   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1645     // In MRC mode, we do a load+autorelease.
1646     if (!getLangOpts().ObjCAutoRefCount) {
1647       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1648     }
1649 
1650     // In ARC mode, we load retained and then consume the value.
1651     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1652     Object = EmitObjCConsumeObject(LV.getType(), Object);
1653     return RValue::get(Object);
1654   }
1655 
1656   if (LV.isSimple()) {
1657     assert(!LV.getType()->isFunctionType());
1658 
1659     // Everything needs a load.
1660     return RValue::get(EmitLoadOfScalar(LV, Loc));
1661   }
1662 
1663   if (LV.isVectorElt()) {
1664     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1665                                               LV.isVolatileQualified());
1666     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1667                                                     "vecext"));
1668   }
1669 
1670   // If this is a reference to a subset of the elements of a vector, either
1671   // shuffle the input or extract/insert them as appropriate.
1672   if (LV.isExtVectorElt())
1673     return EmitLoadOfExtVectorElementLValue(LV);
1674 
1675   // Global Register variables always invoke intrinsics
1676   if (LV.isGlobalReg())
1677     return EmitLoadOfGlobalRegLValue(LV);
1678 
1679   assert(LV.isBitField() && "Unknown LValue type!");
1680   return EmitLoadOfBitfieldLValue(LV, Loc);
1681 }
1682 
1683 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1684                                                  SourceLocation Loc) {
1685   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1686 
1687   // Get the output type.
1688   llvm::Type *ResLTy = ConvertType(LV.getType());
1689 
1690   Address Ptr = LV.getBitFieldAddress();
1691   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1692 
1693   if (Info.IsSigned) {
1694     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1695     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1696     if (HighBits)
1697       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1698     if (Info.Offset + HighBits)
1699       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1700   } else {
1701     if (Info.Offset)
1702       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1703     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1704       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1705                                                               Info.Size),
1706                               "bf.clear");
1707   }
1708   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1709   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1710   return RValue::get(Val);
1711 }
1712 
1713 // If this is a reference to a subset of the elements of a vector, create an
1714 // appropriate shufflevector.
1715 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1716   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1717                                         LV.isVolatileQualified());
1718 
1719   const llvm::Constant *Elts = LV.getExtVectorElts();
1720 
1721   // If the result of the expression is a non-vector type, we must be extracting
1722   // a single element.  Just codegen as an extractelement.
1723   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1724   if (!ExprVT) {
1725     unsigned InIdx = getAccessedFieldNo(0, Elts);
1726     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1727     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1728   }
1729 
1730   // Always use shuffle vector to try to retain the original program structure
1731   unsigned NumResultElts = ExprVT->getNumElements();
1732 
1733   SmallVector<llvm::Constant*, 4> Mask;
1734   for (unsigned i = 0; i != NumResultElts; ++i)
1735     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1736 
1737   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1738   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1739                                     MaskV);
1740   return RValue::get(Vec);
1741 }
1742 
1743 /// @brief Generates lvalue for partial ext_vector access.
1744 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1745   Address VectorAddress = LV.getExtVectorAddress();
1746   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1747   QualType EQT = ExprVT->getElementType();
1748   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1749 
1750   Address CastToPointerElement =
1751     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1752                                  "conv.ptr.element");
1753 
1754   const llvm::Constant *Elts = LV.getExtVectorElts();
1755   unsigned ix = getAccessedFieldNo(0, Elts);
1756 
1757   Address VectorBasePtrPlusIx =
1758     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1759                                    getContext().getTypeSizeInChars(EQT),
1760                                    "vector.elt");
1761 
1762   return VectorBasePtrPlusIx;
1763 }
1764 
1765 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1766 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1767   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1768          "Bad type for register variable");
1769   llvm::MDNode *RegName = cast<llvm::MDNode>(
1770       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1771 
1772   // We accept integer and pointer types only
1773   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1774   llvm::Type *Ty = OrigTy;
1775   if (OrigTy->isPointerTy())
1776     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1777   llvm::Type *Types[] = { Ty };
1778 
1779   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1780   llvm::Value *Call = Builder.CreateCall(
1781       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1782   if (OrigTy->isPointerTy())
1783     Call = Builder.CreateIntToPtr(Call, OrigTy);
1784   return RValue::get(Call);
1785 }
1786 
1787 
1788 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1789 /// lvalue, where both are guaranteed to the have the same type, and that type
1790 /// is 'Ty'.
1791 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1792                                              bool isInit) {
1793   if (!Dst.isSimple()) {
1794     if (Dst.isVectorElt()) {
1795       // Read/modify/write the vector, inserting the new element.
1796       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1797                                             Dst.isVolatileQualified());
1798       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1799                                         Dst.getVectorIdx(), "vecins");
1800       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1801                           Dst.isVolatileQualified());
1802       return;
1803     }
1804 
1805     // If this is an update of extended vector elements, insert them as
1806     // appropriate.
1807     if (Dst.isExtVectorElt())
1808       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1809 
1810     if (Dst.isGlobalReg())
1811       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1812 
1813     assert(Dst.isBitField() && "Unknown LValue type");
1814     return EmitStoreThroughBitfieldLValue(Src, Dst);
1815   }
1816 
1817   // There's special magic for assigning into an ARC-qualified l-value.
1818   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1819     switch (Lifetime) {
1820     case Qualifiers::OCL_None:
1821       llvm_unreachable("present but none");
1822 
1823     case Qualifiers::OCL_ExplicitNone:
1824       // nothing special
1825       break;
1826 
1827     case Qualifiers::OCL_Strong:
1828       if (isInit) {
1829         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1830         break;
1831       }
1832       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1833       return;
1834 
1835     case Qualifiers::OCL_Weak:
1836       if (isInit)
1837         // Initialize and then skip the primitive store.
1838         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1839       else
1840         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1841       return;
1842 
1843     case Qualifiers::OCL_Autoreleasing:
1844       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1845                                                      Src.getScalarVal()));
1846       // fall into the normal path
1847       break;
1848     }
1849   }
1850 
1851   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1852     // load of a __weak object.
1853     Address LvalueDst = Dst.getAddress();
1854     llvm::Value *src = Src.getScalarVal();
1855      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1856     return;
1857   }
1858 
1859   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1860     // load of a __strong object.
1861     Address LvalueDst = Dst.getAddress();
1862     llvm::Value *src = Src.getScalarVal();
1863     if (Dst.isObjCIvar()) {
1864       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1865       llvm::Type *ResultType = IntPtrTy;
1866       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1867       llvm::Value *RHS = dst.getPointer();
1868       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1869       llvm::Value *LHS =
1870         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1871                                "sub.ptr.lhs.cast");
1872       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1873       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1874                                               BytesBetween);
1875     } else if (Dst.isGlobalObjCRef()) {
1876       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1877                                                 Dst.isThreadLocalRef());
1878     }
1879     else
1880       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1881     return;
1882   }
1883 
1884   assert(Src.isScalar() && "Can't emit an agg store with this method");
1885   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1886 }
1887 
1888 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1889                                                      llvm::Value **Result) {
1890   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1891   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1892   Address Ptr = Dst.getBitFieldAddress();
1893 
1894   // Get the source value, truncated to the width of the bit-field.
1895   llvm::Value *SrcVal = Src.getScalarVal();
1896 
1897   // Cast the source to the storage type and shift it into place.
1898   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1899                                  /*IsSigned=*/false);
1900   llvm::Value *MaskedVal = SrcVal;
1901 
1902   // See if there are other bits in the bitfield's storage we'll need to load
1903   // and mask together with source before storing.
1904   if (Info.StorageSize != Info.Size) {
1905     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1906     llvm::Value *Val =
1907       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1908 
1909     // Mask the source value as needed.
1910     if (!hasBooleanRepresentation(Dst.getType()))
1911       SrcVal = Builder.CreateAnd(SrcVal,
1912                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1913                                                             Info.Size),
1914                                  "bf.value");
1915     MaskedVal = SrcVal;
1916     if (Info.Offset)
1917       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1918 
1919     // Mask out the original value.
1920     Val = Builder.CreateAnd(Val,
1921                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1922                                                      Info.Offset,
1923                                                      Info.Offset + Info.Size),
1924                             "bf.clear");
1925 
1926     // Or together the unchanged values and the source value.
1927     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1928   } else {
1929     assert(Info.Offset == 0);
1930   }
1931 
1932   // Write the new value back out.
1933   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1934 
1935   // Return the new value of the bit-field, if requested.
1936   if (Result) {
1937     llvm::Value *ResultVal = MaskedVal;
1938 
1939     // Sign extend the value if needed.
1940     if (Info.IsSigned) {
1941       assert(Info.Size <= Info.StorageSize);
1942       unsigned HighBits = Info.StorageSize - Info.Size;
1943       if (HighBits) {
1944         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1945         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1946       }
1947     }
1948 
1949     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1950                                       "bf.result.cast");
1951     *Result = EmitFromMemory(ResultVal, Dst.getType());
1952   }
1953 }
1954 
1955 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1956                                                                LValue Dst) {
1957   // This access turns into a read/modify/write of the vector.  Load the input
1958   // value now.
1959   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1960                                         Dst.isVolatileQualified());
1961   const llvm::Constant *Elts = Dst.getExtVectorElts();
1962 
1963   llvm::Value *SrcVal = Src.getScalarVal();
1964 
1965   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1966     unsigned NumSrcElts = VTy->getNumElements();
1967     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1968     if (NumDstElts == NumSrcElts) {
1969       // Use shuffle vector is the src and destination are the same number of
1970       // elements and restore the vector mask since it is on the side it will be
1971       // stored.
1972       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1973       for (unsigned i = 0; i != NumSrcElts; ++i)
1974         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1975 
1976       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1977       Vec = Builder.CreateShuffleVector(SrcVal,
1978                                         llvm::UndefValue::get(Vec->getType()),
1979                                         MaskV);
1980     } else if (NumDstElts > NumSrcElts) {
1981       // Extended the source vector to the same length and then shuffle it
1982       // into the destination.
1983       // FIXME: since we're shuffling with undef, can we just use the indices
1984       //        into that?  This could be simpler.
1985       SmallVector<llvm::Constant*, 4> ExtMask;
1986       for (unsigned i = 0; i != NumSrcElts; ++i)
1987         ExtMask.push_back(Builder.getInt32(i));
1988       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1989       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1990       llvm::Value *ExtSrcVal =
1991         Builder.CreateShuffleVector(SrcVal,
1992                                     llvm::UndefValue::get(SrcVal->getType()),
1993                                     ExtMaskV);
1994       // build identity
1995       SmallVector<llvm::Constant*, 4> Mask;
1996       for (unsigned i = 0; i != NumDstElts; ++i)
1997         Mask.push_back(Builder.getInt32(i));
1998 
1999       // When the vector size is odd and .odd or .hi is used, the last element
2000       // of the Elts constant array will be one past the size of the vector.
2001       // Ignore the last element here, if it is greater than the mask size.
2002       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2003         NumSrcElts--;
2004 
2005       // modify when what gets shuffled in
2006       for (unsigned i = 0; i != NumSrcElts; ++i)
2007         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2008       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2009       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2010     } else {
2011       // We should never shorten the vector
2012       llvm_unreachable("unexpected shorten vector length");
2013     }
2014   } else {
2015     // If the Src is a scalar (not a vector) it must be updating one element.
2016     unsigned InIdx = getAccessedFieldNo(0, Elts);
2017     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2018     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2019   }
2020 
2021   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2022                       Dst.isVolatileQualified());
2023 }
2024 
2025 /// @brief Store of global named registers are always calls to intrinsics.
2026 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2027   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2028          "Bad type for register variable");
2029   llvm::MDNode *RegName = cast<llvm::MDNode>(
2030       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2031   assert(RegName && "Register LValue is not metadata");
2032 
2033   // We accept integer and pointer types only
2034   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2035   llvm::Type *Ty = OrigTy;
2036   if (OrigTy->isPointerTy())
2037     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2038   llvm::Type *Types[] = { Ty };
2039 
2040   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2041   llvm::Value *Value = Src.getScalarVal();
2042   if (OrigTy->isPointerTy())
2043     Value = Builder.CreatePtrToInt(Value, Ty);
2044   Builder.CreateCall(
2045       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2046 }
2047 
2048 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2049 // generating write-barries API. It is currently a global, ivar,
2050 // or neither.
2051 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2052                                  LValue &LV,
2053                                  bool IsMemberAccess=false) {
2054   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2055     return;
2056 
2057   if (isa<ObjCIvarRefExpr>(E)) {
2058     QualType ExpTy = E->getType();
2059     if (IsMemberAccess && ExpTy->isPointerType()) {
2060       // If ivar is a structure pointer, assigning to field of
2061       // this struct follows gcc's behavior and makes it a non-ivar
2062       // writer-barrier conservatively.
2063       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2064       if (ExpTy->isRecordType()) {
2065         LV.setObjCIvar(false);
2066         return;
2067       }
2068     }
2069     LV.setObjCIvar(true);
2070     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2071     LV.setBaseIvarExp(Exp->getBase());
2072     LV.setObjCArray(E->getType()->isArrayType());
2073     return;
2074   }
2075 
2076   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2077     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2078       if (VD->hasGlobalStorage()) {
2079         LV.setGlobalObjCRef(true);
2080         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2081       }
2082     }
2083     LV.setObjCArray(E->getType()->isArrayType());
2084     return;
2085   }
2086 
2087   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2088     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2089     return;
2090   }
2091 
2092   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2093     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2094     if (LV.isObjCIvar()) {
2095       // If cast is to a structure pointer, follow gcc's behavior and make it
2096       // a non-ivar write-barrier.
2097       QualType ExpTy = E->getType();
2098       if (ExpTy->isPointerType())
2099         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2100       if (ExpTy->isRecordType())
2101         LV.setObjCIvar(false);
2102     }
2103     return;
2104   }
2105 
2106   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2107     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2108     return;
2109   }
2110 
2111   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2112     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2113     return;
2114   }
2115 
2116   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2117     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2118     return;
2119   }
2120 
2121   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2122     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2123     return;
2124   }
2125 
2126   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2127     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2128     if (LV.isObjCIvar() && !LV.isObjCArray())
2129       // Using array syntax to assigning to what an ivar points to is not
2130       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2131       LV.setObjCIvar(false);
2132     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2133       // Using array syntax to assigning to what global points to is not
2134       // same as assigning to the global itself. {id *G;} G[i] = 0;
2135       LV.setGlobalObjCRef(false);
2136     return;
2137   }
2138 
2139   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2140     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2141     // We don't know if member is an 'ivar', but this flag is looked at
2142     // only in the context of LV.isObjCIvar().
2143     LV.setObjCArray(E->getType()->isArrayType());
2144     return;
2145   }
2146 }
2147 
2148 static llvm::Value *
2149 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2150                                 llvm::Value *V, llvm::Type *IRType,
2151                                 StringRef Name = StringRef()) {
2152   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2153   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2154 }
2155 
2156 static LValue EmitThreadPrivateVarDeclLValue(
2157     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2158     llvm::Type *RealVarTy, SourceLocation Loc) {
2159   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2160   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2161   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2162 }
2163 
2164 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2165                                              const ReferenceType *RefTy,
2166                                              LValueBaseInfo *BaseInfo,
2167                                              TBAAAccessInfo *TBAAInfo) {
2168   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2169   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2170                                               BaseInfo, TBAAInfo,
2171                                               /* forPointeeType= */ true));
2172 }
2173 
2174 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2175                                                   const ReferenceType *RefTy) {
2176   LValueBaseInfo BaseInfo;
2177   TBAAAccessInfo TBAAInfo;
2178   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo, &TBAAInfo);
2179   return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo, TBAAInfo);
2180 }
2181 
2182 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2183                                            const PointerType *PtrTy,
2184                                            LValueBaseInfo *BaseInfo,
2185                                            TBAAAccessInfo *TBAAInfo) {
2186   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2187   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2188                                                BaseInfo, TBAAInfo,
2189                                                /*forPointeeType=*/true));
2190 }
2191 
2192 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2193                                                 const PointerType *PtrTy) {
2194   LValueBaseInfo BaseInfo;
2195   TBAAAccessInfo TBAAInfo;
2196   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2197   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2198 }
2199 
2200 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2201                                       const Expr *E, const VarDecl *VD) {
2202   QualType T = E->getType();
2203 
2204   // If it's thread_local, emit a call to its wrapper function instead.
2205   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2206       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2207     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2208 
2209   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2210   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2211   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2212   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2213   Address Addr(V, Alignment);
2214   LValue LV;
2215   // Emit reference to the private copy of the variable if it is an OpenMP
2216   // threadprivate variable.
2217   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2218     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2219                                           E->getExprLoc());
2220   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2221     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2222   } else {
2223     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2224   }
2225   setObjCGCLValueClass(CGF.getContext(), E, LV);
2226   return LV;
2227 }
2228 
2229 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2230                                                const FunctionDecl *FD) {
2231   if (FD->hasAttr<WeakRefAttr>()) {
2232     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2233     return aliasee.getPointer();
2234   }
2235 
2236   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2237   if (!FD->hasPrototype()) {
2238     if (const FunctionProtoType *Proto =
2239             FD->getType()->getAs<FunctionProtoType>()) {
2240       // Ugly case: for a K&R-style definition, the type of the definition
2241       // isn't the same as the type of a use.  Correct for this with a
2242       // bitcast.
2243       QualType NoProtoType =
2244           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2245       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2246       V = llvm::ConstantExpr::getBitCast(V,
2247                                       CGM.getTypes().ConvertType(NoProtoType));
2248     }
2249   }
2250   return V;
2251 }
2252 
2253 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2254                                      const Expr *E, const FunctionDecl *FD) {
2255   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2256   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2257   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2258                             AlignmentSource::Decl);
2259 }
2260 
2261 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2262                                       llvm::Value *ThisValue) {
2263   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2264   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2265   return CGF.EmitLValueForField(LV, FD);
2266 }
2267 
2268 /// Named Registers are named metadata pointing to the register name
2269 /// which will be read from/written to as an argument to the intrinsic
2270 /// @llvm.read/write_register.
2271 /// So far, only the name is being passed down, but other options such as
2272 /// register type, allocation type or even optimization options could be
2273 /// passed down via the metadata node.
2274 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2275   SmallString<64> Name("llvm.named.register.");
2276   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2277   assert(Asm->getLabel().size() < 64-Name.size() &&
2278       "Register name too big");
2279   Name.append(Asm->getLabel());
2280   llvm::NamedMDNode *M =
2281     CGM.getModule().getOrInsertNamedMetadata(Name);
2282   if (M->getNumOperands() == 0) {
2283     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2284                                               Asm->getLabel());
2285     llvm::Metadata *Ops[] = {Str};
2286     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2287   }
2288 
2289   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2290 
2291   llvm::Value *Ptr =
2292     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2293   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2294 }
2295 
2296 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2297   const NamedDecl *ND = E->getDecl();
2298   QualType T = E->getType();
2299 
2300   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2301     // Global Named registers access via intrinsics only
2302     if (VD->getStorageClass() == SC_Register &&
2303         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2304       return EmitGlobalNamedRegister(VD, CGM);
2305 
2306     // A DeclRefExpr for a reference initialized by a constant expression can
2307     // appear without being odr-used. Directly emit the constant initializer.
2308     const Expr *Init = VD->getAnyInitializer(VD);
2309     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2310         VD->isUsableInConstantExpressions(getContext()) &&
2311         VD->checkInitIsICE() &&
2312         // Do not emit if it is private OpenMP variable.
2313         !(E->refersToEnclosingVariableOrCapture() &&
2314           ((CapturedStmtInfo &&
2315             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2316              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2317            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2318            isa<BlockDecl>(CurCodeDecl)))) {
2319       llvm::Constant *Val =
2320         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2321                                             *VD->evaluateValue(),
2322                                             VD->getType());
2323       assert(Val && "failed to emit reference constant expression");
2324       // FIXME: Eventually we will want to emit vector element references.
2325 
2326       // Should we be using the alignment of the constant pointer we emitted?
2327       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2328                                                     /* BaseInfo= */ nullptr,
2329                                                     /* TBAAInfo= */ nullptr,
2330                                                     /* forPointeeType= */ true);
2331       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2332     }
2333 
2334     // Check for captured variables.
2335     if (E->refersToEnclosingVariableOrCapture()) {
2336       VD = VD->getCanonicalDecl();
2337       if (auto *FD = LambdaCaptureFields.lookup(VD))
2338         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2339       else if (CapturedStmtInfo) {
2340         auto I = LocalDeclMap.find(VD);
2341         if (I != LocalDeclMap.end()) {
2342           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2343             return EmitLoadOfReferenceLValue(I->second, RefTy);
2344           return MakeAddrLValue(I->second, T);
2345         }
2346         LValue CapLVal =
2347             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2348                                     CapturedStmtInfo->getContextValue());
2349         bool MayAlias = CapLVal.getBaseInfo().getMayAlias();
2350         return MakeAddrLValue(
2351             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2352             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias),
2353             CGM.getTBAAAccessInfo(CapLVal.getType()));
2354       }
2355 
2356       assert(isa<BlockDecl>(CurCodeDecl));
2357       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2358       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2359     }
2360   }
2361 
2362   // FIXME: We should be able to assert this for FunctionDecls as well!
2363   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2364   // those with a valid source location.
2365   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2366           !E->getLocation().isValid()) &&
2367          "Should not use decl without marking it used!");
2368 
2369   if (ND->hasAttr<WeakRefAttr>()) {
2370     const auto *VD = cast<ValueDecl>(ND);
2371     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2372     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2373   }
2374 
2375   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2376     // Check if this is a global variable.
2377     if (VD->hasLinkage() || VD->isStaticDataMember())
2378       return EmitGlobalVarDeclLValue(*this, E, VD);
2379 
2380     Address addr = Address::invalid();
2381 
2382     // The variable should generally be present in the local decl map.
2383     auto iter = LocalDeclMap.find(VD);
2384     if (iter != LocalDeclMap.end()) {
2385       addr = iter->second;
2386 
2387     // Otherwise, it might be static local we haven't emitted yet for
2388     // some reason; most likely, because it's in an outer function.
2389     } else if (VD->isStaticLocal()) {
2390       addr = Address(CGM.getOrCreateStaticVarDecl(
2391           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2392                      getContext().getDeclAlign(VD));
2393 
2394     // No other cases for now.
2395     } else {
2396       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2397     }
2398 
2399 
2400     // Check for OpenMP threadprivate variables.
2401     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2402       return EmitThreadPrivateVarDeclLValue(
2403           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2404           E->getExprLoc());
2405     }
2406 
2407     // Drill into block byref variables.
2408     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2409     if (isBlockByref) {
2410       addr = emitBlockByrefAddress(addr, VD);
2411     }
2412 
2413     // Drill into reference types.
2414     LValue LV;
2415     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2416       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2417     } else {
2418       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2419     }
2420 
2421     bool isLocalStorage = VD->hasLocalStorage();
2422 
2423     bool NonGCable = isLocalStorage &&
2424                      !VD->getType()->isReferenceType() &&
2425                      !isBlockByref;
2426     if (NonGCable) {
2427       LV.getQuals().removeObjCGCAttr();
2428       LV.setNonGC(true);
2429     }
2430 
2431     bool isImpreciseLifetime =
2432       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2433     if (isImpreciseLifetime)
2434       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2435     setObjCGCLValueClass(getContext(), E, LV);
2436     return LV;
2437   }
2438 
2439   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2440     return EmitFunctionDeclLValue(*this, E, FD);
2441 
2442   // FIXME: While we're emitting a binding from an enclosing scope, all other
2443   // DeclRefExprs we see should be implicitly treated as if they also refer to
2444   // an enclosing scope.
2445   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2446     return EmitLValue(BD->getBinding());
2447 
2448   llvm_unreachable("Unhandled DeclRefExpr");
2449 }
2450 
2451 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2452   // __extension__ doesn't affect lvalue-ness.
2453   if (E->getOpcode() == UO_Extension)
2454     return EmitLValue(E->getSubExpr());
2455 
2456   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2457   switch (E->getOpcode()) {
2458   default: llvm_unreachable("Unknown unary operator lvalue!");
2459   case UO_Deref: {
2460     QualType T = E->getSubExpr()->getType()->getPointeeType();
2461     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2462 
2463     LValueBaseInfo BaseInfo;
2464     TBAAAccessInfo TBAAInfo;
2465     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2466                                             &TBAAInfo);
2467     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2468     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2469 
2470     // We should not generate __weak write barrier on indirect reference
2471     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2472     // But, we continue to generate __strong write barrier on indirect write
2473     // into a pointer to object.
2474     if (getLangOpts().ObjC1 &&
2475         getLangOpts().getGC() != LangOptions::NonGC &&
2476         LV.isObjCWeak())
2477       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2478     return LV;
2479   }
2480   case UO_Real:
2481   case UO_Imag: {
2482     LValue LV = EmitLValue(E->getSubExpr());
2483     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2484 
2485     // __real is valid on scalars.  This is a faster way of testing that.
2486     // __imag can only produce an rvalue on scalars.
2487     if (E->getOpcode() == UO_Real &&
2488         !LV.getAddress().getElementType()->isStructTy()) {
2489       assert(E->getSubExpr()->getType()->isArithmeticType());
2490       return LV;
2491     }
2492 
2493     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2494 
2495     Address Component =
2496       (E->getOpcode() == UO_Real
2497          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2498          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2499     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2500                                    CGM.getTBAAAccessInfo(T));
2501     ElemLV.getQuals().addQualifiers(LV.getQuals());
2502     return ElemLV;
2503   }
2504   case UO_PreInc:
2505   case UO_PreDec: {
2506     LValue LV = EmitLValue(E->getSubExpr());
2507     bool isInc = E->getOpcode() == UO_PreInc;
2508 
2509     if (E->getType()->isAnyComplexType())
2510       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2511     else
2512       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2513     return LV;
2514   }
2515   }
2516 }
2517 
2518 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2519   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2520                         E->getType(), AlignmentSource::Decl);
2521 }
2522 
2523 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2524   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2525                         E->getType(), AlignmentSource::Decl);
2526 }
2527 
2528 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2529   auto SL = E->getFunctionName();
2530   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2531   StringRef FnName = CurFn->getName();
2532   if (FnName.startswith("\01"))
2533     FnName = FnName.substr(1);
2534   StringRef NameItems[] = {
2535       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2536   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2537   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2538     std::string Name = SL->getString();
2539     if (!Name.empty()) {
2540       unsigned Discriminator =
2541           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2542       if (Discriminator)
2543         Name += "_" + Twine(Discriminator + 1).str();
2544       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2545       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2546     } else {
2547       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2548       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2549     }
2550   }
2551   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2552   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2553 }
2554 
2555 /// Emit a type description suitable for use by a runtime sanitizer library. The
2556 /// format of a type descriptor is
2557 ///
2558 /// \code
2559 ///   { i16 TypeKind, i16 TypeInfo }
2560 /// \endcode
2561 ///
2562 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2563 /// integer, 1 for a floating point value, and -1 for anything else.
2564 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2565   // Only emit each type's descriptor once.
2566   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2567     return C;
2568 
2569   uint16_t TypeKind = -1;
2570   uint16_t TypeInfo = 0;
2571 
2572   if (T->isIntegerType()) {
2573     TypeKind = 0;
2574     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2575                (T->isSignedIntegerType() ? 1 : 0);
2576   } else if (T->isFloatingType()) {
2577     TypeKind = 1;
2578     TypeInfo = getContext().getTypeSize(T);
2579   }
2580 
2581   // Format the type name as if for a diagnostic, including quotes and
2582   // optionally an 'aka'.
2583   SmallString<32> Buffer;
2584   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2585                                     (intptr_t)T.getAsOpaquePtr(),
2586                                     StringRef(), StringRef(), None, Buffer,
2587                                     None);
2588 
2589   llvm::Constant *Components[] = {
2590     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2591     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2592   };
2593   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2594 
2595   auto *GV = new llvm::GlobalVariable(
2596       CGM.getModule(), Descriptor->getType(),
2597       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2598   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2599   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2600 
2601   // Remember the descriptor for this type.
2602   CGM.setTypeDescriptorInMap(T, GV);
2603 
2604   return GV;
2605 }
2606 
2607 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2608   llvm::Type *TargetTy = IntPtrTy;
2609 
2610   if (V->getType() == TargetTy)
2611     return V;
2612 
2613   // Floating-point types which fit into intptr_t are bitcast to integers
2614   // and then passed directly (after zero-extension, if necessary).
2615   if (V->getType()->isFloatingPointTy()) {
2616     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2617     if (Bits <= TargetTy->getIntegerBitWidth())
2618       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2619                                                          Bits));
2620   }
2621 
2622   // Integers which fit in intptr_t are zero-extended and passed directly.
2623   if (V->getType()->isIntegerTy() &&
2624       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2625     return Builder.CreateZExt(V, TargetTy);
2626 
2627   // Pointers are passed directly, everything else is passed by address.
2628   if (!V->getType()->isPointerTy()) {
2629     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2630     Builder.CreateStore(V, Ptr);
2631     V = Ptr.getPointer();
2632   }
2633   return Builder.CreatePtrToInt(V, TargetTy);
2634 }
2635 
2636 /// \brief Emit a representation of a SourceLocation for passing to a handler
2637 /// in a sanitizer runtime library. The format for this data is:
2638 /// \code
2639 ///   struct SourceLocation {
2640 ///     const char *Filename;
2641 ///     int32_t Line, Column;
2642 ///   };
2643 /// \endcode
2644 /// For an invalid SourceLocation, the Filename pointer is null.
2645 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2646   llvm::Constant *Filename;
2647   int Line, Column;
2648 
2649   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2650   if (PLoc.isValid()) {
2651     StringRef FilenameString = PLoc.getFilename();
2652 
2653     int PathComponentsToStrip =
2654         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2655     if (PathComponentsToStrip < 0) {
2656       assert(PathComponentsToStrip != INT_MIN);
2657       int PathComponentsToKeep = -PathComponentsToStrip;
2658       auto I = llvm::sys::path::rbegin(FilenameString);
2659       auto E = llvm::sys::path::rend(FilenameString);
2660       while (I != E && --PathComponentsToKeep)
2661         ++I;
2662 
2663       FilenameString = FilenameString.substr(I - E);
2664     } else if (PathComponentsToStrip > 0) {
2665       auto I = llvm::sys::path::begin(FilenameString);
2666       auto E = llvm::sys::path::end(FilenameString);
2667       while (I != E && PathComponentsToStrip--)
2668         ++I;
2669 
2670       if (I != E)
2671         FilenameString =
2672             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2673       else
2674         FilenameString = llvm::sys::path::filename(FilenameString);
2675     }
2676 
2677     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2678     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2679                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2680     Filename = FilenameGV.getPointer();
2681     Line = PLoc.getLine();
2682     Column = PLoc.getColumn();
2683   } else {
2684     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2685     Line = Column = 0;
2686   }
2687 
2688   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2689                             Builder.getInt32(Column)};
2690 
2691   return llvm::ConstantStruct::getAnon(Data);
2692 }
2693 
2694 namespace {
2695 /// \brief Specify under what conditions this check can be recovered
2696 enum class CheckRecoverableKind {
2697   /// Always terminate program execution if this check fails.
2698   Unrecoverable,
2699   /// Check supports recovering, runtime has both fatal (noreturn) and
2700   /// non-fatal handlers for this check.
2701   Recoverable,
2702   /// Runtime conditionally aborts, always need to support recovery.
2703   AlwaysRecoverable
2704 };
2705 }
2706 
2707 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2708   assert(llvm::countPopulation(Kind) == 1);
2709   switch (Kind) {
2710   case SanitizerKind::Vptr:
2711     return CheckRecoverableKind::AlwaysRecoverable;
2712   case SanitizerKind::Return:
2713   case SanitizerKind::Unreachable:
2714     return CheckRecoverableKind::Unrecoverable;
2715   default:
2716     return CheckRecoverableKind::Recoverable;
2717   }
2718 }
2719 
2720 namespace {
2721 struct SanitizerHandlerInfo {
2722   char const *const Name;
2723   unsigned Version;
2724 };
2725 }
2726 
2727 const SanitizerHandlerInfo SanitizerHandlers[] = {
2728 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2729     LIST_SANITIZER_CHECKS
2730 #undef SANITIZER_CHECK
2731 };
2732 
2733 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2734                                  llvm::FunctionType *FnType,
2735                                  ArrayRef<llvm::Value *> FnArgs,
2736                                  SanitizerHandler CheckHandler,
2737                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2738                                  llvm::BasicBlock *ContBB) {
2739   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2740   bool NeedsAbortSuffix =
2741       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2742   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2743   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2744   const StringRef CheckName = CheckInfo.Name;
2745   std::string FnName = "__ubsan_handle_" + CheckName.str();
2746   if (CheckInfo.Version && !MinimalRuntime)
2747     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2748   if (MinimalRuntime)
2749     FnName += "_minimal";
2750   if (NeedsAbortSuffix)
2751     FnName += "_abort";
2752   bool MayReturn =
2753       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2754 
2755   llvm::AttrBuilder B;
2756   if (!MayReturn) {
2757     B.addAttribute(llvm::Attribute::NoReturn)
2758         .addAttribute(llvm::Attribute::NoUnwind);
2759   }
2760   B.addAttribute(llvm::Attribute::UWTable);
2761 
2762   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2763       FnType, FnName,
2764       llvm::AttributeList::get(CGF.getLLVMContext(),
2765                                llvm::AttributeList::FunctionIndex, B),
2766       /*Local=*/true);
2767   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2768   if (!MayReturn) {
2769     HandlerCall->setDoesNotReturn();
2770     CGF.Builder.CreateUnreachable();
2771   } else {
2772     CGF.Builder.CreateBr(ContBB);
2773   }
2774 }
2775 
2776 void CodeGenFunction::EmitCheck(
2777     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2778     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2779     ArrayRef<llvm::Value *> DynamicArgs) {
2780   assert(IsSanitizerScope);
2781   assert(Checked.size() > 0);
2782   assert(CheckHandler >= 0 &&
2783          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2784   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2785 
2786   llvm::Value *FatalCond = nullptr;
2787   llvm::Value *RecoverableCond = nullptr;
2788   llvm::Value *TrapCond = nullptr;
2789   for (int i = 0, n = Checked.size(); i < n; ++i) {
2790     llvm::Value *Check = Checked[i].first;
2791     // -fsanitize-trap= overrides -fsanitize-recover=.
2792     llvm::Value *&Cond =
2793         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2794             ? TrapCond
2795             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2796                   ? RecoverableCond
2797                   : FatalCond;
2798     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2799   }
2800 
2801   if (TrapCond)
2802     EmitTrapCheck(TrapCond);
2803   if (!FatalCond && !RecoverableCond)
2804     return;
2805 
2806   llvm::Value *JointCond;
2807   if (FatalCond && RecoverableCond)
2808     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2809   else
2810     JointCond = FatalCond ? FatalCond : RecoverableCond;
2811   assert(JointCond);
2812 
2813   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2814   assert(SanOpts.has(Checked[0].second));
2815 #ifndef NDEBUG
2816   for (int i = 1, n = Checked.size(); i < n; ++i) {
2817     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2818            "All recoverable kinds in a single check must be same!");
2819     assert(SanOpts.has(Checked[i].second));
2820   }
2821 #endif
2822 
2823   llvm::BasicBlock *Cont = createBasicBlock("cont");
2824   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2825   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2826   // Give hint that we very much don't expect to execute the handler
2827   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2828   llvm::MDBuilder MDHelper(getLLVMContext());
2829   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2830   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2831   EmitBlock(Handlers);
2832 
2833   // Handler functions take an i8* pointing to the (handler-specific) static
2834   // information block, followed by a sequence of intptr_t arguments
2835   // representing operand values.
2836   SmallVector<llvm::Value *, 4> Args;
2837   SmallVector<llvm::Type *, 4> ArgTypes;
2838   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2839     Args.reserve(DynamicArgs.size() + 1);
2840     ArgTypes.reserve(DynamicArgs.size() + 1);
2841 
2842     // Emit handler arguments and create handler function type.
2843     if (!StaticArgs.empty()) {
2844       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2845       auto *InfoPtr =
2846           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2847                                    llvm::GlobalVariable::PrivateLinkage, Info);
2848       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2849       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2850       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2851       ArgTypes.push_back(Int8PtrTy);
2852     }
2853 
2854     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2855       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2856       ArgTypes.push_back(IntPtrTy);
2857     }
2858   }
2859 
2860   llvm::FunctionType *FnType =
2861     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2862 
2863   if (!FatalCond || !RecoverableCond) {
2864     // Simple case: we need to generate a single handler call, either
2865     // fatal, or non-fatal.
2866     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2867                          (FatalCond != nullptr), Cont);
2868   } else {
2869     // Emit two handler calls: first one for set of unrecoverable checks,
2870     // another one for recoverable.
2871     llvm::BasicBlock *NonFatalHandlerBB =
2872         createBasicBlock("non_fatal." + CheckName);
2873     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2874     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2875     EmitBlock(FatalHandlerBB);
2876     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2877                          NonFatalHandlerBB);
2878     EmitBlock(NonFatalHandlerBB);
2879     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2880                          Cont);
2881   }
2882 
2883   EmitBlock(Cont);
2884 }
2885 
2886 void CodeGenFunction::EmitCfiSlowPathCheck(
2887     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2888     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2889   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2890 
2891   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2892   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2893 
2894   llvm::MDBuilder MDHelper(getLLVMContext());
2895   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2896   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2897 
2898   EmitBlock(CheckBB);
2899 
2900   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2901 
2902   llvm::CallInst *CheckCall;
2903   if (WithDiag) {
2904     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2905     auto *InfoPtr =
2906         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2907                                  llvm::GlobalVariable::PrivateLinkage, Info);
2908     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2909     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2910 
2911     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2912         "__cfi_slowpath_diag",
2913         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2914                                 false));
2915     CheckCall = Builder.CreateCall(
2916         SlowPathDiagFn,
2917         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2918   } else {
2919     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2920         "__cfi_slowpath",
2921         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2922     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2923   }
2924 
2925   CheckCall->setDoesNotThrow();
2926 
2927   EmitBlock(Cont);
2928 }
2929 
2930 // Emit a stub for __cfi_check function so that the linker knows about this
2931 // symbol in LTO mode.
2932 void CodeGenFunction::EmitCfiCheckStub() {
2933   llvm::Module *M = &CGM.getModule();
2934   auto &Ctx = M->getContext();
2935   llvm::Function *F = llvm::Function::Create(
2936       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2937       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2938   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2939   // FIXME: consider emitting an intrinsic call like
2940   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2941   // which can be lowered in CrossDSOCFI pass to the actual contents of
2942   // __cfi_check. This would allow inlining of __cfi_check calls.
2943   llvm::CallInst::Create(
2944       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2945   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2946 }
2947 
2948 // This function is basically a switch over the CFI failure kind, which is
2949 // extracted from CFICheckFailData (1st function argument). Each case is either
2950 // llvm.trap or a call to one of the two runtime handlers, based on
2951 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2952 // failure kind) traps, but this should really never happen.  CFICheckFailData
2953 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2954 // check kind; in this case __cfi_check_fail traps as well.
2955 void CodeGenFunction::EmitCfiCheckFail() {
2956   SanitizerScope SanScope(this);
2957   FunctionArgList Args;
2958   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
2959                             ImplicitParamDecl::Other);
2960   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
2961                             ImplicitParamDecl::Other);
2962   Args.push_back(&ArgData);
2963   Args.push_back(&ArgAddr);
2964 
2965   const CGFunctionInfo &FI =
2966     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2967 
2968   llvm::Function *F = llvm::Function::Create(
2969       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2970       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2971   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2972 
2973   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2974                 SourceLocation());
2975 
2976   llvm::Value *Data =
2977       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2978                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2979   llvm::Value *Addr =
2980       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2981                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2982 
2983   // Data == nullptr means the calling module has trap behaviour for this check.
2984   llvm::Value *DataIsNotNullPtr =
2985       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2986   EmitTrapCheck(DataIsNotNullPtr);
2987 
2988   llvm::StructType *SourceLocationTy =
2989       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
2990   llvm::StructType *CfiCheckFailDataTy =
2991       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
2992 
2993   llvm::Value *V = Builder.CreateConstGEP2_32(
2994       CfiCheckFailDataTy,
2995       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2996       0);
2997   Address CheckKindAddr(V, getIntAlign());
2998   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2999 
3000   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3001       CGM.getLLVMContext(),
3002       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3003   llvm::Value *ValidVtable = Builder.CreateZExt(
3004       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3005                          {Addr, AllVtables}),
3006       IntPtrTy);
3007 
3008   const std::pair<int, SanitizerMask> CheckKinds[] = {
3009       {CFITCK_VCall, SanitizerKind::CFIVCall},
3010       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3011       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3012       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3013       {CFITCK_ICall, SanitizerKind::CFIICall}};
3014 
3015   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3016   for (auto CheckKindMaskPair : CheckKinds) {
3017     int Kind = CheckKindMaskPair.first;
3018     SanitizerMask Mask = CheckKindMaskPair.second;
3019     llvm::Value *Cond =
3020         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3021     if (CGM.getLangOpts().Sanitize.has(Mask))
3022       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3023                 {Data, Addr, ValidVtable});
3024     else
3025       EmitTrapCheck(Cond);
3026   }
3027 
3028   FinishFunction();
3029   // The only reference to this function will be created during LTO link.
3030   // Make sure it survives until then.
3031   CGM.addUsedGlobal(F);
3032 }
3033 
3034 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3035   llvm::BasicBlock *Cont = createBasicBlock("cont");
3036 
3037   // If we're optimizing, collapse all calls to trap down to just one per
3038   // function to save on code size.
3039   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3040     TrapBB = createBasicBlock("trap");
3041     Builder.CreateCondBr(Checked, Cont, TrapBB);
3042     EmitBlock(TrapBB);
3043     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3044     TrapCall->setDoesNotReturn();
3045     TrapCall->setDoesNotThrow();
3046     Builder.CreateUnreachable();
3047   } else {
3048     Builder.CreateCondBr(Checked, Cont, TrapBB);
3049   }
3050 
3051   EmitBlock(Cont);
3052 }
3053 
3054 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3055   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3056 
3057   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3058     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3059                                   CGM.getCodeGenOpts().TrapFuncName);
3060     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3061   }
3062 
3063   return TrapCall;
3064 }
3065 
3066 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3067                                                  LValueBaseInfo *BaseInfo,
3068                                                  TBAAAccessInfo *TBAAInfo) {
3069   assert(E->getType()->isArrayType() &&
3070          "Array to pointer decay must have array source type!");
3071 
3072   // Expressions of array type can't be bitfields or vector elements.
3073   LValue LV = EmitLValue(E);
3074   Address Addr = LV.getAddress();
3075 
3076   // If the array type was an incomplete type, we need to make sure
3077   // the decay ends up being the right type.
3078   llvm::Type *NewTy = ConvertType(E->getType());
3079   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3080 
3081   // Note that VLA pointers are always decayed, so we don't need to do
3082   // anything here.
3083   if (!E->getType()->isVariableArrayType()) {
3084     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3085            "Expected pointer to array");
3086     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3087   }
3088 
3089   // The result of this decay conversion points to an array element within the
3090   // base lvalue. However, since TBAA currently does not support representing
3091   // accesses to elements of member arrays, we conservatively represent accesses
3092   // to the pointee object as if it had no any base lvalue specified.
3093   // TODO: Support TBAA for member arrays.
3094   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3095   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3096   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3097 
3098   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3099 }
3100 
3101 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3102 /// array to pointer, return the array subexpression.
3103 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3104   // If this isn't just an array->pointer decay, bail out.
3105   const auto *CE = dyn_cast<CastExpr>(E);
3106   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3107     return nullptr;
3108 
3109   // If this is a decay from variable width array, bail out.
3110   const Expr *SubExpr = CE->getSubExpr();
3111   if (SubExpr->getType()->isVariableArrayType())
3112     return nullptr;
3113 
3114   return SubExpr;
3115 }
3116 
3117 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3118                                           llvm::Value *ptr,
3119                                           ArrayRef<llvm::Value*> indices,
3120                                           bool inbounds,
3121                                           bool signedIndices,
3122                                           SourceLocation loc,
3123                                     const llvm::Twine &name = "arrayidx") {
3124   if (inbounds) {
3125     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3126                                       CodeGenFunction::NotSubtraction, loc,
3127                                       name);
3128   } else {
3129     return CGF.Builder.CreateGEP(ptr, indices, name);
3130   }
3131 }
3132 
3133 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3134                                       llvm::Value *idx,
3135                                       CharUnits eltSize) {
3136   // If we have a constant index, we can use the exact offset of the
3137   // element we're accessing.
3138   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3139     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3140     return arrayAlign.alignmentAtOffset(offset);
3141 
3142   // Otherwise, use the worst-case alignment for any element.
3143   } else {
3144     return arrayAlign.alignmentOfArrayElement(eltSize);
3145   }
3146 }
3147 
3148 static QualType getFixedSizeElementType(const ASTContext &ctx,
3149                                         const VariableArrayType *vla) {
3150   QualType eltType;
3151   do {
3152     eltType = vla->getElementType();
3153   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3154   return eltType;
3155 }
3156 
3157 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3158                                      ArrayRef<llvm::Value *> indices,
3159                                      QualType eltType, bool inbounds,
3160                                      bool signedIndices, SourceLocation loc,
3161                                      const llvm::Twine &name = "arrayidx") {
3162   // All the indices except that last must be zero.
3163 #ifndef NDEBUG
3164   for (auto idx : indices.drop_back())
3165     assert(isa<llvm::ConstantInt>(idx) &&
3166            cast<llvm::ConstantInt>(idx)->isZero());
3167 #endif
3168 
3169   // Determine the element size of the statically-sized base.  This is
3170   // the thing that the indices are expressed in terms of.
3171   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3172     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3173   }
3174 
3175   // We can use that to compute the best alignment of the element.
3176   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3177   CharUnits eltAlign =
3178     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3179 
3180   llvm::Value *eltPtr = emitArraySubscriptGEP(
3181       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3182   return Address(eltPtr, eltAlign);
3183 }
3184 
3185 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3186                                                bool Accessed) {
3187   // The index must always be an integer, which is not an aggregate.  Emit it
3188   // in lexical order (this complexity is, sadly, required by C++17).
3189   llvm::Value *IdxPre =
3190       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3191   bool SignedIndices = false;
3192   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3193     auto *Idx = IdxPre;
3194     if (E->getLHS() != E->getIdx()) {
3195       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3196       Idx = EmitScalarExpr(E->getIdx());
3197     }
3198 
3199     QualType IdxTy = E->getIdx()->getType();
3200     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3201     SignedIndices |= IdxSigned;
3202 
3203     if (SanOpts.has(SanitizerKind::ArrayBounds))
3204       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3205 
3206     // Extend or truncate the index type to 32 or 64-bits.
3207     if (Promote && Idx->getType() != IntPtrTy)
3208       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3209 
3210     return Idx;
3211   };
3212   IdxPre = nullptr;
3213 
3214   // If the base is a vector type, then we are forming a vector element lvalue
3215   // with this subscript.
3216   if (E->getBase()->getType()->isVectorType() &&
3217       !isa<ExtVectorElementExpr>(E->getBase())) {
3218     // Emit the vector as an lvalue to get its address.
3219     LValue LHS = EmitLValue(E->getBase());
3220     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3221     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3222     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3223                                  LHS.getBaseInfo(), TBAAAccessInfo());
3224   }
3225 
3226   // All the other cases basically behave like simple offsetting.
3227 
3228   // Handle the extvector case we ignored above.
3229   if (isa<ExtVectorElementExpr>(E->getBase())) {
3230     LValue LV = EmitLValue(E->getBase());
3231     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3232     Address Addr = EmitExtVectorElementLValue(LV);
3233 
3234     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3235     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3236                                  SignedIndices, E->getExprLoc());
3237     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3238                           CGM.getTBAAAccessInfo(EltType));
3239   }
3240 
3241   LValueBaseInfo BaseInfo;
3242   TBAAAccessInfo TBAAInfo;
3243   Address Addr = Address::invalid();
3244   if (const VariableArrayType *vla =
3245            getContext().getAsVariableArrayType(E->getType())) {
3246     // The base must be a pointer, which is not an aggregate.  Emit
3247     // it.  It needs to be emitted first in case it's what captures
3248     // the VLA bounds.
3249     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3250     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3251 
3252     // The element count here is the total number of non-VLA elements.
3253     llvm::Value *numElements = getVLASize(vla).first;
3254 
3255     // Effectively, the multiply by the VLA size is part of the GEP.
3256     // GEP indexes are signed, and scaling an index isn't permitted to
3257     // signed-overflow, so we use the same semantics for our explicit
3258     // multiply.  We suppress this if overflow is not undefined behavior.
3259     if (getLangOpts().isSignedOverflowDefined()) {
3260       Idx = Builder.CreateMul(Idx, numElements);
3261     } else {
3262       Idx = Builder.CreateNSWMul(Idx, numElements);
3263     }
3264 
3265     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3266                                  !getLangOpts().isSignedOverflowDefined(),
3267                                  SignedIndices, E->getExprLoc());
3268 
3269   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3270     // Indexing over an interface, as in "NSString *P; P[4];"
3271 
3272     // Emit the base pointer.
3273     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3274     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3275 
3276     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3277     llvm::Value *InterfaceSizeVal =
3278         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3279 
3280     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3281 
3282     // We don't necessarily build correct LLVM struct types for ObjC
3283     // interfaces, so we can't rely on GEP to do this scaling
3284     // correctly, so we need to cast to i8*.  FIXME: is this actually
3285     // true?  A lot of other things in the fragile ABI would break...
3286     llvm::Type *OrigBaseTy = Addr.getType();
3287     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3288 
3289     // Do the GEP.
3290     CharUnits EltAlign =
3291       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3292     llvm::Value *EltPtr =
3293         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3294                               SignedIndices, E->getExprLoc());
3295     Addr = Address(EltPtr, EltAlign);
3296 
3297     // Cast back.
3298     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3299   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3300     // If this is A[i] where A is an array, the frontend will have decayed the
3301     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3302     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3303     // "gep x, i" here.  Emit one "gep A, 0, i".
3304     assert(Array->getType()->isArrayType() &&
3305            "Array to pointer decay must have array source type!");
3306     LValue ArrayLV;
3307     // For simple multidimensional array indexing, set the 'accessed' flag for
3308     // better bounds-checking of the base expression.
3309     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3310       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3311     else
3312       ArrayLV = EmitLValue(Array);
3313     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3314 
3315     // Propagate the alignment from the array itself to the result.
3316     Addr = emitArraySubscriptGEP(
3317         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3318         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3319         E->getExprLoc());
3320     BaseInfo = ArrayLV.getBaseInfo();
3321     TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
3322   } else {
3323     // The base must be a pointer; emit it with an estimate of its alignment.
3324     Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3325     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3326     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3327                                  !getLangOpts().isSignedOverflowDefined(),
3328                                  SignedIndices, E->getExprLoc());
3329   }
3330 
3331   LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo, TBAAInfo);
3332 
3333   if (getLangOpts().ObjC1 &&
3334       getLangOpts().getGC() != LangOptions::NonGC) {
3335     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3336     setObjCGCLValueClass(getContext(), E, LV);
3337   }
3338   return LV;
3339 }
3340 
3341 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3342                                        LValueBaseInfo &BaseInfo,
3343                                        TBAAAccessInfo &TBAAInfo,
3344                                        QualType BaseTy, QualType ElTy,
3345                                        bool IsLowerBound) {
3346   LValue BaseLVal;
3347   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3348     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3349     if (BaseTy->isArrayType()) {
3350       Address Addr = BaseLVal.getAddress();
3351       BaseInfo = BaseLVal.getBaseInfo();
3352 
3353       // If the array type was an incomplete type, we need to make sure
3354       // the decay ends up being the right type.
3355       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3356       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3357 
3358       // Note that VLA pointers are always decayed, so we don't need to do
3359       // anything here.
3360       if (!BaseTy->isVariableArrayType()) {
3361         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3362                "Expected pointer to array");
3363         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3364                                            "arraydecay");
3365       }
3366 
3367       return CGF.Builder.CreateElementBitCast(Addr,
3368                                               CGF.ConvertTypeForMem(ElTy));
3369     }
3370     LValueBaseInfo TypeInfo;
3371     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo);
3372     BaseInfo.mergeForCast(TypeInfo);
3373     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3374   }
3375   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3376 }
3377 
3378 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3379                                                 bool IsLowerBound) {
3380   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3381   QualType ResultExprTy;
3382   if (auto *AT = getContext().getAsArrayType(BaseTy))
3383     ResultExprTy = AT->getElementType();
3384   else
3385     ResultExprTy = BaseTy->getPointeeType();
3386   llvm::Value *Idx = nullptr;
3387   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3388     // Requesting lower bound or upper bound, but without provided length and
3389     // without ':' symbol for the default length -> length = 1.
3390     // Idx = LowerBound ?: 0;
3391     if (auto *LowerBound = E->getLowerBound()) {
3392       Idx = Builder.CreateIntCast(
3393           EmitScalarExpr(LowerBound), IntPtrTy,
3394           LowerBound->getType()->hasSignedIntegerRepresentation());
3395     } else
3396       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3397   } else {
3398     // Try to emit length or lower bound as constant. If this is possible, 1
3399     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3400     // IR (LB + Len) - 1.
3401     auto &C = CGM.getContext();
3402     auto *Length = E->getLength();
3403     llvm::APSInt ConstLength;
3404     if (Length) {
3405       // Idx = LowerBound + Length - 1;
3406       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3407         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3408         Length = nullptr;
3409       }
3410       auto *LowerBound = E->getLowerBound();
3411       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3412       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3413         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3414         LowerBound = nullptr;
3415       }
3416       if (!Length)
3417         --ConstLength;
3418       else if (!LowerBound)
3419         --ConstLowerBound;
3420 
3421       if (Length || LowerBound) {
3422         auto *LowerBoundVal =
3423             LowerBound
3424                 ? Builder.CreateIntCast(
3425                       EmitScalarExpr(LowerBound), IntPtrTy,
3426                       LowerBound->getType()->hasSignedIntegerRepresentation())
3427                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3428         auto *LengthVal =
3429             Length
3430                 ? Builder.CreateIntCast(
3431                       EmitScalarExpr(Length), IntPtrTy,
3432                       Length->getType()->hasSignedIntegerRepresentation())
3433                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3434         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3435                                 /*HasNUW=*/false,
3436                                 !getLangOpts().isSignedOverflowDefined());
3437         if (Length && LowerBound) {
3438           Idx = Builder.CreateSub(
3439               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3440               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3441         }
3442       } else
3443         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3444     } else {
3445       // Idx = ArraySize - 1;
3446       QualType ArrayTy = BaseTy->isPointerType()
3447                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3448                              : BaseTy;
3449       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3450         Length = VAT->getSizeExpr();
3451         if (Length->isIntegerConstantExpr(ConstLength, C))
3452           Length = nullptr;
3453       } else {
3454         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3455         ConstLength = CAT->getSize();
3456       }
3457       if (Length) {
3458         auto *LengthVal = Builder.CreateIntCast(
3459             EmitScalarExpr(Length), IntPtrTy,
3460             Length->getType()->hasSignedIntegerRepresentation());
3461         Idx = Builder.CreateSub(
3462             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3463             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3464       } else {
3465         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3466         --ConstLength;
3467         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3468       }
3469     }
3470   }
3471   assert(Idx);
3472 
3473   Address EltPtr = Address::invalid();
3474   LValueBaseInfo BaseInfo;
3475   TBAAAccessInfo TBAAInfo;
3476   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3477     // The base must be a pointer, which is not an aggregate.  Emit
3478     // it.  It needs to be emitted first in case it's what captures
3479     // the VLA bounds.
3480     Address Base =
3481         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3482                                 BaseTy, VLA->getElementType(), IsLowerBound);
3483     // The element count here is the total number of non-VLA elements.
3484     llvm::Value *NumElements = getVLASize(VLA).first;
3485 
3486     // Effectively, the multiply by the VLA size is part of the GEP.
3487     // GEP indexes are signed, and scaling an index isn't permitted to
3488     // signed-overflow, so we use the same semantics for our explicit
3489     // multiply.  We suppress this if overflow is not undefined behavior.
3490     if (getLangOpts().isSignedOverflowDefined())
3491       Idx = Builder.CreateMul(Idx, NumElements);
3492     else
3493       Idx = Builder.CreateNSWMul(Idx, NumElements);
3494     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3495                                    !getLangOpts().isSignedOverflowDefined(),
3496                                    /*SignedIndices=*/false, E->getExprLoc());
3497   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3498     // If this is A[i] where A is an array, the frontend will have decayed the
3499     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3500     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3501     // "gep x, i" here.  Emit one "gep A, 0, i".
3502     assert(Array->getType()->isArrayType() &&
3503            "Array to pointer decay must have array source type!");
3504     LValue ArrayLV;
3505     // For simple multidimensional array indexing, set the 'accessed' flag for
3506     // better bounds-checking of the base expression.
3507     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3508       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3509     else
3510       ArrayLV = EmitLValue(Array);
3511 
3512     // Propagate the alignment from the array itself to the result.
3513     EltPtr = emitArraySubscriptGEP(
3514         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3515         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3516         /*SignedIndices=*/false, E->getExprLoc());
3517     BaseInfo = ArrayLV.getBaseInfo();
3518     TBAAInfo = CGM.getTBAAAccessInfo(ResultExprTy);
3519   } else {
3520     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3521                                            TBAAInfo, BaseTy, ResultExprTy,
3522                                            IsLowerBound);
3523     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3524                                    !getLangOpts().isSignedOverflowDefined(),
3525                                    /*SignedIndices=*/false, E->getExprLoc());
3526   }
3527 
3528   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3529 }
3530 
3531 LValue CodeGenFunction::
3532 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3533   // Emit the base vector as an l-value.
3534   LValue Base;
3535 
3536   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3537   if (E->isArrow()) {
3538     // If it is a pointer to a vector, emit the address and form an lvalue with
3539     // it.
3540     LValueBaseInfo BaseInfo;
3541     TBAAAccessInfo TBAAInfo;
3542     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3543     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3544     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3545     Base.getQuals().removeObjCGCAttr();
3546   } else if (E->getBase()->isGLValue()) {
3547     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3548     // emit the base as an lvalue.
3549     assert(E->getBase()->getType()->isVectorType());
3550     Base = EmitLValue(E->getBase());
3551   } else {
3552     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3553     assert(E->getBase()->getType()->isVectorType() &&
3554            "Result must be a vector");
3555     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3556 
3557     // Store the vector to memory (because LValue wants an address).
3558     Address VecMem = CreateMemTemp(E->getBase()->getType());
3559     Builder.CreateStore(Vec, VecMem);
3560     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3561                           AlignmentSource::Decl);
3562   }
3563 
3564   QualType type =
3565     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3566 
3567   // Encode the element access list into a vector of unsigned indices.
3568   SmallVector<uint32_t, 4> Indices;
3569   E->getEncodedElementAccess(Indices);
3570 
3571   if (Base.isSimple()) {
3572     llvm::Constant *CV =
3573         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3574     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3575                                     Base.getBaseInfo(), TBAAAccessInfo());
3576   }
3577   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3578 
3579   llvm::Constant *BaseElts = Base.getExtVectorElts();
3580   SmallVector<llvm::Constant *, 4> CElts;
3581 
3582   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3583     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3584   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3585   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3586                                   Base.getBaseInfo(), TBAAAccessInfo());
3587 }
3588 
3589 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3590   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3591     EmitIgnoredExpr(E->getBase());
3592     return EmitDeclRefLValue(DRE);
3593   }
3594 
3595   Expr *BaseExpr = E->getBase();
3596   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3597   LValue BaseLV;
3598   if (E->isArrow()) {
3599     LValueBaseInfo BaseInfo;
3600     TBAAAccessInfo TBAAInfo;
3601     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3602     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3603     SanitizerSet SkippedChecks;
3604     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3605     if (IsBaseCXXThis)
3606       SkippedChecks.set(SanitizerKind::Alignment, true);
3607     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3608       SkippedChecks.set(SanitizerKind::Null, true);
3609     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3610                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3611     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3612   } else
3613     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3614 
3615   NamedDecl *ND = E->getMemberDecl();
3616   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3617     LValue LV = EmitLValueForField(BaseLV, Field);
3618     setObjCGCLValueClass(getContext(), E, LV);
3619     return LV;
3620   }
3621 
3622   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3623     return EmitFunctionDeclLValue(*this, E, FD);
3624 
3625   llvm_unreachable("Unhandled member declaration!");
3626 }
3627 
3628 /// Given that we are currently emitting a lambda, emit an l-value for
3629 /// one of its members.
3630 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3631   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3632   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3633   QualType LambdaTagType =
3634     getContext().getTagDeclType(Field->getParent());
3635   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3636   return EmitLValueForField(LambdaLV, Field);
3637 }
3638 
3639 /// Drill down to the storage of a field without walking into
3640 /// reference types.
3641 ///
3642 /// The resulting address doesn't necessarily have the right type.
3643 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3644                                       const FieldDecl *field) {
3645   const RecordDecl *rec = field->getParent();
3646 
3647   unsigned idx =
3648     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3649 
3650   CharUnits offset;
3651   // Adjust the alignment down to the given offset.
3652   // As a special case, if the LLVM field index is 0, we know that this
3653   // is zero.
3654   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3655                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3656          "LLVM field at index zero had non-zero offset?");
3657   if (idx != 0) {
3658     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3659     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3660     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3661   }
3662 
3663   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3664 }
3665 
3666 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3667   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3668   if (!RD)
3669     return false;
3670 
3671   if (RD->isDynamicClass())
3672     return true;
3673 
3674   for (const auto &Base : RD->bases())
3675     if (hasAnyVptr(Base.getType(), Context))
3676       return true;
3677 
3678   for (const FieldDecl *Field : RD->fields())
3679     if (hasAnyVptr(Field->getType(), Context))
3680       return true;
3681 
3682   return false;
3683 }
3684 
3685 LValue CodeGenFunction::EmitLValueForField(LValue base,
3686                                            const FieldDecl *field) {
3687   LValueBaseInfo BaseInfo = base.getBaseInfo();
3688 
3689   if (field->isBitField()) {
3690     const CGRecordLayout &RL =
3691       CGM.getTypes().getCGRecordLayout(field->getParent());
3692     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3693     Address Addr = base.getAddress();
3694     unsigned Idx = RL.getLLVMFieldNo(field);
3695     if (Idx != 0)
3696       // For structs, we GEP to the field that the record layout suggests.
3697       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3698                                      field->getName());
3699     // Get the access type.
3700     llvm::Type *FieldIntTy =
3701       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3702     if (Addr.getElementType() != FieldIntTy)
3703       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3704 
3705     QualType fieldType =
3706       field->getType().withCVRQualifiers(base.getVRQualifiers());
3707     // TODO: Support TBAA for bit fields.
3708     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource(), false);
3709     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3710                                 TBAAAccessInfo());
3711   }
3712 
3713   // Fields of may-alias structures are may-alias themselves.
3714   // FIXME: this should get propagated down through anonymous structs
3715   // and unions.
3716   QualType FieldType = field->getType();
3717   const RecordDecl *rec = field->getParent();
3718   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3719   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource), false);
3720   TBAAAccessInfo FieldTBAAInfo;
3721   if (BaseInfo.getMayAlias() || rec->hasAttr<MayAliasAttr>() ||
3722           FieldType->isVectorType()) {
3723     FieldBaseInfo.setMayAlias(true);
3724     FieldTBAAInfo = CGM.getTBAAMayAliasAccessInfo();
3725   } else if (rec->isUnion()) {
3726     // TODO: Support TBAA for unions.
3727     FieldBaseInfo.setMayAlias(true);
3728     FieldTBAAInfo = CGM.getTBAAMayAliasAccessInfo();
3729   } else {
3730     // If no base type been assigned for the base access, then try to generate
3731     // one for this base lvalue.
3732     FieldTBAAInfo = base.getTBAAInfo();
3733     if (!FieldTBAAInfo.BaseType) {
3734         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3735         assert(!FieldTBAAInfo.Offset &&
3736                "Nonzero offset for an access with no base type!");
3737     }
3738 
3739     // Adjust offset to be relative to the base type.
3740     const ASTRecordLayout &Layout =
3741         getContext().getASTRecordLayout(field->getParent());
3742     unsigned CharWidth = getContext().getCharWidth();
3743     if (FieldTBAAInfo.BaseType)
3744       FieldTBAAInfo.Offset +=
3745           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3746 
3747     // Update the final access type.
3748     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3749   }
3750 
3751   Address addr = base.getAddress();
3752   unsigned cvr = base.getVRQualifiers();
3753   if (rec->isUnion()) {
3754     // For unions, there is no pointer adjustment.
3755     assert(!FieldType->isReferenceType() && "union has reference member");
3756     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3757         hasAnyVptr(FieldType, getContext()))
3758       // Because unions can easily skip invariant.barriers, we need to add
3759       // a barrier every time CXXRecord field with vptr is referenced.
3760       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3761                      addr.getAlignment());
3762   } else {
3763     // For structs, we GEP to the field that the record layout suggests.
3764     addr = emitAddrOfFieldStorage(*this, addr, field);
3765 
3766     // If this is a reference field, load the reference right now.
3767     if (const ReferenceType *refType = FieldType->getAs<ReferenceType>()) {
3768       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3769       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3770 
3771       CGM.DecorateInstructionWithTBAA(load, FieldTBAAInfo);
3772 
3773       FieldType = refType->getPointeeType();
3774       CharUnits Align = getNaturalTypeAlignment(FieldType, &FieldBaseInfo,
3775                                                 &FieldTBAAInfo,
3776                                                 /* forPointeeType= */ true);
3777       addr = Address(load, Align);
3778 
3779       // Qualifiers on the struct don't apply to the referencee, and
3780       // we'll pick up CVR from the actual type later, so reset these
3781       // additional qualifiers now.
3782       cvr = 0;
3783     }
3784   }
3785 
3786   // Make sure that the address is pointing to the right type.  This is critical
3787   // for both unions and structs.  A union needs a bitcast, a struct element
3788   // will need a bitcast if the LLVM type laid out doesn't match the desired
3789   // type.
3790   addr = Builder.CreateElementBitCast(
3791       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3792 
3793   if (field->hasAttr<AnnotateAttr>())
3794     addr = EmitFieldAnnotations(field, addr);
3795 
3796   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3797   LV.getQuals().addCVRQualifiers(cvr);
3798 
3799   // __weak attribute on a field is ignored.
3800   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3801     LV.getQuals().removeObjCGCAttr();
3802 
3803   return LV;
3804 }
3805 
3806 LValue
3807 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3808                                                   const FieldDecl *Field) {
3809   QualType FieldType = Field->getType();
3810 
3811   if (!FieldType->isReferenceType())
3812     return EmitLValueForField(Base, Field);
3813 
3814   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3815 
3816   // Make sure that the address is pointing to the right type.
3817   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3818   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3819 
3820   // TODO: access-path TBAA?
3821   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3822   LValueBaseInfo FieldBaseInfo(
3823       getFieldAlignmentSource(BaseInfo.getAlignmentSource()),
3824       BaseInfo.getMayAlias());
3825   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3826                         CGM.getTBAAAccessInfo(FieldType));
3827 }
3828 
3829 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3830   if (E->isFileScope()) {
3831     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3832     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3833   }
3834   if (E->getType()->isVariablyModifiedType())
3835     // make sure to emit the VLA size.
3836     EmitVariablyModifiedType(E->getType());
3837 
3838   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3839   const Expr *InitExpr = E->getInitializer();
3840   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3841 
3842   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3843                    /*Init*/ true);
3844 
3845   return Result;
3846 }
3847 
3848 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3849   if (!E->isGLValue())
3850     // Initializing an aggregate temporary in C++11: T{...}.
3851     return EmitAggExprToLValue(E);
3852 
3853   // An lvalue initializer list must be initializing a reference.
3854   assert(E->isTransparent() && "non-transparent glvalue init list");
3855   return EmitLValue(E->getInit(0));
3856 }
3857 
3858 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3859 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3860 /// LValue is returned and the current block has been terminated.
3861 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3862                                                     const Expr *Operand) {
3863   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3864     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3865     return None;
3866   }
3867 
3868   return CGF.EmitLValue(Operand);
3869 }
3870 
3871 LValue CodeGenFunction::
3872 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3873   if (!expr->isGLValue()) {
3874     // ?: here should be an aggregate.
3875     assert(hasAggregateEvaluationKind(expr->getType()) &&
3876            "Unexpected conditional operator!");
3877     return EmitAggExprToLValue(expr);
3878   }
3879 
3880   OpaqueValueMapping binding(*this, expr);
3881 
3882   const Expr *condExpr = expr->getCond();
3883   bool CondExprBool;
3884   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3885     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3886     if (!CondExprBool) std::swap(live, dead);
3887 
3888     if (!ContainsLabel(dead)) {
3889       // If the true case is live, we need to track its region.
3890       if (CondExprBool)
3891         incrementProfileCounter(expr);
3892       return EmitLValue(live);
3893     }
3894   }
3895 
3896   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3897   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3898   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3899 
3900   ConditionalEvaluation eval(*this);
3901   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3902 
3903   // Any temporaries created here are conditional.
3904   EmitBlock(lhsBlock);
3905   incrementProfileCounter(expr);
3906   eval.begin(*this);
3907   Optional<LValue> lhs =
3908       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3909   eval.end(*this);
3910 
3911   if (lhs && !lhs->isSimple())
3912     return EmitUnsupportedLValue(expr, "conditional operator");
3913 
3914   lhsBlock = Builder.GetInsertBlock();
3915   if (lhs)
3916     Builder.CreateBr(contBlock);
3917 
3918   // Any temporaries created here are conditional.
3919   EmitBlock(rhsBlock);
3920   eval.begin(*this);
3921   Optional<LValue> rhs =
3922       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3923   eval.end(*this);
3924   if (rhs && !rhs->isSimple())
3925     return EmitUnsupportedLValue(expr, "conditional operator");
3926   rhsBlock = Builder.GetInsertBlock();
3927 
3928   EmitBlock(contBlock);
3929 
3930   if (lhs && rhs) {
3931     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3932                                            2, "cond-lvalue");
3933     phi->addIncoming(lhs->getPointer(), lhsBlock);
3934     phi->addIncoming(rhs->getPointer(), rhsBlock);
3935     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3936     AlignmentSource alignSource =
3937       std::max(lhs->getBaseInfo().getAlignmentSource(),
3938                rhs->getBaseInfo().getAlignmentSource());
3939     bool MayAlias = lhs->getBaseInfo().getMayAlias() ||
3940                     rhs->getBaseInfo().getMayAlias();
3941     return MakeAddrLValue(result, expr->getType(),
3942                           LValueBaseInfo(alignSource, MayAlias),
3943                           CGM.getTBAAAccessInfo(expr->getType()));
3944   } else {
3945     assert((lhs || rhs) &&
3946            "both operands of glvalue conditional are throw-expressions?");
3947     return lhs ? *lhs : *rhs;
3948   }
3949 }
3950 
3951 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3952 /// type. If the cast is to a reference, we can have the usual lvalue result,
3953 /// otherwise if a cast is needed by the code generator in an lvalue context,
3954 /// then it must mean that we need the address of an aggregate in order to
3955 /// access one of its members.  This can happen for all the reasons that casts
3956 /// are permitted with aggregate result, including noop aggregate casts, and
3957 /// cast from scalar to union.
3958 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3959   switch (E->getCastKind()) {
3960   case CK_ToVoid:
3961   case CK_BitCast:
3962   case CK_ArrayToPointerDecay:
3963   case CK_FunctionToPointerDecay:
3964   case CK_NullToMemberPointer:
3965   case CK_NullToPointer:
3966   case CK_IntegralToPointer:
3967   case CK_PointerToIntegral:
3968   case CK_PointerToBoolean:
3969   case CK_VectorSplat:
3970   case CK_IntegralCast:
3971   case CK_BooleanToSignedIntegral:
3972   case CK_IntegralToBoolean:
3973   case CK_IntegralToFloating:
3974   case CK_FloatingToIntegral:
3975   case CK_FloatingToBoolean:
3976   case CK_FloatingCast:
3977   case CK_FloatingRealToComplex:
3978   case CK_FloatingComplexToReal:
3979   case CK_FloatingComplexToBoolean:
3980   case CK_FloatingComplexCast:
3981   case CK_FloatingComplexToIntegralComplex:
3982   case CK_IntegralRealToComplex:
3983   case CK_IntegralComplexToReal:
3984   case CK_IntegralComplexToBoolean:
3985   case CK_IntegralComplexCast:
3986   case CK_IntegralComplexToFloatingComplex:
3987   case CK_DerivedToBaseMemberPointer:
3988   case CK_BaseToDerivedMemberPointer:
3989   case CK_MemberPointerToBoolean:
3990   case CK_ReinterpretMemberPointer:
3991   case CK_AnyPointerToBlockPointerCast:
3992   case CK_ARCProduceObject:
3993   case CK_ARCConsumeObject:
3994   case CK_ARCReclaimReturnedObject:
3995   case CK_ARCExtendBlockObject:
3996   case CK_CopyAndAutoreleaseBlockObject:
3997   case CK_AddressSpaceConversion:
3998   case CK_IntToOCLSampler:
3999     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4000 
4001   case CK_Dependent:
4002     llvm_unreachable("dependent cast kind in IR gen!");
4003 
4004   case CK_BuiltinFnToFnPtr:
4005     llvm_unreachable("builtin functions are handled elsewhere");
4006 
4007   // These are never l-values; just use the aggregate emission code.
4008   case CK_NonAtomicToAtomic:
4009   case CK_AtomicToNonAtomic:
4010     return EmitAggExprToLValue(E);
4011 
4012   case CK_Dynamic: {
4013     LValue LV = EmitLValue(E->getSubExpr());
4014     Address V = LV.getAddress();
4015     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4016     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4017   }
4018 
4019   case CK_ConstructorConversion:
4020   case CK_UserDefinedConversion:
4021   case CK_CPointerToObjCPointerCast:
4022   case CK_BlockPointerToObjCPointerCast:
4023   case CK_NoOp:
4024   case CK_LValueToRValue:
4025     return EmitLValue(E->getSubExpr());
4026 
4027   case CK_UncheckedDerivedToBase:
4028   case CK_DerivedToBase: {
4029     const RecordType *DerivedClassTy =
4030       E->getSubExpr()->getType()->getAs<RecordType>();
4031     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4032 
4033     LValue LV = EmitLValue(E->getSubExpr());
4034     Address This = LV.getAddress();
4035 
4036     // Perform the derived-to-base conversion
4037     Address Base = GetAddressOfBaseClass(
4038         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4039         /*NullCheckValue=*/false, E->getExprLoc());
4040 
4041     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4042                           CGM.getTBAAAccessInfo(E->getType()));
4043   }
4044   case CK_ToUnion:
4045     return EmitAggExprToLValue(E);
4046   case CK_BaseToDerived: {
4047     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4048     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4049 
4050     LValue LV = EmitLValue(E->getSubExpr());
4051 
4052     // Perform the base-to-derived conversion
4053     Address Derived =
4054       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4055                                E->path_begin(), E->path_end(),
4056                                /*NullCheckValue=*/false);
4057 
4058     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4059     // performed and the object is not of the derived type.
4060     if (sanitizePerformTypeCheck())
4061       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4062                     Derived.getPointer(), E->getType());
4063 
4064     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4065       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4066                                 /*MayBeNull=*/false,
4067                                 CFITCK_DerivedCast, E->getLocStart());
4068 
4069     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4070                           CGM.getTBAAAccessInfo(E->getType()));
4071   }
4072   case CK_LValueBitCast: {
4073     // This must be a reinterpret_cast (or c-style equivalent).
4074     const auto *CE = cast<ExplicitCastExpr>(E);
4075 
4076     CGM.EmitExplicitCastExprType(CE, this);
4077     LValue LV = EmitLValue(E->getSubExpr());
4078     Address V = Builder.CreateBitCast(LV.getAddress(),
4079                                       ConvertType(CE->getTypeAsWritten()));
4080 
4081     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4082       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4083                                 /*MayBeNull=*/false,
4084                                 CFITCK_UnrelatedCast, E->getLocStart());
4085 
4086     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4087                           CGM.getTBAAAccessInfo(E->getType()));
4088   }
4089   case CK_ObjCObjectLValueCast: {
4090     LValue LV = EmitLValue(E->getSubExpr());
4091     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4092                                              ConvertType(E->getType()));
4093     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4094                           CGM.getTBAAAccessInfo(E->getType()));
4095   }
4096   case CK_ZeroToOCLQueue:
4097     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4098   case CK_ZeroToOCLEvent:
4099     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4100   }
4101 
4102   llvm_unreachable("Unhandled lvalue cast kind?");
4103 }
4104 
4105 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4106   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4107   return getOpaqueLValueMapping(e);
4108 }
4109 
4110 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4111                                            const FieldDecl *FD,
4112                                            SourceLocation Loc) {
4113   QualType FT = FD->getType();
4114   LValue FieldLV = EmitLValueForField(LV, FD);
4115   switch (getEvaluationKind(FT)) {
4116   case TEK_Complex:
4117     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4118   case TEK_Aggregate:
4119     return FieldLV.asAggregateRValue();
4120   case TEK_Scalar:
4121     // This routine is used to load fields one-by-one to perform a copy, so
4122     // don't load reference fields.
4123     if (FD->getType()->isReferenceType())
4124       return RValue::get(FieldLV.getPointer());
4125     return EmitLoadOfLValue(FieldLV, Loc);
4126   }
4127   llvm_unreachable("bad evaluation kind");
4128 }
4129 
4130 //===--------------------------------------------------------------------===//
4131 //                             Expression Emission
4132 //===--------------------------------------------------------------------===//
4133 
4134 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4135                                      ReturnValueSlot ReturnValue) {
4136   // Builtins never have block type.
4137   if (E->getCallee()->getType()->isBlockPointerType())
4138     return EmitBlockCallExpr(E, ReturnValue);
4139 
4140   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4141     return EmitCXXMemberCallExpr(CE, ReturnValue);
4142 
4143   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4144     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4145 
4146   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4147     if (const CXXMethodDecl *MD =
4148           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4149       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4150 
4151   CGCallee callee = EmitCallee(E->getCallee());
4152 
4153   if (callee.isBuiltin()) {
4154     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4155                            E, ReturnValue);
4156   }
4157 
4158   if (callee.isPseudoDestructor()) {
4159     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4160   }
4161 
4162   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4163 }
4164 
4165 /// Emit a CallExpr without considering whether it might be a subclass.
4166 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4167                                            ReturnValueSlot ReturnValue) {
4168   CGCallee Callee = EmitCallee(E->getCallee());
4169   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4170 }
4171 
4172 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4173   if (auto builtinID = FD->getBuiltinID()) {
4174     return CGCallee::forBuiltin(builtinID, FD);
4175   }
4176 
4177   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4178   return CGCallee::forDirect(calleePtr, FD);
4179 }
4180 
4181 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4182   E = E->IgnoreParens();
4183 
4184   // Look through function-to-pointer decay.
4185   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4186     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4187         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4188       return EmitCallee(ICE->getSubExpr());
4189     }
4190 
4191   // Resolve direct calls.
4192   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4193     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4194       return EmitDirectCallee(*this, FD);
4195     }
4196   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4197     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4198       EmitIgnoredExpr(ME->getBase());
4199       return EmitDirectCallee(*this, FD);
4200     }
4201 
4202   // Look through template substitutions.
4203   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4204     return EmitCallee(NTTP->getReplacement());
4205 
4206   // Treat pseudo-destructor calls differently.
4207   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4208     return CGCallee::forPseudoDestructor(PDE);
4209   }
4210 
4211   // Otherwise, we have an indirect reference.
4212   llvm::Value *calleePtr;
4213   QualType functionType;
4214   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4215     calleePtr = EmitScalarExpr(E);
4216     functionType = ptrType->getPointeeType();
4217   } else {
4218     functionType = E->getType();
4219     calleePtr = EmitLValue(E).getPointer();
4220   }
4221   assert(functionType->isFunctionType());
4222   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4223                           E->getReferencedDeclOfCallee());
4224   CGCallee callee(calleeInfo, calleePtr);
4225   return callee;
4226 }
4227 
4228 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4229   // Comma expressions just emit their LHS then their RHS as an l-value.
4230   if (E->getOpcode() == BO_Comma) {
4231     EmitIgnoredExpr(E->getLHS());
4232     EnsureInsertPoint();
4233     return EmitLValue(E->getRHS());
4234   }
4235 
4236   if (E->getOpcode() == BO_PtrMemD ||
4237       E->getOpcode() == BO_PtrMemI)
4238     return EmitPointerToDataMemberBinaryExpr(E);
4239 
4240   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4241 
4242   // Note that in all of these cases, __block variables need the RHS
4243   // evaluated first just in case the variable gets moved by the RHS.
4244 
4245   switch (getEvaluationKind(E->getType())) {
4246   case TEK_Scalar: {
4247     switch (E->getLHS()->getType().getObjCLifetime()) {
4248     case Qualifiers::OCL_Strong:
4249       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4250 
4251     case Qualifiers::OCL_Autoreleasing:
4252       return EmitARCStoreAutoreleasing(E).first;
4253 
4254     // No reason to do any of these differently.
4255     case Qualifiers::OCL_None:
4256     case Qualifiers::OCL_ExplicitNone:
4257     case Qualifiers::OCL_Weak:
4258       break;
4259     }
4260 
4261     RValue RV = EmitAnyExpr(E->getRHS());
4262     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4263     if (RV.isScalar())
4264       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4265     EmitStoreThroughLValue(RV, LV);
4266     return LV;
4267   }
4268 
4269   case TEK_Complex:
4270     return EmitComplexAssignmentLValue(E);
4271 
4272   case TEK_Aggregate:
4273     return EmitAggExprToLValue(E);
4274   }
4275   llvm_unreachable("bad evaluation kind");
4276 }
4277 
4278 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4279   RValue RV = EmitCallExpr(E);
4280 
4281   if (!RV.isScalar())
4282     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4283                           AlignmentSource::Decl);
4284 
4285   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4286          "Can't have a scalar return unless the return type is a "
4287          "reference type!");
4288 
4289   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4290 }
4291 
4292 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4293   // FIXME: This shouldn't require another copy.
4294   return EmitAggExprToLValue(E);
4295 }
4296 
4297 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4298   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4299          && "binding l-value to type which needs a temporary");
4300   AggValueSlot Slot = CreateAggTemp(E->getType());
4301   EmitCXXConstructExpr(E, Slot);
4302   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4303 }
4304 
4305 LValue
4306 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4307   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4308 }
4309 
4310 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4311   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4312                                       ConvertType(E->getType()));
4313 }
4314 
4315 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4316   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4317                         AlignmentSource::Decl);
4318 }
4319 
4320 LValue
4321 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4322   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4323   Slot.setExternallyDestructed();
4324   EmitAggExpr(E->getSubExpr(), Slot);
4325   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4326   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4327 }
4328 
4329 LValue
4330 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4331   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4332   EmitLambdaExpr(E, Slot);
4333   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4334 }
4335 
4336 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4337   RValue RV = EmitObjCMessageExpr(E);
4338 
4339   if (!RV.isScalar())
4340     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4341                           AlignmentSource::Decl);
4342 
4343   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4344          "Can't have a scalar return unless the return type is a "
4345          "reference type!");
4346 
4347   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4348 }
4349 
4350 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4351   Address V =
4352     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4353   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4354 }
4355 
4356 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4357                                              const ObjCIvarDecl *Ivar) {
4358   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4359 }
4360 
4361 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4362                                           llvm::Value *BaseValue,
4363                                           const ObjCIvarDecl *Ivar,
4364                                           unsigned CVRQualifiers) {
4365   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4366                                                    Ivar, CVRQualifiers);
4367 }
4368 
4369 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4370   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4371   llvm::Value *BaseValue = nullptr;
4372   const Expr *BaseExpr = E->getBase();
4373   Qualifiers BaseQuals;
4374   QualType ObjectTy;
4375   if (E->isArrow()) {
4376     BaseValue = EmitScalarExpr(BaseExpr);
4377     ObjectTy = BaseExpr->getType()->getPointeeType();
4378     BaseQuals = ObjectTy.getQualifiers();
4379   } else {
4380     LValue BaseLV = EmitLValue(BaseExpr);
4381     BaseValue = BaseLV.getPointer();
4382     ObjectTy = BaseExpr->getType();
4383     BaseQuals = ObjectTy.getQualifiers();
4384   }
4385 
4386   LValue LV =
4387     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4388                       BaseQuals.getCVRQualifiers());
4389   setObjCGCLValueClass(getContext(), E, LV);
4390   return LV;
4391 }
4392 
4393 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4394   // Can only get l-value for message expression returning aggregate type
4395   RValue RV = EmitAnyExprToTemp(E);
4396   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4397                         AlignmentSource::Decl);
4398 }
4399 
4400 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4401                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4402                                  llvm::Value *Chain) {
4403   // Get the actual function type. The callee type will always be a pointer to
4404   // function type or a block pointer type.
4405   assert(CalleeType->isFunctionPointerType() &&
4406          "Call must have function pointer type!");
4407 
4408   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4409 
4410   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4411     // We can only guarantee that a function is called from the correct
4412     // context/function based on the appropriate target attributes,
4413     // so only check in the case where we have both always_inline and target
4414     // since otherwise we could be making a conditional call after a check for
4415     // the proper cpu features (and it won't cause code generation issues due to
4416     // function based code generation).
4417     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4418         TargetDecl->hasAttr<TargetAttr>())
4419       checkTargetFeatures(E, FD);
4420 
4421   CalleeType = getContext().getCanonicalType(CalleeType);
4422 
4423   const auto *FnType =
4424       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4425 
4426   CGCallee Callee = OrigCallee;
4427 
4428   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4429       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4430     if (llvm::Constant *PrefixSig =
4431             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4432       SanitizerScope SanScope(this);
4433       llvm::Constant *FTRTTIConst =
4434           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4435       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4436       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4437           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4438 
4439       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4440 
4441       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4442           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4443       llvm::Value *CalleeSigPtr =
4444           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4445       llvm::Value *CalleeSig =
4446           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4447       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4448 
4449       llvm::BasicBlock *Cont = createBasicBlock("cont");
4450       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4451       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4452 
4453       EmitBlock(TypeCheck);
4454       llvm::Value *CalleeRTTIPtr =
4455           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4456       llvm::Value *CalleeRTTIEncoded =
4457           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4458       llvm::Value *CalleeRTTI =
4459           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4460       llvm::Value *CalleeRTTIMatch =
4461           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4462       llvm::Constant *StaticData[] = {
4463         EmitCheckSourceLocation(E->getLocStart()),
4464         EmitCheckTypeDescriptor(CalleeType)
4465       };
4466       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4467                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4468 
4469       Builder.CreateBr(Cont);
4470       EmitBlock(Cont);
4471     }
4472   }
4473 
4474   // If we are checking indirect calls and this call is indirect, check that the
4475   // function pointer is a member of the bit set for the function type.
4476   if (SanOpts.has(SanitizerKind::CFIICall) &&
4477       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4478     SanitizerScope SanScope(this);
4479     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4480 
4481     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4482     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4483 
4484     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4485     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4486     llvm::Value *TypeTest = Builder.CreateCall(
4487         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4488 
4489     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4490     llvm::Constant *StaticData[] = {
4491         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4492         EmitCheckSourceLocation(E->getLocStart()),
4493         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4494     };
4495     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4496       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4497                            CastedCallee, StaticData);
4498     } else {
4499       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4500                 SanitizerHandler::CFICheckFail, StaticData,
4501                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4502     }
4503   }
4504 
4505   CallArgList Args;
4506   if (Chain)
4507     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4508              CGM.getContext().VoidPtrTy);
4509 
4510   // C++17 requires that we evaluate arguments to a call using assignment syntax
4511   // right-to-left, and that we evaluate arguments to certain other operators
4512   // left-to-right. Note that we allow this to override the order dictated by
4513   // the calling convention on the MS ABI, which means that parameter
4514   // destruction order is not necessarily reverse construction order.
4515   // FIXME: Revisit this based on C++ committee response to unimplementability.
4516   EvaluationOrder Order = EvaluationOrder::Default;
4517   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4518     if (OCE->isAssignmentOp())
4519       Order = EvaluationOrder::ForceRightToLeft;
4520     else {
4521       switch (OCE->getOperator()) {
4522       case OO_LessLess:
4523       case OO_GreaterGreater:
4524       case OO_AmpAmp:
4525       case OO_PipePipe:
4526       case OO_Comma:
4527       case OO_ArrowStar:
4528         Order = EvaluationOrder::ForceLeftToRight;
4529         break;
4530       default:
4531         break;
4532       }
4533     }
4534   }
4535 
4536   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4537                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4538 
4539   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4540       Args, FnType, /*isChainCall=*/Chain);
4541 
4542   // C99 6.5.2.2p6:
4543   //   If the expression that denotes the called function has a type
4544   //   that does not include a prototype, [the default argument
4545   //   promotions are performed]. If the number of arguments does not
4546   //   equal the number of parameters, the behavior is undefined. If
4547   //   the function is defined with a type that includes a prototype,
4548   //   and either the prototype ends with an ellipsis (, ...) or the
4549   //   types of the arguments after promotion are not compatible with
4550   //   the types of the parameters, the behavior is undefined. If the
4551   //   function is defined with a type that does not include a
4552   //   prototype, and the types of the arguments after promotion are
4553   //   not compatible with those of the parameters after promotion,
4554   //   the behavior is undefined [except in some trivial cases].
4555   // That is, in the general case, we should assume that a call
4556   // through an unprototyped function type works like a *non-variadic*
4557   // call.  The way we make this work is to cast to the exact type
4558   // of the promoted arguments.
4559   //
4560   // Chain calls use this same code path to add the invisible chain parameter
4561   // to the function type.
4562   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4563     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4564     CalleeTy = CalleeTy->getPointerTo();
4565 
4566     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4567     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4568     Callee.setFunctionPointer(CalleePtr);
4569   }
4570 
4571   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4572 }
4573 
4574 LValue CodeGenFunction::
4575 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4576   Address BaseAddr = Address::invalid();
4577   if (E->getOpcode() == BO_PtrMemI) {
4578     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4579   } else {
4580     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4581   }
4582 
4583   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4584 
4585   const MemberPointerType *MPT
4586     = E->getRHS()->getType()->getAs<MemberPointerType>();
4587 
4588   LValueBaseInfo BaseInfo;
4589   TBAAAccessInfo TBAAInfo;
4590   Address MemberAddr =
4591     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4592                                     &TBAAInfo);
4593 
4594   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4595 }
4596 
4597 /// Given the address of a temporary variable, produce an r-value of
4598 /// its type.
4599 RValue CodeGenFunction::convertTempToRValue(Address addr,
4600                                             QualType type,
4601                                             SourceLocation loc) {
4602   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4603   switch (getEvaluationKind(type)) {
4604   case TEK_Complex:
4605     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4606   case TEK_Aggregate:
4607     return lvalue.asAggregateRValue();
4608   case TEK_Scalar:
4609     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4610   }
4611   llvm_unreachable("bad evaluation kind");
4612 }
4613 
4614 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4615   assert(Val->getType()->isFPOrFPVectorTy());
4616   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4617     return;
4618 
4619   llvm::MDBuilder MDHelper(getLLVMContext());
4620   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4621 
4622   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4623 }
4624 
4625 namespace {
4626   struct LValueOrRValue {
4627     LValue LV;
4628     RValue RV;
4629   };
4630 }
4631 
4632 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4633                                            const PseudoObjectExpr *E,
4634                                            bool forLValue,
4635                                            AggValueSlot slot) {
4636   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4637 
4638   // Find the result expression, if any.
4639   const Expr *resultExpr = E->getResultExpr();
4640   LValueOrRValue result;
4641 
4642   for (PseudoObjectExpr::const_semantics_iterator
4643          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4644     const Expr *semantic = *i;
4645 
4646     // If this semantic expression is an opaque value, bind it
4647     // to the result of its source expression.
4648     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4649 
4650       // If this is the result expression, we may need to evaluate
4651       // directly into the slot.
4652       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4653       OVMA opaqueData;
4654       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4655           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4656         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4657         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4658                                        AlignmentSource::Decl);
4659         opaqueData = OVMA::bind(CGF, ov, LV);
4660         result.RV = slot.asRValue();
4661 
4662       // Otherwise, emit as normal.
4663       } else {
4664         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4665 
4666         // If this is the result, also evaluate the result now.
4667         if (ov == resultExpr) {
4668           if (forLValue)
4669             result.LV = CGF.EmitLValue(ov);
4670           else
4671             result.RV = CGF.EmitAnyExpr(ov, slot);
4672         }
4673       }
4674 
4675       opaques.push_back(opaqueData);
4676 
4677     // Otherwise, if the expression is the result, evaluate it
4678     // and remember the result.
4679     } else if (semantic == resultExpr) {
4680       if (forLValue)
4681         result.LV = CGF.EmitLValue(semantic);
4682       else
4683         result.RV = CGF.EmitAnyExpr(semantic, slot);
4684 
4685     // Otherwise, evaluate the expression in an ignored context.
4686     } else {
4687       CGF.EmitIgnoredExpr(semantic);
4688     }
4689   }
4690 
4691   // Unbind all the opaques now.
4692   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4693     opaques[i].unbind(CGF);
4694 
4695   return result;
4696 }
4697 
4698 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4699                                                AggValueSlot slot) {
4700   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4701 }
4702 
4703 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4704   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4705 }
4706