1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 auto CurIP = Builder.saveIP(); 78 Builder.SetInsertPoint(AllocaInsertPt); 79 V = getTargetHooks().performAddrSpaceCast( 80 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 81 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 82 Builder.restoreIP(CurIP); 83 } 84 85 return Address(V, Align); 86 } 87 88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 90 /// insertion point of the builder. 91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 92 const Twine &Name, 93 llvm::Value *ArraySize) { 94 if (ArraySize) 95 return Builder.CreateAlloca(Ty, ArraySize, Name); 96 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 97 ArraySize, Name, AllocaInsertPt); 98 } 99 100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 101 /// default alignment of the corresponding LLVM type, which is *not* 102 /// guaranteed to be related in any way to the expected alignment of 103 /// an AST type that might have been lowered to Ty. 104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 105 const Twine &Name) { 106 CharUnits Align = 107 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 108 return CreateTempAlloca(Ty, Align, Name); 109 } 110 111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 112 assert(isa<llvm::AllocaInst>(Var.getPointer())); 113 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 114 Store->setAlignment(Var.getAlignment().getQuantity()); 115 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 116 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 117 } 118 119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 120 CharUnits Align = getContext().getTypeAlignInChars(Ty); 121 return CreateTempAlloca(ConvertType(Ty), Align, Name); 122 } 123 124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 125 bool CastToDefaultAddrSpace) { 126 // FIXME: Should we prefer the preferred type alignment here? 127 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 128 CastToDefaultAddrSpace); 129 } 130 131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 132 const Twine &Name, 133 bool CastToDefaultAddrSpace) { 134 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 135 CastToDefaultAddrSpace); 136 } 137 138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 139 /// expression and compare the result against zero, returning an Int1Ty value. 140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 141 PGO.setCurrentStmt(E); 142 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 143 llvm::Value *MemPtr = EmitScalarExpr(E); 144 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 145 } 146 147 QualType BoolTy = getContext().BoolTy; 148 SourceLocation Loc = E->getExprLoc(); 149 if (!E->getType()->isAnyComplexType()) 150 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 151 152 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 153 Loc); 154 } 155 156 /// EmitIgnoredExpr - Emit code to compute the specified expression, 157 /// ignoring the result. 158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 159 if (E->isRValue()) 160 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 161 162 // Just emit it as an l-value and drop the result. 163 EmitLValue(E); 164 } 165 166 /// EmitAnyExpr - Emit code to compute the specified expression which 167 /// can have any type. The result is returned as an RValue struct. 168 /// If this is an aggregate expression, AggSlot indicates where the 169 /// result should be returned. 170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 171 AggValueSlot aggSlot, 172 bool ignoreResult) { 173 switch (getEvaluationKind(E->getType())) { 174 case TEK_Scalar: 175 return RValue::get(EmitScalarExpr(E, ignoreResult)); 176 case TEK_Complex: 177 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 178 case TEK_Aggregate: 179 if (!ignoreResult && aggSlot.isIgnored()) 180 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 181 EmitAggExpr(E, aggSlot); 182 return aggSlot.asRValue(); 183 } 184 llvm_unreachable("bad evaluation kind"); 185 } 186 187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 188 /// always be accessible even if no aggregate location is provided. 189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 190 AggValueSlot AggSlot = AggValueSlot::ignored(); 191 192 if (hasAggregateEvaluationKind(E->getType())) 193 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 194 return EmitAnyExpr(E, AggSlot); 195 } 196 197 /// EmitAnyExprToMem - Evaluate an expression into a given memory 198 /// location. 199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 200 Address Location, 201 Qualifiers Quals, 202 bool IsInit) { 203 // FIXME: This function should take an LValue as an argument. 204 switch (getEvaluationKind(E->getType())) { 205 case TEK_Complex: 206 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 207 /*isInit*/ false); 208 return; 209 210 case TEK_Aggregate: { 211 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 212 AggValueSlot::IsDestructed_t(IsInit), 213 AggValueSlot::DoesNotNeedGCBarriers, 214 AggValueSlot::IsAliased_t(!IsInit))); 215 return; 216 } 217 218 case TEK_Scalar: { 219 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 220 LValue LV = MakeAddrLValue(Location, E->getType()); 221 EmitStoreThroughLValue(RV, LV); 222 return; 223 } 224 } 225 llvm_unreachable("bad evaluation kind"); 226 } 227 228 static void 229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 230 const Expr *E, Address ReferenceTemporary) { 231 // Objective-C++ ARC: 232 // If we are binding a reference to a temporary that has ownership, we 233 // need to perform retain/release operations on the temporary. 234 // 235 // FIXME: This should be looking at E, not M. 236 if (auto Lifetime = M->getType().getObjCLifetime()) { 237 switch (Lifetime) { 238 case Qualifiers::OCL_None: 239 case Qualifiers::OCL_ExplicitNone: 240 // Carry on to normal cleanup handling. 241 break; 242 243 case Qualifiers::OCL_Autoreleasing: 244 // Nothing to do; cleaned up by an autorelease pool. 245 return; 246 247 case Qualifiers::OCL_Strong: 248 case Qualifiers::OCL_Weak: 249 switch (StorageDuration Duration = M->getStorageDuration()) { 250 case SD_Static: 251 // Note: we intentionally do not register a cleanup to release 252 // the object on program termination. 253 return; 254 255 case SD_Thread: 256 // FIXME: We should probably register a cleanup in this case. 257 return; 258 259 case SD_Automatic: 260 case SD_FullExpression: 261 CodeGenFunction::Destroyer *Destroy; 262 CleanupKind CleanupKind; 263 if (Lifetime == Qualifiers::OCL_Strong) { 264 const ValueDecl *VD = M->getExtendingDecl(); 265 bool Precise = 266 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 267 CleanupKind = CGF.getARCCleanupKind(); 268 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 269 : &CodeGenFunction::destroyARCStrongImprecise; 270 } else { 271 // __weak objects always get EH cleanups; otherwise, exceptions 272 // could cause really nasty crashes instead of mere leaks. 273 CleanupKind = NormalAndEHCleanup; 274 Destroy = &CodeGenFunction::destroyARCWeak; 275 } 276 if (Duration == SD_FullExpression) 277 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 278 M->getType(), *Destroy, 279 CleanupKind & EHCleanup); 280 else 281 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 282 M->getType(), 283 *Destroy, CleanupKind & EHCleanup); 284 return; 285 286 case SD_Dynamic: 287 llvm_unreachable("temporary cannot have dynamic storage duration"); 288 } 289 llvm_unreachable("unknown storage duration"); 290 } 291 } 292 293 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 294 if (const RecordType *RT = 295 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 296 // Get the destructor for the reference temporary. 297 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 298 if (!ClassDecl->hasTrivialDestructor()) 299 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 300 } 301 302 if (!ReferenceTemporaryDtor) 303 return; 304 305 // Call the destructor for the temporary. 306 switch (M->getStorageDuration()) { 307 case SD_Static: 308 case SD_Thread: { 309 llvm::Constant *CleanupFn; 310 llvm::Constant *CleanupArg; 311 if (E->getType()->isArrayType()) { 312 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 313 ReferenceTemporary, E->getType(), 314 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 315 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 316 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 317 } else { 318 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 319 StructorType::Complete); 320 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 321 } 322 CGF.CGM.getCXXABI().registerGlobalDtor( 323 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 324 break; 325 } 326 327 case SD_FullExpression: 328 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 329 CodeGenFunction::destroyCXXObject, 330 CGF.getLangOpts().Exceptions); 331 break; 332 333 case SD_Automatic: 334 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 335 ReferenceTemporary, E->getType(), 336 CodeGenFunction::destroyCXXObject, 337 CGF.getLangOpts().Exceptions); 338 break; 339 340 case SD_Dynamic: 341 llvm_unreachable("temporary cannot have dynamic storage duration"); 342 } 343 } 344 345 static Address createReferenceTemporary(CodeGenFunction &CGF, 346 const MaterializeTemporaryExpr *M, 347 const Expr *Inner) { 348 auto &TCG = CGF.getTargetHooks(); 349 switch (M->getStorageDuration()) { 350 case SD_FullExpression: 351 case SD_Automatic: { 352 // If we have a constant temporary array or record try to promote it into a 353 // constant global under the same rules a normal constant would've been 354 // promoted. This is easier on the optimizer and generally emits fewer 355 // instructions. 356 QualType Ty = Inner->getType(); 357 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 358 (Ty->isArrayType() || Ty->isRecordType()) && 359 CGF.CGM.isTypeConstant(Ty, true)) 360 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 361 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 362 auto AS = AddrSpace.getValue(); 363 auto *GV = new llvm::GlobalVariable( 364 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 365 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 366 llvm::GlobalValue::NotThreadLocal, 367 CGF.getContext().getTargetAddressSpace(AS)); 368 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 369 GV->setAlignment(alignment.getQuantity()); 370 llvm::Constant *C = GV; 371 if (AS != LangAS::Default) 372 C = TCG.performAddrSpaceCast( 373 CGF.CGM, GV, AS, LangAS::Default, 374 GV->getValueType()->getPointerTo( 375 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 376 // FIXME: Should we put the new global into a COMDAT? 377 return Address(C, alignment); 378 } 379 } 380 return CGF.CreateMemTemp(Ty, "ref.tmp"); 381 } 382 case SD_Thread: 383 case SD_Static: 384 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 385 386 case SD_Dynamic: 387 llvm_unreachable("temporary can't have dynamic storage duration"); 388 } 389 llvm_unreachable("unknown storage duration"); 390 } 391 392 LValue CodeGenFunction:: 393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 394 const Expr *E = M->GetTemporaryExpr(); 395 396 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 397 // as that will cause the lifetime adjustment to be lost for ARC 398 auto ownership = M->getType().getObjCLifetime(); 399 if (ownership != Qualifiers::OCL_None && 400 ownership != Qualifiers::OCL_ExplicitNone) { 401 Address Object = createReferenceTemporary(*this, M, E); 402 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 403 Object = Address(llvm::ConstantExpr::getBitCast(Var, 404 ConvertTypeForMem(E->getType()) 405 ->getPointerTo(Object.getAddressSpace())), 406 Object.getAlignment()); 407 408 // createReferenceTemporary will promote the temporary to a global with a 409 // constant initializer if it can. It can only do this to a value of 410 // ARC-manageable type if the value is global and therefore "immune" to 411 // ref-counting operations. Therefore we have no need to emit either a 412 // dynamic initialization or a cleanup and we can just return the address 413 // of the temporary. 414 if (Var->hasInitializer()) 415 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 416 417 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 418 } 419 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 420 AlignmentSource::Decl); 421 422 switch (getEvaluationKind(E->getType())) { 423 default: llvm_unreachable("expected scalar or aggregate expression"); 424 case TEK_Scalar: 425 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 426 break; 427 case TEK_Aggregate: { 428 EmitAggExpr(E, AggValueSlot::forAddr(Object, 429 E->getType().getQualifiers(), 430 AggValueSlot::IsDestructed, 431 AggValueSlot::DoesNotNeedGCBarriers, 432 AggValueSlot::IsNotAliased)); 433 break; 434 } 435 } 436 437 pushTemporaryCleanup(*this, M, E, Object); 438 return RefTempDst; 439 } 440 441 SmallVector<const Expr *, 2> CommaLHSs; 442 SmallVector<SubobjectAdjustment, 2> Adjustments; 443 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 444 445 for (const auto &Ignored : CommaLHSs) 446 EmitIgnoredExpr(Ignored); 447 448 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 449 if (opaque->getType()->isRecordType()) { 450 assert(Adjustments.empty()); 451 return EmitOpaqueValueLValue(opaque); 452 } 453 } 454 455 // Create and initialize the reference temporary. 456 Address Object = createReferenceTemporary(*this, M, E); 457 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 458 Object.getPointer()->stripPointerCasts())) { 459 Object = Address(llvm::ConstantExpr::getBitCast( 460 cast<llvm::Constant>(Object.getPointer()), 461 ConvertTypeForMem(E->getType())->getPointerTo()), 462 Object.getAlignment()); 463 // If the temporary is a global and has a constant initializer or is a 464 // constant temporary that we promoted to a global, we may have already 465 // initialized it. 466 if (!Var->hasInitializer()) { 467 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 468 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 469 } 470 } else { 471 switch (M->getStorageDuration()) { 472 case SD_Automatic: 473 case SD_FullExpression: 474 if (auto *Size = EmitLifetimeStart( 475 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 476 Object.getPointer())) { 477 if (M->getStorageDuration() == SD_Automatic) 478 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 479 Object, Size); 480 else 481 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 482 Size); 483 } 484 break; 485 default: 486 break; 487 } 488 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 489 } 490 pushTemporaryCleanup(*this, M, E, Object); 491 492 // Perform derived-to-base casts and/or field accesses, to get from the 493 // temporary object we created (and, potentially, for which we extended 494 // the lifetime) to the subobject we're binding the reference to. 495 for (unsigned I = Adjustments.size(); I != 0; --I) { 496 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 497 switch (Adjustment.Kind) { 498 case SubobjectAdjustment::DerivedToBaseAdjustment: 499 Object = 500 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 501 Adjustment.DerivedToBase.BasePath->path_begin(), 502 Adjustment.DerivedToBase.BasePath->path_end(), 503 /*NullCheckValue=*/ false, E->getExprLoc()); 504 break; 505 506 case SubobjectAdjustment::FieldAdjustment: { 507 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 508 LV = EmitLValueForField(LV, Adjustment.Field); 509 assert(LV.isSimple() && 510 "materialized temporary field is not a simple lvalue"); 511 Object = LV.getAddress(); 512 break; 513 } 514 515 case SubobjectAdjustment::MemberPointerAdjustment: { 516 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 517 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 518 Adjustment.Ptr.MPT); 519 break; 520 } 521 } 522 } 523 524 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 525 } 526 527 RValue 528 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 529 // Emit the expression as an lvalue. 530 LValue LV = EmitLValue(E); 531 assert(LV.isSimple()); 532 llvm::Value *Value = LV.getPointer(); 533 534 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 535 // C++11 [dcl.ref]p5 (as amended by core issue 453): 536 // If a glvalue to which a reference is directly bound designates neither 537 // an existing object or function of an appropriate type nor a region of 538 // storage of suitable size and alignment to contain an object of the 539 // reference's type, the behavior is undefined. 540 QualType Ty = E->getType(); 541 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 542 } 543 544 return RValue::get(Value); 545 } 546 547 548 /// getAccessedFieldNo - Given an encoded value and a result number, return the 549 /// input field number being accessed. 550 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 551 const llvm::Constant *Elts) { 552 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 553 ->getZExtValue(); 554 } 555 556 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 557 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 558 llvm::Value *High) { 559 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 560 llvm::Value *K47 = Builder.getInt64(47); 561 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 562 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 563 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 564 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 565 return Builder.CreateMul(B1, KMul); 566 } 567 568 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 569 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 570 TCK == TCK_UpcastToVirtualBase; 571 } 572 573 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 574 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 575 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 576 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 577 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 578 TCK == TCK_UpcastToVirtualBase); 579 } 580 581 bool CodeGenFunction::sanitizePerformTypeCheck() const { 582 return SanOpts.has(SanitizerKind::Null) | 583 SanOpts.has(SanitizerKind::Alignment) | 584 SanOpts.has(SanitizerKind::ObjectSize) | 585 SanOpts.has(SanitizerKind::Vptr); 586 } 587 588 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 589 llvm::Value *Ptr, QualType Ty, 590 CharUnits Alignment, 591 SanitizerSet SkippedChecks) { 592 if (!sanitizePerformTypeCheck()) 593 return; 594 595 // Don't check pointers outside the default address space. The null check 596 // isn't correct, the object-size check isn't supported by LLVM, and we can't 597 // communicate the addresses to the runtime handler for the vptr check. 598 if (Ptr->getType()->getPointerAddressSpace()) 599 return; 600 601 // Don't check pointers to volatile data. The behavior here is implementation- 602 // defined. 603 if (Ty.isVolatileQualified()) 604 return; 605 606 SanitizerScope SanScope(this); 607 608 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 609 llvm::BasicBlock *Done = nullptr; 610 611 // Quickly determine whether we have a pointer to an alloca. It's possible 612 // to skip null checks, and some alignment checks, for these pointers. This 613 // can reduce compile-time significantly. 614 auto PtrToAlloca = 615 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 616 617 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 618 llvm::Value *IsNonNull = nullptr; 619 bool IsGuaranteedNonNull = 620 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 621 bool AllowNullPointers = isNullPointerAllowed(TCK); 622 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 623 !IsGuaranteedNonNull) { 624 // The glvalue must not be an empty glvalue. 625 IsNonNull = Builder.CreateIsNotNull(Ptr); 626 627 // The IR builder can constant-fold the null check if the pointer points to 628 // a constant. 629 IsGuaranteedNonNull = IsNonNull == True; 630 631 // Skip the null check if the pointer is known to be non-null. 632 if (!IsGuaranteedNonNull) { 633 if (AllowNullPointers) { 634 // When performing pointer casts, it's OK if the value is null. 635 // Skip the remaining checks in that case. 636 Done = createBasicBlock("null"); 637 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 638 Builder.CreateCondBr(IsNonNull, Rest, Done); 639 EmitBlock(Rest); 640 } else { 641 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 642 } 643 } 644 } 645 646 if (SanOpts.has(SanitizerKind::ObjectSize) && 647 !SkippedChecks.has(SanitizerKind::ObjectSize) && 648 !Ty->isIncompleteType()) { 649 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 650 651 // The glvalue must refer to a large enough storage region. 652 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 653 // to check this. 654 // FIXME: Get object address space 655 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 656 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 657 llvm::Value *Min = Builder.getFalse(); 658 llvm::Value *NullIsUnknown = Builder.getFalse(); 659 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 660 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 661 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 662 llvm::ConstantInt::get(IntPtrTy, Size)); 663 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 664 } 665 666 uint64_t AlignVal = 0; 667 llvm::Value *PtrAsInt = nullptr; 668 669 if (SanOpts.has(SanitizerKind::Alignment) && 670 !SkippedChecks.has(SanitizerKind::Alignment)) { 671 AlignVal = Alignment.getQuantity(); 672 if (!Ty->isIncompleteType() && !AlignVal) 673 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 674 675 // The glvalue must be suitably aligned. 676 if (AlignVal > 1 && 677 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 678 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 679 llvm::Value *Align = Builder.CreateAnd( 680 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 681 llvm::Value *Aligned = 682 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 683 if (Aligned != True) 684 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 685 } 686 } 687 688 if (Checks.size() > 0) { 689 // Make sure we're not losing information. Alignment needs to be a power of 690 // 2 691 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 692 llvm::Constant *StaticData[] = { 693 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 694 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 695 llvm::ConstantInt::get(Int8Ty, TCK)}; 696 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 697 PtrAsInt ? PtrAsInt : Ptr); 698 } 699 700 // If possible, check that the vptr indicates that there is a subobject of 701 // type Ty at offset zero within this object. 702 // 703 // C++11 [basic.life]p5,6: 704 // [For storage which does not refer to an object within its lifetime] 705 // The program has undefined behavior if: 706 // -- the [pointer or glvalue] is used to access a non-static data member 707 // or call a non-static member function 708 if (SanOpts.has(SanitizerKind::Vptr) && 709 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 710 // Ensure that the pointer is non-null before loading it. If there is no 711 // compile-time guarantee, reuse the run-time null check or emit a new one. 712 if (!IsGuaranteedNonNull) { 713 if (!IsNonNull) 714 IsNonNull = Builder.CreateIsNotNull(Ptr); 715 if (!Done) 716 Done = createBasicBlock("vptr.null"); 717 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 718 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 719 EmitBlock(VptrNotNull); 720 } 721 722 // Compute a hash of the mangled name of the type. 723 // 724 // FIXME: This is not guaranteed to be deterministic! Move to a 725 // fingerprinting mechanism once LLVM provides one. For the time 726 // being the implementation happens to be deterministic. 727 SmallString<64> MangledName; 728 llvm::raw_svector_ostream Out(MangledName); 729 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 730 Out); 731 732 // Blacklist based on the mangled type. 733 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 734 SanitizerKind::Vptr, Out.str())) { 735 llvm::hash_code TypeHash = hash_value(Out.str()); 736 737 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 738 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 739 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 740 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 741 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 742 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 743 744 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 745 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 746 747 // Look the hash up in our cache. 748 const int CacheSize = 128; 749 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 750 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 751 "__ubsan_vptr_type_cache"); 752 llvm::Value *Slot = Builder.CreateAnd(Hash, 753 llvm::ConstantInt::get(IntPtrTy, 754 CacheSize-1)); 755 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 756 llvm::Value *CacheVal = 757 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 758 getPointerAlign()); 759 760 // If the hash isn't in the cache, call a runtime handler to perform the 761 // hard work of checking whether the vptr is for an object of the right 762 // type. This will either fill in the cache and return, or produce a 763 // diagnostic. 764 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 765 llvm::Constant *StaticData[] = { 766 EmitCheckSourceLocation(Loc), 767 EmitCheckTypeDescriptor(Ty), 768 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 769 llvm::ConstantInt::get(Int8Ty, TCK) 770 }; 771 llvm::Value *DynamicData[] = { Ptr, Hash }; 772 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 773 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 774 DynamicData); 775 } 776 } 777 778 if (Done) { 779 Builder.CreateBr(Done); 780 EmitBlock(Done); 781 } 782 } 783 784 /// Determine whether this expression refers to a flexible array member in a 785 /// struct. We disable array bounds checks for such members. 786 static bool isFlexibleArrayMemberExpr(const Expr *E) { 787 // For compatibility with existing code, we treat arrays of length 0 or 788 // 1 as flexible array members. 789 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 790 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 791 if (CAT->getSize().ugt(1)) 792 return false; 793 } else if (!isa<IncompleteArrayType>(AT)) 794 return false; 795 796 E = E->IgnoreParens(); 797 798 // A flexible array member must be the last member in the class. 799 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 800 // FIXME: If the base type of the member expr is not FD->getParent(), 801 // this should not be treated as a flexible array member access. 802 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 803 RecordDecl::field_iterator FI( 804 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 805 return ++FI == FD->getParent()->field_end(); 806 } 807 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 808 return IRE->getDecl()->getNextIvar() == nullptr; 809 } 810 811 return false; 812 } 813 814 /// If Base is known to point to the start of an array, return the length of 815 /// that array. Return 0 if the length cannot be determined. 816 static llvm::Value *getArrayIndexingBound( 817 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 818 // For the vector indexing extension, the bound is the number of elements. 819 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 820 IndexedType = Base->getType(); 821 return CGF.Builder.getInt32(VT->getNumElements()); 822 } 823 824 Base = Base->IgnoreParens(); 825 826 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 827 if (CE->getCastKind() == CK_ArrayToPointerDecay && 828 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 829 IndexedType = CE->getSubExpr()->getType(); 830 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 831 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 832 return CGF.Builder.getInt(CAT->getSize()); 833 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 834 return CGF.getVLASize(VAT).first; 835 } 836 } 837 838 return nullptr; 839 } 840 841 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 842 llvm::Value *Index, QualType IndexType, 843 bool Accessed) { 844 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 845 "should not be called unless adding bounds checks"); 846 SanitizerScope SanScope(this); 847 848 QualType IndexedType; 849 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 850 if (!Bound) 851 return; 852 853 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 854 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 855 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 856 857 llvm::Constant *StaticData[] = { 858 EmitCheckSourceLocation(E->getExprLoc()), 859 EmitCheckTypeDescriptor(IndexedType), 860 EmitCheckTypeDescriptor(IndexType) 861 }; 862 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 863 : Builder.CreateICmpULE(IndexVal, BoundVal); 864 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 865 SanitizerHandler::OutOfBounds, StaticData, Index); 866 } 867 868 869 CodeGenFunction::ComplexPairTy CodeGenFunction:: 870 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 871 bool isInc, bool isPre) { 872 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 873 874 llvm::Value *NextVal; 875 if (isa<llvm::IntegerType>(InVal.first->getType())) { 876 uint64_t AmountVal = isInc ? 1 : -1; 877 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 878 879 // Add the inc/dec to the real part. 880 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 881 } else { 882 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 883 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 884 if (!isInc) 885 FVal.changeSign(); 886 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 887 888 // Add the inc/dec to the real part. 889 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 890 } 891 892 ComplexPairTy IncVal(NextVal, InVal.second); 893 894 // Store the updated result through the lvalue. 895 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 896 897 // If this is a postinc, return the value read from memory, otherwise use the 898 // updated value. 899 return isPre ? IncVal : InVal; 900 } 901 902 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 903 CodeGenFunction *CGF) { 904 // Bind VLAs in the cast type. 905 if (CGF && E->getType()->isVariablyModifiedType()) 906 CGF->EmitVariablyModifiedType(E->getType()); 907 908 if (CGDebugInfo *DI = getModuleDebugInfo()) 909 DI->EmitExplicitCastType(E->getType()); 910 } 911 912 //===----------------------------------------------------------------------===// 913 // LValue Expression Emission 914 //===----------------------------------------------------------------------===// 915 916 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 917 /// derive a more accurate bound on the alignment of the pointer. 918 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 919 LValueBaseInfo *BaseInfo, 920 TBAAAccessInfo *TBAAInfo) { 921 // We allow this with ObjC object pointers because of fragile ABIs. 922 assert(E->getType()->isPointerType() || 923 E->getType()->isObjCObjectPointerType()); 924 E = E->IgnoreParens(); 925 926 // Casts: 927 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 928 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 929 CGM.EmitExplicitCastExprType(ECE, this); 930 931 switch (CE->getCastKind()) { 932 // Non-converting casts (but not C's implicit conversion from void*). 933 case CK_BitCast: 934 case CK_NoOp: 935 case CK_AddressSpaceConversion: 936 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 937 if (PtrTy->getPointeeType()->isVoidType()) 938 break; 939 940 LValueBaseInfo InnerBaseInfo; 941 TBAAAccessInfo InnerTBAAInfo; 942 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 943 &InnerBaseInfo, 944 &InnerTBAAInfo); 945 if (BaseInfo) *BaseInfo = InnerBaseInfo; 946 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 947 948 if (isa<ExplicitCastExpr>(CE)) { 949 LValueBaseInfo TargetTypeBaseInfo; 950 TBAAAccessInfo TargetTypeTBAAInfo; 951 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 952 &TargetTypeBaseInfo, 953 &TargetTypeTBAAInfo); 954 if (TBAAInfo) 955 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 956 TargetTypeTBAAInfo); 957 // If the source l-value is opaque, honor the alignment of the 958 // casted-to type. 959 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 960 if (BaseInfo) 961 BaseInfo->mergeForCast(TargetTypeBaseInfo); 962 Addr = Address(Addr.getPointer(), Align); 963 } 964 } 965 966 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 967 CE->getCastKind() == CK_BitCast) { 968 if (auto PT = E->getType()->getAs<PointerType>()) 969 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 970 /*MayBeNull=*/true, 971 CodeGenFunction::CFITCK_UnrelatedCast, 972 CE->getLocStart()); 973 } 974 return CE->getCastKind() != CK_AddressSpaceConversion 975 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 976 : Builder.CreateAddrSpaceCast(Addr, 977 ConvertType(E->getType())); 978 } 979 break; 980 981 // Array-to-pointer decay. 982 case CK_ArrayToPointerDecay: 983 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 984 985 // Derived-to-base conversions. 986 case CK_UncheckedDerivedToBase: 987 case CK_DerivedToBase: { 988 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo, 989 TBAAInfo); 990 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 991 return GetAddressOfBaseClass(Addr, Derived, 992 CE->path_begin(), CE->path_end(), 993 ShouldNullCheckClassCastValue(CE), 994 CE->getExprLoc()); 995 } 996 997 // TODO: Is there any reason to treat base-to-derived conversions 998 // specially? 999 default: 1000 break; 1001 } 1002 } 1003 1004 // Unary &. 1005 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1006 if (UO->getOpcode() == UO_AddrOf) { 1007 LValue LV = EmitLValue(UO->getSubExpr()); 1008 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1009 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1010 return LV.getAddress(); 1011 } 1012 } 1013 1014 // TODO: conditional operators, comma. 1015 1016 // Otherwise, use the alignment of the type. 1017 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1018 TBAAInfo); 1019 return Address(EmitScalarExpr(E), Align); 1020 } 1021 1022 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1023 if (Ty->isVoidType()) 1024 return RValue::get(nullptr); 1025 1026 switch (getEvaluationKind(Ty)) { 1027 case TEK_Complex: { 1028 llvm::Type *EltTy = 1029 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1030 llvm::Value *U = llvm::UndefValue::get(EltTy); 1031 return RValue::getComplex(std::make_pair(U, U)); 1032 } 1033 1034 // If this is a use of an undefined aggregate type, the aggregate must have an 1035 // identifiable address. Just because the contents of the value are undefined 1036 // doesn't mean that the address can't be taken and compared. 1037 case TEK_Aggregate: { 1038 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1039 return RValue::getAggregate(DestPtr); 1040 } 1041 1042 case TEK_Scalar: 1043 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1044 } 1045 llvm_unreachable("bad evaluation kind"); 1046 } 1047 1048 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1049 const char *Name) { 1050 ErrorUnsupported(E, Name); 1051 return GetUndefRValue(E->getType()); 1052 } 1053 1054 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1055 const char *Name) { 1056 ErrorUnsupported(E, Name); 1057 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1058 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1059 E->getType()); 1060 } 1061 1062 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1063 const Expr *Base = Obj; 1064 while (!isa<CXXThisExpr>(Base)) { 1065 // The result of a dynamic_cast can be null. 1066 if (isa<CXXDynamicCastExpr>(Base)) 1067 return false; 1068 1069 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1070 Base = CE->getSubExpr(); 1071 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1072 Base = PE->getSubExpr(); 1073 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1074 if (UO->getOpcode() == UO_Extension) 1075 Base = UO->getSubExpr(); 1076 else 1077 return false; 1078 } else { 1079 return false; 1080 } 1081 } 1082 return true; 1083 } 1084 1085 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1086 LValue LV; 1087 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1088 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1089 else 1090 LV = EmitLValue(E); 1091 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1092 SanitizerSet SkippedChecks; 1093 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1094 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1095 if (IsBaseCXXThis) 1096 SkippedChecks.set(SanitizerKind::Alignment, true); 1097 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1098 SkippedChecks.set(SanitizerKind::Null, true); 1099 } 1100 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1101 E->getType(), LV.getAlignment(), SkippedChecks); 1102 } 1103 return LV; 1104 } 1105 1106 /// EmitLValue - Emit code to compute a designator that specifies the location 1107 /// of the expression. 1108 /// 1109 /// This can return one of two things: a simple address or a bitfield reference. 1110 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1111 /// an LLVM pointer type. 1112 /// 1113 /// If this returns a bitfield reference, nothing about the pointee type of the 1114 /// LLVM value is known: For example, it may not be a pointer to an integer. 1115 /// 1116 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1117 /// this method guarantees that the returned pointer type will point to an LLVM 1118 /// type of the same size of the lvalue's type. If the lvalue has a variable 1119 /// length type, this is not possible. 1120 /// 1121 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1122 ApplyDebugLocation DL(*this, E); 1123 switch (E->getStmtClass()) { 1124 default: return EmitUnsupportedLValue(E, "l-value expression"); 1125 1126 case Expr::ObjCPropertyRefExprClass: 1127 llvm_unreachable("cannot emit a property reference directly"); 1128 1129 case Expr::ObjCSelectorExprClass: 1130 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1131 case Expr::ObjCIsaExprClass: 1132 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1133 case Expr::BinaryOperatorClass: 1134 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1135 case Expr::CompoundAssignOperatorClass: { 1136 QualType Ty = E->getType(); 1137 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1138 Ty = AT->getValueType(); 1139 if (!Ty->isAnyComplexType()) 1140 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1141 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1142 } 1143 case Expr::CallExprClass: 1144 case Expr::CXXMemberCallExprClass: 1145 case Expr::CXXOperatorCallExprClass: 1146 case Expr::UserDefinedLiteralClass: 1147 return EmitCallExprLValue(cast<CallExpr>(E)); 1148 case Expr::VAArgExprClass: 1149 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1150 case Expr::DeclRefExprClass: 1151 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1152 case Expr::ParenExprClass: 1153 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1154 case Expr::GenericSelectionExprClass: 1155 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1156 case Expr::PredefinedExprClass: 1157 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1158 case Expr::StringLiteralClass: 1159 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1160 case Expr::ObjCEncodeExprClass: 1161 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1162 case Expr::PseudoObjectExprClass: 1163 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1164 case Expr::InitListExprClass: 1165 return EmitInitListLValue(cast<InitListExpr>(E)); 1166 case Expr::CXXTemporaryObjectExprClass: 1167 case Expr::CXXConstructExprClass: 1168 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1169 case Expr::CXXBindTemporaryExprClass: 1170 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1171 case Expr::CXXUuidofExprClass: 1172 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1173 case Expr::LambdaExprClass: 1174 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1175 1176 case Expr::ExprWithCleanupsClass: { 1177 const auto *cleanups = cast<ExprWithCleanups>(E); 1178 enterFullExpression(cleanups); 1179 RunCleanupsScope Scope(*this); 1180 LValue LV = EmitLValue(cleanups->getSubExpr()); 1181 if (LV.isSimple()) { 1182 // Defend against branches out of gnu statement expressions surrounded by 1183 // cleanups. 1184 llvm::Value *V = LV.getPointer(); 1185 Scope.ForceCleanup({&V}); 1186 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1187 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1188 } 1189 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1190 // bitfield lvalue or some other non-simple lvalue? 1191 return LV; 1192 } 1193 1194 case Expr::CXXDefaultArgExprClass: 1195 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1196 case Expr::CXXDefaultInitExprClass: { 1197 CXXDefaultInitExprScope Scope(*this); 1198 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1199 } 1200 case Expr::CXXTypeidExprClass: 1201 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1202 1203 case Expr::ObjCMessageExprClass: 1204 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1205 case Expr::ObjCIvarRefExprClass: 1206 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1207 case Expr::StmtExprClass: 1208 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1209 case Expr::UnaryOperatorClass: 1210 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1211 case Expr::ArraySubscriptExprClass: 1212 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1213 case Expr::OMPArraySectionExprClass: 1214 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1215 case Expr::ExtVectorElementExprClass: 1216 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1217 case Expr::MemberExprClass: 1218 return EmitMemberExpr(cast<MemberExpr>(E)); 1219 case Expr::CompoundLiteralExprClass: 1220 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1221 case Expr::ConditionalOperatorClass: 1222 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1223 case Expr::BinaryConditionalOperatorClass: 1224 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1225 case Expr::ChooseExprClass: 1226 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1227 case Expr::OpaqueValueExprClass: 1228 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1229 case Expr::SubstNonTypeTemplateParmExprClass: 1230 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1231 case Expr::ImplicitCastExprClass: 1232 case Expr::CStyleCastExprClass: 1233 case Expr::CXXFunctionalCastExprClass: 1234 case Expr::CXXStaticCastExprClass: 1235 case Expr::CXXDynamicCastExprClass: 1236 case Expr::CXXReinterpretCastExprClass: 1237 case Expr::CXXConstCastExprClass: 1238 case Expr::ObjCBridgedCastExprClass: 1239 return EmitCastLValue(cast<CastExpr>(E)); 1240 1241 case Expr::MaterializeTemporaryExprClass: 1242 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1243 1244 case Expr::CoawaitExprClass: 1245 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1246 case Expr::CoyieldExprClass: 1247 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1248 } 1249 } 1250 1251 /// Given an object of the given canonical type, can we safely copy a 1252 /// value out of it based on its initializer? 1253 static bool isConstantEmittableObjectType(QualType type) { 1254 assert(type.isCanonical()); 1255 assert(!type->isReferenceType()); 1256 1257 // Must be const-qualified but non-volatile. 1258 Qualifiers qs = type.getLocalQualifiers(); 1259 if (!qs.hasConst() || qs.hasVolatile()) return false; 1260 1261 // Otherwise, all object types satisfy this except C++ classes with 1262 // mutable subobjects or non-trivial copy/destroy behavior. 1263 if (const auto *RT = dyn_cast<RecordType>(type)) 1264 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1265 if (RD->hasMutableFields() || !RD->isTrivial()) 1266 return false; 1267 1268 return true; 1269 } 1270 1271 /// Can we constant-emit a load of a reference to a variable of the 1272 /// given type? This is different from predicates like 1273 /// Decl::isUsableInConstantExpressions because we do want it to apply 1274 /// in situations that don't necessarily satisfy the language's rules 1275 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1276 /// to do this with const float variables even if those variables 1277 /// aren't marked 'constexpr'. 1278 enum ConstantEmissionKind { 1279 CEK_None, 1280 CEK_AsReferenceOnly, 1281 CEK_AsValueOrReference, 1282 CEK_AsValueOnly 1283 }; 1284 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1285 type = type.getCanonicalType(); 1286 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1287 if (isConstantEmittableObjectType(ref->getPointeeType())) 1288 return CEK_AsValueOrReference; 1289 return CEK_AsReferenceOnly; 1290 } 1291 if (isConstantEmittableObjectType(type)) 1292 return CEK_AsValueOnly; 1293 return CEK_None; 1294 } 1295 1296 /// Try to emit a reference to the given value without producing it as 1297 /// an l-value. This is actually more than an optimization: we can't 1298 /// produce an l-value for variables that we never actually captured 1299 /// in a block or lambda, which means const int variables or constexpr 1300 /// literals or similar. 1301 CodeGenFunction::ConstantEmission 1302 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1303 ValueDecl *value = refExpr->getDecl(); 1304 1305 // The value needs to be an enum constant or a constant variable. 1306 ConstantEmissionKind CEK; 1307 if (isa<ParmVarDecl>(value)) { 1308 CEK = CEK_None; 1309 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1310 CEK = checkVarTypeForConstantEmission(var->getType()); 1311 } else if (isa<EnumConstantDecl>(value)) { 1312 CEK = CEK_AsValueOnly; 1313 } else { 1314 CEK = CEK_None; 1315 } 1316 if (CEK == CEK_None) return ConstantEmission(); 1317 1318 Expr::EvalResult result; 1319 bool resultIsReference; 1320 QualType resultType; 1321 1322 // It's best to evaluate all the way as an r-value if that's permitted. 1323 if (CEK != CEK_AsReferenceOnly && 1324 refExpr->EvaluateAsRValue(result, getContext())) { 1325 resultIsReference = false; 1326 resultType = refExpr->getType(); 1327 1328 // Otherwise, try to evaluate as an l-value. 1329 } else if (CEK != CEK_AsValueOnly && 1330 refExpr->EvaluateAsLValue(result, getContext())) { 1331 resultIsReference = true; 1332 resultType = value->getType(); 1333 1334 // Failure. 1335 } else { 1336 return ConstantEmission(); 1337 } 1338 1339 // In any case, if the initializer has side-effects, abandon ship. 1340 if (result.HasSideEffects) 1341 return ConstantEmission(); 1342 1343 // Emit as a constant. 1344 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1345 result.Val, resultType); 1346 1347 // Make sure we emit a debug reference to the global variable. 1348 // This should probably fire even for 1349 if (isa<VarDecl>(value)) { 1350 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1351 EmitDeclRefExprDbgValue(refExpr, result.Val); 1352 } else { 1353 assert(isa<EnumConstantDecl>(value)); 1354 EmitDeclRefExprDbgValue(refExpr, result.Val); 1355 } 1356 1357 // If we emitted a reference constant, we need to dereference that. 1358 if (resultIsReference) 1359 return ConstantEmission::forReference(C); 1360 1361 return ConstantEmission::forValue(C); 1362 } 1363 1364 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1365 const MemberExpr *ME) { 1366 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1367 // Try to emit static variable member expressions as DREs. 1368 return DeclRefExpr::Create( 1369 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1370 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1371 ME->getType(), ME->getValueKind()); 1372 } 1373 return nullptr; 1374 } 1375 1376 CodeGenFunction::ConstantEmission 1377 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1378 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1379 return tryEmitAsConstant(DRE); 1380 return ConstantEmission(); 1381 } 1382 1383 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1384 SourceLocation Loc) { 1385 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1386 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1387 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1388 } 1389 1390 static bool hasBooleanRepresentation(QualType Ty) { 1391 if (Ty->isBooleanType()) 1392 return true; 1393 1394 if (const EnumType *ET = Ty->getAs<EnumType>()) 1395 return ET->getDecl()->getIntegerType()->isBooleanType(); 1396 1397 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1398 return hasBooleanRepresentation(AT->getValueType()); 1399 1400 return false; 1401 } 1402 1403 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1404 llvm::APInt &Min, llvm::APInt &End, 1405 bool StrictEnums, bool IsBool) { 1406 const EnumType *ET = Ty->getAs<EnumType>(); 1407 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1408 ET && !ET->getDecl()->isFixed(); 1409 if (!IsBool && !IsRegularCPlusPlusEnum) 1410 return false; 1411 1412 if (IsBool) { 1413 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1414 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1415 } else { 1416 const EnumDecl *ED = ET->getDecl(); 1417 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1418 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1419 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1420 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1421 1422 if (NumNegativeBits) { 1423 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1424 assert(NumBits <= Bitwidth); 1425 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1426 Min = -End; 1427 } else { 1428 assert(NumPositiveBits <= Bitwidth); 1429 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1430 Min = llvm::APInt(Bitwidth, 0); 1431 } 1432 } 1433 return true; 1434 } 1435 1436 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1437 llvm::APInt Min, End; 1438 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1439 hasBooleanRepresentation(Ty))) 1440 return nullptr; 1441 1442 llvm::MDBuilder MDHelper(getLLVMContext()); 1443 return MDHelper.createRange(Min, End); 1444 } 1445 1446 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1447 SourceLocation Loc) { 1448 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1449 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1450 if (!HasBoolCheck && !HasEnumCheck) 1451 return false; 1452 1453 bool IsBool = hasBooleanRepresentation(Ty) || 1454 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1455 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1456 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1457 if (!NeedsBoolCheck && !NeedsEnumCheck) 1458 return false; 1459 1460 // Single-bit booleans don't need to be checked. Special-case this to avoid 1461 // a bit width mismatch when handling bitfield values. This is handled by 1462 // EmitFromMemory for the non-bitfield case. 1463 if (IsBool && 1464 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1465 return false; 1466 1467 llvm::APInt Min, End; 1468 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1469 return true; 1470 1471 auto &Ctx = getLLVMContext(); 1472 SanitizerScope SanScope(this); 1473 llvm::Value *Check; 1474 --End; 1475 if (!Min) { 1476 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1477 } else { 1478 llvm::Value *Upper = 1479 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1480 llvm::Value *Lower = 1481 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1482 Check = Builder.CreateAnd(Upper, Lower); 1483 } 1484 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1485 EmitCheckTypeDescriptor(Ty)}; 1486 SanitizerMask Kind = 1487 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1488 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1489 StaticArgs, EmitCheckValue(Value)); 1490 return true; 1491 } 1492 1493 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1494 QualType Ty, 1495 SourceLocation Loc, 1496 LValueBaseInfo BaseInfo, 1497 TBAAAccessInfo TBAAInfo, 1498 bool isNontemporal) { 1499 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1500 // For better performance, handle vector loads differently. 1501 if (Ty->isVectorType()) { 1502 const llvm::Type *EltTy = Addr.getElementType(); 1503 1504 const auto *VTy = cast<llvm::VectorType>(EltTy); 1505 1506 // Handle vectors of size 3 like size 4 for better performance. 1507 if (VTy->getNumElements() == 3) { 1508 1509 // Bitcast to vec4 type. 1510 llvm::VectorType *vec4Ty = 1511 llvm::VectorType::get(VTy->getElementType(), 4); 1512 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1513 // Now load value. 1514 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1515 1516 // Shuffle vector to get vec3. 1517 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1518 {0, 1, 2}, "extractVec"); 1519 return EmitFromMemory(V, Ty); 1520 } 1521 } 1522 } 1523 1524 // Atomic operations have to be done on integral types. 1525 LValue AtomicLValue = 1526 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1527 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1528 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1529 } 1530 1531 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1532 if (isNontemporal) { 1533 llvm::MDNode *Node = llvm::MDNode::get( 1534 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1535 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1536 } 1537 1538 if (BaseInfo.getMayAlias()) 1539 TBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 1540 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1541 1542 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1543 // In order to prevent the optimizer from throwing away the check, don't 1544 // attach range metadata to the load. 1545 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1546 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1547 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1548 1549 return EmitFromMemory(Load, Ty); 1550 } 1551 1552 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1553 // Bool has a different representation in memory than in registers. 1554 if (hasBooleanRepresentation(Ty)) { 1555 // This should really always be an i1, but sometimes it's already 1556 // an i8, and it's awkward to track those cases down. 1557 if (Value->getType()->isIntegerTy(1)) 1558 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1559 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1560 "wrong value rep of bool"); 1561 } 1562 1563 return Value; 1564 } 1565 1566 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1567 // Bool has a different representation in memory than in registers. 1568 if (hasBooleanRepresentation(Ty)) { 1569 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1570 "wrong value rep of bool"); 1571 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1572 } 1573 1574 return Value; 1575 } 1576 1577 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1578 bool Volatile, QualType Ty, 1579 LValueBaseInfo BaseInfo, 1580 TBAAAccessInfo TBAAInfo, 1581 bool isInit, bool isNontemporal) { 1582 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1583 // Handle vectors differently to get better performance. 1584 if (Ty->isVectorType()) { 1585 llvm::Type *SrcTy = Value->getType(); 1586 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1587 // Handle vec3 special. 1588 if (VecTy && VecTy->getNumElements() == 3) { 1589 // Our source is a vec3, do a shuffle vector to make it a vec4. 1590 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1591 Builder.getInt32(2), 1592 llvm::UndefValue::get(Builder.getInt32Ty())}; 1593 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1594 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1595 MaskV, "extractVec"); 1596 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1597 } 1598 if (Addr.getElementType() != SrcTy) { 1599 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1600 } 1601 } 1602 } 1603 1604 Value = EmitToMemory(Value, Ty); 1605 1606 LValue AtomicLValue = 1607 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1608 if (Ty->isAtomicType() || 1609 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1610 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1611 return; 1612 } 1613 1614 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1615 if (isNontemporal) { 1616 llvm::MDNode *Node = 1617 llvm::MDNode::get(Store->getContext(), 1618 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1619 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1620 } 1621 1622 if (BaseInfo.getMayAlias()) 1623 TBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 1624 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1625 } 1626 1627 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1628 bool isInit) { 1629 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1630 lvalue.getType(), lvalue.getBaseInfo(), 1631 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1632 } 1633 1634 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1635 /// method emits the address of the lvalue, then loads the result as an rvalue, 1636 /// returning the rvalue. 1637 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1638 if (LV.isObjCWeak()) { 1639 // load of a __weak object. 1640 Address AddrWeakObj = LV.getAddress(); 1641 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1642 AddrWeakObj)); 1643 } 1644 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1645 // In MRC mode, we do a load+autorelease. 1646 if (!getLangOpts().ObjCAutoRefCount) { 1647 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1648 } 1649 1650 // In ARC mode, we load retained and then consume the value. 1651 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1652 Object = EmitObjCConsumeObject(LV.getType(), Object); 1653 return RValue::get(Object); 1654 } 1655 1656 if (LV.isSimple()) { 1657 assert(!LV.getType()->isFunctionType()); 1658 1659 // Everything needs a load. 1660 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1661 } 1662 1663 if (LV.isVectorElt()) { 1664 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1665 LV.isVolatileQualified()); 1666 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1667 "vecext")); 1668 } 1669 1670 // If this is a reference to a subset of the elements of a vector, either 1671 // shuffle the input or extract/insert them as appropriate. 1672 if (LV.isExtVectorElt()) 1673 return EmitLoadOfExtVectorElementLValue(LV); 1674 1675 // Global Register variables always invoke intrinsics 1676 if (LV.isGlobalReg()) 1677 return EmitLoadOfGlobalRegLValue(LV); 1678 1679 assert(LV.isBitField() && "Unknown LValue type!"); 1680 return EmitLoadOfBitfieldLValue(LV, Loc); 1681 } 1682 1683 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1684 SourceLocation Loc) { 1685 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1686 1687 // Get the output type. 1688 llvm::Type *ResLTy = ConvertType(LV.getType()); 1689 1690 Address Ptr = LV.getBitFieldAddress(); 1691 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1692 1693 if (Info.IsSigned) { 1694 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1695 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1696 if (HighBits) 1697 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1698 if (Info.Offset + HighBits) 1699 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1700 } else { 1701 if (Info.Offset) 1702 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1703 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1704 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1705 Info.Size), 1706 "bf.clear"); 1707 } 1708 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1709 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1710 return RValue::get(Val); 1711 } 1712 1713 // If this is a reference to a subset of the elements of a vector, create an 1714 // appropriate shufflevector. 1715 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1716 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1717 LV.isVolatileQualified()); 1718 1719 const llvm::Constant *Elts = LV.getExtVectorElts(); 1720 1721 // If the result of the expression is a non-vector type, we must be extracting 1722 // a single element. Just codegen as an extractelement. 1723 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1724 if (!ExprVT) { 1725 unsigned InIdx = getAccessedFieldNo(0, Elts); 1726 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1727 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1728 } 1729 1730 // Always use shuffle vector to try to retain the original program structure 1731 unsigned NumResultElts = ExprVT->getNumElements(); 1732 1733 SmallVector<llvm::Constant*, 4> Mask; 1734 for (unsigned i = 0; i != NumResultElts; ++i) 1735 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1736 1737 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1738 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1739 MaskV); 1740 return RValue::get(Vec); 1741 } 1742 1743 /// @brief Generates lvalue for partial ext_vector access. 1744 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1745 Address VectorAddress = LV.getExtVectorAddress(); 1746 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1747 QualType EQT = ExprVT->getElementType(); 1748 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1749 1750 Address CastToPointerElement = 1751 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1752 "conv.ptr.element"); 1753 1754 const llvm::Constant *Elts = LV.getExtVectorElts(); 1755 unsigned ix = getAccessedFieldNo(0, Elts); 1756 1757 Address VectorBasePtrPlusIx = 1758 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1759 getContext().getTypeSizeInChars(EQT), 1760 "vector.elt"); 1761 1762 return VectorBasePtrPlusIx; 1763 } 1764 1765 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1766 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1767 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1768 "Bad type for register variable"); 1769 llvm::MDNode *RegName = cast<llvm::MDNode>( 1770 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1771 1772 // We accept integer and pointer types only 1773 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1774 llvm::Type *Ty = OrigTy; 1775 if (OrigTy->isPointerTy()) 1776 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1777 llvm::Type *Types[] = { Ty }; 1778 1779 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1780 llvm::Value *Call = Builder.CreateCall( 1781 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1782 if (OrigTy->isPointerTy()) 1783 Call = Builder.CreateIntToPtr(Call, OrigTy); 1784 return RValue::get(Call); 1785 } 1786 1787 1788 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1789 /// lvalue, where both are guaranteed to the have the same type, and that type 1790 /// is 'Ty'. 1791 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1792 bool isInit) { 1793 if (!Dst.isSimple()) { 1794 if (Dst.isVectorElt()) { 1795 // Read/modify/write the vector, inserting the new element. 1796 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1797 Dst.isVolatileQualified()); 1798 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1799 Dst.getVectorIdx(), "vecins"); 1800 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1801 Dst.isVolatileQualified()); 1802 return; 1803 } 1804 1805 // If this is an update of extended vector elements, insert them as 1806 // appropriate. 1807 if (Dst.isExtVectorElt()) 1808 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1809 1810 if (Dst.isGlobalReg()) 1811 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1812 1813 assert(Dst.isBitField() && "Unknown LValue type"); 1814 return EmitStoreThroughBitfieldLValue(Src, Dst); 1815 } 1816 1817 // There's special magic for assigning into an ARC-qualified l-value. 1818 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1819 switch (Lifetime) { 1820 case Qualifiers::OCL_None: 1821 llvm_unreachable("present but none"); 1822 1823 case Qualifiers::OCL_ExplicitNone: 1824 // nothing special 1825 break; 1826 1827 case Qualifiers::OCL_Strong: 1828 if (isInit) { 1829 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1830 break; 1831 } 1832 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1833 return; 1834 1835 case Qualifiers::OCL_Weak: 1836 if (isInit) 1837 // Initialize and then skip the primitive store. 1838 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1839 else 1840 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1841 return; 1842 1843 case Qualifiers::OCL_Autoreleasing: 1844 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1845 Src.getScalarVal())); 1846 // fall into the normal path 1847 break; 1848 } 1849 } 1850 1851 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1852 // load of a __weak object. 1853 Address LvalueDst = Dst.getAddress(); 1854 llvm::Value *src = Src.getScalarVal(); 1855 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1856 return; 1857 } 1858 1859 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1860 // load of a __strong object. 1861 Address LvalueDst = Dst.getAddress(); 1862 llvm::Value *src = Src.getScalarVal(); 1863 if (Dst.isObjCIvar()) { 1864 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1865 llvm::Type *ResultType = IntPtrTy; 1866 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1867 llvm::Value *RHS = dst.getPointer(); 1868 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1869 llvm::Value *LHS = 1870 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1871 "sub.ptr.lhs.cast"); 1872 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1873 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1874 BytesBetween); 1875 } else if (Dst.isGlobalObjCRef()) { 1876 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1877 Dst.isThreadLocalRef()); 1878 } 1879 else 1880 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1881 return; 1882 } 1883 1884 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1885 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1886 } 1887 1888 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1889 llvm::Value **Result) { 1890 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1891 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1892 Address Ptr = Dst.getBitFieldAddress(); 1893 1894 // Get the source value, truncated to the width of the bit-field. 1895 llvm::Value *SrcVal = Src.getScalarVal(); 1896 1897 // Cast the source to the storage type and shift it into place. 1898 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1899 /*IsSigned=*/false); 1900 llvm::Value *MaskedVal = SrcVal; 1901 1902 // See if there are other bits in the bitfield's storage we'll need to load 1903 // and mask together with source before storing. 1904 if (Info.StorageSize != Info.Size) { 1905 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1906 llvm::Value *Val = 1907 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1908 1909 // Mask the source value as needed. 1910 if (!hasBooleanRepresentation(Dst.getType())) 1911 SrcVal = Builder.CreateAnd(SrcVal, 1912 llvm::APInt::getLowBitsSet(Info.StorageSize, 1913 Info.Size), 1914 "bf.value"); 1915 MaskedVal = SrcVal; 1916 if (Info.Offset) 1917 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1918 1919 // Mask out the original value. 1920 Val = Builder.CreateAnd(Val, 1921 ~llvm::APInt::getBitsSet(Info.StorageSize, 1922 Info.Offset, 1923 Info.Offset + Info.Size), 1924 "bf.clear"); 1925 1926 // Or together the unchanged values and the source value. 1927 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1928 } else { 1929 assert(Info.Offset == 0); 1930 } 1931 1932 // Write the new value back out. 1933 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1934 1935 // Return the new value of the bit-field, if requested. 1936 if (Result) { 1937 llvm::Value *ResultVal = MaskedVal; 1938 1939 // Sign extend the value if needed. 1940 if (Info.IsSigned) { 1941 assert(Info.Size <= Info.StorageSize); 1942 unsigned HighBits = Info.StorageSize - Info.Size; 1943 if (HighBits) { 1944 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1945 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1946 } 1947 } 1948 1949 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1950 "bf.result.cast"); 1951 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1952 } 1953 } 1954 1955 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1956 LValue Dst) { 1957 // This access turns into a read/modify/write of the vector. Load the input 1958 // value now. 1959 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1960 Dst.isVolatileQualified()); 1961 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1962 1963 llvm::Value *SrcVal = Src.getScalarVal(); 1964 1965 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1966 unsigned NumSrcElts = VTy->getNumElements(); 1967 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1968 if (NumDstElts == NumSrcElts) { 1969 // Use shuffle vector is the src and destination are the same number of 1970 // elements and restore the vector mask since it is on the side it will be 1971 // stored. 1972 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1973 for (unsigned i = 0; i != NumSrcElts; ++i) 1974 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1975 1976 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1977 Vec = Builder.CreateShuffleVector(SrcVal, 1978 llvm::UndefValue::get(Vec->getType()), 1979 MaskV); 1980 } else if (NumDstElts > NumSrcElts) { 1981 // Extended the source vector to the same length and then shuffle it 1982 // into the destination. 1983 // FIXME: since we're shuffling with undef, can we just use the indices 1984 // into that? This could be simpler. 1985 SmallVector<llvm::Constant*, 4> ExtMask; 1986 for (unsigned i = 0; i != NumSrcElts; ++i) 1987 ExtMask.push_back(Builder.getInt32(i)); 1988 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1989 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1990 llvm::Value *ExtSrcVal = 1991 Builder.CreateShuffleVector(SrcVal, 1992 llvm::UndefValue::get(SrcVal->getType()), 1993 ExtMaskV); 1994 // build identity 1995 SmallVector<llvm::Constant*, 4> Mask; 1996 for (unsigned i = 0; i != NumDstElts; ++i) 1997 Mask.push_back(Builder.getInt32(i)); 1998 1999 // When the vector size is odd and .odd or .hi is used, the last element 2000 // of the Elts constant array will be one past the size of the vector. 2001 // Ignore the last element here, if it is greater than the mask size. 2002 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2003 NumSrcElts--; 2004 2005 // modify when what gets shuffled in 2006 for (unsigned i = 0; i != NumSrcElts; ++i) 2007 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2008 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2009 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2010 } else { 2011 // We should never shorten the vector 2012 llvm_unreachable("unexpected shorten vector length"); 2013 } 2014 } else { 2015 // If the Src is a scalar (not a vector) it must be updating one element. 2016 unsigned InIdx = getAccessedFieldNo(0, Elts); 2017 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2018 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2019 } 2020 2021 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2022 Dst.isVolatileQualified()); 2023 } 2024 2025 /// @brief Store of global named registers are always calls to intrinsics. 2026 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2027 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2028 "Bad type for register variable"); 2029 llvm::MDNode *RegName = cast<llvm::MDNode>( 2030 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2031 assert(RegName && "Register LValue is not metadata"); 2032 2033 // We accept integer and pointer types only 2034 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2035 llvm::Type *Ty = OrigTy; 2036 if (OrigTy->isPointerTy()) 2037 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2038 llvm::Type *Types[] = { Ty }; 2039 2040 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2041 llvm::Value *Value = Src.getScalarVal(); 2042 if (OrigTy->isPointerTy()) 2043 Value = Builder.CreatePtrToInt(Value, Ty); 2044 Builder.CreateCall( 2045 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2046 } 2047 2048 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2049 // generating write-barries API. It is currently a global, ivar, 2050 // or neither. 2051 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2052 LValue &LV, 2053 bool IsMemberAccess=false) { 2054 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2055 return; 2056 2057 if (isa<ObjCIvarRefExpr>(E)) { 2058 QualType ExpTy = E->getType(); 2059 if (IsMemberAccess && ExpTy->isPointerType()) { 2060 // If ivar is a structure pointer, assigning to field of 2061 // this struct follows gcc's behavior and makes it a non-ivar 2062 // writer-barrier conservatively. 2063 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2064 if (ExpTy->isRecordType()) { 2065 LV.setObjCIvar(false); 2066 return; 2067 } 2068 } 2069 LV.setObjCIvar(true); 2070 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2071 LV.setBaseIvarExp(Exp->getBase()); 2072 LV.setObjCArray(E->getType()->isArrayType()); 2073 return; 2074 } 2075 2076 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2077 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2078 if (VD->hasGlobalStorage()) { 2079 LV.setGlobalObjCRef(true); 2080 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2081 } 2082 } 2083 LV.setObjCArray(E->getType()->isArrayType()); 2084 return; 2085 } 2086 2087 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2088 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2089 return; 2090 } 2091 2092 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2093 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2094 if (LV.isObjCIvar()) { 2095 // If cast is to a structure pointer, follow gcc's behavior and make it 2096 // a non-ivar write-barrier. 2097 QualType ExpTy = E->getType(); 2098 if (ExpTy->isPointerType()) 2099 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2100 if (ExpTy->isRecordType()) 2101 LV.setObjCIvar(false); 2102 } 2103 return; 2104 } 2105 2106 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2107 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2108 return; 2109 } 2110 2111 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2112 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2113 return; 2114 } 2115 2116 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2117 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2118 return; 2119 } 2120 2121 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2122 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2123 return; 2124 } 2125 2126 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2127 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2128 if (LV.isObjCIvar() && !LV.isObjCArray()) 2129 // Using array syntax to assigning to what an ivar points to is not 2130 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2131 LV.setObjCIvar(false); 2132 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2133 // Using array syntax to assigning to what global points to is not 2134 // same as assigning to the global itself. {id *G;} G[i] = 0; 2135 LV.setGlobalObjCRef(false); 2136 return; 2137 } 2138 2139 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2140 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2141 // We don't know if member is an 'ivar', but this flag is looked at 2142 // only in the context of LV.isObjCIvar(). 2143 LV.setObjCArray(E->getType()->isArrayType()); 2144 return; 2145 } 2146 } 2147 2148 static llvm::Value * 2149 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2150 llvm::Value *V, llvm::Type *IRType, 2151 StringRef Name = StringRef()) { 2152 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2153 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2154 } 2155 2156 static LValue EmitThreadPrivateVarDeclLValue( 2157 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2158 llvm::Type *RealVarTy, SourceLocation Loc) { 2159 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2160 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2161 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2162 } 2163 2164 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2165 const ReferenceType *RefTy, 2166 LValueBaseInfo *BaseInfo, 2167 TBAAAccessInfo *TBAAInfo) { 2168 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2169 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2170 BaseInfo, TBAAInfo, 2171 /* forPointeeType= */ true)); 2172 } 2173 2174 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2175 const ReferenceType *RefTy) { 2176 LValueBaseInfo BaseInfo; 2177 TBAAAccessInfo TBAAInfo; 2178 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo, &TBAAInfo); 2179 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo, TBAAInfo); 2180 } 2181 2182 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2183 const PointerType *PtrTy, 2184 LValueBaseInfo *BaseInfo, 2185 TBAAAccessInfo *TBAAInfo) { 2186 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2187 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2188 BaseInfo, TBAAInfo, 2189 /*forPointeeType=*/true)); 2190 } 2191 2192 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2193 const PointerType *PtrTy) { 2194 LValueBaseInfo BaseInfo; 2195 TBAAAccessInfo TBAAInfo; 2196 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2197 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2198 } 2199 2200 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2201 const Expr *E, const VarDecl *VD) { 2202 QualType T = E->getType(); 2203 2204 // If it's thread_local, emit a call to its wrapper function instead. 2205 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2206 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2207 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2208 2209 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2210 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2211 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2212 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2213 Address Addr(V, Alignment); 2214 LValue LV; 2215 // Emit reference to the private copy of the variable if it is an OpenMP 2216 // threadprivate variable. 2217 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2218 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2219 E->getExprLoc()); 2220 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2221 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2222 } else { 2223 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2224 } 2225 setObjCGCLValueClass(CGF.getContext(), E, LV); 2226 return LV; 2227 } 2228 2229 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2230 const FunctionDecl *FD) { 2231 if (FD->hasAttr<WeakRefAttr>()) { 2232 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2233 return aliasee.getPointer(); 2234 } 2235 2236 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2237 if (!FD->hasPrototype()) { 2238 if (const FunctionProtoType *Proto = 2239 FD->getType()->getAs<FunctionProtoType>()) { 2240 // Ugly case: for a K&R-style definition, the type of the definition 2241 // isn't the same as the type of a use. Correct for this with a 2242 // bitcast. 2243 QualType NoProtoType = 2244 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2245 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2246 V = llvm::ConstantExpr::getBitCast(V, 2247 CGM.getTypes().ConvertType(NoProtoType)); 2248 } 2249 } 2250 return V; 2251 } 2252 2253 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2254 const Expr *E, const FunctionDecl *FD) { 2255 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2256 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2257 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2258 AlignmentSource::Decl); 2259 } 2260 2261 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2262 llvm::Value *ThisValue) { 2263 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2264 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2265 return CGF.EmitLValueForField(LV, FD); 2266 } 2267 2268 /// Named Registers are named metadata pointing to the register name 2269 /// which will be read from/written to as an argument to the intrinsic 2270 /// @llvm.read/write_register. 2271 /// So far, only the name is being passed down, but other options such as 2272 /// register type, allocation type or even optimization options could be 2273 /// passed down via the metadata node. 2274 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2275 SmallString<64> Name("llvm.named.register."); 2276 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2277 assert(Asm->getLabel().size() < 64-Name.size() && 2278 "Register name too big"); 2279 Name.append(Asm->getLabel()); 2280 llvm::NamedMDNode *M = 2281 CGM.getModule().getOrInsertNamedMetadata(Name); 2282 if (M->getNumOperands() == 0) { 2283 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2284 Asm->getLabel()); 2285 llvm::Metadata *Ops[] = {Str}; 2286 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2287 } 2288 2289 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2290 2291 llvm::Value *Ptr = 2292 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2293 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2294 } 2295 2296 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2297 const NamedDecl *ND = E->getDecl(); 2298 QualType T = E->getType(); 2299 2300 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2301 // Global Named registers access via intrinsics only 2302 if (VD->getStorageClass() == SC_Register && 2303 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2304 return EmitGlobalNamedRegister(VD, CGM); 2305 2306 // A DeclRefExpr for a reference initialized by a constant expression can 2307 // appear without being odr-used. Directly emit the constant initializer. 2308 const Expr *Init = VD->getAnyInitializer(VD); 2309 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2310 VD->isUsableInConstantExpressions(getContext()) && 2311 VD->checkInitIsICE() && 2312 // Do not emit if it is private OpenMP variable. 2313 !(E->refersToEnclosingVariableOrCapture() && 2314 ((CapturedStmtInfo && 2315 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2316 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2317 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2318 isa<BlockDecl>(CurCodeDecl)))) { 2319 llvm::Constant *Val = 2320 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2321 *VD->evaluateValue(), 2322 VD->getType()); 2323 assert(Val && "failed to emit reference constant expression"); 2324 // FIXME: Eventually we will want to emit vector element references. 2325 2326 // Should we be using the alignment of the constant pointer we emitted? 2327 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2328 /* BaseInfo= */ nullptr, 2329 /* TBAAInfo= */ nullptr, 2330 /* forPointeeType= */ true); 2331 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2332 } 2333 2334 // Check for captured variables. 2335 if (E->refersToEnclosingVariableOrCapture()) { 2336 VD = VD->getCanonicalDecl(); 2337 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2338 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2339 else if (CapturedStmtInfo) { 2340 auto I = LocalDeclMap.find(VD); 2341 if (I != LocalDeclMap.end()) { 2342 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2343 return EmitLoadOfReferenceLValue(I->second, RefTy); 2344 return MakeAddrLValue(I->second, T); 2345 } 2346 LValue CapLVal = 2347 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2348 CapturedStmtInfo->getContextValue()); 2349 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2350 return MakeAddrLValue( 2351 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2352 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias), 2353 CGM.getTBAAAccessInfo(CapLVal.getType())); 2354 } 2355 2356 assert(isa<BlockDecl>(CurCodeDecl)); 2357 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2358 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2359 } 2360 } 2361 2362 // FIXME: We should be able to assert this for FunctionDecls as well! 2363 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2364 // those with a valid source location. 2365 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2366 !E->getLocation().isValid()) && 2367 "Should not use decl without marking it used!"); 2368 2369 if (ND->hasAttr<WeakRefAttr>()) { 2370 const auto *VD = cast<ValueDecl>(ND); 2371 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2372 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2373 } 2374 2375 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2376 // Check if this is a global variable. 2377 if (VD->hasLinkage() || VD->isStaticDataMember()) 2378 return EmitGlobalVarDeclLValue(*this, E, VD); 2379 2380 Address addr = Address::invalid(); 2381 2382 // The variable should generally be present in the local decl map. 2383 auto iter = LocalDeclMap.find(VD); 2384 if (iter != LocalDeclMap.end()) { 2385 addr = iter->second; 2386 2387 // Otherwise, it might be static local we haven't emitted yet for 2388 // some reason; most likely, because it's in an outer function. 2389 } else if (VD->isStaticLocal()) { 2390 addr = Address(CGM.getOrCreateStaticVarDecl( 2391 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2392 getContext().getDeclAlign(VD)); 2393 2394 // No other cases for now. 2395 } else { 2396 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2397 } 2398 2399 2400 // Check for OpenMP threadprivate variables. 2401 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2402 return EmitThreadPrivateVarDeclLValue( 2403 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2404 E->getExprLoc()); 2405 } 2406 2407 // Drill into block byref variables. 2408 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2409 if (isBlockByref) { 2410 addr = emitBlockByrefAddress(addr, VD); 2411 } 2412 2413 // Drill into reference types. 2414 LValue LV; 2415 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2416 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2417 } else { 2418 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2419 } 2420 2421 bool isLocalStorage = VD->hasLocalStorage(); 2422 2423 bool NonGCable = isLocalStorage && 2424 !VD->getType()->isReferenceType() && 2425 !isBlockByref; 2426 if (NonGCable) { 2427 LV.getQuals().removeObjCGCAttr(); 2428 LV.setNonGC(true); 2429 } 2430 2431 bool isImpreciseLifetime = 2432 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2433 if (isImpreciseLifetime) 2434 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2435 setObjCGCLValueClass(getContext(), E, LV); 2436 return LV; 2437 } 2438 2439 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2440 return EmitFunctionDeclLValue(*this, E, FD); 2441 2442 // FIXME: While we're emitting a binding from an enclosing scope, all other 2443 // DeclRefExprs we see should be implicitly treated as if they also refer to 2444 // an enclosing scope. 2445 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2446 return EmitLValue(BD->getBinding()); 2447 2448 llvm_unreachable("Unhandled DeclRefExpr"); 2449 } 2450 2451 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2452 // __extension__ doesn't affect lvalue-ness. 2453 if (E->getOpcode() == UO_Extension) 2454 return EmitLValue(E->getSubExpr()); 2455 2456 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2457 switch (E->getOpcode()) { 2458 default: llvm_unreachable("Unknown unary operator lvalue!"); 2459 case UO_Deref: { 2460 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2461 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2462 2463 LValueBaseInfo BaseInfo; 2464 TBAAAccessInfo TBAAInfo; 2465 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2466 &TBAAInfo); 2467 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2468 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2469 2470 // We should not generate __weak write barrier on indirect reference 2471 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2472 // But, we continue to generate __strong write barrier on indirect write 2473 // into a pointer to object. 2474 if (getLangOpts().ObjC1 && 2475 getLangOpts().getGC() != LangOptions::NonGC && 2476 LV.isObjCWeak()) 2477 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2478 return LV; 2479 } 2480 case UO_Real: 2481 case UO_Imag: { 2482 LValue LV = EmitLValue(E->getSubExpr()); 2483 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2484 2485 // __real is valid on scalars. This is a faster way of testing that. 2486 // __imag can only produce an rvalue on scalars. 2487 if (E->getOpcode() == UO_Real && 2488 !LV.getAddress().getElementType()->isStructTy()) { 2489 assert(E->getSubExpr()->getType()->isArithmeticType()); 2490 return LV; 2491 } 2492 2493 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2494 2495 Address Component = 2496 (E->getOpcode() == UO_Real 2497 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2498 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2499 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2500 CGM.getTBAAAccessInfo(T)); 2501 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2502 return ElemLV; 2503 } 2504 case UO_PreInc: 2505 case UO_PreDec: { 2506 LValue LV = EmitLValue(E->getSubExpr()); 2507 bool isInc = E->getOpcode() == UO_PreInc; 2508 2509 if (E->getType()->isAnyComplexType()) 2510 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2511 else 2512 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2513 return LV; 2514 } 2515 } 2516 } 2517 2518 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2519 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2520 E->getType(), AlignmentSource::Decl); 2521 } 2522 2523 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2524 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2525 E->getType(), AlignmentSource::Decl); 2526 } 2527 2528 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2529 auto SL = E->getFunctionName(); 2530 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2531 StringRef FnName = CurFn->getName(); 2532 if (FnName.startswith("\01")) 2533 FnName = FnName.substr(1); 2534 StringRef NameItems[] = { 2535 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2536 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2537 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2538 std::string Name = SL->getString(); 2539 if (!Name.empty()) { 2540 unsigned Discriminator = 2541 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2542 if (Discriminator) 2543 Name += "_" + Twine(Discriminator + 1).str(); 2544 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2545 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2546 } else { 2547 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2548 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2549 } 2550 } 2551 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2552 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2553 } 2554 2555 /// Emit a type description suitable for use by a runtime sanitizer library. The 2556 /// format of a type descriptor is 2557 /// 2558 /// \code 2559 /// { i16 TypeKind, i16 TypeInfo } 2560 /// \endcode 2561 /// 2562 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2563 /// integer, 1 for a floating point value, and -1 for anything else. 2564 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2565 // Only emit each type's descriptor once. 2566 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2567 return C; 2568 2569 uint16_t TypeKind = -1; 2570 uint16_t TypeInfo = 0; 2571 2572 if (T->isIntegerType()) { 2573 TypeKind = 0; 2574 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2575 (T->isSignedIntegerType() ? 1 : 0); 2576 } else if (T->isFloatingType()) { 2577 TypeKind = 1; 2578 TypeInfo = getContext().getTypeSize(T); 2579 } 2580 2581 // Format the type name as if for a diagnostic, including quotes and 2582 // optionally an 'aka'. 2583 SmallString<32> Buffer; 2584 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2585 (intptr_t)T.getAsOpaquePtr(), 2586 StringRef(), StringRef(), None, Buffer, 2587 None); 2588 2589 llvm::Constant *Components[] = { 2590 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2591 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2592 }; 2593 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2594 2595 auto *GV = new llvm::GlobalVariable( 2596 CGM.getModule(), Descriptor->getType(), 2597 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2598 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2599 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2600 2601 // Remember the descriptor for this type. 2602 CGM.setTypeDescriptorInMap(T, GV); 2603 2604 return GV; 2605 } 2606 2607 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2608 llvm::Type *TargetTy = IntPtrTy; 2609 2610 if (V->getType() == TargetTy) 2611 return V; 2612 2613 // Floating-point types which fit into intptr_t are bitcast to integers 2614 // and then passed directly (after zero-extension, if necessary). 2615 if (V->getType()->isFloatingPointTy()) { 2616 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2617 if (Bits <= TargetTy->getIntegerBitWidth()) 2618 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2619 Bits)); 2620 } 2621 2622 // Integers which fit in intptr_t are zero-extended and passed directly. 2623 if (V->getType()->isIntegerTy() && 2624 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2625 return Builder.CreateZExt(V, TargetTy); 2626 2627 // Pointers are passed directly, everything else is passed by address. 2628 if (!V->getType()->isPointerTy()) { 2629 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2630 Builder.CreateStore(V, Ptr); 2631 V = Ptr.getPointer(); 2632 } 2633 return Builder.CreatePtrToInt(V, TargetTy); 2634 } 2635 2636 /// \brief Emit a representation of a SourceLocation for passing to a handler 2637 /// in a sanitizer runtime library. The format for this data is: 2638 /// \code 2639 /// struct SourceLocation { 2640 /// const char *Filename; 2641 /// int32_t Line, Column; 2642 /// }; 2643 /// \endcode 2644 /// For an invalid SourceLocation, the Filename pointer is null. 2645 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2646 llvm::Constant *Filename; 2647 int Line, Column; 2648 2649 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2650 if (PLoc.isValid()) { 2651 StringRef FilenameString = PLoc.getFilename(); 2652 2653 int PathComponentsToStrip = 2654 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2655 if (PathComponentsToStrip < 0) { 2656 assert(PathComponentsToStrip != INT_MIN); 2657 int PathComponentsToKeep = -PathComponentsToStrip; 2658 auto I = llvm::sys::path::rbegin(FilenameString); 2659 auto E = llvm::sys::path::rend(FilenameString); 2660 while (I != E && --PathComponentsToKeep) 2661 ++I; 2662 2663 FilenameString = FilenameString.substr(I - E); 2664 } else if (PathComponentsToStrip > 0) { 2665 auto I = llvm::sys::path::begin(FilenameString); 2666 auto E = llvm::sys::path::end(FilenameString); 2667 while (I != E && PathComponentsToStrip--) 2668 ++I; 2669 2670 if (I != E) 2671 FilenameString = 2672 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2673 else 2674 FilenameString = llvm::sys::path::filename(FilenameString); 2675 } 2676 2677 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2678 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2679 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2680 Filename = FilenameGV.getPointer(); 2681 Line = PLoc.getLine(); 2682 Column = PLoc.getColumn(); 2683 } else { 2684 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2685 Line = Column = 0; 2686 } 2687 2688 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2689 Builder.getInt32(Column)}; 2690 2691 return llvm::ConstantStruct::getAnon(Data); 2692 } 2693 2694 namespace { 2695 /// \brief Specify under what conditions this check can be recovered 2696 enum class CheckRecoverableKind { 2697 /// Always terminate program execution if this check fails. 2698 Unrecoverable, 2699 /// Check supports recovering, runtime has both fatal (noreturn) and 2700 /// non-fatal handlers for this check. 2701 Recoverable, 2702 /// Runtime conditionally aborts, always need to support recovery. 2703 AlwaysRecoverable 2704 }; 2705 } 2706 2707 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2708 assert(llvm::countPopulation(Kind) == 1); 2709 switch (Kind) { 2710 case SanitizerKind::Vptr: 2711 return CheckRecoverableKind::AlwaysRecoverable; 2712 case SanitizerKind::Return: 2713 case SanitizerKind::Unreachable: 2714 return CheckRecoverableKind::Unrecoverable; 2715 default: 2716 return CheckRecoverableKind::Recoverable; 2717 } 2718 } 2719 2720 namespace { 2721 struct SanitizerHandlerInfo { 2722 char const *const Name; 2723 unsigned Version; 2724 }; 2725 } 2726 2727 const SanitizerHandlerInfo SanitizerHandlers[] = { 2728 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2729 LIST_SANITIZER_CHECKS 2730 #undef SANITIZER_CHECK 2731 }; 2732 2733 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2734 llvm::FunctionType *FnType, 2735 ArrayRef<llvm::Value *> FnArgs, 2736 SanitizerHandler CheckHandler, 2737 CheckRecoverableKind RecoverKind, bool IsFatal, 2738 llvm::BasicBlock *ContBB) { 2739 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2740 bool NeedsAbortSuffix = 2741 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2742 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2743 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2744 const StringRef CheckName = CheckInfo.Name; 2745 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2746 if (CheckInfo.Version && !MinimalRuntime) 2747 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2748 if (MinimalRuntime) 2749 FnName += "_minimal"; 2750 if (NeedsAbortSuffix) 2751 FnName += "_abort"; 2752 bool MayReturn = 2753 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2754 2755 llvm::AttrBuilder B; 2756 if (!MayReturn) { 2757 B.addAttribute(llvm::Attribute::NoReturn) 2758 .addAttribute(llvm::Attribute::NoUnwind); 2759 } 2760 B.addAttribute(llvm::Attribute::UWTable); 2761 2762 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2763 FnType, FnName, 2764 llvm::AttributeList::get(CGF.getLLVMContext(), 2765 llvm::AttributeList::FunctionIndex, B), 2766 /*Local=*/true); 2767 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2768 if (!MayReturn) { 2769 HandlerCall->setDoesNotReturn(); 2770 CGF.Builder.CreateUnreachable(); 2771 } else { 2772 CGF.Builder.CreateBr(ContBB); 2773 } 2774 } 2775 2776 void CodeGenFunction::EmitCheck( 2777 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2778 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2779 ArrayRef<llvm::Value *> DynamicArgs) { 2780 assert(IsSanitizerScope); 2781 assert(Checked.size() > 0); 2782 assert(CheckHandler >= 0 && 2783 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2784 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2785 2786 llvm::Value *FatalCond = nullptr; 2787 llvm::Value *RecoverableCond = nullptr; 2788 llvm::Value *TrapCond = nullptr; 2789 for (int i = 0, n = Checked.size(); i < n; ++i) { 2790 llvm::Value *Check = Checked[i].first; 2791 // -fsanitize-trap= overrides -fsanitize-recover=. 2792 llvm::Value *&Cond = 2793 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2794 ? TrapCond 2795 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2796 ? RecoverableCond 2797 : FatalCond; 2798 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2799 } 2800 2801 if (TrapCond) 2802 EmitTrapCheck(TrapCond); 2803 if (!FatalCond && !RecoverableCond) 2804 return; 2805 2806 llvm::Value *JointCond; 2807 if (FatalCond && RecoverableCond) 2808 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2809 else 2810 JointCond = FatalCond ? FatalCond : RecoverableCond; 2811 assert(JointCond); 2812 2813 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2814 assert(SanOpts.has(Checked[0].second)); 2815 #ifndef NDEBUG 2816 for (int i = 1, n = Checked.size(); i < n; ++i) { 2817 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2818 "All recoverable kinds in a single check must be same!"); 2819 assert(SanOpts.has(Checked[i].second)); 2820 } 2821 #endif 2822 2823 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2824 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2825 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2826 // Give hint that we very much don't expect to execute the handler 2827 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2828 llvm::MDBuilder MDHelper(getLLVMContext()); 2829 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2830 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2831 EmitBlock(Handlers); 2832 2833 // Handler functions take an i8* pointing to the (handler-specific) static 2834 // information block, followed by a sequence of intptr_t arguments 2835 // representing operand values. 2836 SmallVector<llvm::Value *, 4> Args; 2837 SmallVector<llvm::Type *, 4> ArgTypes; 2838 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2839 Args.reserve(DynamicArgs.size() + 1); 2840 ArgTypes.reserve(DynamicArgs.size() + 1); 2841 2842 // Emit handler arguments and create handler function type. 2843 if (!StaticArgs.empty()) { 2844 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2845 auto *InfoPtr = 2846 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2847 llvm::GlobalVariable::PrivateLinkage, Info); 2848 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2849 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2850 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2851 ArgTypes.push_back(Int8PtrTy); 2852 } 2853 2854 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2855 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2856 ArgTypes.push_back(IntPtrTy); 2857 } 2858 } 2859 2860 llvm::FunctionType *FnType = 2861 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2862 2863 if (!FatalCond || !RecoverableCond) { 2864 // Simple case: we need to generate a single handler call, either 2865 // fatal, or non-fatal. 2866 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2867 (FatalCond != nullptr), Cont); 2868 } else { 2869 // Emit two handler calls: first one for set of unrecoverable checks, 2870 // another one for recoverable. 2871 llvm::BasicBlock *NonFatalHandlerBB = 2872 createBasicBlock("non_fatal." + CheckName); 2873 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2874 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2875 EmitBlock(FatalHandlerBB); 2876 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2877 NonFatalHandlerBB); 2878 EmitBlock(NonFatalHandlerBB); 2879 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2880 Cont); 2881 } 2882 2883 EmitBlock(Cont); 2884 } 2885 2886 void CodeGenFunction::EmitCfiSlowPathCheck( 2887 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2888 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2889 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2890 2891 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2892 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2893 2894 llvm::MDBuilder MDHelper(getLLVMContext()); 2895 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2896 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2897 2898 EmitBlock(CheckBB); 2899 2900 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2901 2902 llvm::CallInst *CheckCall; 2903 if (WithDiag) { 2904 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2905 auto *InfoPtr = 2906 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2907 llvm::GlobalVariable::PrivateLinkage, Info); 2908 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2909 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2910 2911 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2912 "__cfi_slowpath_diag", 2913 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2914 false)); 2915 CheckCall = Builder.CreateCall( 2916 SlowPathDiagFn, 2917 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2918 } else { 2919 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2920 "__cfi_slowpath", 2921 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2922 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2923 } 2924 2925 CheckCall->setDoesNotThrow(); 2926 2927 EmitBlock(Cont); 2928 } 2929 2930 // Emit a stub for __cfi_check function so that the linker knows about this 2931 // symbol in LTO mode. 2932 void CodeGenFunction::EmitCfiCheckStub() { 2933 llvm::Module *M = &CGM.getModule(); 2934 auto &Ctx = M->getContext(); 2935 llvm::Function *F = llvm::Function::Create( 2936 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2937 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2938 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2939 // FIXME: consider emitting an intrinsic call like 2940 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2941 // which can be lowered in CrossDSOCFI pass to the actual contents of 2942 // __cfi_check. This would allow inlining of __cfi_check calls. 2943 llvm::CallInst::Create( 2944 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2945 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2946 } 2947 2948 // This function is basically a switch over the CFI failure kind, which is 2949 // extracted from CFICheckFailData (1st function argument). Each case is either 2950 // llvm.trap or a call to one of the two runtime handlers, based on 2951 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2952 // failure kind) traps, but this should really never happen. CFICheckFailData 2953 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2954 // check kind; in this case __cfi_check_fail traps as well. 2955 void CodeGenFunction::EmitCfiCheckFail() { 2956 SanitizerScope SanScope(this); 2957 FunctionArgList Args; 2958 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2959 ImplicitParamDecl::Other); 2960 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2961 ImplicitParamDecl::Other); 2962 Args.push_back(&ArgData); 2963 Args.push_back(&ArgAddr); 2964 2965 const CGFunctionInfo &FI = 2966 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2967 2968 llvm::Function *F = llvm::Function::Create( 2969 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2970 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2971 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2972 2973 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2974 SourceLocation()); 2975 2976 llvm::Value *Data = 2977 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2978 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2979 llvm::Value *Addr = 2980 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2981 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2982 2983 // Data == nullptr means the calling module has trap behaviour for this check. 2984 llvm::Value *DataIsNotNullPtr = 2985 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2986 EmitTrapCheck(DataIsNotNullPtr); 2987 2988 llvm::StructType *SourceLocationTy = 2989 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2990 llvm::StructType *CfiCheckFailDataTy = 2991 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2992 2993 llvm::Value *V = Builder.CreateConstGEP2_32( 2994 CfiCheckFailDataTy, 2995 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2996 0); 2997 Address CheckKindAddr(V, getIntAlign()); 2998 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2999 3000 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3001 CGM.getLLVMContext(), 3002 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3003 llvm::Value *ValidVtable = Builder.CreateZExt( 3004 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3005 {Addr, AllVtables}), 3006 IntPtrTy); 3007 3008 const std::pair<int, SanitizerMask> CheckKinds[] = { 3009 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3010 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3011 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3012 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3013 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3014 3015 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3016 for (auto CheckKindMaskPair : CheckKinds) { 3017 int Kind = CheckKindMaskPair.first; 3018 SanitizerMask Mask = CheckKindMaskPair.second; 3019 llvm::Value *Cond = 3020 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3021 if (CGM.getLangOpts().Sanitize.has(Mask)) 3022 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3023 {Data, Addr, ValidVtable}); 3024 else 3025 EmitTrapCheck(Cond); 3026 } 3027 3028 FinishFunction(); 3029 // The only reference to this function will be created during LTO link. 3030 // Make sure it survives until then. 3031 CGM.addUsedGlobal(F); 3032 } 3033 3034 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3035 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3036 3037 // If we're optimizing, collapse all calls to trap down to just one per 3038 // function to save on code size. 3039 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3040 TrapBB = createBasicBlock("trap"); 3041 Builder.CreateCondBr(Checked, Cont, TrapBB); 3042 EmitBlock(TrapBB); 3043 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3044 TrapCall->setDoesNotReturn(); 3045 TrapCall->setDoesNotThrow(); 3046 Builder.CreateUnreachable(); 3047 } else { 3048 Builder.CreateCondBr(Checked, Cont, TrapBB); 3049 } 3050 3051 EmitBlock(Cont); 3052 } 3053 3054 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3055 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3056 3057 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3058 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3059 CGM.getCodeGenOpts().TrapFuncName); 3060 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3061 } 3062 3063 return TrapCall; 3064 } 3065 3066 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3067 LValueBaseInfo *BaseInfo, 3068 TBAAAccessInfo *TBAAInfo) { 3069 assert(E->getType()->isArrayType() && 3070 "Array to pointer decay must have array source type!"); 3071 3072 // Expressions of array type can't be bitfields or vector elements. 3073 LValue LV = EmitLValue(E); 3074 Address Addr = LV.getAddress(); 3075 3076 // If the array type was an incomplete type, we need to make sure 3077 // the decay ends up being the right type. 3078 llvm::Type *NewTy = ConvertType(E->getType()); 3079 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3080 3081 // Note that VLA pointers are always decayed, so we don't need to do 3082 // anything here. 3083 if (!E->getType()->isVariableArrayType()) { 3084 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3085 "Expected pointer to array"); 3086 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3087 } 3088 3089 // The result of this decay conversion points to an array element within the 3090 // base lvalue. However, since TBAA currently does not support representing 3091 // accesses to elements of member arrays, we conservatively represent accesses 3092 // to the pointee object as if it had no any base lvalue specified. 3093 // TODO: Support TBAA for member arrays. 3094 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3095 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3096 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3097 3098 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3099 } 3100 3101 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3102 /// array to pointer, return the array subexpression. 3103 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3104 // If this isn't just an array->pointer decay, bail out. 3105 const auto *CE = dyn_cast<CastExpr>(E); 3106 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3107 return nullptr; 3108 3109 // If this is a decay from variable width array, bail out. 3110 const Expr *SubExpr = CE->getSubExpr(); 3111 if (SubExpr->getType()->isVariableArrayType()) 3112 return nullptr; 3113 3114 return SubExpr; 3115 } 3116 3117 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3118 llvm::Value *ptr, 3119 ArrayRef<llvm::Value*> indices, 3120 bool inbounds, 3121 bool signedIndices, 3122 SourceLocation loc, 3123 const llvm::Twine &name = "arrayidx") { 3124 if (inbounds) { 3125 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3126 CodeGenFunction::NotSubtraction, loc, 3127 name); 3128 } else { 3129 return CGF.Builder.CreateGEP(ptr, indices, name); 3130 } 3131 } 3132 3133 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3134 llvm::Value *idx, 3135 CharUnits eltSize) { 3136 // If we have a constant index, we can use the exact offset of the 3137 // element we're accessing. 3138 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3139 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3140 return arrayAlign.alignmentAtOffset(offset); 3141 3142 // Otherwise, use the worst-case alignment for any element. 3143 } else { 3144 return arrayAlign.alignmentOfArrayElement(eltSize); 3145 } 3146 } 3147 3148 static QualType getFixedSizeElementType(const ASTContext &ctx, 3149 const VariableArrayType *vla) { 3150 QualType eltType; 3151 do { 3152 eltType = vla->getElementType(); 3153 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3154 return eltType; 3155 } 3156 3157 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3158 ArrayRef<llvm::Value *> indices, 3159 QualType eltType, bool inbounds, 3160 bool signedIndices, SourceLocation loc, 3161 const llvm::Twine &name = "arrayidx") { 3162 // All the indices except that last must be zero. 3163 #ifndef NDEBUG 3164 for (auto idx : indices.drop_back()) 3165 assert(isa<llvm::ConstantInt>(idx) && 3166 cast<llvm::ConstantInt>(idx)->isZero()); 3167 #endif 3168 3169 // Determine the element size of the statically-sized base. This is 3170 // the thing that the indices are expressed in terms of. 3171 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3172 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3173 } 3174 3175 // We can use that to compute the best alignment of the element. 3176 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3177 CharUnits eltAlign = 3178 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3179 3180 llvm::Value *eltPtr = emitArraySubscriptGEP( 3181 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3182 return Address(eltPtr, eltAlign); 3183 } 3184 3185 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3186 bool Accessed) { 3187 // The index must always be an integer, which is not an aggregate. Emit it 3188 // in lexical order (this complexity is, sadly, required by C++17). 3189 llvm::Value *IdxPre = 3190 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3191 bool SignedIndices = false; 3192 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3193 auto *Idx = IdxPre; 3194 if (E->getLHS() != E->getIdx()) { 3195 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3196 Idx = EmitScalarExpr(E->getIdx()); 3197 } 3198 3199 QualType IdxTy = E->getIdx()->getType(); 3200 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3201 SignedIndices |= IdxSigned; 3202 3203 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3204 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3205 3206 // Extend or truncate the index type to 32 or 64-bits. 3207 if (Promote && Idx->getType() != IntPtrTy) 3208 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3209 3210 return Idx; 3211 }; 3212 IdxPre = nullptr; 3213 3214 // If the base is a vector type, then we are forming a vector element lvalue 3215 // with this subscript. 3216 if (E->getBase()->getType()->isVectorType() && 3217 !isa<ExtVectorElementExpr>(E->getBase())) { 3218 // Emit the vector as an lvalue to get its address. 3219 LValue LHS = EmitLValue(E->getBase()); 3220 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3221 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3222 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3223 LHS.getBaseInfo(), TBAAAccessInfo()); 3224 } 3225 3226 // All the other cases basically behave like simple offsetting. 3227 3228 // Handle the extvector case we ignored above. 3229 if (isa<ExtVectorElementExpr>(E->getBase())) { 3230 LValue LV = EmitLValue(E->getBase()); 3231 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3232 Address Addr = EmitExtVectorElementLValue(LV); 3233 3234 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3235 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3236 SignedIndices, E->getExprLoc()); 3237 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3238 CGM.getTBAAAccessInfo(EltType)); 3239 } 3240 3241 LValueBaseInfo BaseInfo; 3242 TBAAAccessInfo TBAAInfo; 3243 Address Addr = Address::invalid(); 3244 if (const VariableArrayType *vla = 3245 getContext().getAsVariableArrayType(E->getType())) { 3246 // The base must be a pointer, which is not an aggregate. Emit 3247 // it. It needs to be emitted first in case it's what captures 3248 // the VLA bounds. 3249 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3250 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3251 3252 // The element count here is the total number of non-VLA elements. 3253 llvm::Value *numElements = getVLASize(vla).first; 3254 3255 // Effectively, the multiply by the VLA size is part of the GEP. 3256 // GEP indexes are signed, and scaling an index isn't permitted to 3257 // signed-overflow, so we use the same semantics for our explicit 3258 // multiply. We suppress this if overflow is not undefined behavior. 3259 if (getLangOpts().isSignedOverflowDefined()) { 3260 Idx = Builder.CreateMul(Idx, numElements); 3261 } else { 3262 Idx = Builder.CreateNSWMul(Idx, numElements); 3263 } 3264 3265 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3266 !getLangOpts().isSignedOverflowDefined(), 3267 SignedIndices, E->getExprLoc()); 3268 3269 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3270 // Indexing over an interface, as in "NSString *P; P[4];" 3271 3272 // Emit the base pointer. 3273 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3274 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3275 3276 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3277 llvm::Value *InterfaceSizeVal = 3278 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3279 3280 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3281 3282 // We don't necessarily build correct LLVM struct types for ObjC 3283 // interfaces, so we can't rely on GEP to do this scaling 3284 // correctly, so we need to cast to i8*. FIXME: is this actually 3285 // true? A lot of other things in the fragile ABI would break... 3286 llvm::Type *OrigBaseTy = Addr.getType(); 3287 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3288 3289 // Do the GEP. 3290 CharUnits EltAlign = 3291 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3292 llvm::Value *EltPtr = 3293 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3294 SignedIndices, E->getExprLoc()); 3295 Addr = Address(EltPtr, EltAlign); 3296 3297 // Cast back. 3298 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3299 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3300 // If this is A[i] where A is an array, the frontend will have decayed the 3301 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3302 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3303 // "gep x, i" here. Emit one "gep A, 0, i". 3304 assert(Array->getType()->isArrayType() && 3305 "Array to pointer decay must have array source type!"); 3306 LValue ArrayLV; 3307 // For simple multidimensional array indexing, set the 'accessed' flag for 3308 // better bounds-checking of the base expression. 3309 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3310 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3311 else 3312 ArrayLV = EmitLValue(Array); 3313 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3314 3315 // Propagate the alignment from the array itself to the result. 3316 Addr = emitArraySubscriptGEP( 3317 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3318 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3319 E->getExprLoc()); 3320 BaseInfo = ArrayLV.getBaseInfo(); 3321 TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 3322 } else { 3323 // The base must be a pointer; emit it with an estimate of its alignment. 3324 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3325 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3326 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3327 !getLangOpts().isSignedOverflowDefined(), 3328 SignedIndices, E->getExprLoc()); 3329 } 3330 3331 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo, TBAAInfo); 3332 3333 if (getLangOpts().ObjC1 && 3334 getLangOpts().getGC() != LangOptions::NonGC) { 3335 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3336 setObjCGCLValueClass(getContext(), E, LV); 3337 } 3338 return LV; 3339 } 3340 3341 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3342 LValueBaseInfo &BaseInfo, 3343 TBAAAccessInfo &TBAAInfo, 3344 QualType BaseTy, QualType ElTy, 3345 bool IsLowerBound) { 3346 LValue BaseLVal; 3347 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3348 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3349 if (BaseTy->isArrayType()) { 3350 Address Addr = BaseLVal.getAddress(); 3351 BaseInfo = BaseLVal.getBaseInfo(); 3352 3353 // If the array type was an incomplete type, we need to make sure 3354 // the decay ends up being the right type. 3355 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3356 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3357 3358 // Note that VLA pointers are always decayed, so we don't need to do 3359 // anything here. 3360 if (!BaseTy->isVariableArrayType()) { 3361 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3362 "Expected pointer to array"); 3363 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3364 "arraydecay"); 3365 } 3366 3367 return CGF.Builder.CreateElementBitCast(Addr, 3368 CGF.ConvertTypeForMem(ElTy)); 3369 } 3370 LValueBaseInfo TypeInfo; 3371 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3372 BaseInfo.mergeForCast(TypeInfo); 3373 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3374 } 3375 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3376 } 3377 3378 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3379 bool IsLowerBound) { 3380 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3381 QualType ResultExprTy; 3382 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3383 ResultExprTy = AT->getElementType(); 3384 else 3385 ResultExprTy = BaseTy->getPointeeType(); 3386 llvm::Value *Idx = nullptr; 3387 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3388 // Requesting lower bound or upper bound, but without provided length and 3389 // without ':' symbol for the default length -> length = 1. 3390 // Idx = LowerBound ?: 0; 3391 if (auto *LowerBound = E->getLowerBound()) { 3392 Idx = Builder.CreateIntCast( 3393 EmitScalarExpr(LowerBound), IntPtrTy, 3394 LowerBound->getType()->hasSignedIntegerRepresentation()); 3395 } else 3396 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3397 } else { 3398 // Try to emit length or lower bound as constant. If this is possible, 1 3399 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3400 // IR (LB + Len) - 1. 3401 auto &C = CGM.getContext(); 3402 auto *Length = E->getLength(); 3403 llvm::APSInt ConstLength; 3404 if (Length) { 3405 // Idx = LowerBound + Length - 1; 3406 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3407 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3408 Length = nullptr; 3409 } 3410 auto *LowerBound = E->getLowerBound(); 3411 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3412 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3413 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3414 LowerBound = nullptr; 3415 } 3416 if (!Length) 3417 --ConstLength; 3418 else if (!LowerBound) 3419 --ConstLowerBound; 3420 3421 if (Length || LowerBound) { 3422 auto *LowerBoundVal = 3423 LowerBound 3424 ? Builder.CreateIntCast( 3425 EmitScalarExpr(LowerBound), IntPtrTy, 3426 LowerBound->getType()->hasSignedIntegerRepresentation()) 3427 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3428 auto *LengthVal = 3429 Length 3430 ? Builder.CreateIntCast( 3431 EmitScalarExpr(Length), IntPtrTy, 3432 Length->getType()->hasSignedIntegerRepresentation()) 3433 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3434 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3435 /*HasNUW=*/false, 3436 !getLangOpts().isSignedOverflowDefined()); 3437 if (Length && LowerBound) { 3438 Idx = Builder.CreateSub( 3439 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3440 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3441 } 3442 } else 3443 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3444 } else { 3445 // Idx = ArraySize - 1; 3446 QualType ArrayTy = BaseTy->isPointerType() 3447 ? E->getBase()->IgnoreParenImpCasts()->getType() 3448 : BaseTy; 3449 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3450 Length = VAT->getSizeExpr(); 3451 if (Length->isIntegerConstantExpr(ConstLength, C)) 3452 Length = nullptr; 3453 } else { 3454 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3455 ConstLength = CAT->getSize(); 3456 } 3457 if (Length) { 3458 auto *LengthVal = Builder.CreateIntCast( 3459 EmitScalarExpr(Length), IntPtrTy, 3460 Length->getType()->hasSignedIntegerRepresentation()); 3461 Idx = Builder.CreateSub( 3462 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3463 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3464 } else { 3465 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3466 --ConstLength; 3467 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3468 } 3469 } 3470 } 3471 assert(Idx); 3472 3473 Address EltPtr = Address::invalid(); 3474 LValueBaseInfo BaseInfo; 3475 TBAAAccessInfo TBAAInfo; 3476 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3477 // The base must be a pointer, which is not an aggregate. Emit 3478 // it. It needs to be emitted first in case it's what captures 3479 // the VLA bounds. 3480 Address Base = 3481 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3482 BaseTy, VLA->getElementType(), IsLowerBound); 3483 // The element count here is the total number of non-VLA elements. 3484 llvm::Value *NumElements = getVLASize(VLA).first; 3485 3486 // Effectively, the multiply by the VLA size is part of the GEP. 3487 // GEP indexes are signed, and scaling an index isn't permitted to 3488 // signed-overflow, so we use the same semantics for our explicit 3489 // multiply. We suppress this if overflow is not undefined behavior. 3490 if (getLangOpts().isSignedOverflowDefined()) 3491 Idx = Builder.CreateMul(Idx, NumElements); 3492 else 3493 Idx = Builder.CreateNSWMul(Idx, NumElements); 3494 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3495 !getLangOpts().isSignedOverflowDefined(), 3496 /*SignedIndices=*/false, E->getExprLoc()); 3497 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3498 // If this is A[i] where A is an array, the frontend will have decayed the 3499 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3500 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3501 // "gep x, i" here. Emit one "gep A, 0, i". 3502 assert(Array->getType()->isArrayType() && 3503 "Array to pointer decay must have array source type!"); 3504 LValue ArrayLV; 3505 // For simple multidimensional array indexing, set the 'accessed' flag for 3506 // better bounds-checking of the base expression. 3507 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3508 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3509 else 3510 ArrayLV = EmitLValue(Array); 3511 3512 // Propagate the alignment from the array itself to the result. 3513 EltPtr = emitArraySubscriptGEP( 3514 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3515 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3516 /*SignedIndices=*/false, E->getExprLoc()); 3517 BaseInfo = ArrayLV.getBaseInfo(); 3518 TBAAInfo = CGM.getTBAAAccessInfo(ResultExprTy); 3519 } else { 3520 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3521 TBAAInfo, BaseTy, ResultExprTy, 3522 IsLowerBound); 3523 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3524 !getLangOpts().isSignedOverflowDefined(), 3525 /*SignedIndices=*/false, E->getExprLoc()); 3526 } 3527 3528 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3529 } 3530 3531 LValue CodeGenFunction:: 3532 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3533 // Emit the base vector as an l-value. 3534 LValue Base; 3535 3536 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3537 if (E->isArrow()) { 3538 // If it is a pointer to a vector, emit the address and form an lvalue with 3539 // it. 3540 LValueBaseInfo BaseInfo; 3541 TBAAAccessInfo TBAAInfo; 3542 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3543 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3544 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3545 Base.getQuals().removeObjCGCAttr(); 3546 } else if (E->getBase()->isGLValue()) { 3547 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3548 // emit the base as an lvalue. 3549 assert(E->getBase()->getType()->isVectorType()); 3550 Base = EmitLValue(E->getBase()); 3551 } else { 3552 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3553 assert(E->getBase()->getType()->isVectorType() && 3554 "Result must be a vector"); 3555 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3556 3557 // Store the vector to memory (because LValue wants an address). 3558 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3559 Builder.CreateStore(Vec, VecMem); 3560 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3561 AlignmentSource::Decl); 3562 } 3563 3564 QualType type = 3565 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3566 3567 // Encode the element access list into a vector of unsigned indices. 3568 SmallVector<uint32_t, 4> Indices; 3569 E->getEncodedElementAccess(Indices); 3570 3571 if (Base.isSimple()) { 3572 llvm::Constant *CV = 3573 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3574 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3575 Base.getBaseInfo(), TBAAAccessInfo()); 3576 } 3577 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3578 3579 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3580 SmallVector<llvm::Constant *, 4> CElts; 3581 3582 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3583 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3584 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3585 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3586 Base.getBaseInfo(), TBAAAccessInfo()); 3587 } 3588 3589 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3590 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3591 EmitIgnoredExpr(E->getBase()); 3592 return EmitDeclRefLValue(DRE); 3593 } 3594 3595 Expr *BaseExpr = E->getBase(); 3596 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3597 LValue BaseLV; 3598 if (E->isArrow()) { 3599 LValueBaseInfo BaseInfo; 3600 TBAAAccessInfo TBAAInfo; 3601 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3602 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3603 SanitizerSet SkippedChecks; 3604 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3605 if (IsBaseCXXThis) 3606 SkippedChecks.set(SanitizerKind::Alignment, true); 3607 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3608 SkippedChecks.set(SanitizerKind::Null, true); 3609 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3610 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3611 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3612 } else 3613 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3614 3615 NamedDecl *ND = E->getMemberDecl(); 3616 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3617 LValue LV = EmitLValueForField(BaseLV, Field); 3618 setObjCGCLValueClass(getContext(), E, LV); 3619 return LV; 3620 } 3621 3622 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3623 return EmitFunctionDeclLValue(*this, E, FD); 3624 3625 llvm_unreachable("Unhandled member declaration!"); 3626 } 3627 3628 /// Given that we are currently emitting a lambda, emit an l-value for 3629 /// one of its members. 3630 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3631 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3632 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3633 QualType LambdaTagType = 3634 getContext().getTagDeclType(Field->getParent()); 3635 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3636 return EmitLValueForField(LambdaLV, Field); 3637 } 3638 3639 /// Drill down to the storage of a field without walking into 3640 /// reference types. 3641 /// 3642 /// The resulting address doesn't necessarily have the right type. 3643 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3644 const FieldDecl *field) { 3645 const RecordDecl *rec = field->getParent(); 3646 3647 unsigned idx = 3648 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3649 3650 CharUnits offset; 3651 // Adjust the alignment down to the given offset. 3652 // As a special case, if the LLVM field index is 0, we know that this 3653 // is zero. 3654 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3655 .getFieldOffset(field->getFieldIndex()) == 0) && 3656 "LLVM field at index zero had non-zero offset?"); 3657 if (idx != 0) { 3658 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3659 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3660 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3661 } 3662 3663 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3664 } 3665 3666 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3667 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3668 if (!RD) 3669 return false; 3670 3671 if (RD->isDynamicClass()) 3672 return true; 3673 3674 for (const auto &Base : RD->bases()) 3675 if (hasAnyVptr(Base.getType(), Context)) 3676 return true; 3677 3678 for (const FieldDecl *Field : RD->fields()) 3679 if (hasAnyVptr(Field->getType(), Context)) 3680 return true; 3681 3682 return false; 3683 } 3684 3685 LValue CodeGenFunction::EmitLValueForField(LValue base, 3686 const FieldDecl *field) { 3687 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3688 3689 if (field->isBitField()) { 3690 const CGRecordLayout &RL = 3691 CGM.getTypes().getCGRecordLayout(field->getParent()); 3692 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3693 Address Addr = base.getAddress(); 3694 unsigned Idx = RL.getLLVMFieldNo(field); 3695 if (Idx != 0) 3696 // For structs, we GEP to the field that the record layout suggests. 3697 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3698 field->getName()); 3699 // Get the access type. 3700 llvm::Type *FieldIntTy = 3701 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3702 if (Addr.getElementType() != FieldIntTy) 3703 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3704 3705 QualType fieldType = 3706 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3707 // TODO: Support TBAA for bit fields. 3708 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource(), false); 3709 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3710 TBAAAccessInfo()); 3711 } 3712 3713 // Fields of may-alias structures are may-alias themselves. 3714 // FIXME: this should get propagated down through anonymous structs 3715 // and unions. 3716 QualType FieldType = field->getType(); 3717 const RecordDecl *rec = field->getParent(); 3718 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3719 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource), false); 3720 TBAAAccessInfo FieldTBAAInfo; 3721 if (BaseInfo.getMayAlias() || rec->hasAttr<MayAliasAttr>() || 3722 FieldType->isVectorType()) { 3723 FieldBaseInfo.setMayAlias(true); 3724 FieldTBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 3725 } else if (rec->isUnion()) { 3726 // TODO: Support TBAA for unions. 3727 FieldBaseInfo.setMayAlias(true); 3728 FieldTBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 3729 } else { 3730 // If no base type been assigned for the base access, then try to generate 3731 // one for this base lvalue. 3732 FieldTBAAInfo = base.getTBAAInfo(); 3733 if (!FieldTBAAInfo.BaseType) { 3734 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3735 assert(!FieldTBAAInfo.Offset && 3736 "Nonzero offset for an access with no base type!"); 3737 } 3738 3739 // Adjust offset to be relative to the base type. 3740 const ASTRecordLayout &Layout = 3741 getContext().getASTRecordLayout(field->getParent()); 3742 unsigned CharWidth = getContext().getCharWidth(); 3743 if (FieldTBAAInfo.BaseType) 3744 FieldTBAAInfo.Offset += 3745 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3746 3747 // Update the final access type. 3748 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3749 } 3750 3751 Address addr = base.getAddress(); 3752 unsigned cvr = base.getVRQualifiers(); 3753 if (rec->isUnion()) { 3754 // For unions, there is no pointer adjustment. 3755 assert(!FieldType->isReferenceType() && "union has reference member"); 3756 if (CGM.getCodeGenOpts().StrictVTablePointers && 3757 hasAnyVptr(FieldType, getContext())) 3758 // Because unions can easily skip invariant.barriers, we need to add 3759 // a barrier every time CXXRecord field with vptr is referenced. 3760 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3761 addr.getAlignment()); 3762 } else { 3763 // For structs, we GEP to the field that the record layout suggests. 3764 addr = emitAddrOfFieldStorage(*this, addr, field); 3765 3766 // If this is a reference field, load the reference right now. 3767 if (const ReferenceType *refType = FieldType->getAs<ReferenceType>()) { 3768 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3769 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3770 3771 CGM.DecorateInstructionWithTBAA(load, FieldTBAAInfo); 3772 3773 FieldType = refType->getPointeeType(); 3774 CharUnits Align = getNaturalTypeAlignment(FieldType, &FieldBaseInfo, 3775 &FieldTBAAInfo, 3776 /* forPointeeType= */ true); 3777 addr = Address(load, Align); 3778 3779 // Qualifiers on the struct don't apply to the referencee, and 3780 // we'll pick up CVR from the actual type later, so reset these 3781 // additional qualifiers now. 3782 cvr = 0; 3783 } 3784 } 3785 3786 // Make sure that the address is pointing to the right type. This is critical 3787 // for both unions and structs. A union needs a bitcast, a struct element 3788 // will need a bitcast if the LLVM type laid out doesn't match the desired 3789 // type. 3790 addr = Builder.CreateElementBitCast( 3791 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3792 3793 if (field->hasAttr<AnnotateAttr>()) 3794 addr = EmitFieldAnnotations(field, addr); 3795 3796 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3797 LV.getQuals().addCVRQualifiers(cvr); 3798 3799 // __weak attribute on a field is ignored. 3800 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3801 LV.getQuals().removeObjCGCAttr(); 3802 3803 return LV; 3804 } 3805 3806 LValue 3807 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3808 const FieldDecl *Field) { 3809 QualType FieldType = Field->getType(); 3810 3811 if (!FieldType->isReferenceType()) 3812 return EmitLValueForField(Base, Field); 3813 3814 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3815 3816 // Make sure that the address is pointing to the right type. 3817 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3818 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3819 3820 // TODO: access-path TBAA? 3821 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3822 LValueBaseInfo FieldBaseInfo( 3823 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3824 BaseInfo.getMayAlias()); 3825 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3826 CGM.getTBAAAccessInfo(FieldType)); 3827 } 3828 3829 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3830 if (E->isFileScope()) { 3831 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3832 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3833 } 3834 if (E->getType()->isVariablyModifiedType()) 3835 // make sure to emit the VLA size. 3836 EmitVariablyModifiedType(E->getType()); 3837 3838 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3839 const Expr *InitExpr = E->getInitializer(); 3840 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3841 3842 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3843 /*Init*/ true); 3844 3845 return Result; 3846 } 3847 3848 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3849 if (!E->isGLValue()) 3850 // Initializing an aggregate temporary in C++11: T{...}. 3851 return EmitAggExprToLValue(E); 3852 3853 // An lvalue initializer list must be initializing a reference. 3854 assert(E->isTransparent() && "non-transparent glvalue init list"); 3855 return EmitLValue(E->getInit(0)); 3856 } 3857 3858 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3859 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3860 /// LValue is returned and the current block has been terminated. 3861 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3862 const Expr *Operand) { 3863 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3864 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3865 return None; 3866 } 3867 3868 return CGF.EmitLValue(Operand); 3869 } 3870 3871 LValue CodeGenFunction:: 3872 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3873 if (!expr->isGLValue()) { 3874 // ?: here should be an aggregate. 3875 assert(hasAggregateEvaluationKind(expr->getType()) && 3876 "Unexpected conditional operator!"); 3877 return EmitAggExprToLValue(expr); 3878 } 3879 3880 OpaqueValueMapping binding(*this, expr); 3881 3882 const Expr *condExpr = expr->getCond(); 3883 bool CondExprBool; 3884 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3885 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3886 if (!CondExprBool) std::swap(live, dead); 3887 3888 if (!ContainsLabel(dead)) { 3889 // If the true case is live, we need to track its region. 3890 if (CondExprBool) 3891 incrementProfileCounter(expr); 3892 return EmitLValue(live); 3893 } 3894 } 3895 3896 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3897 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3898 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3899 3900 ConditionalEvaluation eval(*this); 3901 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3902 3903 // Any temporaries created here are conditional. 3904 EmitBlock(lhsBlock); 3905 incrementProfileCounter(expr); 3906 eval.begin(*this); 3907 Optional<LValue> lhs = 3908 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3909 eval.end(*this); 3910 3911 if (lhs && !lhs->isSimple()) 3912 return EmitUnsupportedLValue(expr, "conditional operator"); 3913 3914 lhsBlock = Builder.GetInsertBlock(); 3915 if (lhs) 3916 Builder.CreateBr(contBlock); 3917 3918 // Any temporaries created here are conditional. 3919 EmitBlock(rhsBlock); 3920 eval.begin(*this); 3921 Optional<LValue> rhs = 3922 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3923 eval.end(*this); 3924 if (rhs && !rhs->isSimple()) 3925 return EmitUnsupportedLValue(expr, "conditional operator"); 3926 rhsBlock = Builder.GetInsertBlock(); 3927 3928 EmitBlock(contBlock); 3929 3930 if (lhs && rhs) { 3931 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3932 2, "cond-lvalue"); 3933 phi->addIncoming(lhs->getPointer(), lhsBlock); 3934 phi->addIncoming(rhs->getPointer(), rhsBlock); 3935 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3936 AlignmentSource alignSource = 3937 std::max(lhs->getBaseInfo().getAlignmentSource(), 3938 rhs->getBaseInfo().getAlignmentSource()); 3939 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3940 rhs->getBaseInfo().getMayAlias(); 3941 return MakeAddrLValue(result, expr->getType(), 3942 LValueBaseInfo(alignSource, MayAlias), 3943 CGM.getTBAAAccessInfo(expr->getType())); 3944 } else { 3945 assert((lhs || rhs) && 3946 "both operands of glvalue conditional are throw-expressions?"); 3947 return lhs ? *lhs : *rhs; 3948 } 3949 } 3950 3951 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3952 /// type. If the cast is to a reference, we can have the usual lvalue result, 3953 /// otherwise if a cast is needed by the code generator in an lvalue context, 3954 /// then it must mean that we need the address of an aggregate in order to 3955 /// access one of its members. This can happen for all the reasons that casts 3956 /// are permitted with aggregate result, including noop aggregate casts, and 3957 /// cast from scalar to union. 3958 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3959 switch (E->getCastKind()) { 3960 case CK_ToVoid: 3961 case CK_BitCast: 3962 case CK_ArrayToPointerDecay: 3963 case CK_FunctionToPointerDecay: 3964 case CK_NullToMemberPointer: 3965 case CK_NullToPointer: 3966 case CK_IntegralToPointer: 3967 case CK_PointerToIntegral: 3968 case CK_PointerToBoolean: 3969 case CK_VectorSplat: 3970 case CK_IntegralCast: 3971 case CK_BooleanToSignedIntegral: 3972 case CK_IntegralToBoolean: 3973 case CK_IntegralToFloating: 3974 case CK_FloatingToIntegral: 3975 case CK_FloatingToBoolean: 3976 case CK_FloatingCast: 3977 case CK_FloatingRealToComplex: 3978 case CK_FloatingComplexToReal: 3979 case CK_FloatingComplexToBoolean: 3980 case CK_FloatingComplexCast: 3981 case CK_FloatingComplexToIntegralComplex: 3982 case CK_IntegralRealToComplex: 3983 case CK_IntegralComplexToReal: 3984 case CK_IntegralComplexToBoolean: 3985 case CK_IntegralComplexCast: 3986 case CK_IntegralComplexToFloatingComplex: 3987 case CK_DerivedToBaseMemberPointer: 3988 case CK_BaseToDerivedMemberPointer: 3989 case CK_MemberPointerToBoolean: 3990 case CK_ReinterpretMemberPointer: 3991 case CK_AnyPointerToBlockPointerCast: 3992 case CK_ARCProduceObject: 3993 case CK_ARCConsumeObject: 3994 case CK_ARCReclaimReturnedObject: 3995 case CK_ARCExtendBlockObject: 3996 case CK_CopyAndAutoreleaseBlockObject: 3997 case CK_AddressSpaceConversion: 3998 case CK_IntToOCLSampler: 3999 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4000 4001 case CK_Dependent: 4002 llvm_unreachable("dependent cast kind in IR gen!"); 4003 4004 case CK_BuiltinFnToFnPtr: 4005 llvm_unreachable("builtin functions are handled elsewhere"); 4006 4007 // These are never l-values; just use the aggregate emission code. 4008 case CK_NonAtomicToAtomic: 4009 case CK_AtomicToNonAtomic: 4010 return EmitAggExprToLValue(E); 4011 4012 case CK_Dynamic: { 4013 LValue LV = EmitLValue(E->getSubExpr()); 4014 Address V = LV.getAddress(); 4015 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4016 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4017 } 4018 4019 case CK_ConstructorConversion: 4020 case CK_UserDefinedConversion: 4021 case CK_CPointerToObjCPointerCast: 4022 case CK_BlockPointerToObjCPointerCast: 4023 case CK_NoOp: 4024 case CK_LValueToRValue: 4025 return EmitLValue(E->getSubExpr()); 4026 4027 case CK_UncheckedDerivedToBase: 4028 case CK_DerivedToBase: { 4029 const RecordType *DerivedClassTy = 4030 E->getSubExpr()->getType()->getAs<RecordType>(); 4031 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4032 4033 LValue LV = EmitLValue(E->getSubExpr()); 4034 Address This = LV.getAddress(); 4035 4036 // Perform the derived-to-base conversion 4037 Address Base = GetAddressOfBaseClass( 4038 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4039 /*NullCheckValue=*/false, E->getExprLoc()); 4040 4041 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4042 CGM.getTBAAAccessInfo(E->getType())); 4043 } 4044 case CK_ToUnion: 4045 return EmitAggExprToLValue(E); 4046 case CK_BaseToDerived: { 4047 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4048 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4049 4050 LValue LV = EmitLValue(E->getSubExpr()); 4051 4052 // Perform the base-to-derived conversion 4053 Address Derived = 4054 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4055 E->path_begin(), E->path_end(), 4056 /*NullCheckValue=*/false); 4057 4058 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4059 // performed and the object is not of the derived type. 4060 if (sanitizePerformTypeCheck()) 4061 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4062 Derived.getPointer(), E->getType()); 4063 4064 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4065 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4066 /*MayBeNull=*/false, 4067 CFITCK_DerivedCast, E->getLocStart()); 4068 4069 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4070 CGM.getTBAAAccessInfo(E->getType())); 4071 } 4072 case CK_LValueBitCast: { 4073 // This must be a reinterpret_cast (or c-style equivalent). 4074 const auto *CE = cast<ExplicitCastExpr>(E); 4075 4076 CGM.EmitExplicitCastExprType(CE, this); 4077 LValue LV = EmitLValue(E->getSubExpr()); 4078 Address V = Builder.CreateBitCast(LV.getAddress(), 4079 ConvertType(CE->getTypeAsWritten())); 4080 4081 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4082 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4083 /*MayBeNull=*/false, 4084 CFITCK_UnrelatedCast, E->getLocStart()); 4085 4086 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4087 CGM.getTBAAAccessInfo(E->getType())); 4088 } 4089 case CK_ObjCObjectLValueCast: { 4090 LValue LV = EmitLValue(E->getSubExpr()); 4091 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4092 ConvertType(E->getType())); 4093 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4094 CGM.getTBAAAccessInfo(E->getType())); 4095 } 4096 case CK_ZeroToOCLQueue: 4097 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4098 case CK_ZeroToOCLEvent: 4099 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4100 } 4101 4102 llvm_unreachable("Unhandled lvalue cast kind?"); 4103 } 4104 4105 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4106 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4107 return getOpaqueLValueMapping(e); 4108 } 4109 4110 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4111 const FieldDecl *FD, 4112 SourceLocation Loc) { 4113 QualType FT = FD->getType(); 4114 LValue FieldLV = EmitLValueForField(LV, FD); 4115 switch (getEvaluationKind(FT)) { 4116 case TEK_Complex: 4117 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4118 case TEK_Aggregate: 4119 return FieldLV.asAggregateRValue(); 4120 case TEK_Scalar: 4121 // This routine is used to load fields one-by-one to perform a copy, so 4122 // don't load reference fields. 4123 if (FD->getType()->isReferenceType()) 4124 return RValue::get(FieldLV.getPointer()); 4125 return EmitLoadOfLValue(FieldLV, Loc); 4126 } 4127 llvm_unreachable("bad evaluation kind"); 4128 } 4129 4130 //===--------------------------------------------------------------------===// 4131 // Expression Emission 4132 //===--------------------------------------------------------------------===// 4133 4134 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4135 ReturnValueSlot ReturnValue) { 4136 // Builtins never have block type. 4137 if (E->getCallee()->getType()->isBlockPointerType()) 4138 return EmitBlockCallExpr(E, ReturnValue); 4139 4140 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4141 return EmitCXXMemberCallExpr(CE, ReturnValue); 4142 4143 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4144 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4145 4146 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4147 if (const CXXMethodDecl *MD = 4148 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4149 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4150 4151 CGCallee callee = EmitCallee(E->getCallee()); 4152 4153 if (callee.isBuiltin()) { 4154 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4155 E, ReturnValue); 4156 } 4157 4158 if (callee.isPseudoDestructor()) { 4159 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4160 } 4161 4162 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4163 } 4164 4165 /// Emit a CallExpr without considering whether it might be a subclass. 4166 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4167 ReturnValueSlot ReturnValue) { 4168 CGCallee Callee = EmitCallee(E->getCallee()); 4169 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4170 } 4171 4172 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4173 if (auto builtinID = FD->getBuiltinID()) { 4174 return CGCallee::forBuiltin(builtinID, FD); 4175 } 4176 4177 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4178 return CGCallee::forDirect(calleePtr, FD); 4179 } 4180 4181 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4182 E = E->IgnoreParens(); 4183 4184 // Look through function-to-pointer decay. 4185 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4186 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4187 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4188 return EmitCallee(ICE->getSubExpr()); 4189 } 4190 4191 // Resolve direct calls. 4192 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4193 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4194 return EmitDirectCallee(*this, FD); 4195 } 4196 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4197 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4198 EmitIgnoredExpr(ME->getBase()); 4199 return EmitDirectCallee(*this, FD); 4200 } 4201 4202 // Look through template substitutions. 4203 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4204 return EmitCallee(NTTP->getReplacement()); 4205 4206 // Treat pseudo-destructor calls differently. 4207 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4208 return CGCallee::forPseudoDestructor(PDE); 4209 } 4210 4211 // Otherwise, we have an indirect reference. 4212 llvm::Value *calleePtr; 4213 QualType functionType; 4214 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4215 calleePtr = EmitScalarExpr(E); 4216 functionType = ptrType->getPointeeType(); 4217 } else { 4218 functionType = E->getType(); 4219 calleePtr = EmitLValue(E).getPointer(); 4220 } 4221 assert(functionType->isFunctionType()); 4222 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4223 E->getReferencedDeclOfCallee()); 4224 CGCallee callee(calleeInfo, calleePtr); 4225 return callee; 4226 } 4227 4228 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4229 // Comma expressions just emit their LHS then their RHS as an l-value. 4230 if (E->getOpcode() == BO_Comma) { 4231 EmitIgnoredExpr(E->getLHS()); 4232 EnsureInsertPoint(); 4233 return EmitLValue(E->getRHS()); 4234 } 4235 4236 if (E->getOpcode() == BO_PtrMemD || 4237 E->getOpcode() == BO_PtrMemI) 4238 return EmitPointerToDataMemberBinaryExpr(E); 4239 4240 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4241 4242 // Note that in all of these cases, __block variables need the RHS 4243 // evaluated first just in case the variable gets moved by the RHS. 4244 4245 switch (getEvaluationKind(E->getType())) { 4246 case TEK_Scalar: { 4247 switch (E->getLHS()->getType().getObjCLifetime()) { 4248 case Qualifiers::OCL_Strong: 4249 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4250 4251 case Qualifiers::OCL_Autoreleasing: 4252 return EmitARCStoreAutoreleasing(E).first; 4253 4254 // No reason to do any of these differently. 4255 case Qualifiers::OCL_None: 4256 case Qualifiers::OCL_ExplicitNone: 4257 case Qualifiers::OCL_Weak: 4258 break; 4259 } 4260 4261 RValue RV = EmitAnyExpr(E->getRHS()); 4262 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4263 if (RV.isScalar()) 4264 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4265 EmitStoreThroughLValue(RV, LV); 4266 return LV; 4267 } 4268 4269 case TEK_Complex: 4270 return EmitComplexAssignmentLValue(E); 4271 4272 case TEK_Aggregate: 4273 return EmitAggExprToLValue(E); 4274 } 4275 llvm_unreachable("bad evaluation kind"); 4276 } 4277 4278 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4279 RValue RV = EmitCallExpr(E); 4280 4281 if (!RV.isScalar()) 4282 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4283 AlignmentSource::Decl); 4284 4285 assert(E->getCallReturnType(getContext())->isReferenceType() && 4286 "Can't have a scalar return unless the return type is a " 4287 "reference type!"); 4288 4289 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4290 } 4291 4292 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4293 // FIXME: This shouldn't require another copy. 4294 return EmitAggExprToLValue(E); 4295 } 4296 4297 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4298 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4299 && "binding l-value to type which needs a temporary"); 4300 AggValueSlot Slot = CreateAggTemp(E->getType()); 4301 EmitCXXConstructExpr(E, Slot); 4302 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4303 } 4304 4305 LValue 4306 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4307 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4308 } 4309 4310 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4311 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4312 ConvertType(E->getType())); 4313 } 4314 4315 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4316 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4317 AlignmentSource::Decl); 4318 } 4319 4320 LValue 4321 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4322 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4323 Slot.setExternallyDestructed(); 4324 EmitAggExpr(E->getSubExpr(), Slot); 4325 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4326 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4327 } 4328 4329 LValue 4330 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4331 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4332 EmitLambdaExpr(E, Slot); 4333 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4334 } 4335 4336 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4337 RValue RV = EmitObjCMessageExpr(E); 4338 4339 if (!RV.isScalar()) 4340 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4341 AlignmentSource::Decl); 4342 4343 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4344 "Can't have a scalar return unless the return type is a " 4345 "reference type!"); 4346 4347 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4348 } 4349 4350 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4351 Address V = 4352 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4353 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4354 } 4355 4356 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4357 const ObjCIvarDecl *Ivar) { 4358 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4359 } 4360 4361 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4362 llvm::Value *BaseValue, 4363 const ObjCIvarDecl *Ivar, 4364 unsigned CVRQualifiers) { 4365 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4366 Ivar, CVRQualifiers); 4367 } 4368 4369 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4370 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4371 llvm::Value *BaseValue = nullptr; 4372 const Expr *BaseExpr = E->getBase(); 4373 Qualifiers BaseQuals; 4374 QualType ObjectTy; 4375 if (E->isArrow()) { 4376 BaseValue = EmitScalarExpr(BaseExpr); 4377 ObjectTy = BaseExpr->getType()->getPointeeType(); 4378 BaseQuals = ObjectTy.getQualifiers(); 4379 } else { 4380 LValue BaseLV = EmitLValue(BaseExpr); 4381 BaseValue = BaseLV.getPointer(); 4382 ObjectTy = BaseExpr->getType(); 4383 BaseQuals = ObjectTy.getQualifiers(); 4384 } 4385 4386 LValue LV = 4387 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4388 BaseQuals.getCVRQualifiers()); 4389 setObjCGCLValueClass(getContext(), E, LV); 4390 return LV; 4391 } 4392 4393 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4394 // Can only get l-value for message expression returning aggregate type 4395 RValue RV = EmitAnyExprToTemp(E); 4396 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4397 AlignmentSource::Decl); 4398 } 4399 4400 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4401 const CallExpr *E, ReturnValueSlot ReturnValue, 4402 llvm::Value *Chain) { 4403 // Get the actual function type. The callee type will always be a pointer to 4404 // function type or a block pointer type. 4405 assert(CalleeType->isFunctionPointerType() && 4406 "Call must have function pointer type!"); 4407 4408 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4409 4410 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4411 // We can only guarantee that a function is called from the correct 4412 // context/function based on the appropriate target attributes, 4413 // so only check in the case where we have both always_inline and target 4414 // since otherwise we could be making a conditional call after a check for 4415 // the proper cpu features (and it won't cause code generation issues due to 4416 // function based code generation). 4417 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4418 TargetDecl->hasAttr<TargetAttr>()) 4419 checkTargetFeatures(E, FD); 4420 4421 CalleeType = getContext().getCanonicalType(CalleeType); 4422 4423 const auto *FnType = 4424 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4425 4426 CGCallee Callee = OrigCallee; 4427 4428 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4429 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4430 if (llvm::Constant *PrefixSig = 4431 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4432 SanitizerScope SanScope(this); 4433 llvm::Constant *FTRTTIConst = 4434 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4435 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4436 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4437 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4438 4439 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4440 4441 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4442 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4443 llvm::Value *CalleeSigPtr = 4444 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4445 llvm::Value *CalleeSig = 4446 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4447 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4448 4449 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4450 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4451 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4452 4453 EmitBlock(TypeCheck); 4454 llvm::Value *CalleeRTTIPtr = 4455 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4456 llvm::Value *CalleeRTTIEncoded = 4457 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4458 llvm::Value *CalleeRTTI = 4459 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4460 llvm::Value *CalleeRTTIMatch = 4461 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4462 llvm::Constant *StaticData[] = { 4463 EmitCheckSourceLocation(E->getLocStart()), 4464 EmitCheckTypeDescriptor(CalleeType) 4465 }; 4466 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4467 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4468 4469 Builder.CreateBr(Cont); 4470 EmitBlock(Cont); 4471 } 4472 } 4473 4474 // If we are checking indirect calls and this call is indirect, check that the 4475 // function pointer is a member of the bit set for the function type. 4476 if (SanOpts.has(SanitizerKind::CFIICall) && 4477 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4478 SanitizerScope SanScope(this); 4479 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4480 4481 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4482 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4483 4484 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4485 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4486 llvm::Value *TypeTest = Builder.CreateCall( 4487 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4488 4489 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4490 llvm::Constant *StaticData[] = { 4491 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4492 EmitCheckSourceLocation(E->getLocStart()), 4493 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4494 }; 4495 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4496 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4497 CastedCallee, StaticData); 4498 } else { 4499 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4500 SanitizerHandler::CFICheckFail, StaticData, 4501 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4502 } 4503 } 4504 4505 CallArgList Args; 4506 if (Chain) 4507 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4508 CGM.getContext().VoidPtrTy); 4509 4510 // C++17 requires that we evaluate arguments to a call using assignment syntax 4511 // right-to-left, and that we evaluate arguments to certain other operators 4512 // left-to-right. Note that we allow this to override the order dictated by 4513 // the calling convention on the MS ABI, which means that parameter 4514 // destruction order is not necessarily reverse construction order. 4515 // FIXME: Revisit this based on C++ committee response to unimplementability. 4516 EvaluationOrder Order = EvaluationOrder::Default; 4517 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4518 if (OCE->isAssignmentOp()) 4519 Order = EvaluationOrder::ForceRightToLeft; 4520 else { 4521 switch (OCE->getOperator()) { 4522 case OO_LessLess: 4523 case OO_GreaterGreater: 4524 case OO_AmpAmp: 4525 case OO_PipePipe: 4526 case OO_Comma: 4527 case OO_ArrowStar: 4528 Order = EvaluationOrder::ForceLeftToRight; 4529 break; 4530 default: 4531 break; 4532 } 4533 } 4534 } 4535 4536 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4537 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4538 4539 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4540 Args, FnType, /*isChainCall=*/Chain); 4541 4542 // C99 6.5.2.2p6: 4543 // If the expression that denotes the called function has a type 4544 // that does not include a prototype, [the default argument 4545 // promotions are performed]. If the number of arguments does not 4546 // equal the number of parameters, the behavior is undefined. If 4547 // the function is defined with a type that includes a prototype, 4548 // and either the prototype ends with an ellipsis (, ...) or the 4549 // types of the arguments after promotion are not compatible with 4550 // the types of the parameters, the behavior is undefined. If the 4551 // function is defined with a type that does not include a 4552 // prototype, and the types of the arguments after promotion are 4553 // not compatible with those of the parameters after promotion, 4554 // the behavior is undefined [except in some trivial cases]. 4555 // That is, in the general case, we should assume that a call 4556 // through an unprototyped function type works like a *non-variadic* 4557 // call. The way we make this work is to cast to the exact type 4558 // of the promoted arguments. 4559 // 4560 // Chain calls use this same code path to add the invisible chain parameter 4561 // to the function type. 4562 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4563 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4564 CalleeTy = CalleeTy->getPointerTo(); 4565 4566 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4567 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4568 Callee.setFunctionPointer(CalleePtr); 4569 } 4570 4571 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4572 } 4573 4574 LValue CodeGenFunction:: 4575 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4576 Address BaseAddr = Address::invalid(); 4577 if (E->getOpcode() == BO_PtrMemI) { 4578 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4579 } else { 4580 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4581 } 4582 4583 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4584 4585 const MemberPointerType *MPT 4586 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4587 4588 LValueBaseInfo BaseInfo; 4589 TBAAAccessInfo TBAAInfo; 4590 Address MemberAddr = 4591 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4592 &TBAAInfo); 4593 4594 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4595 } 4596 4597 /// Given the address of a temporary variable, produce an r-value of 4598 /// its type. 4599 RValue CodeGenFunction::convertTempToRValue(Address addr, 4600 QualType type, 4601 SourceLocation loc) { 4602 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4603 switch (getEvaluationKind(type)) { 4604 case TEK_Complex: 4605 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4606 case TEK_Aggregate: 4607 return lvalue.asAggregateRValue(); 4608 case TEK_Scalar: 4609 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4610 } 4611 llvm_unreachable("bad evaluation kind"); 4612 } 4613 4614 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4615 assert(Val->getType()->isFPOrFPVectorTy()); 4616 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4617 return; 4618 4619 llvm::MDBuilder MDHelper(getLLVMContext()); 4620 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4621 4622 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4623 } 4624 4625 namespace { 4626 struct LValueOrRValue { 4627 LValue LV; 4628 RValue RV; 4629 }; 4630 } 4631 4632 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4633 const PseudoObjectExpr *E, 4634 bool forLValue, 4635 AggValueSlot slot) { 4636 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4637 4638 // Find the result expression, if any. 4639 const Expr *resultExpr = E->getResultExpr(); 4640 LValueOrRValue result; 4641 4642 for (PseudoObjectExpr::const_semantics_iterator 4643 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4644 const Expr *semantic = *i; 4645 4646 // If this semantic expression is an opaque value, bind it 4647 // to the result of its source expression. 4648 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4649 4650 // If this is the result expression, we may need to evaluate 4651 // directly into the slot. 4652 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4653 OVMA opaqueData; 4654 if (ov == resultExpr && ov->isRValue() && !forLValue && 4655 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4656 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4657 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4658 AlignmentSource::Decl); 4659 opaqueData = OVMA::bind(CGF, ov, LV); 4660 result.RV = slot.asRValue(); 4661 4662 // Otherwise, emit as normal. 4663 } else { 4664 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4665 4666 // If this is the result, also evaluate the result now. 4667 if (ov == resultExpr) { 4668 if (forLValue) 4669 result.LV = CGF.EmitLValue(ov); 4670 else 4671 result.RV = CGF.EmitAnyExpr(ov, slot); 4672 } 4673 } 4674 4675 opaques.push_back(opaqueData); 4676 4677 // Otherwise, if the expression is the result, evaluate it 4678 // and remember the result. 4679 } else if (semantic == resultExpr) { 4680 if (forLValue) 4681 result.LV = CGF.EmitLValue(semantic); 4682 else 4683 result.RV = CGF.EmitAnyExpr(semantic, slot); 4684 4685 // Otherwise, evaluate the expression in an ignored context. 4686 } else { 4687 CGF.EmitIgnoredExpr(semantic); 4688 } 4689 } 4690 4691 // Unbind all the opaques now. 4692 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4693 opaques[i].unbind(CGF); 4694 4695 return result; 4696 } 4697 4698 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4699 AggValueSlot slot) { 4700 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4701 } 4702 4703 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4704 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4705 } 4706