1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51       cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
64                                                      CharUnits Align,
65                                                      const Twine &Name,
66                                                      llvm::Value *ArraySize) {
67   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
68   Alloca->setAlignment(Align.getQuantity());
69   return Address(Alloca, Align);
70 }
71 
72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
73 /// block. The alloca is casted to default address space if necessary.
74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
75                                           const Twine &Name,
76                                           llvm::Value *ArraySize,
77                                           Address *AllocaAddr) {
78   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
79   if (AllocaAddr)
80     *AllocaAddr = Alloca;
81   llvm::Value *V = Alloca.getPointer();
82   // Alloca always returns a pointer in alloca address space, which may
83   // be different from the type defined by the language. For example,
84   // in C++ the auto variables are in the default address space. Therefore
85   // cast alloca to the default address space when necessary.
86   if (getASTAllocaAddressSpace() != LangAS::Default) {
87     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
88     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
89     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
90     // otherwise alloca is inserted at the current insertion point of the
91     // builder.
92     if (!ArraySize)
93       Builder.SetInsertPoint(AllocaInsertPt);
94     V = getTargetHooks().performAddrSpaceCast(
95         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
96         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
97   }
98 
99   return Address(V, Align);
100 }
101 
102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
104 /// insertion point of the builder.
105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
106                                                     const Twine &Name,
107                                                     llvm::Value *ArraySize) {
108   if (ArraySize)
109     return Builder.CreateAlloca(Ty, ArraySize, Name);
110   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
111                               ArraySize, Name, AllocaInsertPt);
112 }
113 
114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
115 /// default alignment of the corresponding LLVM type, which is *not*
116 /// guaranteed to be related in any way to the expected alignment of
117 /// an AST type that might have been lowered to Ty.
118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
119                                                       const Twine &Name) {
120   CharUnits Align =
121     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
122   return CreateTempAlloca(Ty, Align, Name);
123 }
124 
125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
126   assert(isa<llvm::AllocaInst>(Var.getPointer()));
127   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
128   Store->setAlignment(Var.getAlignment().getQuantity());
129   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
130   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
131 }
132 
133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
134   CharUnits Align = getContext().getTypeAlignInChars(Ty);
135   return CreateTempAlloca(ConvertType(Ty), Align, Name);
136 }
137 
138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
139                                        Address *Alloca) {
140   // FIXME: Should we prefer the preferred type alignment here?
141   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
142 }
143 
144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
145                                        const Twine &Name, Address *Alloca) {
146   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
147                           /*ArraySize=*/nullptr, Alloca);
148 }
149 
150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
151                                                   const Twine &Name) {
152   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
153 }
154 
155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
156                                                   const Twine &Name) {
157   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
158                                   Name);
159 }
160 
161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
162 /// expression and compare the result against zero, returning an Int1Ty value.
163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
164   PGO.setCurrentStmt(E);
165   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
166     llvm::Value *MemPtr = EmitScalarExpr(E);
167     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
168   }
169 
170   QualType BoolTy = getContext().BoolTy;
171   SourceLocation Loc = E->getExprLoc();
172   if (!E->getType()->isAnyComplexType())
173     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
174 
175   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
176                                        Loc);
177 }
178 
179 /// EmitIgnoredExpr - Emit code to compute the specified expression,
180 /// ignoring the result.
181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
182   if (E->isRValue())
183     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
184 
185   // Just emit it as an l-value and drop the result.
186   EmitLValue(E);
187 }
188 
189 /// EmitAnyExpr - Emit code to compute the specified expression which
190 /// can have any type.  The result is returned as an RValue struct.
191 /// If this is an aggregate expression, AggSlot indicates where the
192 /// result should be returned.
193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
194                                     AggValueSlot aggSlot,
195                                     bool ignoreResult) {
196   switch (getEvaluationKind(E->getType())) {
197   case TEK_Scalar:
198     return RValue::get(EmitScalarExpr(E, ignoreResult));
199   case TEK_Complex:
200     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
201   case TEK_Aggregate:
202     if (!ignoreResult && aggSlot.isIgnored())
203       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
204     EmitAggExpr(E, aggSlot);
205     return aggSlot.asRValue();
206   }
207   llvm_unreachable("bad evaluation kind");
208 }
209 
210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
211 /// always be accessible even if no aggregate location is provided.
212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
213   AggValueSlot AggSlot = AggValueSlot::ignored();
214 
215   if (hasAggregateEvaluationKind(E->getType()))
216     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
217   return EmitAnyExpr(E, AggSlot);
218 }
219 
220 /// EmitAnyExprToMem - Evaluate an expression into a given memory
221 /// location.
222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
223                                        Address Location,
224                                        Qualifiers Quals,
225                                        bool IsInit) {
226   // FIXME: This function should take an LValue as an argument.
227   switch (getEvaluationKind(E->getType())) {
228   case TEK_Complex:
229     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
230                               /*isInit*/ false);
231     return;
232 
233   case TEK_Aggregate: {
234     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
235                                          AggValueSlot::IsDestructed_t(IsInit),
236                                          AggValueSlot::DoesNotNeedGCBarriers,
237                                          AggValueSlot::IsAliased_t(!IsInit),
238                                          AggValueSlot::MayOverlap));
239     return;
240   }
241 
242   case TEK_Scalar: {
243     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
244     LValue LV = MakeAddrLValue(Location, E->getType());
245     EmitStoreThroughLValue(RV, LV);
246     return;
247   }
248   }
249   llvm_unreachable("bad evaluation kind");
250 }
251 
252 static void
253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
254                      const Expr *E, Address ReferenceTemporary) {
255   // Objective-C++ ARC:
256   //   If we are binding a reference to a temporary that has ownership, we
257   //   need to perform retain/release operations on the temporary.
258   //
259   // FIXME: This should be looking at E, not M.
260   if (auto Lifetime = M->getType().getObjCLifetime()) {
261     switch (Lifetime) {
262     case Qualifiers::OCL_None:
263     case Qualifiers::OCL_ExplicitNone:
264       // Carry on to normal cleanup handling.
265       break;
266 
267     case Qualifiers::OCL_Autoreleasing:
268       // Nothing to do; cleaned up by an autorelease pool.
269       return;
270 
271     case Qualifiers::OCL_Strong:
272     case Qualifiers::OCL_Weak:
273       switch (StorageDuration Duration = M->getStorageDuration()) {
274       case SD_Static:
275         // Note: we intentionally do not register a cleanup to release
276         // the object on program termination.
277         return;
278 
279       case SD_Thread:
280         // FIXME: We should probably register a cleanup in this case.
281         return;
282 
283       case SD_Automatic:
284       case SD_FullExpression:
285         CodeGenFunction::Destroyer *Destroy;
286         CleanupKind CleanupKind;
287         if (Lifetime == Qualifiers::OCL_Strong) {
288           const ValueDecl *VD = M->getExtendingDecl();
289           bool Precise =
290               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
291           CleanupKind = CGF.getARCCleanupKind();
292           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
293                             : &CodeGenFunction::destroyARCStrongImprecise;
294         } else {
295           // __weak objects always get EH cleanups; otherwise, exceptions
296           // could cause really nasty crashes instead of mere leaks.
297           CleanupKind = NormalAndEHCleanup;
298           Destroy = &CodeGenFunction::destroyARCWeak;
299         }
300         if (Duration == SD_FullExpression)
301           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
302                           M->getType(), *Destroy,
303                           CleanupKind & EHCleanup);
304         else
305           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
306                                           M->getType(),
307                                           *Destroy, CleanupKind & EHCleanup);
308         return;
309 
310       case SD_Dynamic:
311         llvm_unreachable("temporary cannot have dynamic storage duration");
312       }
313       llvm_unreachable("unknown storage duration");
314     }
315   }
316 
317   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
318   if (const RecordType *RT =
319           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
320     // Get the destructor for the reference temporary.
321     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
322     if (!ClassDecl->hasTrivialDestructor())
323       ReferenceTemporaryDtor = ClassDecl->getDestructor();
324   }
325 
326   if (!ReferenceTemporaryDtor)
327     return;
328 
329   // Call the destructor for the temporary.
330   switch (M->getStorageDuration()) {
331   case SD_Static:
332   case SD_Thread: {
333     llvm::FunctionCallee CleanupFn;
334     llvm::Constant *CleanupArg;
335     if (E->getType()->isArrayType()) {
336       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
337           ReferenceTemporary, E->getType(),
338           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
339           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
340       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
341     } else {
342       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(ReferenceTemporaryDtor,
343                                                       StructorType::Complete);
344       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
345     }
346     CGF.CGM.getCXXABI().registerGlobalDtor(
347         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
348     break;
349   }
350 
351   case SD_FullExpression:
352     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
353                     CodeGenFunction::destroyCXXObject,
354                     CGF.getLangOpts().Exceptions);
355     break;
356 
357   case SD_Automatic:
358     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
359                                     ReferenceTemporary, E->getType(),
360                                     CodeGenFunction::destroyCXXObject,
361                                     CGF.getLangOpts().Exceptions);
362     break;
363 
364   case SD_Dynamic:
365     llvm_unreachable("temporary cannot have dynamic storage duration");
366   }
367 }
368 
369 static Address createReferenceTemporary(CodeGenFunction &CGF,
370                                         const MaterializeTemporaryExpr *M,
371                                         const Expr *Inner,
372                                         Address *Alloca = nullptr) {
373   auto &TCG = CGF.getTargetHooks();
374   switch (M->getStorageDuration()) {
375   case SD_FullExpression:
376   case SD_Automatic: {
377     // If we have a constant temporary array or record try to promote it into a
378     // constant global under the same rules a normal constant would've been
379     // promoted. This is easier on the optimizer and generally emits fewer
380     // instructions.
381     QualType Ty = Inner->getType();
382     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
383         (Ty->isArrayType() || Ty->isRecordType()) &&
384         CGF.CGM.isTypeConstant(Ty, true))
385       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
386         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
387           auto AS = AddrSpace.getValue();
388           auto *GV = new llvm::GlobalVariable(
389               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
390               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
391               llvm::GlobalValue::NotThreadLocal,
392               CGF.getContext().getTargetAddressSpace(AS));
393           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
394           GV->setAlignment(alignment.getQuantity());
395           llvm::Constant *C = GV;
396           if (AS != LangAS::Default)
397             C = TCG.performAddrSpaceCast(
398                 CGF.CGM, GV, AS, LangAS::Default,
399                 GV->getValueType()->getPointerTo(
400                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
401           // FIXME: Should we put the new global into a COMDAT?
402           return Address(C, alignment);
403         }
404       }
405     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
406   }
407   case SD_Thread:
408   case SD_Static:
409     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
410 
411   case SD_Dynamic:
412     llvm_unreachable("temporary can't have dynamic storage duration");
413   }
414   llvm_unreachable("unknown storage duration");
415 }
416 
417 LValue CodeGenFunction::
418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
419   const Expr *E = M->GetTemporaryExpr();
420 
421   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
422           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
423          "Reference should never be pseudo-strong!");
424 
425   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
426   // as that will cause the lifetime adjustment to be lost for ARC
427   auto ownership = M->getType().getObjCLifetime();
428   if (ownership != Qualifiers::OCL_None &&
429       ownership != Qualifiers::OCL_ExplicitNone) {
430     Address Object = createReferenceTemporary(*this, M, E);
431     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
432       Object = Address(llvm::ConstantExpr::getBitCast(Var,
433                            ConvertTypeForMem(E->getType())
434                              ->getPointerTo(Object.getAddressSpace())),
435                        Object.getAlignment());
436 
437       // createReferenceTemporary will promote the temporary to a global with a
438       // constant initializer if it can.  It can only do this to a value of
439       // ARC-manageable type if the value is global and therefore "immune" to
440       // ref-counting operations.  Therefore we have no need to emit either a
441       // dynamic initialization or a cleanup and we can just return the address
442       // of the temporary.
443       if (Var->hasInitializer())
444         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
445 
446       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
447     }
448     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
449                                        AlignmentSource::Decl);
450 
451     switch (getEvaluationKind(E->getType())) {
452     default: llvm_unreachable("expected scalar or aggregate expression");
453     case TEK_Scalar:
454       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
455       break;
456     case TEK_Aggregate: {
457       EmitAggExpr(E, AggValueSlot::forAddr(Object,
458                                            E->getType().getQualifiers(),
459                                            AggValueSlot::IsDestructed,
460                                            AggValueSlot::DoesNotNeedGCBarriers,
461                                            AggValueSlot::IsNotAliased,
462                                            AggValueSlot::DoesNotOverlap));
463       break;
464     }
465     }
466 
467     pushTemporaryCleanup(*this, M, E, Object);
468     return RefTempDst;
469   }
470 
471   SmallVector<const Expr *, 2> CommaLHSs;
472   SmallVector<SubobjectAdjustment, 2> Adjustments;
473   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
474 
475   for (const auto &Ignored : CommaLHSs)
476     EmitIgnoredExpr(Ignored);
477 
478   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
479     if (opaque->getType()->isRecordType()) {
480       assert(Adjustments.empty());
481       return EmitOpaqueValueLValue(opaque);
482     }
483   }
484 
485   // Create and initialize the reference temporary.
486   Address Alloca = Address::invalid();
487   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
488   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
489           Object.getPointer()->stripPointerCasts())) {
490     Object = Address(llvm::ConstantExpr::getBitCast(
491                          cast<llvm::Constant>(Object.getPointer()),
492                          ConvertTypeForMem(E->getType())->getPointerTo()),
493                      Object.getAlignment());
494     // If the temporary is a global and has a constant initializer or is a
495     // constant temporary that we promoted to a global, we may have already
496     // initialized it.
497     if (!Var->hasInitializer()) {
498       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
499       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
500     }
501   } else {
502     switch (M->getStorageDuration()) {
503     case SD_Automatic:
504       if (auto *Size = EmitLifetimeStart(
505               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
506               Alloca.getPointer())) {
507         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
508                                                   Alloca, Size);
509       }
510       break;
511 
512     case SD_FullExpression: {
513       if (!ShouldEmitLifetimeMarkers)
514         break;
515 
516       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
517       // marker. Instead, start the lifetime of a conditional temporary earlier
518       // so that it's unconditional. Don't do this in ASan's use-after-scope
519       // mode so that it gets the more precise lifetime marks. If the type has
520       // a non-trivial destructor, we'll have a cleanup block for it anyway,
521       // so this typically doesn't help; skip it in that case.
522       ConditionalEvaluation *OldConditional = nullptr;
523       CGBuilderTy::InsertPoint OldIP;
524       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
525           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
526         OldConditional = OutermostConditional;
527         OutermostConditional = nullptr;
528 
529         OldIP = Builder.saveIP();
530         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
531         Builder.restoreIP(CGBuilderTy::InsertPoint(
532             Block, llvm::BasicBlock::iterator(Block->back())));
533       }
534 
535       if (auto *Size = EmitLifetimeStart(
536               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
537               Alloca.getPointer())) {
538         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
539                                              Size);
540       }
541 
542       if (OldConditional) {
543         OutermostConditional = OldConditional;
544         Builder.restoreIP(OldIP);
545       }
546       break;
547     }
548 
549     default:
550       break;
551     }
552     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
553   }
554   pushTemporaryCleanup(*this, M, E, Object);
555 
556   // Perform derived-to-base casts and/or field accesses, to get from the
557   // temporary object we created (and, potentially, for which we extended
558   // the lifetime) to the subobject we're binding the reference to.
559   for (unsigned I = Adjustments.size(); I != 0; --I) {
560     SubobjectAdjustment &Adjustment = Adjustments[I-1];
561     switch (Adjustment.Kind) {
562     case SubobjectAdjustment::DerivedToBaseAdjustment:
563       Object =
564           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
565                                 Adjustment.DerivedToBase.BasePath->path_begin(),
566                                 Adjustment.DerivedToBase.BasePath->path_end(),
567                                 /*NullCheckValue=*/ false, E->getExprLoc());
568       break;
569 
570     case SubobjectAdjustment::FieldAdjustment: {
571       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
572       LV = EmitLValueForField(LV, Adjustment.Field);
573       assert(LV.isSimple() &&
574              "materialized temporary field is not a simple lvalue");
575       Object = LV.getAddress();
576       break;
577     }
578 
579     case SubobjectAdjustment::MemberPointerAdjustment: {
580       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
581       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
582                                                Adjustment.Ptr.MPT);
583       break;
584     }
585     }
586   }
587 
588   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
589 }
590 
591 RValue
592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
593   // Emit the expression as an lvalue.
594   LValue LV = EmitLValue(E);
595   assert(LV.isSimple());
596   llvm::Value *Value = LV.getPointer();
597 
598   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
599     // C++11 [dcl.ref]p5 (as amended by core issue 453):
600     //   If a glvalue to which a reference is directly bound designates neither
601     //   an existing object or function of an appropriate type nor a region of
602     //   storage of suitable size and alignment to contain an object of the
603     //   reference's type, the behavior is undefined.
604     QualType Ty = E->getType();
605     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
606   }
607 
608   return RValue::get(Value);
609 }
610 
611 
612 /// getAccessedFieldNo - Given an encoded value and a result number, return the
613 /// input field number being accessed.
614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
615                                              const llvm::Constant *Elts) {
616   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
617       ->getZExtValue();
618 }
619 
620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
622                                     llvm::Value *High) {
623   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
624   llvm::Value *K47 = Builder.getInt64(47);
625   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
626   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
627   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
628   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
629   return Builder.CreateMul(B1, KMul);
630 }
631 
632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
633   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
634          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
635 }
636 
637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
638   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
639   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
640          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
641           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
642           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
643 }
644 
645 bool CodeGenFunction::sanitizePerformTypeCheck() const {
646   return SanOpts.has(SanitizerKind::Null) |
647          SanOpts.has(SanitizerKind::Alignment) |
648          SanOpts.has(SanitizerKind::ObjectSize) |
649          SanOpts.has(SanitizerKind::Vptr);
650 }
651 
652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
653                                     llvm::Value *Ptr, QualType Ty,
654                                     CharUnits Alignment,
655                                     SanitizerSet SkippedChecks,
656                                     llvm::Value *ArraySize) {
657   if (!sanitizePerformTypeCheck())
658     return;
659 
660   // Don't check pointers outside the default address space. The null check
661   // isn't correct, the object-size check isn't supported by LLVM, and we can't
662   // communicate the addresses to the runtime handler for the vptr check.
663   if (Ptr->getType()->getPointerAddressSpace())
664     return;
665 
666   // Don't check pointers to volatile data. The behavior here is implementation-
667   // defined.
668   if (Ty.isVolatileQualified())
669     return;
670 
671   SanitizerScope SanScope(this);
672 
673   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
674   llvm::BasicBlock *Done = nullptr;
675 
676   // Quickly determine whether we have a pointer to an alloca. It's possible
677   // to skip null checks, and some alignment checks, for these pointers. This
678   // can reduce compile-time significantly.
679   auto PtrToAlloca =
680       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014 
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019 
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025 
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033 
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043 
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048 
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057 
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065 
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083 
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098 
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102 
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118 
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125 
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135 
1136   // TODO: conditional operators, comma.
1137 
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143 
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147 
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155 
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163 
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169 
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175 
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183 
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190 
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206 
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227 
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247 
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250 
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::VAArgExprClass:
1271     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1272   case Expr::DeclRefExprClass:
1273     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1274   case Expr::ConstantExprClass:
1275     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1276   case Expr::ParenExprClass:
1277     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1278   case Expr::GenericSelectionExprClass:
1279     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1280   case Expr::PredefinedExprClass:
1281     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1282   case Expr::StringLiteralClass:
1283     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1284   case Expr::ObjCEncodeExprClass:
1285     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1286   case Expr::PseudoObjectExprClass:
1287     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1288   case Expr::InitListExprClass:
1289     return EmitInitListLValue(cast<InitListExpr>(E));
1290   case Expr::CXXTemporaryObjectExprClass:
1291   case Expr::CXXConstructExprClass:
1292     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1293   case Expr::CXXBindTemporaryExprClass:
1294     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1295   case Expr::CXXUuidofExprClass:
1296     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1297 
1298   case Expr::ExprWithCleanupsClass: {
1299     const auto *cleanups = cast<ExprWithCleanups>(E);
1300     enterFullExpression(cleanups);
1301     RunCleanupsScope Scope(*this);
1302     LValue LV = EmitLValue(cleanups->getSubExpr());
1303     if (LV.isSimple()) {
1304       // Defend against branches out of gnu statement expressions surrounded by
1305       // cleanups.
1306       llvm::Value *V = LV.getPointer();
1307       Scope.ForceCleanup({&V});
1308       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1309                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1310     }
1311     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1312     // bitfield lvalue or some other non-simple lvalue?
1313     return LV;
1314   }
1315 
1316   case Expr::CXXDefaultArgExprClass:
1317     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1318   case Expr::CXXDefaultInitExprClass: {
1319     CXXDefaultInitExprScope Scope(*this);
1320     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1321   }
1322   case Expr::CXXTypeidExprClass:
1323     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1324 
1325   case Expr::ObjCMessageExprClass:
1326     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1327   case Expr::ObjCIvarRefExprClass:
1328     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1329   case Expr::StmtExprClass:
1330     return EmitStmtExprLValue(cast<StmtExpr>(E));
1331   case Expr::UnaryOperatorClass:
1332     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1333   case Expr::ArraySubscriptExprClass:
1334     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1335   case Expr::OMPArraySectionExprClass:
1336     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1337   case Expr::ExtVectorElementExprClass:
1338     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1339   case Expr::MemberExprClass:
1340     return EmitMemberExpr(cast<MemberExpr>(E));
1341   case Expr::CompoundLiteralExprClass:
1342     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1343   case Expr::ConditionalOperatorClass:
1344     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1345   case Expr::BinaryConditionalOperatorClass:
1346     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1347   case Expr::ChooseExprClass:
1348     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1349   case Expr::OpaqueValueExprClass:
1350     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1351   case Expr::SubstNonTypeTemplateParmExprClass:
1352     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1353   case Expr::ImplicitCastExprClass:
1354   case Expr::CStyleCastExprClass:
1355   case Expr::CXXFunctionalCastExprClass:
1356   case Expr::CXXStaticCastExprClass:
1357   case Expr::CXXDynamicCastExprClass:
1358   case Expr::CXXReinterpretCastExprClass:
1359   case Expr::CXXConstCastExprClass:
1360   case Expr::ObjCBridgedCastExprClass:
1361     return EmitCastLValue(cast<CastExpr>(E));
1362 
1363   case Expr::MaterializeTemporaryExprClass:
1364     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1365 
1366   case Expr::CoawaitExprClass:
1367     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1368   case Expr::CoyieldExprClass:
1369     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1370   }
1371 }
1372 
1373 /// Given an object of the given canonical type, can we safely copy a
1374 /// value out of it based on its initializer?
1375 static bool isConstantEmittableObjectType(QualType type) {
1376   assert(type.isCanonical());
1377   assert(!type->isReferenceType());
1378 
1379   // Must be const-qualified but non-volatile.
1380   Qualifiers qs = type.getLocalQualifiers();
1381   if (!qs.hasConst() || qs.hasVolatile()) return false;
1382 
1383   // Otherwise, all object types satisfy this except C++ classes with
1384   // mutable subobjects or non-trivial copy/destroy behavior.
1385   if (const auto *RT = dyn_cast<RecordType>(type))
1386     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1387       if (RD->hasMutableFields() || !RD->isTrivial())
1388         return false;
1389 
1390   return true;
1391 }
1392 
1393 /// Can we constant-emit a load of a reference to a variable of the
1394 /// given type?  This is different from predicates like
1395 /// Decl::isUsableInConstantExpressions because we do want it to apply
1396 /// in situations that don't necessarily satisfy the language's rules
1397 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1398 /// to do this with const float variables even if those variables
1399 /// aren't marked 'constexpr'.
1400 enum ConstantEmissionKind {
1401   CEK_None,
1402   CEK_AsReferenceOnly,
1403   CEK_AsValueOrReference,
1404   CEK_AsValueOnly
1405 };
1406 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1407   type = type.getCanonicalType();
1408   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1409     if (isConstantEmittableObjectType(ref->getPointeeType()))
1410       return CEK_AsValueOrReference;
1411     return CEK_AsReferenceOnly;
1412   }
1413   if (isConstantEmittableObjectType(type))
1414     return CEK_AsValueOnly;
1415   return CEK_None;
1416 }
1417 
1418 /// Try to emit a reference to the given value without producing it as
1419 /// an l-value.  This is actually more than an optimization: we can't
1420 /// produce an l-value for variables that we never actually captured
1421 /// in a block or lambda, which means const int variables or constexpr
1422 /// literals or similar.
1423 CodeGenFunction::ConstantEmission
1424 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1425   ValueDecl *value = refExpr->getDecl();
1426 
1427   // The value needs to be an enum constant or a constant variable.
1428   ConstantEmissionKind CEK;
1429   if (isa<ParmVarDecl>(value)) {
1430     CEK = CEK_None;
1431   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1432     CEK = checkVarTypeForConstantEmission(var->getType());
1433   } else if (isa<EnumConstantDecl>(value)) {
1434     CEK = CEK_AsValueOnly;
1435   } else {
1436     CEK = CEK_None;
1437   }
1438   if (CEK == CEK_None) return ConstantEmission();
1439 
1440   Expr::EvalResult result;
1441   bool resultIsReference;
1442   QualType resultType;
1443 
1444   // It's best to evaluate all the way as an r-value if that's permitted.
1445   if (CEK != CEK_AsReferenceOnly &&
1446       refExpr->EvaluateAsRValue(result, getContext())) {
1447     resultIsReference = false;
1448     resultType = refExpr->getType();
1449 
1450   // Otherwise, try to evaluate as an l-value.
1451   } else if (CEK != CEK_AsValueOnly &&
1452              refExpr->EvaluateAsLValue(result, getContext())) {
1453     resultIsReference = true;
1454     resultType = value->getType();
1455 
1456   // Failure.
1457   } else {
1458     return ConstantEmission();
1459   }
1460 
1461   // In any case, if the initializer has side-effects, abandon ship.
1462   if (result.HasSideEffects)
1463     return ConstantEmission();
1464 
1465   // Emit as a constant.
1466   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1467                                                result.Val, resultType);
1468 
1469   // Make sure we emit a debug reference to the global variable.
1470   // This should probably fire even for
1471   if (isa<VarDecl>(value)) {
1472     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1473       EmitDeclRefExprDbgValue(refExpr, result.Val);
1474   } else {
1475     assert(isa<EnumConstantDecl>(value));
1476     EmitDeclRefExprDbgValue(refExpr, result.Val);
1477   }
1478 
1479   // If we emitted a reference constant, we need to dereference that.
1480   if (resultIsReference)
1481     return ConstantEmission::forReference(C);
1482 
1483   return ConstantEmission::forValue(C);
1484 }
1485 
1486 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1487                                                         const MemberExpr *ME) {
1488   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1489     // Try to emit static variable member expressions as DREs.
1490     return DeclRefExpr::Create(
1491         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1492         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1493         ME->getType(), ME->getValueKind());
1494   }
1495   return nullptr;
1496 }
1497 
1498 CodeGenFunction::ConstantEmission
1499 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1500   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1501     return tryEmitAsConstant(DRE);
1502   return ConstantEmission();
1503 }
1504 
1505 llvm::Value *CodeGenFunction::emitScalarConstant(
1506     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1507   assert(Constant && "not a constant");
1508   if (Constant.isReference())
1509     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1510                             E->getExprLoc())
1511         .getScalarVal();
1512   return Constant.getValue();
1513 }
1514 
1515 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1516                                                SourceLocation Loc) {
1517   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1518                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1519                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1520 }
1521 
1522 static bool hasBooleanRepresentation(QualType Ty) {
1523   if (Ty->isBooleanType())
1524     return true;
1525 
1526   if (const EnumType *ET = Ty->getAs<EnumType>())
1527     return ET->getDecl()->getIntegerType()->isBooleanType();
1528 
1529   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1530     return hasBooleanRepresentation(AT->getValueType());
1531 
1532   return false;
1533 }
1534 
1535 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1536                             llvm::APInt &Min, llvm::APInt &End,
1537                             bool StrictEnums, bool IsBool) {
1538   const EnumType *ET = Ty->getAs<EnumType>();
1539   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1540                                 ET && !ET->getDecl()->isFixed();
1541   if (!IsBool && !IsRegularCPlusPlusEnum)
1542     return false;
1543 
1544   if (IsBool) {
1545     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1546     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1547   } else {
1548     const EnumDecl *ED = ET->getDecl();
1549     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1550     unsigned Bitwidth = LTy->getScalarSizeInBits();
1551     unsigned NumNegativeBits = ED->getNumNegativeBits();
1552     unsigned NumPositiveBits = ED->getNumPositiveBits();
1553 
1554     if (NumNegativeBits) {
1555       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1556       assert(NumBits <= Bitwidth);
1557       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1558       Min = -End;
1559     } else {
1560       assert(NumPositiveBits <= Bitwidth);
1561       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1562       Min = llvm::APInt(Bitwidth, 0);
1563     }
1564   }
1565   return true;
1566 }
1567 
1568 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1569   llvm::APInt Min, End;
1570   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1571                        hasBooleanRepresentation(Ty)))
1572     return nullptr;
1573 
1574   llvm::MDBuilder MDHelper(getLLVMContext());
1575   return MDHelper.createRange(Min, End);
1576 }
1577 
1578 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1579                                            SourceLocation Loc) {
1580   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1581   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1582   if (!HasBoolCheck && !HasEnumCheck)
1583     return false;
1584 
1585   bool IsBool = hasBooleanRepresentation(Ty) ||
1586                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1587   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1588   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1589   if (!NeedsBoolCheck && !NeedsEnumCheck)
1590     return false;
1591 
1592   // Single-bit booleans don't need to be checked. Special-case this to avoid
1593   // a bit width mismatch when handling bitfield values. This is handled by
1594   // EmitFromMemory for the non-bitfield case.
1595   if (IsBool &&
1596       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1597     return false;
1598 
1599   llvm::APInt Min, End;
1600   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1601     return true;
1602 
1603   auto &Ctx = getLLVMContext();
1604   SanitizerScope SanScope(this);
1605   llvm::Value *Check;
1606   --End;
1607   if (!Min) {
1608     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1609   } else {
1610     llvm::Value *Upper =
1611         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1612     llvm::Value *Lower =
1613         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1614     Check = Builder.CreateAnd(Upper, Lower);
1615   }
1616   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1617                                   EmitCheckTypeDescriptor(Ty)};
1618   SanitizerMask Kind =
1619       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1620   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1621             StaticArgs, EmitCheckValue(Value));
1622   return true;
1623 }
1624 
1625 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1626                                                QualType Ty,
1627                                                SourceLocation Loc,
1628                                                LValueBaseInfo BaseInfo,
1629                                                TBAAAccessInfo TBAAInfo,
1630                                                bool isNontemporal) {
1631   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1632     // For better performance, handle vector loads differently.
1633     if (Ty->isVectorType()) {
1634       const llvm::Type *EltTy = Addr.getElementType();
1635 
1636       const auto *VTy = cast<llvm::VectorType>(EltTy);
1637 
1638       // Handle vectors of size 3 like size 4 for better performance.
1639       if (VTy->getNumElements() == 3) {
1640 
1641         // Bitcast to vec4 type.
1642         llvm::VectorType *vec4Ty =
1643             llvm::VectorType::get(VTy->getElementType(), 4);
1644         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1645         // Now load value.
1646         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1647 
1648         // Shuffle vector to get vec3.
1649         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1650                                         {0, 1, 2}, "extractVec");
1651         return EmitFromMemory(V, Ty);
1652       }
1653     }
1654   }
1655 
1656   // Atomic operations have to be done on integral types.
1657   LValue AtomicLValue =
1658       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1659   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1660     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1661   }
1662 
1663   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1664   if (isNontemporal) {
1665     llvm::MDNode *Node = llvm::MDNode::get(
1666         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1667     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1668   }
1669 
1670   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1671 
1672   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1673     // In order to prevent the optimizer from throwing away the check, don't
1674     // attach range metadata to the load.
1675   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1676     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1677       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1678 
1679   return EmitFromMemory(Load, Ty);
1680 }
1681 
1682 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1683   // Bool has a different representation in memory than in registers.
1684   if (hasBooleanRepresentation(Ty)) {
1685     // This should really always be an i1, but sometimes it's already
1686     // an i8, and it's awkward to track those cases down.
1687     if (Value->getType()->isIntegerTy(1))
1688       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1689     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1690            "wrong value rep of bool");
1691   }
1692 
1693   return Value;
1694 }
1695 
1696 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1697   // Bool has a different representation in memory than in registers.
1698   if (hasBooleanRepresentation(Ty)) {
1699     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1700            "wrong value rep of bool");
1701     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1702   }
1703 
1704   return Value;
1705 }
1706 
1707 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1708                                         bool Volatile, QualType Ty,
1709                                         LValueBaseInfo BaseInfo,
1710                                         TBAAAccessInfo TBAAInfo,
1711                                         bool isInit, bool isNontemporal) {
1712   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1713     // Handle vectors differently to get better performance.
1714     if (Ty->isVectorType()) {
1715       llvm::Type *SrcTy = Value->getType();
1716       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1717       // Handle vec3 special.
1718       if (VecTy && VecTy->getNumElements() == 3) {
1719         // Our source is a vec3, do a shuffle vector to make it a vec4.
1720         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1721                                   Builder.getInt32(2),
1722                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1723         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1724         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1725                                             MaskV, "extractVec");
1726         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1727       }
1728       if (Addr.getElementType() != SrcTy) {
1729         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1730       }
1731     }
1732   }
1733 
1734   Value = EmitToMemory(Value, Ty);
1735 
1736   LValue AtomicLValue =
1737       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1738   if (Ty->isAtomicType() ||
1739       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1740     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1741     return;
1742   }
1743 
1744   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1745   if (isNontemporal) {
1746     llvm::MDNode *Node =
1747         llvm::MDNode::get(Store->getContext(),
1748                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1749     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1750   }
1751 
1752   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1753 }
1754 
1755 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1756                                         bool isInit) {
1757   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1758                     lvalue.getType(), lvalue.getBaseInfo(),
1759                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1760 }
1761 
1762 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1763 /// method emits the address of the lvalue, then loads the result as an rvalue,
1764 /// returning the rvalue.
1765 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1766   if (LV.isObjCWeak()) {
1767     // load of a __weak object.
1768     Address AddrWeakObj = LV.getAddress();
1769     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1770                                                              AddrWeakObj));
1771   }
1772   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1773     // In MRC mode, we do a load+autorelease.
1774     if (!getLangOpts().ObjCAutoRefCount) {
1775       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1776     }
1777 
1778     // In ARC mode, we load retained and then consume the value.
1779     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1780     Object = EmitObjCConsumeObject(LV.getType(), Object);
1781     return RValue::get(Object);
1782   }
1783 
1784   if (LV.isSimple()) {
1785     assert(!LV.getType()->isFunctionType());
1786 
1787     // Everything needs a load.
1788     return RValue::get(EmitLoadOfScalar(LV, Loc));
1789   }
1790 
1791   if (LV.isVectorElt()) {
1792     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1793                                               LV.isVolatileQualified());
1794     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1795                                                     "vecext"));
1796   }
1797 
1798   // If this is a reference to a subset of the elements of a vector, either
1799   // shuffle the input or extract/insert them as appropriate.
1800   if (LV.isExtVectorElt())
1801     return EmitLoadOfExtVectorElementLValue(LV);
1802 
1803   // Global Register variables always invoke intrinsics
1804   if (LV.isGlobalReg())
1805     return EmitLoadOfGlobalRegLValue(LV);
1806 
1807   assert(LV.isBitField() && "Unknown LValue type!");
1808   return EmitLoadOfBitfieldLValue(LV, Loc);
1809 }
1810 
1811 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1812                                                  SourceLocation Loc) {
1813   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1814 
1815   // Get the output type.
1816   llvm::Type *ResLTy = ConvertType(LV.getType());
1817 
1818   Address Ptr = LV.getBitFieldAddress();
1819   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1820 
1821   if (Info.IsSigned) {
1822     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1823     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1824     if (HighBits)
1825       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1826     if (Info.Offset + HighBits)
1827       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1828   } else {
1829     if (Info.Offset)
1830       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1831     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1832       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1833                                                               Info.Size),
1834                               "bf.clear");
1835   }
1836   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1837   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1838   return RValue::get(Val);
1839 }
1840 
1841 // If this is a reference to a subset of the elements of a vector, create an
1842 // appropriate shufflevector.
1843 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1844   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1845                                         LV.isVolatileQualified());
1846 
1847   const llvm::Constant *Elts = LV.getExtVectorElts();
1848 
1849   // If the result of the expression is a non-vector type, we must be extracting
1850   // a single element.  Just codegen as an extractelement.
1851   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1852   if (!ExprVT) {
1853     unsigned InIdx = getAccessedFieldNo(0, Elts);
1854     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1855     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1856   }
1857 
1858   // Always use shuffle vector to try to retain the original program structure
1859   unsigned NumResultElts = ExprVT->getNumElements();
1860 
1861   SmallVector<llvm::Constant*, 4> Mask;
1862   for (unsigned i = 0; i != NumResultElts; ++i)
1863     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1864 
1865   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1866   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1867                                     MaskV);
1868   return RValue::get(Vec);
1869 }
1870 
1871 /// Generates lvalue for partial ext_vector access.
1872 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1873   Address VectorAddress = LV.getExtVectorAddress();
1874   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1875   QualType EQT = ExprVT->getElementType();
1876   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1877 
1878   Address CastToPointerElement =
1879     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1880                                  "conv.ptr.element");
1881 
1882   const llvm::Constant *Elts = LV.getExtVectorElts();
1883   unsigned ix = getAccessedFieldNo(0, Elts);
1884 
1885   Address VectorBasePtrPlusIx =
1886     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1887                                    "vector.elt");
1888 
1889   return VectorBasePtrPlusIx;
1890 }
1891 
1892 /// Load of global gamed gegisters are always calls to intrinsics.
1893 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1894   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1895          "Bad type for register variable");
1896   llvm::MDNode *RegName = cast<llvm::MDNode>(
1897       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1898 
1899   // We accept integer and pointer types only
1900   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1901   llvm::Type *Ty = OrigTy;
1902   if (OrigTy->isPointerTy())
1903     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1904   llvm::Type *Types[] = { Ty };
1905 
1906   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1907   llvm::Value *Call = Builder.CreateCall(
1908       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1909   if (OrigTy->isPointerTy())
1910     Call = Builder.CreateIntToPtr(Call, OrigTy);
1911   return RValue::get(Call);
1912 }
1913 
1914 
1915 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1916 /// lvalue, where both are guaranteed to the have the same type, and that type
1917 /// is 'Ty'.
1918 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1919                                              bool isInit) {
1920   if (!Dst.isSimple()) {
1921     if (Dst.isVectorElt()) {
1922       // Read/modify/write the vector, inserting the new element.
1923       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1924                                             Dst.isVolatileQualified());
1925       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1926                                         Dst.getVectorIdx(), "vecins");
1927       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1928                           Dst.isVolatileQualified());
1929       return;
1930     }
1931 
1932     // If this is an update of extended vector elements, insert them as
1933     // appropriate.
1934     if (Dst.isExtVectorElt())
1935       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1936 
1937     if (Dst.isGlobalReg())
1938       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1939 
1940     assert(Dst.isBitField() && "Unknown LValue type");
1941     return EmitStoreThroughBitfieldLValue(Src, Dst);
1942   }
1943 
1944   // There's special magic for assigning into an ARC-qualified l-value.
1945   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1946     switch (Lifetime) {
1947     case Qualifiers::OCL_None:
1948       llvm_unreachable("present but none");
1949 
1950     case Qualifiers::OCL_ExplicitNone:
1951       // nothing special
1952       break;
1953 
1954     case Qualifiers::OCL_Strong:
1955       if (isInit) {
1956         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1957         break;
1958       }
1959       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1960       return;
1961 
1962     case Qualifiers::OCL_Weak:
1963       if (isInit)
1964         // Initialize and then skip the primitive store.
1965         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1966       else
1967         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1968       return;
1969 
1970     case Qualifiers::OCL_Autoreleasing:
1971       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1972                                                      Src.getScalarVal()));
1973       // fall into the normal path
1974       break;
1975     }
1976   }
1977 
1978   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1979     // load of a __weak object.
1980     Address LvalueDst = Dst.getAddress();
1981     llvm::Value *src = Src.getScalarVal();
1982      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1983     return;
1984   }
1985 
1986   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1987     // load of a __strong object.
1988     Address LvalueDst = Dst.getAddress();
1989     llvm::Value *src = Src.getScalarVal();
1990     if (Dst.isObjCIvar()) {
1991       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1992       llvm::Type *ResultType = IntPtrTy;
1993       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1994       llvm::Value *RHS = dst.getPointer();
1995       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1996       llvm::Value *LHS =
1997         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1998                                "sub.ptr.lhs.cast");
1999       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2000       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2001                                               BytesBetween);
2002     } else if (Dst.isGlobalObjCRef()) {
2003       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2004                                                 Dst.isThreadLocalRef());
2005     }
2006     else
2007       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2008     return;
2009   }
2010 
2011   assert(Src.isScalar() && "Can't emit an agg store with this method");
2012   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2013 }
2014 
2015 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2016                                                      llvm::Value **Result) {
2017   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2018   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2019   Address Ptr = Dst.getBitFieldAddress();
2020 
2021   // Get the source value, truncated to the width of the bit-field.
2022   llvm::Value *SrcVal = Src.getScalarVal();
2023 
2024   // Cast the source to the storage type and shift it into place.
2025   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2026                                  /*IsSigned=*/false);
2027   llvm::Value *MaskedVal = SrcVal;
2028 
2029   // See if there are other bits in the bitfield's storage we'll need to load
2030   // and mask together with source before storing.
2031   if (Info.StorageSize != Info.Size) {
2032     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2033     llvm::Value *Val =
2034       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2035 
2036     // Mask the source value as needed.
2037     if (!hasBooleanRepresentation(Dst.getType()))
2038       SrcVal = Builder.CreateAnd(SrcVal,
2039                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2040                                                             Info.Size),
2041                                  "bf.value");
2042     MaskedVal = SrcVal;
2043     if (Info.Offset)
2044       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2045 
2046     // Mask out the original value.
2047     Val = Builder.CreateAnd(Val,
2048                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2049                                                      Info.Offset,
2050                                                      Info.Offset + Info.Size),
2051                             "bf.clear");
2052 
2053     // Or together the unchanged values and the source value.
2054     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2055   } else {
2056     assert(Info.Offset == 0);
2057   }
2058 
2059   // Write the new value back out.
2060   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2061 
2062   // Return the new value of the bit-field, if requested.
2063   if (Result) {
2064     llvm::Value *ResultVal = MaskedVal;
2065 
2066     // Sign extend the value if needed.
2067     if (Info.IsSigned) {
2068       assert(Info.Size <= Info.StorageSize);
2069       unsigned HighBits = Info.StorageSize - Info.Size;
2070       if (HighBits) {
2071         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2072         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2073       }
2074     }
2075 
2076     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2077                                       "bf.result.cast");
2078     *Result = EmitFromMemory(ResultVal, Dst.getType());
2079   }
2080 }
2081 
2082 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2083                                                                LValue Dst) {
2084   // This access turns into a read/modify/write of the vector.  Load the input
2085   // value now.
2086   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2087                                         Dst.isVolatileQualified());
2088   const llvm::Constant *Elts = Dst.getExtVectorElts();
2089 
2090   llvm::Value *SrcVal = Src.getScalarVal();
2091 
2092   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2093     unsigned NumSrcElts = VTy->getNumElements();
2094     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2095     if (NumDstElts == NumSrcElts) {
2096       // Use shuffle vector is the src and destination are the same number of
2097       // elements and restore the vector mask since it is on the side it will be
2098       // stored.
2099       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2100       for (unsigned i = 0; i != NumSrcElts; ++i)
2101         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2102 
2103       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2104       Vec = Builder.CreateShuffleVector(SrcVal,
2105                                         llvm::UndefValue::get(Vec->getType()),
2106                                         MaskV);
2107     } else if (NumDstElts > NumSrcElts) {
2108       // Extended the source vector to the same length and then shuffle it
2109       // into the destination.
2110       // FIXME: since we're shuffling with undef, can we just use the indices
2111       //        into that?  This could be simpler.
2112       SmallVector<llvm::Constant*, 4> ExtMask;
2113       for (unsigned i = 0; i != NumSrcElts; ++i)
2114         ExtMask.push_back(Builder.getInt32(i));
2115       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2116       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2117       llvm::Value *ExtSrcVal =
2118         Builder.CreateShuffleVector(SrcVal,
2119                                     llvm::UndefValue::get(SrcVal->getType()),
2120                                     ExtMaskV);
2121       // build identity
2122       SmallVector<llvm::Constant*, 4> Mask;
2123       for (unsigned i = 0; i != NumDstElts; ++i)
2124         Mask.push_back(Builder.getInt32(i));
2125 
2126       // When the vector size is odd and .odd or .hi is used, the last element
2127       // of the Elts constant array will be one past the size of the vector.
2128       // Ignore the last element here, if it is greater than the mask size.
2129       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2130         NumSrcElts--;
2131 
2132       // modify when what gets shuffled in
2133       for (unsigned i = 0; i != NumSrcElts; ++i)
2134         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2135       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2136       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2137     } else {
2138       // We should never shorten the vector
2139       llvm_unreachable("unexpected shorten vector length");
2140     }
2141   } else {
2142     // If the Src is a scalar (not a vector) it must be updating one element.
2143     unsigned InIdx = getAccessedFieldNo(0, Elts);
2144     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2145     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2146   }
2147 
2148   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2149                       Dst.isVolatileQualified());
2150 }
2151 
2152 /// Store of global named registers are always calls to intrinsics.
2153 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2154   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2155          "Bad type for register variable");
2156   llvm::MDNode *RegName = cast<llvm::MDNode>(
2157       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2158   assert(RegName && "Register LValue is not metadata");
2159 
2160   // We accept integer and pointer types only
2161   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2162   llvm::Type *Ty = OrigTy;
2163   if (OrigTy->isPointerTy())
2164     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2165   llvm::Type *Types[] = { Ty };
2166 
2167   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2168   llvm::Value *Value = Src.getScalarVal();
2169   if (OrigTy->isPointerTy())
2170     Value = Builder.CreatePtrToInt(Value, Ty);
2171   Builder.CreateCall(
2172       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2173 }
2174 
2175 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2176 // generating write-barries API. It is currently a global, ivar,
2177 // or neither.
2178 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2179                                  LValue &LV,
2180                                  bool IsMemberAccess=false) {
2181   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2182     return;
2183 
2184   if (isa<ObjCIvarRefExpr>(E)) {
2185     QualType ExpTy = E->getType();
2186     if (IsMemberAccess && ExpTy->isPointerType()) {
2187       // If ivar is a structure pointer, assigning to field of
2188       // this struct follows gcc's behavior and makes it a non-ivar
2189       // writer-barrier conservatively.
2190       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2191       if (ExpTy->isRecordType()) {
2192         LV.setObjCIvar(false);
2193         return;
2194       }
2195     }
2196     LV.setObjCIvar(true);
2197     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2198     LV.setBaseIvarExp(Exp->getBase());
2199     LV.setObjCArray(E->getType()->isArrayType());
2200     return;
2201   }
2202 
2203   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2204     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2205       if (VD->hasGlobalStorage()) {
2206         LV.setGlobalObjCRef(true);
2207         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2208       }
2209     }
2210     LV.setObjCArray(E->getType()->isArrayType());
2211     return;
2212   }
2213 
2214   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2215     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2216     return;
2217   }
2218 
2219   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2220     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2221     if (LV.isObjCIvar()) {
2222       // If cast is to a structure pointer, follow gcc's behavior and make it
2223       // a non-ivar write-barrier.
2224       QualType ExpTy = E->getType();
2225       if (ExpTy->isPointerType())
2226         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2227       if (ExpTy->isRecordType())
2228         LV.setObjCIvar(false);
2229     }
2230     return;
2231   }
2232 
2233   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2234     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2235     return;
2236   }
2237 
2238   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2239     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2240     return;
2241   }
2242 
2243   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2244     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2245     return;
2246   }
2247 
2248   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2249     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2250     return;
2251   }
2252 
2253   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2254     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2255     if (LV.isObjCIvar() && !LV.isObjCArray())
2256       // Using array syntax to assigning to what an ivar points to is not
2257       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2258       LV.setObjCIvar(false);
2259     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2260       // Using array syntax to assigning to what global points to is not
2261       // same as assigning to the global itself. {id *G;} G[i] = 0;
2262       LV.setGlobalObjCRef(false);
2263     return;
2264   }
2265 
2266   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2267     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2268     // We don't know if member is an 'ivar', but this flag is looked at
2269     // only in the context of LV.isObjCIvar().
2270     LV.setObjCArray(E->getType()->isArrayType());
2271     return;
2272   }
2273 }
2274 
2275 static llvm::Value *
2276 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2277                                 llvm::Value *V, llvm::Type *IRType,
2278                                 StringRef Name = StringRef()) {
2279   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2280   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2281 }
2282 
2283 static LValue EmitThreadPrivateVarDeclLValue(
2284     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2285     llvm::Type *RealVarTy, SourceLocation Loc) {
2286   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2287   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2288   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2289 }
2290 
2291 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2292                                                const VarDecl *VD, QualType T) {
2293   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2294       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2295   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2296     return Address::invalid();
2297   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2298   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2299   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2300   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2301 }
2302 
2303 Address
2304 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2305                                      LValueBaseInfo *PointeeBaseInfo,
2306                                      TBAAAccessInfo *PointeeTBAAInfo) {
2307   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2308                                             RefLVal.isVolatile());
2309   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2310 
2311   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2312                                             PointeeBaseInfo, PointeeTBAAInfo,
2313                                             /* forPointeeType= */ true);
2314   return Address(Load, Align);
2315 }
2316 
2317 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2318   LValueBaseInfo PointeeBaseInfo;
2319   TBAAAccessInfo PointeeTBAAInfo;
2320   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2321                                             &PointeeTBAAInfo);
2322   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2323                         PointeeBaseInfo, PointeeTBAAInfo);
2324 }
2325 
2326 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2327                                            const PointerType *PtrTy,
2328                                            LValueBaseInfo *BaseInfo,
2329                                            TBAAAccessInfo *TBAAInfo) {
2330   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2331   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2332                                                BaseInfo, TBAAInfo,
2333                                                /*forPointeeType=*/true));
2334 }
2335 
2336 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2337                                                 const PointerType *PtrTy) {
2338   LValueBaseInfo BaseInfo;
2339   TBAAAccessInfo TBAAInfo;
2340   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2341   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2342 }
2343 
2344 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2345                                       const Expr *E, const VarDecl *VD) {
2346   QualType T = E->getType();
2347 
2348   // If it's thread_local, emit a call to its wrapper function instead.
2349   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2350       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2351     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2352   // Check if the variable is marked as declare target with link clause in
2353   // device codegen.
2354   if (CGF.getLangOpts().OpenMPIsDevice) {
2355     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2356     if (Addr.isValid())
2357       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2358   }
2359 
2360   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2361   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2362   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2363   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2364   Address Addr(V, Alignment);
2365   // Emit reference to the private copy of the variable if it is an OpenMP
2366   // threadprivate variable.
2367   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2368       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2369     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2370                                           E->getExprLoc());
2371   }
2372   LValue LV = VD->getType()->isReferenceType() ?
2373       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2374                                     AlignmentSource::Decl) :
2375       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2376   setObjCGCLValueClass(CGF.getContext(), E, LV);
2377   return LV;
2378 }
2379 
2380 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2381                                                const FunctionDecl *FD) {
2382   if (FD->hasAttr<WeakRefAttr>()) {
2383     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2384     return aliasee.getPointer();
2385   }
2386 
2387   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2388   if (!FD->hasPrototype()) {
2389     if (const FunctionProtoType *Proto =
2390             FD->getType()->getAs<FunctionProtoType>()) {
2391       // Ugly case: for a K&R-style definition, the type of the definition
2392       // isn't the same as the type of a use.  Correct for this with a
2393       // bitcast.
2394       QualType NoProtoType =
2395           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2396       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2397       V = llvm::ConstantExpr::getBitCast(V,
2398                                       CGM.getTypes().ConvertType(NoProtoType));
2399     }
2400   }
2401   return V;
2402 }
2403 
2404 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2405                                      const Expr *E, const FunctionDecl *FD) {
2406   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2407   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2408   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2409                             AlignmentSource::Decl);
2410 }
2411 
2412 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2413                                       llvm::Value *ThisValue) {
2414   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2415   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2416   return CGF.EmitLValueForField(LV, FD);
2417 }
2418 
2419 /// Named Registers are named metadata pointing to the register name
2420 /// which will be read from/written to as an argument to the intrinsic
2421 /// @llvm.read/write_register.
2422 /// So far, only the name is being passed down, but other options such as
2423 /// register type, allocation type or even optimization options could be
2424 /// passed down via the metadata node.
2425 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2426   SmallString<64> Name("llvm.named.register.");
2427   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2428   assert(Asm->getLabel().size() < 64-Name.size() &&
2429       "Register name too big");
2430   Name.append(Asm->getLabel());
2431   llvm::NamedMDNode *M =
2432     CGM.getModule().getOrInsertNamedMetadata(Name);
2433   if (M->getNumOperands() == 0) {
2434     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2435                                               Asm->getLabel());
2436     llvm::Metadata *Ops[] = {Str};
2437     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2438   }
2439 
2440   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2441 
2442   llvm::Value *Ptr =
2443     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2444   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2445 }
2446 
2447 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2448   const NamedDecl *ND = E->getDecl();
2449   QualType T = E->getType();
2450 
2451   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2452     // Global Named registers access via intrinsics only
2453     if (VD->getStorageClass() == SC_Register &&
2454         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2455       return EmitGlobalNamedRegister(VD, CGM);
2456 
2457     // A DeclRefExpr for a reference initialized by a constant expression can
2458     // appear without being odr-used. Directly emit the constant initializer.
2459     const Expr *Init = VD->getAnyInitializer(VD);
2460     const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
2461     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2462         VD->isUsableInConstantExpressions(getContext()) &&
2463         VD->checkInitIsICE() &&
2464         // Do not emit if it is private OpenMP variable.
2465         !(E->refersToEnclosingVariableOrCapture() &&
2466           ((CapturedStmtInfo &&
2467             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2468              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2469            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2470            (BD && BD->capturesVariable(VD))))) {
2471       llvm::Constant *Val =
2472         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2473                                             *VD->evaluateValue(),
2474                                             VD->getType());
2475       assert(Val && "failed to emit reference constant expression");
2476       // FIXME: Eventually we will want to emit vector element references.
2477 
2478       // Should we be using the alignment of the constant pointer we emitted?
2479       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2480                                                     /* BaseInfo= */ nullptr,
2481                                                     /* TBAAInfo= */ nullptr,
2482                                                     /* forPointeeType= */ true);
2483       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2484     }
2485 
2486     // Check for captured variables.
2487     if (E->refersToEnclosingVariableOrCapture()) {
2488       VD = VD->getCanonicalDecl();
2489       if (auto *FD = LambdaCaptureFields.lookup(VD))
2490         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2491       else if (CapturedStmtInfo) {
2492         auto I = LocalDeclMap.find(VD);
2493         if (I != LocalDeclMap.end()) {
2494           if (VD->getType()->isReferenceType())
2495             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2496                                              AlignmentSource::Decl);
2497           return MakeAddrLValue(I->second, T);
2498         }
2499         LValue CapLVal =
2500             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2501                                     CapturedStmtInfo->getContextValue());
2502         return MakeAddrLValue(
2503             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2504             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2505             CapLVal.getTBAAInfo());
2506       }
2507 
2508       assert(isa<BlockDecl>(CurCodeDecl));
2509       Address addr = GetAddrOfBlockDecl(VD);
2510       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2511     }
2512   }
2513 
2514   // FIXME: We should be able to assert this for FunctionDecls as well!
2515   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2516   // those with a valid source location.
2517   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2518           !E->getLocation().isValid()) &&
2519          "Should not use decl without marking it used!");
2520 
2521   if (ND->hasAttr<WeakRefAttr>()) {
2522     const auto *VD = cast<ValueDecl>(ND);
2523     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2524     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2525   }
2526 
2527   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2528     // Check if this is a global variable.
2529     if (VD->hasLinkage() || VD->isStaticDataMember())
2530       return EmitGlobalVarDeclLValue(*this, E, VD);
2531 
2532     Address addr = Address::invalid();
2533 
2534     // The variable should generally be present in the local decl map.
2535     auto iter = LocalDeclMap.find(VD);
2536     if (iter != LocalDeclMap.end()) {
2537       addr = iter->second;
2538 
2539     // Otherwise, it might be static local we haven't emitted yet for
2540     // some reason; most likely, because it's in an outer function.
2541     } else if (VD->isStaticLocal()) {
2542       addr = Address(CGM.getOrCreateStaticVarDecl(
2543           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2544                      getContext().getDeclAlign(VD));
2545 
2546     // No other cases for now.
2547     } else {
2548       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2549     }
2550 
2551 
2552     // Check for OpenMP threadprivate variables.
2553     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2554         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2555       return EmitThreadPrivateVarDeclLValue(
2556           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2557           E->getExprLoc());
2558     }
2559 
2560     // Drill into block byref variables.
2561     bool isBlockByref = VD->isEscapingByref();
2562     if (isBlockByref) {
2563       addr = emitBlockByrefAddress(addr, VD);
2564     }
2565 
2566     // Drill into reference types.
2567     LValue LV = VD->getType()->isReferenceType() ?
2568         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2569         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2570 
2571     bool isLocalStorage = VD->hasLocalStorage();
2572 
2573     bool NonGCable = isLocalStorage &&
2574                      !VD->getType()->isReferenceType() &&
2575                      !isBlockByref;
2576     if (NonGCable) {
2577       LV.getQuals().removeObjCGCAttr();
2578       LV.setNonGC(true);
2579     }
2580 
2581     bool isImpreciseLifetime =
2582       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2583     if (isImpreciseLifetime)
2584       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2585     setObjCGCLValueClass(getContext(), E, LV);
2586     return LV;
2587   }
2588 
2589   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2590     return EmitFunctionDeclLValue(*this, E, FD);
2591 
2592   // FIXME: While we're emitting a binding from an enclosing scope, all other
2593   // DeclRefExprs we see should be implicitly treated as if they also refer to
2594   // an enclosing scope.
2595   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2596     return EmitLValue(BD->getBinding());
2597 
2598   llvm_unreachable("Unhandled DeclRefExpr");
2599 }
2600 
2601 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2602   // __extension__ doesn't affect lvalue-ness.
2603   if (E->getOpcode() == UO_Extension)
2604     return EmitLValue(E->getSubExpr());
2605 
2606   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2607   switch (E->getOpcode()) {
2608   default: llvm_unreachable("Unknown unary operator lvalue!");
2609   case UO_Deref: {
2610     QualType T = E->getSubExpr()->getType()->getPointeeType();
2611     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2612 
2613     LValueBaseInfo BaseInfo;
2614     TBAAAccessInfo TBAAInfo;
2615     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2616                                             &TBAAInfo);
2617     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2618     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2619 
2620     // We should not generate __weak write barrier on indirect reference
2621     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2622     // But, we continue to generate __strong write barrier on indirect write
2623     // into a pointer to object.
2624     if (getLangOpts().ObjC &&
2625         getLangOpts().getGC() != LangOptions::NonGC &&
2626         LV.isObjCWeak())
2627       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2628     return LV;
2629   }
2630   case UO_Real:
2631   case UO_Imag: {
2632     LValue LV = EmitLValue(E->getSubExpr());
2633     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2634 
2635     // __real is valid on scalars.  This is a faster way of testing that.
2636     // __imag can only produce an rvalue on scalars.
2637     if (E->getOpcode() == UO_Real &&
2638         !LV.getAddress().getElementType()->isStructTy()) {
2639       assert(E->getSubExpr()->getType()->isArithmeticType());
2640       return LV;
2641     }
2642 
2643     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2644 
2645     Address Component =
2646       (E->getOpcode() == UO_Real
2647          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2648          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2649     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2650                                    CGM.getTBAAInfoForSubobject(LV, T));
2651     ElemLV.getQuals().addQualifiers(LV.getQuals());
2652     return ElemLV;
2653   }
2654   case UO_PreInc:
2655   case UO_PreDec: {
2656     LValue LV = EmitLValue(E->getSubExpr());
2657     bool isInc = E->getOpcode() == UO_PreInc;
2658 
2659     if (E->getType()->isAnyComplexType())
2660       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2661     else
2662       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2663     return LV;
2664   }
2665   }
2666 }
2667 
2668 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2669   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2670                         E->getType(), AlignmentSource::Decl);
2671 }
2672 
2673 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2674   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2675                         E->getType(), AlignmentSource::Decl);
2676 }
2677 
2678 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2679   auto SL = E->getFunctionName();
2680   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2681   StringRef FnName = CurFn->getName();
2682   if (FnName.startswith("\01"))
2683     FnName = FnName.substr(1);
2684   StringRef NameItems[] = {
2685       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2686   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2687   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2688     std::string Name = SL->getString();
2689     if (!Name.empty()) {
2690       unsigned Discriminator =
2691           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2692       if (Discriminator)
2693         Name += "_" + Twine(Discriminator + 1).str();
2694       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2695       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2696     } else {
2697       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2698       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2699     }
2700   }
2701   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2702   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2703 }
2704 
2705 /// Emit a type description suitable for use by a runtime sanitizer library. The
2706 /// format of a type descriptor is
2707 ///
2708 /// \code
2709 ///   { i16 TypeKind, i16 TypeInfo }
2710 /// \endcode
2711 ///
2712 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2713 /// integer, 1 for a floating point value, and -1 for anything else.
2714 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2715   // Only emit each type's descriptor once.
2716   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2717     return C;
2718 
2719   uint16_t TypeKind = -1;
2720   uint16_t TypeInfo = 0;
2721 
2722   if (T->isIntegerType()) {
2723     TypeKind = 0;
2724     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2725                (T->isSignedIntegerType() ? 1 : 0);
2726   } else if (T->isFloatingType()) {
2727     TypeKind = 1;
2728     TypeInfo = getContext().getTypeSize(T);
2729   }
2730 
2731   // Format the type name as if for a diagnostic, including quotes and
2732   // optionally an 'aka'.
2733   SmallString<32> Buffer;
2734   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2735                                     (intptr_t)T.getAsOpaquePtr(),
2736                                     StringRef(), StringRef(), None, Buffer,
2737                                     None);
2738 
2739   llvm::Constant *Components[] = {
2740     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2741     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2742   };
2743   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2744 
2745   auto *GV = new llvm::GlobalVariable(
2746       CGM.getModule(), Descriptor->getType(),
2747       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2748   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2749   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2750 
2751   // Remember the descriptor for this type.
2752   CGM.setTypeDescriptorInMap(T, GV);
2753 
2754   return GV;
2755 }
2756 
2757 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2758   llvm::Type *TargetTy = IntPtrTy;
2759 
2760   if (V->getType() == TargetTy)
2761     return V;
2762 
2763   // Floating-point types which fit into intptr_t are bitcast to integers
2764   // and then passed directly (after zero-extension, if necessary).
2765   if (V->getType()->isFloatingPointTy()) {
2766     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2767     if (Bits <= TargetTy->getIntegerBitWidth())
2768       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2769                                                          Bits));
2770   }
2771 
2772   // Integers which fit in intptr_t are zero-extended and passed directly.
2773   if (V->getType()->isIntegerTy() &&
2774       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2775     return Builder.CreateZExt(V, TargetTy);
2776 
2777   // Pointers are passed directly, everything else is passed by address.
2778   if (!V->getType()->isPointerTy()) {
2779     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2780     Builder.CreateStore(V, Ptr);
2781     V = Ptr.getPointer();
2782   }
2783   return Builder.CreatePtrToInt(V, TargetTy);
2784 }
2785 
2786 /// Emit a representation of a SourceLocation for passing to a handler
2787 /// in a sanitizer runtime library. The format for this data is:
2788 /// \code
2789 ///   struct SourceLocation {
2790 ///     const char *Filename;
2791 ///     int32_t Line, Column;
2792 ///   };
2793 /// \endcode
2794 /// For an invalid SourceLocation, the Filename pointer is null.
2795 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2796   llvm::Constant *Filename;
2797   int Line, Column;
2798 
2799   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2800   if (PLoc.isValid()) {
2801     StringRef FilenameString = PLoc.getFilename();
2802 
2803     int PathComponentsToStrip =
2804         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2805     if (PathComponentsToStrip < 0) {
2806       assert(PathComponentsToStrip != INT_MIN);
2807       int PathComponentsToKeep = -PathComponentsToStrip;
2808       auto I = llvm::sys::path::rbegin(FilenameString);
2809       auto E = llvm::sys::path::rend(FilenameString);
2810       while (I != E && --PathComponentsToKeep)
2811         ++I;
2812 
2813       FilenameString = FilenameString.substr(I - E);
2814     } else if (PathComponentsToStrip > 0) {
2815       auto I = llvm::sys::path::begin(FilenameString);
2816       auto E = llvm::sys::path::end(FilenameString);
2817       while (I != E && PathComponentsToStrip--)
2818         ++I;
2819 
2820       if (I != E)
2821         FilenameString =
2822             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2823       else
2824         FilenameString = llvm::sys::path::filename(FilenameString);
2825     }
2826 
2827     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2828     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2829                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2830     Filename = FilenameGV.getPointer();
2831     Line = PLoc.getLine();
2832     Column = PLoc.getColumn();
2833   } else {
2834     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2835     Line = Column = 0;
2836   }
2837 
2838   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2839                             Builder.getInt32(Column)};
2840 
2841   return llvm::ConstantStruct::getAnon(Data);
2842 }
2843 
2844 namespace {
2845 /// Specify under what conditions this check can be recovered
2846 enum class CheckRecoverableKind {
2847   /// Always terminate program execution if this check fails.
2848   Unrecoverable,
2849   /// Check supports recovering, runtime has both fatal (noreturn) and
2850   /// non-fatal handlers for this check.
2851   Recoverable,
2852   /// Runtime conditionally aborts, always need to support recovery.
2853   AlwaysRecoverable
2854 };
2855 }
2856 
2857 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2858   assert(llvm::countPopulation(Kind) == 1);
2859   switch (Kind) {
2860   case SanitizerKind::Vptr:
2861     return CheckRecoverableKind::AlwaysRecoverable;
2862   case SanitizerKind::Return:
2863   case SanitizerKind::Unreachable:
2864     return CheckRecoverableKind::Unrecoverable;
2865   default:
2866     return CheckRecoverableKind::Recoverable;
2867   }
2868 }
2869 
2870 namespace {
2871 struct SanitizerHandlerInfo {
2872   char const *const Name;
2873   unsigned Version;
2874 };
2875 }
2876 
2877 const SanitizerHandlerInfo SanitizerHandlers[] = {
2878 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2879     LIST_SANITIZER_CHECKS
2880 #undef SANITIZER_CHECK
2881 };
2882 
2883 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2884                                  llvm::FunctionType *FnType,
2885                                  ArrayRef<llvm::Value *> FnArgs,
2886                                  SanitizerHandler CheckHandler,
2887                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2888                                  llvm::BasicBlock *ContBB) {
2889   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2890   Optional<ApplyDebugLocation> DL;
2891   if (!CGF.Builder.getCurrentDebugLocation()) {
2892     // Ensure that the call has at least an artificial debug location.
2893     DL.emplace(CGF, SourceLocation());
2894   }
2895   bool NeedsAbortSuffix =
2896       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2897   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2898   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2899   const StringRef CheckName = CheckInfo.Name;
2900   std::string FnName = "__ubsan_handle_" + CheckName.str();
2901   if (CheckInfo.Version && !MinimalRuntime)
2902     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2903   if (MinimalRuntime)
2904     FnName += "_minimal";
2905   if (NeedsAbortSuffix)
2906     FnName += "_abort";
2907   bool MayReturn =
2908       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2909 
2910   llvm::AttrBuilder B;
2911   if (!MayReturn) {
2912     B.addAttribute(llvm::Attribute::NoReturn)
2913         .addAttribute(llvm::Attribute::NoUnwind);
2914   }
2915   B.addAttribute(llvm::Attribute::UWTable);
2916 
2917   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2918       FnType, FnName,
2919       llvm::AttributeList::get(CGF.getLLVMContext(),
2920                                llvm::AttributeList::FunctionIndex, B),
2921       /*Local=*/true);
2922   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2923   if (!MayReturn) {
2924     HandlerCall->setDoesNotReturn();
2925     CGF.Builder.CreateUnreachable();
2926   } else {
2927     CGF.Builder.CreateBr(ContBB);
2928   }
2929 }
2930 
2931 void CodeGenFunction::EmitCheck(
2932     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2933     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2934     ArrayRef<llvm::Value *> DynamicArgs) {
2935   assert(IsSanitizerScope);
2936   assert(Checked.size() > 0);
2937   assert(CheckHandler >= 0 &&
2938          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2939   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2940 
2941   llvm::Value *FatalCond = nullptr;
2942   llvm::Value *RecoverableCond = nullptr;
2943   llvm::Value *TrapCond = nullptr;
2944   for (int i = 0, n = Checked.size(); i < n; ++i) {
2945     llvm::Value *Check = Checked[i].first;
2946     // -fsanitize-trap= overrides -fsanitize-recover=.
2947     llvm::Value *&Cond =
2948         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2949             ? TrapCond
2950             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2951                   ? RecoverableCond
2952                   : FatalCond;
2953     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2954   }
2955 
2956   if (TrapCond)
2957     EmitTrapCheck(TrapCond);
2958   if (!FatalCond && !RecoverableCond)
2959     return;
2960 
2961   llvm::Value *JointCond;
2962   if (FatalCond && RecoverableCond)
2963     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2964   else
2965     JointCond = FatalCond ? FatalCond : RecoverableCond;
2966   assert(JointCond);
2967 
2968   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2969   assert(SanOpts.has(Checked[0].second));
2970 #ifndef NDEBUG
2971   for (int i = 1, n = Checked.size(); i < n; ++i) {
2972     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2973            "All recoverable kinds in a single check must be same!");
2974     assert(SanOpts.has(Checked[i].second));
2975   }
2976 #endif
2977 
2978   llvm::BasicBlock *Cont = createBasicBlock("cont");
2979   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2980   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2981   // Give hint that we very much don't expect to execute the handler
2982   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2983   llvm::MDBuilder MDHelper(getLLVMContext());
2984   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2985   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2986   EmitBlock(Handlers);
2987 
2988   // Handler functions take an i8* pointing to the (handler-specific) static
2989   // information block, followed by a sequence of intptr_t arguments
2990   // representing operand values.
2991   SmallVector<llvm::Value *, 4> Args;
2992   SmallVector<llvm::Type *, 4> ArgTypes;
2993   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2994     Args.reserve(DynamicArgs.size() + 1);
2995     ArgTypes.reserve(DynamicArgs.size() + 1);
2996 
2997     // Emit handler arguments and create handler function type.
2998     if (!StaticArgs.empty()) {
2999       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3000       auto *InfoPtr =
3001           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3002                                    llvm::GlobalVariable::PrivateLinkage, Info);
3003       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3004       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3005       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3006       ArgTypes.push_back(Int8PtrTy);
3007     }
3008 
3009     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3010       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3011       ArgTypes.push_back(IntPtrTy);
3012     }
3013   }
3014 
3015   llvm::FunctionType *FnType =
3016     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3017 
3018   if (!FatalCond || !RecoverableCond) {
3019     // Simple case: we need to generate a single handler call, either
3020     // fatal, or non-fatal.
3021     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3022                          (FatalCond != nullptr), Cont);
3023   } else {
3024     // Emit two handler calls: first one for set of unrecoverable checks,
3025     // another one for recoverable.
3026     llvm::BasicBlock *NonFatalHandlerBB =
3027         createBasicBlock("non_fatal." + CheckName);
3028     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3029     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3030     EmitBlock(FatalHandlerBB);
3031     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3032                          NonFatalHandlerBB);
3033     EmitBlock(NonFatalHandlerBB);
3034     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3035                          Cont);
3036   }
3037 
3038   EmitBlock(Cont);
3039 }
3040 
3041 void CodeGenFunction::EmitCfiSlowPathCheck(
3042     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3043     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3044   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3045 
3046   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3047   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3048 
3049   llvm::MDBuilder MDHelper(getLLVMContext());
3050   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3051   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3052 
3053   EmitBlock(CheckBB);
3054 
3055   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3056 
3057   llvm::CallInst *CheckCall;
3058   llvm::FunctionCallee SlowPathFn;
3059   if (WithDiag) {
3060     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3061     auto *InfoPtr =
3062         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3063                                  llvm::GlobalVariable::PrivateLinkage, Info);
3064     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3065     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3066 
3067     SlowPathFn = CGM.getModule().getOrInsertFunction(
3068         "__cfi_slowpath_diag",
3069         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3070                                 false));
3071     CheckCall = Builder.CreateCall(
3072         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3073   } else {
3074     SlowPathFn = CGM.getModule().getOrInsertFunction(
3075         "__cfi_slowpath",
3076         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3077     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3078   }
3079 
3080   CGM.setDSOLocal(
3081       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3082   CheckCall->setDoesNotThrow();
3083 
3084   EmitBlock(Cont);
3085 }
3086 
3087 // Emit a stub for __cfi_check function so that the linker knows about this
3088 // symbol in LTO mode.
3089 void CodeGenFunction::EmitCfiCheckStub() {
3090   llvm::Module *M = &CGM.getModule();
3091   auto &Ctx = M->getContext();
3092   llvm::Function *F = llvm::Function::Create(
3093       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3094       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3095   CGM.setDSOLocal(F);
3096   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3097   // FIXME: consider emitting an intrinsic call like
3098   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3099   // which can be lowered in CrossDSOCFI pass to the actual contents of
3100   // __cfi_check. This would allow inlining of __cfi_check calls.
3101   llvm::CallInst::Create(
3102       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3103   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3104 }
3105 
3106 // This function is basically a switch over the CFI failure kind, which is
3107 // extracted from CFICheckFailData (1st function argument). Each case is either
3108 // llvm.trap or a call to one of the two runtime handlers, based on
3109 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3110 // failure kind) traps, but this should really never happen.  CFICheckFailData
3111 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3112 // check kind; in this case __cfi_check_fail traps as well.
3113 void CodeGenFunction::EmitCfiCheckFail() {
3114   SanitizerScope SanScope(this);
3115   FunctionArgList Args;
3116   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3117                             ImplicitParamDecl::Other);
3118   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3119                             ImplicitParamDecl::Other);
3120   Args.push_back(&ArgData);
3121   Args.push_back(&ArgAddr);
3122 
3123   const CGFunctionInfo &FI =
3124     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3125 
3126   llvm::Function *F = llvm::Function::Create(
3127       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3128       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3129   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3130 
3131   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3132                 SourceLocation());
3133 
3134   // This function should not be affected by blacklist. This function does
3135   // not have a source location, but "src:*" would still apply. Revert any
3136   // changes to SanOpts made in StartFunction.
3137   SanOpts = CGM.getLangOpts().Sanitize;
3138 
3139   llvm::Value *Data =
3140       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3141                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3142   llvm::Value *Addr =
3143       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3144                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3145 
3146   // Data == nullptr means the calling module has trap behaviour for this check.
3147   llvm::Value *DataIsNotNullPtr =
3148       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3149   EmitTrapCheck(DataIsNotNullPtr);
3150 
3151   llvm::StructType *SourceLocationTy =
3152       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3153   llvm::StructType *CfiCheckFailDataTy =
3154       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3155 
3156   llvm::Value *V = Builder.CreateConstGEP2_32(
3157       CfiCheckFailDataTy,
3158       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3159       0);
3160   Address CheckKindAddr(V, getIntAlign());
3161   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3162 
3163   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3164       CGM.getLLVMContext(),
3165       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3166   llvm::Value *ValidVtable = Builder.CreateZExt(
3167       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3168                          {Addr, AllVtables}),
3169       IntPtrTy);
3170 
3171   const std::pair<int, SanitizerMask> CheckKinds[] = {
3172       {CFITCK_VCall, SanitizerKind::CFIVCall},
3173       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3174       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3175       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3176       {CFITCK_ICall, SanitizerKind::CFIICall}};
3177 
3178   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3179   for (auto CheckKindMaskPair : CheckKinds) {
3180     int Kind = CheckKindMaskPair.first;
3181     SanitizerMask Mask = CheckKindMaskPair.second;
3182     llvm::Value *Cond =
3183         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3184     if (CGM.getLangOpts().Sanitize.has(Mask))
3185       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3186                 {Data, Addr, ValidVtable});
3187     else
3188       EmitTrapCheck(Cond);
3189   }
3190 
3191   FinishFunction();
3192   // The only reference to this function will be created during LTO link.
3193   // Make sure it survives until then.
3194   CGM.addUsedGlobal(F);
3195 }
3196 
3197 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3198   if (SanOpts.has(SanitizerKind::Unreachable)) {
3199     SanitizerScope SanScope(this);
3200     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3201                              SanitizerKind::Unreachable),
3202               SanitizerHandler::BuiltinUnreachable,
3203               EmitCheckSourceLocation(Loc), None);
3204   }
3205   Builder.CreateUnreachable();
3206 }
3207 
3208 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3209   llvm::BasicBlock *Cont = createBasicBlock("cont");
3210 
3211   // If we're optimizing, collapse all calls to trap down to just one per
3212   // function to save on code size.
3213   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3214     TrapBB = createBasicBlock("trap");
3215     Builder.CreateCondBr(Checked, Cont, TrapBB);
3216     EmitBlock(TrapBB);
3217     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3218     TrapCall->setDoesNotReturn();
3219     TrapCall->setDoesNotThrow();
3220     Builder.CreateUnreachable();
3221   } else {
3222     Builder.CreateCondBr(Checked, Cont, TrapBB);
3223   }
3224 
3225   EmitBlock(Cont);
3226 }
3227 
3228 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3229   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3230 
3231   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3232     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3233                                   CGM.getCodeGenOpts().TrapFuncName);
3234     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3235   }
3236 
3237   return TrapCall;
3238 }
3239 
3240 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3241                                                  LValueBaseInfo *BaseInfo,
3242                                                  TBAAAccessInfo *TBAAInfo) {
3243   assert(E->getType()->isArrayType() &&
3244          "Array to pointer decay must have array source type!");
3245 
3246   // Expressions of array type can't be bitfields or vector elements.
3247   LValue LV = EmitLValue(E);
3248   Address Addr = LV.getAddress();
3249 
3250   // If the array type was an incomplete type, we need to make sure
3251   // the decay ends up being the right type.
3252   llvm::Type *NewTy = ConvertType(E->getType());
3253   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3254 
3255   // Note that VLA pointers are always decayed, so we don't need to do
3256   // anything here.
3257   if (!E->getType()->isVariableArrayType()) {
3258     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3259            "Expected pointer to array");
3260     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3261   }
3262 
3263   // The result of this decay conversion points to an array element within the
3264   // base lvalue. However, since TBAA currently does not support representing
3265   // accesses to elements of member arrays, we conservatively represent accesses
3266   // to the pointee object as if it had no any base lvalue specified.
3267   // TODO: Support TBAA for member arrays.
3268   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3269   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3270   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3271 
3272   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3273 }
3274 
3275 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3276 /// array to pointer, return the array subexpression.
3277 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3278   // If this isn't just an array->pointer decay, bail out.
3279   const auto *CE = dyn_cast<CastExpr>(E);
3280   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3281     return nullptr;
3282 
3283   // If this is a decay from variable width array, bail out.
3284   const Expr *SubExpr = CE->getSubExpr();
3285   if (SubExpr->getType()->isVariableArrayType())
3286     return nullptr;
3287 
3288   return SubExpr;
3289 }
3290 
3291 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3292                                           llvm::Value *ptr,
3293                                           ArrayRef<llvm::Value*> indices,
3294                                           bool inbounds,
3295                                           bool signedIndices,
3296                                           SourceLocation loc,
3297                                     const llvm::Twine &name = "arrayidx") {
3298   if (inbounds) {
3299     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3300                                       CodeGenFunction::NotSubtraction, loc,
3301                                       name);
3302   } else {
3303     return CGF.Builder.CreateGEP(ptr, indices, name);
3304   }
3305 }
3306 
3307 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3308                                       llvm::Value *idx,
3309                                       CharUnits eltSize) {
3310   // If we have a constant index, we can use the exact offset of the
3311   // element we're accessing.
3312   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3313     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3314     return arrayAlign.alignmentAtOffset(offset);
3315 
3316   // Otherwise, use the worst-case alignment for any element.
3317   } else {
3318     return arrayAlign.alignmentOfArrayElement(eltSize);
3319   }
3320 }
3321 
3322 static QualType getFixedSizeElementType(const ASTContext &ctx,
3323                                         const VariableArrayType *vla) {
3324   QualType eltType;
3325   do {
3326     eltType = vla->getElementType();
3327   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3328   return eltType;
3329 }
3330 
3331 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3332                                      ArrayRef<llvm::Value *> indices,
3333                                      QualType eltType, bool inbounds,
3334                                      bool signedIndices, SourceLocation loc,
3335                                      const llvm::Twine &name = "arrayidx") {
3336   // All the indices except that last must be zero.
3337 #ifndef NDEBUG
3338   for (auto idx : indices.drop_back())
3339     assert(isa<llvm::ConstantInt>(idx) &&
3340            cast<llvm::ConstantInt>(idx)->isZero());
3341 #endif
3342 
3343   // Determine the element size of the statically-sized base.  This is
3344   // the thing that the indices are expressed in terms of.
3345   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3346     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3347   }
3348 
3349   // We can use that to compute the best alignment of the element.
3350   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3351   CharUnits eltAlign =
3352     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3353 
3354   llvm::Value *eltPtr = emitArraySubscriptGEP(
3355       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3356   return Address(eltPtr, eltAlign);
3357 }
3358 
3359 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3360                                                bool Accessed) {
3361   // The index must always be an integer, which is not an aggregate.  Emit it
3362   // in lexical order (this complexity is, sadly, required by C++17).
3363   llvm::Value *IdxPre =
3364       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3365   bool SignedIndices = false;
3366   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3367     auto *Idx = IdxPre;
3368     if (E->getLHS() != E->getIdx()) {
3369       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3370       Idx = EmitScalarExpr(E->getIdx());
3371     }
3372 
3373     QualType IdxTy = E->getIdx()->getType();
3374     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3375     SignedIndices |= IdxSigned;
3376 
3377     if (SanOpts.has(SanitizerKind::ArrayBounds))
3378       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3379 
3380     // Extend or truncate the index type to 32 or 64-bits.
3381     if (Promote && Idx->getType() != IntPtrTy)
3382       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3383 
3384     return Idx;
3385   };
3386   IdxPre = nullptr;
3387 
3388   // If the base is a vector type, then we are forming a vector element lvalue
3389   // with this subscript.
3390   if (E->getBase()->getType()->isVectorType() &&
3391       !isa<ExtVectorElementExpr>(E->getBase())) {
3392     // Emit the vector as an lvalue to get its address.
3393     LValue LHS = EmitLValue(E->getBase());
3394     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3395     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3396     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3397                                  LHS.getBaseInfo(), TBAAAccessInfo());
3398   }
3399 
3400   // All the other cases basically behave like simple offsetting.
3401 
3402   // Handle the extvector case we ignored above.
3403   if (isa<ExtVectorElementExpr>(E->getBase())) {
3404     LValue LV = EmitLValue(E->getBase());
3405     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3406     Address Addr = EmitExtVectorElementLValue(LV);
3407 
3408     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3409     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3410                                  SignedIndices, E->getExprLoc());
3411     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3412                           CGM.getTBAAInfoForSubobject(LV, EltType));
3413   }
3414 
3415   LValueBaseInfo EltBaseInfo;
3416   TBAAAccessInfo EltTBAAInfo;
3417   Address Addr = Address::invalid();
3418   if (const VariableArrayType *vla =
3419            getContext().getAsVariableArrayType(E->getType())) {
3420     // The base must be a pointer, which is not an aggregate.  Emit
3421     // it.  It needs to be emitted first in case it's what captures
3422     // the VLA bounds.
3423     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3424     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3425 
3426     // The element count here is the total number of non-VLA elements.
3427     llvm::Value *numElements = getVLASize(vla).NumElts;
3428 
3429     // Effectively, the multiply by the VLA size is part of the GEP.
3430     // GEP indexes are signed, and scaling an index isn't permitted to
3431     // signed-overflow, so we use the same semantics for our explicit
3432     // multiply.  We suppress this if overflow is not undefined behavior.
3433     if (getLangOpts().isSignedOverflowDefined()) {
3434       Idx = Builder.CreateMul(Idx, numElements);
3435     } else {
3436       Idx = Builder.CreateNSWMul(Idx, numElements);
3437     }
3438 
3439     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3440                                  !getLangOpts().isSignedOverflowDefined(),
3441                                  SignedIndices, E->getExprLoc());
3442 
3443   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3444     // Indexing over an interface, as in "NSString *P; P[4];"
3445 
3446     // Emit the base pointer.
3447     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3448     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3449 
3450     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3451     llvm::Value *InterfaceSizeVal =
3452         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3453 
3454     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3455 
3456     // We don't necessarily build correct LLVM struct types for ObjC
3457     // interfaces, so we can't rely on GEP to do this scaling
3458     // correctly, so we need to cast to i8*.  FIXME: is this actually
3459     // true?  A lot of other things in the fragile ABI would break...
3460     llvm::Type *OrigBaseTy = Addr.getType();
3461     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3462 
3463     // Do the GEP.
3464     CharUnits EltAlign =
3465       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3466     llvm::Value *EltPtr =
3467         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3468                               SignedIndices, E->getExprLoc());
3469     Addr = Address(EltPtr, EltAlign);
3470 
3471     // Cast back.
3472     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3473   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3474     // If this is A[i] where A is an array, the frontend will have decayed the
3475     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3476     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3477     // "gep x, i" here.  Emit one "gep A, 0, i".
3478     assert(Array->getType()->isArrayType() &&
3479            "Array to pointer decay must have array source type!");
3480     LValue ArrayLV;
3481     // For simple multidimensional array indexing, set the 'accessed' flag for
3482     // better bounds-checking of the base expression.
3483     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3484       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3485     else
3486       ArrayLV = EmitLValue(Array);
3487     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3488 
3489     // Propagate the alignment from the array itself to the result.
3490     Addr = emitArraySubscriptGEP(
3491         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3492         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3493         E->getExprLoc());
3494     EltBaseInfo = ArrayLV.getBaseInfo();
3495     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3496   } else {
3497     // The base must be a pointer; emit it with an estimate of its alignment.
3498     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3499     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3500     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3501                                  !getLangOpts().isSignedOverflowDefined(),
3502                                  SignedIndices, E->getExprLoc());
3503   }
3504 
3505   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3506 
3507   if (getLangOpts().ObjC &&
3508       getLangOpts().getGC() != LangOptions::NonGC) {
3509     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3510     setObjCGCLValueClass(getContext(), E, LV);
3511   }
3512   return LV;
3513 }
3514 
3515 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3516                                        LValueBaseInfo &BaseInfo,
3517                                        TBAAAccessInfo &TBAAInfo,
3518                                        QualType BaseTy, QualType ElTy,
3519                                        bool IsLowerBound) {
3520   LValue BaseLVal;
3521   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3522     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3523     if (BaseTy->isArrayType()) {
3524       Address Addr = BaseLVal.getAddress();
3525       BaseInfo = BaseLVal.getBaseInfo();
3526 
3527       // If the array type was an incomplete type, we need to make sure
3528       // the decay ends up being the right type.
3529       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3530       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3531 
3532       // Note that VLA pointers are always decayed, so we don't need to do
3533       // anything here.
3534       if (!BaseTy->isVariableArrayType()) {
3535         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3536                "Expected pointer to array");
3537         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3538       }
3539 
3540       return CGF.Builder.CreateElementBitCast(Addr,
3541                                               CGF.ConvertTypeForMem(ElTy));
3542     }
3543     LValueBaseInfo TypeBaseInfo;
3544     TBAAAccessInfo TypeTBAAInfo;
3545     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3546                                                   &TypeTBAAInfo);
3547     BaseInfo.mergeForCast(TypeBaseInfo);
3548     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3549     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3550   }
3551   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3552 }
3553 
3554 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3555                                                 bool IsLowerBound) {
3556   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3557   QualType ResultExprTy;
3558   if (auto *AT = getContext().getAsArrayType(BaseTy))
3559     ResultExprTy = AT->getElementType();
3560   else
3561     ResultExprTy = BaseTy->getPointeeType();
3562   llvm::Value *Idx = nullptr;
3563   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3564     // Requesting lower bound or upper bound, but without provided length and
3565     // without ':' symbol for the default length -> length = 1.
3566     // Idx = LowerBound ?: 0;
3567     if (auto *LowerBound = E->getLowerBound()) {
3568       Idx = Builder.CreateIntCast(
3569           EmitScalarExpr(LowerBound), IntPtrTy,
3570           LowerBound->getType()->hasSignedIntegerRepresentation());
3571     } else
3572       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3573   } else {
3574     // Try to emit length or lower bound as constant. If this is possible, 1
3575     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3576     // IR (LB + Len) - 1.
3577     auto &C = CGM.getContext();
3578     auto *Length = E->getLength();
3579     llvm::APSInt ConstLength;
3580     if (Length) {
3581       // Idx = LowerBound + Length - 1;
3582       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3583         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3584         Length = nullptr;
3585       }
3586       auto *LowerBound = E->getLowerBound();
3587       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3588       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3589         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3590         LowerBound = nullptr;
3591       }
3592       if (!Length)
3593         --ConstLength;
3594       else if (!LowerBound)
3595         --ConstLowerBound;
3596 
3597       if (Length || LowerBound) {
3598         auto *LowerBoundVal =
3599             LowerBound
3600                 ? Builder.CreateIntCast(
3601                       EmitScalarExpr(LowerBound), IntPtrTy,
3602                       LowerBound->getType()->hasSignedIntegerRepresentation())
3603                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3604         auto *LengthVal =
3605             Length
3606                 ? Builder.CreateIntCast(
3607                       EmitScalarExpr(Length), IntPtrTy,
3608                       Length->getType()->hasSignedIntegerRepresentation())
3609                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3610         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3611                                 /*HasNUW=*/false,
3612                                 !getLangOpts().isSignedOverflowDefined());
3613         if (Length && LowerBound) {
3614           Idx = Builder.CreateSub(
3615               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3616               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3617         }
3618       } else
3619         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3620     } else {
3621       // Idx = ArraySize - 1;
3622       QualType ArrayTy = BaseTy->isPointerType()
3623                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3624                              : BaseTy;
3625       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3626         Length = VAT->getSizeExpr();
3627         if (Length->isIntegerConstantExpr(ConstLength, C))
3628           Length = nullptr;
3629       } else {
3630         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3631         ConstLength = CAT->getSize();
3632       }
3633       if (Length) {
3634         auto *LengthVal = Builder.CreateIntCast(
3635             EmitScalarExpr(Length), IntPtrTy,
3636             Length->getType()->hasSignedIntegerRepresentation());
3637         Idx = Builder.CreateSub(
3638             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3639             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3640       } else {
3641         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3642         --ConstLength;
3643         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3644       }
3645     }
3646   }
3647   assert(Idx);
3648 
3649   Address EltPtr = Address::invalid();
3650   LValueBaseInfo BaseInfo;
3651   TBAAAccessInfo TBAAInfo;
3652   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3653     // The base must be a pointer, which is not an aggregate.  Emit
3654     // it.  It needs to be emitted first in case it's what captures
3655     // the VLA bounds.
3656     Address Base =
3657         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3658                                 BaseTy, VLA->getElementType(), IsLowerBound);
3659     // The element count here is the total number of non-VLA elements.
3660     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3661 
3662     // Effectively, the multiply by the VLA size is part of the GEP.
3663     // GEP indexes are signed, and scaling an index isn't permitted to
3664     // signed-overflow, so we use the same semantics for our explicit
3665     // multiply.  We suppress this if overflow is not undefined behavior.
3666     if (getLangOpts().isSignedOverflowDefined())
3667       Idx = Builder.CreateMul(Idx, NumElements);
3668     else
3669       Idx = Builder.CreateNSWMul(Idx, NumElements);
3670     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3671                                    !getLangOpts().isSignedOverflowDefined(),
3672                                    /*SignedIndices=*/false, E->getExprLoc());
3673   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3674     // If this is A[i] where A is an array, the frontend will have decayed the
3675     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3676     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3677     // "gep x, i" here.  Emit one "gep A, 0, i".
3678     assert(Array->getType()->isArrayType() &&
3679            "Array to pointer decay must have array source type!");
3680     LValue ArrayLV;
3681     // For simple multidimensional array indexing, set the 'accessed' flag for
3682     // better bounds-checking of the base expression.
3683     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3684       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3685     else
3686       ArrayLV = EmitLValue(Array);
3687 
3688     // Propagate the alignment from the array itself to the result.
3689     EltPtr = emitArraySubscriptGEP(
3690         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3691         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3692         /*SignedIndices=*/false, E->getExprLoc());
3693     BaseInfo = ArrayLV.getBaseInfo();
3694     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3695   } else {
3696     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3697                                            TBAAInfo, BaseTy, ResultExprTy,
3698                                            IsLowerBound);
3699     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3700                                    !getLangOpts().isSignedOverflowDefined(),
3701                                    /*SignedIndices=*/false, E->getExprLoc());
3702   }
3703 
3704   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3705 }
3706 
3707 LValue CodeGenFunction::
3708 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3709   // Emit the base vector as an l-value.
3710   LValue Base;
3711 
3712   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3713   if (E->isArrow()) {
3714     // If it is a pointer to a vector, emit the address and form an lvalue with
3715     // it.
3716     LValueBaseInfo BaseInfo;
3717     TBAAAccessInfo TBAAInfo;
3718     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3719     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3720     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3721     Base.getQuals().removeObjCGCAttr();
3722   } else if (E->getBase()->isGLValue()) {
3723     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3724     // emit the base as an lvalue.
3725     assert(E->getBase()->getType()->isVectorType());
3726     Base = EmitLValue(E->getBase());
3727   } else {
3728     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3729     assert(E->getBase()->getType()->isVectorType() &&
3730            "Result must be a vector");
3731     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3732 
3733     // Store the vector to memory (because LValue wants an address).
3734     Address VecMem = CreateMemTemp(E->getBase()->getType());
3735     Builder.CreateStore(Vec, VecMem);
3736     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3737                           AlignmentSource::Decl);
3738   }
3739 
3740   QualType type =
3741     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3742 
3743   // Encode the element access list into a vector of unsigned indices.
3744   SmallVector<uint32_t, 4> Indices;
3745   E->getEncodedElementAccess(Indices);
3746 
3747   if (Base.isSimple()) {
3748     llvm::Constant *CV =
3749         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3750     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3751                                     Base.getBaseInfo(), TBAAAccessInfo());
3752   }
3753   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3754 
3755   llvm::Constant *BaseElts = Base.getExtVectorElts();
3756   SmallVector<llvm::Constant *, 4> CElts;
3757 
3758   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3759     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3760   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3761   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3762                                   Base.getBaseInfo(), TBAAAccessInfo());
3763 }
3764 
3765 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3766   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3767     EmitIgnoredExpr(E->getBase());
3768     return EmitDeclRefLValue(DRE);
3769   }
3770 
3771   Expr *BaseExpr = E->getBase();
3772   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3773   LValue BaseLV;
3774   if (E->isArrow()) {
3775     LValueBaseInfo BaseInfo;
3776     TBAAAccessInfo TBAAInfo;
3777     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3778     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3779     SanitizerSet SkippedChecks;
3780     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3781     if (IsBaseCXXThis)
3782       SkippedChecks.set(SanitizerKind::Alignment, true);
3783     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3784       SkippedChecks.set(SanitizerKind::Null, true);
3785     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3786                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3787     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3788   } else
3789     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3790 
3791   NamedDecl *ND = E->getMemberDecl();
3792   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3793     LValue LV = EmitLValueForField(BaseLV, Field);
3794     setObjCGCLValueClass(getContext(), E, LV);
3795     return LV;
3796   }
3797 
3798   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3799     return EmitFunctionDeclLValue(*this, E, FD);
3800 
3801   llvm_unreachable("Unhandled member declaration!");
3802 }
3803 
3804 /// Given that we are currently emitting a lambda, emit an l-value for
3805 /// one of its members.
3806 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3807   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3808   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3809   QualType LambdaTagType =
3810     getContext().getTagDeclType(Field->getParent());
3811   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3812   return EmitLValueForField(LambdaLV, Field);
3813 }
3814 
3815 /// Drill down to the storage of a field without walking into
3816 /// reference types.
3817 ///
3818 /// The resulting address doesn't necessarily have the right type.
3819 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3820                                       const FieldDecl *field) {
3821   const RecordDecl *rec = field->getParent();
3822 
3823   unsigned idx =
3824     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3825 
3826   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3827 }
3828 
3829 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3830   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3831   if (!RD)
3832     return false;
3833 
3834   if (RD->isDynamicClass())
3835     return true;
3836 
3837   for (const auto &Base : RD->bases())
3838     if (hasAnyVptr(Base.getType(), Context))
3839       return true;
3840 
3841   for (const FieldDecl *Field : RD->fields())
3842     if (hasAnyVptr(Field->getType(), Context))
3843       return true;
3844 
3845   return false;
3846 }
3847 
3848 LValue CodeGenFunction::EmitLValueForField(LValue base,
3849                                            const FieldDecl *field) {
3850   LValueBaseInfo BaseInfo = base.getBaseInfo();
3851 
3852   if (field->isBitField()) {
3853     const CGRecordLayout &RL =
3854       CGM.getTypes().getCGRecordLayout(field->getParent());
3855     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3856     Address Addr = base.getAddress();
3857     unsigned Idx = RL.getLLVMFieldNo(field);
3858     if (Idx != 0)
3859       // For structs, we GEP to the field that the record layout suggests.
3860       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3861     // Get the access type.
3862     llvm::Type *FieldIntTy =
3863       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3864     if (Addr.getElementType() != FieldIntTy)
3865       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3866 
3867     QualType fieldType =
3868       field->getType().withCVRQualifiers(base.getVRQualifiers());
3869     // TODO: Support TBAA for bit fields.
3870     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3871     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3872                                 TBAAAccessInfo());
3873   }
3874 
3875   // Fields of may-alias structures are may-alias themselves.
3876   // FIXME: this should get propagated down through anonymous structs
3877   // and unions.
3878   QualType FieldType = field->getType();
3879   const RecordDecl *rec = field->getParent();
3880   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3881   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3882   TBAAAccessInfo FieldTBAAInfo;
3883   if (base.getTBAAInfo().isMayAlias() ||
3884           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3885     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3886   } else if (rec->isUnion()) {
3887     // TODO: Support TBAA for unions.
3888     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3889   } else {
3890     // If no base type been assigned for the base access, then try to generate
3891     // one for this base lvalue.
3892     FieldTBAAInfo = base.getTBAAInfo();
3893     if (!FieldTBAAInfo.BaseType) {
3894         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3895         assert(!FieldTBAAInfo.Offset &&
3896                "Nonzero offset for an access with no base type!");
3897     }
3898 
3899     // Adjust offset to be relative to the base type.
3900     const ASTRecordLayout &Layout =
3901         getContext().getASTRecordLayout(field->getParent());
3902     unsigned CharWidth = getContext().getCharWidth();
3903     if (FieldTBAAInfo.BaseType)
3904       FieldTBAAInfo.Offset +=
3905           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3906 
3907     // Update the final access type and size.
3908     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3909     FieldTBAAInfo.Size =
3910         getContext().getTypeSizeInChars(FieldType).getQuantity();
3911   }
3912 
3913   Address addr = base.getAddress();
3914   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3915     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3916         ClassDef->isDynamicClass()) {
3917       // Getting to any field of dynamic object requires stripping dynamic
3918       // information provided by invariant.group.  This is because accessing
3919       // fields may leak the real address of dynamic object, which could result
3920       // in miscompilation when leaked pointer would be compared.
3921       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3922       addr = Address(stripped, addr.getAlignment());
3923     }
3924   }
3925 
3926   unsigned RecordCVR = base.getVRQualifiers();
3927   if (rec->isUnion()) {
3928     // For unions, there is no pointer adjustment.
3929     assert(!FieldType->isReferenceType() && "union has reference member");
3930     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3931         hasAnyVptr(FieldType, getContext()))
3932       // Because unions can easily skip invariant.barriers, we need to add
3933       // a barrier every time CXXRecord field with vptr is referenced.
3934       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3935                      addr.getAlignment());
3936   } else {
3937     // For structs, we GEP to the field that the record layout suggests.
3938     addr = emitAddrOfFieldStorage(*this, addr, field);
3939 
3940     // If this is a reference field, load the reference right now.
3941     if (FieldType->isReferenceType()) {
3942       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3943                                       FieldTBAAInfo);
3944       if (RecordCVR & Qualifiers::Volatile)
3945         RefLVal.getQuals().addVolatile();
3946       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3947 
3948       // Qualifiers on the struct don't apply to the referencee.
3949       RecordCVR = 0;
3950       FieldType = FieldType->getPointeeType();
3951     }
3952   }
3953 
3954   // Make sure that the address is pointing to the right type.  This is critical
3955   // for both unions and structs.  A union needs a bitcast, a struct element
3956   // will need a bitcast if the LLVM type laid out doesn't match the desired
3957   // type.
3958   addr = Builder.CreateElementBitCast(
3959       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3960 
3961   if (field->hasAttr<AnnotateAttr>())
3962     addr = EmitFieldAnnotations(field, addr);
3963 
3964   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3965   LV.getQuals().addCVRQualifiers(RecordCVR);
3966 
3967   // __weak attribute on a field is ignored.
3968   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3969     LV.getQuals().removeObjCGCAttr();
3970 
3971   return LV;
3972 }
3973 
3974 LValue
3975 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3976                                                   const FieldDecl *Field) {
3977   QualType FieldType = Field->getType();
3978 
3979   if (!FieldType->isReferenceType())
3980     return EmitLValueForField(Base, Field);
3981 
3982   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3983 
3984   // Make sure that the address is pointing to the right type.
3985   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3986   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3987 
3988   // TODO: Generate TBAA information that describes this access as a structure
3989   // member access and not just an access to an object of the field's type. This
3990   // should be similar to what we do in EmitLValueForField().
3991   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3992   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3993   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3994   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3995                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3996 }
3997 
3998 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3999   if (E->isFileScope()) {
4000     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4001     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4002   }
4003   if (E->getType()->isVariablyModifiedType())
4004     // make sure to emit the VLA size.
4005     EmitVariablyModifiedType(E->getType());
4006 
4007   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4008   const Expr *InitExpr = E->getInitializer();
4009   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4010 
4011   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4012                    /*Init*/ true);
4013 
4014   return Result;
4015 }
4016 
4017 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4018   if (!E->isGLValue())
4019     // Initializing an aggregate temporary in C++11: T{...}.
4020     return EmitAggExprToLValue(E);
4021 
4022   // An lvalue initializer list must be initializing a reference.
4023   assert(E->isTransparent() && "non-transparent glvalue init list");
4024   return EmitLValue(E->getInit(0));
4025 }
4026 
4027 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4028 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4029 /// LValue is returned and the current block has been terminated.
4030 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4031                                                     const Expr *Operand) {
4032   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4033     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4034     return None;
4035   }
4036 
4037   return CGF.EmitLValue(Operand);
4038 }
4039 
4040 LValue CodeGenFunction::
4041 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4042   if (!expr->isGLValue()) {
4043     // ?: here should be an aggregate.
4044     assert(hasAggregateEvaluationKind(expr->getType()) &&
4045            "Unexpected conditional operator!");
4046     return EmitAggExprToLValue(expr);
4047   }
4048 
4049   OpaqueValueMapping binding(*this, expr);
4050 
4051   const Expr *condExpr = expr->getCond();
4052   bool CondExprBool;
4053   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4054     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4055     if (!CondExprBool) std::swap(live, dead);
4056 
4057     if (!ContainsLabel(dead)) {
4058       // If the true case is live, we need to track its region.
4059       if (CondExprBool)
4060         incrementProfileCounter(expr);
4061       return EmitLValue(live);
4062     }
4063   }
4064 
4065   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4066   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4067   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4068 
4069   ConditionalEvaluation eval(*this);
4070   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4071 
4072   // Any temporaries created here are conditional.
4073   EmitBlock(lhsBlock);
4074   incrementProfileCounter(expr);
4075   eval.begin(*this);
4076   Optional<LValue> lhs =
4077       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4078   eval.end(*this);
4079 
4080   if (lhs && !lhs->isSimple())
4081     return EmitUnsupportedLValue(expr, "conditional operator");
4082 
4083   lhsBlock = Builder.GetInsertBlock();
4084   if (lhs)
4085     Builder.CreateBr(contBlock);
4086 
4087   // Any temporaries created here are conditional.
4088   EmitBlock(rhsBlock);
4089   eval.begin(*this);
4090   Optional<LValue> rhs =
4091       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4092   eval.end(*this);
4093   if (rhs && !rhs->isSimple())
4094     return EmitUnsupportedLValue(expr, "conditional operator");
4095   rhsBlock = Builder.GetInsertBlock();
4096 
4097   EmitBlock(contBlock);
4098 
4099   if (lhs && rhs) {
4100     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4101                                            2, "cond-lvalue");
4102     phi->addIncoming(lhs->getPointer(), lhsBlock);
4103     phi->addIncoming(rhs->getPointer(), rhsBlock);
4104     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4105     AlignmentSource alignSource =
4106       std::max(lhs->getBaseInfo().getAlignmentSource(),
4107                rhs->getBaseInfo().getAlignmentSource());
4108     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4109         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4110     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4111                           TBAAInfo);
4112   } else {
4113     assert((lhs || rhs) &&
4114            "both operands of glvalue conditional are throw-expressions?");
4115     return lhs ? *lhs : *rhs;
4116   }
4117 }
4118 
4119 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4120 /// type. If the cast is to a reference, we can have the usual lvalue result,
4121 /// otherwise if a cast is needed by the code generator in an lvalue context,
4122 /// then it must mean that we need the address of an aggregate in order to
4123 /// access one of its members.  This can happen for all the reasons that casts
4124 /// are permitted with aggregate result, including noop aggregate casts, and
4125 /// cast from scalar to union.
4126 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4127   switch (E->getCastKind()) {
4128   case CK_ToVoid:
4129   case CK_BitCast:
4130   case CK_ArrayToPointerDecay:
4131   case CK_FunctionToPointerDecay:
4132   case CK_NullToMemberPointer:
4133   case CK_NullToPointer:
4134   case CK_IntegralToPointer:
4135   case CK_PointerToIntegral:
4136   case CK_PointerToBoolean:
4137   case CK_VectorSplat:
4138   case CK_IntegralCast:
4139   case CK_BooleanToSignedIntegral:
4140   case CK_IntegralToBoolean:
4141   case CK_IntegralToFloating:
4142   case CK_FloatingToIntegral:
4143   case CK_FloatingToBoolean:
4144   case CK_FloatingCast:
4145   case CK_FloatingRealToComplex:
4146   case CK_FloatingComplexToReal:
4147   case CK_FloatingComplexToBoolean:
4148   case CK_FloatingComplexCast:
4149   case CK_FloatingComplexToIntegralComplex:
4150   case CK_IntegralRealToComplex:
4151   case CK_IntegralComplexToReal:
4152   case CK_IntegralComplexToBoolean:
4153   case CK_IntegralComplexCast:
4154   case CK_IntegralComplexToFloatingComplex:
4155   case CK_DerivedToBaseMemberPointer:
4156   case CK_BaseToDerivedMemberPointer:
4157   case CK_MemberPointerToBoolean:
4158   case CK_ReinterpretMemberPointer:
4159   case CK_AnyPointerToBlockPointerCast:
4160   case CK_ARCProduceObject:
4161   case CK_ARCConsumeObject:
4162   case CK_ARCReclaimReturnedObject:
4163   case CK_ARCExtendBlockObject:
4164   case CK_CopyAndAutoreleaseBlockObject:
4165   case CK_IntToOCLSampler:
4166   case CK_FixedPointCast:
4167   case CK_FixedPointToBoolean:
4168     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4169 
4170   case CK_Dependent:
4171     llvm_unreachable("dependent cast kind in IR gen!");
4172 
4173   case CK_BuiltinFnToFnPtr:
4174     llvm_unreachable("builtin functions are handled elsewhere");
4175 
4176   // These are never l-values; just use the aggregate emission code.
4177   case CK_NonAtomicToAtomic:
4178   case CK_AtomicToNonAtomic:
4179     return EmitAggExprToLValue(E);
4180 
4181   case CK_Dynamic: {
4182     LValue LV = EmitLValue(E->getSubExpr());
4183     Address V = LV.getAddress();
4184     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4185     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4186   }
4187 
4188   case CK_ConstructorConversion:
4189   case CK_UserDefinedConversion:
4190   case CK_CPointerToObjCPointerCast:
4191   case CK_BlockPointerToObjCPointerCast:
4192   case CK_NoOp:
4193   case CK_LValueToRValue:
4194     return EmitLValue(E->getSubExpr());
4195 
4196   case CK_UncheckedDerivedToBase:
4197   case CK_DerivedToBase: {
4198     const RecordType *DerivedClassTy =
4199       E->getSubExpr()->getType()->getAs<RecordType>();
4200     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4201 
4202     LValue LV = EmitLValue(E->getSubExpr());
4203     Address This = LV.getAddress();
4204 
4205     // Perform the derived-to-base conversion
4206     Address Base = GetAddressOfBaseClass(
4207         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4208         /*NullCheckValue=*/false, E->getExprLoc());
4209 
4210     // TODO: Support accesses to members of base classes in TBAA. For now, we
4211     // conservatively pretend that the complete object is of the base class
4212     // type.
4213     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4214                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4215   }
4216   case CK_ToUnion:
4217     return EmitAggExprToLValue(E);
4218   case CK_BaseToDerived: {
4219     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4220     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4221 
4222     LValue LV = EmitLValue(E->getSubExpr());
4223 
4224     // Perform the base-to-derived conversion
4225     Address Derived =
4226       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4227                                E->path_begin(), E->path_end(),
4228                                /*NullCheckValue=*/false);
4229 
4230     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4231     // performed and the object is not of the derived type.
4232     if (sanitizePerformTypeCheck())
4233       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4234                     Derived.getPointer(), E->getType());
4235 
4236     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4237       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4238                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4239                                 E->getBeginLoc());
4240 
4241     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4242                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4243   }
4244   case CK_LValueBitCast: {
4245     // This must be a reinterpret_cast (or c-style equivalent).
4246     const auto *CE = cast<ExplicitCastExpr>(E);
4247 
4248     CGM.EmitExplicitCastExprType(CE, this);
4249     LValue LV = EmitLValue(E->getSubExpr());
4250     Address V = Builder.CreateBitCast(LV.getAddress(),
4251                                       ConvertType(CE->getTypeAsWritten()));
4252 
4253     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4254       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4255                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4256                                 E->getBeginLoc());
4257 
4258     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4259                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4260   }
4261   case CK_AddressSpaceConversion: {
4262     LValue LV = EmitLValue(E->getSubExpr());
4263     QualType DestTy = getContext().getPointerType(E->getType());
4264     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4265         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4266         E->getType().getAddressSpace(), ConvertType(DestTy));
4267     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4268                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4269   }
4270   case CK_ObjCObjectLValueCast: {
4271     LValue LV = EmitLValue(E->getSubExpr());
4272     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4273                                              ConvertType(E->getType()));
4274     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4275                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4276   }
4277   case CK_ZeroToOCLOpaqueType:
4278     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4279   }
4280 
4281   llvm_unreachable("Unhandled lvalue cast kind?");
4282 }
4283 
4284 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4285   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4286   return getOrCreateOpaqueLValueMapping(e);
4287 }
4288 
4289 LValue
4290 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4291   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4292 
4293   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4294       it = OpaqueLValues.find(e);
4295 
4296   if (it != OpaqueLValues.end())
4297     return it->second;
4298 
4299   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4300   return EmitLValue(e->getSourceExpr());
4301 }
4302 
4303 RValue
4304 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4305   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4306 
4307   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4308       it = OpaqueRValues.find(e);
4309 
4310   if (it != OpaqueRValues.end())
4311     return it->second;
4312 
4313   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4314   return EmitAnyExpr(e->getSourceExpr());
4315 }
4316 
4317 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4318                                            const FieldDecl *FD,
4319                                            SourceLocation Loc) {
4320   QualType FT = FD->getType();
4321   LValue FieldLV = EmitLValueForField(LV, FD);
4322   switch (getEvaluationKind(FT)) {
4323   case TEK_Complex:
4324     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4325   case TEK_Aggregate:
4326     return FieldLV.asAggregateRValue();
4327   case TEK_Scalar:
4328     // This routine is used to load fields one-by-one to perform a copy, so
4329     // don't load reference fields.
4330     if (FD->getType()->isReferenceType())
4331       return RValue::get(FieldLV.getPointer());
4332     return EmitLoadOfLValue(FieldLV, Loc);
4333   }
4334   llvm_unreachable("bad evaluation kind");
4335 }
4336 
4337 //===--------------------------------------------------------------------===//
4338 //                             Expression Emission
4339 //===--------------------------------------------------------------------===//
4340 
4341 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4342                                      ReturnValueSlot ReturnValue) {
4343   // Builtins never have block type.
4344   if (E->getCallee()->getType()->isBlockPointerType())
4345     return EmitBlockCallExpr(E, ReturnValue);
4346 
4347   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4348     return EmitCXXMemberCallExpr(CE, ReturnValue);
4349 
4350   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4351     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4352 
4353   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4354     if (const CXXMethodDecl *MD =
4355           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4356       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4357 
4358   CGCallee callee = EmitCallee(E->getCallee());
4359 
4360   if (callee.isBuiltin()) {
4361     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4362                            E, ReturnValue);
4363   }
4364 
4365   if (callee.isPseudoDestructor()) {
4366     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4367   }
4368 
4369   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4370 }
4371 
4372 /// Emit a CallExpr without considering whether it might be a subclass.
4373 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4374                                            ReturnValueSlot ReturnValue) {
4375   CGCallee Callee = EmitCallee(E->getCallee());
4376   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4377 }
4378 
4379 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4380   if (auto builtinID = FD->getBuiltinID()) {
4381     return CGCallee::forBuiltin(builtinID, FD);
4382   }
4383 
4384   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4385   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4386 }
4387 
4388 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4389   E = E->IgnoreParens();
4390 
4391   // Look through function-to-pointer decay.
4392   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4393     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4394         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4395       return EmitCallee(ICE->getSubExpr());
4396     }
4397 
4398   // Resolve direct calls.
4399   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4400     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4401       return EmitDirectCallee(*this, FD);
4402     }
4403   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4404     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4405       EmitIgnoredExpr(ME->getBase());
4406       return EmitDirectCallee(*this, FD);
4407     }
4408 
4409   // Look through template substitutions.
4410   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4411     return EmitCallee(NTTP->getReplacement());
4412 
4413   // Treat pseudo-destructor calls differently.
4414   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4415     return CGCallee::forPseudoDestructor(PDE);
4416   }
4417 
4418   // Otherwise, we have an indirect reference.
4419   llvm::Value *calleePtr;
4420   QualType functionType;
4421   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4422     calleePtr = EmitScalarExpr(E);
4423     functionType = ptrType->getPointeeType();
4424   } else {
4425     functionType = E->getType();
4426     calleePtr = EmitLValue(E).getPointer();
4427   }
4428   assert(functionType->isFunctionType());
4429 
4430   GlobalDecl GD;
4431   if (const auto *VD =
4432           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4433     GD = GlobalDecl(VD);
4434 
4435   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4436   CGCallee callee(calleeInfo, calleePtr);
4437   return callee;
4438 }
4439 
4440 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4441   // Comma expressions just emit their LHS then their RHS as an l-value.
4442   if (E->getOpcode() == BO_Comma) {
4443     EmitIgnoredExpr(E->getLHS());
4444     EnsureInsertPoint();
4445     return EmitLValue(E->getRHS());
4446   }
4447 
4448   if (E->getOpcode() == BO_PtrMemD ||
4449       E->getOpcode() == BO_PtrMemI)
4450     return EmitPointerToDataMemberBinaryExpr(E);
4451 
4452   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4453 
4454   // Note that in all of these cases, __block variables need the RHS
4455   // evaluated first just in case the variable gets moved by the RHS.
4456 
4457   switch (getEvaluationKind(E->getType())) {
4458   case TEK_Scalar: {
4459     switch (E->getLHS()->getType().getObjCLifetime()) {
4460     case Qualifiers::OCL_Strong:
4461       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4462 
4463     case Qualifiers::OCL_Autoreleasing:
4464       return EmitARCStoreAutoreleasing(E).first;
4465 
4466     // No reason to do any of these differently.
4467     case Qualifiers::OCL_None:
4468     case Qualifiers::OCL_ExplicitNone:
4469     case Qualifiers::OCL_Weak:
4470       break;
4471     }
4472 
4473     RValue RV = EmitAnyExpr(E->getRHS());
4474     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4475     if (RV.isScalar())
4476       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4477     EmitStoreThroughLValue(RV, LV);
4478     return LV;
4479   }
4480 
4481   case TEK_Complex:
4482     return EmitComplexAssignmentLValue(E);
4483 
4484   case TEK_Aggregate:
4485     return EmitAggExprToLValue(E);
4486   }
4487   llvm_unreachable("bad evaluation kind");
4488 }
4489 
4490 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4491   RValue RV = EmitCallExpr(E);
4492 
4493   if (!RV.isScalar())
4494     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4495                           AlignmentSource::Decl);
4496 
4497   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4498          "Can't have a scalar return unless the return type is a "
4499          "reference type!");
4500 
4501   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4502 }
4503 
4504 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4505   // FIXME: This shouldn't require another copy.
4506   return EmitAggExprToLValue(E);
4507 }
4508 
4509 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4510   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4511          && "binding l-value to type which needs a temporary");
4512   AggValueSlot Slot = CreateAggTemp(E->getType());
4513   EmitCXXConstructExpr(E, Slot);
4514   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4515 }
4516 
4517 LValue
4518 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4519   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4520 }
4521 
4522 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4523   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4524                                       ConvertType(E->getType()));
4525 }
4526 
4527 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4528   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4529                         AlignmentSource::Decl);
4530 }
4531 
4532 LValue
4533 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4534   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4535   Slot.setExternallyDestructed();
4536   EmitAggExpr(E->getSubExpr(), Slot);
4537   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4538   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4539 }
4540 
4541 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4542   RValue RV = EmitObjCMessageExpr(E);
4543 
4544   if (!RV.isScalar())
4545     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4546                           AlignmentSource::Decl);
4547 
4548   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4549          "Can't have a scalar return unless the return type is a "
4550          "reference type!");
4551 
4552   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4553 }
4554 
4555 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4556   Address V =
4557     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4558   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4559 }
4560 
4561 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4562                                              const ObjCIvarDecl *Ivar) {
4563   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4564 }
4565 
4566 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4567                                           llvm::Value *BaseValue,
4568                                           const ObjCIvarDecl *Ivar,
4569                                           unsigned CVRQualifiers) {
4570   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4571                                                    Ivar, CVRQualifiers);
4572 }
4573 
4574 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4575   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4576   llvm::Value *BaseValue = nullptr;
4577   const Expr *BaseExpr = E->getBase();
4578   Qualifiers BaseQuals;
4579   QualType ObjectTy;
4580   if (E->isArrow()) {
4581     BaseValue = EmitScalarExpr(BaseExpr);
4582     ObjectTy = BaseExpr->getType()->getPointeeType();
4583     BaseQuals = ObjectTy.getQualifiers();
4584   } else {
4585     LValue BaseLV = EmitLValue(BaseExpr);
4586     BaseValue = BaseLV.getPointer();
4587     ObjectTy = BaseExpr->getType();
4588     BaseQuals = ObjectTy.getQualifiers();
4589   }
4590 
4591   LValue LV =
4592     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4593                       BaseQuals.getCVRQualifiers());
4594   setObjCGCLValueClass(getContext(), E, LV);
4595   return LV;
4596 }
4597 
4598 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4599   // Can only get l-value for message expression returning aggregate type
4600   RValue RV = EmitAnyExprToTemp(E);
4601   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4602                         AlignmentSource::Decl);
4603 }
4604 
4605 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4606                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4607                                  llvm::Value *Chain) {
4608   // Get the actual function type. The callee type will always be a pointer to
4609   // function type or a block pointer type.
4610   assert(CalleeType->isFunctionPointerType() &&
4611          "Call must have function pointer type!");
4612 
4613   const Decl *TargetDecl =
4614       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4615 
4616   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4617     // We can only guarantee that a function is called from the correct
4618     // context/function based on the appropriate target attributes,
4619     // so only check in the case where we have both always_inline and target
4620     // since otherwise we could be making a conditional call after a check for
4621     // the proper cpu features (and it won't cause code generation issues due to
4622     // function based code generation).
4623     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4624         TargetDecl->hasAttr<TargetAttr>())
4625       checkTargetFeatures(E, FD);
4626 
4627   CalleeType = getContext().getCanonicalType(CalleeType);
4628 
4629   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4630 
4631   CGCallee Callee = OrigCallee;
4632 
4633   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4634       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4635     if (llvm::Constant *PrefixSig =
4636             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4637       SanitizerScope SanScope(this);
4638       // Remove any (C++17) exception specifications, to allow calling e.g. a
4639       // noexcept function through a non-noexcept pointer.
4640       auto ProtoTy =
4641         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4642       llvm::Constant *FTRTTIConst =
4643           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4644       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4645       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4646           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4647 
4648       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4649 
4650       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4651           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4652       llvm::Value *CalleeSigPtr =
4653           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4654       llvm::Value *CalleeSig =
4655           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4656       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4657 
4658       llvm::BasicBlock *Cont = createBasicBlock("cont");
4659       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4660       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4661 
4662       EmitBlock(TypeCheck);
4663       llvm::Value *CalleeRTTIPtr =
4664           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4665       llvm::Value *CalleeRTTIEncoded =
4666           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4667       llvm::Value *CalleeRTTI =
4668           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4669       llvm::Value *CalleeRTTIMatch =
4670           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4671       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4672                                       EmitCheckTypeDescriptor(CalleeType)};
4673       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4674                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4675 
4676       Builder.CreateBr(Cont);
4677       EmitBlock(Cont);
4678     }
4679   }
4680 
4681   const auto *FnType = cast<FunctionType>(PointeeType);
4682 
4683   // If we are checking indirect calls and this call is indirect, check that the
4684   // function pointer is a member of the bit set for the function type.
4685   if (SanOpts.has(SanitizerKind::CFIICall) &&
4686       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4687     SanitizerScope SanScope(this);
4688     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4689 
4690     llvm::Metadata *MD;
4691     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4692       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4693     else
4694       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4695 
4696     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4697 
4698     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4699     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4700     llvm::Value *TypeTest = Builder.CreateCall(
4701         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4702 
4703     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4704     llvm::Constant *StaticData[] = {
4705         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4706         EmitCheckSourceLocation(E->getBeginLoc()),
4707         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4708     };
4709     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4710       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4711                            CastedCallee, StaticData);
4712     } else {
4713       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4714                 SanitizerHandler::CFICheckFail, StaticData,
4715                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4716     }
4717   }
4718 
4719   CallArgList Args;
4720   if (Chain)
4721     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4722              CGM.getContext().VoidPtrTy);
4723 
4724   // C++17 requires that we evaluate arguments to a call using assignment syntax
4725   // right-to-left, and that we evaluate arguments to certain other operators
4726   // left-to-right. Note that we allow this to override the order dictated by
4727   // the calling convention on the MS ABI, which means that parameter
4728   // destruction order is not necessarily reverse construction order.
4729   // FIXME: Revisit this based on C++ committee response to unimplementability.
4730   EvaluationOrder Order = EvaluationOrder::Default;
4731   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4732     if (OCE->isAssignmentOp())
4733       Order = EvaluationOrder::ForceRightToLeft;
4734     else {
4735       switch (OCE->getOperator()) {
4736       case OO_LessLess:
4737       case OO_GreaterGreater:
4738       case OO_AmpAmp:
4739       case OO_PipePipe:
4740       case OO_Comma:
4741       case OO_ArrowStar:
4742         Order = EvaluationOrder::ForceLeftToRight;
4743         break;
4744       default:
4745         break;
4746       }
4747     }
4748   }
4749 
4750   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4751                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4752 
4753   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4754       Args, FnType, /*isChainCall=*/Chain);
4755 
4756   // C99 6.5.2.2p6:
4757   //   If the expression that denotes the called function has a type
4758   //   that does not include a prototype, [the default argument
4759   //   promotions are performed]. If the number of arguments does not
4760   //   equal the number of parameters, the behavior is undefined. If
4761   //   the function is defined with a type that includes a prototype,
4762   //   and either the prototype ends with an ellipsis (, ...) or the
4763   //   types of the arguments after promotion are not compatible with
4764   //   the types of the parameters, the behavior is undefined. If the
4765   //   function is defined with a type that does not include a
4766   //   prototype, and the types of the arguments after promotion are
4767   //   not compatible with those of the parameters after promotion,
4768   //   the behavior is undefined [except in some trivial cases].
4769   // That is, in the general case, we should assume that a call
4770   // through an unprototyped function type works like a *non-variadic*
4771   // call.  The way we make this work is to cast to the exact type
4772   // of the promoted arguments.
4773   //
4774   // Chain calls use this same code path to add the invisible chain parameter
4775   // to the function type.
4776   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4777     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4778     CalleeTy = CalleeTy->getPointerTo();
4779 
4780     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4781     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4782     Callee.setFunctionPointer(CalleePtr);
4783   }
4784 
4785   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4786 }
4787 
4788 LValue CodeGenFunction::
4789 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4790   Address BaseAddr = Address::invalid();
4791   if (E->getOpcode() == BO_PtrMemI) {
4792     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4793   } else {
4794     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4795   }
4796 
4797   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4798 
4799   const MemberPointerType *MPT
4800     = E->getRHS()->getType()->getAs<MemberPointerType>();
4801 
4802   LValueBaseInfo BaseInfo;
4803   TBAAAccessInfo TBAAInfo;
4804   Address MemberAddr =
4805     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4806                                     &TBAAInfo);
4807 
4808   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4809 }
4810 
4811 /// Given the address of a temporary variable, produce an r-value of
4812 /// its type.
4813 RValue CodeGenFunction::convertTempToRValue(Address addr,
4814                                             QualType type,
4815                                             SourceLocation loc) {
4816   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4817   switch (getEvaluationKind(type)) {
4818   case TEK_Complex:
4819     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4820   case TEK_Aggregate:
4821     return lvalue.asAggregateRValue();
4822   case TEK_Scalar:
4823     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4824   }
4825   llvm_unreachable("bad evaluation kind");
4826 }
4827 
4828 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4829   assert(Val->getType()->isFPOrFPVectorTy());
4830   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4831     return;
4832 
4833   llvm::MDBuilder MDHelper(getLLVMContext());
4834   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4835 
4836   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4837 }
4838 
4839 namespace {
4840   struct LValueOrRValue {
4841     LValue LV;
4842     RValue RV;
4843   };
4844 }
4845 
4846 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4847                                            const PseudoObjectExpr *E,
4848                                            bool forLValue,
4849                                            AggValueSlot slot) {
4850   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4851 
4852   // Find the result expression, if any.
4853   const Expr *resultExpr = E->getResultExpr();
4854   LValueOrRValue result;
4855 
4856   for (PseudoObjectExpr::const_semantics_iterator
4857          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4858     const Expr *semantic = *i;
4859 
4860     // If this semantic expression is an opaque value, bind it
4861     // to the result of its source expression.
4862     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4863       // Skip unique OVEs.
4864       if (ov->isUnique()) {
4865         assert(ov != resultExpr &&
4866                "A unique OVE cannot be used as the result expression");
4867         continue;
4868       }
4869 
4870       // If this is the result expression, we may need to evaluate
4871       // directly into the slot.
4872       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4873       OVMA opaqueData;
4874       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4875           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4876         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4877         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4878                                        AlignmentSource::Decl);
4879         opaqueData = OVMA::bind(CGF, ov, LV);
4880         result.RV = slot.asRValue();
4881 
4882       // Otherwise, emit as normal.
4883       } else {
4884         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4885 
4886         // If this is the result, also evaluate the result now.
4887         if (ov == resultExpr) {
4888           if (forLValue)
4889             result.LV = CGF.EmitLValue(ov);
4890           else
4891             result.RV = CGF.EmitAnyExpr(ov, slot);
4892         }
4893       }
4894 
4895       opaques.push_back(opaqueData);
4896 
4897     // Otherwise, if the expression is the result, evaluate it
4898     // and remember the result.
4899     } else if (semantic == resultExpr) {
4900       if (forLValue)
4901         result.LV = CGF.EmitLValue(semantic);
4902       else
4903         result.RV = CGF.EmitAnyExpr(semantic, slot);
4904 
4905     // Otherwise, evaluate the expression in an ignored context.
4906     } else {
4907       CGF.EmitIgnoredExpr(semantic);
4908     }
4909   }
4910 
4911   // Unbind all the opaques now.
4912   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4913     opaques[i].unbind(CGF);
4914 
4915   return result;
4916 }
4917 
4918 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4919                                                AggValueSlot slot) {
4920   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4921 }
4922 
4923 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4924   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4925 }
4926