1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 78 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 79 // otherwise alloca is inserted at the current insertion point of the 80 // builder. 81 if (!ArraySize) 82 Builder.SetInsertPoint(AllocaInsertPt); 83 V = getTargetHooks().performAddrSpaceCast( 84 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 85 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 86 } 87 88 return Address(V, Align); 89 } 90 91 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 92 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 93 /// insertion point of the builder. 94 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 95 const Twine &Name, 96 llvm::Value *ArraySize) { 97 if (ArraySize) 98 return Builder.CreateAlloca(Ty, ArraySize, Name); 99 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 100 ArraySize, Name, AllocaInsertPt); 101 } 102 103 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 104 /// default alignment of the corresponding LLVM type, which is *not* 105 /// guaranteed to be related in any way to the expected alignment of 106 /// an AST type that might have been lowered to Ty. 107 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 108 const Twine &Name) { 109 CharUnits Align = 110 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 111 return CreateTempAlloca(Ty, Align, Name); 112 } 113 114 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 115 assert(isa<llvm::AllocaInst>(Var.getPointer())); 116 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 117 Store->setAlignment(Var.getAlignment().getQuantity()); 118 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 119 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 120 } 121 122 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 123 CharUnits Align = getContext().getTypeAlignInChars(Ty); 124 return CreateTempAlloca(ConvertType(Ty), Align, Name); 125 } 126 127 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 128 bool CastToDefaultAddrSpace) { 129 // FIXME: Should we prefer the preferred type alignment here? 130 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 131 CastToDefaultAddrSpace); 132 } 133 134 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 135 const Twine &Name, 136 bool CastToDefaultAddrSpace) { 137 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 138 CastToDefaultAddrSpace); 139 } 140 141 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 142 /// expression and compare the result against zero, returning an Int1Ty value. 143 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 144 PGO.setCurrentStmt(E); 145 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 146 llvm::Value *MemPtr = EmitScalarExpr(E); 147 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 148 } 149 150 QualType BoolTy = getContext().BoolTy; 151 SourceLocation Loc = E->getExprLoc(); 152 if (!E->getType()->isAnyComplexType()) 153 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 154 155 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 156 Loc); 157 } 158 159 /// EmitIgnoredExpr - Emit code to compute the specified expression, 160 /// ignoring the result. 161 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 162 if (E->isRValue()) 163 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 164 165 // Just emit it as an l-value and drop the result. 166 EmitLValue(E); 167 } 168 169 /// EmitAnyExpr - Emit code to compute the specified expression which 170 /// can have any type. The result is returned as an RValue struct. 171 /// If this is an aggregate expression, AggSlot indicates where the 172 /// result should be returned. 173 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 174 AggValueSlot aggSlot, 175 bool ignoreResult) { 176 switch (getEvaluationKind(E->getType())) { 177 case TEK_Scalar: 178 return RValue::get(EmitScalarExpr(E, ignoreResult)); 179 case TEK_Complex: 180 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 181 case TEK_Aggregate: 182 if (!ignoreResult && aggSlot.isIgnored()) 183 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 184 EmitAggExpr(E, aggSlot); 185 return aggSlot.asRValue(); 186 } 187 llvm_unreachable("bad evaluation kind"); 188 } 189 190 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 191 /// always be accessible even if no aggregate location is provided. 192 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 193 AggValueSlot AggSlot = AggValueSlot::ignored(); 194 195 if (hasAggregateEvaluationKind(E->getType())) 196 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 197 return EmitAnyExpr(E, AggSlot); 198 } 199 200 /// EmitAnyExprToMem - Evaluate an expression into a given memory 201 /// location. 202 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 203 Address Location, 204 Qualifiers Quals, 205 bool IsInit) { 206 // FIXME: This function should take an LValue as an argument. 207 switch (getEvaluationKind(E->getType())) { 208 case TEK_Complex: 209 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 210 /*isInit*/ false); 211 return; 212 213 case TEK_Aggregate: { 214 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 215 AggValueSlot::IsDestructed_t(IsInit), 216 AggValueSlot::DoesNotNeedGCBarriers, 217 AggValueSlot::IsAliased_t(!IsInit))); 218 return; 219 } 220 221 case TEK_Scalar: { 222 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 223 LValue LV = MakeAddrLValue(Location, E->getType()); 224 EmitStoreThroughLValue(RV, LV); 225 return; 226 } 227 } 228 llvm_unreachable("bad evaluation kind"); 229 } 230 231 static void 232 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 233 const Expr *E, Address ReferenceTemporary) { 234 // Objective-C++ ARC: 235 // If we are binding a reference to a temporary that has ownership, we 236 // need to perform retain/release operations on the temporary. 237 // 238 // FIXME: This should be looking at E, not M. 239 if (auto Lifetime = M->getType().getObjCLifetime()) { 240 switch (Lifetime) { 241 case Qualifiers::OCL_None: 242 case Qualifiers::OCL_ExplicitNone: 243 // Carry on to normal cleanup handling. 244 break; 245 246 case Qualifiers::OCL_Autoreleasing: 247 // Nothing to do; cleaned up by an autorelease pool. 248 return; 249 250 case Qualifiers::OCL_Strong: 251 case Qualifiers::OCL_Weak: 252 switch (StorageDuration Duration = M->getStorageDuration()) { 253 case SD_Static: 254 // Note: we intentionally do not register a cleanup to release 255 // the object on program termination. 256 return; 257 258 case SD_Thread: 259 // FIXME: We should probably register a cleanup in this case. 260 return; 261 262 case SD_Automatic: 263 case SD_FullExpression: 264 CodeGenFunction::Destroyer *Destroy; 265 CleanupKind CleanupKind; 266 if (Lifetime == Qualifiers::OCL_Strong) { 267 const ValueDecl *VD = M->getExtendingDecl(); 268 bool Precise = 269 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 270 CleanupKind = CGF.getARCCleanupKind(); 271 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 272 : &CodeGenFunction::destroyARCStrongImprecise; 273 } else { 274 // __weak objects always get EH cleanups; otherwise, exceptions 275 // could cause really nasty crashes instead of mere leaks. 276 CleanupKind = NormalAndEHCleanup; 277 Destroy = &CodeGenFunction::destroyARCWeak; 278 } 279 if (Duration == SD_FullExpression) 280 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 281 M->getType(), *Destroy, 282 CleanupKind & EHCleanup); 283 else 284 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 285 M->getType(), 286 *Destroy, CleanupKind & EHCleanup); 287 return; 288 289 case SD_Dynamic: 290 llvm_unreachable("temporary cannot have dynamic storage duration"); 291 } 292 llvm_unreachable("unknown storage duration"); 293 } 294 } 295 296 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 297 if (const RecordType *RT = 298 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 299 // Get the destructor for the reference temporary. 300 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 301 if (!ClassDecl->hasTrivialDestructor()) 302 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 303 } 304 305 if (!ReferenceTemporaryDtor) 306 return; 307 308 // Call the destructor for the temporary. 309 switch (M->getStorageDuration()) { 310 case SD_Static: 311 case SD_Thread: { 312 llvm::Constant *CleanupFn; 313 llvm::Constant *CleanupArg; 314 if (E->getType()->isArrayType()) { 315 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 316 ReferenceTemporary, E->getType(), 317 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 318 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 319 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 320 } else { 321 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 322 StructorType::Complete); 323 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 324 } 325 CGF.CGM.getCXXABI().registerGlobalDtor( 326 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 327 break; 328 } 329 330 case SD_FullExpression: 331 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 332 CodeGenFunction::destroyCXXObject, 333 CGF.getLangOpts().Exceptions); 334 break; 335 336 case SD_Automatic: 337 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, 340 CGF.getLangOpts().Exceptions); 341 break; 342 343 case SD_Dynamic: 344 llvm_unreachable("temporary cannot have dynamic storage duration"); 345 } 346 } 347 348 static Address createReferenceTemporary(CodeGenFunction &CGF, 349 const MaterializeTemporaryExpr *M, 350 const Expr *Inner) { 351 auto &TCG = CGF.getTargetHooks(); 352 switch (M->getStorageDuration()) { 353 case SD_FullExpression: 354 case SD_Automatic: { 355 // If we have a constant temporary array or record try to promote it into a 356 // constant global under the same rules a normal constant would've been 357 // promoted. This is easier on the optimizer and generally emits fewer 358 // instructions. 359 QualType Ty = Inner->getType(); 360 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 361 (Ty->isArrayType() || Ty->isRecordType()) && 362 CGF.CGM.isTypeConstant(Ty, true)) 363 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 364 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 365 auto AS = AddrSpace.getValue(); 366 auto *GV = new llvm::GlobalVariable( 367 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 368 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 369 llvm::GlobalValue::NotThreadLocal, 370 CGF.getContext().getTargetAddressSpace(AS)); 371 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 372 GV->setAlignment(alignment.getQuantity()); 373 llvm::Constant *C = GV; 374 if (AS != LangAS::Default) 375 C = TCG.performAddrSpaceCast( 376 CGF.CGM, GV, AS, LangAS::Default, 377 GV->getValueType()->getPointerTo( 378 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 379 // FIXME: Should we put the new global into a COMDAT? 380 return Address(C, alignment); 381 } 382 } 383 return CGF.CreateMemTemp(Ty, "ref.tmp"); 384 } 385 case SD_Thread: 386 case SD_Static: 387 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 388 389 case SD_Dynamic: 390 llvm_unreachable("temporary can't have dynamic storage duration"); 391 } 392 llvm_unreachable("unknown storage duration"); 393 } 394 395 LValue CodeGenFunction:: 396 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 397 const Expr *E = M->GetTemporaryExpr(); 398 399 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 400 // as that will cause the lifetime adjustment to be lost for ARC 401 auto ownership = M->getType().getObjCLifetime(); 402 if (ownership != Qualifiers::OCL_None && 403 ownership != Qualifiers::OCL_ExplicitNone) { 404 Address Object = createReferenceTemporary(*this, M, E); 405 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 406 Object = Address(llvm::ConstantExpr::getBitCast(Var, 407 ConvertTypeForMem(E->getType()) 408 ->getPointerTo(Object.getAddressSpace())), 409 Object.getAlignment()); 410 411 // createReferenceTemporary will promote the temporary to a global with a 412 // constant initializer if it can. It can only do this to a value of 413 // ARC-manageable type if the value is global and therefore "immune" to 414 // ref-counting operations. Therefore we have no need to emit either a 415 // dynamic initialization or a cleanup and we can just return the address 416 // of the temporary. 417 if (Var->hasInitializer()) 418 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 419 420 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 421 } 422 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 423 AlignmentSource::Decl); 424 425 switch (getEvaluationKind(E->getType())) { 426 default: llvm_unreachable("expected scalar or aggregate expression"); 427 case TEK_Scalar: 428 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 429 break; 430 case TEK_Aggregate: { 431 EmitAggExpr(E, AggValueSlot::forAddr(Object, 432 E->getType().getQualifiers(), 433 AggValueSlot::IsDestructed, 434 AggValueSlot::DoesNotNeedGCBarriers, 435 AggValueSlot::IsNotAliased)); 436 break; 437 } 438 } 439 440 pushTemporaryCleanup(*this, M, E, Object); 441 return RefTempDst; 442 } 443 444 SmallVector<const Expr *, 2> CommaLHSs; 445 SmallVector<SubobjectAdjustment, 2> Adjustments; 446 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 447 448 for (const auto &Ignored : CommaLHSs) 449 EmitIgnoredExpr(Ignored); 450 451 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 452 if (opaque->getType()->isRecordType()) { 453 assert(Adjustments.empty()); 454 return EmitOpaqueValueLValue(opaque); 455 } 456 } 457 458 // Create and initialize the reference temporary. 459 Address Object = createReferenceTemporary(*this, M, E); 460 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 461 Object.getPointer()->stripPointerCasts())) { 462 Object = Address(llvm::ConstantExpr::getBitCast( 463 cast<llvm::Constant>(Object.getPointer()), 464 ConvertTypeForMem(E->getType())->getPointerTo()), 465 Object.getAlignment()); 466 // If the temporary is a global and has a constant initializer or is a 467 // constant temporary that we promoted to a global, we may have already 468 // initialized it. 469 if (!Var->hasInitializer()) { 470 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 471 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 472 } 473 } else { 474 switch (M->getStorageDuration()) { 475 case SD_Automatic: 476 case SD_FullExpression: 477 if (auto *Size = EmitLifetimeStart( 478 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 479 Object.getPointer())) { 480 if (M->getStorageDuration() == SD_Automatic) 481 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 482 Object, Size); 483 else 484 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 485 Size); 486 } 487 break; 488 default: 489 break; 490 } 491 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 492 } 493 pushTemporaryCleanup(*this, M, E, Object); 494 495 // Perform derived-to-base casts and/or field accesses, to get from the 496 // temporary object we created (and, potentially, for which we extended 497 // the lifetime) to the subobject we're binding the reference to. 498 for (unsigned I = Adjustments.size(); I != 0; --I) { 499 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 500 switch (Adjustment.Kind) { 501 case SubobjectAdjustment::DerivedToBaseAdjustment: 502 Object = 503 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 504 Adjustment.DerivedToBase.BasePath->path_begin(), 505 Adjustment.DerivedToBase.BasePath->path_end(), 506 /*NullCheckValue=*/ false, E->getExprLoc()); 507 break; 508 509 case SubobjectAdjustment::FieldAdjustment: { 510 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 511 LV = EmitLValueForField(LV, Adjustment.Field); 512 assert(LV.isSimple() && 513 "materialized temporary field is not a simple lvalue"); 514 Object = LV.getAddress(); 515 break; 516 } 517 518 case SubobjectAdjustment::MemberPointerAdjustment: { 519 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 520 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 521 Adjustment.Ptr.MPT); 522 break; 523 } 524 } 525 } 526 527 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 528 } 529 530 RValue 531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 532 // Emit the expression as an lvalue. 533 LValue LV = EmitLValue(E); 534 assert(LV.isSimple()); 535 llvm::Value *Value = LV.getPointer(); 536 537 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 538 // C++11 [dcl.ref]p5 (as amended by core issue 453): 539 // If a glvalue to which a reference is directly bound designates neither 540 // an existing object or function of an appropriate type nor a region of 541 // storage of suitable size and alignment to contain an object of the 542 // reference's type, the behavior is undefined. 543 QualType Ty = E->getType(); 544 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 545 } 546 547 return RValue::get(Value); 548 } 549 550 551 /// getAccessedFieldNo - Given an encoded value and a result number, return the 552 /// input field number being accessed. 553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 554 const llvm::Constant *Elts) { 555 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 556 ->getZExtValue(); 557 } 558 559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 561 llvm::Value *High) { 562 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 563 llvm::Value *K47 = Builder.getInt64(47); 564 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 565 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 566 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 567 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 568 return Builder.CreateMul(B1, KMul); 569 } 570 571 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 572 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 573 TCK == TCK_UpcastToVirtualBase; 574 } 575 576 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 577 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 578 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 579 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 580 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 581 TCK == TCK_UpcastToVirtualBase); 582 } 583 584 bool CodeGenFunction::sanitizePerformTypeCheck() const { 585 return SanOpts.has(SanitizerKind::Null) | 586 SanOpts.has(SanitizerKind::Alignment) | 587 SanOpts.has(SanitizerKind::ObjectSize) | 588 SanOpts.has(SanitizerKind::Vptr); 589 } 590 591 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 592 llvm::Value *Ptr, QualType Ty, 593 CharUnits Alignment, 594 SanitizerSet SkippedChecks) { 595 if (!sanitizePerformTypeCheck()) 596 return; 597 598 // Don't check pointers outside the default address space. The null check 599 // isn't correct, the object-size check isn't supported by LLVM, and we can't 600 // communicate the addresses to the runtime handler for the vptr check. 601 if (Ptr->getType()->getPointerAddressSpace()) 602 return; 603 604 // Don't check pointers to volatile data. The behavior here is implementation- 605 // defined. 606 if (Ty.isVolatileQualified()) 607 return; 608 609 SanitizerScope SanScope(this); 610 611 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 612 llvm::BasicBlock *Done = nullptr; 613 614 // Quickly determine whether we have a pointer to an alloca. It's possible 615 // to skip null checks, and some alignment checks, for these pointers. This 616 // can reduce compile-time significantly. 617 auto PtrToAlloca = 618 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 619 620 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 621 llvm::Value *IsNonNull = nullptr; 622 bool IsGuaranteedNonNull = 623 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 624 bool AllowNullPointers = isNullPointerAllowed(TCK); 625 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 626 !IsGuaranteedNonNull) { 627 // The glvalue must not be an empty glvalue. 628 IsNonNull = Builder.CreateIsNotNull(Ptr); 629 630 // The IR builder can constant-fold the null check if the pointer points to 631 // a constant. 632 IsGuaranteedNonNull = IsNonNull == True; 633 634 // Skip the null check if the pointer is known to be non-null. 635 if (!IsGuaranteedNonNull) { 636 if (AllowNullPointers) { 637 // When performing pointer casts, it's OK if the value is null. 638 // Skip the remaining checks in that case. 639 Done = createBasicBlock("null"); 640 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 641 Builder.CreateCondBr(IsNonNull, Rest, Done); 642 EmitBlock(Rest); 643 } else { 644 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 645 } 646 } 647 } 648 649 if (SanOpts.has(SanitizerKind::ObjectSize) && 650 !SkippedChecks.has(SanitizerKind::ObjectSize) && 651 !Ty->isIncompleteType()) { 652 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 653 654 // The glvalue must refer to a large enough storage region. 655 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 656 // to check this. 657 // FIXME: Get object address space 658 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 659 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 660 llvm::Value *Min = Builder.getFalse(); 661 llvm::Value *NullIsUnknown = Builder.getFalse(); 662 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 663 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 664 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 665 llvm::ConstantInt::get(IntPtrTy, Size)); 666 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 667 } 668 669 uint64_t AlignVal = 0; 670 llvm::Value *PtrAsInt = nullptr; 671 672 if (SanOpts.has(SanitizerKind::Alignment) && 673 !SkippedChecks.has(SanitizerKind::Alignment)) { 674 AlignVal = Alignment.getQuantity(); 675 if (!Ty->isIncompleteType() && !AlignVal) 676 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 677 678 // The glvalue must be suitably aligned. 679 if (AlignVal > 1 && 680 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 681 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 682 llvm::Value *Align = Builder.CreateAnd( 683 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 684 llvm::Value *Aligned = 685 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 686 if (Aligned != True) 687 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 688 } 689 } 690 691 if (Checks.size() > 0) { 692 // Make sure we're not losing information. Alignment needs to be a power of 693 // 2 694 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 695 llvm::Constant *StaticData[] = { 696 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 697 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 698 llvm::ConstantInt::get(Int8Ty, TCK)}; 699 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 700 PtrAsInt ? PtrAsInt : Ptr); 701 } 702 703 // If possible, check that the vptr indicates that there is a subobject of 704 // type Ty at offset zero within this object. 705 // 706 // C++11 [basic.life]p5,6: 707 // [For storage which does not refer to an object within its lifetime] 708 // The program has undefined behavior if: 709 // -- the [pointer or glvalue] is used to access a non-static data member 710 // or call a non-static member function 711 if (SanOpts.has(SanitizerKind::Vptr) && 712 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 713 // Ensure that the pointer is non-null before loading it. If there is no 714 // compile-time guarantee, reuse the run-time null check or emit a new one. 715 if (!IsGuaranteedNonNull) { 716 if (!IsNonNull) 717 IsNonNull = Builder.CreateIsNotNull(Ptr); 718 if (!Done) 719 Done = createBasicBlock("vptr.null"); 720 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 721 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 722 EmitBlock(VptrNotNull); 723 } 724 725 // Compute a hash of the mangled name of the type. 726 // 727 // FIXME: This is not guaranteed to be deterministic! Move to a 728 // fingerprinting mechanism once LLVM provides one. For the time 729 // being the implementation happens to be deterministic. 730 SmallString<64> MangledName; 731 llvm::raw_svector_ostream Out(MangledName); 732 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 733 Out); 734 735 // Blacklist based on the mangled type. 736 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 737 SanitizerKind::Vptr, Out.str())) { 738 llvm::hash_code TypeHash = hash_value(Out.str()); 739 740 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 741 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 742 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 743 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 744 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 745 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 746 747 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 748 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 749 750 // Look the hash up in our cache. 751 const int CacheSize = 128; 752 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 753 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 754 "__ubsan_vptr_type_cache"); 755 llvm::Value *Slot = Builder.CreateAnd(Hash, 756 llvm::ConstantInt::get(IntPtrTy, 757 CacheSize-1)); 758 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 759 llvm::Value *CacheVal = 760 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 761 getPointerAlign()); 762 763 // If the hash isn't in the cache, call a runtime handler to perform the 764 // hard work of checking whether the vptr is for an object of the right 765 // type. This will either fill in the cache and return, or produce a 766 // diagnostic. 767 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 768 llvm::Constant *StaticData[] = { 769 EmitCheckSourceLocation(Loc), 770 EmitCheckTypeDescriptor(Ty), 771 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 772 llvm::ConstantInt::get(Int8Ty, TCK) 773 }; 774 llvm::Value *DynamicData[] = { Ptr, Hash }; 775 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 776 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 777 DynamicData); 778 } 779 } 780 781 if (Done) { 782 Builder.CreateBr(Done); 783 EmitBlock(Done); 784 } 785 } 786 787 /// Determine whether this expression refers to a flexible array member in a 788 /// struct. We disable array bounds checks for such members. 789 static bool isFlexibleArrayMemberExpr(const Expr *E) { 790 // For compatibility with existing code, we treat arrays of length 0 or 791 // 1 as flexible array members. 792 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 793 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 794 if (CAT->getSize().ugt(1)) 795 return false; 796 } else if (!isa<IncompleteArrayType>(AT)) 797 return false; 798 799 E = E->IgnoreParens(); 800 801 // A flexible array member must be the last member in the class. 802 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 803 // FIXME: If the base type of the member expr is not FD->getParent(), 804 // this should not be treated as a flexible array member access. 805 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 806 RecordDecl::field_iterator FI( 807 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 808 return ++FI == FD->getParent()->field_end(); 809 } 810 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 811 return IRE->getDecl()->getNextIvar() == nullptr; 812 } 813 814 return false; 815 } 816 817 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 818 QualType EltTy) { 819 ASTContext &C = getContext(); 820 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 821 if (!EltSize) 822 return nullptr; 823 824 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 825 if (!ArrayDeclRef) 826 return nullptr; 827 828 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 829 if (!ParamDecl) 830 return nullptr; 831 832 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 833 if (!POSAttr) 834 return nullptr; 835 836 // Don't load the size if it's a lower bound. 837 int POSType = POSAttr->getType(); 838 if (POSType != 0 && POSType != 1) 839 return nullptr; 840 841 // Find the implicit size parameter. 842 auto PassedSizeIt = SizeArguments.find(ParamDecl); 843 if (PassedSizeIt == SizeArguments.end()) 844 return nullptr; 845 846 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 847 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 848 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 849 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 850 C.getSizeType(), E->getExprLoc()); 851 llvm::Value *SizeOfElement = 852 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 853 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 854 } 855 856 /// If Base is known to point to the start of an array, return the length of 857 /// that array. Return 0 if the length cannot be determined. 858 static llvm::Value *getArrayIndexingBound( 859 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 860 // For the vector indexing extension, the bound is the number of elements. 861 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 862 IndexedType = Base->getType(); 863 return CGF.Builder.getInt32(VT->getNumElements()); 864 } 865 866 Base = Base->IgnoreParens(); 867 868 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 869 if (CE->getCastKind() == CK_ArrayToPointerDecay && 870 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 871 IndexedType = CE->getSubExpr()->getType(); 872 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 873 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 874 return CGF.Builder.getInt(CAT->getSize()); 875 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 876 return CGF.getVLASize(VAT).first; 877 // Ignore pass_object_size here. It's not applicable on decayed pointers. 878 } 879 } 880 881 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 882 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 883 IndexedType = Base->getType(); 884 return POS; 885 } 886 887 return nullptr; 888 } 889 890 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 891 llvm::Value *Index, QualType IndexType, 892 bool Accessed) { 893 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 894 "should not be called unless adding bounds checks"); 895 SanitizerScope SanScope(this); 896 897 QualType IndexedType; 898 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 899 if (!Bound) 900 return; 901 902 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 903 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 904 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 905 906 llvm::Constant *StaticData[] = { 907 EmitCheckSourceLocation(E->getExprLoc()), 908 EmitCheckTypeDescriptor(IndexedType), 909 EmitCheckTypeDescriptor(IndexType) 910 }; 911 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 912 : Builder.CreateICmpULE(IndexVal, BoundVal); 913 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 914 SanitizerHandler::OutOfBounds, StaticData, Index); 915 } 916 917 918 CodeGenFunction::ComplexPairTy CodeGenFunction:: 919 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 920 bool isInc, bool isPre) { 921 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 922 923 llvm::Value *NextVal; 924 if (isa<llvm::IntegerType>(InVal.first->getType())) { 925 uint64_t AmountVal = isInc ? 1 : -1; 926 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 927 928 // Add the inc/dec to the real part. 929 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 930 } else { 931 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 932 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 933 if (!isInc) 934 FVal.changeSign(); 935 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 936 937 // Add the inc/dec to the real part. 938 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 939 } 940 941 ComplexPairTy IncVal(NextVal, InVal.second); 942 943 // Store the updated result through the lvalue. 944 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 945 946 // If this is a postinc, return the value read from memory, otherwise use the 947 // updated value. 948 return isPre ? IncVal : InVal; 949 } 950 951 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 952 CodeGenFunction *CGF) { 953 // Bind VLAs in the cast type. 954 if (CGF && E->getType()->isVariablyModifiedType()) 955 CGF->EmitVariablyModifiedType(E->getType()); 956 957 if (CGDebugInfo *DI = getModuleDebugInfo()) 958 DI->EmitExplicitCastType(E->getType()); 959 } 960 961 //===----------------------------------------------------------------------===// 962 // LValue Expression Emission 963 //===----------------------------------------------------------------------===// 964 965 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 966 /// derive a more accurate bound on the alignment of the pointer. 967 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 968 LValueBaseInfo *BaseInfo, 969 TBAAAccessInfo *TBAAInfo) { 970 // We allow this with ObjC object pointers because of fragile ABIs. 971 assert(E->getType()->isPointerType() || 972 E->getType()->isObjCObjectPointerType()); 973 E = E->IgnoreParens(); 974 975 // Casts: 976 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 977 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 978 CGM.EmitExplicitCastExprType(ECE, this); 979 980 switch (CE->getCastKind()) { 981 // Non-converting casts (but not C's implicit conversion from void*). 982 case CK_BitCast: 983 case CK_NoOp: 984 case CK_AddressSpaceConversion: 985 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 986 if (PtrTy->getPointeeType()->isVoidType()) 987 break; 988 989 LValueBaseInfo InnerBaseInfo; 990 TBAAAccessInfo InnerTBAAInfo; 991 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 992 &InnerBaseInfo, 993 &InnerTBAAInfo); 994 if (BaseInfo) *BaseInfo = InnerBaseInfo; 995 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 996 997 if (isa<ExplicitCastExpr>(CE)) { 998 LValueBaseInfo TargetTypeBaseInfo; 999 TBAAAccessInfo TargetTypeTBAAInfo; 1000 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1001 &TargetTypeBaseInfo, 1002 &TargetTypeTBAAInfo); 1003 if (TBAAInfo) 1004 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1005 TargetTypeTBAAInfo); 1006 // If the source l-value is opaque, honor the alignment of the 1007 // casted-to type. 1008 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1009 if (BaseInfo) 1010 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1011 Addr = Address(Addr.getPointer(), Align); 1012 } 1013 } 1014 1015 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1016 CE->getCastKind() == CK_BitCast) { 1017 if (auto PT = E->getType()->getAs<PointerType>()) 1018 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1019 /*MayBeNull=*/true, 1020 CodeGenFunction::CFITCK_UnrelatedCast, 1021 CE->getLocStart()); 1022 } 1023 return CE->getCastKind() != CK_AddressSpaceConversion 1024 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1025 : Builder.CreateAddrSpaceCast(Addr, 1026 ConvertType(E->getType())); 1027 } 1028 break; 1029 1030 // Array-to-pointer decay. 1031 case CK_ArrayToPointerDecay: 1032 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1033 1034 // Derived-to-base conversions. 1035 case CK_UncheckedDerivedToBase: 1036 case CK_DerivedToBase: { 1037 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo, 1038 TBAAInfo); 1039 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1040 return GetAddressOfBaseClass(Addr, Derived, 1041 CE->path_begin(), CE->path_end(), 1042 ShouldNullCheckClassCastValue(CE), 1043 CE->getExprLoc()); 1044 } 1045 1046 // TODO: Is there any reason to treat base-to-derived conversions 1047 // specially? 1048 default: 1049 break; 1050 } 1051 } 1052 1053 // Unary &. 1054 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1055 if (UO->getOpcode() == UO_AddrOf) { 1056 LValue LV = EmitLValue(UO->getSubExpr()); 1057 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1058 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1059 return LV.getAddress(); 1060 } 1061 } 1062 1063 // TODO: conditional operators, comma. 1064 1065 // Otherwise, use the alignment of the type. 1066 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1067 TBAAInfo); 1068 return Address(EmitScalarExpr(E), Align); 1069 } 1070 1071 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1072 if (Ty->isVoidType()) 1073 return RValue::get(nullptr); 1074 1075 switch (getEvaluationKind(Ty)) { 1076 case TEK_Complex: { 1077 llvm::Type *EltTy = 1078 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1079 llvm::Value *U = llvm::UndefValue::get(EltTy); 1080 return RValue::getComplex(std::make_pair(U, U)); 1081 } 1082 1083 // If this is a use of an undefined aggregate type, the aggregate must have an 1084 // identifiable address. Just because the contents of the value are undefined 1085 // doesn't mean that the address can't be taken and compared. 1086 case TEK_Aggregate: { 1087 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1088 return RValue::getAggregate(DestPtr); 1089 } 1090 1091 case TEK_Scalar: 1092 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1093 } 1094 llvm_unreachable("bad evaluation kind"); 1095 } 1096 1097 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1098 const char *Name) { 1099 ErrorUnsupported(E, Name); 1100 return GetUndefRValue(E->getType()); 1101 } 1102 1103 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1104 const char *Name) { 1105 ErrorUnsupported(E, Name); 1106 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1107 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1108 E->getType()); 1109 } 1110 1111 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1112 const Expr *Base = Obj; 1113 while (!isa<CXXThisExpr>(Base)) { 1114 // The result of a dynamic_cast can be null. 1115 if (isa<CXXDynamicCastExpr>(Base)) 1116 return false; 1117 1118 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1119 Base = CE->getSubExpr(); 1120 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1121 Base = PE->getSubExpr(); 1122 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1123 if (UO->getOpcode() == UO_Extension) 1124 Base = UO->getSubExpr(); 1125 else 1126 return false; 1127 } else { 1128 return false; 1129 } 1130 } 1131 return true; 1132 } 1133 1134 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1135 LValue LV; 1136 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1137 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1138 else 1139 LV = EmitLValue(E); 1140 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1141 SanitizerSet SkippedChecks; 1142 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1143 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1144 if (IsBaseCXXThis) 1145 SkippedChecks.set(SanitizerKind::Alignment, true); 1146 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1147 SkippedChecks.set(SanitizerKind::Null, true); 1148 } 1149 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1150 E->getType(), LV.getAlignment(), SkippedChecks); 1151 } 1152 return LV; 1153 } 1154 1155 /// EmitLValue - Emit code to compute a designator that specifies the location 1156 /// of the expression. 1157 /// 1158 /// This can return one of two things: a simple address or a bitfield reference. 1159 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1160 /// an LLVM pointer type. 1161 /// 1162 /// If this returns a bitfield reference, nothing about the pointee type of the 1163 /// LLVM value is known: For example, it may not be a pointer to an integer. 1164 /// 1165 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1166 /// this method guarantees that the returned pointer type will point to an LLVM 1167 /// type of the same size of the lvalue's type. If the lvalue has a variable 1168 /// length type, this is not possible. 1169 /// 1170 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1171 ApplyDebugLocation DL(*this, E); 1172 switch (E->getStmtClass()) { 1173 default: return EmitUnsupportedLValue(E, "l-value expression"); 1174 1175 case Expr::ObjCPropertyRefExprClass: 1176 llvm_unreachable("cannot emit a property reference directly"); 1177 1178 case Expr::ObjCSelectorExprClass: 1179 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1180 case Expr::ObjCIsaExprClass: 1181 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1182 case Expr::BinaryOperatorClass: 1183 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1184 case Expr::CompoundAssignOperatorClass: { 1185 QualType Ty = E->getType(); 1186 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1187 Ty = AT->getValueType(); 1188 if (!Ty->isAnyComplexType()) 1189 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1190 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1191 } 1192 case Expr::CallExprClass: 1193 case Expr::CXXMemberCallExprClass: 1194 case Expr::CXXOperatorCallExprClass: 1195 case Expr::UserDefinedLiteralClass: 1196 return EmitCallExprLValue(cast<CallExpr>(E)); 1197 case Expr::VAArgExprClass: 1198 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1199 case Expr::DeclRefExprClass: 1200 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1201 case Expr::ParenExprClass: 1202 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1203 case Expr::GenericSelectionExprClass: 1204 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1205 case Expr::PredefinedExprClass: 1206 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1207 case Expr::StringLiteralClass: 1208 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1209 case Expr::ObjCEncodeExprClass: 1210 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1211 case Expr::PseudoObjectExprClass: 1212 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1213 case Expr::InitListExprClass: 1214 return EmitInitListLValue(cast<InitListExpr>(E)); 1215 case Expr::CXXTemporaryObjectExprClass: 1216 case Expr::CXXConstructExprClass: 1217 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1218 case Expr::CXXBindTemporaryExprClass: 1219 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1220 case Expr::CXXUuidofExprClass: 1221 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1222 case Expr::LambdaExprClass: 1223 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1224 1225 case Expr::ExprWithCleanupsClass: { 1226 const auto *cleanups = cast<ExprWithCleanups>(E); 1227 enterFullExpression(cleanups); 1228 RunCleanupsScope Scope(*this); 1229 LValue LV = EmitLValue(cleanups->getSubExpr()); 1230 if (LV.isSimple()) { 1231 // Defend against branches out of gnu statement expressions surrounded by 1232 // cleanups. 1233 llvm::Value *V = LV.getPointer(); 1234 Scope.ForceCleanup({&V}); 1235 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1236 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1237 } 1238 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1239 // bitfield lvalue or some other non-simple lvalue? 1240 return LV; 1241 } 1242 1243 case Expr::CXXDefaultArgExprClass: 1244 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1245 case Expr::CXXDefaultInitExprClass: { 1246 CXXDefaultInitExprScope Scope(*this); 1247 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1248 } 1249 case Expr::CXXTypeidExprClass: 1250 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1251 1252 case Expr::ObjCMessageExprClass: 1253 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1254 case Expr::ObjCIvarRefExprClass: 1255 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1256 case Expr::StmtExprClass: 1257 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1258 case Expr::UnaryOperatorClass: 1259 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1260 case Expr::ArraySubscriptExprClass: 1261 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1262 case Expr::OMPArraySectionExprClass: 1263 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1264 case Expr::ExtVectorElementExprClass: 1265 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1266 case Expr::MemberExprClass: 1267 return EmitMemberExpr(cast<MemberExpr>(E)); 1268 case Expr::CompoundLiteralExprClass: 1269 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1270 case Expr::ConditionalOperatorClass: 1271 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1272 case Expr::BinaryConditionalOperatorClass: 1273 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1274 case Expr::ChooseExprClass: 1275 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1276 case Expr::OpaqueValueExprClass: 1277 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1278 case Expr::SubstNonTypeTemplateParmExprClass: 1279 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1280 case Expr::ImplicitCastExprClass: 1281 case Expr::CStyleCastExprClass: 1282 case Expr::CXXFunctionalCastExprClass: 1283 case Expr::CXXStaticCastExprClass: 1284 case Expr::CXXDynamicCastExprClass: 1285 case Expr::CXXReinterpretCastExprClass: 1286 case Expr::CXXConstCastExprClass: 1287 case Expr::ObjCBridgedCastExprClass: 1288 return EmitCastLValue(cast<CastExpr>(E)); 1289 1290 case Expr::MaterializeTemporaryExprClass: 1291 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1292 1293 case Expr::CoawaitExprClass: 1294 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1295 case Expr::CoyieldExprClass: 1296 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1297 } 1298 } 1299 1300 /// Given an object of the given canonical type, can we safely copy a 1301 /// value out of it based on its initializer? 1302 static bool isConstantEmittableObjectType(QualType type) { 1303 assert(type.isCanonical()); 1304 assert(!type->isReferenceType()); 1305 1306 // Must be const-qualified but non-volatile. 1307 Qualifiers qs = type.getLocalQualifiers(); 1308 if (!qs.hasConst() || qs.hasVolatile()) return false; 1309 1310 // Otherwise, all object types satisfy this except C++ classes with 1311 // mutable subobjects or non-trivial copy/destroy behavior. 1312 if (const auto *RT = dyn_cast<RecordType>(type)) 1313 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1314 if (RD->hasMutableFields() || !RD->isTrivial()) 1315 return false; 1316 1317 return true; 1318 } 1319 1320 /// Can we constant-emit a load of a reference to a variable of the 1321 /// given type? This is different from predicates like 1322 /// Decl::isUsableInConstantExpressions because we do want it to apply 1323 /// in situations that don't necessarily satisfy the language's rules 1324 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1325 /// to do this with const float variables even if those variables 1326 /// aren't marked 'constexpr'. 1327 enum ConstantEmissionKind { 1328 CEK_None, 1329 CEK_AsReferenceOnly, 1330 CEK_AsValueOrReference, 1331 CEK_AsValueOnly 1332 }; 1333 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1334 type = type.getCanonicalType(); 1335 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1336 if (isConstantEmittableObjectType(ref->getPointeeType())) 1337 return CEK_AsValueOrReference; 1338 return CEK_AsReferenceOnly; 1339 } 1340 if (isConstantEmittableObjectType(type)) 1341 return CEK_AsValueOnly; 1342 return CEK_None; 1343 } 1344 1345 /// Try to emit a reference to the given value without producing it as 1346 /// an l-value. This is actually more than an optimization: we can't 1347 /// produce an l-value for variables that we never actually captured 1348 /// in a block or lambda, which means const int variables or constexpr 1349 /// literals or similar. 1350 CodeGenFunction::ConstantEmission 1351 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1352 ValueDecl *value = refExpr->getDecl(); 1353 1354 // The value needs to be an enum constant or a constant variable. 1355 ConstantEmissionKind CEK; 1356 if (isa<ParmVarDecl>(value)) { 1357 CEK = CEK_None; 1358 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1359 CEK = checkVarTypeForConstantEmission(var->getType()); 1360 } else if (isa<EnumConstantDecl>(value)) { 1361 CEK = CEK_AsValueOnly; 1362 } else { 1363 CEK = CEK_None; 1364 } 1365 if (CEK == CEK_None) return ConstantEmission(); 1366 1367 Expr::EvalResult result; 1368 bool resultIsReference; 1369 QualType resultType; 1370 1371 // It's best to evaluate all the way as an r-value if that's permitted. 1372 if (CEK != CEK_AsReferenceOnly && 1373 refExpr->EvaluateAsRValue(result, getContext())) { 1374 resultIsReference = false; 1375 resultType = refExpr->getType(); 1376 1377 // Otherwise, try to evaluate as an l-value. 1378 } else if (CEK != CEK_AsValueOnly && 1379 refExpr->EvaluateAsLValue(result, getContext())) { 1380 resultIsReference = true; 1381 resultType = value->getType(); 1382 1383 // Failure. 1384 } else { 1385 return ConstantEmission(); 1386 } 1387 1388 // In any case, if the initializer has side-effects, abandon ship. 1389 if (result.HasSideEffects) 1390 return ConstantEmission(); 1391 1392 // Emit as a constant. 1393 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1394 result.Val, resultType); 1395 1396 // Make sure we emit a debug reference to the global variable. 1397 // This should probably fire even for 1398 if (isa<VarDecl>(value)) { 1399 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1400 EmitDeclRefExprDbgValue(refExpr, result.Val); 1401 } else { 1402 assert(isa<EnumConstantDecl>(value)); 1403 EmitDeclRefExprDbgValue(refExpr, result.Val); 1404 } 1405 1406 // If we emitted a reference constant, we need to dereference that. 1407 if (resultIsReference) 1408 return ConstantEmission::forReference(C); 1409 1410 return ConstantEmission::forValue(C); 1411 } 1412 1413 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1414 const MemberExpr *ME) { 1415 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1416 // Try to emit static variable member expressions as DREs. 1417 return DeclRefExpr::Create( 1418 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1419 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1420 ME->getType(), ME->getValueKind()); 1421 } 1422 return nullptr; 1423 } 1424 1425 CodeGenFunction::ConstantEmission 1426 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1427 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1428 return tryEmitAsConstant(DRE); 1429 return ConstantEmission(); 1430 } 1431 1432 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1433 SourceLocation Loc) { 1434 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1435 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1436 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1437 } 1438 1439 static bool hasBooleanRepresentation(QualType Ty) { 1440 if (Ty->isBooleanType()) 1441 return true; 1442 1443 if (const EnumType *ET = Ty->getAs<EnumType>()) 1444 return ET->getDecl()->getIntegerType()->isBooleanType(); 1445 1446 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1447 return hasBooleanRepresentation(AT->getValueType()); 1448 1449 return false; 1450 } 1451 1452 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1453 llvm::APInt &Min, llvm::APInt &End, 1454 bool StrictEnums, bool IsBool) { 1455 const EnumType *ET = Ty->getAs<EnumType>(); 1456 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1457 ET && !ET->getDecl()->isFixed(); 1458 if (!IsBool && !IsRegularCPlusPlusEnum) 1459 return false; 1460 1461 if (IsBool) { 1462 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1463 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1464 } else { 1465 const EnumDecl *ED = ET->getDecl(); 1466 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1467 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1468 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1469 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1470 1471 if (NumNegativeBits) { 1472 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1473 assert(NumBits <= Bitwidth); 1474 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1475 Min = -End; 1476 } else { 1477 assert(NumPositiveBits <= Bitwidth); 1478 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1479 Min = llvm::APInt(Bitwidth, 0); 1480 } 1481 } 1482 return true; 1483 } 1484 1485 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1486 llvm::APInt Min, End; 1487 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1488 hasBooleanRepresentation(Ty))) 1489 return nullptr; 1490 1491 llvm::MDBuilder MDHelper(getLLVMContext()); 1492 return MDHelper.createRange(Min, End); 1493 } 1494 1495 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1496 SourceLocation Loc) { 1497 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1498 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1499 if (!HasBoolCheck && !HasEnumCheck) 1500 return false; 1501 1502 bool IsBool = hasBooleanRepresentation(Ty) || 1503 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1504 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1505 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1506 if (!NeedsBoolCheck && !NeedsEnumCheck) 1507 return false; 1508 1509 // Single-bit booleans don't need to be checked. Special-case this to avoid 1510 // a bit width mismatch when handling bitfield values. This is handled by 1511 // EmitFromMemory for the non-bitfield case. 1512 if (IsBool && 1513 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1514 return false; 1515 1516 llvm::APInt Min, End; 1517 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1518 return true; 1519 1520 auto &Ctx = getLLVMContext(); 1521 SanitizerScope SanScope(this); 1522 llvm::Value *Check; 1523 --End; 1524 if (!Min) { 1525 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1526 } else { 1527 llvm::Value *Upper = 1528 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1529 llvm::Value *Lower = 1530 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1531 Check = Builder.CreateAnd(Upper, Lower); 1532 } 1533 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1534 EmitCheckTypeDescriptor(Ty)}; 1535 SanitizerMask Kind = 1536 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1537 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1538 StaticArgs, EmitCheckValue(Value)); 1539 return true; 1540 } 1541 1542 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1543 QualType Ty, 1544 SourceLocation Loc, 1545 LValueBaseInfo BaseInfo, 1546 TBAAAccessInfo TBAAInfo, 1547 bool isNontemporal) { 1548 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1549 // For better performance, handle vector loads differently. 1550 if (Ty->isVectorType()) { 1551 const llvm::Type *EltTy = Addr.getElementType(); 1552 1553 const auto *VTy = cast<llvm::VectorType>(EltTy); 1554 1555 // Handle vectors of size 3 like size 4 for better performance. 1556 if (VTy->getNumElements() == 3) { 1557 1558 // Bitcast to vec4 type. 1559 llvm::VectorType *vec4Ty = 1560 llvm::VectorType::get(VTy->getElementType(), 4); 1561 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1562 // Now load value. 1563 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1564 1565 // Shuffle vector to get vec3. 1566 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1567 {0, 1, 2}, "extractVec"); 1568 return EmitFromMemory(V, Ty); 1569 } 1570 } 1571 } 1572 1573 // Atomic operations have to be done on integral types. 1574 LValue AtomicLValue = 1575 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1576 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1577 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1578 } 1579 1580 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1581 if (isNontemporal) { 1582 llvm::MDNode *Node = llvm::MDNode::get( 1583 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1584 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1585 } 1586 1587 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1588 1589 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1590 // In order to prevent the optimizer from throwing away the check, don't 1591 // attach range metadata to the load. 1592 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1593 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1594 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1595 1596 return EmitFromMemory(Load, Ty); 1597 } 1598 1599 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1600 // Bool has a different representation in memory than in registers. 1601 if (hasBooleanRepresentation(Ty)) { 1602 // This should really always be an i1, but sometimes it's already 1603 // an i8, and it's awkward to track those cases down. 1604 if (Value->getType()->isIntegerTy(1)) 1605 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1606 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1607 "wrong value rep of bool"); 1608 } 1609 1610 return Value; 1611 } 1612 1613 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1614 // Bool has a different representation in memory than in registers. 1615 if (hasBooleanRepresentation(Ty)) { 1616 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1617 "wrong value rep of bool"); 1618 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1619 } 1620 1621 return Value; 1622 } 1623 1624 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1625 bool Volatile, QualType Ty, 1626 LValueBaseInfo BaseInfo, 1627 TBAAAccessInfo TBAAInfo, 1628 bool isInit, bool isNontemporal) { 1629 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1630 // Handle vectors differently to get better performance. 1631 if (Ty->isVectorType()) { 1632 llvm::Type *SrcTy = Value->getType(); 1633 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1634 // Handle vec3 special. 1635 if (VecTy && VecTy->getNumElements() == 3) { 1636 // Our source is a vec3, do a shuffle vector to make it a vec4. 1637 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1638 Builder.getInt32(2), 1639 llvm::UndefValue::get(Builder.getInt32Ty())}; 1640 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1641 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1642 MaskV, "extractVec"); 1643 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1644 } 1645 if (Addr.getElementType() != SrcTy) { 1646 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1647 } 1648 } 1649 } 1650 1651 Value = EmitToMemory(Value, Ty); 1652 1653 LValue AtomicLValue = 1654 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1655 if (Ty->isAtomicType() || 1656 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1657 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1658 return; 1659 } 1660 1661 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1662 if (isNontemporal) { 1663 llvm::MDNode *Node = 1664 llvm::MDNode::get(Store->getContext(), 1665 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1666 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1667 } 1668 1669 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1670 } 1671 1672 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1673 bool isInit) { 1674 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1675 lvalue.getType(), lvalue.getBaseInfo(), 1676 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1677 } 1678 1679 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1680 /// method emits the address of the lvalue, then loads the result as an rvalue, 1681 /// returning the rvalue. 1682 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1683 if (LV.isObjCWeak()) { 1684 // load of a __weak object. 1685 Address AddrWeakObj = LV.getAddress(); 1686 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1687 AddrWeakObj)); 1688 } 1689 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1690 // In MRC mode, we do a load+autorelease. 1691 if (!getLangOpts().ObjCAutoRefCount) { 1692 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1693 } 1694 1695 // In ARC mode, we load retained and then consume the value. 1696 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1697 Object = EmitObjCConsumeObject(LV.getType(), Object); 1698 return RValue::get(Object); 1699 } 1700 1701 if (LV.isSimple()) { 1702 assert(!LV.getType()->isFunctionType()); 1703 1704 // Everything needs a load. 1705 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1706 } 1707 1708 if (LV.isVectorElt()) { 1709 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1710 LV.isVolatileQualified()); 1711 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1712 "vecext")); 1713 } 1714 1715 // If this is a reference to a subset of the elements of a vector, either 1716 // shuffle the input or extract/insert them as appropriate. 1717 if (LV.isExtVectorElt()) 1718 return EmitLoadOfExtVectorElementLValue(LV); 1719 1720 // Global Register variables always invoke intrinsics 1721 if (LV.isGlobalReg()) 1722 return EmitLoadOfGlobalRegLValue(LV); 1723 1724 assert(LV.isBitField() && "Unknown LValue type!"); 1725 return EmitLoadOfBitfieldLValue(LV, Loc); 1726 } 1727 1728 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1729 SourceLocation Loc) { 1730 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1731 1732 // Get the output type. 1733 llvm::Type *ResLTy = ConvertType(LV.getType()); 1734 1735 Address Ptr = LV.getBitFieldAddress(); 1736 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1737 1738 if (Info.IsSigned) { 1739 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1740 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1741 if (HighBits) 1742 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1743 if (Info.Offset + HighBits) 1744 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1745 } else { 1746 if (Info.Offset) 1747 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1748 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1749 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1750 Info.Size), 1751 "bf.clear"); 1752 } 1753 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1754 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1755 return RValue::get(Val); 1756 } 1757 1758 // If this is a reference to a subset of the elements of a vector, create an 1759 // appropriate shufflevector. 1760 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1761 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1762 LV.isVolatileQualified()); 1763 1764 const llvm::Constant *Elts = LV.getExtVectorElts(); 1765 1766 // If the result of the expression is a non-vector type, we must be extracting 1767 // a single element. Just codegen as an extractelement. 1768 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1769 if (!ExprVT) { 1770 unsigned InIdx = getAccessedFieldNo(0, Elts); 1771 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1772 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1773 } 1774 1775 // Always use shuffle vector to try to retain the original program structure 1776 unsigned NumResultElts = ExprVT->getNumElements(); 1777 1778 SmallVector<llvm::Constant*, 4> Mask; 1779 for (unsigned i = 0; i != NumResultElts; ++i) 1780 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1781 1782 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1783 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1784 MaskV); 1785 return RValue::get(Vec); 1786 } 1787 1788 /// @brief Generates lvalue for partial ext_vector access. 1789 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1790 Address VectorAddress = LV.getExtVectorAddress(); 1791 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1792 QualType EQT = ExprVT->getElementType(); 1793 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1794 1795 Address CastToPointerElement = 1796 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1797 "conv.ptr.element"); 1798 1799 const llvm::Constant *Elts = LV.getExtVectorElts(); 1800 unsigned ix = getAccessedFieldNo(0, Elts); 1801 1802 Address VectorBasePtrPlusIx = 1803 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1804 getContext().getTypeSizeInChars(EQT), 1805 "vector.elt"); 1806 1807 return VectorBasePtrPlusIx; 1808 } 1809 1810 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1811 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1812 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1813 "Bad type for register variable"); 1814 llvm::MDNode *RegName = cast<llvm::MDNode>( 1815 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1816 1817 // We accept integer and pointer types only 1818 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1819 llvm::Type *Ty = OrigTy; 1820 if (OrigTy->isPointerTy()) 1821 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1822 llvm::Type *Types[] = { Ty }; 1823 1824 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1825 llvm::Value *Call = Builder.CreateCall( 1826 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1827 if (OrigTy->isPointerTy()) 1828 Call = Builder.CreateIntToPtr(Call, OrigTy); 1829 return RValue::get(Call); 1830 } 1831 1832 1833 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1834 /// lvalue, where both are guaranteed to the have the same type, and that type 1835 /// is 'Ty'. 1836 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1837 bool isInit) { 1838 if (!Dst.isSimple()) { 1839 if (Dst.isVectorElt()) { 1840 // Read/modify/write the vector, inserting the new element. 1841 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1842 Dst.isVolatileQualified()); 1843 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1844 Dst.getVectorIdx(), "vecins"); 1845 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1846 Dst.isVolatileQualified()); 1847 return; 1848 } 1849 1850 // If this is an update of extended vector elements, insert them as 1851 // appropriate. 1852 if (Dst.isExtVectorElt()) 1853 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1854 1855 if (Dst.isGlobalReg()) 1856 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1857 1858 assert(Dst.isBitField() && "Unknown LValue type"); 1859 return EmitStoreThroughBitfieldLValue(Src, Dst); 1860 } 1861 1862 // There's special magic for assigning into an ARC-qualified l-value. 1863 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1864 switch (Lifetime) { 1865 case Qualifiers::OCL_None: 1866 llvm_unreachable("present but none"); 1867 1868 case Qualifiers::OCL_ExplicitNone: 1869 // nothing special 1870 break; 1871 1872 case Qualifiers::OCL_Strong: 1873 if (isInit) { 1874 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1875 break; 1876 } 1877 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1878 return; 1879 1880 case Qualifiers::OCL_Weak: 1881 if (isInit) 1882 // Initialize and then skip the primitive store. 1883 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1884 else 1885 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1886 return; 1887 1888 case Qualifiers::OCL_Autoreleasing: 1889 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1890 Src.getScalarVal())); 1891 // fall into the normal path 1892 break; 1893 } 1894 } 1895 1896 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1897 // load of a __weak object. 1898 Address LvalueDst = Dst.getAddress(); 1899 llvm::Value *src = Src.getScalarVal(); 1900 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1901 return; 1902 } 1903 1904 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1905 // load of a __strong object. 1906 Address LvalueDst = Dst.getAddress(); 1907 llvm::Value *src = Src.getScalarVal(); 1908 if (Dst.isObjCIvar()) { 1909 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1910 llvm::Type *ResultType = IntPtrTy; 1911 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1912 llvm::Value *RHS = dst.getPointer(); 1913 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1914 llvm::Value *LHS = 1915 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1916 "sub.ptr.lhs.cast"); 1917 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1918 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1919 BytesBetween); 1920 } else if (Dst.isGlobalObjCRef()) { 1921 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1922 Dst.isThreadLocalRef()); 1923 } 1924 else 1925 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1926 return; 1927 } 1928 1929 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1930 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1931 } 1932 1933 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1934 llvm::Value **Result) { 1935 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1936 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1937 Address Ptr = Dst.getBitFieldAddress(); 1938 1939 // Get the source value, truncated to the width of the bit-field. 1940 llvm::Value *SrcVal = Src.getScalarVal(); 1941 1942 // Cast the source to the storage type and shift it into place. 1943 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1944 /*IsSigned=*/false); 1945 llvm::Value *MaskedVal = SrcVal; 1946 1947 // See if there are other bits in the bitfield's storage we'll need to load 1948 // and mask together with source before storing. 1949 if (Info.StorageSize != Info.Size) { 1950 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1951 llvm::Value *Val = 1952 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1953 1954 // Mask the source value as needed. 1955 if (!hasBooleanRepresentation(Dst.getType())) 1956 SrcVal = Builder.CreateAnd(SrcVal, 1957 llvm::APInt::getLowBitsSet(Info.StorageSize, 1958 Info.Size), 1959 "bf.value"); 1960 MaskedVal = SrcVal; 1961 if (Info.Offset) 1962 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1963 1964 // Mask out the original value. 1965 Val = Builder.CreateAnd(Val, 1966 ~llvm::APInt::getBitsSet(Info.StorageSize, 1967 Info.Offset, 1968 Info.Offset + Info.Size), 1969 "bf.clear"); 1970 1971 // Or together the unchanged values and the source value. 1972 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1973 } else { 1974 assert(Info.Offset == 0); 1975 } 1976 1977 // Write the new value back out. 1978 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1979 1980 // Return the new value of the bit-field, if requested. 1981 if (Result) { 1982 llvm::Value *ResultVal = MaskedVal; 1983 1984 // Sign extend the value if needed. 1985 if (Info.IsSigned) { 1986 assert(Info.Size <= Info.StorageSize); 1987 unsigned HighBits = Info.StorageSize - Info.Size; 1988 if (HighBits) { 1989 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1990 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1991 } 1992 } 1993 1994 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1995 "bf.result.cast"); 1996 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1997 } 1998 } 1999 2000 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2001 LValue Dst) { 2002 // This access turns into a read/modify/write of the vector. Load the input 2003 // value now. 2004 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2005 Dst.isVolatileQualified()); 2006 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2007 2008 llvm::Value *SrcVal = Src.getScalarVal(); 2009 2010 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2011 unsigned NumSrcElts = VTy->getNumElements(); 2012 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2013 if (NumDstElts == NumSrcElts) { 2014 // Use shuffle vector is the src and destination are the same number of 2015 // elements and restore the vector mask since it is on the side it will be 2016 // stored. 2017 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2018 for (unsigned i = 0; i != NumSrcElts; ++i) 2019 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2020 2021 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2022 Vec = Builder.CreateShuffleVector(SrcVal, 2023 llvm::UndefValue::get(Vec->getType()), 2024 MaskV); 2025 } else if (NumDstElts > NumSrcElts) { 2026 // Extended the source vector to the same length and then shuffle it 2027 // into the destination. 2028 // FIXME: since we're shuffling with undef, can we just use the indices 2029 // into that? This could be simpler. 2030 SmallVector<llvm::Constant*, 4> ExtMask; 2031 for (unsigned i = 0; i != NumSrcElts; ++i) 2032 ExtMask.push_back(Builder.getInt32(i)); 2033 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2034 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2035 llvm::Value *ExtSrcVal = 2036 Builder.CreateShuffleVector(SrcVal, 2037 llvm::UndefValue::get(SrcVal->getType()), 2038 ExtMaskV); 2039 // build identity 2040 SmallVector<llvm::Constant*, 4> Mask; 2041 for (unsigned i = 0; i != NumDstElts; ++i) 2042 Mask.push_back(Builder.getInt32(i)); 2043 2044 // When the vector size is odd and .odd or .hi is used, the last element 2045 // of the Elts constant array will be one past the size of the vector. 2046 // Ignore the last element here, if it is greater than the mask size. 2047 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2048 NumSrcElts--; 2049 2050 // modify when what gets shuffled in 2051 for (unsigned i = 0; i != NumSrcElts; ++i) 2052 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2053 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2054 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2055 } else { 2056 // We should never shorten the vector 2057 llvm_unreachable("unexpected shorten vector length"); 2058 } 2059 } else { 2060 // If the Src is a scalar (not a vector) it must be updating one element. 2061 unsigned InIdx = getAccessedFieldNo(0, Elts); 2062 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2063 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2064 } 2065 2066 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2067 Dst.isVolatileQualified()); 2068 } 2069 2070 /// @brief Store of global named registers are always calls to intrinsics. 2071 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2072 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2073 "Bad type for register variable"); 2074 llvm::MDNode *RegName = cast<llvm::MDNode>( 2075 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2076 assert(RegName && "Register LValue is not metadata"); 2077 2078 // We accept integer and pointer types only 2079 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2080 llvm::Type *Ty = OrigTy; 2081 if (OrigTy->isPointerTy()) 2082 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2083 llvm::Type *Types[] = { Ty }; 2084 2085 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2086 llvm::Value *Value = Src.getScalarVal(); 2087 if (OrigTy->isPointerTy()) 2088 Value = Builder.CreatePtrToInt(Value, Ty); 2089 Builder.CreateCall( 2090 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2091 } 2092 2093 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2094 // generating write-barries API. It is currently a global, ivar, 2095 // or neither. 2096 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2097 LValue &LV, 2098 bool IsMemberAccess=false) { 2099 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2100 return; 2101 2102 if (isa<ObjCIvarRefExpr>(E)) { 2103 QualType ExpTy = E->getType(); 2104 if (IsMemberAccess && ExpTy->isPointerType()) { 2105 // If ivar is a structure pointer, assigning to field of 2106 // this struct follows gcc's behavior and makes it a non-ivar 2107 // writer-barrier conservatively. 2108 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2109 if (ExpTy->isRecordType()) { 2110 LV.setObjCIvar(false); 2111 return; 2112 } 2113 } 2114 LV.setObjCIvar(true); 2115 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2116 LV.setBaseIvarExp(Exp->getBase()); 2117 LV.setObjCArray(E->getType()->isArrayType()); 2118 return; 2119 } 2120 2121 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2122 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2123 if (VD->hasGlobalStorage()) { 2124 LV.setGlobalObjCRef(true); 2125 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2126 } 2127 } 2128 LV.setObjCArray(E->getType()->isArrayType()); 2129 return; 2130 } 2131 2132 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2133 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2134 return; 2135 } 2136 2137 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2138 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2139 if (LV.isObjCIvar()) { 2140 // If cast is to a structure pointer, follow gcc's behavior and make it 2141 // a non-ivar write-barrier. 2142 QualType ExpTy = E->getType(); 2143 if (ExpTy->isPointerType()) 2144 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2145 if (ExpTy->isRecordType()) 2146 LV.setObjCIvar(false); 2147 } 2148 return; 2149 } 2150 2151 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2152 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2153 return; 2154 } 2155 2156 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2157 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2158 return; 2159 } 2160 2161 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2162 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2163 return; 2164 } 2165 2166 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2167 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2168 return; 2169 } 2170 2171 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2172 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2173 if (LV.isObjCIvar() && !LV.isObjCArray()) 2174 // Using array syntax to assigning to what an ivar points to is not 2175 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2176 LV.setObjCIvar(false); 2177 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2178 // Using array syntax to assigning to what global points to is not 2179 // same as assigning to the global itself. {id *G;} G[i] = 0; 2180 LV.setGlobalObjCRef(false); 2181 return; 2182 } 2183 2184 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2185 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2186 // We don't know if member is an 'ivar', but this flag is looked at 2187 // only in the context of LV.isObjCIvar(). 2188 LV.setObjCArray(E->getType()->isArrayType()); 2189 return; 2190 } 2191 } 2192 2193 static llvm::Value * 2194 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2195 llvm::Value *V, llvm::Type *IRType, 2196 StringRef Name = StringRef()) { 2197 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2198 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2199 } 2200 2201 static LValue EmitThreadPrivateVarDeclLValue( 2202 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2203 llvm::Type *RealVarTy, SourceLocation Loc) { 2204 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2205 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2206 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2207 } 2208 2209 Address 2210 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2211 LValueBaseInfo *PointeeBaseInfo, 2212 TBAAAccessInfo *PointeeTBAAInfo) { 2213 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2214 RefLVal.isVolatile()); 2215 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2216 2217 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2218 PointeeBaseInfo, PointeeTBAAInfo, 2219 /* forPointeeType= */ true); 2220 return Address(Load, Align); 2221 } 2222 2223 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2224 LValueBaseInfo PointeeBaseInfo; 2225 TBAAAccessInfo PointeeTBAAInfo; 2226 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2227 &PointeeTBAAInfo); 2228 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2229 PointeeBaseInfo, PointeeTBAAInfo); 2230 } 2231 2232 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2233 const PointerType *PtrTy, 2234 LValueBaseInfo *BaseInfo, 2235 TBAAAccessInfo *TBAAInfo) { 2236 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2237 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2238 BaseInfo, TBAAInfo, 2239 /*forPointeeType=*/true)); 2240 } 2241 2242 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2243 const PointerType *PtrTy) { 2244 LValueBaseInfo BaseInfo; 2245 TBAAAccessInfo TBAAInfo; 2246 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2247 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2248 } 2249 2250 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2251 const Expr *E, const VarDecl *VD) { 2252 QualType T = E->getType(); 2253 2254 // If it's thread_local, emit a call to its wrapper function instead. 2255 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2256 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2257 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2258 2259 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2260 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2261 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2262 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2263 Address Addr(V, Alignment); 2264 // Emit reference to the private copy of the variable if it is an OpenMP 2265 // threadprivate variable. 2266 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2267 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2268 E->getExprLoc()); 2269 LValue LV = VD->getType()->isReferenceType() ? 2270 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2271 AlignmentSource::Decl) : 2272 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2273 setObjCGCLValueClass(CGF.getContext(), E, LV); 2274 return LV; 2275 } 2276 2277 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2278 const FunctionDecl *FD) { 2279 if (FD->hasAttr<WeakRefAttr>()) { 2280 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2281 return aliasee.getPointer(); 2282 } 2283 2284 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2285 if (!FD->hasPrototype()) { 2286 if (const FunctionProtoType *Proto = 2287 FD->getType()->getAs<FunctionProtoType>()) { 2288 // Ugly case: for a K&R-style definition, the type of the definition 2289 // isn't the same as the type of a use. Correct for this with a 2290 // bitcast. 2291 QualType NoProtoType = 2292 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2293 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2294 V = llvm::ConstantExpr::getBitCast(V, 2295 CGM.getTypes().ConvertType(NoProtoType)); 2296 } 2297 } 2298 return V; 2299 } 2300 2301 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2302 const Expr *E, const FunctionDecl *FD) { 2303 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2304 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2305 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2306 AlignmentSource::Decl); 2307 } 2308 2309 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2310 llvm::Value *ThisValue) { 2311 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2312 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2313 return CGF.EmitLValueForField(LV, FD); 2314 } 2315 2316 /// Named Registers are named metadata pointing to the register name 2317 /// which will be read from/written to as an argument to the intrinsic 2318 /// @llvm.read/write_register. 2319 /// So far, only the name is being passed down, but other options such as 2320 /// register type, allocation type or even optimization options could be 2321 /// passed down via the metadata node. 2322 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2323 SmallString<64> Name("llvm.named.register."); 2324 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2325 assert(Asm->getLabel().size() < 64-Name.size() && 2326 "Register name too big"); 2327 Name.append(Asm->getLabel()); 2328 llvm::NamedMDNode *M = 2329 CGM.getModule().getOrInsertNamedMetadata(Name); 2330 if (M->getNumOperands() == 0) { 2331 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2332 Asm->getLabel()); 2333 llvm::Metadata *Ops[] = {Str}; 2334 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2335 } 2336 2337 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2338 2339 llvm::Value *Ptr = 2340 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2341 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2342 } 2343 2344 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2345 const NamedDecl *ND = E->getDecl(); 2346 QualType T = E->getType(); 2347 2348 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2349 // Global Named registers access via intrinsics only 2350 if (VD->getStorageClass() == SC_Register && 2351 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2352 return EmitGlobalNamedRegister(VD, CGM); 2353 2354 // A DeclRefExpr for a reference initialized by a constant expression can 2355 // appear without being odr-used. Directly emit the constant initializer. 2356 const Expr *Init = VD->getAnyInitializer(VD); 2357 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2358 VD->isUsableInConstantExpressions(getContext()) && 2359 VD->checkInitIsICE() && 2360 // Do not emit if it is private OpenMP variable. 2361 !(E->refersToEnclosingVariableOrCapture() && 2362 ((CapturedStmtInfo && 2363 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2364 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2365 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2366 isa<BlockDecl>(CurCodeDecl)))) { 2367 llvm::Constant *Val = 2368 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2369 *VD->evaluateValue(), 2370 VD->getType()); 2371 assert(Val && "failed to emit reference constant expression"); 2372 // FIXME: Eventually we will want to emit vector element references. 2373 2374 // Should we be using the alignment of the constant pointer we emitted? 2375 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2376 /* BaseInfo= */ nullptr, 2377 /* TBAAInfo= */ nullptr, 2378 /* forPointeeType= */ true); 2379 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2380 } 2381 2382 // Check for captured variables. 2383 if (E->refersToEnclosingVariableOrCapture()) { 2384 VD = VD->getCanonicalDecl(); 2385 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2386 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2387 else if (CapturedStmtInfo) { 2388 auto I = LocalDeclMap.find(VD); 2389 if (I != LocalDeclMap.end()) { 2390 if (VD->getType()->isReferenceType()) 2391 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2392 AlignmentSource::Decl); 2393 return MakeAddrLValue(I->second, T); 2394 } 2395 LValue CapLVal = 2396 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2397 CapturedStmtInfo->getContextValue()); 2398 return MakeAddrLValue( 2399 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2400 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2401 CapLVal.getTBAAInfo()); 2402 } 2403 2404 assert(isa<BlockDecl>(CurCodeDecl)); 2405 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2406 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2407 } 2408 } 2409 2410 // FIXME: We should be able to assert this for FunctionDecls as well! 2411 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2412 // those with a valid source location. 2413 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2414 !E->getLocation().isValid()) && 2415 "Should not use decl without marking it used!"); 2416 2417 if (ND->hasAttr<WeakRefAttr>()) { 2418 const auto *VD = cast<ValueDecl>(ND); 2419 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2420 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2421 } 2422 2423 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2424 // Check if this is a global variable. 2425 if (VD->hasLinkage() || VD->isStaticDataMember()) 2426 return EmitGlobalVarDeclLValue(*this, E, VD); 2427 2428 Address addr = Address::invalid(); 2429 2430 // The variable should generally be present in the local decl map. 2431 auto iter = LocalDeclMap.find(VD); 2432 if (iter != LocalDeclMap.end()) { 2433 addr = iter->second; 2434 2435 // Otherwise, it might be static local we haven't emitted yet for 2436 // some reason; most likely, because it's in an outer function. 2437 } else if (VD->isStaticLocal()) { 2438 addr = Address(CGM.getOrCreateStaticVarDecl( 2439 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2440 getContext().getDeclAlign(VD)); 2441 2442 // No other cases for now. 2443 } else { 2444 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2445 } 2446 2447 2448 // Check for OpenMP threadprivate variables. 2449 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2450 return EmitThreadPrivateVarDeclLValue( 2451 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2452 E->getExprLoc()); 2453 } 2454 2455 // Drill into block byref variables. 2456 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2457 if (isBlockByref) { 2458 addr = emitBlockByrefAddress(addr, VD); 2459 } 2460 2461 // Drill into reference types. 2462 LValue LV = VD->getType()->isReferenceType() ? 2463 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2464 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2465 2466 bool isLocalStorage = VD->hasLocalStorage(); 2467 2468 bool NonGCable = isLocalStorage && 2469 !VD->getType()->isReferenceType() && 2470 !isBlockByref; 2471 if (NonGCable) { 2472 LV.getQuals().removeObjCGCAttr(); 2473 LV.setNonGC(true); 2474 } 2475 2476 bool isImpreciseLifetime = 2477 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2478 if (isImpreciseLifetime) 2479 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2480 setObjCGCLValueClass(getContext(), E, LV); 2481 return LV; 2482 } 2483 2484 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2485 return EmitFunctionDeclLValue(*this, E, FD); 2486 2487 // FIXME: While we're emitting a binding from an enclosing scope, all other 2488 // DeclRefExprs we see should be implicitly treated as if they also refer to 2489 // an enclosing scope. 2490 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2491 return EmitLValue(BD->getBinding()); 2492 2493 llvm_unreachable("Unhandled DeclRefExpr"); 2494 } 2495 2496 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2497 // __extension__ doesn't affect lvalue-ness. 2498 if (E->getOpcode() == UO_Extension) 2499 return EmitLValue(E->getSubExpr()); 2500 2501 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2502 switch (E->getOpcode()) { 2503 default: llvm_unreachable("Unknown unary operator lvalue!"); 2504 case UO_Deref: { 2505 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2506 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2507 2508 LValueBaseInfo BaseInfo; 2509 TBAAAccessInfo TBAAInfo; 2510 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2511 &TBAAInfo); 2512 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2513 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2514 2515 // We should not generate __weak write barrier on indirect reference 2516 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2517 // But, we continue to generate __strong write barrier on indirect write 2518 // into a pointer to object. 2519 if (getLangOpts().ObjC1 && 2520 getLangOpts().getGC() != LangOptions::NonGC && 2521 LV.isObjCWeak()) 2522 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2523 return LV; 2524 } 2525 case UO_Real: 2526 case UO_Imag: { 2527 LValue LV = EmitLValue(E->getSubExpr()); 2528 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2529 2530 // __real is valid on scalars. This is a faster way of testing that. 2531 // __imag can only produce an rvalue on scalars. 2532 if (E->getOpcode() == UO_Real && 2533 !LV.getAddress().getElementType()->isStructTy()) { 2534 assert(E->getSubExpr()->getType()->isArithmeticType()); 2535 return LV; 2536 } 2537 2538 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2539 2540 Address Component = 2541 (E->getOpcode() == UO_Real 2542 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2543 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2544 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2545 CGM.getTBAAInfoForSubobject(LV, T)); 2546 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2547 return ElemLV; 2548 } 2549 case UO_PreInc: 2550 case UO_PreDec: { 2551 LValue LV = EmitLValue(E->getSubExpr()); 2552 bool isInc = E->getOpcode() == UO_PreInc; 2553 2554 if (E->getType()->isAnyComplexType()) 2555 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2556 else 2557 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2558 return LV; 2559 } 2560 } 2561 } 2562 2563 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2564 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2565 E->getType(), AlignmentSource::Decl); 2566 } 2567 2568 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2569 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2570 E->getType(), AlignmentSource::Decl); 2571 } 2572 2573 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2574 auto SL = E->getFunctionName(); 2575 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2576 StringRef FnName = CurFn->getName(); 2577 if (FnName.startswith("\01")) 2578 FnName = FnName.substr(1); 2579 StringRef NameItems[] = { 2580 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2581 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2582 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2583 std::string Name = SL->getString(); 2584 if (!Name.empty()) { 2585 unsigned Discriminator = 2586 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2587 if (Discriminator) 2588 Name += "_" + Twine(Discriminator + 1).str(); 2589 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2590 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2591 } else { 2592 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2593 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2594 } 2595 } 2596 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2597 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2598 } 2599 2600 /// Emit a type description suitable for use by a runtime sanitizer library. The 2601 /// format of a type descriptor is 2602 /// 2603 /// \code 2604 /// { i16 TypeKind, i16 TypeInfo } 2605 /// \endcode 2606 /// 2607 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2608 /// integer, 1 for a floating point value, and -1 for anything else. 2609 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2610 // Only emit each type's descriptor once. 2611 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2612 return C; 2613 2614 uint16_t TypeKind = -1; 2615 uint16_t TypeInfo = 0; 2616 2617 if (T->isIntegerType()) { 2618 TypeKind = 0; 2619 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2620 (T->isSignedIntegerType() ? 1 : 0); 2621 } else if (T->isFloatingType()) { 2622 TypeKind = 1; 2623 TypeInfo = getContext().getTypeSize(T); 2624 } 2625 2626 // Format the type name as if for a diagnostic, including quotes and 2627 // optionally an 'aka'. 2628 SmallString<32> Buffer; 2629 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2630 (intptr_t)T.getAsOpaquePtr(), 2631 StringRef(), StringRef(), None, Buffer, 2632 None); 2633 2634 llvm::Constant *Components[] = { 2635 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2636 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2637 }; 2638 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2639 2640 auto *GV = new llvm::GlobalVariable( 2641 CGM.getModule(), Descriptor->getType(), 2642 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2643 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2644 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2645 2646 // Remember the descriptor for this type. 2647 CGM.setTypeDescriptorInMap(T, GV); 2648 2649 return GV; 2650 } 2651 2652 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2653 llvm::Type *TargetTy = IntPtrTy; 2654 2655 if (V->getType() == TargetTy) 2656 return V; 2657 2658 // Floating-point types which fit into intptr_t are bitcast to integers 2659 // and then passed directly (after zero-extension, if necessary). 2660 if (V->getType()->isFloatingPointTy()) { 2661 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2662 if (Bits <= TargetTy->getIntegerBitWidth()) 2663 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2664 Bits)); 2665 } 2666 2667 // Integers which fit in intptr_t are zero-extended and passed directly. 2668 if (V->getType()->isIntegerTy() && 2669 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2670 return Builder.CreateZExt(V, TargetTy); 2671 2672 // Pointers are passed directly, everything else is passed by address. 2673 if (!V->getType()->isPointerTy()) { 2674 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2675 Builder.CreateStore(V, Ptr); 2676 V = Ptr.getPointer(); 2677 } 2678 return Builder.CreatePtrToInt(V, TargetTy); 2679 } 2680 2681 /// \brief Emit a representation of a SourceLocation for passing to a handler 2682 /// in a sanitizer runtime library. The format for this data is: 2683 /// \code 2684 /// struct SourceLocation { 2685 /// const char *Filename; 2686 /// int32_t Line, Column; 2687 /// }; 2688 /// \endcode 2689 /// For an invalid SourceLocation, the Filename pointer is null. 2690 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2691 llvm::Constant *Filename; 2692 int Line, Column; 2693 2694 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2695 if (PLoc.isValid()) { 2696 StringRef FilenameString = PLoc.getFilename(); 2697 2698 int PathComponentsToStrip = 2699 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2700 if (PathComponentsToStrip < 0) { 2701 assert(PathComponentsToStrip != INT_MIN); 2702 int PathComponentsToKeep = -PathComponentsToStrip; 2703 auto I = llvm::sys::path::rbegin(FilenameString); 2704 auto E = llvm::sys::path::rend(FilenameString); 2705 while (I != E && --PathComponentsToKeep) 2706 ++I; 2707 2708 FilenameString = FilenameString.substr(I - E); 2709 } else if (PathComponentsToStrip > 0) { 2710 auto I = llvm::sys::path::begin(FilenameString); 2711 auto E = llvm::sys::path::end(FilenameString); 2712 while (I != E && PathComponentsToStrip--) 2713 ++I; 2714 2715 if (I != E) 2716 FilenameString = 2717 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2718 else 2719 FilenameString = llvm::sys::path::filename(FilenameString); 2720 } 2721 2722 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2723 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2724 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2725 Filename = FilenameGV.getPointer(); 2726 Line = PLoc.getLine(); 2727 Column = PLoc.getColumn(); 2728 } else { 2729 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2730 Line = Column = 0; 2731 } 2732 2733 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2734 Builder.getInt32(Column)}; 2735 2736 return llvm::ConstantStruct::getAnon(Data); 2737 } 2738 2739 namespace { 2740 /// \brief Specify under what conditions this check can be recovered 2741 enum class CheckRecoverableKind { 2742 /// Always terminate program execution if this check fails. 2743 Unrecoverable, 2744 /// Check supports recovering, runtime has both fatal (noreturn) and 2745 /// non-fatal handlers for this check. 2746 Recoverable, 2747 /// Runtime conditionally aborts, always need to support recovery. 2748 AlwaysRecoverable 2749 }; 2750 } 2751 2752 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2753 assert(llvm::countPopulation(Kind) == 1); 2754 switch (Kind) { 2755 case SanitizerKind::Vptr: 2756 return CheckRecoverableKind::AlwaysRecoverable; 2757 case SanitizerKind::Return: 2758 case SanitizerKind::Unreachable: 2759 return CheckRecoverableKind::Unrecoverable; 2760 default: 2761 return CheckRecoverableKind::Recoverable; 2762 } 2763 } 2764 2765 namespace { 2766 struct SanitizerHandlerInfo { 2767 char const *const Name; 2768 unsigned Version; 2769 }; 2770 } 2771 2772 const SanitizerHandlerInfo SanitizerHandlers[] = { 2773 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2774 LIST_SANITIZER_CHECKS 2775 #undef SANITIZER_CHECK 2776 }; 2777 2778 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2779 llvm::FunctionType *FnType, 2780 ArrayRef<llvm::Value *> FnArgs, 2781 SanitizerHandler CheckHandler, 2782 CheckRecoverableKind RecoverKind, bool IsFatal, 2783 llvm::BasicBlock *ContBB) { 2784 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2785 bool NeedsAbortSuffix = 2786 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2787 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2788 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2789 const StringRef CheckName = CheckInfo.Name; 2790 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2791 if (CheckInfo.Version && !MinimalRuntime) 2792 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2793 if (MinimalRuntime) 2794 FnName += "_minimal"; 2795 if (NeedsAbortSuffix) 2796 FnName += "_abort"; 2797 bool MayReturn = 2798 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2799 2800 llvm::AttrBuilder B; 2801 if (!MayReturn) { 2802 B.addAttribute(llvm::Attribute::NoReturn) 2803 .addAttribute(llvm::Attribute::NoUnwind); 2804 } 2805 B.addAttribute(llvm::Attribute::UWTable); 2806 2807 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2808 FnType, FnName, 2809 llvm::AttributeList::get(CGF.getLLVMContext(), 2810 llvm::AttributeList::FunctionIndex, B), 2811 /*Local=*/true); 2812 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2813 if (!MayReturn) { 2814 HandlerCall->setDoesNotReturn(); 2815 CGF.Builder.CreateUnreachable(); 2816 } else { 2817 CGF.Builder.CreateBr(ContBB); 2818 } 2819 } 2820 2821 void CodeGenFunction::EmitCheck( 2822 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2823 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2824 ArrayRef<llvm::Value *> DynamicArgs) { 2825 assert(IsSanitizerScope); 2826 assert(Checked.size() > 0); 2827 assert(CheckHandler >= 0 && 2828 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2829 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2830 2831 llvm::Value *FatalCond = nullptr; 2832 llvm::Value *RecoverableCond = nullptr; 2833 llvm::Value *TrapCond = nullptr; 2834 for (int i = 0, n = Checked.size(); i < n; ++i) { 2835 llvm::Value *Check = Checked[i].first; 2836 // -fsanitize-trap= overrides -fsanitize-recover=. 2837 llvm::Value *&Cond = 2838 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2839 ? TrapCond 2840 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2841 ? RecoverableCond 2842 : FatalCond; 2843 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2844 } 2845 2846 if (TrapCond) 2847 EmitTrapCheck(TrapCond); 2848 if (!FatalCond && !RecoverableCond) 2849 return; 2850 2851 llvm::Value *JointCond; 2852 if (FatalCond && RecoverableCond) 2853 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2854 else 2855 JointCond = FatalCond ? FatalCond : RecoverableCond; 2856 assert(JointCond); 2857 2858 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2859 assert(SanOpts.has(Checked[0].second)); 2860 #ifndef NDEBUG 2861 for (int i = 1, n = Checked.size(); i < n; ++i) { 2862 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2863 "All recoverable kinds in a single check must be same!"); 2864 assert(SanOpts.has(Checked[i].second)); 2865 } 2866 #endif 2867 2868 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2869 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2870 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2871 // Give hint that we very much don't expect to execute the handler 2872 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2873 llvm::MDBuilder MDHelper(getLLVMContext()); 2874 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2875 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2876 EmitBlock(Handlers); 2877 2878 // Handler functions take an i8* pointing to the (handler-specific) static 2879 // information block, followed by a sequence of intptr_t arguments 2880 // representing operand values. 2881 SmallVector<llvm::Value *, 4> Args; 2882 SmallVector<llvm::Type *, 4> ArgTypes; 2883 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2884 Args.reserve(DynamicArgs.size() + 1); 2885 ArgTypes.reserve(DynamicArgs.size() + 1); 2886 2887 // Emit handler arguments and create handler function type. 2888 if (!StaticArgs.empty()) { 2889 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2890 auto *InfoPtr = 2891 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2892 llvm::GlobalVariable::PrivateLinkage, Info); 2893 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2894 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2895 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2896 ArgTypes.push_back(Int8PtrTy); 2897 } 2898 2899 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2900 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2901 ArgTypes.push_back(IntPtrTy); 2902 } 2903 } 2904 2905 llvm::FunctionType *FnType = 2906 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2907 2908 if (!FatalCond || !RecoverableCond) { 2909 // Simple case: we need to generate a single handler call, either 2910 // fatal, or non-fatal. 2911 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2912 (FatalCond != nullptr), Cont); 2913 } else { 2914 // Emit two handler calls: first one for set of unrecoverable checks, 2915 // another one for recoverable. 2916 llvm::BasicBlock *NonFatalHandlerBB = 2917 createBasicBlock("non_fatal." + CheckName); 2918 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2919 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2920 EmitBlock(FatalHandlerBB); 2921 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2922 NonFatalHandlerBB); 2923 EmitBlock(NonFatalHandlerBB); 2924 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2925 Cont); 2926 } 2927 2928 EmitBlock(Cont); 2929 } 2930 2931 void CodeGenFunction::EmitCfiSlowPathCheck( 2932 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2933 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2934 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2935 2936 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2937 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2938 2939 llvm::MDBuilder MDHelper(getLLVMContext()); 2940 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2941 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2942 2943 EmitBlock(CheckBB); 2944 2945 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2946 2947 llvm::CallInst *CheckCall; 2948 if (WithDiag) { 2949 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2950 auto *InfoPtr = 2951 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2952 llvm::GlobalVariable::PrivateLinkage, Info); 2953 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2954 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2955 2956 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2957 "__cfi_slowpath_diag", 2958 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2959 false)); 2960 CheckCall = Builder.CreateCall( 2961 SlowPathDiagFn, 2962 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2963 } else { 2964 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2965 "__cfi_slowpath", 2966 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2967 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2968 } 2969 2970 CheckCall->setDoesNotThrow(); 2971 2972 EmitBlock(Cont); 2973 } 2974 2975 // Emit a stub for __cfi_check function so that the linker knows about this 2976 // symbol in LTO mode. 2977 void CodeGenFunction::EmitCfiCheckStub() { 2978 llvm::Module *M = &CGM.getModule(); 2979 auto &Ctx = M->getContext(); 2980 llvm::Function *F = llvm::Function::Create( 2981 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2982 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2983 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2984 // FIXME: consider emitting an intrinsic call like 2985 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2986 // which can be lowered in CrossDSOCFI pass to the actual contents of 2987 // __cfi_check. This would allow inlining of __cfi_check calls. 2988 llvm::CallInst::Create( 2989 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2990 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2991 } 2992 2993 // This function is basically a switch over the CFI failure kind, which is 2994 // extracted from CFICheckFailData (1st function argument). Each case is either 2995 // llvm.trap or a call to one of the two runtime handlers, based on 2996 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2997 // failure kind) traps, but this should really never happen. CFICheckFailData 2998 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2999 // check kind; in this case __cfi_check_fail traps as well. 3000 void CodeGenFunction::EmitCfiCheckFail() { 3001 SanitizerScope SanScope(this); 3002 FunctionArgList Args; 3003 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3004 ImplicitParamDecl::Other); 3005 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3006 ImplicitParamDecl::Other); 3007 Args.push_back(&ArgData); 3008 Args.push_back(&ArgAddr); 3009 3010 const CGFunctionInfo &FI = 3011 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3012 3013 llvm::Function *F = llvm::Function::Create( 3014 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3015 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3016 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3017 3018 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3019 SourceLocation()); 3020 3021 llvm::Value *Data = 3022 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3023 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3024 llvm::Value *Addr = 3025 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3026 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3027 3028 // Data == nullptr means the calling module has trap behaviour for this check. 3029 llvm::Value *DataIsNotNullPtr = 3030 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3031 EmitTrapCheck(DataIsNotNullPtr); 3032 3033 llvm::StructType *SourceLocationTy = 3034 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3035 llvm::StructType *CfiCheckFailDataTy = 3036 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3037 3038 llvm::Value *V = Builder.CreateConstGEP2_32( 3039 CfiCheckFailDataTy, 3040 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3041 0); 3042 Address CheckKindAddr(V, getIntAlign()); 3043 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3044 3045 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3046 CGM.getLLVMContext(), 3047 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3048 llvm::Value *ValidVtable = Builder.CreateZExt( 3049 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3050 {Addr, AllVtables}), 3051 IntPtrTy); 3052 3053 const std::pair<int, SanitizerMask> CheckKinds[] = { 3054 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3055 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3056 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3057 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3058 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3059 3060 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3061 for (auto CheckKindMaskPair : CheckKinds) { 3062 int Kind = CheckKindMaskPair.first; 3063 SanitizerMask Mask = CheckKindMaskPair.second; 3064 llvm::Value *Cond = 3065 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3066 if (CGM.getLangOpts().Sanitize.has(Mask)) 3067 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3068 {Data, Addr, ValidVtable}); 3069 else 3070 EmitTrapCheck(Cond); 3071 } 3072 3073 FinishFunction(); 3074 // The only reference to this function will be created during LTO link. 3075 // Make sure it survives until then. 3076 CGM.addUsedGlobal(F); 3077 } 3078 3079 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3080 if (SanOpts.has(SanitizerKind::Unreachable)) { 3081 SanitizerScope SanScope(this); 3082 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3083 SanitizerKind::Unreachable), 3084 SanitizerHandler::BuiltinUnreachable, 3085 EmitCheckSourceLocation(Loc), None); 3086 } 3087 Builder.CreateUnreachable(); 3088 } 3089 3090 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3091 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3092 3093 // If we're optimizing, collapse all calls to trap down to just one per 3094 // function to save on code size. 3095 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3096 TrapBB = createBasicBlock("trap"); 3097 Builder.CreateCondBr(Checked, Cont, TrapBB); 3098 EmitBlock(TrapBB); 3099 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3100 TrapCall->setDoesNotReturn(); 3101 TrapCall->setDoesNotThrow(); 3102 Builder.CreateUnreachable(); 3103 } else { 3104 Builder.CreateCondBr(Checked, Cont, TrapBB); 3105 } 3106 3107 EmitBlock(Cont); 3108 } 3109 3110 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3111 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3112 3113 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3114 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3115 CGM.getCodeGenOpts().TrapFuncName); 3116 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3117 } 3118 3119 return TrapCall; 3120 } 3121 3122 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3123 LValueBaseInfo *BaseInfo, 3124 TBAAAccessInfo *TBAAInfo) { 3125 assert(E->getType()->isArrayType() && 3126 "Array to pointer decay must have array source type!"); 3127 3128 // Expressions of array type can't be bitfields or vector elements. 3129 LValue LV = EmitLValue(E); 3130 Address Addr = LV.getAddress(); 3131 3132 // If the array type was an incomplete type, we need to make sure 3133 // the decay ends up being the right type. 3134 llvm::Type *NewTy = ConvertType(E->getType()); 3135 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3136 3137 // Note that VLA pointers are always decayed, so we don't need to do 3138 // anything here. 3139 if (!E->getType()->isVariableArrayType()) { 3140 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3141 "Expected pointer to array"); 3142 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3143 } 3144 3145 // The result of this decay conversion points to an array element within the 3146 // base lvalue. However, since TBAA currently does not support representing 3147 // accesses to elements of member arrays, we conservatively represent accesses 3148 // to the pointee object as if it had no any base lvalue specified. 3149 // TODO: Support TBAA for member arrays. 3150 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3151 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3152 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3153 3154 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3155 } 3156 3157 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3158 /// array to pointer, return the array subexpression. 3159 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3160 // If this isn't just an array->pointer decay, bail out. 3161 const auto *CE = dyn_cast<CastExpr>(E); 3162 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3163 return nullptr; 3164 3165 // If this is a decay from variable width array, bail out. 3166 const Expr *SubExpr = CE->getSubExpr(); 3167 if (SubExpr->getType()->isVariableArrayType()) 3168 return nullptr; 3169 3170 return SubExpr; 3171 } 3172 3173 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3174 llvm::Value *ptr, 3175 ArrayRef<llvm::Value*> indices, 3176 bool inbounds, 3177 bool signedIndices, 3178 SourceLocation loc, 3179 const llvm::Twine &name = "arrayidx") { 3180 if (inbounds) { 3181 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3182 CodeGenFunction::NotSubtraction, loc, 3183 name); 3184 } else { 3185 return CGF.Builder.CreateGEP(ptr, indices, name); 3186 } 3187 } 3188 3189 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3190 llvm::Value *idx, 3191 CharUnits eltSize) { 3192 // If we have a constant index, we can use the exact offset of the 3193 // element we're accessing. 3194 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3195 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3196 return arrayAlign.alignmentAtOffset(offset); 3197 3198 // Otherwise, use the worst-case alignment for any element. 3199 } else { 3200 return arrayAlign.alignmentOfArrayElement(eltSize); 3201 } 3202 } 3203 3204 static QualType getFixedSizeElementType(const ASTContext &ctx, 3205 const VariableArrayType *vla) { 3206 QualType eltType; 3207 do { 3208 eltType = vla->getElementType(); 3209 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3210 return eltType; 3211 } 3212 3213 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3214 ArrayRef<llvm::Value *> indices, 3215 QualType eltType, bool inbounds, 3216 bool signedIndices, SourceLocation loc, 3217 const llvm::Twine &name = "arrayidx") { 3218 // All the indices except that last must be zero. 3219 #ifndef NDEBUG 3220 for (auto idx : indices.drop_back()) 3221 assert(isa<llvm::ConstantInt>(idx) && 3222 cast<llvm::ConstantInt>(idx)->isZero()); 3223 #endif 3224 3225 // Determine the element size of the statically-sized base. This is 3226 // the thing that the indices are expressed in terms of. 3227 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3228 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3229 } 3230 3231 // We can use that to compute the best alignment of the element. 3232 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3233 CharUnits eltAlign = 3234 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3235 3236 llvm::Value *eltPtr = emitArraySubscriptGEP( 3237 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3238 return Address(eltPtr, eltAlign); 3239 } 3240 3241 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3242 bool Accessed) { 3243 // The index must always be an integer, which is not an aggregate. Emit it 3244 // in lexical order (this complexity is, sadly, required by C++17). 3245 llvm::Value *IdxPre = 3246 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3247 bool SignedIndices = false; 3248 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3249 auto *Idx = IdxPre; 3250 if (E->getLHS() != E->getIdx()) { 3251 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3252 Idx = EmitScalarExpr(E->getIdx()); 3253 } 3254 3255 QualType IdxTy = E->getIdx()->getType(); 3256 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3257 SignedIndices |= IdxSigned; 3258 3259 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3260 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3261 3262 // Extend or truncate the index type to 32 or 64-bits. 3263 if (Promote && Idx->getType() != IntPtrTy) 3264 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3265 3266 return Idx; 3267 }; 3268 IdxPre = nullptr; 3269 3270 // If the base is a vector type, then we are forming a vector element lvalue 3271 // with this subscript. 3272 if (E->getBase()->getType()->isVectorType() && 3273 !isa<ExtVectorElementExpr>(E->getBase())) { 3274 // Emit the vector as an lvalue to get its address. 3275 LValue LHS = EmitLValue(E->getBase()); 3276 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3277 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3278 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3279 LHS.getBaseInfo(), TBAAAccessInfo()); 3280 } 3281 3282 // All the other cases basically behave like simple offsetting. 3283 3284 // Handle the extvector case we ignored above. 3285 if (isa<ExtVectorElementExpr>(E->getBase())) { 3286 LValue LV = EmitLValue(E->getBase()); 3287 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3288 Address Addr = EmitExtVectorElementLValue(LV); 3289 3290 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3291 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3292 SignedIndices, E->getExprLoc()); 3293 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3294 CGM.getTBAAInfoForSubobject(LV, EltType)); 3295 } 3296 3297 LValueBaseInfo EltBaseInfo; 3298 TBAAAccessInfo EltTBAAInfo; 3299 Address Addr = Address::invalid(); 3300 if (const VariableArrayType *vla = 3301 getContext().getAsVariableArrayType(E->getType())) { 3302 // The base must be a pointer, which is not an aggregate. Emit 3303 // it. It needs to be emitted first in case it's what captures 3304 // the VLA bounds. 3305 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3306 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3307 3308 // The element count here is the total number of non-VLA elements. 3309 llvm::Value *numElements = getVLASize(vla).first; 3310 3311 // Effectively, the multiply by the VLA size is part of the GEP. 3312 // GEP indexes are signed, and scaling an index isn't permitted to 3313 // signed-overflow, so we use the same semantics for our explicit 3314 // multiply. We suppress this if overflow is not undefined behavior. 3315 if (getLangOpts().isSignedOverflowDefined()) { 3316 Idx = Builder.CreateMul(Idx, numElements); 3317 } else { 3318 Idx = Builder.CreateNSWMul(Idx, numElements); 3319 } 3320 3321 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3322 !getLangOpts().isSignedOverflowDefined(), 3323 SignedIndices, E->getExprLoc()); 3324 3325 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3326 // Indexing over an interface, as in "NSString *P; P[4];" 3327 3328 // Emit the base pointer. 3329 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3330 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3331 3332 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3333 llvm::Value *InterfaceSizeVal = 3334 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3335 3336 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3337 3338 // We don't necessarily build correct LLVM struct types for ObjC 3339 // interfaces, so we can't rely on GEP to do this scaling 3340 // correctly, so we need to cast to i8*. FIXME: is this actually 3341 // true? A lot of other things in the fragile ABI would break... 3342 llvm::Type *OrigBaseTy = Addr.getType(); 3343 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3344 3345 // Do the GEP. 3346 CharUnits EltAlign = 3347 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3348 llvm::Value *EltPtr = 3349 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3350 SignedIndices, E->getExprLoc()); 3351 Addr = Address(EltPtr, EltAlign); 3352 3353 // Cast back. 3354 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3355 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3356 // If this is A[i] where A is an array, the frontend will have decayed the 3357 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3358 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3359 // "gep x, i" here. Emit one "gep A, 0, i". 3360 assert(Array->getType()->isArrayType() && 3361 "Array to pointer decay must have array source type!"); 3362 LValue ArrayLV; 3363 // For simple multidimensional array indexing, set the 'accessed' flag for 3364 // better bounds-checking of the base expression. 3365 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3366 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3367 else 3368 ArrayLV = EmitLValue(Array); 3369 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3370 3371 // Propagate the alignment from the array itself to the result. 3372 Addr = emitArraySubscriptGEP( 3373 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3374 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3375 E->getExprLoc()); 3376 EltBaseInfo = ArrayLV.getBaseInfo(); 3377 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3378 } else { 3379 // The base must be a pointer; emit it with an estimate of its alignment. 3380 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3381 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3382 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3383 !getLangOpts().isSignedOverflowDefined(), 3384 SignedIndices, E->getExprLoc()); 3385 } 3386 3387 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3388 3389 if (getLangOpts().ObjC1 && 3390 getLangOpts().getGC() != LangOptions::NonGC) { 3391 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3392 setObjCGCLValueClass(getContext(), E, LV); 3393 } 3394 return LV; 3395 } 3396 3397 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3398 LValueBaseInfo &BaseInfo, 3399 TBAAAccessInfo &TBAAInfo, 3400 QualType BaseTy, QualType ElTy, 3401 bool IsLowerBound) { 3402 LValue BaseLVal; 3403 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3404 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3405 if (BaseTy->isArrayType()) { 3406 Address Addr = BaseLVal.getAddress(); 3407 BaseInfo = BaseLVal.getBaseInfo(); 3408 3409 // If the array type was an incomplete type, we need to make sure 3410 // the decay ends up being the right type. 3411 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3412 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3413 3414 // Note that VLA pointers are always decayed, so we don't need to do 3415 // anything here. 3416 if (!BaseTy->isVariableArrayType()) { 3417 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3418 "Expected pointer to array"); 3419 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3420 "arraydecay"); 3421 } 3422 3423 return CGF.Builder.CreateElementBitCast(Addr, 3424 CGF.ConvertTypeForMem(ElTy)); 3425 } 3426 LValueBaseInfo TypeBaseInfo; 3427 TBAAAccessInfo TypeTBAAInfo; 3428 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3429 &TypeTBAAInfo); 3430 BaseInfo.mergeForCast(TypeBaseInfo); 3431 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3432 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3433 } 3434 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3435 } 3436 3437 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3438 bool IsLowerBound) { 3439 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3440 QualType ResultExprTy; 3441 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3442 ResultExprTy = AT->getElementType(); 3443 else 3444 ResultExprTy = BaseTy->getPointeeType(); 3445 llvm::Value *Idx = nullptr; 3446 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3447 // Requesting lower bound or upper bound, but without provided length and 3448 // without ':' symbol for the default length -> length = 1. 3449 // Idx = LowerBound ?: 0; 3450 if (auto *LowerBound = E->getLowerBound()) { 3451 Idx = Builder.CreateIntCast( 3452 EmitScalarExpr(LowerBound), IntPtrTy, 3453 LowerBound->getType()->hasSignedIntegerRepresentation()); 3454 } else 3455 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3456 } else { 3457 // Try to emit length or lower bound as constant. If this is possible, 1 3458 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3459 // IR (LB + Len) - 1. 3460 auto &C = CGM.getContext(); 3461 auto *Length = E->getLength(); 3462 llvm::APSInt ConstLength; 3463 if (Length) { 3464 // Idx = LowerBound + Length - 1; 3465 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3466 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3467 Length = nullptr; 3468 } 3469 auto *LowerBound = E->getLowerBound(); 3470 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3471 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3472 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3473 LowerBound = nullptr; 3474 } 3475 if (!Length) 3476 --ConstLength; 3477 else if (!LowerBound) 3478 --ConstLowerBound; 3479 3480 if (Length || LowerBound) { 3481 auto *LowerBoundVal = 3482 LowerBound 3483 ? Builder.CreateIntCast( 3484 EmitScalarExpr(LowerBound), IntPtrTy, 3485 LowerBound->getType()->hasSignedIntegerRepresentation()) 3486 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3487 auto *LengthVal = 3488 Length 3489 ? Builder.CreateIntCast( 3490 EmitScalarExpr(Length), IntPtrTy, 3491 Length->getType()->hasSignedIntegerRepresentation()) 3492 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3493 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3494 /*HasNUW=*/false, 3495 !getLangOpts().isSignedOverflowDefined()); 3496 if (Length && LowerBound) { 3497 Idx = Builder.CreateSub( 3498 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3499 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3500 } 3501 } else 3502 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3503 } else { 3504 // Idx = ArraySize - 1; 3505 QualType ArrayTy = BaseTy->isPointerType() 3506 ? E->getBase()->IgnoreParenImpCasts()->getType() 3507 : BaseTy; 3508 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3509 Length = VAT->getSizeExpr(); 3510 if (Length->isIntegerConstantExpr(ConstLength, C)) 3511 Length = nullptr; 3512 } else { 3513 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3514 ConstLength = CAT->getSize(); 3515 } 3516 if (Length) { 3517 auto *LengthVal = Builder.CreateIntCast( 3518 EmitScalarExpr(Length), IntPtrTy, 3519 Length->getType()->hasSignedIntegerRepresentation()); 3520 Idx = Builder.CreateSub( 3521 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3522 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3523 } else { 3524 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3525 --ConstLength; 3526 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3527 } 3528 } 3529 } 3530 assert(Idx); 3531 3532 Address EltPtr = Address::invalid(); 3533 LValueBaseInfo BaseInfo; 3534 TBAAAccessInfo TBAAInfo; 3535 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3536 // The base must be a pointer, which is not an aggregate. Emit 3537 // it. It needs to be emitted first in case it's what captures 3538 // the VLA bounds. 3539 Address Base = 3540 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3541 BaseTy, VLA->getElementType(), IsLowerBound); 3542 // The element count here is the total number of non-VLA elements. 3543 llvm::Value *NumElements = getVLASize(VLA).first; 3544 3545 // Effectively, the multiply by the VLA size is part of the GEP. 3546 // GEP indexes are signed, and scaling an index isn't permitted to 3547 // signed-overflow, so we use the same semantics for our explicit 3548 // multiply. We suppress this if overflow is not undefined behavior. 3549 if (getLangOpts().isSignedOverflowDefined()) 3550 Idx = Builder.CreateMul(Idx, NumElements); 3551 else 3552 Idx = Builder.CreateNSWMul(Idx, NumElements); 3553 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3554 !getLangOpts().isSignedOverflowDefined(), 3555 /*SignedIndices=*/false, E->getExprLoc()); 3556 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3557 // If this is A[i] where A is an array, the frontend will have decayed the 3558 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3559 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3560 // "gep x, i" here. Emit one "gep A, 0, i". 3561 assert(Array->getType()->isArrayType() && 3562 "Array to pointer decay must have array source type!"); 3563 LValue ArrayLV; 3564 // For simple multidimensional array indexing, set the 'accessed' flag for 3565 // better bounds-checking of the base expression. 3566 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3567 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3568 else 3569 ArrayLV = EmitLValue(Array); 3570 3571 // Propagate the alignment from the array itself to the result. 3572 EltPtr = emitArraySubscriptGEP( 3573 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3574 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3575 /*SignedIndices=*/false, E->getExprLoc()); 3576 BaseInfo = ArrayLV.getBaseInfo(); 3577 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3578 } else { 3579 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3580 TBAAInfo, BaseTy, ResultExprTy, 3581 IsLowerBound); 3582 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3583 !getLangOpts().isSignedOverflowDefined(), 3584 /*SignedIndices=*/false, E->getExprLoc()); 3585 } 3586 3587 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3588 } 3589 3590 LValue CodeGenFunction:: 3591 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3592 // Emit the base vector as an l-value. 3593 LValue Base; 3594 3595 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3596 if (E->isArrow()) { 3597 // If it is a pointer to a vector, emit the address and form an lvalue with 3598 // it. 3599 LValueBaseInfo BaseInfo; 3600 TBAAAccessInfo TBAAInfo; 3601 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3602 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3603 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3604 Base.getQuals().removeObjCGCAttr(); 3605 } else if (E->getBase()->isGLValue()) { 3606 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3607 // emit the base as an lvalue. 3608 assert(E->getBase()->getType()->isVectorType()); 3609 Base = EmitLValue(E->getBase()); 3610 } else { 3611 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3612 assert(E->getBase()->getType()->isVectorType() && 3613 "Result must be a vector"); 3614 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3615 3616 // Store the vector to memory (because LValue wants an address). 3617 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3618 Builder.CreateStore(Vec, VecMem); 3619 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3620 AlignmentSource::Decl); 3621 } 3622 3623 QualType type = 3624 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3625 3626 // Encode the element access list into a vector of unsigned indices. 3627 SmallVector<uint32_t, 4> Indices; 3628 E->getEncodedElementAccess(Indices); 3629 3630 if (Base.isSimple()) { 3631 llvm::Constant *CV = 3632 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3633 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3634 Base.getBaseInfo(), TBAAAccessInfo()); 3635 } 3636 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3637 3638 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3639 SmallVector<llvm::Constant *, 4> CElts; 3640 3641 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3642 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3643 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3644 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3645 Base.getBaseInfo(), TBAAAccessInfo()); 3646 } 3647 3648 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3649 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3650 EmitIgnoredExpr(E->getBase()); 3651 return EmitDeclRefLValue(DRE); 3652 } 3653 3654 Expr *BaseExpr = E->getBase(); 3655 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3656 LValue BaseLV; 3657 if (E->isArrow()) { 3658 LValueBaseInfo BaseInfo; 3659 TBAAAccessInfo TBAAInfo; 3660 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3661 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3662 SanitizerSet SkippedChecks; 3663 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3664 if (IsBaseCXXThis) 3665 SkippedChecks.set(SanitizerKind::Alignment, true); 3666 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3667 SkippedChecks.set(SanitizerKind::Null, true); 3668 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3669 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3670 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3671 } else 3672 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3673 3674 NamedDecl *ND = E->getMemberDecl(); 3675 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3676 LValue LV = EmitLValueForField(BaseLV, Field); 3677 setObjCGCLValueClass(getContext(), E, LV); 3678 return LV; 3679 } 3680 3681 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3682 return EmitFunctionDeclLValue(*this, E, FD); 3683 3684 llvm_unreachable("Unhandled member declaration!"); 3685 } 3686 3687 /// Given that we are currently emitting a lambda, emit an l-value for 3688 /// one of its members. 3689 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3690 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3691 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3692 QualType LambdaTagType = 3693 getContext().getTagDeclType(Field->getParent()); 3694 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3695 return EmitLValueForField(LambdaLV, Field); 3696 } 3697 3698 /// Drill down to the storage of a field without walking into 3699 /// reference types. 3700 /// 3701 /// The resulting address doesn't necessarily have the right type. 3702 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3703 const FieldDecl *field) { 3704 const RecordDecl *rec = field->getParent(); 3705 3706 unsigned idx = 3707 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3708 3709 CharUnits offset; 3710 // Adjust the alignment down to the given offset. 3711 // As a special case, if the LLVM field index is 0, we know that this 3712 // is zero. 3713 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3714 .getFieldOffset(field->getFieldIndex()) == 0) && 3715 "LLVM field at index zero had non-zero offset?"); 3716 if (idx != 0) { 3717 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3718 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3719 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3720 } 3721 3722 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3723 } 3724 3725 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3726 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3727 if (!RD) 3728 return false; 3729 3730 if (RD->isDynamicClass()) 3731 return true; 3732 3733 for (const auto &Base : RD->bases()) 3734 if (hasAnyVptr(Base.getType(), Context)) 3735 return true; 3736 3737 for (const FieldDecl *Field : RD->fields()) 3738 if (hasAnyVptr(Field->getType(), Context)) 3739 return true; 3740 3741 return false; 3742 } 3743 3744 LValue CodeGenFunction::EmitLValueForField(LValue base, 3745 const FieldDecl *field) { 3746 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3747 3748 if (field->isBitField()) { 3749 const CGRecordLayout &RL = 3750 CGM.getTypes().getCGRecordLayout(field->getParent()); 3751 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3752 Address Addr = base.getAddress(); 3753 unsigned Idx = RL.getLLVMFieldNo(field); 3754 if (Idx != 0) 3755 // For structs, we GEP to the field that the record layout suggests. 3756 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3757 field->getName()); 3758 // Get the access type. 3759 llvm::Type *FieldIntTy = 3760 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3761 if (Addr.getElementType() != FieldIntTy) 3762 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3763 3764 QualType fieldType = 3765 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3766 // TODO: Support TBAA for bit fields. 3767 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3768 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3769 TBAAAccessInfo()); 3770 } 3771 3772 // Fields of may-alias structures are may-alias themselves. 3773 // FIXME: this should get propagated down through anonymous structs 3774 // and unions. 3775 QualType FieldType = field->getType(); 3776 const RecordDecl *rec = field->getParent(); 3777 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3778 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3779 TBAAAccessInfo FieldTBAAInfo; 3780 if (base.getTBAAInfo().isMayAlias() || 3781 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3782 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3783 } else if (rec->isUnion()) { 3784 // TODO: Support TBAA for unions. 3785 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3786 } else { 3787 // If no base type been assigned for the base access, then try to generate 3788 // one for this base lvalue. 3789 FieldTBAAInfo = base.getTBAAInfo(); 3790 if (!FieldTBAAInfo.BaseType) { 3791 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3792 assert(!FieldTBAAInfo.Offset && 3793 "Nonzero offset for an access with no base type!"); 3794 } 3795 3796 // Adjust offset to be relative to the base type. 3797 const ASTRecordLayout &Layout = 3798 getContext().getASTRecordLayout(field->getParent()); 3799 unsigned CharWidth = getContext().getCharWidth(); 3800 if (FieldTBAAInfo.BaseType) 3801 FieldTBAAInfo.Offset += 3802 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3803 3804 // Update the final access type. 3805 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3806 } 3807 3808 Address addr = base.getAddress(); 3809 unsigned RecordCVR = base.getVRQualifiers(); 3810 if (rec->isUnion()) { 3811 // For unions, there is no pointer adjustment. 3812 assert(!FieldType->isReferenceType() && "union has reference member"); 3813 if (CGM.getCodeGenOpts().StrictVTablePointers && 3814 hasAnyVptr(FieldType, getContext())) 3815 // Because unions can easily skip invariant.barriers, we need to add 3816 // a barrier every time CXXRecord field with vptr is referenced. 3817 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3818 addr.getAlignment()); 3819 } else { 3820 // For structs, we GEP to the field that the record layout suggests. 3821 addr = emitAddrOfFieldStorage(*this, addr, field); 3822 3823 // If this is a reference field, load the reference right now. 3824 if (FieldType->isReferenceType()) { 3825 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3826 FieldTBAAInfo); 3827 if (RecordCVR & Qualifiers::Volatile) 3828 RefLVal.getQuals().setVolatile(true); 3829 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3830 3831 // Qualifiers on the struct don't apply to the referencee. 3832 RecordCVR = 0; 3833 FieldType = FieldType->getPointeeType(); 3834 } 3835 } 3836 3837 // Make sure that the address is pointing to the right type. This is critical 3838 // for both unions and structs. A union needs a bitcast, a struct element 3839 // will need a bitcast if the LLVM type laid out doesn't match the desired 3840 // type. 3841 addr = Builder.CreateElementBitCast( 3842 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3843 3844 if (field->hasAttr<AnnotateAttr>()) 3845 addr = EmitFieldAnnotations(field, addr); 3846 3847 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3848 LV.getQuals().addCVRQualifiers(RecordCVR); 3849 3850 // __weak attribute on a field is ignored. 3851 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3852 LV.getQuals().removeObjCGCAttr(); 3853 3854 return LV; 3855 } 3856 3857 LValue 3858 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3859 const FieldDecl *Field) { 3860 QualType FieldType = Field->getType(); 3861 3862 if (!FieldType->isReferenceType()) 3863 return EmitLValueForField(Base, Field); 3864 3865 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3866 3867 // Make sure that the address is pointing to the right type. 3868 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3869 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3870 3871 // TODO: Generate TBAA information that describes this access as a structure 3872 // member access and not just an access to an object of the field's type. This 3873 // should be similar to what we do in EmitLValueForField(). 3874 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3875 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3876 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3877 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3878 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3879 } 3880 3881 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3882 if (E->isFileScope()) { 3883 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3884 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3885 } 3886 if (E->getType()->isVariablyModifiedType()) 3887 // make sure to emit the VLA size. 3888 EmitVariablyModifiedType(E->getType()); 3889 3890 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3891 const Expr *InitExpr = E->getInitializer(); 3892 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3893 3894 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3895 /*Init*/ true); 3896 3897 return Result; 3898 } 3899 3900 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3901 if (!E->isGLValue()) 3902 // Initializing an aggregate temporary in C++11: T{...}. 3903 return EmitAggExprToLValue(E); 3904 3905 // An lvalue initializer list must be initializing a reference. 3906 assert(E->isTransparent() && "non-transparent glvalue init list"); 3907 return EmitLValue(E->getInit(0)); 3908 } 3909 3910 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3911 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3912 /// LValue is returned and the current block has been terminated. 3913 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3914 const Expr *Operand) { 3915 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3916 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3917 return None; 3918 } 3919 3920 return CGF.EmitLValue(Operand); 3921 } 3922 3923 LValue CodeGenFunction:: 3924 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3925 if (!expr->isGLValue()) { 3926 // ?: here should be an aggregate. 3927 assert(hasAggregateEvaluationKind(expr->getType()) && 3928 "Unexpected conditional operator!"); 3929 return EmitAggExprToLValue(expr); 3930 } 3931 3932 OpaqueValueMapping binding(*this, expr); 3933 3934 const Expr *condExpr = expr->getCond(); 3935 bool CondExprBool; 3936 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3937 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3938 if (!CondExprBool) std::swap(live, dead); 3939 3940 if (!ContainsLabel(dead)) { 3941 // If the true case is live, we need to track its region. 3942 if (CondExprBool) 3943 incrementProfileCounter(expr); 3944 return EmitLValue(live); 3945 } 3946 } 3947 3948 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3949 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3950 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3951 3952 ConditionalEvaluation eval(*this); 3953 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3954 3955 // Any temporaries created here are conditional. 3956 EmitBlock(lhsBlock); 3957 incrementProfileCounter(expr); 3958 eval.begin(*this); 3959 Optional<LValue> lhs = 3960 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3961 eval.end(*this); 3962 3963 if (lhs && !lhs->isSimple()) 3964 return EmitUnsupportedLValue(expr, "conditional operator"); 3965 3966 lhsBlock = Builder.GetInsertBlock(); 3967 if (lhs) 3968 Builder.CreateBr(contBlock); 3969 3970 // Any temporaries created here are conditional. 3971 EmitBlock(rhsBlock); 3972 eval.begin(*this); 3973 Optional<LValue> rhs = 3974 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3975 eval.end(*this); 3976 if (rhs && !rhs->isSimple()) 3977 return EmitUnsupportedLValue(expr, "conditional operator"); 3978 rhsBlock = Builder.GetInsertBlock(); 3979 3980 EmitBlock(contBlock); 3981 3982 if (lhs && rhs) { 3983 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3984 2, "cond-lvalue"); 3985 phi->addIncoming(lhs->getPointer(), lhsBlock); 3986 phi->addIncoming(rhs->getPointer(), rhsBlock); 3987 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3988 AlignmentSource alignSource = 3989 std::max(lhs->getBaseInfo().getAlignmentSource(), 3990 rhs->getBaseInfo().getAlignmentSource()); 3991 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 3992 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 3993 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 3994 TBAAInfo); 3995 } else { 3996 assert((lhs || rhs) && 3997 "both operands of glvalue conditional are throw-expressions?"); 3998 return lhs ? *lhs : *rhs; 3999 } 4000 } 4001 4002 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4003 /// type. If the cast is to a reference, we can have the usual lvalue result, 4004 /// otherwise if a cast is needed by the code generator in an lvalue context, 4005 /// then it must mean that we need the address of an aggregate in order to 4006 /// access one of its members. This can happen for all the reasons that casts 4007 /// are permitted with aggregate result, including noop aggregate casts, and 4008 /// cast from scalar to union. 4009 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4010 switch (E->getCastKind()) { 4011 case CK_ToVoid: 4012 case CK_BitCast: 4013 case CK_ArrayToPointerDecay: 4014 case CK_FunctionToPointerDecay: 4015 case CK_NullToMemberPointer: 4016 case CK_NullToPointer: 4017 case CK_IntegralToPointer: 4018 case CK_PointerToIntegral: 4019 case CK_PointerToBoolean: 4020 case CK_VectorSplat: 4021 case CK_IntegralCast: 4022 case CK_BooleanToSignedIntegral: 4023 case CK_IntegralToBoolean: 4024 case CK_IntegralToFloating: 4025 case CK_FloatingToIntegral: 4026 case CK_FloatingToBoolean: 4027 case CK_FloatingCast: 4028 case CK_FloatingRealToComplex: 4029 case CK_FloatingComplexToReal: 4030 case CK_FloatingComplexToBoolean: 4031 case CK_FloatingComplexCast: 4032 case CK_FloatingComplexToIntegralComplex: 4033 case CK_IntegralRealToComplex: 4034 case CK_IntegralComplexToReal: 4035 case CK_IntegralComplexToBoolean: 4036 case CK_IntegralComplexCast: 4037 case CK_IntegralComplexToFloatingComplex: 4038 case CK_DerivedToBaseMemberPointer: 4039 case CK_BaseToDerivedMemberPointer: 4040 case CK_MemberPointerToBoolean: 4041 case CK_ReinterpretMemberPointer: 4042 case CK_AnyPointerToBlockPointerCast: 4043 case CK_ARCProduceObject: 4044 case CK_ARCConsumeObject: 4045 case CK_ARCReclaimReturnedObject: 4046 case CK_ARCExtendBlockObject: 4047 case CK_CopyAndAutoreleaseBlockObject: 4048 case CK_AddressSpaceConversion: 4049 case CK_IntToOCLSampler: 4050 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4051 4052 case CK_Dependent: 4053 llvm_unreachable("dependent cast kind in IR gen!"); 4054 4055 case CK_BuiltinFnToFnPtr: 4056 llvm_unreachable("builtin functions are handled elsewhere"); 4057 4058 // These are never l-values; just use the aggregate emission code. 4059 case CK_NonAtomicToAtomic: 4060 case CK_AtomicToNonAtomic: 4061 return EmitAggExprToLValue(E); 4062 4063 case CK_Dynamic: { 4064 LValue LV = EmitLValue(E->getSubExpr()); 4065 Address V = LV.getAddress(); 4066 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4067 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4068 } 4069 4070 case CK_ConstructorConversion: 4071 case CK_UserDefinedConversion: 4072 case CK_CPointerToObjCPointerCast: 4073 case CK_BlockPointerToObjCPointerCast: 4074 case CK_NoOp: 4075 case CK_LValueToRValue: 4076 return EmitLValue(E->getSubExpr()); 4077 4078 case CK_UncheckedDerivedToBase: 4079 case CK_DerivedToBase: { 4080 const RecordType *DerivedClassTy = 4081 E->getSubExpr()->getType()->getAs<RecordType>(); 4082 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4083 4084 LValue LV = EmitLValue(E->getSubExpr()); 4085 Address This = LV.getAddress(); 4086 4087 // Perform the derived-to-base conversion 4088 Address Base = GetAddressOfBaseClass( 4089 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4090 /*NullCheckValue=*/false, E->getExprLoc()); 4091 4092 // TODO: Support accesses to members of base classes in TBAA. For now, we 4093 // conservatively pretend that the complete object is of the base class 4094 // type. 4095 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4096 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4097 } 4098 case CK_ToUnion: 4099 return EmitAggExprToLValue(E); 4100 case CK_BaseToDerived: { 4101 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4102 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4103 4104 LValue LV = EmitLValue(E->getSubExpr()); 4105 4106 // Perform the base-to-derived conversion 4107 Address Derived = 4108 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4109 E->path_begin(), E->path_end(), 4110 /*NullCheckValue=*/false); 4111 4112 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4113 // performed and the object is not of the derived type. 4114 if (sanitizePerformTypeCheck()) 4115 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4116 Derived.getPointer(), E->getType()); 4117 4118 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4119 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4120 /*MayBeNull=*/false, 4121 CFITCK_DerivedCast, E->getLocStart()); 4122 4123 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4124 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4125 } 4126 case CK_LValueBitCast: { 4127 // This must be a reinterpret_cast (or c-style equivalent). 4128 const auto *CE = cast<ExplicitCastExpr>(E); 4129 4130 CGM.EmitExplicitCastExprType(CE, this); 4131 LValue LV = EmitLValue(E->getSubExpr()); 4132 Address V = Builder.CreateBitCast(LV.getAddress(), 4133 ConvertType(CE->getTypeAsWritten())); 4134 4135 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4136 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4137 /*MayBeNull=*/false, 4138 CFITCK_UnrelatedCast, E->getLocStart()); 4139 4140 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4141 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4142 } 4143 case CK_ObjCObjectLValueCast: { 4144 LValue LV = EmitLValue(E->getSubExpr()); 4145 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4146 ConvertType(E->getType())); 4147 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4148 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4149 } 4150 case CK_ZeroToOCLQueue: 4151 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4152 case CK_ZeroToOCLEvent: 4153 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4154 } 4155 4156 llvm_unreachable("Unhandled lvalue cast kind?"); 4157 } 4158 4159 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4160 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4161 return getOpaqueLValueMapping(e); 4162 } 4163 4164 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4165 const FieldDecl *FD, 4166 SourceLocation Loc) { 4167 QualType FT = FD->getType(); 4168 LValue FieldLV = EmitLValueForField(LV, FD); 4169 switch (getEvaluationKind(FT)) { 4170 case TEK_Complex: 4171 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4172 case TEK_Aggregate: 4173 return FieldLV.asAggregateRValue(); 4174 case TEK_Scalar: 4175 // This routine is used to load fields one-by-one to perform a copy, so 4176 // don't load reference fields. 4177 if (FD->getType()->isReferenceType()) 4178 return RValue::get(FieldLV.getPointer()); 4179 return EmitLoadOfLValue(FieldLV, Loc); 4180 } 4181 llvm_unreachable("bad evaluation kind"); 4182 } 4183 4184 //===--------------------------------------------------------------------===// 4185 // Expression Emission 4186 //===--------------------------------------------------------------------===// 4187 4188 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4189 ReturnValueSlot ReturnValue) { 4190 // Builtins never have block type. 4191 if (E->getCallee()->getType()->isBlockPointerType()) 4192 return EmitBlockCallExpr(E, ReturnValue); 4193 4194 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4195 return EmitCXXMemberCallExpr(CE, ReturnValue); 4196 4197 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4198 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4199 4200 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4201 if (const CXXMethodDecl *MD = 4202 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4203 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4204 4205 CGCallee callee = EmitCallee(E->getCallee()); 4206 4207 if (callee.isBuiltin()) { 4208 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4209 E, ReturnValue); 4210 } 4211 4212 if (callee.isPseudoDestructor()) { 4213 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4214 } 4215 4216 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4217 } 4218 4219 /// Emit a CallExpr without considering whether it might be a subclass. 4220 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4221 ReturnValueSlot ReturnValue) { 4222 CGCallee Callee = EmitCallee(E->getCallee()); 4223 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4224 } 4225 4226 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4227 if (auto builtinID = FD->getBuiltinID()) { 4228 return CGCallee::forBuiltin(builtinID, FD); 4229 } 4230 4231 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4232 return CGCallee::forDirect(calleePtr, FD); 4233 } 4234 4235 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4236 E = E->IgnoreParens(); 4237 4238 // Look through function-to-pointer decay. 4239 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4240 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4241 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4242 return EmitCallee(ICE->getSubExpr()); 4243 } 4244 4245 // Resolve direct calls. 4246 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4247 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4248 return EmitDirectCallee(*this, FD); 4249 } 4250 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4251 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4252 EmitIgnoredExpr(ME->getBase()); 4253 return EmitDirectCallee(*this, FD); 4254 } 4255 4256 // Look through template substitutions. 4257 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4258 return EmitCallee(NTTP->getReplacement()); 4259 4260 // Treat pseudo-destructor calls differently. 4261 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4262 return CGCallee::forPseudoDestructor(PDE); 4263 } 4264 4265 // Otherwise, we have an indirect reference. 4266 llvm::Value *calleePtr; 4267 QualType functionType; 4268 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4269 calleePtr = EmitScalarExpr(E); 4270 functionType = ptrType->getPointeeType(); 4271 } else { 4272 functionType = E->getType(); 4273 calleePtr = EmitLValue(E).getPointer(); 4274 } 4275 assert(functionType->isFunctionType()); 4276 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4277 E->getReferencedDeclOfCallee()); 4278 CGCallee callee(calleeInfo, calleePtr); 4279 return callee; 4280 } 4281 4282 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4283 // Comma expressions just emit their LHS then their RHS as an l-value. 4284 if (E->getOpcode() == BO_Comma) { 4285 EmitIgnoredExpr(E->getLHS()); 4286 EnsureInsertPoint(); 4287 return EmitLValue(E->getRHS()); 4288 } 4289 4290 if (E->getOpcode() == BO_PtrMemD || 4291 E->getOpcode() == BO_PtrMemI) 4292 return EmitPointerToDataMemberBinaryExpr(E); 4293 4294 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4295 4296 // Note that in all of these cases, __block variables need the RHS 4297 // evaluated first just in case the variable gets moved by the RHS. 4298 4299 switch (getEvaluationKind(E->getType())) { 4300 case TEK_Scalar: { 4301 switch (E->getLHS()->getType().getObjCLifetime()) { 4302 case Qualifiers::OCL_Strong: 4303 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4304 4305 case Qualifiers::OCL_Autoreleasing: 4306 return EmitARCStoreAutoreleasing(E).first; 4307 4308 // No reason to do any of these differently. 4309 case Qualifiers::OCL_None: 4310 case Qualifiers::OCL_ExplicitNone: 4311 case Qualifiers::OCL_Weak: 4312 break; 4313 } 4314 4315 RValue RV = EmitAnyExpr(E->getRHS()); 4316 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4317 if (RV.isScalar()) 4318 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4319 EmitStoreThroughLValue(RV, LV); 4320 return LV; 4321 } 4322 4323 case TEK_Complex: 4324 return EmitComplexAssignmentLValue(E); 4325 4326 case TEK_Aggregate: 4327 return EmitAggExprToLValue(E); 4328 } 4329 llvm_unreachable("bad evaluation kind"); 4330 } 4331 4332 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4333 RValue RV = EmitCallExpr(E); 4334 4335 if (!RV.isScalar()) 4336 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4337 AlignmentSource::Decl); 4338 4339 assert(E->getCallReturnType(getContext())->isReferenceType() && 4340 "Can't have a scalar return unless the return type is a " 4341 "reference type!"); 4342 4343 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4344 } 4345 4346 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4347 // FIXME: This shouldn't require another copy. 4348 return EmitAggExprToLValue(E); 4349 } 4350 4351 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4352 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4353 && "binding l-value to type which needs a temporary"); 4354 AggValueSlot Slot = CreateAggTemp(E->getType()); 4355 EmitCXXConstructExpr(E, Slot); 4356 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4357 } 4358 4359 LValue 4360 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4361 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4362 } 4363 4364 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4365 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4366 ConvertType(E->getType())); 4367 } 4368 4369 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4370 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4371 AlignmentSource::Decl); 4372 } 4373 4374 LValue 4375 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4376 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4377 Slot.setExternallyDestructed(); 4378 EmitAggExpr(E->getSubExpr(), Slot); 4379 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4380 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4381 } 4382 4383 LValue 4384 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4385 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4386 EmitLambdaExpr(E, Slot); 4387 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4388 } 4389 4390 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4391 RValue RV = EmitObjCMessageExpr(E); 4392 4393 if (!RV.isScalar()) 4394 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4395 AlignmentSource::Decl); 4396 4397 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4398 "Can't have a scalar return unless the return type is a " 4399 "reference type!"); 4400 4401 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4402 } 4403 4404 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4405 Address V = 4406 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4407 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4408 } 4409 4410 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4411 const ObjCIvarDecl *Ivar) { 4412 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4413 } 4414 4415 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4416 llvm::Value *BaseValue, 4417 const ObjCIvarDecl *Ivar, 4418 unsigned CVRQualifiers) { 4419 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4420 Ivar, CVRQualifiers); 4421 } 4422 4423 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4424 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4425 llvm::Value *BaseValue = nullptr; 4426 const Expr *BaseExpr = E->getBase(); 4427 Qualifiers BaseQuals; 4428 QualType ObjectTy; 4429 if (E->isArrow()) { 4430 BaseValue = EmitScalarExpr(BaseExpr); 4431 ObjectTy = BaseExpr->getType()->getPointeeType(); 4432 BaseQuals = ObjectTy.getQualifiers(); 4433 } else { 4434 LValue BaseLV = EmitLValue(BaseExpr); 4435 BaseValue = BaseLV.getPointer(); 4436 ObjectTy = BaseExpr->getType(); 4437 BaseQuals = ObjectTy.getQualifiers(); 4438 } 4439 4440 LValue LV = 4441 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4442 BaseQuals.getCVRQualifiers()); 4443 setObjCGCLValueClass(getContext(), E, LV); 4444 return LV; 4445 } 4446 4447 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4448 // Can only get l-value for message expression returning aggregate type 4449 RValue RV = EmitAnyExprToTemp(E); 4450 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4451 AlignmentSource::Decl); 4452 } 4453 4454 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4455 const CallExpr *E, ReturnValueSlot ReturnValue, 4456 llvm::Value *Chain) { 4457 // Get the actual function type. The callee type will always be a pointer to 4458 // function type or a block pointer type. 4459 assert(CalleeType->isFunctionPointerType() && 4460 "Call must have function pointer type!"); 4461 4462 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4463 4464 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4465 // We can only guarantee that a function is called from the correct 4466 // context/function based on the appropriate target attributes, 4467 // so only check in the case where we have both always_inline and target 4468 // since otherwise we could be making a conditional call after a check for 4469 // the proper cpu features (and it won't cause code generation issues due to 4470 // function based code generation). 4471 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4472 TargetDecl->hasAttr<TargetAttr>()) 4473 checkTargetFeatures(E, FD); 4474 4475 CalleeType = getContext().getCanonicalType(CalleeType); 4476 4477 const auto *FnType = 4478 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4479 4480 CGCallee Callee = OrigCallee; 4481 4482 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4483 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4484 if (llvm::Constant *PrefixSig = 4485 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4486 SanitizerScope SanScope(this); 4487 llvm::Constant *FTRTTIConst = 4488 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4489 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4490 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4491 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4492 4493 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4494 4495 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4496 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4497 llvm::Value *CalleeSigPtr = 4498 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4499 llvm::Value *CalleeSig = 4500 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4501 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4502 4503 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4504 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4505 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4506 4507 EmitBlock(TypeCheck); 4508 llvm::Value *CalleeRTTIPtr = 4509 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4510 llvm::Value *CalleeRTTIEncoded = 4511 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4512 llvm::Value *CalleeRTTI = 4513 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4514 llvm::Value *CalleeRTTIMatch = 4515 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4516 llvm::Constant *StaticData[] = { 4517 EmitCheckSourceLocation(E->getLocStart()), 4518 EmitCheckTypeDescriptor(CalleeType) 4519 }; 4520 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4521 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4522 4523 Builder.CreateBr(Cont); 4524 EmitBlock(Cont); 4525 } 4526 } 4527 4528 // If we are checking indirect calls and this call is indirect, check that the 4529 // function pointer is a member of the bit set for the function type. 4530 if (SanOpts.has(SanitizerKind::CFIICall) && 4531 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4532 SanitizerScope SanScope(this); 4533 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4534 4535 llvm::Metadata *MD; 4536 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4537 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4538 else 4539 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4540 4541 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4542 4543 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4544 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4545 llvm::Value *TypeTest = Builder.CreateCall( 4546 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4547 4548 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4549 llvm::Constant *StaticData[] = { 4550 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4551 EmitCheckSourceLocation(E->getLocStart()), 4552 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4553 }; 4554 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4555 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4556 CastedCallee, StaticData); 4557 } else { 4558 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4559 SanitizerHandler::CFICheckFail, StaticData, 4560 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4561 } 4562 } 4563 4564 CallArgList Args; 4565 if (Chain) 4566 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4567 CGM.getContext().VoidPtrTy); 4568 4569 // C++17 requires that we evaluate arguments to a call using assignment syntax 4570 // right-to-left, and that we evaluate arguments to certain other operators 4571 // left-to-right. Note that we allow this to override the order dictated by 4572 // the calling convention on the MS ABI, which means that parameter 4573 // destruction order is not necessarily reverse construction order. 4574 // FIXME: Revisit this based on C++ committee response to unimplementability. 4575 EvaluationOrder Order = EvaluationOrder::Default; 4576 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4577 if (OCE->isAssignmentOp()) 4578 Order = EvaluationOrder::ForceRightToLeft; 4579 else { 4580 switch (OCE->getOperator()) { 4581 case OO_LessLess: 4582 case OO_GreaterGreater: 4583 case OO_AmpAmp: 4584 case OO_PipePipe: 4585 case OO_Comma: 4586 case OO_ArrowStar: 4587 Order = EvaluationOrder::ForceLeftToRight; 4588 break; 4589 default: 4590 break; 4591 } 4592 } 4593 } 4594 4595 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4596 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4597 4598 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4599 Args, FnType, /*isChainCall=*/Chain); 4600 4601 // C99 6.5.2.2p6: 4602 // If the expression that denotes the called function has a type 4603 // that does not include a prototype, [the default argument 4604 // promotions are performed]. If the number of arguments does not 4605 // equal the number of parameters, the behavior is undefined. If 4606 // the function is defined with a type that includes a prototype, 4607 // and either the prototype ends with an ellipsis (, ...) or the 4608 // types of the arguments after promotion are not compatible with 4609 // the types of the parameters, the behavior is undefined. If the 4610 // function is defined with a type that does not include a 4611 // prototype, and the types of the arguments after promotion are 4612 // not compatible with those of the parameters after promotion, 4613 // the behavior is undefined [except in some trivial cases]. 4614 // That is, in the general case, we should assume that a call 4615 // through an unprototyped function type works like a *non-variadic* 4616 // call. The way we make this work is to cast to the exact type 4617 // of the promoted arguments. 4618 // 4619 // Chain calls use this same code path to add the invisible chain parameter 4620 // to the function type. 4621 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4622 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4623 CalleeTy = CalleeTy->getPointerTo(); 4624 4625 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4626 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4627 Callee.setFunctionPointer(CalleePtr); 4628 } 4629 4630 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4631 } 4632 4633 LValue CodeGenFunction:: 4634 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4635 Address BaseAddr = Address::invalid(); 4636 if (E->getOpcode() == BO_PtrMemI) { 4637 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4638 } else { 4639 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4640 } 4641 4642 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4643 4644 const MemberPointerType *MPT 4645 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4646 4647 LValueBaseInfo BaseInfo; 4648 TBAAAccessInfo TBAAInfo; 4649 Address MemberAddr = 4650 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4651 &TBAAInfo); 4652 4653 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4654 } 4655 4656 /// Given the address of a temporary variable, produce an r-value of 4657 /// its type. 4658 RValue CodeGenFunction::convertTempToRValue(Address addr, 4659 QualType type, 4660 SourceLocation loc) { 4661 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4662 switch (getEvaluationKind(type)) { 4663 case TEK_Complex: 4664 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4665 case TEK_Aggregate: 4666 return lvalue.asAggregateRValue(); 4667 case TEK_Scalar: 4668 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4669 } 4670 llvm_unreachable("bad evaluation kind"); 4671 } 4672 4673 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4674 assert(Val->getType()->isFPOrFPVectorTy()); 4675 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4676 return; 4677 4678 llvm::MDBuilder MDHelper(getLLVMContext()); 4679 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4680 4681 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4682 } 4683 4684 namespace { 4685 struct LValueOrRValue { 4686 LValue LV; 4687 RValue RV; 4688 }; 4689 } 4690 4691 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4692 const PseudoObjectExpr *E, 4693 bool forLValue, 4694 AggValueSlot slot) { 4695 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4696 4697 // Find the result expression, if any. 4698 const Expr *resultExpr = E->getResultExpr(); 4699 LValueOrRValue result; 4700 4701 for (PseudoObjectExpr::const_semantics_iterator 4702 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4703 const Expr *semantic = *i; 4704 4705 // If this semantic expression is an opaque value, bind it 4706 // to the result of its source expression. 4707 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4708 4709 // If this is the result expression, we may need to evaluate 4710 // directly into the slot. 4711 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4712 OVMA opaqueData; 4713 if (ov == resultExpr && ov->isRValue() && !forLValue && 4714 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4715 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4716 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4717 AlignmentSource::Decl); 4718 opaqueData = OVMA::bind(CGF, ov, LV); 4719 result.RV = slot.asRValue(); 4720 4721 // Otherwise, emit as normal. 4722 } else { 4723 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4724 4725 // If this is the result, also evaluate the result now. 4726 if (ov == resultExpr) { 4727 if (forLValue) 4728 result.LV = CGF.EmitLValue(ov); 4729 else 4730 result.RV = CGF.EmitAnyExpr(ov, slot); 4731 } 4732 } 4733 4734 opaques.push_back(opaqueData); 4735 4736 // Otherwise, if the expression is the result, evaluate it 4737 // and remember the result. 4738 } else if (semantic == resultExpr) { 4739 if (forLValue) 4740 result.LV = CGF.EmitLValue(semantic); 4741 else 4742 result.RV = CGF.EmitAnyExpr(semantic, slot); 4743 4744 // Otherwise, evaluate the expression in an ignored context. 4745 } else { 4746 CGF.EmitIgnoredExpr(semantic); 4747 } 4748 } 4749 4750 // Unbind all the opaques now. 4751 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4752 opaques[i].unbind(CGF); 4753 4754 return result; 4755 } 4756 4757 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4758 AggValueSlot slot) { 4759 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4760 } 4761 4762 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4763 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4764 } 4765