1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/Hashing.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/ConvertUTF.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Path.h"
37 #include "llvm/Transforms/Utils/SanitizerStats.h"
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 //===--------------------------------------------------------------------===//
43 //                        Miscellaneous Helper Methods
44 //===--------------------------------------------------------------------===//
45 
46 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
47   unsigned addressSpace =
48     cast<llvm::PointerType>(value->getType())->getAddressSpace();
49 
50   llvm::PointerType *destType = Int8PtrTy;
51   if (addressSpace)
52     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
53 
54   if (value->getType() == destType) return value;
55   return Builder.CreateBitCast(value, destType);
56 }
57 
58 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
59 /// block.
60 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
61                                           const Twine &Name) {
62   auto Alloca = CreateTempAlloca(Ty, Name);
63   Alloca->setAlignment(Align.getQuantity());
64   return Address(Alloca, Align);
65 }
66 
67 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
68 /// block.
69 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
70                                                     const Twine &Name) {
71   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
72 }
73 
74 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
75 /// default alignment of the corresponding LLVM type, which is *not*
76 /// guaranteed to be related in any way to the expected alignment of
77 /// an AST type that might have been lowered to Ty.
78 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
79                                                       const Twine &Name) {
80   CharUnits Align =
81     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
82   return CreateTempAlloca(Ty, Align, Name);
83 }
84 
85 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
86   assert(isa<llvm::AllocaInst>(Var.getPointer()));
87   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
88   Store->setAlignment(Var.getAlignment().getQuantity());
89   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
90   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
91 }
92 
93 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
94   CharUnits Align = getContext().getTypeAlignInChars(Ty);
95   return CreateTempAlloca(ConvertType(Ty), Align, Name);
96 }
97 
98 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
99   // FIXME: Should we prefer the preferred type alignment here?
100   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
101 }
102 
103 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
104                                        const Twine &Name) {
105   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
106 }
107 
108 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
109 /// expression and compare the result against zero, returning an Int1Ty value.
110 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
111   PGO.setCurrentStmt(E);
112   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
113     llvm::Value *MemPtr = EmitScalarExpr(E);
114     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
115   }
116 
117   QualType BoolTy = getContext().BoolTy;
118   SourceLocation Loc = E->getExprLoc();
119   if (!E->getType()->isAnyComplexType())
120     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
121 
122   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
123                                        Loc);
124 }
125 
126 /// EmitIgnoredExpr - Emit code to compute the specified expression,
127 /// ignoring the result.
128 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
129   if (E->isRValue())
130     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
131 
132   // Just emit it as an l-value and drop the result.
133   EmitLValue(E);
134 }
135 
136 /// EmitAnyExpr - Emit code to compute the specified expression which
137 /// can have any type.  The result is returned as an RValue struct.
138 /// If this is an aggregate expression, AggSlot indicates where the
139 /// result should be returned.
140 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
141                                     AggValueSlot aggSlot,
142                                     bool ignoreResult) {
143   switch (getEvaluationKind(E->getType())) {
144   case TEK_Scalar:
145     return RValue::get(EmitScalarExpr(E, ignoreResult));
146   case TEK_Complex:
147     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
148   case TEK_Aggregate:
149     if (!ignoreResult && aggSlot.isIgnored())
150       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
151     EmitAggExpr(E, aggSlot);
152     return aggSlot.asRValue();
153   }
154   llvm_unreachable("bad evaluation kind");
155 }
156 
157 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
158 /// always be accessible even if no aggregate location is provided.
159 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
160   AggValueSlot AggSlot = AggValueSlot::ignored();
161 
162   if (hasAggregateEvaluationKind(E->getType()))
163     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
164   return EmitAnyExpr(E, AggSlot);
165 }
166 
167 /// EmitAnyExprToMem - Evaluate an expression into a given memory
168 /// location.
169 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
170                                        Address Location,
171                                        Qualifiers Quals,
172                                        bool IsInit) {
173   // FIXME: This function should take an LValue as an argument.
174   switch (getEvaluationKind(E->getType())) {
175   case TEK_Complex:
176     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
177                               /*isInit*/ false);
178     return;
179 
180   case TEK_Aggregate: {
181     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
182                                          AggValueSlot::IsDestructed_t(IsInit),
183                                          AggValueSlot::DoesNotNeedGCBarriers,
184                                          AggValueSlot::IsAliased_t(!IsInit)));
185     return;
186   }
187 
188   case TEK_Scalar: {
189     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
190     LValue LV = MakeAddrLValue(Location, E->getType());
191     EmitStoreThroughLValue(RV, LV);
192     return;
193   }
194   }
195   llvm_unreachable("bad evaluation kind");
196 }
197 
198 static void
199 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
200                      const Expr *E, Address ReferenceTemporary) {
201   // Objective-C++ ARC:
202   //   If we are binding a reference to a temporary that has ownership, we
203   //   need to perform retain/release operations on the temporary.
204   //
205   // FIXME: This should be looking at E, not M.
206   if (auto Lifetime = M->getType().getObjCLifetime()) {
207     switch (Lifetime) {
208     case Qualifiers::OCL_None:
209     case Qualifiers::OCL_ExplicitNone:
210       // Carry on to normal cleanup handling.
211       break;
212 
213     case Qualifiers::OCL_Autoreleasing:
214       // Nothing to do; cleaned up by an autorelease pool.
215       return;
216 
217     case Qualifiers::OCL_Strong:
218     case Qualifiers::OCL_Weak:
219       switch (StorageDuration Duration = M->getStorageDuration()) {
220       case SD_Static:
221         // Note: we intentionally do not register a cleanup to release
222         // the object on program termination.
223         return;
224 
225       case SD_Thread:
226         // FIXME: We should probably register a cleanup in this case.
227         return;
228 
229       case SD_Automatic:
230       case SD_FullExpression:
231         CodeGenFunction::Destroyer *Destroy;
232         CleanupKind CleanupKind;
233         if (Lifetime == Qualifiers::OCL_Strong) {
234           const ValueDecl *VD = M->getExtendingDecl();
235           bool Precise =
236               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
237           CleanupKind = CGF.getARCCleanupKind();
238           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
239                             : &CodeGenFunction::destroyARCStrongImprecise;
240         } else {
241           // __weak objects always get EH cleanups; otherwise, exceptions
242           // could cause really nasty crashes instead of mere leaks.
243           CleanupKind = NormalAndEHCleanup;
244           Destroy = &CodeGenFunction::destroyARCWeak;
245         }
246         if (Duration == SD_FullExpression)
247           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
248                           M->getType(), *Destroy,
249                           CleanupKind & EHCleanup);
250         else
251           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
252                                           M->getType(),
253                                           *Destroy, CleanupKind & EHCleanup);
254         return;
255 
256       case SD_Dynamic:
257         llvm_unreachable("temporary cannot have dynamic storage duration");
258       }
259       llvm_unreachable("unknown storage duration");
260     }
261   }
262 
263   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
264   if (const RecordType *RT =
265           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
266     // Get the destructor for the reference temporary.
267     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
268     if (!ClassDecl->hasTrivialDestructor())
269       ReferenceTemporaryDtor = ClassDecl->getDestructor();
270   }
271 
272   if (!ReferenceTemporaryDtor)
273     return;
274 
275   // Call the destructor for the temporary.
276   switch (M->getStorageDuration()) {
277   case SD_Static:
278   case SD_Thread: {
279     llvm::Constant *CleanupFn;
280     llvm::Constant *CleanupArg;
281     if (E->getType()->isArrayType()) {
282       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
283           ReferenceTemporary, E->getType(),
284           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
285           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
286       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
287     } else {
288       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
289                                                StructorType::Complete);
290       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
291     }
292     CGF.CGM.getCXXABI().registerGlobalDtor(
293         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
294     break;
295   }
296 
297   case SD_FullExpression:
298     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
299                     CodeGenFunction::destroyCXXObject,
300                     CGF.getLangOpts().Exceptions);
301     break;
302 
303   case SD_Automatic:
304     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
305                                     ReferenceTemporary, E->getType(),
306                                     CodeGenFunction::destroyCXXObject,
307                                     CGF.getLangOpts().Exceptions);
308     break;
309 
310   case SD_Dynamic:
311     llvm_unreachable("temporary cannot have dynamic storage duration");
312   }
313 }
314 
315 static Address
316 createReferenceTemporary(CodeGenFunction &CGF,
317                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
318   switch (M->getStorageDuration()) {
319   case SD_FullExpression:
320   case SD_Automatic: {
321     // If we have a constant temporary array or record try to promote it into a
322     // constant global under the same rules a normal constant would've been
323     // promoted. This is easier on the optimizer and generally emits fewer
324     // instructions.
325     QualType Ty = Inner->getType();
326     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
327         (Ty->isArrayType() || Ty->isRecordType()) &&
328         CGF.CGM.isTypeConstant(Ty, true))
329       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
330         auto *GV = new llvm::GlobalVariable(
331             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
332             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
333         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
334         GV->setAlignment(alignment.getQuantity());
335         // FIXME: Should we put the new global into a COMDAT?
336         return Address(GV, alignment);
337       }
338     return CGF.CreateMemTemp(Ty, "ref.tmp");
339   }
340   case SD_Thread:
341   case SD_Static:
342     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
343 
344   case SD_Dynamic:
345     llvm_unreachable("temporary can't have dynamic storage duration");
346   }
347   llvm_unreachable("unknown storage duration");
348 }
349 
350 LValue CodeGenFunction::
351 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
352   const Expr *E = M->GetTemporaryExpr();
353 
354     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
355     // as that will cause the lifetime adjustment to be lost for ARC
356   auto ownership = M->getType().getObjCLifetime();
357   if (ownership != Qualifiers::OCL_None &&
358       ownership != Qualifiers::OCL_ExplicitNone) {
359     Address Object = createReferenceTemporary(*this, M, E);
360     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
361       Object = Address(llvm::ConstantExpr::getBitCast(Var,
362                            ConvertTypeForMem(E->getType())
363                              ->getPointerTo(Object.getAddressSpace())),
364                        Object.getAlignment());
365 
366       // createReferenceTemporary will promote the temporary to a global with a
367       // constant initializer if it can.  It can only do this to a value of
368       // ARC-manageable type if the value is global and therefore "immune" to
369       // ref-counting operations.  Therefore we have no need to emit either a
370       // dynamic initialization or a cleanup and we can just return the address
371       // of the temporary.
372       if (Var->hasInitializer())
373         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
374 
375       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
376     }
377     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
378                                        AlignmentSource::Decl);
379 
380     switch (getEvaluationKind(E->getType())) {
381     default: llvm_unreachable("expected scalar or aggregate expression");
382     case TEK_Scalar:
383       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
384       break;
385     case TEK_Aggregate: {
386       EmitAggExpr(E, AggValueSlot::forAddr(Object,
387                                            E->getType().getQualifiers(),
388                                            AggValueSlot::IsDestructed,
389                                            AggValueSlot::DoesNotNeedGCBarriers,
390                                            AggValueSlot::IsNotAliased));
391       break;
392     }
393     }
394 
395     pushTemporaryCleanup(*this, M, E, Object);
396     return RefTempDst;
397   }
398 
399   SmallVector<const Expr *, 2> CommaLHSs;
400   SmallVector<SubobjectAdjustment, 2> Adjustments;
401   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
402 
403   for (const auto &Ignored : CommaLHSs)
404     EmitIgnoredExpr(Ignored);
405 
406   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
407     if (opaque->getType()->isRecordType()) {
408       assert(Adjustments.empty());
409       return EmitOpaqueValueLValue(opaque);
410     }
411   }
412 
413   // Create and initialize the reference temporary.
414   Address Object = createReferenceTemporary(*this, M, E);
415   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
416     Object = Address(llvm::ConstantExpr::getBitCast(
417         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
418                      Object.getAlignment());
419     // If the temporary is a global and has a constant initializer or is a
420     // constant temporary that we promoted to a global, we may have already
421     // initialized it.
422     if (!Var->hasInitializer()) {
423       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
424       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
425     }
426   } else {
427     switch (M->getStorageDuration()) {
428     case SD_Automatic:
429     case SD_FullExpression:
430       if (auto *Size = EmitLifetimeStart(
431               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
432               Object.getPointer())) {
433         if (M->getStorageDuration() == SD_Automatic)
434           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
435                                                     Object, Size);
436         else
437           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
438                                                Size);
439       }
440       break;
441     default:
442       break;
443     }
444     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
445   }
446   pushTemporaryCleanup(*this, M, E, Object);
447 
448   // Perform derived-to-base casts and/or field accesses, to get from the
449   // temporary object we created (and, potentially, for which we extended
450   // the lifetime) to the subobject we're binding the reference to.
451   for (unsigned I = Adjustments.size(); I != 0; --I) {
452     SubobjectAdjustment &Adjustment = Adjustments[I-1];
453     switch (Adjustment.Kind) {
454     case SubobjectAdjustment::DerivedToBaseAdjustment:
455       Object =
456           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
457                                 Adjustment.DerivedToBase.BasePath->path_begin(),
458                                 Adjustment.DerivedToBase.BasePath->path_end(),
459                                 /*NullCheckValue=*/ false, E->getExprLoc());
460       break;
461 
462     case SubobjectAdjustment::FieldAdjustment: {
463       LValue LV = MakeAddrLValue(Object, E->getType(),
464                                  AlignmentSource::Decl);
465       LV = EmitLValueForField(LV, Adjustment.Field);
466       assert(LV.isSimple() &&
467              "materialized temporary field is not a simple lvalue");
468       Object = LV.getAddress();
469       break;
470     }
471 
472     case SubobjectAdjustment::MemberPointerAdjustment: {
473       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
474       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
475                                                Adjustment.Ptr.MPT);
476       break;
477     }
478     }
479   }
480 
481   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
482 }
483 
484 RValue
485 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
486   // Emit the expression as an lvalue.
487   LValue LV = EmitLValue(E);
488   assert(LV.isSimple());
489   llvm::Value *Value = LV.getPointer();
490 
491   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
492     // C++11 [dcl.ref]p5 (as amended by core issue 453):
493     //   If a glvalue to which a reference is directly bound designates neither
494     //   an existing object or function of an appropriate type nor a region of
495     //   storage of suitable size and alignment to contain an object of the
496     //   reference's type, the behavior is undefined.
497     QualType Ty = E->getType();
498     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
499   }
500 
501   return RValue::get(Value);
502 }
503 
504 
505 /// getAccessedFieldNo - Given an encoded value and a result number, return the
506 /// input field number being accessed.
507 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
508                                              const llvm::Constant *Elts) {
509   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
510       ->getZExtValue();
511 }
512 
513 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
514 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
515                                     llvm::Value *High) {
516   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
517   llvm::Value *K47 = Builder.getInt64(47);
518   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
519   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
520   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
521   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
522   return Builder.CreateMul(B1, KMul);
523 }
524 
525 bool CodeGenFunction::sanitizePerformTypeCheck() const {
526   return SanOpts.has(SanitizerKind::Null) |
527          SanOpts.has(SanitizerKind::Alignment) |
528          SanOpts.has(SanitizerKind::ObjectSize) |
529          SanOpts.has(SanitizerKind::Vptr);
530 }
531 
532 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
533                                     llvm::Value *Ptr, QualType Ty,
534                                     CharUnits Alignment, bool SkipNullCheck) {
535   if (!sanitizePerformTypeCheck())
536     return;
537 
538   // Don't check pointers outside the default address space. The null check
539   // isn't correct, the object-size check isn't supported by LLVM, and we can't
540   // communicate the addresses to the runtime handler for the vptr check.
541   if (Ptr->getType()->getPointerAddressSpace())
542     return;
543 
544   SanitizerScope SanScope(this);
545 
546   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
547   llvm::BasicBlock *Done = nullptr;
548 
549   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
550                            TCK == TCK_UpcastToVirtualBase;
551   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
552       !SkipNullCheck) {
553     // The glvalue must not be an empty glvalue.
554     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
555 
556     if (AllowNullPointers) {
557       // When performing pointer casts, it's OK if the value is null.
558       // Skip the remaining checks in that case.
559       Done = createBasicBlock("null");
560       llvm::BasicBlock *Rest = createBasicBlock("not.null");
561       Builder.CreateCondBr(IsNonNull, Rest, Done);
562       EmitBlock(Rest);
563     } else {
564       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
565     }
566   }
567 
568   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
569     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
570 
571     // The glvalue must refer to a large enough storage region.
572     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
573     //        to check this.
574     // FIXME: Get object address space
575     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
576     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
577     llvm::Value *Min = Builder.getFalse();
578     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
579     llvm::Value *LargeEnough =
580         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
581                               llvm::ConstantInt::get(IntPtrTy, Size));
582     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
583   }
584 
585   uint64_t AlignVal = 0;
586 
587   if (SanOpts.has(SanitizerKind::Alignment)) {
588     AlignVal = Alignment.getQuantity();
589     if (!Ty->isIncompleteType() && !AlignVal)
590       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
591 
592     // The glvalue must be suitably aligned.
593     if (AlignVal) {
594       llvm::Value *Align =
595           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
596                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
597       llvm::Value *Aligned =
598         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
599       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
600     }
601   }
602 
603   if (Checks.size() > 0) {
604     llvm::Constant *StaticData[] = {
605      EmitCheckSourceLocation(Loc),
606       EmitCheckTypeDescriptor(Ty),
607       llvm::ConstantInt::get(SizeTy, AlignVal),
608       llvm::ConstantInt::get(Int8Ty, TCK)
609     };
610     EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
611   }
612 
613   // If possible, check that the vptr indicates that there is a subobject of
614   // type Ty at offset zero within this object.
615   //
616   // C++11 [basic.life]p5,6:
617   //   [For storage which does not refer to an object within its lifetime]
618   //   The program has undefined behavior if:
619   //    -- the [pointer or glvalue] is used to access a non-static data member
620   //       or call a non-static member function
621   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
622   if (SanOpts.has(SanitizerKind::Vptr) &&
623       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
624        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
625        TCK == TCK_UpcastToVirtualBase) &&
626       RD && RD->hasDefinition() && RD->isDynamicClass()) {
627     // Compute a hash of the mangled name of the type.
628     //
629     // FIXME: This is not guaranteed to be deterministic! Move to a
630     //        fingerprinting mechanism once LLVM provides one. For the time
631     //        being the implementation happens to be deterministic.
632     SmallString<64> MangledName;
633     llvm::raw_svector_ostream Out(MangledName);
634     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
635                                                      Out);
636 
637     // Blacklist based on the mangled type.
638     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
639             Out.str())) {
640       llvm::hash_code TypeHash = hash_value(Out.str());
641 
642       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
643       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
644       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
645       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
646       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
647       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
648 
649       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
650       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
651 
652       // Look the hash up in our cache.
653       const int CacheSize = 128;
654       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
655       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
656                                                      "__ubsan_vptr_type_cache");
657       llvm::Value *Slot = Builder.CreateAnd(Hash,
658                                             llvm::ConstantInt::get(IntPtrTy,
659                                                                    CacheSize-1));
660       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
661       llvm::Value *CacheVal =
662         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
663                                   getPointerAlign());
664 
665       // If the hash isn't in the cache, call a runtime handler to perform the
666       // hard work of checking whether the vptr is for an object of the right
667       // type. This will either fill in the cache and return, or produce a
668       // diagnostic.
669       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
670       llvm::Constant *StaticData[] = {
671         EmitCheckSourceLocation(Loc),
672         EmitCheckTypeDescriptor(Ty),
673         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
674         llvm::ConstantInt::get(Int8Ty, TCK)
675       };
676       llvm::Value *DynamicData[] = { Ptr, Hash };
677       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
678                 "dynamic_type_cache_miss", StaticData, DynamicData);
679     }
680   }
681 
682   if (Done) {
683     Builder.CreateBr(Done);
684     EmitBlock(Done);
685   }
686 }
687 
688 /// Determine whether this expression refers to a flexible array member in a
689 /// struct. We disable array bounds checks for such members.
690 static bool isFlexibleArrayMemberExpr(const Expr *E) {
691   // For compatibility with existing code, we treat arrays of length 0 or
692   // 1 as flexible array members.
693   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
694   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
695     if (CAT->getSize().ugt(1))
696       return false;
697   } else if (!isa<IncompleteArrayType>(AT))
698     return false;
699 
700   E = E->IgnoreParens();
701 
702   // A flexible array member must be the last member in the class.
703   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
704     // FIXME: If the base type of the member expr is not FD->getParent(),
705     // this should not be treated as a flexible array member access.
706     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
707       RecordDecl::field_iterator FI(
708           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
709       return ++FI == FD->getParent()->field_end();
710     }
711   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
712     return IRE->getDecl()->getNextIvar() == nullptr;
713   }
714 
715   return false;
716 }
717 
718 /// If Base is known to point to the start of an array, return the length of
719 /// that array. Return 0 if the length cannot be determined.
720 static llvm::Value *getArrayIndexingBound(
721     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
722   // For the vector indexing extension, the bound is the number of elements.
723   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
724     IndexedType = Base->getType();
725     return CGF.Builder.getInt32(VT->getNumElements());
726   }
727 
728   Base = Base->IgnoreParens();
729 
730   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
731     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
732         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
733       IndexedType = CE->getSubExpr()->getType();
734       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
735       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
736         return CGF.Builder.getInt(CAT->getSize());
737       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
738         return CGF.getVLASize(VAT).first;
739     }
740   }
741 
742   return nullptr;
743 }
744 
745 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
746                                       llvm::Value *Index, QualType IndexType,
747                                       bool Accessed) {
748   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
749          "should not be called unless adding bounds checks");
750   SanitizerScope SanScope(this);
751 
752   QualType IndexedType;
753   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
754   if (!Bound)
755     return;
756 
757   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
758   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
759   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
760 
761   llvm::Constant *StaticData[] = {
762     EmitCheckSourceLocation(E->getExprLoc()),
763     EmitCheckTypeDescriptor(IndexedType),
764     EmitCheckTypeDescriptor(IndexType)
765   };
766   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
767                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
768   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
769             StaticData, Index);
770 }
771 
772 
773 CodeGenFunction::ComplexPairTy CodeGenFunction::
774 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
775                          bool isInc, bool isPre) {
776   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
777 
778   llvm::Value *NextVal;
779   if (isa<llvm::IntegerType>(InVal.first->getType())) {
780     uint64_t AmountVal = isInc ? 1 : -1;
781     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
782 
783     // Add the inc/dec to the real part.
784     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
785   } else {
786     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
787     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
788     if (!isInc)
789       FVal.changeSign();
790     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
791 
792     // Add the inc/dec to the real part.
793     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
794   }
795 
796   ComplexPairTy IncVal(NextVal, InVal.second);
797 
798   // Store the updated result through the lvalue.
799   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
800 
801   // If this is a postinc, return the value read from memory, otherwise use the
802   // updated value.
803   return isPre ? IncVal : InVal;
804 }
805 
806 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
807                                              CodeGenFunction *CGF) {
808   // Bind VLAs in the cast type.
809   if (CGF && E->getType()->isVariablyModifiedType())
810     CGF->EmitVariablyModifiedType(E->getType());
811 
812   if (CGDebugInfo *DI = getModuleDebugInfo())
813     DI->EmitExplicitCastType(E->getType());
814 }
815 
816 //===----------------------------------------------------------------------===//
817 //                         LValue Expression Emission
818 //===----------------------------------------------------------------------===//
819 
820 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
821 /// derive a more accurate bound on the alignment of the pointer.
822 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
823                                                   AlignmentSource  *Source) {
824   // We allow this with ObjC object pointers because of fragile ABIs.
825   assert(E->getType()->isPointerType() ||
826          E->getType()->isObjCObjectPointerType());
827   E = E->IgnoreParens();
828 
829   // Casts:
830   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
831     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
832       CGM.EmitExplicitCastExprType(ECE, this);
833 
834     switch (CE->getCastKind()) {
835     // Non-converting casts (but not C's implicit conversion from void*).
836     case CK_BitCast:
837     case CK_NoOp:
838       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
839         if (PtrTy->getPointeeType()->isVoidType())
840           break;
841 
842         AlignmentSource InnerSource;
843         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
844         if (Source) *Source = InnerSource;
845 
846         // If this is an explicit bitcast, and the source l-value is
847         // opaque, honor the alignment of the casted-to type.
848         if (isa<ExplicitCastExpr>(CE) &&
849             InnerSource != AlignmentSource::Decl) {
850           Addr = Address(Addr.getPointer(),
851                          getNaturalPointeeTypeAlignment(E->getType(), Source));
852         }
853 
854         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
855             CE->getCastKind() == CK_BitCast) {
856           if (auto PT = E->getType()->getAs<PointerType>())
857             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
858                                       /*MayBeNull=*/true,
859                                       CodeGenFunction::CFITCK_UnrelatedCast,
860                                       CE->getLocStart());
861         }
862 
863         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
864       }
865       break;
866 
867     // Array-to-pointer decay.
868     case CK_ArrayToPointerDecay:
869       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
870 
871     // Derived-to-base conversions.
872     case CK_UncheckedDerivedToBase:
873     case CK_DerivedToBase: {
874       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
875       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
876       return GetAddressOfBaseClass(Addr, Derived,
877                                    CE->path_begin(), CE->path_end(),
878                                    ShouldNullCheckClassCastValue(CE),
879                                    CE->getExprLoc());
880     }
881 
882     // TODO: Is there any reason to treat base-to-derived conversions
883     // specially?
884     default:
885       break;
886     }
887   }
888 
889   // Unary &.
890   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
891     if (UO->getOpcode() == UO_AddrOf) {
892       LValue LV = EmitLValue(UO->getSubExpr());
893       if (Source) *Source = LV.getAlignmentSource();
894       return LV.getAddress();
895     }
896   }
897 
898   // TODO: conditional operators, comma.
899 
900   // Otherwise, use the alignment of the type.
901   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
902   return Address(EmitScalarExpr(E), Align);
903 }
904 
905 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
906   if (Ty->isVoidType())
907     return RValue::get(nullptr);
908 
909   switch (getEvaluationKind(Ty)) {
910   case TEK_Complex: {
911     llvm::Type *EltTy =
912       ConvertType(Ty->castAs<ComplexType>()->getElementType());
913     llvm::Value *U = llvm::UndefValue::get(EltTy);
914     return RValue::getComplex(std::make_pair(U, U));
915   }
916 
917   // If this is a use of an undefined aggregate type, the aggregate must have an
918   // identifiable address.  Just because the contents of the value are undefined
919   // doesn't mean that the address can't be taken and compared.
920   case TEK_Aggregate: {
921     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
922     return RValue::getAggregate(DestPtr);
923   }
924 
925   case TEK_Scalar:
926     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
927   }
928   llvm_unreachable("bad evaluation kind");
929 }
930 
931 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
932                                               const char *Name) {
933   ErrorUnsupported(E, Name);
934   return GetUndefRValue(E->getType());
935 }
936 
937 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
938                                               const char *Name) {
939   ErrorUnsupported(E, Name);
940   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
941   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
942                         E->getType());
943 }
944 
945 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
946   LValue LV;
947   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
948     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
949   else
950     LV = EmitLValue(E);
951   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
952     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
953                   E->getType(), LV.getAlignment());
954   return LV;
955 }
956 
957 /// EmitLValue - Emit code to compute a designator that specifies the location
958 /// of the expression.
959 ///
960 /// This can return one of two things: a simple address or a bitfield reference.
961 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
962 /// an LLVM pointer type.
963 ///
964 /// If this returns a bitfield reference, nothing about the pointee type of the
965 /// LLVM value is known: For example, it may not be a pointer to an integer.
966 ///
967 /// If this returns a normal address, and if the lvalue's C type is fixed size,
968 /// this method guarantees that the returned pointer type will point to an LLVM
969 /// type of the same size of the lvalue's type.  If the lvalue has a variable
970 /// length type, this is not possible.
971 ///
972 LValue CodeGenFunction::EmitLValue(const Expr *E) {
973   ApplyDebugLocation DL(*this, E);
974   switch (E->getStmtClass()) {
975   default: return EmitUnsupportedLValue(E, "l-value expression");
976 
977   case Expr::ObjCPropertyRefExprClass:
978     llvm_unreachable("cannot emit a property reference directly");
979 
980   case Expr::ObjCSelectorExprClass:
981     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
982   case Expr::ObjCIsaExprClass:
983     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
984   case Expr::BinaryOperatorClass:
985     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
986   case Expr::CompoundAssignOperatorClass: {
987     QualType Ty = E->getType();
988     if (const AtomicType *AT = Ty->getAs<AtomicType>())
989       Ty = AT->getValueType();
990     if (!Ty->isAnyComplexType())
991       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
992     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
993   }
994   case Expr::CallExprClass:
995   case Expr::CXXMemberCallExprClass:
996   case Expr::CXXOperatorCallExprClass:
997   case Expr::UserDefinedLiteralClass:
998     return EmitCallExprLValue(cast<CallExpr>(E));
999   case Expr::VAArgExprClass:
1000     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1001   case Expr::DeclRefExprClass:
1002     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1003   case Expr::ParenExprClass:
1004     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1005   case Expr::GenericSelectionExprClass:
1006     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1007   case Expr::PredefinedExprClass:
1008     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1009   case Expr::StringLiteralClass:
1010     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1011   case Expr::ObjCEncodeExprClass:
1012     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1013   case Expr::PseudoObjectExprClass:
1014     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1015   case Expr::InitListExprClass:
1016     return EmitInitListLValue(cast<InitListExpr>(E));
1017   case Expr::CXXTemporaryObjectExprClass:
1018   case Expr::CXXConstructExprClass:
1019     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1020   case Expr::CXXBindTemporaryExprClass:
1021     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1022   case Expr::CXXUuidofExprClass:
1023     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1024   case Expr::LambdaExprClass:
1025     return EmitLambdaLValue(cast<LambdaExpr>(E));
1026 
1027   case Expr::ExprWithCleanupsClass: {
1028     const auto *cleanups = cast<ExprWithCleanups>(E);
1029     enterFullExpression(cleanups);
1030     RunCleanupsScope Scope(*this);
1031     return EmitLValue(cleanups->getSubExpr());
1032   }
1033 
1034   case Expr::CXXDefaultArgExprClass:
1035     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1036   case Expr::CXXDefaultInitExprClass: {
1037     CXXDefaultInitExprScope Scope(*this);
1038     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1039   }
1040   case Expr::CXXTypeidExprClass:
1041     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1042 
1043   case Expr::ObjCMessageExprClass:
1044     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1045   case Expr::ObjCIvarRefExprClass:
1046     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1047   case Expr::StmtExprClass:
1048     return EmitStmtExprLValue(cast<StmtExpr>(E));
1049   case Expr::UnaryOperatorClass:
1050     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1051   case Expr::ArraySubscriptExprClass:
1052     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1053   case Expr::OMPArraySectionExprClass:
1054     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1055   case Expr::ExtVectorElementExprClass:
1056     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1057   case Expr::MemberExprClass:
1058     return EmitMemberExpr(cast<MemberExpr>(E));
1059   case Expr::CompoundLiteralExprClass:
1060     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1061   case Expr::ConditionalOperatorClass:
1062     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1063   case Expr::BinaryConditionalOperatorClass:
1064     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1065   case Expr::ChooseExprClass:
1066     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1067   case Expr::OpaqueValueExprClass:
1068     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1069   case Expr::SubstNonTypeTemplateParmExprClass:
1070     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1071   case Expr::ImplicitCastExprClass:
1072   case Expr::CStyleCastExprClass:
1073   case Expr::CXXFunctionalCastExprClass:
1074   case Expr::CXXStaticCastExprClass:
1075   case Expr::CXXDynamicCastExprClass:
1076   case Expr::CXXReinterpretCastExprClass:
1077   case Expr::CXXConstCastExprClass:
1078   case Expr::ObjCBridgedCastExprClass:
1079     return EmitCastLValue(cast<CastExpr>(E));
1080 
1081   case Expr::MaterializeTemporaryExprClass:
1082     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1083   }
1084 }
1085 
1086 /// Given an object of the given canonical type, can we safely copy a
1087 /// value out of it based on its initializer?
1088 static bool isConstantEmittableObjectType(QualType type) {
1089   assert(type.isCanonical());
1090   assert(!type->isReferenceType());
1091 
1092   // Must be const-qualified but non-volatile.
1093   Qualifiers qs = type.getLocalQualifiers();
1094   if (!qs.hasConst() || qs.hasVolatile()) return false;
1095 
1096   // Otherwise, all object types satisfy this except C++ classes with
1097   // mutable subobjects or non-trivial copy/destroy behavior.
1098   if (const auto *RT = dyn_cast<RecordType>(type))
1099     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1100       if (RD->hasMutableFields() || !RD->isTrivial())
1101         return false;
1102 
1103   return true;
1104 }
1105 
1106 /// Can we constant-emit a load of a reference to a variable of the
1107 /// given type?  This is different from predicates like
1108 /// Decl::isUsableInConstantExpressions because we do want it to apply
1109 /// in situations that don't necessarily satisfy the language's rules
1110 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1111 /// to do this with const float variables even if those variables
1112 /// aren't marked 'constexpr'.
1113 enum ConstantEmissionKind {
1114   CEK_None,
1115   CEK_AsReferenceOnly,
1116   CEK_AsValueOrReference,
1117   CEK_AsValueOnly
1118 };
1119 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1120   type = type.getCanonicalType();
1121   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1122     if (isConstantEmittableObjectType(ref->getPointeeType()))
1123       return CEK_AsValueOrReference;
1124     return CEK_AsReferenceOnly;
1125   }
1126   if (isConstantEmittableObjectType(type))
1127     return CEK_AsValueOnly;
1128   return CEK_None;
1129 }
1130 
1131 /// Try to emit a reference to the given value without producing it as
1132 /// an l-value.  This is actually more than an optimization: we can't
1133 /// produce an l-value for variables that we never actually captured
1134 /// in a block or lambda, which means const int variables or constexpr
1135 /// literals or similar.
1136 CodeGenFunction::ConstantEmission
1137 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1138   ValueDecl *value = refExpr->getDecl();
1139 
1140   // The value needs to be an enum constant or a constant variable.
1141   ConstantEmissionKind CEK;
1142   if (isa<ParmVarDecl>(value)) {
1143     CEK = CEK_None;
1144   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1145     CEK = checkVarTypeForConstantEmission(var->getType());
1146   } else if (isa<EnumConstantDecl>(value)) {
1147     CEK = CEK_AsValueOnly;
1148   } else {
1149     CEK = CEK_None;
1150   }
1151   if (CEK == CEK_None) return ConstantEmission();
1152 
1153   Expr::EvalResult result;
1154   bool resultIsReference;
1155   QualType resultType;
1156 
1157   // It's best to evaluate all the way as an r-value if that's permitted.
1158   if (CEK != CEK_AsReferenceOnly &&
1159       refExpr->EvaluateAsRValue(result, getContext())) {
1160     resultIsReference = false;
1161     resultType = refExpr->getType();
1162 
1163   // Otherwise, try to evaluate as an l-value.
1164   } else if (CEK != CEK_AsValueOnly &&
1165              refExpr->EvaluateAsLValue(result, getContext())) {
1166     resultIsReference = true;
1167     resultType = value->getType();
1168 
1169   // Failure.
1170   } else {
1171     return ConstantEmission();
1172   }
1173 
1174   // In any case, if the initializer has side-effects, abandon ship.
1175   if (result.HasSideEffects)
1176     return ConstantEmission();
1177 
1178   // Emit as a constant.
1179   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1180 
1181   // Make sure we emit a debug reference to the global variable.
1182   // This should probably fire even for
1183   if (isa<VarDecl>(value)) {
1184     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1185       EmitDeclRefExprDbgValue(refExpr, result.Val);
1186   } else {
1187     assert(isa<EnumConstantDecl>(value));
1188     EmitDeclRefExprDbgValue(refExpr, result.Val);
1189   }
1190 
1191   // If we emitted a reference constant, we need to dereference that.
1192   if (resultIsReference)
1193     return ConstantEmission::forReference(C);
1194 
1195   return ConstantEmission::forValue(C);
1196 }
1197 
1198 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1199                                                SourceLocation Loc) {
1200   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1201                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1202                           lvalue.getTBAAInfo(),
1203                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1204                           lvalue.isNontemporal());
1205 }
1206 
1207 static bool hasBooleanRepresentation(QualType Ty) {
1208   if (Ty->isBooleanType())
1209     return true;
1210 
1211   if (const EnumType *ET = Ty->getAs<EnumType>())
1212     return ET->getDecl()->getIntegerType()->isBooleanType();
1213 
1214   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1215     return hasBooleanRepresentation(AT->getValueType());
1216 
1217   return false;
1218 }
1219 
1220 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1221                             llvm::APInt &Min, llvm::APInt &End,
1222                             bool StrictEnums) {
1223   const EnumType *ET = Ty->getAs<EnumType>();
1224   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1225                                 ET && !ET->getDecl()->isFixed();
1226   bool IsBool = hasBooleanRepresentation(Ty);
1227   if (!IsBool && !IsRegularCPlusPlusEnum)
1228     return false;
1229 
1230   if (IsBool) {
1231     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1232     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1233   } else {
1234     const EnumDecl *ED = ET->getDecl();
1235     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1236     unsigned Bitwidth = LTy->getScalarSizeInBits();
1237     unsigned NumNegativeBits = ED->getNumNegativeBits();
1238     unsigned NumPositiveBits = ED->getNumPositiveBits();
1239 
1240     if (NumNegativeBits) {
1241       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1242       assert(NumBits <= Bitwidth);
1243       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1244       Min = -End;
1245     } else {
1246       assert(NumPositiveBits <= Bitwidth);
1247       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1248       Min = llvm::APInt(Bitwidth, 0);
1249     }
1250   }
1251   return true;
1252 }
1253 
1254 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1255   llvm::APInt Min, End;
1256   if (!getRangeForType(*this, Ty, Min, End,
1257                        CGM.getCodeGenOpts().StrictEnums))
1258     return nullptr;
1259 
1260   llvm::MDBuilder MDHelper(getLLVMContext());
1261   return MDHelper.createRange(Min, End);
1262 }
1263 
1264 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1265                                                QualType Ty,
1266                                                SourceLocation Loc,
1267                                                AlignmentSource AlignSource,
1268                                                llvm::MDNode *TBAAInfo,
1269                                                QualType TBAABaseType,
1270                                                uint64_t TBAAOffset,
1271                                                bool isNontemporal) {
1272   // For better performance, handle vector loads differently.
1273   if (Ty->isVectorType()) {
1274     const llvm::Type *EltTy = Addr.getElementType();
1275 
1276     const auto *VTy = cast<llvm::VectorType>(EltTy);
1277 
1278     // Handle vectors of size 3 like size 4 for better performance.
1279     if (VTy->getNumElements() == 3) {
1280 
1281       // Bitcast to vec4 type.
1282       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1283                                                          4);
1284       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1285       // Now load value.
1286       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1287 
1288       // Shuffle vector to get vec3.
1289       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1290                                       {0, 1, 2}, "extractVec");
1291       return EmitFromMemory(V, Ty);
1292     }
1293   }
1294 
1295   // Atomic operations have to be done on integral types.
1296   LValue AtomicLValue =
1297       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1298   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1299     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1300   }
1301 
1302   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1303   if (isNontemporal) {
1304     llvm::MDNode *Node = llvm::MDNode::get(
1305         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1306     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1307   }
1308   if (TBAAInfo) {
1309     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1310                                                       TBAAOffset);
1311     if (TBAAPath)
1312       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1313                                       false /*ConvertTypeToTag*/);
1314   }
1315 
1316   bool NeedsBoolCheck =
1317       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1318   bool NeedsEnumCheck =
1319       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1320   if (NeedsBoolCheck || NeedsEnumCheck) {
1321     SanitizerScope SanScope(this);
1322     llvm::APInt Min, End;
1323     if (getRangeForType(*this, Ty, Min, End, true)) {
1324       --End;
1325       llvm::Value *Check;
1326       if (!Min)
1327         Check = Builder.CreateICmpULE(
1328           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1329       else {
1330         llvm::Value *Upper = Builder.CreateICmpSLE(
1331           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1332         llvm::Value *Lower = Builder.CreateICmpSGE(
1333           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1334         Check = Builder.CreateAnd(Upper, Lower);
1335       }
1336       llvm::Constant *StaticArgs[] = {
1337         EmitCheckSourceLocation(Loc),
1338         EmitCheckTypeDescriptor(Ty)
1339       };
1340       SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1341       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1342                 EmitCheckValue(Load));
1343     }
1344   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1345     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1346       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1347 
1348   return EmitFromMemory(Load, Ty);
1349 }
1350 
1351 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1352   // Bool has a different representation in memory than in registers.
1353   if (hasBooleanRepresentation(Ty)) {
1354     // This should really always be an i1, but sometimes it's already
1355     // an i8, and it's awkward to track those cases down.
1356     if (Value->getType()->isIntegerTy(1))
1357       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1358     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1359            "wrong value rep of bool");
1360   }
1361 
1362   return Value;
1363 }
1364 
1365 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1366   // Bool has a different representation in memory than in registers.
1367   if (hasBooleanRepresentation(Ty)) {
1368     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1369            "wrong value rep of bool");
1370     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1371   }
1372 
1373   return Value;
1374 }
1375 
1376 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1377                                         bool Volatile, QualType Ty,
1378                                         AlignmentSource AlignSource,
1379                                         llvm::MDNode *TBAAInfo,
1380                                         bool isInit, QualType TBAABaseType,
1381                                         uint64_t TBAAOffset,
1382                                         bool isNontemporal) {
1383 
1384   // Handle vectors differently to get better performance.
1385   if (Ty->isVectorType()) {
1386     llvm::Type *SrcTy = Value->getType();
1387     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1388     // Handle vec3 special.
1389     if (VecTy->getNumElements() == 3) {
1390       // Our source is a vec3, do a shuffle vector to make it a vec4.
1391       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1392                                 Builder.getInt32(2),
1393                                 llvm::UndefValue::get(Builder.getInt32Ty())};
1394       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1395       Value = Builder.CreateShuffleVector(Value,
1396                                           llvm::UndefValue::get(VecTy),
1397                                           MaskV, "extractVec");
1398       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1399     }
1400     if (Addr.getElementType() != SrcTy) {
1401       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1402     }
1403   }
1404 
1405   Value = EmitToMemory(Value, Ty);
1406 
1407   LValue AtomicLValue =
1408       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1409   if (Ty->isAtomicType() ||
1410       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1411     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1412     return;
1413   }
1414 
1415   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1416   if (isNontemporal) {
1417     llvm::MDNode *Node =
1418         llvm::MDNode::get(Store->getContext(),
1419                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1420     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1421   }
1422   if (TBAAInfo) {
1423     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1424                                                       TBAAOffset);
1425     if (TBAAPath)
1426       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1427                                       false /*ConvertTypeToTag*/);
1428   }
1429 }
1430 
1431 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1432                                         bool isInit) {
1433   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1434                     lvalue.getType(), lvalue.getAlignmentSource(),
1435                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1436                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1437 }
1438 
1439 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1440 /// method emits the address of the lvalue, then loads the result as an rvalue,
1441 /// returning the rvalue.
1442 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1443   if (LV.isObjCWeak()) {
1444     // load of a __weak object.
1445     Address AddrWeakObj = LV.getAddress();
1446     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1447                                                              AddrWeakObj));
1448   }
1449   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1450     // In MRC mode, we do a load+autorelease.
1451     if (!getLangOpts().ObjCAutoRefCount) {
1452       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1453     }
1454 
1455     // In ARC mode, we load retained and then consume the value.
1456     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1457     Object = EmitObjCConsumeObject(LV.getType(), Object);
1458     return RValue::get(Object);
1459   }
1460 
1461   if (LV.isSimple()) {
1462     assert(!LV.getType()->isFunctionType());
1463 
1464     // Everything needs a load.
1465     return RValue::get(EmitLoadOfScalar(LV, Loc));
1466   }
1467 
1468   if (LV.isVectorElt()) {
1469     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1470                                               LV.isVolatileQualified());
1471     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1472                                                     "vecext"));
1473   }
1474 
1475   // If this is a reference to a subset of the elements of a vector, either
1476   // shuffle the input or extract/insert them as appropriate.
1477   if (LV.isExtVectorElt())
1478     return EmitLoadOfExtVectorElementLValue(LV);
1479 
1480   // Global Register variables always invoke intrinsics
1481   if (LV.isGlobalReg())
1482     return EmitLoadOfGlobalRegLValue(LV);
1483 
1484   assert(LV.isBitField() && "Unknown LValue type!");
1485   return EmitLoadOfBitfieldLValue(LV);
1486 }
1487 
1488 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1489   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1490 
1491   // Get the output type.
1492   llvm::Type *ResLTy = ConvertType(LV.getType());
1493 
1494   Address Ptr = LV.getBitFieldAddress();
1495   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1496 
1497   if (Info.IsSigned) {
1498     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1499     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1500     if (HighBits)
1501       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1502     if (Info.Offset + HighBits)
1503       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1504   } else {
1505     if (Info.Offset)
1506       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1507     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1508       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1509                                                               Info.Size),
1510                               "bf.clear");
1511   }
1512   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1513 
1514   return RValue::get(Val);
1515 }
1516 
1517 // If this is a reference to a subset of the elements of a vector, create an
1518 // appropriate shufflevector.
1519 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1520   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1521                                         LV.isVolatileQualified());
1522 
1523   const llvm::Constant *Elts = LV.getExtVectorElts();
1524 
1525   // If the result of the expression is a non-vector type, we must be extracting
1526   // a single element.  Just codegen as an extractelement.
1527   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1528   if (!ExprVT) {
1529     unsigned InIdx = getAccessedFieldNo(0, Elts);
1530     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1531     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1532   }
1533 
1534   // Always use shuffle vector to try to retain the original program structure
1535   unsigned NumResultElts = ExprVT->getNumElements();
1536 
1537   SmallVector<llvm::Constant*, 4> Mask;
1538   for (unsigned i = 0; i != NumResultElts; ++i)
1539     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1540 
1541   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1542   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1543                                     MaskV);
1544   return RValue::get(Vec);
1545 }
1546 
1547 /// @brief Generates lvalue for partial ext_vector access.
1548 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1549   Address VectorAddress = LV.getExtVectorAddress();
1550   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1551   QualType EQT = ExprVT->getElementType();
1552   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1553 
1554   Address CastToPointerElement =
1555     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1556                                  "conv.ptr.element");
1557 
1558   const llvm::Constant *Elts = LV.getExtVectorElts();
1559   unsigned ix = getAccessedFieldNo(0, Elts);
1560 
1561   Address VectorBasePtrPlusIx =
1562     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1563                                    getContext().getTypeSizeInChars(EQT),
1564                                    "vector.elt");
1565 
1566   return VectorBasePtrPlusIx;
1567 }
1568 
1569 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1570 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1571   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1572          "Bad type for register variable");
1573   llvm::MDNode *RegName = cast<llvm::MDNode>(
1574       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1575 
1576   // We accept integer and pointer types only
1577   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1578   llvm::Type *Ty = OrigTy;
1579   if (OrigTy->isPointerTy())
1580     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1581   llvm::Type *Types[] = { Ty };
1582 
1583   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1584   llvm::Value *Call = Builder.CreateCall(
1585       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1586   if (OrigTy->isPointerTy())
1587     Call = Builder.CreateIntToPtr(Call, OrigTy);
1588   return RValue::get(Call);
1589 }
1590 
1591 
1592 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1593 /// lvalue, where both are guaranteed to the have the same type, and that type
1594 /// is 'Ty'.
1595 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1596                                              bool isInit) {
1597   if (!Dst.isSimple()) {
1598     if (Dst.isVectorElt()) {
1599       // Read/modify/write the vector, inserting the new element.
1600       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1601                                             Dst.isVolatileQualified());
1602       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1603                                         Dst.getVectorIdx(), "vecins");
1604       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1605                           Dst.isVolatileQualified());
1606       return;
1607     }
1608 
1609     // If this is an update of extended vector elements, insert them as
1610     // appropriate.
1611     if (Dst.isExtVectorElt())
1612       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1613 
1614     if (Dst.isGlobalReg())
1615       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1616 
1617     assert(Dst.isBitField() && "Unknown LValue type");
1618     return EmitStoreThroughBitfieldLValue(Src, Dst);
1619   }
1620 
1621   // There's special magic for assigning into an ARC-qualified l-value.
1622   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1623     switch (Lifetime) {
1624     case Qualifiers::OCL_None:
1625       llvm_unreachable("present but none");
1626 
1627     case Qualifiers::OCL_ExplicitNone:
1628       // nothing special
1629       break;
1630 
1631     case Qualifiers::OCL_Strong:
1632       if (isInit) {
1633         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1634         break;
1635       }
1636       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1637       return;
1638 
1639     case Qualifiers::OCL_Weak:
1640       if (isInit)
1641         // Initialize and then skip the primitive store.
1642         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1643       else
1644         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1645       return;
1646 
1647     case Qualifiers::OCL_Autoreleasing:
1648       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1649                                                      Src.getScalarVal()));
1650       // fall into the normal path
1651       break;
1652     }
1653   }
1654 
1655   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1656     // load of a __weak object.
1657     Address LvalueDst = Dst.getAddress();
1658     llvm::Value *src = Src.getScalarVal();
1659      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1660     return;
1661   }
1662 
1663   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1664     // load of a __strong object.
1665     Address LvalueDst = Dst.getAddress();
1666     llvm::Value *src = Src.getScalarVal();
1667     if (Dst.isObjCIvar()) {
1668       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1669       llvm::Type *ResultType = IntPtrTy;
1670       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1671       llvm::Value *RHS = dst.getPointer();
1672       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1673       llvm::Value *LHS =
1674         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1675                                "sub.ptr.lhs.cast");
1676       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1677       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1678                                               BytesBetween);
1679     } else if (Dst.isGlobalObjCRef()) {
1680       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1681                                                 Dst.isThreadLocalRef());
1682     }
1683     else
1684       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1685     return;
1686   }
1687 
1688   assert(Src.isScalar() && "Can't emit an agg store with this method");
1689   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1690 }
1691 
1692 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1693                                                      llvm::Value **Result) {
1694   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1695   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1696   Address Ptr = Dst.getBitFieldAddress();
1697 
1698   // Get the source value, truncated to the width of the bit-field.
1699   llvm::Value *SrcVal = Src.getScalarVal();
1700 
1701   // Cast the source to the storage type and shift it into place.
1702   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1703                                  /*IsSigned=*/false);
1704   llvm::Value *MaskedVal = SrcVal;
1705 
1706   // See if there are other bits in the bitfield's storage we'll need to load
1707   // and mask together with source before storing.
1708   if (Info.StorageSize != Info.Size) {
1709     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1710     llvm::Value *Val =
1711       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1712 
1713     // Mask the source value as needed.
1714     if (!hasBooleanRepresentation(Dst.getType()))
1715       SrcVal = Builder.CreateAnd(SrcVal,
1716                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1717                                                             Info.Size),
1718                                  "bf.value");
1719     MaskedVal = SrcVal;
1720     if (Info.Offset)
1721       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1722 
1723     // Mask out the original value.
1724     Val = Builder.CreateAnd(Val,
1725                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1726                                                      Info.Offset,
1727                                                      Info.Offset + Info.Size),
1728                             "bf.clear");
1729 
1730     // Or together the unchanged values and the source value.
1731     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1732   } else {
1733     assert(Info.Offset == 0);
1734   }
1735 
1736   // Write the new value back out.
1737   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1738 
1739   // Return the new value of the bit-field, if requested.
1740   if (Result) {
1741     llvm::Value *ResultVal = MaskedVal;
1742 
1743     // Sign extend the value if needed.
1744     if (Info.IsSigned) {
1745       assert(Info.Size <= Info.StorageSize);
1746       unsigned HighBits = Info.StorageSize - Info.Size;
1747       if (HighBits) {
1748         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1749         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1750       }
1751     }
1752 
1753     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1754                                       "bf.result.cast");
1755     *Result = EmitFromMemory(ResultVal, Dst.getType());
1756   }
1757 }
1758 
1759 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1760                                                                LValue Dst) {
1761   // This access turns into a read/modify/write of the vector.  Load the input
1762   // value now.
1763   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1764                                         Dst.isVolatileQualified());
1765   const llvm::Constant *Elts = Dst.getExtVectorElts();
1766 
1767   llvm::Value *SrcVal = Src.getScalarVal();
1768 
1769   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1770     unsigned NumSrcElts = VTy->getNumElements();
1771     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1772     if (NumDstElts == NumSrcElts) {
1773       // Use shuffle vector is the src and destination are the same number of
1774       // elements and restore the vector mask since it is on the side it will be
1775       // stored.
1776       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1777       for (unsigned i = 0; i != NumSrcElts; ++i)
1778         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1779 
1780       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1781       Vec = Builder.CreateShuffleVector(SrcVal,
1782                                         llvm::UndefValue::get(Vec->getType()),
1783                                         MaskV);
1784     } else if (NumDstElts > NumSrcElts) {
1785       // Extended the source vector to the same length and then shuffle it
1786       // into the destination.
1787       // FIXME: since we're shuffling with undef, can we just use the indices
1788       //        into that?  This could be simpler.
1789       SmallVector<llvm::Constant*, 4> ExtMask;
1790       for (unsigned i = 0; i != NumSrcElts; ++i)
1791         ExtMask.push_back(Builder.getInt32(i));
1792       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1793       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1794       llvm::Value *ExtSrcVal =
1795         Builder.CreateShuffleVector(SrcVal,
1796                                     llvm::UndefValue::get(SrcVal->getType()),
1797                                     ExtMaskV);
1798       // build identity
1799       SmallVector<llvm::Constant*, 4> Mask;
1800       for (unsigned i = 0; i != NumDstElts; ++i)
1801         Mask.push_back(Builder.getInt32(i));
1802 
1803       // When the vector size is odd and .odd or .hi is used, the last element
1804       // of the Elts constant array will be one past the size of the vector.
1805       // Ignore the last element here, if it is greater than the mask size.
1806       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1807         NumSrcElts--;
1808 
1809       // modify when what gets shuffled in
1810       for (unsigned i = 0; i != NumSrcElts; ++i)
1811         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1812       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1813       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1814     } else {
1815       // We should never shorten the vector
1816       llvm_unreachable("unexpected shorten vector length");
1817     }
1818   } else {
1819     // If the Src is a scalar (not a vector) it must be updating one element.
1820     unsigned InIdx = getAccessedFieldNo(0, Elts);
1821     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1822     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1823   }
1824 
1825   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1826                       Dst.isVolatileQualified());
1827 }
1828 
1829 /// @brief Store of global named registers are always calls to intrinsics.
1830 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1831   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1832          "Bad type for register variable");
1833   llvm::MDNode *RegName = cast<llvm::MDNode>(
1834       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1835   assert(RegName && "Register LValue is not metadata");
1836 
1837   // We accept integer and pointer types only
1838   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1839   llvm::Type *Ty = OrigTy;
1840   if (OrigTy->isPointerTy())
1841     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1842   llvm::Type *Types[] = { Ty };
1843 
1844   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1845   llvm::Value *Value = Src.getScalarVal();
1846   if (OrigTy->isPointerTy())
1847     Value = Builder.CreatePtrToInt(Value, Ty);
1848   Builder.CreateCall(
1849       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1850 }
1851 
1852 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1853 // generating write-barries API. It is currently a global, ivar,
1854 // or neither.
1855 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1856                                  LValue &LV,
1857                                  bool IsMemberAccess=false) {
1858   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1859     return;
1860 
1861   if (isa<ObjCIvarRefExpr>(E)) {
1862     QualType ExpTy = E->getType();
1863     if (IsMemberAccess && ExpTy->isPointerType()) {
1864       // If ivar is a structure pointer, assigning to field of
1865       // this struct follows gcc's behavior and makes it a non-ivar
1866       // writer-barrier conservatively.
1867       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1868       if (ExpTy->isRecordType()) {
1869         LV.setObjCIvar(false);
1870         return;
1871       }
1872     }
1873     LV.setObjCIvar(true);
1874     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1875     LV.setBaseIvarExp(Exp->getBase());
1876     LV.setObjCArray(E->getType()->isArrayType());
1877     return;
1878   }
1879 
1880   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1881     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1882       if (VD->hasGlobalStorage()) {
1883         LV.setGlobalObjCRef(true);
1884         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1885       }
1886     }
1887     LV.setObjCArray(E->getType()->isArrayType());
1888     return;
1889   }
1890 
1891   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1892     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1893     return;
1894   }
1895 
1896   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1897     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1898     if (LV.isObjCIvar()) {
1899       // If cast is to a structure pointer, follow gcc's behavior and make it
1900       // a non-ivar write-barrier.
1901       QualType ExpTy = E->getType();
1902       if (ExpTy->isPointerType())
1903         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1904       if (ExpTy->isRecordType())
1905         LV.setObjCIvar(false);
1906     }
1907     return;
1908   }
1909 
1910   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1911     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1912     return;
1913   }
1914 
1915   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1916     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1917     return;
1918   }
1919 
1920   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1921     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1922     return;
1923   }
1924 
1925   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1926     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1927     return;
1928   }
1929 
1930   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1931     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1932     if (LV.isObjCIvar() && !LV.isObjCArray())
1933       // Using array syntax to assigning to what an ivar points to is not
1934       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1935       LV.setObjCIvar(false);
1936     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1937       // Using array syntax to assigning to what global points to is not
1938       // same as assigning to the global itself. {id *G;} G[i] = 0;
1939       LV.setGlobalObjCRef(false);
1940     return;
1941   }
1942 
1943   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1944     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1945     // We don't know if member is an 'ivar', but this flag is looked at
1946     // only in the context of LV.isObjCIvar().
1947     LV.setObjCArray(E->getType()->isArrayType());
1948     return;
1949   }
1950 }
1951 
1952 static llvm::Value *
1953 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1954                                 llvm::Value *V, llvm::Type *IRType,
1955                                 StringRef Name = StringRef()) {
1956   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1957   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1958 }
1959 
1960 static LValue EmitThreadPrivateVarDeclLValue(
1961     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
1962     llvm::Type *RealVarTy, SourceLocation Loc) {
1963   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
1964   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
1965   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1966 }
1967 
1968 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
1969                                              const ReferenceType *RefTy,
1970                                              AlignmentSource *Source) {
1971   llvm::Value *Ptr = Builder.CreateLoad(Addr);
1972   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
1973                                               Source, /*forPointee*/ true));
1974 
1975 }
1976 
1977 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
1978                                                   const ReferenceType *RefTy) {
1979   AlignmentSource Source;
1980   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
1981   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
1982 }
1983 
1984 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
1985                                            const PointerType *PtrTy,
1986                                            AlignmentSource *Source) {
1987   llvm::Value *Addr = Builder.CreateLoad(Ptr);
1988   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source,
1989                                                /*forPointeeType=*/true));
1990 }
1991 
1992 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
1993                                                 const PointerType *PtrTy) {
1994   AlignmentSource Source;
1995   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source);
1996   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source);
1997 }
1998 
1999 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2000                                       const Expr *E, const VarDecl *VD) {
2001   QualType T = E->getType();
2002 
2003   // If it's thread_local, emit a call to its wrapper function instead.
2004   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2005       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2006     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2007 
2008   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2009   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2010   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2011   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2012   Address Addr(V, Alignment);
2013   LValue LV;
2014   // Emit reference to the private copy of the variable if it is an OpenMP
2015   // threadprivate variable.
2016   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2017     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2018                                           E->getExprLoc());
2019   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2020     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2021   } else {
2022     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2023   }
2024   setObjCGCLValueClass(CGF.getContext(), E, LV);
2025   return LV;
2026 }
2027 
2028 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2029                                                const FunctionDecl *FD) {
2030   if (FD->hasAttr<WeakRefAttr>()) {
2031     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2032     return aliasee.getPointer();
2033   }
2034 
2035   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2036   if (!FD->hasPrototype()) {
2037     if (const FunctionProtoType *Proto =
2038             FD->getType()->getAs<FunctionProtoType>()) {
2039       // Ugly case: for a K&R-style definition, the type of the definition
2040       // isn't the same as the type of a use.  Correct for this with a
2041       // bitcast.
2042       QualType NoProtoType =
2043           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2044       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2045       V = llvm::ConstantExpr::getBitCast(V,
2046                                       CGM.getTypes().ConvertType(NoProtoType));
2047     }
2048   }
2049   return V;
2050 }
2051 
2052 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2053                                      const Expr *E, const FunctionDecl *FD) {
2054   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2055   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2056   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
2057 }
2058 
2059 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2060                                       llvm::Value *ThisValue) {
2061   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2062   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2063   return CGF.EmitLValueForField(LV, FD);
2064 }
2065 
2066 /// Named Registers are named metadata pointing to the register name
2067 /// which will be read from/written to as an argument to the intrinsic
2068 /// @llvm.read/write_register.
2069 /// So far, only the name is being passed down, but other options such as
2070 /// register type, allocation type or even optimization options could be
2071 /// passed down via the metadata node.
2072 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2073   SmallString<64> Name("llvm.named.register.");
2074   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2075   assert(Asm->getLabel().size() < 64-Name.size() &&
2076       "Register name too big");
2077   Name.append(Asm->getLabel());
2078   llvm::NamedMDNode *M =
2079     CGM.getModule().getOrInsertNamedMetadata(Name);
2080   if (M->getNumOperands() == 0) {
2081     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2082                                               Asm->getLabel());
2083     llvm::Metadata *Ops[] = {Str};
2084     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2085   }
2086 
2087   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2088 
2089   llvm::Value *Ptr =
2090     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2091   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2092 }
2093 
2094 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2095   const NamedDecl *ND = E->getDecl();
2096   QualType T = E->getType();
2097 
2098   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2099     // Global Named registers access via intrinsics only
2100     if (VD->getStorageClass() == SC_Register &&
2101         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2102       return EmitGlobalNamedRegister(VD, CGM);
2103 
2104     // A DeclRefExpr for a reference initialized by a constant expression can
2105     // appear without being odr-used. Directly emit the constant initializer.
2106     const Expr *Init = VD->getAnyInitializer(VD);
2107     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2108         VD->isUsableInConstantExpressions(getContext()) &&
2109         VD->checkInitIsICE() &&
2110         // Do not emit if it is private OpenMP variable.
2111         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2112           LocalDeclMap.count(VD))) {
2113       llvm::Constant *Val =
2114         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2115       assert(Val && "failed to emit reference constant expression");
2116       // FIXME: Eventually we will want to emit vector element references.
2117 
2118       // Should we be using the alignment of the constant pointer we emitted?
2119       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2120                                                     /*pointee*/ true);
2121 
2122       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2123     }
2124 
2125     // Check for captured variables.
2126     if (E->refersToEnclosingVariableOrCapture()) {
2127       if (auto *FD = LambdaCaptureFields.lookup(VD))
2128         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2129       else if (CapturedStmtInfo) {
2130         auto it = LocalDeclMap.find(VD);
2131         if (it != LocalDeclMap.end()) {
2132           if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2133             return EmitLoadOfReferenceLValue(it->second, RefTy);
2134           }
2135           return MakeAddrLValue(it->second, T);
2136         }
2137         LValue CapLVal =
2138             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2139                                     CapturedStmtInfo->getContextValue());
2140         return MakeAddrLValue(
2141             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2142             CapLVal.getType(), AlignmentSource::Decl);
2143       }
2144 
2145       assert(isa<BlockDecl>(CurCodeDecl));
2146       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2147       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2148     }
2149   }
2150 
2151   // FIXME: We should be able to assert this for FunctionDecls as well!
2152   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2153   // those with a valid source location.
2154   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2155           !E->getLocation().isValid()) &&
2156          "Should not use decl without marking it used!");
2157 
2158   if (ND->hasAttr<WeakRefAttr>()) {
2159     const auto *VD = cast<ValueDecl>(ND);
2160     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2161     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2162   }
2163 
2164   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2165     // Check if this is a global variable.
2166     if (VD->hasLinkage() || VD->isStaticDataMember())
2167       return EmitGlobalVarDeclLValue(*this, E, VD);
2168 
2169     Address addr = Address::invalid();
2170 
2171     // The variable should generally be present in the local decl map.
2172     auto iter = LocalDeclMap.find(VD);
2173     if (iter != LocalDeclMap.end()) {
2174       addr = iter->second;
2175 
2176     // Otherwise, it might be static local we haven't emitted yet for
2177     // some reason; most likely, because it's in an outer function.
2178     } else if (VD->isStaticLocal()) {
2179       addr = Address(CGM.getOrCreateStaticVarDecl(
2180           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2181                      getContext().getDeclAlign(VD));
2182 
2183     // No other cases for now.
2184     } else {
2185       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2186     }
2187 
2188 
2189     // Check for OpenMP threadprivate variables.
2190     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2191       return EmitThreadPrivateVarDeclLValue(
2192           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2193           E->getExprLoc());
2194     }
2195 
2196     // Drill into block byref variables.
2197     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2198     if (isBlockByref) {
2199       addr = emitBlockByrefAddress(addr, VD);
2200     }
2201 
2202     // Drill into reference types.
2203     LValue LV;
2204     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2205       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2206     } else {
2207       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2208     }
2209 
2210     bool isLocalStorage = VD->hasLocalStorage();
2211 
2212     bool NonGCable = isLocalStorage &&
2213                      !VD->getType()->isReferenceType() &&
2214                      !isBlockByref;
2215     if (NonGCable) {
2216       LV.getQuals().removeObjCGCAttr();
2217       LV.setNonGC(true);
2218     }
2219 
2220     bool isImpreciseLifetime =
2221       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2222     if (isImpreciseLifetime)
2223       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2224     setObjCGCLValueClass(getContext(), E, LV);
2225     return LV;
2226   }
2227 
2228   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2229     return EmitFunctionDeclLValue(*this, E, FD);
2230 
2231   // FIXME: While we're emitting a binding from an enclosing scope, all other
2232   // DeclRefExprs we see should be implicitly treated as if they also refer to
2233   // an enclosing scope.
2234   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2235     return EmitLValue(BD->getBinding());
2236 
2237   llvm_unreachable("Unhandled DeclRefExpr");
2238 }
2239 
2240 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2241   // __extension__ doesn't affect lvalue-ness.
2242   if (E->getOpcode() == UO_Extension)
2243     return EmitLValue(E->getSubExpr());
2244 
2245   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2246   switch (E->getOpcode()) {
2247   default: llvm_unreachable("Unknown unary operator lvalue!");
2248   case UO_Deref: {
2249     QualType T = E->getSubExpr()->getType()->getPointeeType();
2250     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2251 
2252     AlignmentSource AlignSource;
2253     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2254     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2255     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2256 
2257     // We should not generate __weak write barrier on indirect reference
2258     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2259     // But, we continue to generate __strong write barrier on indirect write
2260     // into a pointer to object.
2261     if (getLangOpts().ObjC1 &&
2262         getLangOpts().getGC() != LangOptions::NonGC &&
2263         LV.isObjCWeak())
2264       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2265     return LV;
2266   }
2267   case UO_Real:
2268   case UO_Imag: {
2269     LValue LV = EmitLValue(E->getSubExpr());
2270     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2271 
2272     // __real is valid on scalars.  This is a faster way of testing that.
2273     // __imag can only produce an rvalue on scalars.
2274     if (E->getOpcode() == UO_Real &&
2275         !LV.getAddress().getElementType()->isStructTy()) {
2276       assert(E->getSubExpr()->getType()->isArithmeticType());
2277       return LV;
2278     }
2279 
2280     assert(E->getSubExpr()->getType()->isAnyComplexType());
2281 
2282     Address Component =
2283       (E->getOpcode() == UO_Real
2284          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2285          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2286     return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
2287   }
2288   case UO_PreInc:
2289   case UO_PreDec: {
2290     LValue LV = EmitLValue(E->getSubExpr());
2291     bool isInc = E->getOpcode() == UO_PreInc;
2292 
2293     if (E->getType()->isAnyComplexType())
2294       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2295     else
2296       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2297     return LV;
2298   }
2299   }
2300 }
2301 
2302 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2303   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2304                         E->getType(), AlignmentSource::Decl);
2305 }
2306 
2307 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2308   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2309                         E->getType(), AlignmentSource::Decl);
2310 }
2311 
2312 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2313   auto SL = E->getFunctionName();
2314   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2315   StringRef FnName = CurFn->getName();
2316   if (FnName.startswith("\01"))
2317     FnName = FnName.substr(1);
2318   StringRef NameItems[] = {
2319       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2320   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2321   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2322     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2323     return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2324   }
2325   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2326   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2327 }
2328 
2329 /// Emit a type description suitable for use by a runtime sanitizer library. The
2330 /// format of a type descriptor is
2331 ///
2332 /// \code
2333 ///   { i16 TypeKind, i16 TypeInfo }
2334 /// \endcode
2335 ///
2336 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2337 /// integer, 1 for a floating point value, and -1 for anything else.
2338 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2339   // Only emit each type's descriptor once.
2340   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2341     return C;
2342 
2343   uint16_t TypeKind = -1;
2344   uint16_t TypeInfo = 0;
2345 
2346   if (T->isIntegerType()) {
2347     TypeKind = 0;
2348     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2349                (T->isSignedIntegerType() ? 1 : 0);
2350   } else if (T->isFloatingType()) {
2351     TypeKind = 1;
2352     TypeInfo = getContext().getTypeSize(T);
2353   }
2354 
2355   // Format the type name as if for a diagnostic, including quotes and
2356   // optionally an 'aka'.
2357   SmallString<32> Buffer;
2358   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2359                                     (intptr_t)T.getAsOpaquePtr(),
2360                                     StringRef(), StringRef(), None, Buffer,
2361                                     None);
2362 
2363   llvm::Constant *Components[] = {
2364     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2365     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2366   };
2367   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2368 
2369   auto *GV = new llvm::GlobalVariable(
2370       CGM.getModule(), Descriptor->getType(),
2371       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2372   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2373   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2374 
2375   // Remember the descriptor for this type.
2376   CGM.setTypeDescriptorInMap(T, GV);
2377 
2378   return GV;
2379 }
2380 
2381 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2382   llvm::Type *TargetTy = IntPtrTy;
2383 
2384   // Floating-point types which fit into intptr_t are bitcast to integers
2385   // and then passed directly (after zero-extension, if necessary).
2386   if (V->getType()->isFloatingPointTy()) {
2387     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2388     if (Bits <= TargetTy->getIntegerBitWidth())
2389       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2390                                                          Bits));
2391   }
2392 
2393   // Integers which fit in intptr_t are zero-extended and passed directly.
2394   if (V->getType()->isIntegerTy() &&
2395       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2396     return Builder.CreateZExt(V, TargetTy);
2397 
2398   // Pointers are passed directly, everything else is passed by address.
2399   if (!V->getType()->isPointerTy()) {
2400     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2401     Builder.CreateStore(V, Ptr);
2402     V = Ptr.getPointer();
2403   }
2404   return Builder.CreatePtrToInt(V, TargetTy);
2405 }
2406 
2407 /// \brief Emit a representation of a SourceLocation for passing to a handler
2408 /// in a sanitizer runtime library. The format for this data is:
2409 /// \code
2410 ///   struct SourceLocation {
2411 ///     const char *Filename;
2412 ///     int32_t Line, Column;
2413 ///   };
2414 /// \endcode
2415 /// For an invalid SourceLocation, the Filename pointer is null.
2416 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2417   llvm::Constant *Filename;
2418   int Line, Column;
2419 
2420   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2421   if (PLoc.isValid()) {
2422     StringRef FilenameString = PLoc.getFilename();
2423 
2424     int PathComponentsToStrip =
2425         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2426     if (PathComponentsToStrip < 0) {
2427       assert(PathComponentsToStrip != INT_MIN);
2428       int PathComponentsToKeep = -PathComponentsToStrip;
2429       auto I = llvm::sys::path::rbegin(FilenameString);
2430       auto E = llvm::sys::path::rend(FilenameString);
2431       while (I != E && --PathComponentsToKeep)
2432         ++I;
2433 
2434       FilenameString = FilenameString.substr(I - E);
2435     } else if (PathComponentsToStrip > 0) {
2436       auto I = llvm::sys::path::begin(FilenameString);
2437       auto E = llvm::sys::path::end(FilenameString);
2438       while (I != E && PathComponentsToStrip--)
2439         ++I;
2440 
2441       if (I != E)
2442         FilenameString =
2443             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2444       else
2445         FilenameString = llvm::sys::path::filename(FilenameString);
2446     }
2447 
2448     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2449     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2450                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2451     Filename = FilenameGV.getPointer();
2452     Line = PLoc.getLine();
2453     Column = PLoc.getColumn();
2454   } else {
2455     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2456     Line = Column = 0;
2457   }
2458 
2459   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2460                             Builder.getInt32(Column)};
2461 
2462   return llvm::ConstantStruct::getAnon(Data);
2463 }
2464 
2465 namespace {
2466 /// \brief Specify under what conditions this check can be recovered
2467 enum class CheckRecoverableKind {
2468   /// Always terminate program execution if this check fails.
2469   Unrecoverable,
2470   /// Check supports recovering, runtime has both fatal (noreturn) and
2471   /// non-fatal handlers for this check.
2472   Recoverable,
2473   /// Runtime conditionally aborts, always need to support recovery.
2474   AlwaysRecoverable
2475 };
2476 }
2477 
2478 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2479   assert(llvm::countPopulation(Kind) == 1);
2480   switch (Kind) {
2481   case SanitizerKind::Vptr:
2482     return CheckRecoverableKind::AlwaysRecoverable;
2483   case SanitizerKind::Return:
2484   case SanitizerKind::Unreachable:
2485     return CheckRecoverableKind::Unrecoverable;
2486   default:
2487     return CheckRecoverableKind::Recoverable;
2488   }
2489 }
2490 
2491 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2492                                  llvm::FunctionType *FnType,
2493                                  ArrayRef<llvm::Value *> FnArgs,
2494                                  StringRef CheckName,
2495                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2496                                  llvm::BasicBlock *ContBB) {
2497   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2498   bool NeedsAbortSuffix =
2499       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2500   std::string FnName = ("__ubsan_handle_" + CheckName +
2501                         (NeedsAbortSuffix ? "_abort" : "")).str();
2502   bool MayReturn =
2503       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2504 
2505   llvm::AttrBuilder B;
2506   if (!MayReturn) {
2507     B.addAttribute(llvm::Attribute::NoReturn)
2508         .addAttribute(llvm::Attribute::NoUnwind);
2509   }
2510   B.addAttribute(llvm::Attribute::UWTable);
2511 
2512   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2513       FnType, FnName,
2514       llvm::AttributeSet::get(CGF.getLLVMContext(),
2515                               llvm::AttributeSet::FunctionIndex, B));
2516   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2517   if (!MayReturn) {
2518     HandlerCall->setDoesNotReturn();
2519     CGF.Builder.CreateUnreachable();
2520   } else {
2521     CGF.Builder.CreateBr(ContBB);
2522   }
2523 }
2524 
2525 void CodeGenFunction::EmitCheck(
2526     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2527     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2528     ArrayRef<llvm::Value *> DynamicArgs) {
2529   assert(IsSanitizerScope);
2530   assert(Checked.size() > 0);
2531 
2532   llvm::Value *FatalCond = nullptr;
2533   llvm::Value *RecoverableCond = nullptr;
2534   llvm::Value *TrapCond = nullptr;
2535   for (int i = 0, n = Checked.size(); i < n; ++i) {
2536     llvm::Value *Check = Checked[i].first;
2537     // -fsanitize-trap= overrides -fsanitize-recover=.
2538     llvm::Value *&Cond =
2539         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2540             ? TrapCond
2541             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2542                   ? RecoverableCond
2543                   : FatalCond;
2544     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2545   }
2546 
2547   if (TrapCond)
2548     EmitTrapCheck(TrapCond);
2549   if (!FatalCond && !RecoverableCond)
2550     return;
2551 
2552   llvm::Value *JointCond;
2553   if (FatalCond && RecoverableCond)
2554     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2555   else
2556     JointCond = FatalCond ? FatalCond : RecoverableCond;
2557   assert(JointCond);
2558 
2559   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2560   assert(SanOpts.has(Checked[0].second));
2561 #ifndef NDEBUG
2562   for (int i = 1, n = Checked.size(); i < n; ++i) {
2563     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2564            "All recoverable kinds in a single check must be same!");
2565     assert(SanOpts.has(Checked[i].second));
2566   }
2567 #endif
2568 
2569   llvm::BasicBlock *Cont = createBasicBlock("cont");
2570   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2571   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2572   // Give hint that we very much don't expect to execute the handler
2573   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2574   llvm::MDBuilder MDHelper(getLLVMContext());
2575   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2576   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2577   EmitBlock(Handlers);
2578 
2579   // Handler functions take an i8* pointing to the (handler-specific) static
2580   // information block, followed by a sequence of intptr_t arguments
2581   // representing operand values.
2582   SmallVector<llvm::Value *, 4> Args;
2583   SmallVector<llvm::Type *, 4> ArgTypes;
2584   Args.reserve(DynamicArgs.size() + 1);
2585   ArgTypes.reserve(DynamicArgs.size() + 1);
2586 
2587   // Emit handler arguments and create handler function type.
2588   if (!StaticArgs.empty()) {
2589     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2590     auto *InfoPtr =
2591         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2592                                  llvm::GlobalVariable::PrivateLinkage, Info);
2593     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2594     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2595     Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2596     ArgTypes.push_back(Int8PtrTy);
2597   }
2598 
2599   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2600     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2601     ArgTypes.push_back(IntPtrTy);
2602   }
2603 
2604   llvm::FunctionType *FnType =
2605     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2606 
2607   if (!FatalCond || !RecoverableCond) {
2608     // Simple case: we need to generate a single handler call, either
2609     // fatal, or non-fatal.
2610     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2611                          (FatalCond != nullptr), Cont);
2612   } else {
2613     // Emit two handler calls: first one for set of unrecoverable checks,
2614     // another one for recoverable.
2615     llvm::BasicBlock *NonFatalHandlerBB =
2616         createBasicBlock("non_fatal." + CheckName);
2617     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2618     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2619     EmitBlock(FatalHandlerBB);
2620     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2621                          NonFatalHandlerBB);
2622     EmitBlock(NonFatalHandlerBB);
2623     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2624                          Cont);
2625   }
2626 
2627   EmitBlock(Cont);
2628 }
2629 
2630 void CodeGenFunction::EmitCfiSlowPathCheck(
2631     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2632     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2633   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2634 
2635   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2636   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2637 
2638   llvm::MDBuilder MDHelper(getLLVMContext());
2639   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2640   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2641 
2642   EmitBlock(CheckBB);
2643 
2644   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2645 
2646   llvm::CallInst *CheckCall;
2647   if (WithDiag) {
2648     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2649     auto *InfoPtr =
2650         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2651                                  llvm::GlobalVariable::PrivateLinkage, Info);
2652     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2653     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2654 
2655     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2656         "__cfi_slowpath_diag",
2657         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2658                                 false));
2659     CheckCall = Builder.CreateCall(
2660         SlowPathDiagFn,
2661         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2662   } else {
2663     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2664         "__cfi_slowpath",
2665         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2666     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2667   }
2668 
2669   CheckCall->setDoesNotThrow();
2670 
2671   EmitBlock(Cont);
2672 }
2673 
2674 // This function is basically a switch over the CFI failure kind, which is
2675 // extracted from CFICheckFailData (1st function argument). Each case is either
2676 // llvm.trap or a call to one of the two runtime handlers, based on
2677 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2678 // failure kind) traps, but this should really never happen.  CFICheckFailData
2679 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2680 // check kind; in this case __cfi_check_fail traps as well.
2681 void CodeGenFunction::EmitCfiCheckFail() {
2682   SanitizerScope SanScope(this);
2683   FunctionArgList Args;
2684   ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr,
2685                             getContext().VoidPtrTy);
2686   ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr,
2687                             getContext().VoidPtrTy);
2688   Args.push_back(&ArgData);
2689   Args.push_back(&ArgAddr);
2690 
2691   const CGFunctionInfo &FI =
2692     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2693 
2694   llvm::Function *F = llvm::Function::Create(
2695       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2696       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2697   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2698 
2699   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2700                 SourceLocation());
2701 
2702   llvm::Value *Data =
2703       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2704                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2705   llvm::Value *Addr =
2706       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2707                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2708 
2709   // Data == nullptr means the calling module has trap behaviour for this check.
2710   llvm::Value *DataIsNotNullPtr =
2711       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2712   EmitTrapCheck(DataIsNotNullPtr);
2713 
2714   llvm::StructType *SourceLocationTy =
2715       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr);
2716   llvm::StructType *CfiCheckFailDataTy =
2717       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr);
2718 
2719   llvm::Value *V = Builder.CreateConstGEP2_32(
2720       CfiCheckFailDataTy,
2721       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2722       0);
2723   Address CheckKindAddr(V, getIntAlign());
2724   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2725 
2726   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2727       CGM.getLLVMContext(),
2728       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2729   llvm::Value *ValidVtable = Builder.CreateZExt(
2730       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2731                          {Addr, AllVtables}),
2732       IntPtrTy);
2733 
2734   const std::pair<int, SanitizerMask> CheckKinds[] = {
2735       {CFITCK_VCall, SanitizerKind::CFIVCall},
2736       {CFITCK_NVCall, SanitizerKind::CFINVCall},
2737       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
2738       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
2739       {CFITCK_ICall, SanitizerKind::CFIICall}};
2740 
2741   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
2742   for (auto CheckKindMaskPair : CheckKinds) {
2743     int Kind = CheckKindMaskPair.first;
2744     SanitizerMask Mask = CheckKindMaskPair.second;
2745     llvm::Value *Cond =
2746         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
2747     if (CGM.getLangOpts().Sanitize.has(Mask))
2748       EmitCheck(std::make_pair(Cond, Mask), "cfi_check_fail", {},
2749                 {Data, Addr, ValidVtable});
2750     else
2751       EmitTrapCheck(Cond);
2752   }
2753 
2754   FinishFunction();
2755   // The only reference to this function will be created during LTO link.
2756   // Make sure it survives until then.
2757   CGM.addUsedGlobal(F);
2758 }
2759 
2760 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2761   llvm::BasicBlock *Cont = createBasicBlock("cont");
2762 
2763   // If we're optimizing, collapse all calls to trap down to just one per
2764   // function to save on code size.
2765   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2766     TrapBB = createBasicBlock("trap");
2767     Builder.CreateCondBr(Checked, Cont, TrapBB);
2768     EmitBlock(TrapBB);
2769     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2770     TrapCall->setDoesNotReturn();
2771     TrapCall->setDoesNotThrow();
2772     Builder.CreateUnreachable();
2773   } else {
2774     Builder.CreateCondBr(Checked, Cont, TrapBB);
2775   }
2776 
2777   EmitBlock(Cont);
2778 }
2779 
2780 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2781   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2782 
2783   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
2784     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
2785                                   CGM.getCodeGenOpts().TrapFuncName);
2786     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, A);
2787   }
2788 
2789   return TrapCall;
2790 }
2791 
2792 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2793                                                  AlignmentSource *AlignSource) {
2794   assert(E->getType()->isArrayType() &&
2795          "Array to pointer decay must have array source type!");
2796 
2797   // Expressions of array type can't be bitfields or vector elements.
2798   LValue LV = EmitLValue(E);
2799   Address Addr = LV.getAddress();
2800   if (AlignSource) *AlignSource = LV.getAlignmentSource();
2801 
2802   // If the array type was an incomplete type, we need to make sure
2803   // the decay ends up being the right type.
2804   llvm::Type *NewTy = ConvertType(E->getType());
2805   Addr = Builder.CreateElementBitCast(Addr, NewTy);
2806 
2807   // Note that VLA pointers are always decayed, so we don't need to do
2808   // anything here.
2809   if (!E->getType()->isVariableArrayType()) {
2810     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2811            "Expected pointer to array");
2812     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2813   }
2814 
2815   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2816   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2817 }
2818 
2819 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2820 /// array to pointer, return the array subexpression.
2821 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2822   // If this isn't just an array->pointer decay, bail out.
2823   const auto *CE = dyn_cast<CastExpr>(E);
2824   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2825     return nullptr;
2826 
2827   // If this is a decay from variable width array, bail out.
2828   const Expr *SubExpr = CE->getSubExpr();
2829   if (SubExpr->getType()->isVariableArrayType())
2830     return nullptr;
2831 
2832   return SubExpr;
2833 }
2834 
2835 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2836                                           llvm::Value *ptr,
2837                                           ArrayRef<llvm::Value*> indices,
2838                                           bool inbounds,
2839                                     const llvm::Twine &name = "arrayidx") {
2840   if (inbounds) {
2841     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2842   } else {
2843     return CGF.Builder.CreateGEP(ptr, indices, name);
2844   }
2845 }
2846 
2847 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2848                                       llvm::Value *idx,
2849                                       CharUnits eltSize) {
2850   // If we have a constant index, we can use the exact offset of the
2851   // element we're accessing.
2852   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2853     CharUnits offset = constantIdx->getZExtValue() * eltSize;
2854     return arrayAlign.alignmentAtOffset(offset);
2855 
2856   // Otherwise, use the worst-case alignment for any element.
2857   } else {
2858     return arrayAlign.alignmentOfArrayElement(eltSize);
2859   }
2860 }
2861 
2862 static QualType getFixedSizeElementType(const ASTContext &ctx,
2863                                         const VariableArrayType *vla) {
2864   QualType eltType;
2865   do {
2866     eltType = vla->getElementType();
2867   } while ((vla = ctx.getAsVariableArrayType(eltType)));
2868   return eltType;
2869 }
2870 
2871 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2872                                      ArrayRef<llvm::Value*> indices,
2873                                      QualType eltType, bool inbounds,
2874                                      const llvm::Twine &name = "arrayidx") {
2875   // All the indices except that last must be zero.
2876 #ifndef NDEBUG
2877   for (auto idx : indices.drop_back())
2878     assert(isa<llvm::ConstantInt>(idx) &&
2879            cast<llvm::ConstantInt>(idx)->isZero());
2880 #endif
2881 
2882   // Determine the element size of the statically-sized base.  This is
2883   // the thing that the indices are expressed in terms of.
2884   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2885     eltType = getFixedSizeElementType(CGF.getContext(), vla);
2886   }
2887 
2888   // We can use that to compute the best alignment of the element.
2889   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2890   CharUnits eltAlign =
2891     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
2892 
2893   llvm::Value *eltPtr =
2894     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
2895   return Address(eltPtr, eltAlign);
2896 }
2897 
2898 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2899                                                bool Accessed) {
2900   // The index must always be an integer, which is not an aggregate.  Emit it
2901   // in lexical order (this complexity is, sadly, required by C++17).
2902   llvm::Value *IdxPre =
2903       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
2904   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
2905     auto *Idx = IdxPre;
2906     if (E->getLHS() != E->getIdx()) {
2907       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
2908       Idx = EmitScalarExpr(E->getIdx());
2909     }
2910 
2911     QualType IdxTy = E->getIdx()->getType();
2912     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2913 
2914     if (SanOpts.has(SanitizerKind::ArrayBounds))
2915       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2916 
2917     // Extend or truncate the index type to 32 or 64-bits.
2918     if (Promote && Idx->getType() != IntPtrTy)
2919       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2920 
2921     return Idx;
2922   };
2923   IdxPre = nullptr;
2924 
2925   // If the base is a vector type, then we are forming a vector element lvalue
2926   // with this subscript.
2927   if (E->getBase()->getType()->isVectorType() &&
2928       !isa<ExtVectorElementExpr>(E->getBase())) {
2929     // Emit the vector as an lvalue to get its address.
2930     LValue LHS = EmitLValue(E->getBase());
2931     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
2932     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2933     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2934                                  E->getBase()->getType(),
2935                                  LHS.getAlignmentSource());
2936   }
2937 
2938   // All the other cases basically behave like simple offsetting.
2939 
2940   // Handle the extvector case we ignored above.
2941   if (isa<ExtVectorElementExpr>(E->getBase())) {
2942     LValue LV = EmitLValue(E->getBase());
2943     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
2944     Address Addr = EmitExtVectorElementLValue(LV);
2945 
2946     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
2947     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
2948     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
2949   }
2950 
2951   AlignmentSource AlignSource;
2952   Address Addr = Address::invalid();
2953   if (const VariableArrayType *vla =
2954            getContext().getAsVariableArrayType(E->getType())) {
2955     // The base must be a pointer, which is not an aggregate.  Emit
2956     // it.  It needs to be emitted first in case it's what captures
2957     // the VLA bounds.
2958     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2959     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
2960 
2961     // The element count here is the total number of non-VLA elements.
2962     llvm::Value *numElements = getVLASize(vla).first;
2963 
2964     // Effectively, the multiply by the VLA size is part of the GEP.
2965     // GEP indexes are signed, and scaling an index isn't permitted to
2966     // signed-overflow, so we use the same semantics for our explicit
2967     // multiply.  We suppress this if overflow is not undefined behavior.
2968     if (getLangOpts().isSignedOverflowDefined()) {
2969       Idx = Builder.CreateMul(Idx, numElements);
2970     } else {
2971       Idx = Builder.CreateNSWMul(Idx, numElements);
2972     }
2973 
2974     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
2975                                  !getLangOpts().isSignedOverflowDefined());
2976 
2977   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2978     // Indexing over an interface, as in "NSString *P; P[4];"
2979 
2980     // Emit the base pointer.
2981     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2982     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
2983 
2984     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
2985     llvm::Value *InterfaceSizeVal =
2986         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
2987 
2988     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
2989 
2990     // We don't necessarily build correct LLVM struct types for ObjC
2991     // interfaces, so we can't rely on GEP to do this scaling
2992     // correctly, so we need to cast to i8*.  FIXME: is this actually
2993     // true?  A lot of other things in the fragile ABI would break...
2994     llvm::Type *OrigBaseTy = Addr.getType();
2995     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
2996 
2997     // Do the GEP.
2998     CharUnits EltAlign =
2999       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3000     llvm::Value *EltPtr =
3001       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
3002     Addr = Address(EltPtr, EltAlign);
3003 
3004     // Cast back.
3005     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3006   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3007     // If this is A[i] where A is an array, the frontend will have decayed the
3008     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3009     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3010     // "gep x, i" here.  Emit one "gep A, 0, i".
3011     assert(Array->getType()->isArrayType() &&
3012            "Array to pointer decay must have array source type!");
3013     LValue ArrayLV;
3014     // For simple multidimensional array indexing, set the 'accessed' flag for
3015     // better bounds-checking of the base expression.
3016     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3017       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3018     else
3019       ArrayLV = EmitLValue(Array);
3020     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3021 
3022     // Propagate the alignment from the array itself to the result.
3023     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
3024                                  {CGM.getSize(CharUnits::Zero()), Idx},
3025                                  E->getType(),
3026                                  !getLangOpts().isSignedOverflowDefined());
3027     AlignSource = ArrayLV.getAlignmentSource();
3028   } else {
3029     // The base must be a pointer; emit it with an estimate of its alignment.
3030     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3031     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3032     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3033                                  !getLangOpts().isSignedOverflowDefined());
3034   }
3035 
3036   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
3037 
3038   // TODO: Preserve/extend path TBAA metadata?
3039 
3040   if (getLangOpts().ObjC1 &&
3041       getLangOpts().getGC() != LangOptions::NonGC) {
3042     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3043     setObjCGCLValueClass(getContext(), E, LV);
3044   }
3045   return LV;
3046 }
3047 
3048 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3049                                        AlignmentSource &AlignSource,
3050                                        QualType BaseTy, QualType ElTy,
3051                                        bool IsLowerBound) {
3052   LValue BaseLVal;
3053   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3054     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3055     if (BaseTy->isArrayType()) {
3056       Address Addr = BaseLVal.getAddress();
3057       AlignSource = BaseLVal.getAlignmentSource();
3058 
3059       // If the array type was an incomplete type, we need to make sure
3060       // the decay ends up being the right type.
3061       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3062       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3063 
3064       // Note that VLA pointers are always decayed, so we don't need to do
3065       // anything here.
3066       if (!BaseTy->isVariableArrayType()) {
3067         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3068                "Expected pointer to array");
3069         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3070                                            "arraydecay");
3071       }
3072 
3073       return CGF.Builder.CreateElementBitCast(Addr,
3074                                               CGF.ConvertTypeForMem(ElTy));
3075     }
3076     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource);
3077     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3078   }
3079   return CGF.EmitPointerWithAlignment(Base, &AlignSource);
3080 }
3081 
3082 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3083                                                 bool IsLowerBound) {
3084   QualType BaseTy;
3085   if (auto *ASE =
3086           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3087     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3088   else
3089     BaseTy = E->getBase()->getType();
3090   QualType ResultExprTy;
3091   if (auto *AT = getContext().getAsArrayType(BaseTy))
3092     ResultExprTy = AT->getElementType();
3093   else
3094     ResultExprTy = BaseTy->getPointeeType();
3095   llvm::Value *Idx = nullptr;
3096   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3097     // Requesting lower bound or upper bound, but without provided length and
3098     // without ':' symbol for the default length -> length = 1.
3099     // Idx = LowerBound ?: 0;
3100     if (auto *LowerBound = E->getLowerBound()) {
3101       Idx = Builder.CreateIntCast(
3102           EmitScalarExpr(LowerBound), IntPtrTy,
3103           LowerBound->getType()->hasSignedIntegerRepresentation());
3104     } else
3105       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3106   } else {
3107     // Try to emit length or lower bound as constant. If this is possible, 1
3108     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3109     // IR (LB + Len) - 1.
3110     auto &C = CGM.getContext();
3111     auto *Length = E->getLength();
3112     llvm::APSInt ConstLength;
3113     if (Length) {
3114       // Idx = LowerBound + Length - 1;
3115       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3116         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3117         Length = nullptr;
3118       }
3119       auto *LowerBound = E->getLowerBound();
3120       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3121       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3122         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3123         LowerBound = nullptr;
3124       }
3125       if (!Length)
3126         --ConstLength;
3127       else if (!LowerBound)
3128         --ConstLowerBound;
3129 
3130       if (Length || LowerBound) {
3131         auto *LowerBoundVal =
3132             LowerBound
3133                 ? Builder.CreateIntCast(
3134                       EmitScalarExpr(LowerBound), IntPtrTy,
3135                       LowerBound->getType()->hasSignedIntegerRepresentation())
3136                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3137         auto *LengthVal =
3138             Length
3139                 ? Builder.CreateIntCast(
3140                       EmitScalarExpr(Length), IntPtrTy,
3141                       Length->getType()->hasSignedIntegerRepresentation())
3142                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3143         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3144                                 /*HasNUW=*/false,
3145                                 !getLangOpts().isSignedOverflowDefined());
3146         if (Length && LowerBound) {
3147           Idx = Builder.CreateSub(
3148               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3149               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3150         }
3151       } else
3152         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3153     } else {
3154       // Idx = ArraySize - 1;
3155       QualType ArrayTy = BaseTy->isPointerType()
3156                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3157                              : BaseTy;
3158       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3159         Length = VAT->getSizeExpr();
3160         if (Length->isIntegerConstantExpr(ConstLength, C))
3161           Length = nullptr;
3162       } else {
3163         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3164         ConstLength = CAT->getSize();
3165       }
3166       if (Length) {
3167         auto *LengthVal = Builder.CreateIntCast(
3168             EmitScalarExpr(Length), IntPtrTy,
3169             Length->getType()->hasSignedIntegerRepresentation());
3170         Idx = Builder.CreateSub(
3171             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3172             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3173       } else {
3174         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3175         --ConstLength;
3176         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3177       }
3178     }
3179   }
3180   assert(Idx);
3181 
3182   Address EltPtr = Address::invalid();
3183   AlignmentSource AlignSource;
3184   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3185     // The base must be a pointer, which is not an aggregate.  Emit
3186     // it.  It needs to be emitted first in case it's what captures
3187     // the VLA bounds.
3188     Address Base =
3189         emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy,
3190                                 VLA->getElementType(), IsLowerBound);
3191     // The element count here is the total number of non-VLA elements.
3192     llvm::Value *NumElements = getVLASize(VLA).first;
3193 
3194     // Effectively, the multiply by the VLA size is part of the GEP.
3195     // GEP indexes are signed, and scaling an index isn't permitted to
3196     // signed-overflow, so we use the same semantics for our explicit
3197     // multiply.  We suppress this if overflow is not undefined behavior.
3198     if (getLangOpts().isSignedOverflowDefined())
3199       Idx = Builder.CreateMul(Idx, NumElements);
3200     else
3201       Idx = Builder.CreateNSWMul(Idx, NumElements);
3202     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3203                                    !getLangOpts().isSignedOverflowDefined());
3204   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3205     // If this is A[i] where A is an array, the frontend will have decayed the
3206     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3207     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3208     // "gep x, i" here.  Emit one "gep A, 0, i".
3209     assert(Array->getType()->isArrayType() &&
3210            "Array to pointer decay must have array source type!");
3211     LValue ArrayLV;
3212     // For simple multidimensional array indexing, set the 'accessed' flag for
3213     // better bounds-checking of the base expression.
3214     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3215       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3216     else
3217       ArrayLV = EmitLValue(Array);
3218 
3219     // Propagate the alignment from the array itself to the result.
3220     EltPtr = emitArraySubscriptGEP(
3221         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3222         ResultExprTy, !getLangOpts().isSignedOverflowDefined());
3223     AlignSource = ArrayLV.getAlignmentSource();
3224   } else {
3225     Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource,
3226                                            BaseTy, ResultExprTy, IsLowerBound);
3227     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3228                                    !getLangOpts().isSignedOverflowDefined());
3229   }
3230 
3231   return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource);
3232 }
3233 
3234 LValue CodeGenFunction::
3235 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3236   // Emit the base vector as an l-value.
3237   LValue Base;
3238 
3239   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3240   if (E->isArrow()) {
3241     // If it is a pointer to a vector, emit the address and form an lvalue with
3242     // it.
3243     AlignmentSource AlignSource;
3244     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3245     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3246     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
3247     Base.getQuals().removeObjCGCAttr();
3248   } else if (E->getBase()->isGLValue()) {
3249     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3250     // emit the base as an lvalue.
3251     assert(E->getBase()->getType()->isVectorType());
3252     Base = EmitLValue(E->getBase());
3253   } else {
3254     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3255     assert(E->getBase()->getType()->isVectorType() &&
3256            "Result must be a vector");
3257     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3258 
3259     // Store the vector to memory (because LValue wants an address).
3260     Address VecMem = CreateMemTemp(E->getBase()->getType());
3261     Builder.CreateStore(Vec, VecMem);
3262     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3263                           AlignmentSource::Decl);
3264   }
3265 
3266   QualType type =
3267     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3268 
3269   // Encode the element access list into a vector of unsigned indices.
3270   SmallVector<uint32_t, 4> Indices;
3271   E->getEncodedElementAccess(Indices);
3272 
3273   if (Base.isSimple()) {
3274     llvm::Constant *CV =
3275         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3276     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3277                                     Base.getAlignmentSource());
3278   }
3279   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3280 
3281   llvm::Constant *BaseElts = Base.getExtVectorElts();
3282   SmallVector<llvm::Constant *, 4> CElts;
3283 
3284   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3285     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3286   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3287   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3288                                   Base.getAlignmentSource());
3289 }
3290 
3291 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3292   Expr *BaseExpr = E->getBase();
3293 
3294   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3295   LValue BaseLV;
3296   if (E->isArrow()) {
3297     AlignmentSource AlignSource;
3298     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3299     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3300     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
3301     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3302   } else
3303     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3304 
3305   NamedDecl *ND = E->getMemberDecl();
3306   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3307     LValue LV = EmitLValueForField(BaseLV, Field);
3308     setObjCGCLValueClass(getContext(), E, LV);
3309     return LV;
3310   }
3311 
3312   if (auto *VD = dyn_cast<VarDecl>(ND))
3313     return EmitGlobalVarDeclLValue(*this, E, VD);
3314 
3315   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3316     return EmitFunctionDeclLValue(*this, E, FD);
3317 
3318   llvm_unreachable("Unhandled member declaration!");
3319 }
3320 
3321 /// Given that we are currently emitting a lambda, emit an l-value for
3322 /// one of its members.
3323 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3324   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3325   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3326   QualType LambdaTagType =
3327     getContext().getTagDeclType(Field->getParent());
3328   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3329   return EmitLValueForField(LambdaLV, Field);
3330 }
3331 
3332 /// Drill down to the storage of a field without walking into
3333 /// reference types.
3334 ///
3335 /// The resulting address doesn't necessarily have the right type.
3336 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3337                                       const FieldDecl *field) {
3338   const RecordDecl *rec = field->getParent();
3339 
3340   unsigned idx =
3341     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3342 
3343   CharUnits offset;
3344   // Adjust the alignment down to the given offset.
3345   // As a special case, if the LLVM field index is 0, we know that this
3346   // is zero.
3347   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3348                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3349          "LLVM field at index zero had non-zero offset?");
3350   if (idx != 0) {
3351     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3352     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3353     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3354   }
3355 
3356   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3357 }
3358 
3359 LValue CodeGenFunction::EmitLValueForField(LValue base,
3360                                            const FieldDecl *field) {
3361   AlignmentSource fieldAlignSource =
3362     getFieldAlignmentSource(base.getAlignmentSource());
3363 
3364   if (field->isBitField()) {
3365     const CGRecordLayout &RL =
3366       CGM.getTypes().getCGRecordLayout(field->getParent());
3367     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3368     Address Addr = base.getAddress();
3369     unsigned Idx = RL.getLLVMFieldNo(field);
3370     if (Idx != 0)
3371       // For structs, we GEP to the field that the record layout suggests.
3372       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3373                                      field->getName());
3374     // Get the access type.
3375     llvm::Type *FieldIntTy =
3376       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3377     if (Addr.getElementType() != FieldIntTy)
3378       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3379 
3380     QualType fieldType =
3381       field->getType().withCVRQualifiers(base.getVRQualifiers());
3382     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3383   }
3384 
3385   const RecordDecl *rec = field->getParent();
3386   QualType type = field->getType();
3387 
3388   bool mayAlias = rec->hasAttr<MayAliasAttr>();
3389 
3390   Address addr = base.getAddress();
3391   unsigned cvr = base.getVRQualifiers();
3392   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3393   if (rec->isUnion()) {
3394     // For unions, there is no pointer adjustment.
3395     assert(!type->isReferenceType() && "union has reference member");
3396     // TODO: handle path-aware TBAA for union.
3397     TBAAPath = false;
3398   } else {
3399     // For structs, we GEP to the field that the record layout suggests.
3400     addr = emitAddrOfFieldStorage(*this, addr, field);
3401 
3402     // If this is a reference field, load the reference right now.
3403     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3404       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3405       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3406 
3407       // Loading the reference will disable path-aware TBAA.
3408       TBAAPath = false;
3409       if (CGM.shouldUseTBAA()) {
3410         llvm::MDNode *tbaa;
3411         if (mayAlias)
3412           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3413         else
3414           tbaa = CGM.getTBAAInfo(type);
3415         if (tbaa)
3416           CGM.DecorateInstructionWithTBAA(load, tbaa);
3417       }
3418 
3419       mayAlias = false;
3420       type = refType->getPointeeType();
3421 
3422       CharUnits alignment =
3423         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3424       addr = Address(load, alignment);
3425 
3426       // Qualifiers on the struct don't apply to the referencee, and
3427       // we'll pick up CVR from the actual type later, so reset these
3428       // additional qualifiers now.
3429       cvr = 0;
3430     }
3431   }
3432 
3433   // Make sure that the address is pointing to the right type.  This is critical
3434   // for both unions and structs.  A union needs a bitcast, a struct element
3435   // will need a bitcast if the LLVM type laid out doesn't match the desired
3436   // type.
3437   addr = Builder.CreateElementBitCast(addr,
3438                                       CGM.getTypes().ConvertTypeForMem(type),
3439                                       field->getName());
3440 
3441   if (field->hasAttr<AnnotateAttr>())
3442     addr = EmitFieldAnnotations(field, addr);
3443 
3444   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3445   LV.getQuals().addCVRQualifiers(cvr);
3446   if (TBAAPath) {
3447     const ASTRecordLayout &Layout =
3448         getContext().getASTRecordLayout(field->getParent());
3449     // Set the base type to be the base type of the base LValue and
3450     // update offset to be relative to the base type.
3451     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3452     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3453                      Layout.getFieldOffset(field->getFieldIndex()) /
3454                                            getContext().getCharWidth());
3455   }
3456 
3457   // __weak attribute on a field is ignored.
3458   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3459     LV.getQuals().removeObjCGCAttr();
3460 
3461   // Fields of may_alias structs act like 'char' for TBAA purposes.
3462   // FIXME: this should get propagated down through anonymous structs
3463   // and unions.
3464   if (mayAlias && LV.getTBAAInfo())
3465     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3466 
3467   return LV;
3468 }
3469 
3470 LValue
3471 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3472                                                   const FieldDecl *Field) {
3473   QualType FieldType = Field->getType();
3474 
3475   if (!FieldType->isReferenceType())
3476     return EmitLValueForField(Base, Field);
3477 
3478   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3479 
3480   // Make sure that the address is pointing to the right type.
3481   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3482   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3483 
3484   // TODO: access-path TBAA?
3485   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3486   return MakeAddrLValue(V, FieldType, FieldAlignSource);
3487 }
3488 
3489 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3490   if (E->isFileScope()) {
3491     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3492     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3493   }
3494   if (E->getType()->isVariablyModifiedType())
3495     // make sure to emit the VLA size.
3496     EmitVariablyModifiedType(E->getType());
3497 
3498   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3499   const Expr *InitExpr = E->getInitializer();
3500   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3501 
3502   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3503                    /*Init*/ true);
3504 
3505   return Result;
3506 }
3507 
3508 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3509   if (!E->isGLValue())
3510     // Initializing an aggregate temporary in C++11: T{...}.
3511     return EmitAggExprToLValue(E);
3512 
3513   // An lvalue initializer list must be initializing a reference.
3514   assert(E->getNumInits() == 1 && "reference init with multiple values");
3515   return EmitLValue(E->getInit(0));
3516 }
3517 
3518 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3519 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3520 /// LValue is returned and the current block has been terminated.
3521 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3522                                                     const Expr *Operand) {
3523   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3524     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3525     return None;
3526   }
3527 
3528   return CGF.EmitLValue(Operand);
3529 }
3530 
3531 LValue CodeGenFunction::
3532 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3533   if (!expr->isGLValue()) {
3534     // ?: here should be an aggregate.
3535     assert(hasAggregateEvaluationKind(expr->getType()) &&
3536            "Unexpected conditional operator!");
3537     return EmitAggExprToLValue(expr);
3538   }
3539 
3540   OpaqueValueMapping binding(*this, expr);
3541 
3542   const Expr *condExpr = expr->getCond();
3543   bool CondExprBool;
3544   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3545     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3546     if (!CondExprBool) std::swap(live, dead);
3547 
3548     if (!ContainsLabel(dead)) {
3549       // If the true case is live, we need to track its region.
3550       if (CondExprBool)
3551         incrementProfileCounter(expr);
3552       return EmitLValue(live);
3553     }
3554   }
3555 
3556   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3557   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3558   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3559 
3560   ConditionalEvaluation eval(*this);
3561   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3562 
3563   // Any temporaries created here are conditional.
3564   EmitBlock(lhsBlock);
3565   incrementProfileCounter(expr);
3566   eval.begin(*this);
3567   Optional<LValue> lhs =
3568       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3569   eval.end(*this);
3570 
3571   if (lhs && !lhs->isSimple())
3572     return EmitUnsupportedLValue(expr, "conditional operator");
3573 
3574   lhsBlock = Builder.GetInsertBlock();
3575   if (lhs)
3576     Builder.CreateBr(contBlock);
3577 
3578   // Any temporaries created here are conditional.
3579   EmitBlock(rhsBlock);
3580   eval.begin(*this);
3581   Optional<LValue> rhs =
3582       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3583   eval.end(*this);
3584   if (rhs && !rhs->isSimple())
3585     return EmitUnsupportedLValue(expr, "conditional operator");
3586   rhsBlock = Builder.GetInsertBlock();
3587 
3588   EmitBlock(contBlock);
3589 
3590   if (lhs && rhs) {
3591     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3592                                            2, "cond-lvalue");
3593     phi->addIncoming(lhs->getPointer(), lhsBlock);
3594     phi->addIncoming(rhs->getPointer(), rhsBlock);
3595     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3596     AlignmentSource alignSource =
3597       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3598     return MakeAddrLValue(result, expr->getType(), alignSource);
3599   } else {
3600     assert((lhs || rhs) &&
3601            "both operands of glvalue conditional are throw-expressions?");
3602     return lhs ? *lhs : *rhs;
3603   }
3604 }
3605 
3606 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3607 /// type. If the cast is to a reference, we can have the usual lvalue result,
3608 /// otherwise if a cast is needed by the code generator in an lvalue context,
3609 /// then it must mean that we need the address of an aggregate in order to
3610 /// access one of its members.  This can happen for all the reasons that casts
3611 /// are permitted with aggregate result, including noop aggregate casts, and
3612 /// cast from scalar to union.
3613 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3614   switch (E->getCastKind()) {
3615   case CK_ToVoid:
3616   case CK_BitCast:
3617   case CK_ArrayToPointerDecay:
3618   case CK_FunctionToPointerDecay:
3619   case CK_NullToMemberPointer:
3620   case CK_NullToPointer:
3621   case CK_IntegralToPointer:
3622   case CK_PointerToIntegral:
3623   case CK_PointerToBoolean:
3624   case CK_VectorSplat:
3625   case CK_IntegralCast:
3626   case CK_BooleanToSignedIntegral:
3627   case CK_IntegralToBoolean:
3628   case CK_IntegralToFloating:
3629   case CK_FloatingToIntegral:
3630   case CK_FloatingToBoolean:
3631   case CK_FloatingCast:
3632   case CK_FloatingRealToComplex:
3633   case CK_FloatingComplexToReal:
3634   case CK_FloatingComplexToBoolean:
3635   case CK_FloatingComplexCast:
3636   case CK_FloatingComplexToIntegralComplex:
3637   case CK_IntegralRealToComplex:
3638   case CK_IntegralComplexToReal:
3639   case CK_IntegralComplexToBoolean:
3640   case CK_IntegralComplexCast:
3641   case CK_IntegralComplexToFloatingComplex:
3642   case CK_DerivedToBaseMemberPointer:
3643   case CK_BaseToDerivedMemberPointer:
3644   case CK_MemberPointerToBoolean:
3645   case CK_ReinterpretMemberPointer:
3646   case CK_AnyPointerToBlockPointerCast:
3647   case CK_ARCProduceObject:
3648   case CK_ARCConsumeObject:
3649   case CK_ARCReclaimReturnedObject:
3650   case CK_ARCExtendBlockObject:
3651   case CK_CopyAndAutoreleaseBlockObject:
3652   case CK_AddressSpaceConversion:
3653   case CK_IntToOCLSampler:
3654     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3655 
3656   case CK_Dependent:
3657     llvm_unreachable("dependent cast kind in IR gen!");
3658 
3659   case CK_BuiltinFnToFnPtr:
3660     llvm_unreachable("builtin functions are handled elsewhere");
3661 
3662   // These are never l-values; just use the aggregate emission code.
3663   case CK_NonAtomicToAtomic:
3664   case CK_AtomicToNonAtomic:
3665     return EmitAggExprToLValue(E);
3666 
3667   case CK_Dynamic: {
3668     LValue LV = EmitLValue(E->getSubExpr());
3669     Address V = LV.getAddress();
3670     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3671     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3672   }
3673 
3674   case CK_ConstructorConversion:
3675   case CK_UserDefinedConversion:
3676   case CK_CPointerToObjCPointerCast:
3677   case CK_BlockPointerToObjCPointerCast:
3678   case CK_NoOp:
3679   case CK_LValueToRValue:
3680     return EmitLValue(E->getSubExpr());
3681 
3682   case CK_UncheckedDerivedToBase:
3683   case CK_DerivedToBase: {
3684     const RecordType *DerivedClassTy =
3685       E->getSubExpr()->getType()->getAs<RecordType>();
3686     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3687 
3688     LValue LV = EmitLValue(E->getSubExpr());
3689     Address This = LV.getAddress();
3690 
3691     // Perform the derived-to-base conversion
3692     Address Base = GetAddressOfBaseClass(
3693         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3694         /*NullCheckValue=*/false, E->getExprLoc());
3695 
3696     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3697   }
3698   case CK_ToUnion:
3699     return EmitAggExprToLValue(E);
3700   case CK_BaseToDerived: {
3701     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3702     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3703 
3704     LValue LV = EmitLValue(E->getSubExpr());
3705 
3706     // Perform the base-to-derived conversion
3707     Address Derived =
3708       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3709                                E->path_begin(), E->path_end(),
3710                                /*NullCheckValue=*/false);
3711 
3712     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3713     // performed and the object is not of the derived type.
3714     if (sanitizePerformTypeCheck())
3715       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3716                     Derived.getPointer(), E->getType());
3717 
3718     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3719       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3720                                 /*MayBeNull=*/false,
3721                                 CFITCK_DerivedCast, E->getLocStart());
3722 
3723     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3724   }
3725   case CK_LValueBitCast: {
3726     // This must be a reinterpret_cast (or c-style equivalent).
3727     const auto *CE = cast<ExplicitCastExpr>(E);
3728 
3729     CGM.EmitExplicitCastExprType(CE, this);
3730     LValue LV = EmitLValue(E->getSubExpr());
3731     Address V = Builder.CreateBitCast(LV.getAddress(),
3732                                       ConvertType(CE->getTypeAsWritten()));
3733 
3734     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3735       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3736                                 /*MayBeNull=*/false,
3737                                 CFITCK_UnrelatedCast, E->getLocStart());
3738 
3739     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3740   }
3741   case CK_ObjCObjectLValueCast: {
3742     LValue LV = EmitLValue(E->getSubExpr());
3743     Address V = Builder.CreateElementBitCast(LV.getAddress(),
3744                                              ConvertType(E->getType()));
3745     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3746   }
3747   case CK_ZeroToOCLEvent:
3748     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3749   }
3750 
3751   llvm_unreachable("Unhandled lvalue cast kind?");
3752 }
3753 
3754 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3755   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3756   return getOpaqueLValueMapping(e);
3757 }
3758 
3759 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3760                                            const FieldDecl *FD,
3761                                            SourceLocation Loc) {
3762   QualType FT = FD->getType();
3763   LValue FieldLV = EmitLValueForField(LV, FD);
3764   switch (getEvaluationKind(FT)) {
3765   case TEK_Complex:
3766     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3767   case TEK_Aggregate:
3768     return FieldLV.asAggregateRValue();
3769   case TEK_Scalar:
3770     // This routine is used to load fields one-by-one to perform a copy, so
3771     // don't load reference fields.
3772     if (FD->getType()->isReferenceType())
3773       return RValue::get(FieldLV.getPointer());
3774     return EmitLoadOfLValue(FieldLV, Loc);
3775   }
3776   llvm_unreachable("bad evaluation kind");
3777 }
3778 
3779 //===--------------------------------------------------------------------===//
3780 //                             Expression Emission
3781 //===--------------------------------------------------------------------===//
3782 
3783 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3784                                      ReturnValueSlot ReturnValue) {
3785   // Builtins never have block type.
3786   if (E->getCallee()->getType()->isBlockPointerType())
3787     return EmitBlockCallExpr(E, ReturnValue);
3788 
3789   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3790     return EmitCXXMemberCallExpr(CE, ReturnValue);
3791 
3792   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3793     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3794 
3795   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3796     if (const CXXMethodDecl *MD =
3797           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
3798       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3799 
3800   CGCallee callee = EmitCallee(E->getCallee());
3801 
3802   if (callee.isBuiltin()) {
3803     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
3804                            E, ReturnValue);
3805   }
3806 
3807   if (callee.isPseudoDestructor()) {
3808     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
3809   }
3810 
3811   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
3812 }
3813 
3814 /// Emit a CallExpr without considering whether it might be a subclass.
3815 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
3816                                            ReturnValueSlot ReturnValue) {
3817   CGCallee Callee = EmitCallee(E->getCallee());
3818   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
3819 }
3820 
3821 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
3822   if (auto builtinID = FD->getBuiltinID()) {
3823     return CGCallee::forBuiltin(builtinID, FD);
3824   }
3825 
3826   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
3827   return CGCallee::forDirect(calleePtr, FD);
3828 }
3829 
3830 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
3831   E = E->IgnoreParens();
3832 
3833   // Look through function-to-pointer decay.
3834   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
3835     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
3836         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
3837       return EmitCallee(ICE->getSubExpr());
3838     }
3839 
3840   // Resolve direct calls.
3841   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
3842     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3843       return EmitDirectCallee(*this, FD);
3844     }
3845   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
3846     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
3847       EmitIgnoredExpr(ME->getBase());
3848       return EmitDirectCallee(*this, FD);
3849     }
3850 
3851   // Look through template substitutions.
3852   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
3853     return EmitCallee(NTTP->getReplacement());
3854 
3855   // Treat pseudo-destructor calls differently.
3856   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
3857     return CGCallee::forPseudoDestructor(PDE);
3858   }
3859 
3860   // Otherwise, we have an indirect reference.
3861   llvm::Value *calleePtr;
3862   QualType functionType;
3863   if (auto ptrType = E->getType()->getAs<PointerType>()) {
3864     calleePtr = EmitScalarExpr(E);
3865     functionType = ptrType->getPointeeType();
3866   } else {
3867     functionType = E->getType();
3868     calleePtr = EmitLValue(E).getPointer();
3869   }
3870   assert(functionType->isFunctionType());
3871   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
3872                           E->getReferencedDeclOfCallee());
3873   CGCallee callee(calleeInfo, calleePtr);
3874   return callee;
3875 }
3876 
3877 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3878   // Comma expressions just emit their LHS then their RHS as an l-value.
3879   if (E->getOpcode() == BO_Comma) {
3880     EmitIgnoredExpr(E->getLHS());
3881     EnsureInsertPoint();
3882     return EmitLValue(E->getRHS());
3883   }
3884 
3885   if (E->getOpcode() == BO_PtrMemD ||
3886       E->getOpcode() == BO_PtrMemI)
3887     return EmitPointerToDataMemberBinaryExpr(E);
3888 
3889   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3890 
3891   // Note that in all of these cases, __block variables need the RHS
3892   // evaluated first just in case the variable gets moved by the RHS.
3893 
3894   switch (getEvaluationKind(E->getType())) {
3895   case TEK_Scalar: {
3896     switch (E->getLHS()->getType().getObjCLifetime()) {
3897     case Qualifiers::OCL_Strong:
3898       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3899 
3900     case Qualifiers::OCL_Autoreleasing:
3901       return EmitARCStoreAutoreleasing(E).first;
3902 
3903     // No reason to do any of these differently.
3904     case Qualifiers::OCL_None:
3905     case Qualifiers::OCL_ExplicitNone:
3906     case Qualifiers::OCL_Weak:
3907       break;
3908     }
3909 
3910     RValue RV = EmitAnyExpr(E->getRHS());
3911     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3912     EmitStoreThroughLValue(RV, LV);
3913     return LV;
3914   }
3915 
3916   case TEK_Complex:
3917     return EmitComplexAssignmentLValue(E);
3918 
3919   case TEK_Aggregate:
3920     return EmitAggExprToLValue(E);
3921   }
3922   llvm_unreachable("bad evaluation kind");
3923 }
3924 
3925 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3926   RValue RV = EmitCallExpr(E);
3927 
3928   if (!RV.isScalar())
3929     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3930                           AlignmentSource::Decl);
3931 
3932   assert(E->getCallReturnType(getContext())->isReferenceType() &&
3933          "Can't have a scalar return unless the return type is a "
3934          "reference type!");
3935 
3936   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3937 }
3938 
3939 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3940   // FIXME: This shouldn't require another copy.
3941   return EmitAggExprToLValue(E);
3942 }
3943 
3944 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3945   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3946          && "binding l-value to type which needs a temporary");
3947   AggValueSlot Slot = CreateAggTemp(E->getType());
3948   EmitCXXConstructExpr(E, Slot);
3949   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3950                         AlignmentSource::Decl);
3951 }
3952 
3953 LValue
3954 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3955   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3956 }
3957 
3958 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3959   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
3960                                       ConvertType(E->getType()));
3961 }
3962 
3963 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3964   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
3965                         AlignmentSource::Decl);
3966 }
3967 
3968 LValue
3969 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3970   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3971   Slot.setExternallyDestructed();
3972   EmitAggExpr(E->getSubExpr(), Slot);
3973   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
3974   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3975                         AlignmentSource::Decl);
3976 }
3977 
3978 LValue
3979 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3980   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3981   EmitLambdaExpr(E, Slot);
3982   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3983                         AlignmentSource::Decl);
3984 }
3985 
3986 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3987   RValue RV = EmitObjCMessageExpr(E);
3988 
3989   if (!RV.isScalar())
3990     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3991                           AlignmentSource::Decl);
3992 
3993   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3994          "Can't have a scalar return unless the return type is a "
3995          "reference type!");
3996 
3997   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3998 }
3999 
4000 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4001   Address V =
4002     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4003   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4004 }
4005 
4006 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4007                                              const ObjCIvarDecl *Ivar) {
4008   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4009 }
4010 
4011 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4012                                           llvm::Value *BaseValue,
4013                                           const ObjCIvarDecl *Ivar,
4014                                           unsigned CVRQualifiers) {
4015   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4016                                                    Ivar, CVRQualifiers);
4017 }
4018 
4019 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4020   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4021   llvm::Value *BaseValue = nullptr;
4022   const Expr *BaseExpr = E->getBase();
4023   Qualifiers BaseQuals;
4024   QualType ObjectTy;
4025   if (E->isArrow()) {
4026     BaseValue = EmitScalarExpr(BaseExpr);
4027     ObjectTy = BaseExpr->getType()->getPointeeType();
4028     BaseQuals = ObjectTy.getQualifiers();
4029   } else {
4030     LValue BaseLV = EmitLValue(BaseExpr);
4031     BaseValue = BaseLV.getPointer();
4032     ObjectTy = BaseExpr->getType();
4033     BaseQuals = ObjectTy.getQualifiers();
4034   }
4035 
4036   LValue LV =
4037     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4038                       BaseQuals.getCVRQualifiers());
4039   setObjCGCLValueClass(getContext(), E, LV);
4040   return LV;
4041 }
4042 
4043 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4044   // Can only get l-value for message expression returning aggregate type
4045   RValue RV = EmitAnyExprToTemp(E);
4046   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4047                         AlignmentSource::Decl);
4048 }
4049 
4050 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4051                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4052                                  llvm::Value *Chain) {
4053   // Get the actual function type. The callee type will always be a pointer to
4054   // function type or a block pointer type.
4055   assert(CalleeType->isFunctionPointerType() &&
4056          "Call must have function pointer type!");
4057 
4058   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4059 
4060   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4061     // We can only guarantee that a function is called from the correct
4062     // context/function based on the appropriate target attributes,
4063     // so only check in the case where we have both always_inline and target
4064     // since otherwise we could be making a conditional call after a check for
4065     // the proper cpu features (and it won't cause code generation issues due to
4066     // function based code generation).
4067     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4068         TargetDecl->hasAttr<TargetAttr>())
4069       checkTargetFeatures(E, FD);
4070 
4071   CalleeType = getContext().getCanonicalType(CalleeType);
4072 
4073   const auto *FnType =
4074       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4075 
4076   CGCallee Callee = OrigCallee;
4077 
4078   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4079       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4080     if (llvm::Constant *PrefixSig =
4081             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4082       SanitizerScope SanScope(this);
4083       llvm::Constant *FTRTTIConst =
4084           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4085       llvm::Type *PrefixStructTyElems[] = {
4086         PrefixSig->getType(),
4087         FTRTTIConst->getType()
4088       };
4089       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4090           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4091 
4092       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4093 
4094       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4095           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4096       llvm::Value *CalleeSigPtr =
4097           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4098       llvm::Value *CalleeSig =
4099           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4100       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4101 
4102       llvm::BasicBlock *Cont = createBasicBlock("cont");
4103       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4104       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4105 
4106       EmitBlock(TypeCheck);
4107       llvm::Value *CalleeRTTIPtr =
4108           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4109       llvm::Value *CalleeRTTI =
4110           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4111       llvm::Value *CalleeRTTIMatch =
4112           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4113       llvm::Constant *StaticData[] = {
4114         EmitCheckSourceLocation(E->getLocStart()),
4115         EmitCheckTypeDescriptor(CalleeType)
4116       };
4117       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4118                 "function_type_mismatch", StaticData, CalleePtr);
4119 
4120       Builder.CreateBr(Cont);
4121       EmitBlock(Cont);
4122     }
4123   }
4124 
4125   // If we are checking indirect calls and this call is indirect, check that the
4126   // function pointer is a member of the bit set for the function type.
4127   if (SanOpts.has(SanitizerKind::CFIICall) &&
4128       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4129     SanitizerScope SanScope(this);
4130     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4131 
4132     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4133     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4134 
4135     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4136     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4137     llvm::Value *TypeTest = Builder.CreateCall(
4138         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4139 
4140     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4141     llvm::Constant *StaticData[] = {
4142         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4143         EmitCheckSourceLocation(E->getLocStart()),
4144         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4145     };
4146     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4147       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4148                            CastedCallee, StaticData);
4149     } else {
4150       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4151                 "cfi_check_fail", StaticData,
4152                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4153     }
4154   }
4155 
4156   CallArgList Args;
4157   if (Chain)
4158     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4159              CGM.getContext().VoidPtrTy);
4160 
4161   // C++17 requires that we evaluate arguments to a call using assignment syntax
4162   // right-to-left, and that we evaluate arguments to certain other operators
4163   // left-to-right. Note that we allow this to override the order dictated by
4164   // the calling convention on the MS ABI, which means that parameter
4165   // destruction order is not necessarily reverse construction order.
4166   // FIXME: Revisit this based on C++ committee response to unimplementability.
4167   EvaluationOrder Order = EvaluationOrder::Default;
4168   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4169     if (OCE->isAssignmentOp())
4170       Order = EvaluationOrder::ForceRightToLeft;
4171     else {
4172       switch (OCE->getOperator()) {
4173       case OO_LessLess:
4174       case OO_GreaterGreater:
4175       case OO_AmpAmp:
4176       case OO_PipePipe:
4177       case OO_Comma:
4178       case OO_ArrowStar:
4179         Order = EvaluationOrder::ForceLeftToRight;
4180         break;
4181       default:
4182         break;
4183       }
4184     }
4185   }
4186 
4187   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4188                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4189 
4190   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4191       Args, FnType, /*isChainCall=*/Chain);
4192 
4193   // C99 6.5.2.2p6:
4194   //   If the expression that denotes the called function has a type
4195   //   that does not include a prototype, [the default argument
4196   //   promotions are performed]. If the number of arguments does not
4197   //   equal the number of parameters, the behavior is undefined. If
4198   //   the function is defined with a type that includes a prototype,
4199   //   and either the prototype ends with an ellipsis (, ...) or the
4200   //   types of the arguments after promotion are not compatible with
4201   //   the types of the parameters, the behavior is undefined. If the
4202   //   function is defined with a type that does not include a
4203   //   prototype, and the types of the arguments after promotion are
4204   //   not compatible with those of the parameters after promotion,
4205   //   the behavior is undefined [except in some trivial cases].
4206   // That is, in the general case, we should assume that a call
4207   // through an unprototyped function type works like a *non-variadic*
4208   // call.  The way we make this work is to cast to the exact type
4209   // of the promoted arguments.
4210   //
4211   // Chain calls use this same code path to add the invisible chain parameter
4212   // to the function type.
4213   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4214     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4215     CalleeTy = CalleeTy->getPointerTo();
4216 
4217     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4218     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4219     Callee.setFunctionPointer(CalleePtr);
4220   }
4221 
4222   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4223 }
4224 
4225 LValue CodeGenFunction::
4226 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4227   Address BaseAddr = Address::invalid();
4228   if (E->getOpcode() == BO_PtrMemI) {
4229     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4230   } else {
4231     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4232   }
4233 
4234   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4235 
4236   const MemberPointerType *MPT
4237     = E->getRHS()->getType()->getAs<MemberPointerType>();
4238 
4239   AlignmentSource AlignSource;
4240   Address MemberAddr =
4241     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
4242                                     &AlignSource);
4243 
4244   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
4245 }
4246 
4247 /// Given the address of a temporary variable, produce an r-value of
4248 /// its type.
4249 RValue CodeGenFunction::convertTempToRValue(Address addr,
4250                                             QualType type,
4251                                             SourceLocation loc) {
4252   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4253   switch (getEvaluationKind(type)) {
4254   case TEK_Complex:
4255     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4256   case TEK_Aggregate:
4257     return lvalue.asAggregateRValue();
4258   case TEK_Scalar:
4259     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4260   }
4261   llvm_unreachable("bad evaluation kind");
4262 }
4263 
4264 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4265   assert(Val->getType()->isFPOrFPVectorTy());
4266   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4267     return;
4268 
4269   llvm::MDBuilder MDHelper(getLLVMContext());
4270   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4271 
4272   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4273 }
4274 
4275 namespace {
4276   struct LValueOrRValue {
4277     LValue LV;
4278     RValue RV;
4279   };
4280 }
4281 
4282 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4283                                            const PseudoObjectExpr *E,
4284                                            bool forLValue,
4285                                            AggValueSlot slot) {
4286   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4287 
4288   // Find the result expression, if any.
4289   const Expr *resultExpr = E->getResultExpr();
4290   LValueOrRValue result;
4291 
4292   for (PseudoObjectExpr::const_semantics_iterator
4293          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4294     const Expr *semantic = *i;
4295 
4296     // If this semantic expression is an opaque value, bind it
4297     // to the result of its source expression.
4298     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4299 
4300       // If this is the result expression, we may need to evaluate
4301       // directly into the slot.
4302       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4303       OVMA opaqueData;
4304       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4305           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4306         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4307 
4308         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4309                                        AlignmentSource::Decl);
4310         opaqueData = OVMA::bind(CGF, ov, LV);
4311         result.RV = slot.asRValue();
4312 
4313       // Otherwise, emit as normal.
4314       } else {
4315         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4316 
4317         // If this is the result, also evaluate the result now.
4318         if (ov == resultExpr) {
4319           if (forLValue)
4320             result.LV = CGF.EmitLValue(ov);
4321           else
4322             result.RV = CGF.EmitAnyExpr(ov, slot);
4323         }
4324       }
4325 
4326       opaques.push_back(opaqueData);
4327 
4328     // Otherwise, if the expression is the result, evaluate it
4329     // and remember the result.
4330     } else if (semantic == resultExpr) {
4331       if (forLValue)
4332         result.LV = CGF.EmitLValue(semantic);
4333       else
4334         result.RV = CGF.EmitAnyExpr(semantic, slot);
4335 
4336     // Otherwise, evaluate the expression in an ignored context.
4337     } else {
4338       CGF.EmitIgnoredExpr(semantic);
4339     }
4340   }
4341 
4342   // Unbind all the opaques now.
4343   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4344     opaques[i].unbind(CGF);
4345 
4346   return result;
4347 }
4348 
4349 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4350                                                AggValueSlot slot) {
4351   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4352 }
4353 
4354 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4355   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4356 }
4357