1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGObjCRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "llvm/Intrinsics.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "llvm/Target/TargetData.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===--------------------------------------------------------------------===//
27 //                        Miscellaneous Helper Methods
28 //===--------------------------------------------------------------------===//
29 
30 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
31 /// block.
32 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
33                                                     const llvm::Twine &Name) {
34   if (!Builder.isNamePreserving())
35     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
36   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
37 }
38 
39 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
40 /// expression and compare the result against zero, returning an Int1Ty value.
41 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
42   QualType BoolTy = getContext().BoolTy;
43   if (E->getType()->isMemberFunctionPointerType()) {
44     llvm::Value *Ptr = CreateTempAlloca(ConvertType(E->getType()));
45     EmitAggExpr(E, Ptr, /*VolatileDest=*/false);
46 
47     // Get the pointer.
48     llvm::Value *FuncPtr = Builder.CreateStructGEP(Ptr, 0, "src.ptr");
49     FuncPtr = Builder.CreateLoad(FuncPtr);
50 
51     llvm::Value *IsNotNull =
52       Builder.CreateICmpNE(FuncPtr,
53                             llvm::Constant::getNullValue(FuncPtr->getType()),
54                             "tobool");
55 
56     return IsNotNull;
57   }
58   if (!E->getType()->isAnyComplexType())
59     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
60 
61   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
62 }
63 
64 /// EmitAnyExpr - Emit code to compute the specified expression which can have
65 /// any type.  The result is returned as an RValue struct.  If this is an
66 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where the
67 /// result should be returned.
68 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
69                                     bool IsAggLocVolatile, bool IgnoreResult,
70                                     bool IsInitializer) {
71   if (!hasAggregateLLVMType(E->getType()))
72     return RValue::get(EmitScalarExpr(E, IgnoreResult));
73   else if (E->getType()->isAnyComplexType())
74     return RValue::getComplex(EmitComplexExpr(E, false, false,
75                                               IgnoreResult, IgnoreResult));
76 
77   EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer);
78   return RValue::getAggregate(AggLoc, IsAggLocVolatile);
79 }
80 
81 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
82 /// always be accessible even if no aggregate location is provided.
83 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E,
84                                           bool IsAggLocVolatile,
85                                           bool IsInitializer) {
86   llvm::Value *AggLoc = 0;
87 
88   if (hasAggregateLLVMType(E->getType()) &&
89       !E->getType()->isAnyComplexType())
90     AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp");
91   return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false,
92                      IsInitializer);
93 }
94 
95 RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E,
96                                                    QualType DestType,
97                                                    bool IsInitializer) {
98   bool ShouldDestroyTemporaries = false;
99   unsigned OldNumLiveTemporaries = 0;
100 
101   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
102     E = DAE->getExpr();
103 
104   if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) {
105     ShouldDestroyTemporaries = true;
106 
107     // Keep track of the current cleanup stack depth.
108     OldNumLiveTemporaries = LiveTemporaries.size();
109 
110     E = TE->getSubExpr();
111   }
112 
113   RValue Val;
114   if (E->isLvalue(getContext()) == Expr::LV_Valid) {
115     // Emit the expr as an lvalue.
116     LValue LV = EmitLValue(E);
117     if (LV.isSimple())
118       return RValue::get(LV.getAddress());
119     Val = EmitLoadOfLValue(LV, E->getType());
120 
121     if (ShouldDestroyTemporaries) {
122       // Pop temporaries.
123       while (LiveTemporaries.size() > OldNumLiveTemporaries)
124         PopCXXTemporary();
125     }
126   } else {
127     const CXXRecordDecl *BaseClassDecl = 0;
128     const CXXRecordDecl *DerivedClassDecl = 0;
129 
130     if (const CastExpr *CE =
131           dyn_cast<CastExpr>(E->IgnoreParenNoopCasts(getContext()))) {
132       if (CE->getCastKind() == CastExpr::CK_DerivedToBase) {
133         E = CE->getSubExpr();
134 
135         BaseClassDecl =
136           cast<CXXRecordDecl>(CE->getType()->getAs<RecordType>()->getDecl());
137         DerivedClassDecl =
138           cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
139       }
140     }
141 
142     Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false,
143                             IsInitializer);
144 
145     if (ShouldDestroyTemporaries) {
146       // Pop temporaries.
147       while (LiveTemporaries.size() > OldNumLiveTemporaries)
148         PopCXXTemporary();
149     }
150 
151     if (IsInitializer) {
152       // We might have to destroy the temporary variable.
153       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
154         if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
155           if (!ClassDecl->hasTrivialDestructor()) {
156             const CXXDestructorDecl *Dtor =
157               ClassDecl->getDestructor(getContext());
158 
159             {
160               DelayedCleanupBlock Scope(*this);
161               EmitCXXDestructorCall(Dtor, Dtor_Complete,
162                                     Val.getAggregateAddr());
163 
164               // Make sure to jump to the exit block.
165               EmitBranch(Scope.getCleanupExitBlock());
166             }
167             if (Exceptions) {
168               EHCleanupBlock Cleanup(*this);
169               EmitCXXDestructorCall(Dtor, Dtor_Complete,
170                                     Val.getAggregateAddr());
171             }
172           }
173         }
174       }
175     }
176 
177     // Check if need to perform the derived-to-base cast.
178     if (BaseClassDecl) {
179       llvm::Value *Derived = Val.getAggregateAddr();
180       llvm::Value *Base =
181         GetAddressOfBaseClass(Derived, DerivedClassDecl, BaseClassDecl,
182                               /*NullCheckValue=*/false);
183       return RValue::get(Base);
184     }
185   }
186 
187   if (Val.isAggregate()) {
188     Val = RValue::get(Val.getAggregateAddr());
189   } else {
190     // Create a temporary variable that we can bind the reference to.
191     llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()),
192                                          "reftmp");
193     if (Val.isScalar())
194       EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
195     else
196       StoreComplexToAddr(Val.getComplexVal(), Temp, false);
197     Val = RValue::get(Temp);
198   }
199 
200   return Val;
201 }
202 
203 
204 /// getAccessedFieldNo - Given an encoded value and a result number, return the
205 /// input field number being accessed.
206 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
207                                              const llvm::Constant *Elts) {
208   if (isa<llvm::ConstantAggregateZero>(Elts))
209     return 0;
210 
211   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
212 }
213 
214 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
215   if (!CatchUndefined)
216     return;
217 
218   const llvm::IntegerType *Size_tTy
219     = llvm::IntegerType::get(VMContext, LLVMPointerWidth);
220   Address = Builder.CreateBitCast(Address, PtrToInt8Ty);
221 
222   const llvm::Type *ResType[] = {
223     Size_tTy
224   };
225   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, ResType, 1);
226   const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(
227     CGM.getTypes().ConvertType(CGM.getContext().IntTy));
228   // In time, people may want to control this and use a 1 here.
229   llvm::Value *Arg = llvm::ConstantInt::get(IntTy, 0);
230   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
231   llvm::BasicBlock *Cont = createBasicBlock();
232   llvm::BasicBlock *Check = createBasicBlock();
233   llvm::Value *NegativeOne = llvm::ConstantInt::get(Size_tTy, -1ULL);
234   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
235 
236   EmitBlock(Check);
237   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
238                                         llvm::ConstantInt::get(Size_tTy, Size)),
239                        Cont, getTrapBB());
240   EmitBlock(Cont);
241 }
242 
243 //===----------------------------------------------------------------------===//
244 //                         LValue Expression Emission
245 //===----------------------------------------------------------------------===//
246 
247 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
248   if (Ty->isVoidType())
249     return RValue::get(0);
250 
251   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
252     const llvm::Type *EltTy = ConvertType(CTy->getElementType());
253     llvm::Value *U = llvm::UndefValue::get(EltTy);
254     return RValue::getComplex(std::make_pair(U, U));
255   }
256 
257   if (hasAggregateLLVMType(Ty)) {
258     const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty));
259     return RValue::getAggregate(llvm::UndefValue::get(LTy));
260   }
261 
262   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
263 }
264 
265 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
266                                               const char *Name) {
267   ErrorUnsupported(E, Name);
268   return GetUndefRValue(E->getType());
269 }
270 
271 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
272                                               const char *Name) {
273   ErrorUnsupported(E, Name);
274   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
275   return LValue::MakeAddr(llvm::UndefValue::get(Ty),
276                           MakeQualifiers(E->getType()));
277 }
278 
279 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
280   LValue LV = EmitLValue(E);
281   if (!isa<DeclRefExpr>(E) && !LV.isBitfield() && LV.isSimple())
282     EmitCheck(LV.getAddress(), getContext().getTypeSize(E->getType()) / 8);
283   return LV;
284 }
285 
286 /// EmitLValue - Emit code to compute a designator that specifies the location
287 /// of the expression.
288 ///
289 /// This can return one of two things: a simple address or a bitfield reference.
290 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
291 /// an LLVM pointer type.
292 ///
293 /// If this returns a bitfield reference, nothing about the pointee type of the
294 /// LLVM value is known: For example, it may not be a pointer to an integer.
295 ///
296 /// If this returns a normal address, and if the lvalue's C type is fixed size,
297 /// this method guarantees that the returned pointer type will point to an LLVM
298 /// type of the same size of the lvalue's type.  If the lvalue has a variable
299 /// length type, this is not possible.
300 ///
301 LValue CodeGenFunction::EmitLValue(const Expr *E) {
302   switch (E->getStmtClass()) {
303   default: return EmitUnsupportedLValue(E, "l-value expression");
304 
305   case Expr::ObjCIsaExprClass:
306     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
307   case Expr::BinaryOperatorClass:
308     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
309   case Expr::CallExprClass:
310   case Expr::CXXMemberCallExprClass:
311   case Expr::CXXOperatorCallExprClass:
312     return EmitCallExprLValue(cast<CallExpr>(E));
313   case Expr::VAArgExprClass:
314     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
315   case Expr::DeclRefExprClass:
316     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
317   case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
318   case Expr::PredefinedExprClass:
319     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
320   case Expr::StringLiteralClass:
321     return EmitStringLiteralLValue(cast<StringLiteral>(E));
322   case Expr::ObjCEncodeExprClass:
323     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
324 
325   case Expr::BlockDeclRefExprClass:
326     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
327 
328   case Expr::CXXTemporaryObjectExprClass:
329   case Expr::CXXConstructExprClass:
330     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
331   case Expr::CXXBindTemporaryExprClass:
332     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
333   case Expr::CXXExprWithTemporariesClass:
334     return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E));
335   case Expr::CXXZeroInitValueExprClass:
336     return EmitNullInitializationLValue(cast<CXXZeroInitValueExpr>(E));
337   case Expr::CXXDefaultArgExprClass:
338     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
339   case Expr::CXXTypeidExprClass:
340     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
341 
342   case Expr::ObjCMessageExprClass:
343     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
344   case Expr::ObjCIvarRefExprClass:
345     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
346   case Expr::ObjCPropertyRefExprClass:
347     return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
348   case Expr::ObjCImplicitSetterGetterRefExprClass:
349     return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E));
350   case Expr::ObjCSuperExprClass:
351     return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E));
352 
353   case Expr::StmtExprClass:
354     return EmitStmtExprLValue(cast<StmtExpr>(E));
355   case Expr::UnaryOperatorClass:
356     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
357   case Expr::ArraySubscriptExprClass:
358     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
359   case Expr::ExtVectorElementExprClass:
360     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
361   case Expr::MemberExprClass:
362     return EmitMemberExpr(cast<MemberExpr>(E));
363   case Expr::CompoundLiteralExprClass:
364     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
365   case Expr::ConditionalOperatorClass:
366     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
367   case Expr::ChooseExprClass:
368     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
369   case Expr::ImplicitCastExprClass:
370   case Expr::CStyleCastExprClass:
371   case Expr::CXXFunctionalCastExprClass:
372   case Expr::CXXStaticCastExprClass:
373   case Expr::CXXDynamicCastExprClass:
374   case Expr::CXXReinterpretCastExprClass:
375   case Expr::CXXConstCastExprClass:
376     return EmitCastLValue(cast<CastExpr>(E));
377   }
378 }
379 
380 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
381                                                QualType Ty) {
382   llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
383   if (Volatile)
384     Load->setVolatile(true);
385 
386   // Bool can have different representation in memory than in registers.
387   llvm::Value *V = Load;
388   if (Ty->isBooleanType())
389     if (V->getType() != llvm::Type::getInt1Ty(VMContext))
390       V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool");
391 
392   return V;
393 }
394 
395 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
396                                         bool Volatile, QualType Ty) {
397 
398   if (Ty->isBooleanType()) {
399     // Bool can have different representation in memory than in registers.
400     const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
401     Value = Builder.CreateIntCast(Value, DstPtr->getElementType(), false);
402   }
403   Builder.CreateStore(Value, Addr, Volatile);
404 }
405 
406 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
407 /// method emits the address of the lvalue, then loads the result as an rvalue,
408 /// returning the rvalue.
409 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
410   if (LV.isObjCWeak()) {
411     // load of a __weak object.
412     llvm::Value *AddrWeakObj = LV.getAddress();
413     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
414                                                              AddrWeakObj));
415   }
416 
417   if (LV.isSimple()) {
418     llvm::Value *Ptr = LV.getAddress();
419     const llvm::Type *EltTy =
420       cast<llvm::PointerType>(Ptr->getType())->getElementType();
421 
422     // Simple scalar l-value.
423     if (EltTy->isSingleValueType())
424       return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
425                                           ExprType));
426 
427     assert(ExprType->isFunctionType() && "Unknown scalar value");
428     return RValue::get(Ptr);
429   }
430 
431   if (LV.isVectorElt()) {
432     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
433                                           LV.isVolatileQualified(), "tmp");
434     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
435                                                     "vecext"));
436   }
437 
438   // If this is a reference to a subset of the elements of a vector, either
439   // shuffle the input or extract/insert them as appropriate.
440   if (LV.isExtVectorElt())
441     return EmitLoadOfExtVectorElementLValue(LV, ExprType);
442 
443   if (LV.isBitfield())
444     return EmitLoadOfBitfieldLValue(LV, ExprType);
445 
446   if (LV.isPropertyRef())
447     return EmitLoadOfPropertyRefLValue(LV, ExprType);
448 
449   assert(LV.isKVCRef() && "Unknown LValue type!");
450   return EmitLoadOfKVCRefLValue(LV, ExprType);
451 }
452 
453 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
454                                                  QualType ExprType) {
455   unsigned StartBit = LV.getBitfieldStartBit();
456   unsigned BitfieldSize = LV.getBitfieldSize();
457   llvm::Value *Ptr = LV.getBitfieldAddr();
458 
459   const llvm::Type *EltTy =
460     cast<llvm::PointerType>(Ptr->getType())->getElementType();
461   unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
462 
463   // In some cases the bitfield may straddle two memory locations.  Currently we
464   // load the entire bitfield, then do the magic to sign-extend it if
465   // necessary. This results in somewhat more code than necessary for the common
466   // case (one load), since two shifts accomplish both the masking and sign
467   // extension.
468   unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
469   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
470 
471   // Shift to proper location.
472   if (StartBit)
473     Val = Builder.CreateLShr(Val, StartBit, "bf.lo");
474 
475   // Mask off unused bits.
476   llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext,
477                                 llvm::APInt::getLowBitsSet(EltTySize, LowBits));
478   Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
479 
480   // Fetch the high bits if necessary.
481   if (LowBits < BitfieldSize) {
482     unsigned HighBits = BitfieldSize - LowBits;
483     llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
484                             llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
485     llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
486                                               LV.isVolatileQualified(),
487                                               "tmp");
488 
489     // Mask off unused bits.
490     llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext,
491                                llvm::APInt::getLowBitsSet(EltTySize, HighBits));
492     HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
493 
494     // Shift to proper location and or in to bitfield value.
495     HighVal = Builder.CreateShl(HighVal, LowBits);
496     Val = Builder.CreateOr(Val, HighVal, "bf.val");
497   }
498 
499   // Sign extend if necessary.
500   if (LV.isBitfieldSigned()) {
501     llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
502                                                     EltTySize - BitfieldSize);
503     Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
504                              ExtraBits, "bf.val.sext");
505   }
506 
507   // The bitfield type and the normal type differ when the storage sizes differ
508   // (currently just _Bool).
509   Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
510 
511   return RValue::get(Val);
512 }
513 
514 RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
515                                                     QualType ExprType) {
516   return EmitObjCPropertyGet(LV.getPropertyRefExpr());
517 }
518 
519 RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV,
520                                                QualType ExprType) {
521   return EmitObjCPropertyGet(LV.getKVCRefExpr());
522 }
523 
524 // If this is a reference to a subset of the elements of a vector, create an
525 // appropriate shufflevector.
526 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
527                                                          QualType ExprType) {
528   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
529                                         LV.isVolatileQualified(), "tmp");
530 
531   const llvm::Constant *Elts = LV.getExtVectorElts();
532 
533   // If the result of the expression is a non-vector type, we must be extracting
534   // a single element.  Just codegen as an extractelement.
535   const VectorType *ExprVT = ExprType->getAs<VectorType>();
536   if (!ExprVT) {
537     unsigned InIdx = getAccessedFieldNo(0, Elts);
538     llvm::Value *Elt = llvm::ConstantInt::get(
539                                       llvm::Type::getInt32Ty(VMContext), InIdx);
540     return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
541   }
542 
543   // Always use shuffle vector to try to retain the original program structure
544   unsigned NumResultElts = ExprVT->getNumElements();
545 
546   llvm::SmallVector<llvm::Constant*, 4> Mask;
547   for (unsigned i = 0; i != NumResultElts; ++i) {
548     unsigned InIdx = getAccessedFieldNo(i, Elts);
549     Mask.push_back(llvm::ConstantInt::get(
550                                      llvm::Type::getInt32Ty(VMContext), InIdx));
551   }
552 
553   llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
554   Vec = Builder.CreateShuffleVector(Vec,
555                                     llvm::UndefValue::get(Vec->getType()),
556                                     MaskV, "tmp");
557   return RValue::get(Vec);
558 }
559 
560 
561 
562 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
563 /// lvalue, where both are guaranteed to the have the same type, and that type
564 /// is 'Ty'.
565 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
566                                              QualType Ty) {
567   if (!Dst.isSimple()) {
568     if (Dst.isVectorElt()) {
569       // Read/modify/write the vector, inserting the new element.
570       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
571                                             Dst.isVolatileQualified(), "tmp");
572       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
573                                         Dst.getVectorIdx(), "vecins");
574       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
575       return;
576     }
577 
578     // If this is an update of extended vector elements, insert them as
579     // appropriate.
580     if (Dst.isExtVectorElt())
581       return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
582 
583     if (Dst.isBitfield())
584       return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
585 
586     if (Dst.isPropertyRef())
587       return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty);
588 
589     assert(Dst.isKVCRef() && "Unknown LValue type");
590     return EmitStoreThroughKVCRefLValue(Src, Dst, Ty);
591   }
592 
593   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
594     // load of a __weak object.
595     llvm::Value *LvalueDst = Dst.getAddress();
596     llvm::Value *src = Src.getScalarVal();
597      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
598     return;
599   }
600 
601   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
602     // load of a __strong object.
603     llvm::Value *LvalueDst = Dst.getAddress();
604     llvm::Value *src = Src.getScalarVal();
605     if (Dst.isObjCIvar()) {
606       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
607       const llvm::Type *ResultType = ConvertType(getContext().LongTy);
608       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
609       llvm::Value *dst = RHS;
610       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
611       llvm::Value *LHS =
612         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
613       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
614       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
615                                               BytesBetween);
616     } else if (Dst.isGlobalObjCRef())
617       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
618     else
619       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
620     return;
621   }
622 
623   assert(Src.isScalar() && "Can't emit an agg store with this method");
624   EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
625                     Dst.isVolatileQualified(), Ty);
626 }
627 
628 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
629                                                      QualType Ty,
630                                                      llvm::Value **Result) {
631   unsigned StartBit = Dst.getBitfieldStartBit();
632   unsigned BitfieldSize = Dst.getBitfieldSize();
633   llvm::Value *Ptr = Dst.getBitfieldAddr();
634 
635   const llvm::Type *EltTy =
636     cast<llvm::PointerType>(Ptr->getType())->getElementType();
637   unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
638 
639   // Get the new value, cast to the appropriate type and masked to exactly the
640   // size of the bit-field.
641   llvm::Value *SrcVal = Src.getScalarVal();
642   llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
643   llvm::Constant *Mask = llvm::ConstantInt::get(VMContext,
644                            llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
645   NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");
646 
647   // Return the new value of the bit-field, if requested.
648   if (Result) {
649     // Cast back to the proper type for result.
650     const llvm::Type *SrcTy = SrcVal->getType();
651     llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false,
652                                                   "bf.reload.val");
653 
654     // Sign extend if necessary.
655     if (Dst.isBitfieldSigned()) {
656       unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
657       llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
658                                                       SrcTySize - BitfieldSize);
659       SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
660                                     ExtraBits, "bf.reload.sext");
661     }
662 
663     *Result = SrcTrunc;
664   }
665 
666   // In some cases the bitfield may straddle two memory locations.  Emit the low
667   // part first and check to see if the high needs to be done.
668   unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
669   llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
670                                            "bf.prev.low");
671 
672   // Compute the mask for zero-ing the low part of this bitfield.
673   llvm::Constant *InvMask =
674     llvm::ConstantInt::get(VMContext,
675              ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits));
676 
677   // Compute the new low part as
678   //   LowVal = (LowVal & InvMask) | (NewVal << StartBit),
679   // with the shift of NewVal implicitly stripping the high bits.
680   llvm::Value *NewLowVal =
681     Builder.CreateShl(NewVal, StartBit, "bf.value.lo");
682   LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
683   LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
684 
685   // Write back.
686   Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
687 
688   // If the low part doesn't cover the bitfield emit a high part.
689   if (LowBits < BitfieldSize) {
690     unsigned HighBits = BitfieldSize - LowBits;
691     llvm::Value *HighPtr =  Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
692                             llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
693     llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
694                                               Dst.isVolatileQualified(),
695                                               "bf.prev.hi");
696 
697     // Compute the mask for zero-ing the high part of this bitfield.
698     llvm::Constant *InvMask =
699       llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize,
700                                HighBits));
701 
702     // Compute the new high part as
703     //   HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
704     // where the high bits of NewVal have already been cleared and the
705     // shift stripping the low bits.
706     llvm::Value *NewHighVal =
707       Builder.CreateLShr(NewVal, LowBits, "bf.value.high");
708     HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
709     HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
710 
711     // Write back.
712     Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
713   }
714 }
715 
716 void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
717                                                         LValue Dst,
718                                                         QualType Ty) {
719   EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src);
720 }
721 
722 void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src,
723                                                    LValue Dst,
724                                                    QualType Ty) {
725   EmitObjCPropertySet(Dst.getKVCRefExpr(), Src);
726 }
727 
728 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
729                                                                LValue Dst,
730                                                                QualType Ty) {
731   // This access turns into a read/modify/write of the vector.  Load the input
732   // value now.
733   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
734                                         Dst.isVolatileQualified(), "tmp");
735   const llvm::Constant *Elts = Dst.getExtVectorElts();
736 
737   llvm::Value *SrcVal = Src.getScalarVal();
738 
739   if (const VectorType *VTy = Ty->getAs<VectorType>()) {
740     unsigned NumSrcElts = VTy->getNumElements();
741     unsigned NumDstElts =
742        cast<llvm::VectorType>(Vec->getType())->getNumElements();
743     if (NumDstElts == NumSrcElts) {
744       // Use shuffle vector is the src and destination are the same number of
745       // elements and restore the vector mask since it is on the side it will be
746       // stored.
747       llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
748       for (unsigned i = 0; i != NumSrcElts; ++i) {
749         unsigned InIdx = getAccessedFieldNo(i, Elts);
750         Mask[InIdx] = llvm::ConstantInt::get(
751                                           llvm::Type::getInt32Ty(VMContext), i);
752       }
753 
754       llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
755       Vec = Builder.CreateShuffleVector(SrcVal,
756                                         llvm::UndefValue::get(Vec->getType()),
757                                         MaskV, "tmp");
758     } else if (NumDstElts > NumSrcElts) {
759       // Extended the source vector to the same length and then shuffle it
760       // into the destination.
761       // FIXME: since we're shuffling with undef, can we just use the indices
762       //        into that?  This could be simpler.
763       llvm::SmallVector<llvm::Constant*, 4> ExtMask;
764       const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
765       unsigned i;
766       for (i = 0; i != NumSrcElts; ++i)
767         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
768       for (; i != NumDstElts; ++i)
769         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
770       llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
771                                                         ExtMask.size());
772       llvm::Value *ExtSrcVal =
773         Builder.CreateShuffleVector(SrcVal,
774                                     llvm::UndefValue::get(SrcVal->getType()),
775                                     ExtMaskV, "tmp");
776       // build identity
777       llvm::SmallVector<llvm::Constant*, 4> Mask;
778       for (unsigned i = 0; i != NumDstElts; ++i)
779         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
780 
781       // modify when what gets shuffled in
782       for (unsigned i = 0; i != NumSrcElts; ++i) {
783         unsigned Idx = getAccessedFieldNo(i, Elts);
784         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
785       }
786       llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
787       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
788     } else {
789       // We should never shorten the vector
790       assert(0 && "unexpected shorten vector length");
791     }
792   } else {
793     // If the Src is a scalar (not a vector) it must be updating one element.
794     unsigned InIdx = getAccessedFieldNo(0, Elts);
795     const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
796     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
797     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
798   }
799 
800   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
801 }
802 
803 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
804 // generating write-barries API. It is currently a global, ivar,
805 // or neither.
806 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
807                                  LValue &LV) {
808   if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
809     return;
810 
811   if (isa<ObjCIvarRefExpr>(E)) {
812     LV.SetObjCIvar(LV, true);
813     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
814     LV.setBaseIvarExp(Exp->getBase());
815     LV.SetObjCArray(LV, E->getType()->isArrayType());
816     return;
817   }
818 
819   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
820     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
821       if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) ||
822           VD->isFileVarDecl())
823         LV.SetGlobalObjCRef(LV, true);
824     }
825     LV.SetObjCArray(LV, E->getType()->isArrayType());
826     return;
827   }
828 
829   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
830     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
831     return;
832   }
833 
834   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
835     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
836     if (LV.isObjCIvar()) {
837       // If cast is to a structure pointer, follow gcc's behavior and make it
838       // a non-ivar write-barrier.
839       QualType ExpTy = E->getType();
840       if (ExpTy->isPointerType())
841         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
842       if (ExpTy->isRecordType())
843         LV.SetObjCIvar(LV, false);
844     }
845     return;
846   }
847   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
848     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
849     return;
850   }
851 
852   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
853     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
854     return;
855   }
856 
857   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
858     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
859     if (LV.isObjCIvar() && !LV.isObjCArray())
860       // Using array syntax to assigning to what an ivar points to is not
861       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
862       LV.SetObjCIvar(LV, false);
863     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
864       // Using array syntax to assigning to what global points to is not
865       // same as assigning to the global itself. {id *G;} G[i] = 0;
866       LV.SetGlobalObjCRef(LV, false);
867     return;
868   }
869 
870   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
871     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
872     // We don't know if member is an 'ivar', but this flag is looked at
873     // only in the context of LV.isObjCIvar().
874     LV.SetObjCArray(LV, E->getType()->isArrayType());
875     return;
876   }
877 }
878 
879 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
880                                       const Expr *E, const VarDecl *VD) {
881   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
882          "Var decl must have external storage or be a file var decl!");
883 
884   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
885   if (VD->getType()->isReferenceType())
886     V = CGF.Builder.CreateLoad(V, "tmp");
887   LValue LV = LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
888   setObjCGCLValueClass(CGF.getContext(), E, LV);
889   return LV;
890 }
891 
892 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
893                                       const Expr *E, const FunctionDecl *FD) {
894   llvm::Value* V = CGF.CGM.GetAddrOfFunction(FD);
895   if (!FD->hasPrototype()) {
896     if (const FunctionProtoType *Proto =
897             FD->getType()->getAs<FunctionProtoType>()) {
898       // Ugly case: for a K&R-style definition, the type of the definition
899       // isn't the same as the type of a use.  Correct for this with a
900       // bitcast.
901       QualType NoProtoType =
902           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
903       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
904       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
905     }
906   }
907   return LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
908 }
909 
910 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
911   const NamedDecl *ND = E->getDecl();
912 
913   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
914 
915     // Check if this is a global variable.
916     if (VD->hasExternalStorage() || VD->isFileVarDecl())
917       return EmitGlobalVarDeclLValue(*this, E, VD);
918 
919     bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>();
920 
921     llvm::Value *V = LocalDeclMap[VD];
922     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
923 
924     Qualifiers Quals = MakeQualifiers(E->getType());
925     // local variables do not get their gc attribute set.
926     // local static?
927     if (NonGCable) Quals.removeObjCGCAttr();
928 
929     if (VD->hasAttr<BlocksAttr>()) {
930       V = Builder.CreateStructGEP(V, 1, "forwarding");
931       V = Builder.CreateLoad(V);
932       V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD),
933                                   VD->getNameAsString());
934     }
935     if (VD->getType()->isReferenceType())
936       V = Builder.CreateLoad(V, "tmp");
937     LValue LV = LValue::MakeAddr(V, Quals);
938     LValue::SetObjCNonGC(LV, NonGCable);
939     setObjCGCLValueClass(getContext(), E, LV);
940     return LV;
941   }
942 
943   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
944     return EmitFunctionDeclLValue(*this, E, FD);
945 
946   if (E->getQualifier()) {
947     // FIXME: the qualifier check does not seem sufficient here
948     return EmitPointerToDataMemberLValue(cast<FieldDecl>(ND));
949   }
950 
951   assert(false && "Unhandled DeclRefExpr");
952 
953   // an invalid LValue, but the assert will
954   // ensure that this point is never reached.
955   return LValue();
956 }
957 
958 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
959   return LValue::MakeAddr(GetAddrOfBlockDecl(E), MakeQualifiers(E->getType()));
960 }
961 
962 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
963   // __extension__ doesn't affect lvalue-ness.
964   if (E->getOpcode() == UnaryOperator::Extension)
965     return EmitLValue(E->getSubExpr());
966 
967   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
968   switch (E->getOpcode()) {
969   default: assert(0 && "Unknown unary operator lvalue!");
970   case UnaryOperator::Deref: {
971     QualType T = E->getSubExpr()->getType()->getPointeeType();
972     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
973 
974     Qualifiers Quals = MakeQualifiers(T);
975     Quals.setAddressSpace(ExprTy.getAddressSpace());
976 
977     LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()), Quals);
978     // We should not generate __weak write barrier on indirect reference
979     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
980     // But, we continue to generate __strong write barrier on indirect write
981     // into a pointer to object.
982     if (getContext().getLangOptions().ObjC1 &&
983         getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
984         LV.isObjCWeak())
985       LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
986     return LV;
987   }
988   case UnaryOperator::Real:
989   case UnaryOperator::Imag: {
990     LValue LV = EmitLValue(E->getSubExpr());
991     unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
992     return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
993                                                     Idx, "idx"),
994                             MakeQualifiers(ExprTy));
995   }
996   case UnaryOperator::PreInc:
997   case UnaryOperator::PreDec:
998     return EmitUnsupportedLValue(E, "pre-inc/dec expression");
999   }
1000 }
1001 
1002 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1003   return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E),
1004                           Qualifiers());
1005 }
1006 
1007 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1008   return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1009                           Qualifiers());
1010 }
1011 
1012 
1013 LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) {
1014   std::string GlobalVarName;
1015 
1016   switch (Type) {
1017   default: assert(0 && "Invalid type");
1018   case PredefinedExpr::Func:
1019     GlobalVarName = "__func__.";
1020     break;
1021   case PredefinedExpr::Function:
1022     GlobalVarName = "__FUNCTION__.";
1023     break;
1024   case PredefinedExpr::PrettyFunction:
1025     GlobalVarName = "__PRETTY_FUNCTION__.";
1026     break;
1027   }
1028 
1029   llvm::StringRef FnName = CurFn->getName();
1030   if (FnName.startswith("\01"))
1031     FnName = FnName.substr(1);
1032   GlobalVarName += FnName;
1033 
1034   std::string FunctionName =
1035     PredefinedExpr::ComputeName(getContext(), (PredefinedExpr::IdentType)Type,
1036                                 CurCodeDecl);
1037 
1038   llvm::Constant *C =
1039     CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1040   return LValue::MakeAddr(C, Qualifiers());
1041 }
1042 
1043 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1044   switch (E->getIdentType()) {
1045   default:
1046     return EmitUnsupportedLValue(E, "predefined expression");
1047   case PredefinedExpr::Func:
1048   case PredefinedExpr::Function:
1049   case PredefinedExpr::PrettyFunction:
1050     return EmitPredefinedFunctionName(E->getIdentType());
1051   }
1052 }
1053 
1054 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1055   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1056 
1057   // If we are not optimzing, don't collapse all calls to trap in the function
1058   // to the same call, that way, in the debugger they can see which operation
1059   // did in fact fail.  If we are optimizing, we collpase all call to trap down
1060   // to just one per function to save on codesize.
1061   if (GCO.OptimizationLevel
1062       && TrapBB)
1063     return TrapBB;
1064 
1065   llvm::BasicBlock *Cont = 0;
1066   if (HaveInsertPoint()) {
1067     Cont = createBasicBlock("cont");
1068     EmitBranch(Cont);
1069   }
1070   TrapBB = createBasicBlock("trap");
1071   EmitBlock(TrapBB);
1072 
1073   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0);
1074   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1075   TrapCall->setDoesNotReturn();
1076   TrapCall->setDoesNotThrow();
1077   Builder.CreateUnreachable();
1078 
1079   if (Cont)
1080     EmitBlock(Cont);
1081   return TrapBB;
1082 }
1083 
1084 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1085   // The index must always be an integer, which is not an aggregate.  Emit it.
1086   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1087   QualType IdxTy  = E->getIdx()->getType();
1088   bool IdxSigned = IdxTy->isSignedIntegerType();
1089 
1090   // If the base is a vector type, then we are forming a vector element lvalue
1091   // with this subscript.
1092   if (E->getBase()->getType()->isVectorType()) {
1093     // Emit the vector as an lvalue to get its address.
1094     LValue LHS = EmitLValue(E->getBase());
1095     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1096     Idx = Builder.CreateIntCast(Idx,
1097                           llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx");
1098     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1099                                  E->getBase()->getType().getCVRQualifiers());
1100   }
1101 
1102   // The base must be a pointer, which is not an aggregate.  Emit it.
1103   llvm::Value *Base = EmitScalarExpr(E->getBase());
1104 
1105   // Extend or truncate the index type to 32 or 64-bits.
1106   unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1107   if (IdxBitwidth != LLVMPointerWidth)
1108     Idx = Builder.CreateIntCast(Idx,
1109                             llvm::IntegerType::get(VMContext, LLVMPointerWidth),
1110                                 IdxSigned, "idxprom");
1111 
1112   // FIXME: As llvm implements the object size checking, this can come out.
1113   if (CatchUndefined) {
1114     if (const ImplicitCastExpr *ICE=dyn_cast<ImplicitCastExpr>(E->getBase())) {
1115       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1116         if (ICE->getCastKind() == CastExpr::CK_ArrayToPointerDecay) {
1117           if (const ConstantArrayType *CAT
1118               = getContext().getAsConstantArrayType(DRE->getType())) {
1119             llvm::APInt Size = CAT->getSize();
1120             llvm::BasicBlock *Cont = createBasicBlock("cont");
1121             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1122                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1123                                  Cont, getTrapBB());
1124             EmitBlock(Cont);
1125           }
1126         }
1127       }
1128     }
1129   }
1130 
1131   // We know that the pointer points to a type of the correct size, unless the
1132   // size is a VLA or Objective-C interface.
1133   llvm::Value *Address = 0;
1134   if (const VariableArrayType *VAT =
1135         getContext().getAsVariableArrayType(E->getType())) {
1136     llvm::Value *VLASize = GetVLASize(VAT);
1137 
1138     Idx = Builder.CreateMul(Idx, VLASize);
1139 
1140     QualType BaseType = getContext().getBaseElementType(VAT);
1141 
1142     uint64_t BaseTypeSize = getContext().getTypeSize(BaseType) / 8;
1143     Idx = Builder.CreateUDiv(Idx,
1144                              llvm::ConstantInt::get(Idx->getType(),
1145                                                     BaseTypeSize));
1146     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1147   } else if (const ObjCInterfaceType *OIT =
1148              dyn_cast<ObjCInterfaceType>(E->getType())) {
1149     llvm::Value *InterfaceSize =
1150       llvm::ConstantInt::get(Idx->getType(),
1151                              getContext().getTypeSize(OIT) / 8);
1152 
1153     Idx = Builder.CreateMul(Idx, InterfaceSize);
1154 
1155     const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
1156     Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy),
1157                                 Idx, "arrayidx");
1158     Address = Builder.CreateBitCast(Address, Base->getType());
1159   } else {
1160     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1161   }
1162 
1163   QualType T = E->getBase()->getType()->getPointeeType();
1164   assert(!T.isNull() &&
1165          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1166 
1167   Qualifiers Quals = MakeQualifiers(T);
1168   Quals.setAddressSpace(E->getBase()->getType().getAddressSpace());
1169 
1170   LValue LV = LValue::MakeAddr(Address, Quals);
1171   if (getContext().getLangOptions().ObjC1 &&
1172       getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1173     LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1174     setObjCGCLValueClass(getContext(), E, LV);
1175   }
1176   return LV;
1177 }
1178 
1179 static
1180 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1181                                        llvm::SmallVector<unsigned, 4> &Elts) {
1182   llvm::SmallVector<llvm::Constant*, 4> CElts;
1183 
1184   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1185     CElts.push_back(llvm::ConstantInt::get(
1186                                    llvm::Type::getInt32Ty(VMContext), Elts[i]));
1187 
1188   return llvm::ConstantVector::get(&CElts[0], CElts.size());
1189 }
1190 
1191 LValue CodeGenFunction::
1192 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1193   const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1194 
1195   // Emit the base vector as an l-value.
1196   LValue Base;
1197 
1198   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1199   if (E->isArrow()) {
1200     // If it is a pointer to a vector, emit the address and form an lvalue with
1201     // it.
1202     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1203     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1204     Qualifiers Quals = MakeQualifiers(PT->getPointeeType());
1205     Quals.removeObjCGCAttr();
1206     Base = LValue::MakeAddr(Ptr, Quals);
1207   } else if (E->getBase()->isLvalue(getContext()) == Expr::LV_Valid) {
1208     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1209     // emit the base as an lvalue.
1210     assert(E->getBase()->getType()->isVectorType());
1211     Base = EmitLValue(E->getBase());
1212   } else {
1213     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1214     const VectorType *VT = E->getBase()->getType()->getAs<VectorType>();
1215     assert(VT && "Result must be a vector");
1216     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1217 
1218     // Store the vector to memory (because LValue wants an address).
1219     llvm::Value *VecMem =CreateTempAlloca(ConvertType(E->getBase()->getType()));
1220     Builder.CreateStore(Vec, VecMem);
1221     Base = LValue::MakeAddr(VecMem, Qualifiers());
1222   }
1223 
1224   // Encode the element access list into a vector of unsigned indices.
1225   llvm::SmallVector<unsigned, 4> Indices;
1226   E->getEncodedElementAccess(Indices);
1227 
1228   if (Base.isSimple()) {
1229     llvm::Constant *CV = GenerateConstantVector(VMContext, Indices);
1230     return LValue::MakeExtVectorElt(Base.getAddress(), CV,
1231                                     Base.getVRQualifiers());
1232   }
1233   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1234 
1235   llvm::Constant *BaseElts = Base.getExtVectorElts();
1236   llvm::SmallVector<llvm::Constant *, 4> CElts;
1237 
1238   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1239     if (isa<llvm::ConstantAggregateZero>(BaseElts))
1240       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1241     else
1242       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1243   }
1244   llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
1245   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
1246                                   Base.getVRQualifiers());
1247 }
1248 
1249 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1250   bool isUnion = false;
1251   bool isNonGC = false;
1252   Expr *BaseExpr = E->getBase();
1253   llvm::Value *BaseValue = NULL;
1254   Qualifiers BaseQuals;
1255 
1256   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1257   if (E->isArrow()) {
1258     BaseValue = EmitScalarExpr(BaseExpr);
1259     const PointerType *PTy =
1260       BaseExpr->getType()->getAs<PointerType>();
1261     if (PTy->getPointeeType()->isUnionType())
1262       isUnion = true;
1263     BaseQuals = PTy->getPointeeType().getQualifiers();
1264   } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) ||
1265              isa<ObjCImplicitSetterGetterRefExpr>(
1266                BaseExpr->IgnoreParens())) {
1267     RValue RV = EmitObjCPropertyGet(BaseExpr);
1268     BaseValue = RV.getAggregateAddr();
1269     if (BaseExpr->getType()->isUnionType())
1270       isUnion = true;
1271     BaseQuals = BaseExpr->getType().getQualifiers();
1272   } else {
1273     LValue BaseLV = EmitLValue(BaseExpr);
1274     if (BaseLV.isNonGC())
1275       isNonGC = true;
1276     // FIXME: this isn't right for bitfields.
1277     BaseValue = BaseLV.getAddress();
1278     QualType BaseTy = BaseExpr->getType();
1279     if (BaseTy->isUnionType())
1280       isUnion = true;
1281     BaseQuals = BaseTy.getQualifiers();
1282   }
1283 
1284   NamedDecl *ND = E->getMemberDecl();
1285   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1286     LValue LV = EmitLValueForField(BaseValue, Field, isUnion,
1287                                    BaseQuals.getCVRQualifiers());
1288     LValue::SetObjCNonGC(LV, isNonGC);
1289     setObjCGCLValueClass(getContext(), E, LV);
1290     return LV;
1291   }
1292 
1293   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1294     return EmitGlobalVarDeclLValue(*this, E, VD);
1295 
1296   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1297     return EmitFunctionDeclLValue(*this, E, FD);
1298 
1299   assert(false && "Unhandled member declaration!");
1300   return LValue();
1301 }
1302 
1303 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue,
1304                                               const FieldDecl* Field,
1305                                               unsigned CVRQualifiers) {
1306   CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field);
1307 
1308   // FIXME: CodeGenTypes should expose a method to get the appropriate type for
1309   // FieldTy (the appropriate type is ABI-dependent).
1310   const llvm::Type *FieldTy =
1311     CGM.getTypes().ConvertTypeForMem(Field->getType());
1312   const llvm::PointerType *BaseTy =
1313   cast<llvm::PointerType>(BaseValue->getType());
1314   unsigned AS = BaseTy->getAddressSpace();
1315   BaseValue = Builder.CreateBitCast(BaseValue,
1316                                     llvm::PointerType::get(FieldTy, AS),
1317                                     "tmp");
1318 
1319   llvm::Value *Idx =
1320     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo);
1321   llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp");
1322 
1323   return LValue::MakeBitfield(V, Info.Start, Info.Size,
1324                               Field->getType()->isSignedIntegerType(),
1325                             Field->getType().getCVRQualifiers()|CVRQualifiers);
1326 }
1327 
1328 LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
1329                                            const FieldDecl* Field,
1330                                            bool isUnion,
1331                                            unsigned CVRQualifiers) {
1332   if (Field->isBitField())
1333     return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
1334 
1335   unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
1336   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1337 
1338   // Match union field type.
1339   if (isUnion) {
1340     const llvm::Type *FieldTy =
1341       CGM.getTypes().ConvertTypeForMem(Field->getType());
1342     const llvm::PointerType * BaseTy =
1343       cast<llvm::PointerType>(BaseValue->getType());
1344     unsigned AS = BaseTy->getAddressSpace();
1345     V = Builder.CreateBitCast(V,
1346                               llvm::PointerType::get(FieldTy, AS),
1347                               "tmp");
1348   }
1349   if (Field->getType()->isReferenceType())
1350     V = Builder.CreateLoad(V, "tmp");
1351 
1352   Qualifiers Quals = MakeQualifiers(Field->getType());
1353   Quals.addCVRQualifiers(CVRQualifiers);
1354   // __weak attribute on a field is ignored.
1355   if (Quals.getObjCGCAttr() == Qualifiers::Weak)
1356     Quals.removeObjCGCAttr();
1357 
1358   return LValue::MakeAddr(V, Quals);
1359 }
1360 
1361 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){
1362   const llvm::Type *LTy = ConvertType(E->getType());
1363   llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral");
1364 
1365   const Expr* InitExpr = E->getInitializer();
1366   LValue Result = LValue::MakeAddr(DeclPtr, MakeQualifiers(E->getType()));
1367 
1368   if (E->getType()->isComplexType())
1369     EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
1370   else if (hasAggregateLLVMType(E->getType()))
1371     EmitAnyExpr(InitExpr, DeclPtr, false);
1372   else
1373     EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
1374 
1375   return Result;
1376 }
1377 
1378 LValue
1379 CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator* E) {
1380   if (E->isLvalue(getContext()) == Expr::LV_Valid) {
1381     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1382     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1383     llvm::BasicBlock *ContBlock = createBasicBlock("cond.end");
1384 
1385     llvm::Value *Cond = EvaluateExprAsBool(E->getCond());
1386     Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
1387 
1388     EmitBlock(LHSBlock);
1389 
1390     LValue LHS = EmitLValue(E->getLHS());
1391     if (!LHS.isSimple())
1392       return EmitUnsupportedLValue(E, "conditional operator");
1393 
1394     llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(),"condtmp");
1395     Builder.CreateStore(LHS.getAddress(), Temp);
1396     EmitBranch(ContBlock);
1397 
1398     EmitBlock(RHSBlock);
1399     LValue RHS = EmitLValue(E->getRHS());
1400     if (!RHS.isSimple())
1401       return EmitUnsupportedLValue(E, "conditional operator");
1402 
1403     Builder.CreateStore(RHS.getAddress(), Temp);
1404     EmitBranch(ContBlock);
1405 
1406     EmitBlock(ContBlock);
1407 
1408     Temp = Builder.CreateLoad(Temp, "lv");
1409     return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1410   }
1411 
1412   // ?: here should be an aggregate.
1413   assert((hasAggregateLLVMType(E->getType()) &&
1414           !E->getType()->isAnyComplexType()) &&
1415          "Unexpected conditional operator!");
1416 
1417   llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
1418   EmitAggExpr(E, Temp, false);
1419 
1420   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1421 }
1422 
1423 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1424 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
1425 /// otherwise if a cast is needed by the code generator in an lvalue context,
1426 /// then it must mean that we need the address of an aggregate in order to
1427 /// access one of its fields.  This can happen for all the reasons that casts
1428 /// are permitted with aggregate result, including noop aggregate casts, and
1429 /// cast from scalar to union.
1430 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1431   switch (E->getCastKind()) {
1432   default:
1433     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
1434 
1435   case CastExpr::CK_Dynamic: {
1436     LValue LV = EmitLValue(E->getSubExpr());
1437     llvm::Value *V = LV.getAddress();
1438     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
1439     return LValue::MakeAddr(EmitDynamicCast(V, DCE),
1440                             MakeQualifiers(E->getType()));
1441   }
1442 
1443   case CastExpr::CK_NoOp:
1444   case CastExpr::CK_ConstructorConversion:
1445   case CastExpr::CK_UserDefinedConversion:
1446   case CastExpr::CK_AnyPointerToObjCPointerCast:
1447     return EmitLValue(E->getSubExpr());
1448 
1449   case CastExpr::CK_DerivedToBase: {
1450     const RecordType *DerivedClassTy =
1451       E->getSubExpr()->getType()->getAs<RecordType>();
1452     CXXRecordDecl *DerivedClassDecl =
1453       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1454 
1455     const RecordType *BaseClassTy = E->getType()->getAs<RecordType>();
1456     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
1457 
1458     LValue LV = EmitLValue(E->getSubExpr());
1459 
1460     // Perform the derived-to-base conversion
1461     llvm::Value *Base =
1462       GetAddressOfBaseClass(LV.getAddress(), DerivedClassDecl,
1463                             BaseClassDecl, /*NullCheckValue=*/false);
1464 
1465     return LValue::MakeAddr(Base, MakeQualifiers(E->getType()));
1466   }
1467   case CastExpr::CK_ToUnion: {
1468     llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
1469     EmitAnyExpr(E->getSubExpr(), Temp, false);
1470 
1471     return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1472   }
1473   case CastExpr::CK_BaseToDerived: {
1474     const RecordType *BaseClassTy =
1475       E->getSubExpr()->getType()->getAs<RecordType>();
1476     CXXRecordDecl *BaseClassDecl =
1477       cast<CXXRecordDecl>(BaseClassTy->getDecl());
1478 
1479     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
1480     CXXRecordDecl *DerivedClassDecl =
1481       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1482 
1483     LValue LV = EmitLValue(E->getSubExpr());
1484 
1485     // Perform the base-to-derived conversion
1486     llvm::Value *Derived =
1487       GetAddressOfDerivedClass(LV.getAddress(), BaseClassDecl,
1488                                DerivedClassDecl, /*NullCheckValue=*/false);
1489 
1490     return LValue::MakeAddr(Derived, MakeQualifiers(E->getType()));
1491   }
1492   case CastExpr::CK_BitCast: {
1493     // This must be a reinterpret_cast (or c-style equivalent).
1494     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
1495 
1496     LValue LV = EmitLValue(E->getSubExpr());
1497     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1498                                            ConvertType(CE->getTypeAsWritten()));
1499     return LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1500   }
1501   }
1502 }
1503 
1504 LValue CodeGenFunction::EmitNullInitializationLValue(
1505                                               const CXXZeroInitValueExpr *E) {
1506   QualType Ty = E->getType();
1507   const llvm::Type *LTy = ConvertTypeForMem(Ty);
1508   llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
1509   unsigned Align = getContext().getTypeAlign(Ty)/8;
1510   Alloc->setAlignment(Align);
1511   LValue lvalue = LValue::MakeAddr(Alloc, Qualifiers());
1512   EmitMemSetToZero(lvalue.getAddress(), Ty);
1513   return lvalue;
1514 }
1515 
1516 //===--------------------------------------------------------------------===//
1517 //                             Expression Emission
1518 //===--------------------------------------------------------------------===//
1519 
1520 
1521 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
1522   // Builtins never have block type.
1523   if (E->getCallee()->getType()->isBlockPointerType())
1524     return EmitBlockCallExpr(E);
1525 
1526   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
1527     return EmitCXXMemberCallExpr(CE);
1528 
1529   const Decl *TargetDecl = 0;
1530   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
1531     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
1532       TargetDecl = DRE->getDecl();
1533       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
1534         if (unsigned builtinID = FD->getBuiltinID())
1535           return EmitBuiltinExpr(FD, builtinID, E);
1536     }
1537   }
1538 
1539   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
1540     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
1541       return EmitCXXOperatorMemberCallExpr(CE, MD);
1542 
1543   if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
1544     // C++ [expr.pseudo]p1:
1545     //   The result shall only be used as the operand for the function call
1546     //   operator (), and the result of such a call has type void. The only
1547     //   effect is the evaluation of the postfix-expression before the dot or
1548     //   arrow.
1549     EmitScalarExpr(E->getCallee());
1550     return RValue::get(0);
1551   }
1552 
1553   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
1554   return EmitCall(Callee, E->getCallee()->getType(),
1555                   E->arg_begin(), E->arg_end(), TargetDecl);
1556 }
1557 
1558 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
1559   // Comma expressions just emit their LHS then their RHS as an l-value.
1560   if (E->getOpcode() == BinaryOperator::Comma) {
1561     EmitAnyExpr(E->getLHS());
1562     EnsureInsertPoint();
1563     return EmitLValue(E->getRHS());
1564   }
1565 
1566   if (E->getOpcode() == BinaryOperator::PtrMemD ||
1567       E->getOpcode() == BinaryOperator::PtrMemI)
1568     return EmitPointerToDataMemberBinaryExpr(E);
1569 
1570   // Can only get l-value for binary operator expressions which are a
1571   // simple assignment of aggregate type.
1572   if (E->getOpcode() != BinaryOperator::Assign)
1573     return EmitUnsupportedLValue(E, "binary l-value expression");
1574 
1575   if (!hasAggregateLLVMType(E->getType())) {
1576     // Emit the LHS as an l-value.
1577     LValue LV = EmitLValue(E->getLHS());
1578 
1579     llvm::Value *RHS = EmitScalarExpr(E->getRHS());
1580     EmitStoreOfScalar(RHS, LV.getAddress(), LV.isVolatileQualified(),
1581                       E->getType());
1582     return LV;
1583   }
1584 
1585   llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
1586   EmitAggExpr(E, Temp, false);
1587   // FIXME: Are these qualifiers correct?
1588   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1589 }
1590 
1591 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
1592   RValue RV = EmitCallExpr(E);
1593 
1594   if (!RV.isScalar())
1595     return LValue::MakeAddr(RV.getAggregateAddr(),MakeQualifiers(E->getType()));
1596 
1597   assert(E->getCallReturnType()->isReferenceType() &&
1598          "Can't have a scalar return unless the return type is a "
1599          "reference type!");
1600 
1601   return LValue::MakeAddr(RV.getScalarVal(), MakeQualifiers(E->getType()));
1602 }
1603 
1604 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
1605   // FIXME: This shouldn't require another copy.
1606   llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
1607   EmitAggExpr(E, Temp, false);
1608   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1609 }
1610 
1611 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
1612   llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), "tmp");
1613   EmitCXXConstructExpr(Temp, E);
1614   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1615 }
1616 
1617 LValue
1618 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
1619   llvm::Value *Temp = EmitCXXTypeidExpr(E);
1620   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1621 }
1622 
1623 LValue
1624 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
1625   LValue LV = EmitLValue(E->getSubExpr());
1626   PushCXXTemporary(E->getTemporary(), LV.getAddress());
1627   return LV;
1628 }
1629 
1630 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
1631   // Can only get l-value for message expression returning aggregate type
1632   RValue RV = EmitObjCMessageExpr(E);
1633   // FIXME: can this be volatile?
1634   return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1635 }
1636 
1637 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1638                                              const ObjCIvarDecl *Ivar) {
1639   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
1640 }
1641 
1642 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
1643                                           llvm::Value *BaseValue,
1644                                           const ObjCIvarDecl *Ivar,
1645                                           unsigned CVRQualifiers) {
1646   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
1647                                                    Ivar, CVRQualifiers);
1648 }
1649 
1650 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
1651   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
1652   llvm::Value *BaseValue = 0;
1653   const Expr *BaseExpr = E->getBase();
1654   Qualifiers BaseQuals;
1655   QualType ObjectTy;
1656   if (E->isArrow()) {
1657     BaseValue = EmitScalarExpr(BaseExpr);
1658     ObjectTy = BaseExpr->getType()->getPointeeType();
1659     BaseQuals = ObjectTy.getQualifiers();
1660   } else {
1661     LValue BaseLV = EmitLValue(BaseExpr);
1662     // FIXME: this isn't right for bitfields.
1663     BaseValue = BaseLV.getAddress();
1664     ObjectTy = BaseExpr->getType();
1665     BaseQuals = ObjectTy.getQualifiers();
1666   }
1667 
1668   LValue LV =
1669     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
1670                       BaseQuals.getCVRQualifiers());
1671   setObjCGCLValueClass(getContext(), E, LV);
1672   return LV;
1673 }
1674 
1675 LValue
1676 CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
1677   // This is a special l-value that just issues sends when we load or store
1678   // through it.
1679   return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
1680 }
1681 
1682 LValue CodeGenFunction::EmitObjCKVCRefLValue(
1683                                 const ObjCImplicitSetterGetterRefExpr *E) {
1684   // This is a special l-value that just issues sends when we load or store
1685   // through it.
1686   return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
1687 }
1688 
1689 LValue CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) {
1690   return EmitUnsupportedLValue(E, "use of super");
1691 }
1692 
1693 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
1694   // Can only get l-value for message expression returning aggregate type
1695   RValue RV = EmitAnyExprToTemp(E);
1696   // FIXME: can this be volatile?
1697   return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1698 }
1699 
1700 
1701 LValue CodeGenFunction::EmitPointerToDataMemberLValue(const FieldDecl *Field) {
1702   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Field->getDeclContext());
1703   QualType NNSpecTy =
1704     getContext().getCanonicalType(
1705       getContext().getTypeDeclType(const_cast<CXXRecordDecl*>(ClassDecl)));
1706   NNSpecTy = getContext().getPointerType(NNSpecTy);
1707   llvm::Value *V = llvm::Constant::getNullValue(ConvertType(NNSpecTy));
1708   LValue MemExpLV = EmitLValueForField(V, Field, /*isUnion=*/false,
1709                                        /*Qualifiers=*/0);
1710   const llvm::Type *ResultType = ConvertType(getContext().getPointerDiffType());
1711   V = Builder.CreatePtrToInt(MemExpLV.getAddress(), ResultType, "datamember");
1712   return LValue::MakeAddr(V, MakeQualifiers(Field->getType()));
1713 }
1714 
1715 RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType,
1716                                  CallExpr::const_arg_iterator ArgBeg,
1717                                  CallExpr::const_arg_iterator ArgEnd,
1718                                  const Decl *TargetDecl) {
1719   // Get the actual function type. The callee type will always be a pointer to
1720   // function type or a block pointer type.
1721   assert(CalleeType->isFunctionPointerType() &&
1722          "Call must have function pointer type!");
1723 
1724   CalleeType = getContext().getCanonicalType(CalleeType);
1725 
1726   QualType FnType = cast<PointerType>(CalleeType)->getPointeeType();
1727   QualType ResultType = cast<FunctionType>(FnType)->getResultType();
1728 
1729   CallArgList Args;
1730   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
1731 
1732   // FIXME: We should not need to do this, it should be part of the function
1733   // type.
1734   unsigned CallingConvention = 0;
1735   if (const llvm::Function *F =
1736       dyn_cast<llvm::Function>(Callee->stripPointerCasts()))
1737     CallingConvention = F->getCallingConv();
1738   return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
1739                                                  CallingConvention),
1740                   Callee, Args, TargetDecl);
1741 }
1742 
1743 LValue CodeGenFunction::
1744 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
1745   llvm::Value *BaseV;
1746   if (E->getOpcode() == BinaryOperator::PtrMemI)
1747     BaseV = EmitScalarExpr(E->getLHS());
1748   else
1749     BaseV = EmitLValue(E->getLHS()).getAddress();
1750   const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(getLLVMContext());
1751   BaseV = Builder.CreateBitCast(BaseV, i8Ty);
1752   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
1753   llvm::Value *AddV = Builder.CreateInBoundsGEP(BaseV, OffsetV, "add.ptr");
1754 
1755   QualType Ty = E->getRHS()->getType();
1756   Ty = Ty->getAs<MemberPointerType>()->getPointeeType();
1757 
1758   const llvm::Type *PType = ConvertType(getContext().getPointerType(Ty));
1759   AddV = Builder.CreateBitCast(AddV, PType);
1760   return LValue::MakeAddr(AddV, MakeQualifiers(Ty));
1761 }
1762 
1763