1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 64 CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize) { 67 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 68 Alloca->setAlignment(Align.getQuantity()); 69 return Address(Alloca, Align); 70 } 71 72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 73 /// block. The alloca is casted to default address space if necessary. 74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 75 const Twine &Name, 76 llvm::Value *ArraySize, 77 Address *AllocaAddr) { 78 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 79 if (AllocaAddr) 80 *AllocaAddr = Alloca; 81 llvm::Value *V = Alloca.getPointer(); 82 // Alloca always returns a pointer in alloca address space, which may 83 // be different from the type defined by the language. For example, 84 // in C++ the auto variables are in the default address space. Therefore 85 // cast alloca to the default address space when necessary. 86 if (getASTAllocaAddressSpace() != LangAS::Default) { 87 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 88 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 89 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 90 // otherwise alloca is inserted at the current insertion point of the 91 // builder. 92 if (!ArraySize) 93 Builder.SetInsertPoint(AllocaInsertPt); 94 V = getTargetHooks().performAddrSpaceCast( 95 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 96 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 97 } 98 99 return Address(V, Align); 100 } 101 102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 104 /// insertion point of the builder. 105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 106 const Twine &Name, 107 llvm::Value *ArraySize) { 108 if (ArraySize) 109 return Builder.CreateAlloca(Ty, ArraySize, Name); 110 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 111 ArraySize, Name, AllocaInsertPt); 112 } 113 114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 115 /// default alignment of the corresponding LLVM type, which is *not* 116 /// guaranteed to be related in any way to the expected alignment of 117 /// an AST type that might have been lowered to Ty. 118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 119 const Twine &Name) { 120 CharUnits Align = 121 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 122 return CreateTempAlloca(Ty, Align, Name); 123 } 124 125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 126 assert(isa<llvm::AllocaInst>(Var.getPointer())); 127 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 128 Store->setAlignment(Var.getAlignment().getQuantity()); 129 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 130 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 131 } 132 133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 134 CharUnits Align = getContext().getTypeAlignInChars(Ty); 135 return CreateTempAlloca(ConvertType(Ty), Align, Name); 136 } 137 138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 139 Address *Alloca) { 140 // FIXME: Should we prefer the preferred type alignment here? 141 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 142 } 143 144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 145 const Twine &Name, Address *Alloca) { 146 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 147 /*ArraySize=*/nullptr, Alloca); 148 } 149 150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 151 const Twine &Name) { 152 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 153 } 154 155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 156 const Twine &Name) { 157 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 158 Name); 159 } 160 161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 162 /// expression and compare the result against zero, returning an Int1Ty value. 163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 164 PGO.setCurrentStmt(E); 165 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 166 llvm::Value *MemPtr = EmitScalarExpr(E); 167 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 168 } 169 170 QualType BoolTy = getContext().BoolTy; 171 SourceLocation Loc = E->getExprLoc(); 172 if (!E->getType()->isAnyComplexType()) 173 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 174 175 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 176 Loc); 177 } 178 179 /// EmitIgnoredExpr - Emit code to compute the specified expression, 180 /// ignoring the result. 181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 182 if (E->isRValue()) 183 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 184 185 // Just emit it as an l-value and drop the result. 186 EmitLValue(E); 187 } 188 189 /// EmitAnyExpr - Emit code to compute the specified expression which 190 /// can have any type. The result is returned as an RValue struct. 191 /// If this is an aggregate expression, AggSlot indicates where the 192 /// result should be returned. 193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 194 AggValueSlot aggSlot, 195 bool ignoreResult) { 196 switch (getEvaluationKind(E->getType())) { 197 case TEK_Scalar: 198 return RValue::get(EmitScalarExpr(E, ignoreResult)); 199 case TEK_Complex: 200 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 201 case TEK_Aggregate: 202 if (!ignoreResult && aggSlot.isIgnored()) 203 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 204 EmitAggExpr(E, aggSlot); 205 return aggSlot.asRValue(); 206 } 207 llvm_unreachable("bad evaluation kind"); 208 } 209 210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 211 /// always be accessible even if no aggregate location is provided. 212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 213 AggValueSlot AggSlot = AggValueSlot::ignored(); 214 215 if (hasAggregateEvaluationKind(E->getType())) 216 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 217 return EmitAnyExpr(E, AggSlot); 218 } 219 220 /// EmitAnyExprToMem - Evaluate an expression into a given memory 221 /// location. 222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 223 Address Location, 224 Qualifiers Quals, 225 bool IsInit) { 226 // FIXME: This function should take an LValue as an argument. 227 switch (getEvaluationKind(E->getType())) { 228 case TEK_Complex: 229 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 230 /*isInit*/ false); 231 return; 232 233 case TEK_Aggregate: { 234 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 235 AggValueSlot::IsDestructed_t(IsInit), 236 AggValueSlot::DoesNotNeedGCBarriers, 237 AggValueSlot::IsAliased_t(!IsInit), 238 AggValueSlot::MayOverlap)); 239 return; 240 } 241 242 case TEK_Scalar: { 243 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 244 LValue LV = MakeAddrLValue(Location, E->getType()); 245 EmitStoreThroughLValue(RV, LV); 246 return; 247 } 248 } 249 llvm_unreachable("bad evaluation kind"); 250 } 251 252 static void 253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 254 const Expr *E, Address ReferenceTemporary) { 255 // Objective-C++ ARC: 256 // If we are binding a reference to a temporary that has ownership, we 257 // need to perform retain/release operations on the temporary. 258 // 259 // FIXME: This should be looking at E, not M. 260 if (auto Lifetime = M->getType().getObjCLifetime()) { 261 switch (Lifetime) { 262 case Qualifiers::OCL_None: 263 case Qualifiers::OCL_ExplicitNone: 264 // Carry on to normal cleanup handling. 265 break; 266 267 case Qualifiers::OCL_Autoreleasing: 268 // Nothing to do; cleaned up by an autorelease pool. 269 return; 270 271 case Qualifiers::OCL_Strong: 272 case Qualifiers::OCL_Weak: 273 switch (StorageDuration Duration = M->getStorageDuration()) { 274 case SD_Static: 275 // Note: we intentionally do not register a cleanup to release 276 // the object on program termination. 277 return; 278 279 case SD_Thread: 280 // FIXME: We should probably register a cleanup in this case. 281 return; 282 283 case SD_Automatic: 284 case SD_FullExpression: 285 CodeGenFunction::Destroyer *Destroy; 286 CleanupKind CleanupKind; 287 if (Lifetime == Qualifiers::OCL_Strong) { 288 const ValueDecl *VD = M->getExtendingDecl(); 289 bool Precise = 290 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 291 CleanupKind = CGF.getARCCleanupKind(); 292 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 293 : &CodeGenFunction::destroyARCStrongImprecise; 294 } else { 295 // __weak objects always get EH cleanups; otherwise, exceptions 296 // could cause really nasty crashes instead of mere leaks. 297 CleanupKind = NormalAndEHCleanup; 298 Destroy = &CodeGenFunction::destroyARCWeak; 299 } 300 if (Duration == SD_FullExpression) 301 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 302 M->getType(), *Destroy, 303 CleanupKind & EHCleanup); 304 else 305 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 306 M->getType(), 307 *Destroy, CleanupKind & EHCleanup); 308 return; 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary cannot have dynamic storage duration"); 312 } 313 llvm_unreachable("unknown storage duration"); 314 } 315 } 316 317 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 318 if (const RecordType *RT = 319 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 320 // Get the destructor for the reference temporary. 321 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 322 if (!ClassDecl->hasTrivialDestructor()) 323 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 324 } 325 326 if (!ReferenceTemporaryDtor) 327 return; 328 329 // Call the destructor for the temporary. 330 switch (M->getStorageDuration()) { 331 case SD_Static: 332 case SD_Thread: { 333 llvm::FunctionCallee CleanupFn; 334 llvm::Constant *CleanupArg; 335 if (E->getType()->isArrayType()) { 336 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 337 ReferenceTemporary, E->getType(), 338 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 339 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 340 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 341 } else { 342 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 343 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 344 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 345 } 346 CGF.CGM.getCXXABI().registerGlobalDtor( 347 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 348 break; 349 } 350 351 case SD_FullExpression: 352 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 353 CodeGenFunction::destroyCXXObject, 354 CGF.getLangOpts().Exceptions); 355 break; 356 357 case SD_Automatic: 358 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 359 ReferenceTemporary, E->getType(), 360 CodeGenFunction::destroyCXXObject, 361 CGF.getLangOpts().Exceptions); 362 break; 363 364 case SD_Dynamic: 365 llvm_unreachable("temporary cannot have dynamic storage duration"); 366 } 367 } 368 369 static Address createReferenceTemporary(CodeGenFunction &CGF, 370 const MaterializeTemporaryExpr *M, 371 const Expr *Inner, 372 Address *Alloca = nullptr) { 373 auto &TCG = CGF.getTargetHooks(); 374 switch (M->getStorageDuration()) { 375 case SD_FullExpression: 376 case SD_Automatic: { 377 // If we have a constant temporary array or record try to promote it into a 378 // constant global under the same rules a normal constant would've been 379 // promoted. This is easier on the optimizer and generally emits fewer 380 // instructions. 381 QualType Ty = Inner->getType(); 382 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 383 (Ty->isArrayType() || Ty->isRecordType()) && 384 CGF.CGM.isTypeConstant(Ty, true)) 385 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 386 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 387 auto AS = AddrSpace.getValue(); 388 auto *GV = new llvm::GlobalVariable( 389 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 390 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 391 llvm::GlobalValue::NotThreadLocal, 392 CGF.getContext().getTargetAddressSpace(AS)); 393 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 394 GV->setAlignment(alignment.getQuantity()); 395 llvm::Constant *C = GV; 396 if (AS != LangAS::Default) 397 C = TCG.performAddrSpaceCast( 398 CGF.CGM, GV, AS, LangAS::Default, 399 GV->getValueType()->getPointerTo( 400 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 401 // FIXME: Should we put the new global into a COMDAT? 402 return Address(C, alignment); 403 } 404 } 405 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 406 } 407 case SD_Thread: 408 case SD_Static: 409 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 410 411 case SD_Dynamic: 412 llvm_unreachable("temporary can't have dynamic storage duration"); 413 } 414 llvm_unreachable("unknown storage duration"); 415 } 416 417 LValue CodeGenFunction:: 418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 419 const Expr *E = M->GetTemporaryExpr(); 420 421 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 422 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 423 "Reference should never be pseudo-strong!"); 424 425 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 426 // as that will cause the lifetime adjustment to be lost for ARC 427 auto ownership = M->getType().getObjCLifetime(); 428 if (ownership != Qualifiers::OCL_None && 429 ownership != Qualifiers::OCL_ExplicitNone) { 430 Address Object = createReferenceTemporary(*this, M, E); 431 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 432 Object = Address(llvm::ConstantExpr::getBitCast(Var, 433 ConvertTypeForMem(E->getType()) 434 ->getPointerTo(Object.getAddressSpace())), 435 Object.getAlignment()); 436 437 // createReferenceTemporary will promote the temporary to a global with a 438 // constant initializer if it can. It can only do this to a value of 439 // ARC-manageable type if the value is global and therefore "immune" to 440 // ref-counting operations. Therefore we have no need to emit either a 441 // dynamic initialization or a cleanup and we can just return the address 442 // of the temporary. 443 if (Var->hasInitializer()) 444 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 445 446 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 447 } 448 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 449 AlignmentSource::Decl); 450 451 switch (getEvaluationKind(E->getType())) { 452 default: llvm_unreachable("expected scalar or aggregate expression"); 453 case TEK_Scalar: 454 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 455 break; 456 case TEK_Aggregate: { 457 EmitAggExpr(E, AggValueSlot::forAddr(Object, 458 E->getType().getQualifiers(), 459 AggValueSlot::IsDestructed, 460 AggValueSlot::DoesNotNeedGCBarriers, 461 AggValueSlot::IsNotAliased, 462 AggValueSlot::DoesNotOverlap)); 463 break; 464 } 465 } 466 467 pushTemporaryCleanup(*this, M, E, Object); 468 return RefTempDst; 469 } 470 471 SmallVector<const Expr *, 2> CommaLHSs; 472 SmallVector<SubobjectAdjustment, 2> Adjustments; 473 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 474 475 for (const auto &Ignored : CommaLHSs) 476 EmitIgnoredExpr(Ignored); 477 478 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 479 if (opaque->getType()->isRecordType()) { 480 assert(Adjustments.empty()); 481 return EmitOpaqueValueLValue(opaque); 482 } 483 } 484 485 // Create and initialize the reference temporary. 486 Address Alloca = Address::invalid(); 487 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 488 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 489 Object.getPointer()->stripPointerCasts())) { 490 Object = Address(llvm::ConstantExpr::getBitCast( 491 cast<llvm::Constant>(Object.getPointer()), 492 ConvertTypeForMem(E->getType())->getPointerTo()), 493 Object.getAlignment()); 494 // If the temporary is a global and has a constant initializer or is a 495 // constant temporary that we promoted to a global, we may have already 496 // initialized it. 497 if (!Var->hasInitializer()) { 498 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 499 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 500 } 501 } else { 502 switch (M->getStorageDuration()) { 503 case SD_Automatic: 504 if (auto *Size = EmitLifetimeStart( 505 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 506 Alloca.getPointer())) { 507 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 508 Alloca, Size); 509 } 510 break; 511 512 case SD_FullExpression: { 513 if (!ShouldEmitLifetimeMarkers) 514 break; 515 516 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 517 // marker. Instead, start the lifetime of a conditional temporary earlier 518 // so that it's unconditional. Don't do this in ASan's use-after-scope 519 // mode so that it gets the more precise lifetime marks. If the type has 520 // a non-trivial destructor, we'll have a cleanup block for it anyway, 521 // so this typically doesn't help; skip it in that case. 522 ConditionalEvaluation *OldConditional = nullptr; 523 CGBuilderTy::InsertPoint OldIP; 524 if (isInConditionalBranch() && !E->getType().isDestructedType() && 525 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 526 OldConditional = OutermostConditional; 527 OutermostConditional = nullptr; 528 529 OldIP = Builder.saveIP(); 530 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 531 Builder.restoreIP(CGBuilderTy::InsertPoint( 532 Block, llvm::BasicBlock::iterator(Block->back()))); 533 } 534 535 if (auto *Size = EmitLifetimeStart( 536 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 537 Alloca.getPointer())) { 538 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 539 Size); 540 } 541 542 if (OldConditional) { 543 OutermostConditional = OldConditional; 544 Builder.restoreIP(OldIP); 545 } 546 break; 547 } 548 549 default: 550 break; 551 } 552 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 553 } 554 pushTemporaryCleanup(*this, M, E, Object); 555 556 // Perform derived-to-base casts and/or field accesses, to get from the 557 // temporary object we created (and, potentially, for which we extended 558 // the lifetime) to the subobject we're binding the reference to. 559 for (unsigned I = Adjustments.size(); I != 0; --I) { 560 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 561 switch (Adjustment.Kind) { 562 case SubobjectAdjustment::DerivedToBaseAdjustment: 563 Object = 564 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 565 Adjustment.DerivedToBase.BasePath->path_begin(), 566 Adjustment.DerivedToBase.BasePath->path_end(), 567 /*NullCheckValue=*/ false, E->getExprLoc()); 568 break; 569 570 case SubobjectAdjustment::FieldAdjustment: { 571 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 572 LV = EmitLValueForField(LV, Adjustment.Field); 573 assert(LV.isSimple() && 574 "materialized temporary field is not a simple lvalue"); 575 Object = LV.getAddress(); 576 break; 577 } 578 579 case SubobjectAdjustment::MemberPointerAdjustment: { 580 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 581 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 582 Adjustment.Ptr.MPT); 583 break; 584 } 585 } 586 } 587 588 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 589 } 590 591 RValue 592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 593 // Emit the expression as an lvalue. 594 LValue LV = EmitLValue(E); 595 assert(LV.isSimple()); 596 llvm::Value *Value = LV.getPointer(); 597 598 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 599 // C++11 [dcl.ref]p5 (as amended by core issue 453): 600 // If a glvalue to which a reference is directly bound designates neither 601 // an existing object or function of an appropriate type nor a region of 602 // storage of suitable size and alignment to contain an object of the 603 // reference's type, the behavior is undefined. 604 QualType Ty = E->getType(); 605 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 606 } 607 608 return RValue::get(Value); 609 } 610 611 612 /// getAccessedFieldNo - Given an encoded value and a result number, return the 613 /// input field number being accessed. 614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 615 const llvm::Constant *Elts) { 616 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 617 ->getZExtValue(); 618 } 619 620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 622 llvm::Value *High) { 623 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 624 llvm::Value *K47 = Builder.getInt64(47); 625 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 626 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 627 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 628 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 629 return Builder.CreateMul(B1, KMul); 630 } 631 632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 633 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 634 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 635 } 636 637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 638 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 639 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 640 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 641 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 642 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 643 } 644 645 bool CodeGenFunction::sanitizePerformTypeCheck() const { 646 return SanOpts.has(SanitizerKind::Null) | 647 SanOpts.has(SanitizerKind::Alignment) | 648 SanOpts.has(SanitizerKind::ObjectSize) | 649 SanOpts.has(SanitizerKind::Vptr); 650 } 651 652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 653 llvm::Value *Ptr, QualType Ty, 654 CharUnits Alignment, 655 SanitizerSet SkippedChecks, 656 llvm::Value *ArraySize) { 657 if (!sanitizePerformTypeCheck()) 658 return; 659 660 // Don't check pointers outside the default address space. The null check 661 // isn't correct, the object-size check isn't supported by LLVM, and we can't 662 // communicate the addresses to the runtime handler for the vptr check. 663 if (Ptr->getType()->getPointerAddressSpace()) 664 return; 665 666 // Don't check pointers to volatile data. The behavior here is implementation- 667 // defined. 668 if (Ty.isVolatileQualified()) 669 return; 670 671 SanitizerScope SanScope(this); 672 673 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 674 llvm::BasicBlock *Done = nullptr; 675 676 // Quickly determine whether we have a pointer to an alloca. It's possible 677 // to skip null checks, and some alignment checks, for these pointers. This 678 // can reduce compile-time significantly. 679 auto PtrToAlloca = 680 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 681 682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 683 llvm::Value *IsNonNull = nullptr; 684 bool IsGuaranteedNonNull = 685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 686 bool AllowNullPointers = isNullPointerAllowed(TCK); 687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 688 !IsGuaranteedNonNull) { 689 // The glvalue must not be an empty glvalue. 690 IsNonNull = Builder.CreateIsNotNull(Ptr); 691 692 // The IR builder can constant-fold the null check if the pointer points to 693 // a constant. 694 IsGuaranteedNonNull = IsNonNull == True; 695 696 // Skip the null check if the pointer is known to be non-null. 697 if (!IsGuaranteedNonNull) { 698 if (AllowNullPointers) { 699 // When performing pointer casts, it's OK if the value is null. 700 // Skip the remaining checks in that case. 701 Done = createBasicBlock("null"); 702 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 703 Builder.CreateCondBr(IsNonNull, Rest, Done); 704 EmitBlock(Rest); 705 } else { 706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 707 } 708 } 709 } 710 711 if (SanOpts.has(SanitizerKind::ObjectSize) && 712 !SkippedChecks.has(SanitizerKind::ObjectSize) && 713 !Ty->isIncompleteType()) { 714 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); 715 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 716 if (ArraySize) 717 Size = Builder.CreateMul(Size, ArraySize); 718 719 // Degenerate case: new X[0] does not need an objectsize check. 720 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 721 if (!ConstantSize || !ConstantSize->isNullValue()) { 722 // The glvalue must refer to a large enough storage region. 723 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 724 // to check this. 725 // FIXME: Get object address space 726 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 727 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 728 llvm::Value *Min = Builder.getFalse(); 729 llvm::Value *NullIsUnknown = Builder.getFalse(); 730 llvm::Value *Dynamic = Builder.getFalse(); 731 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 732 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 733 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 734 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 735 } 736 } 737 738 uint64_t AlignVal = 0; 739 llvm::Value *PtrAsInt = nullptr; 740 741 if (SanOpts.has(SanitizerKind::Alignment) && 742 !SkippedChecks.has(SanitizerKind::Alignment)) { 743 AlignVal = Alignment.getQuantity(); 744 if (!Ty->isIncompleteType() && !AlignVal) 745 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 746 747 // The glvalue must be suitably aligned. 748 if (AlignVal > 1 && 749 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 750 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 751 llvm::Value *Align = Builder.CreateAnd( 752 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 753 llvm::Value *Aligned = 754 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 755 if (Aligned != True) 756 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 757 } 758 } 759 760 if (Checks.size() > 0) { 761 // Make sure we're not losing information. Alignment needs to be a power of 762 // 2 763 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 764 llvm::Constant *StaticData[] = { 765 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 766 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 767 llvm::ConstantInt::get(Int8Ty, TCK)}; 768 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 769 PtrAsInt ? PtrAsInt : Ptr); 770 } 771 772 // If possible, check that the vptr indicates that there is a subobject of 773 // type Ty at offset zero within this object. 774 // 775 // C++11 [basic.life]p5,6: 776 // [For storage which does not refer to an object within its lifetime] 777 // The program has undefined behavior if: 778 // -- the [pointer or glvalue] is used to access a non-static data member 779 // or call a non-static member function 780 if (SanOpts.has(SanitizerKind::Vptr) && 781 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 782 // Ensure that the pointer is non-null before loading it. If there is no 783 // compile-time guarantee, reuse the run-time null check or emit a new one. 784 if (!IsGuaranteedNonNull) { 785 if (!IsNonNull) 786 IsNonNull = Builder.CreateIsNotNull(Ptr); 787 if (!Done) 788 Done = createBasicBlock("vptr.null"); 789 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 790 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 791 EmitBlock(VptrNotNull); 792 } 793 794 // Compute a hash of the mangled name of the type. 795 // 796 // FIXME: This is not guaranteed to be deterministic! Move to a 797 // fingerprinting mechanism once LLVM provides one. For the time 798 // being the implementation happens to be deterministic. 799 SmallString<64> MangledName; 800 llvm::raw_svector_ostream Out(MangledName); 801 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 802 Out); 803 804 // Blacklist based on the mangled type. 805 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 806 SanitizerKind::Vptr, Out.str())) { 807 llvm::hash_code TypeHash = hash_value(Out.str()); 808 809 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 810 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 811 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 812 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 813 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 814 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 815 816 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 817 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 818 819 // Look the hash up in our cache. 820 const int CacheSize = 128; 821 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 822 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 823 "__ubsan_vptr_type_cache"); 824 llvm::Value *Slot = Builder.CreateAnd(Hash, 825 llvm::ConstantInt::get(IntPtrTy, 826 CacheSize-1)); 827 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 828 llvm::Value *CacheVal = 829 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 830 getPointerAlign()); 831 832 // If the hash isn't in the cache, call a runtime handler to perform the 833 // hard work of checking whether the vptr is for an object of the right 834 // type. This will either fill in the cache and return, or produce a 835 // diagnostic. 836 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 837 llvm::Constant *StaticData[] = { 838 EmitCheckSourceLocation(Loc), 839 EmitCheckTypeDescriptor(Ty), 840 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 841 llvm::ConstantInt::get(Int8Ty, TCK) 842 }; 843 llvm::Value *DynamicData[] = { Ptr, Hash }; 844 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 845 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 846 DynamicData); 847 } 848 } 849 850 if (Done) { 851 Builder.CreateBr(Done); 852 EmitBlock(Done); 853 } 854 } 855 856 /// Determine whether this expression refers to a flexible array member in a 857 /// struct. We disable array bounds checks for such members. 858 static bool isFlexibleArrayMemberExpr(const Expr *E) { 859 // For compatibility with existing code, we treat arrays of length 0 or 860 // 1 as flexible array members. 861 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 862 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 863 if (CAT->getSize().ugt(1)) 864 return false; 865 } else if (!isa<IncompleteArrayType>(AT)) 866 return false; 867 868 E = E->IgnoreParens(); 869 870 // A flexible array member must be the last member in the class. 871 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 872 // FIXME: If the base type of the member expr is not FD->getParent(), 873 // this should not be treated as a flexible array member access. 874 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 875 RecordDecl::field_iterator FI( 876 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 877 return ++FI == FD->getParent()->field_end(); 878 } 879 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 880 return IRE->getDecl()->getNextIvar() == nullptr; 881 } 882 883 return false; 884 } 885 886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 887 QualType EltTy) { 888 ASTContext &C = getContext(); 889 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 890 if (!EltSize) 891 return nullptr; 892 893 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 894 if (!ArrayDeclRef) 895 return nullptr; 896 897 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 898 if (!ParamDecl) 899 return nullptr; 900 901 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 902 if (!POSAttr) 903 return nullptr; 904 905 // Don't load the size if it's a lower bound. 906 int POSType = POSAttr->getType(); 907 if (POSType != 0 && POSType != 1) 908 return nullptr; 909 910 // Find the implicit size parameter. 911 auto PassedSizeIt = SizeArguments.find(ParamDecl); 912 if (PassedSizeIt == SizeArguments.end()) 913 return nullptr; 914 915 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 916 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 917 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 918 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 919 C.getSizeType(), E->getExprLoc()); 920 llvm::Value *SizeOfElement = 921 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 922 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 923 } 924 925 /// If Base is known to point to the start of an array, return the length of 926 /// that array. Return 0 if the length cannot be determined. 927 static llvm::Value *getArrayIndexingBound( 928 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 929 // For the vector indexing extension, the bound is the number of elements. 930 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 931 IndexedType = Base->getType(); 932 return CGF.Builder.getInt32(VT->getNumElements()); 933 } 934 935 Base = Base->IgnoreParens(); 936 937 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 938 if (CE->getCastKind() == CK_ArrayToPointerDecay && 939 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 940 IndexedType = CE->getSubExpr()->getType(); 941 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 942 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 943 return CGF.Builder.getInt(CAT->getSize()); 944 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 945 return CGF.getVLASize(VAT).NumElts; 946 // Ignore pass_object_size here. It's not applicable on decayed pointers. 947 } 948 } 949 950 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 951 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 952 IndexedType = Base->getType(); 953 return POS; 954 } 955 956 return nullptr; 957 } 958 959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 960 llvm::Value *Index, QualType IndexType, 961 bool Accessed) { 962 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 963 "should not be called unless adding bounds checks"); 964 SanitizerScope SanScope(this); 965 966 QualType IndexedType; 967 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 968 if (!Bound) 969 return; 970 971 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 972 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 973 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 974 975 llvm::Constant *StaticData[] = { 976 EmitCheckSourceLocation(E->getExprLoc()), 977 EmitCheckTypeDescriptor(IndexedType), 978 EmitCheckTypeDescriptor(IndexType) 979 }; 980 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 981 : Builder.CreateICmpULE(IndexVal, BoundVal); 982 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 983 SanitizerHandler::OutOfBounds, StaticData, Index); 984 } 985 986 987 CodeGenFunction::ComplexPairTy CodeGenFunction:: 988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 989 bool isInc, bool isPre) { 990 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 991 992 llvm::Value *NextVal; 993 if (isa<llvm::IntegerType>(InVal.first->getType())) { 994 uint64_t AmountVal = isInc ? 1 : -1; 995 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 996 997 // Add the inc/dec to the real part. 998 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 999 } else { 1000 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 1001 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1002 if (!isInc) 1003 FVal.changeSign(); 1004 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1005 1006 // Add the inc/dec to the real part. 1007 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1008 } 1009 1010 ComplexPairTy IncVal(NextVal, InVal.second); 1011 1012 // Store the updated result through the lvalue. 1013 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1014 1015 // If this is a postinc, return the value read from memory, otherwise use the 1016 // updated value. 1017 return isPre ? IncVal : InVal; 1018 } 1019 1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1021 CodeGenFunction *CGF) { 1022 // Bind VLAs in the cast type. 1023 if (CGF && E->getType()->isVariablyModifiedType()) 1024 CGF->EmitVariablyModifiedType(E->getType()); 1025 1026 if (CGDebugInfo *DI = getModuleDebugInfo()) 1027 DI->EmitExplicitCastType(E->getType()); 1028 } 1029 1030 //===----------------------------------------------------------------------===// 1031 // LValue Expression Emission 1032 //===----------------------------------------------------------------------===// 1033 1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1035 /// derive a more accurate bound on the alignment of the pointer. 1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1037 LValueBaseInfo *BaseInfo, 1038 TBAAAccessInfo *TBAAInfo) { 1039 // We allow this with ObjC object pointers because of fragile ABIs. 1040 assert(E->getType()->isPointerType() || 1041 E->getType()->isObjCObjectPointerType()); 1042 E = E->IgnoreParens(); 1043 1044 // Casts: 1045 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1046 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1047 CGM.EmitExplicitCastExprType(ECE, this); 1048 1049 switch (CE->getCastKind()) { 1050 // Non-converting casts (but not C's implicit conversion from void*). 1051 case CK_BitCast: 1052 case CK_NoOp: 1053 case CK_AddressSpaceConversion: 1054 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1055 if (PtrTy->getPointeeType()->isVoidType()) 1056 break; 1057 1058 LValueBaseInfo InnerBaseInfo; 1059 TBAAAccessInfo InnerTBAAInfo; 1060 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1061 &InnerBaseInfo, 1062 &InnerTBAAInfo); 1063 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1064 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1065 1066 if (isa<ExplicitCastExpr>(CE)) { 1067 LValueBaseInfo TargetTypeBaseInfo; 1068 TBAAAccessInfo TargetTypeTBAAInfo; 1069 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1070 &TargetTypeBaseInfo, 1071 &TargetTypeTBAAInfo); 1072 if (TBAAInfo) 1073 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1074 TargetTypeTBAAInfo); 1075 // If the source l-value is opaque, honor the alignment of the 1076 // casted-to type. 1077 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1078 if (BaseInfo) 1079 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1080 Addr = Address(Addr.getPointer(), Align); 1081 } 1082 } 1083 1084 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1085 CE->getCastKind() == CK_BitCast) { 1086 if (auto PT = E->getType()->getAs<PointerType>()) 1087 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1088 /*MayBeNull=*/true, 1089 CodeGenFunction::CFITCK_UnrelatedCast, 1090 CE->getBeginLoc()); 1091 } 1092 return CE->getCastKind() != CK_AddressSpaceConversion 1093 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1094 : Builder.CreateAddrSpaceCast(Addr, 1095 ConvertType(E->getType())); 1096 } 1097 break; 1098 1099 // Array-to-pointer decay. 1100 case CK_ArrayToPointerDecay: 1101 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1102 1103 // Derived-to-base conversions. 1104 case CK_UncheckedDerivedToBase: 1105 case CK_DerivedToBase: { 1106 // TODO: Support accesses to members of base classes in TBAA. For now, we 1107 // conservatively pretend that the complete object is of the base class 1108 // type. 1109 if (TBAAInfo) 1110 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1111 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1112 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1113 return GetAddressOfBaseClass(Addr, Derived, 1114 CE->path_begin(), CE->path_end(), 1115 ShouldNullCheckClassCastValue(CE), 1116 CE->getExprLoc()); 1117 } 1118 1119 // TODO: Is there any reason to treat base-to-derived conversions 1120 // specially? 1121 default: 1122 break; 1123 } 1124 } 1125 1126 // Unary &. 1127 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1128 if (UO->getOpcode() == UO_AddrOf) { 1129 LValue LV = EmitLValue(UO->getSubExpr()); 1130 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1131 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1132 return LV.getAddress(); 1133 } 1134 } 1135 1136 // TODO: conditional operators, comma. 1137 1138 // Otherwise, use the alignment of the type. 1139 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1140 TBAAInfo); 1141 return Address(EmitScalarExpr(E), Align); 1142 } 1143 1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1145 if (Ty->isVoidType()) 1146 return RValue::get(nullptr); 1147 1148 switch (getEvaluationKind(Ty)) { 1149 case TEK_Complex: { 1150 llvm::Type *EltTy = 1151 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1152 llvm::Value *U = llvm::UndefValue::get(EltTy); 1153 return RValue::getComplex(std::make_pair(U, U)); 1154 } 1155 1156 // If this is a use of an undefined aggregate type, the aggregate must have an 1157 // identifiable address. Just because the contents of the value are undefined 1158 // doesn't mean that the address can't be taken and compared. 1159 case TEK_Aggregate: { 1160 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1161 return RValue::getAggregate(DestPtr); 1162 } 1163 1164 case TEK_Scalar: 1165 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1166 } 1167 llvm_unreachable("bad evaluation kind"); 1168 } 1169 1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1171 const char *Name) { 1172 ErrorUnsupported(E, Name); 1173 return GetUndefRValue(E->getType()); 1174 } 1175 1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1177 const char *Name) { 1178 ErrorUnsupported(E, Name); 1179 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1180 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1181 E->getType()); 1182 } 1183 1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1185 const Expr *Base = Obj; 1186 while (!isa<CXXThisExpr>(Base)) { 1187 // The result of a dynamic_cast can be null. 1188 if (isa<CXXDynamicCastExpr>(Base)) 1189 return false; 1190 1191 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1192 Base = CE->getSubExpr(); 1193 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1194 Base = PE->getSubExpr(); 1195 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1196 if (UO->getOpcode() == UO_Extension) 1197 Base = UO->getSubExpr(); 1198 else 1199 return false; 1200 } else { 1201 return false; 1202 } 1203 } 1204 return true; 1205 } 1206 1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1208 LValue LV; 1209 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1210 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1211 else 1212 LV = EmitLValue(E); 1213 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1214 SanitizerSet SkippedChecks; 1215 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1216 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1217 if (IsBaseCXXThis) 1218 SkippedChecks.set(SanitizerKind::Alignment, true); 1219 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1220 SkippedChecks.set(SanitizerKind::Null, true); 1221 } 1222 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1223 E->getType(), LV.getAlignment(), SkippedChecks); 1224 } 1225 return LV; 1226 } 1227 1228 /// EmitLValue - Emit code to compute a designator that specifies the location 1229 /// of the expression. 1230 /// 1231 /// This can return one of two things: a simple address or a bitfield reference. 1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1233 /// an LLVM pointer type. 1234 /// 1235 /// If this returns a bitfield reference, nothing about the pointee type of the 1236 /// LLVM value is known: For example, it may not be a pointer to an integer. 1237 /// 1238 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1239 /// this method guarantees that the returned pointer type will point to an LLVM 1240 /// type of the same size of the lvalue's type. If the lvalue has a variable 1241 /// length type, this is not possible. 1242 /// 1243 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1244 ApplyDebugLocation DL(*this, E); 1245 switch (E->getStmtClass()) { 1246 default: return EmitUnsupportedLValue(E, "l-value expression"); 1247 1248 case Expr::ObjCPropertyRefExprClass: 1249 llvm_unreachable("cannot emit a property reference directly"); 1250 1251 case Expr::ObjCSelectorExprClass: 1252 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1253 case Expr::ObjCIsaExprClass: 1254 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1255 case Expr::BinaryOperatorClass: 1256 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1257 case Expr::CompoundAssignOperatorClass: { 1258 QualType Ty = E->getType(); 1259 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1260 Ty = AT->getValueType(); 1261 if (!Ty->isAnyComplexType()) 1262 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1263 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1264 } 1265 case Expr::CallExprClass: 1266 case Expr::CXXMemberCallExprClass: 1267 case Expr::CXXOperatorCallExprClass: 1268 case Expr::UserDefinedLiteralClass: 1269 return EmitCallExprLValue(cast<CallExpr>(E)); 1270 case Expr::VAArgExprClass: 1271 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1272 case Expr::DeclRefExprClass: 1273 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1274 case Expr::ConstantExprClass: 1275 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1276 case Expr::ParenExprClass: 1277 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1278 case Expr::GenericSelectionExprClass: 1279 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1280 case Expr::PredefinedExprClass: 1281 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1282 case Expr::StringLiteralClass: 1283 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1284 case Expr::ObjCEncodeExprClass: 1285 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1286 case Expr::PseudoObjectExprClass: 1287 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1288 case Expr::InitListExprClass: 1289 return EmitInitListLValue(cast<InitListExpr>(E)); 1290 case Expr::CXXTemporaryObjectExprClass: 1291 case Expr::CXXConstructExprClass: 1292 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1293 case Expr::CXXBindTemporaryExprClass: 1294 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1295 case Expr::CXXUuidofExprClass: 1296 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1297 1298 case Expr::ExprWithCleanupsClass: { 1299 const auto *cleanups = cast<ExprWithCleanups>(E); 1300 enterFullExpression(cleanups); 1301 RunCleanupsScope Scope(*this); 1302 LValue LV = EmitLValue(cleanups->getSubExpr()); 1303 if (LV.isSimple()) { 1304 // Defend against branches out of gnu statement expressions surrounded by 1305 // cleanups. 1306 llvm::Value *V = LV.getPointer(); 1307 Scope.ForceCleanup({&V}); 1308 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1309 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1310 } 1311 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1312 // bitfield lvalue or some other non-simple lvalue? 1313 return LV; 1314 } 1315 1316 case Expr::CXXDefaultArgExprClass: 1317 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1318 case Expr::CXXDefaultInitExprClass: { 1319 CXXDefaultInitExprScope Scope(*this); 1320 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1321 } 1322 case Expr::CXXTypeidExprClass: 1323 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1324 1325 case Expr::ObjCMessageExprClass: 1326 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1327 case Expr::ObjCIvarRefExprClass: 1328 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1329 case Expr::StmtExprClass: 1330 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1331 case Expr::UnaryOperatorClass: 1332 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1333 case Expr::ArraySubscriptExprClass: 1334 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1335 case Expr::OMPArraySectionExprClass: 1336 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1337 case Expr::ExtVectorElementExprClass: 1338 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1339 case Expr::MemberExprClass: 1340 return EmitMemberExpr(cast<MemberExpr>(E)); 1341 case Expr::CompoundLiteralExprClass: 1342 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1343 case Expr::ConditionalOperatorClass: 1344 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1345 case Expr::BinaryConditionalOperatorClass: 1346 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1347 case Expr::ChooseExprClass: 1348 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1349 case Expr::OpaqueValueExprClass: 1350 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1351 case Expr::SubstNonTypeTemplateParmExprClass: 1352 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1353 case Expr::ImplicitCastExprClass: 1354 case Expr::CStyleCastExprClass: 1355 case Expr::CXXFunctionalCastExprClass: 1356 case Expr::CXXStaticCastExprClass: 1357 case Expr::CXXDynamicCastExprClass: 1358 case Expr::CXXReinterpretCastExprClass: 1359 case Expr::CXXConstCastExprClass: 1360 case Expr::ObjCBridgedCastExprClass: 1361 return EmitCastLValue(cast<CastExpr>(E)); 1362 1363 case Expr::MaterializeTemporaryExprClass: 1364 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1365 1366 case Expr::CoawaitExprClass: 1367 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1368 case Expr::CoyieldExprClass: 1369 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1370 } 1371 } 1372 1373 /// Given an object of the given canonical type, can we safely copy a 1374 /// value out of it based on its initializer? 1375 static bool isConstantEmittableObjectType(QualType type) { 1376 assert(type.isCanonical()); 1377 assert(!type->isReferenceType()); 1378 1379 // Must be const-qualified but non-volatile. 1380 Qualifiers qs = type.getLocalQualifiers(); 1381 if (!qs.hasConst() || qs.hasVolatile()) return false; 1382 1383 // Otherwise, all object types satisfy this except C++ classes with 1384 // mutable subobjects or non-trivial copy/destroy behavior. 1385 if (const auto *RT = dyn_cast<RecordType>(type)) 1386 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1387 if (RD->hasMutableFields() || !RD->isTrivial()) 1388 return false; 1389 1390 return true; 1391 } 1392 1393 /// Can we constant-emit a load of a reference to a variable of the 1394 /// given type? This is different from predicates like 1395 /// Decl::isUsableInConstantExpressions because we do want it to apply 1396 /// in situations that don't necessarily satisfy the language's rules 1397 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1398 /// to do this with const float variables even if those variables 1399 /// aren't marked 'constexpr'. 1400 enum ConstantEmissionKind { 1401 CEK_None, 1402 CEK_AsReferenceOnly, 1403 CEK_AsValueOrReference, 1404 CEK_AsValueOnly 1405 }; 1406 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1407 type = type.getCanonicalType(); 1408 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1409 if (isConstantEmittableObjectType(ref->getPointeeType())) 1410 return CEK_AsValueOrReference; 1411 return CEK_AsReferenceOnly; 1412 } 1413 if (isConstantEmittableObjectType(type)) 1414 return CEK_AsValueOnly; 1415 return CEK_None; 1416 } 1417 1418 /// Try to emit a reference to the given value without producing it as 1419 /// an l-value. This is actually more than an optimization: we can't 1420 /// produce an l-value for variables that we never actually captured 1421 /// in a block or lambda, which means const int variables or constexpr 1422 /// literals or similar. 1423 CodeGenFunction::ConstantEmission 1424 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1425 ValueDecl *value = refExpr->getDecl(); 1426 1427 // The value needs to be an enum constant or a constant variable. 1428 ConstantEmissionKind CEK; 1429 if (isa<ParmVarDecl>(value)) { 1430 CEK = CEK_None; 1431 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1432 CEK = checkVarTypeForConstantEmission(var->getType()); 1433 } else if (isa<EnumConstantDecl>(value)) { 1434 CEK = CEK_AsValueOnly; 1435 } else { 1436 CEK = CEK_None; 1437 } 1438 if (CEK == CEK_None) return ConstantEmission(); 1439 1440 Expr::EvalResult result; 1441 bool resultIsReference; 1442 QualType resultType; 1443 1444 // It's best to evaluate all the way as an r-value if that's permitted. 1445 if (CEK != CEK_AsReferenceOnly && 1446 refExpr->EvaluateAsRValue(result, getContext())) { 1447 resultIsReference = false; 1448 resultType = refExpr->getType(); 1449 1450 // Otherwise, try to evaluate as an l-value. 1451 } else if (CEK != CEK_AsValueOnly && 1452 refExpr->EvaluateAsLValue(result, getContext())) { 1453 resultIsReference = true; 1454 resultType = value->getType(); 1455 1456 // Failure. 1457 } else { 1458 return ConstantEmission(); 1459 } 1460 1461 // In any case, if the initializer has side-effects, abandon ship. 1462 if (result.HasSideEffects) 1463 return ConstantEmission(); 1464 1465 // Emit as a constant. 1466 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1467 result.Val, resultType); 1468 1469 // Make sure we emit a debug reference to the global variable. 1470 // This should probably fire even for 1471 if (isa<VarDecl>(value)) { 1472 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1473 EmitDeclRefExprDbgValue(refExpr, result.Val); 1474 } else { 1475 assert(isa<EnumConstantDecl>(value)); 1476 EmitDeclRefExprDbgValue(refExpr, result.Val); 1477 } 1478 1479 // If we emitted a reference constant, we need to dereference that. 1480 if (resultIsReference) 1481 return ConstantEmission::forReference(C); 1482 1483 return ConstantEmission::forValue(C); 1484 } 1485 1486 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1487 const MemberExpr *ME) { 1488 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1489 // Try to emit static variable member expressions as DREs. 1490 return DeclRefExpr::Create( 1491 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1492 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1493 ME->getType(), ME->getValueKind()); 1494 } 1495 return nullptr; 1496 } 1497 1498 CodeGenFunction::ConstantEmission 1499 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1500 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1501 return tryEmitAsConstant(DRE); 1502 return ConstantEmission(); 1503 } 1504 1505 llvm::Value *CodeGenFunction::emitScalarConstant( 1506 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1507 assert(Constant && "not a constant"); 1508 if (Constant.isReference()) 1509 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1510 E->getExprLoc()) 1511 .getScalarVal(); 1512 return Constant.getValue(); 1513 } 1514 1515 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1516 SourceLocation Loc) { 1517 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1518 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1519 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1520 } 1521 1522 static bool hasBooleanRepresentation(QualType Ty) { 1523 if (Ty->isBooleanType()) 1524 return true; 1525 1526 if (const EnumType *ET = Ty->getAs<EnumType>()) 1527 return ET->getDecl()->getIntegerType()->isBooleanType(); 1528 1529 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1530 return hasBooleanRepresentation(AT->getValueType()); 1531 1532 return false; 1533 } 1534 1535 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1536 llvm::APInt &Min, llvm::APInt &End, 1537 bool StrictEnums, bool IsBool) { 1538 const EnumType *ET = Ty->getAs<EnumType>(); 1539 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1540 ET && !ET->getDecl()->isFixed(); 1541 if (!IsBool && !IsRegularCPlusPlusEnum) 1542 return false; 1543 1544 if (IsBool) { 1545 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1546 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1547 } else { 1548 const EnumDecl *ED = ET->getDecl(); 1549 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1550 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1551 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1552 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1553 1554 if (NumNegativeBits) { 1555 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1556 assert(NumBits <= Bitwidth); 1557 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1558 Min = -End; 1559 } else { 1560 assert(NumPositiveBits <= Bitwidth); 1561 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1562 Min = llvm::APInt(Bitwidth, 0); 1563 } 1564 } 1565 return true; 1566 } 1567 1568 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1569 llvm::APInt Min, End; 1570 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1571 hasBooleanRepresentation(Ty))) 1572 return nullptr; 1573 1574 llvm::MDBuilder MDHelper(getLLVMContext()); 1575 return MDHelper.createRange(Min, End); 1576 } 1577 1578 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1579 SourceLocation Loc) { 1580 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1581 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1582 if (!HasBoolCheck && !HasEnumCheck) 1583 return false; 1584 1585 bool IsBool = hasBooleanRepresentation(Ty) || 1586 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1587 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1588 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1589 if (!NeedsBoolCheck && !NeedsEnumCheck) 1590 return false; 1591 1592 // Single-bit booleans don't need to be checked. Special-case this to avoid 1593 // a bit width mismatch when handling bitfield values. This is handled by 1594 // EmitFromMemory for the non-bitfield case. 1595 if (IsBool && 1596 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1597 return false; 1598 1599 llvm::APInt Min, End; 1600 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1601 return true; 1602 1603 auto &Ctx = getLLVMContext(); 1604 SanitizerScope SanScope(this); 1605 llvm::Value *Check; 1606 --End; 1607 if (!Min) { 1608 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1609 } else { 1610 llvm::Value *Upper = 1611 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1612 llvm::Value *Lower = 1613 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1614 Check = Builder.CreateAnd(Upper, Lower); 1615 } 1616 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1617 EmitCheckTypeDescriptor(Ty)}; 1618 SanitizerMask Kind = 1619 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1620 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1621 StaticArgs, EmitCheckValue(Value)); 1622 return true; 1623 } 1624 1625 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1626 QualType Ty, 1627 SourceLocation Loc, 1628 LValueBaseInfo BaseInfo, 1629 TBAAAccessInfo TBAAInfo, 1630 bool isNontemporal) { 1631 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1632 // For better performance, handle vector loads differently. 1633 if (Ty->isVectorType()) { 1634 const llvm::Type *EltTy = Addr.getElementType(); 1635 1636 const auto *VTy = cast<llvm::VectorType>(EltTy); 1637 1638 // Handle vectors of size 3 like size 4 for better performance. 1639 if (VTy->getNumElements() == 3) { 1640 1641 // Bitcast to vec4 type. 1642 llvm::VectorType *vec4Ty = 1643 llvm::VectorType::get(VTy->getElementType(), 4); 1644 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1645 // Now load value. 1646 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1647 1648 // Shuffle vector to get vec3. 1649 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1650 {0, 1, 2}, "extractVec"); 1651 return EmitFromMemory(V, Ty); 1652 } 1653 } 1654 } 1655 1656 // Atomic operations have to be done on integral types. 1657 LValue AtomicLValue = 1658 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1659 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1660 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1661 } 1662 1663 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1664 if (isNontemporal) { 1665 llvm::MDNode *Node = llvm::MDNode::get( 1666 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1667 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1668 } 1669 1670 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1671 1672 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1673 // In order to prevent the optimizer from throwing away the check, don't 1674 // attach range metadata to the load. 1675 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1676 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1677 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1678 1679 return EmitFromMemory(Load, Ty); 1680 } 1681 1682 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1683 // Bool has a different representation in memory than in registers. 1684 if (hasBooleanRepresentation(Ty)) { 1685 // This should really always be an i1, but sometimes it's already 1686 // an i8, and it's awkward to track those cases down. 1687 if (Value->getType()->isIntegerTy(1)) 1688 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1689 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1690 "wrong value rep of bool"); 1691 } 1692 1693 return Value; 1694 } 1695 1696 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1697 // Bool has a different representation in memory than in registers. 1698 if (hasBooleanRepresentation(Ty)) { 1699 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1700 "wrong value rep of bool"); 1701 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1702 } 1703 1704 return Value; 1705 } 1706 1707 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1708 bool Volatile, QualType Ty, 1709 LValueBaseInfo BaseInfo, 1710 TBAAAccessInfo TBAAInfo, 1711 bool isInit, bool isNontemporal) { 1712 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1713 // Handle vectors differently to get better performance. 1714 if (Ty->isVectorType()) { 1715 llvm::Type *SrcTy = Value->getType(); 1716 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1717 // Handle vec3 special. 1718 if (VecTy && VecTy->getNumElements() == 3) { 1719 // Our source is a vec3, do a shuffle vector to make it a vec4. 1720 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1721 Builder.getInt32(2), 1722 llvm::UndefValue::get(Builder.getInt32Ty())}; 1723 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1724 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1725 MaskV, "extractVec"); 1726 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1727 } 1728 if (Addr.getElementType() != SrcTy) { 1729 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1730 } 1731 } 1732 } 1733 1734 Value = EmitToMemory(Value, Ty); 1735 1736 LValue AtomicLValue = 1737 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1738 if (Ty->isAtomicType() || 1739 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1740 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1741 return; 1742 } 1743 1744 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1745 if (isNontemporal) { 1746 llvm::MDNode *Node = 1747 llvm::MDNode::get(Store->getContext(), 1748 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1749 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1750 } 1751 1752 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1753 } 1754 1755 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1756 bool isInit) { 1757 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1758 lvalue.getType(), lvalue.getBaseInfo(), 1759 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1760 } 1761 1762 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1763 /// method emits the address of the lvalue, then loads the result as an rvalue, 1764 /// returning the rvalue. 1765 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1766 if (LV.isObjCWeak()) { 1767 // load of a __weak object. 1768 Address AddrWeakObj = LV.getAddress(); 1769 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1770 AddrWeakObj)); 1771 } 1772 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1773 // In MRC mode, we do a load+autorelease. 1774 if (!getLangOpts().ObjCAutoRefCount) { 1775 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1776 } 1777 1778 // In ARC mode, we load retained and then consume the value. 1779 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1780 Object = EmitObjCConsumeObject(LV.getType(), Object); 1781 return RValue::get(Object); 1782 } 1783 1784 if (LV.isSimple()) { 1785 assert(!LV.getType()->isFunctionType()); 1786 1787 // Everything needs a load. 1788 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1789 } 1790 1791 if (LV.isVectorElt()) { 1792 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1793 LV.isVolatileQualified()); 1794 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1795 "vecext")); 1796 } 1797 1798 // If this is a reference to a subset of the elements of a vector, either 1799 // shuffle the input or extract/insert them as appropriate. 1800 if (LV.isExtVectorElt()) 1801 return EmitLoadOfExtVectorElementLValue(LV); 1802 1803 // Global Register variables always invoke intrinsics 1804 if (LV.isGlobalReg()) 1805 return EmitLoadOfGlobalRegLValue(LV); 1806 1807 assert(LV.isBitField() && "Unknown LValue type!"); 1808 return EmitLoadOfBitfieldLValue(LV, Loc); 1809 } 1810 1811 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1812 SourceLocation Loc) { 1813 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1814 1815 // Get the output type. 1816 llvm::Type *ResLTy = ConvertType(LV.getType()); 1817 1818 Address Ptr = LV.getBitFieldAddress(); 1819 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1820 1821 if (Info.IsSigned) { 1822 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1823 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1824 if (HighBits) 1825 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1826 if (Info.Offset + HighBits) 1827 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1828 } else { 1829 if (Info.Offset) 1830 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1831 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1832 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1833 Info.Size), 1834 "bf.clear"); 1835 } 1836 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1837 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1838 return RValue::get(Val); 1839 } 1840 1841 // If this is a reference to a subset of the elements of a vector, create an 1842 // appropriate shufflevector. 1843 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1844 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1845 LV.isVolatileQualified()); 1846 1847 const llvm::Constant *Elts = LV.getExtVectorElts(); 1848 1849 // If the result of the expression is a non-vector type, we must be extracting 1850 // a single element. Just codegen as an extractelement. 1851 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1852 if (!ExprVT) { 1853 unsigned InIdx = getAccessedFieldNo(0, Elts); 1854 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1855 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1856 } 1857 1858 // Always use shuffle vector to try to retain the original program structure 1859 unsigned NumResultElts = ExprVT->getNumElements(); 1860 1861 SmallVector<llvm::Constant*, 4> Mask; 1862 for (unsigned i = 0; i != NumResultElts; ++i) 1863 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1864 1865 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1866 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1867 MaskV); 1868 return RValue::get(Vec); 1869 } 1870 1871 /// Generates lvalue for partial ext_vector access. 1872 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1873 Address VectorAddress = LV.getExtVectorAddress(); 1874 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1875 QualType EQT = ExprVT->getElementType(); 1876 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1877 1878 Address CastToPointerElement = 1879 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1880 "conv.ptr.element"); 1881 1882 const llvm::Constant *Elts = LV.getExtVectorElts(); 1883 unsigned ix = getAccessedFieldNo(0, Elts); 1884 1885 Address VectorBasePtrPlusIx = 1886 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1887 "vector.elt"); 1888 1889 return VectorBasePtrPlusIx; 1890 } 1891 1892 /// Load of global gamed gegisters are always calls to intrinsics. 1893 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1894 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1895 "Bad type for register variable"); 1896 llvm::MDNode *RegName = cast<llvm::MDNode>( 1897 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1898 1899 // We accept integer and pointer types only 1900 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1901 llvm::Type *Ty = OrigTy; 1902 if (OrigTy->isPointerTy()) 1903 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1904 llvm::Type *Types[] = { Ty }; 1905 1906 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1907 llvm::Value *Call = Builder.CreateCall( 1908 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1909 if (OrigTy->isPointerTy()) 1910 Call = Builder.CreateIntToPtr(Call, OrigTy); 1911 return RValue::get(Call); 1912 } 1913 1914 1915 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1916 /// lvalue, where both are guaranteed to the have the same type, and that type 1917 /// is 'Ty'. 1918 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1919 bool isInit) { 1920 if (!Dst.isSimple()) { 1921 if (Dst.isVectorElt()) { 1922 // Read/modify/write the vector, inserting the new element. 1923 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1924 Dst.isVolatileQualified()); 1925 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1926 Dst.getVectorIdx(), "vecins"); 1927 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1928 Dst.isVolatileQualified()); 1929 return; 1930 } 1931 1932 // If this is an update of extended vector elements, insert them as 1933 // appropriate. 1934 if (Dst.isExtVectorElt()) 1935 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1936 1937 if (Dst.isGlobalReg()) 1938 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1939 1940 assert(Dst.isBitField() && "Unknown LValue type"); 1941 return EmitStoreThroughBitfieldLValue(Src, Dst); 1942 } 1943 1944 // There's special magic for assigning into an ARC-qualified l-value. 1945 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1946 switch (Lifetime) { 1947 case Qualifiers::OCL_None: 1948 llvm_unreachable("present but none"); 1949 1950 case Qualifiers::OCL_ExplicitNone: 1951 // nothing special 1952 break; 1953 1954 case Qualifiers::OCL_Strong: 1955 if (isInit) { 1956 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1957 break; 1958 } 1959 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1960 return; 1961 1962 case Qualifiers::OCL_Weak: 1963 if (isInit) 1964 // Initialize and then skip the primitive store. 1965 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1966 else 1967 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1968 return; 1969 1970 case Qualifiers::OCL_Autoreleasing: 1971 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1972 Src.getScalarVal())); 1973 // fall into the normal path 1974 break; 1975 } 1976 } 1977 1978 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1979 // load of a __weak object. 1980 Address LvalueDst = Dst.getAddress(); 1981 llvm::Value *src = Src.getScalarVal(); 1982 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1983 return; 1984 } 1985 1986 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1987 // load of a __strong object. 1988 Address LvalueDst = Dst.getAddress(); 1989 llvm::Value *src = Src.getScalarVal(); 1990 if (Dst.isObjCIvar()) { 1991 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1992 llvm::Type *ResultType = IntPtrTy; 1993 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1994 llvm::Value *RHS = dst.getPointer(); 1995 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1996 llvm::Value *LHS = 1997 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1998 "sub.ptr.lhs.cast"); 1999 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2000 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2001 BytesBetween); 2002 } else if (Dst.isGlobalObjCRef()) { 2003 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2004 Dst.isThreadLocalRef()); 2005 } 2006 else 2007 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2008 return; 2009 } 2010 2011 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2012 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2013 } 2014 2015 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2016 llvm::Value **Result) { 2017 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2018 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2019 Address Ptr = Dst.getBitFieldAddress(); 2020 2021 // Get the source value, truncated to the width of the bit-field. 2022 llvm::Value *SrcVal = Src.getScalarVal(); 2023 2024 // Cast the source to the storage type and shift it into place. 2025 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2026 /*IsSigned=*/false); 2027 llvm::Value *MaskedVal = SrcVal; 2028 2029 // See if there are other bits in the bitfield's storage we'll need to load 2030 // and mask together with source before storing. 2031 if (Info.StorageSize != Info.Size) { 2032 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2033 llvm::Value *Val = 2034 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2035 2036 // Mask the source value as needed. 2037 if (!hasBooleanRepresentation(Dst.getType())) 2038 SrcVal = Builder.CreateAnd(SrcVal, 2039 llvm::APInt::getLowBitsSet(Info.StorageSize, 2040 Info.Size), 2041 "bf.value"); 2042 MaskedVal = SrcVal; 2043 if (Info.Offset) 2044 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2045 2046 // Mask out the original value. 2047 Val = Builder.CreateAnd(Val, 2048 ~llvm::APInt::getBitsSet(Info.StorageSize, 2049 Info.Offset, 2050 Info.Offset + Info.Size), 2051 "bf.clear"); 2052 2053 // Or together the unchanged values and the source value. 2054 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2055 } else { 2056 assert(Info.Offset == 0); 2057 } 2058 2059 // Write the new value back out. 2060 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2061 2062 // Return the new value of the bit-field, if requested. 2063 if (Result) { 2064 llvm::Value *ResultVal = MaskedVal; 2065 2066 // Sign extend the value if needed. 2067 if (Info.IsSigned) { 2068 assert(Info.Size <= Info.StorageSize); 2069 unsigned HighBits = Info.StorageSize - Info.Size; 2070 if (HighBits) { 2071 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2072 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2073 } 2074 } 2075 2076 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2077 "bf.result.cast"); 2078 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2079 } 2080 } 2081 2082 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2083 LValue Dst) { 2084 // This access turns into a read/modify/write of the vector. Load the input 2085 // value now. 2086 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2087 Dst.isVolatileQualified()); 2088 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2089 2090 llvm::Value *SrcVal = Src.getScalarVal(); 2091 2092 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2093 unsigned NumSrcElts = VTy->getNumElements(); 2094 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2095 if (NumDstElts == NumSrcElts) { 2096 // Use shuffle vector is the src and destination are the same number of 2097 // elements and restore the vector mask since it is on the side it will be 2098 // stored. 2099 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2100 for (unsigned i = 0; i != NumSrcElts; ++i) 2101 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2102 2103 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2104 Vec = Builder.CreateShuffleVector(SrcVal, 2105 llvm::UndefValue::get(Vec->getType()), 2106 MaskV); 2107 } else if (NumDstElts > NumSrcElts) { 2108 // Extended the source vector to the same length and then shuffle it 2109 // into the destination. 2110 // FIXME: since we're shuffling with undef, can we just use the indices 2111 // into that? This could be simpler. 2112 SmallVector<llvm::Constant*, 4> ExtMask; 2113 for (unsigned i = 0; i != NumSrcElts; ++i) 2114 ExtMask.push_back(Builder.getInt32(i)); 2115 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2116 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2117 llvm::Value *ExtSrcVal = 2118 Builder.CreateShuffleVector(SrcVal, 2119 llvm::UndefValue::get(SrcVal->getType()), 2120 ExtMaskV); 2121 // build identity 2122 SmallVector<llvm::Constant*, 4> Mask; 2123 for (unsigned i = 0; i != NumDstElts; ++i) 2124 Mask.push_back(Builder.getInt32(i)); 2125 2126 // When the vector size is odd and .odd or .hi is used, the last element 2127 // of the Elts constant array will be one past the size of the vector. 2128 // Ignore the last element here, if it is greater than the mask size. 2129 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2130 NumSrcElts--; 2131 2132 // modify when what gets shuffled in 2133 for (unsigned i = 0; i != NumSrcElts; ++i) 2134 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2135 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2136 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2137 } else { 2138 // We should never shorten the vector 2139 llvm_unreachable("unexpected shorten vector length"); 2140 } 2141 } else { 2142 // If the Src is a scalar (not a vector) it must be updating one element. 2143 unsigned InIdx = getAccessedFieldNo(0, Elts); 2144 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2145 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2146 } 2147 2148 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2149 Dst.isVolatileQualified()); 2150 } 2151 2152 /// Store of global named registers are always calls to intrinsics. 2153 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2154 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2155 "Bad type for register variable"); 2156 llvm::MDNode *RegName = cast<llvm::MDNode>( 2157 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2158 assert(RegName && "Register LValue is not metadata"); 2159 2160 // We accept integer and pointer types only 2161 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2162 llvm::Type *Ty = OrigTy; 2163 if (OrigTy->isPointerTy()) 2164 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2165 llvm::Type *Types[] = { Ty }; 2166 2167 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2168 llvm::Value *Value = Src.getScalarVal(); 2169 if (OrigTy->isPointerTy()) 2170 Value = Builder.CreatePtrToInt(Value, Ty); 2171 Builder.CreateCall( 2172 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2173 } 2174 2175 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2176 // generating write-barries API. It is currently a global, ivar, 2177 // or neither. 2178 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2179 LValue &LV, 2180 bool IsMemberAccess=false) { 2181 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2182 return; 2183 2184 if (isa<ObjCIvarRefExpr>(E)) { 2185 QualType ExpTy = E->getType(); 2186 if (IsMemberAccess && ExpTy->isPointerType()) { 2187 // If ivar is a structure pointer, assigning to field of 2188 // this struct follows gcc's behavior and makes it a non-ivar 2189 // writer-barrier conservatively. 2190 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2191 if (ExpTy->isRecordType()) { 2192 LV.setObjCIvar(false); 2193 return; 2194 } 2195 } 2196 LV.setObjCIvar(true); 2197 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2198 LV.setBaseIvarExp(Exp->getBase()); 2199 LV.setObjCArray(E->getType()->isArrayType()); 2200 return; 2201 } 2202 2203 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2204 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2205 if (VD->hasGlobalStorage()) { 2206 LV.setGlobalObjCRef(true); 2207 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2208 } 2209 } 2210 LV.setObjCArray(E->getType()->isArrayType()); 2211 return; 2212 } 2213 2214 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2215 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2216 return; 2217 } 2218 2219 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2220 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2221 if (LV.isObjCIvar()) { 2222 // If cast is to a structure pointer, follow gcc's behavior and make it 2223 // a non-ivar write-barrier. 2224 QualType ExpTy = E->getType(); 2225 if (ExpTy->isPointerType()) 2226 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2227 if (ExpTy->isRecordType()) 2228 LV.setObjCIvar(false); 2229 } 2230 return; 2231 } 2232 2233 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2234 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2235 return; 2236 } 2237 2238 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2239 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2240 return; 2241 } 2242 2243 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2244 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2245 return; 2246 } 2247 2248 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2249 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2250 return; 2251 } 2252 2253 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2254 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2255 if (LV.isObjCIvar() && !LV.isObjCArray()) 2256 // Using array syntax to assigning to what an ivar points to is not 2257 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2258 LV.setObjCIvar(false); 2259 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2260 // Using array syntax to assigning to what global points to is not 2261 // same as assigning to the global itself. {id *G;} G[i] = 0; 2262 LV.setGlobalObjCRef(false); 2263 return; 2264 } 2265 2266 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2267 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2268 // We don't know if member is an 'ivar', but this flag is looked at 2269 // only in the context of LV.isObjCIvar(). 2270 LV.setObjCArray(E->getType()->isArrayType()); 2271 return; 2272 } 2273 } 2274 2275 static llvm::Value * 2276 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2277 llvm::Value *V, llvm::Type *IRType, 2278 StringRef Name = StringRef()) { 2279 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2280 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2281 } 2282 2283 static LValue EmitThreadPrivateVarDeclLValue( 2284 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2285 llvm::Type *RealVarTy, SourceLocation Loc) { 2286 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2287 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2288 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2289 } 2290 2291 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2292 const VarDecl *VD, QualType T) { 2293 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2294 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2295 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) 2296 return Address::invalid(); 2297 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); 2298 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2299 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2300 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2301 } 2302 2303 Address 2304 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2305 LValueBaseInfo *PointeeBaseInfo, 2306 TBAAAccessInfo *PointeeTBAAInfo) { 2307 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2308 RefLVal.isVolatile()); 2309 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2310 2311 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2312 PointeeBaseInfo, PointeeTBAAInfo, 2313 /* forPointeeType= */ true); 2314 return Address(Load, Align); 2315 } 2316 2317 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2318 LValueBaseInfo PointeeBaseInfo; 2319 TBAAAccessInfo PointeeTBAAInfo; 2320 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2321 &PointeeTBAAInfo); 2322 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2323 PointeeBaseInfo, PointeeTBAAInfo); 2324 } 2325 2326 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2327 const PointerType *PtrTy, 2328 LValueBaseInfo *BaseInfo, 2329 TBAAAccessInfo *TBAAInfo) { 2330 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2331 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2332 BaseInfo, TBAAInfo, 2333 /*forPointeeType=*/true)); 2334 } 2335 2336 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2337 const PointerType *PtrTy) { 2338 LValueBaseInfo BaseInfo; 2339 TBAAAccessInfo TBAAInfo; 2340 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2341 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2342 } 2343 2344 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2345 const Expr *E, const VarDecl *VD) { 2346 QualType T = E->getType(); 2347 2348 // If it's thread_local, emit a call to its wrapper function instead. 2349 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2350 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2351 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2352 // Check if the variable is marked as declare target with link clause in 2353 // device codegen. 2354 if (CGF.getLangOpts().OpenMPIsDevice) { 2355 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2356 if (Addr.isValid()) 2357 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2358 } 2359 2360 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2361 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2362 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2363 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2364 Address Addr(V, Alignment); 2365 // Emit reference to the private copy of the variable if it is an OpenMP 2366 // threadprivate variable. 2367 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2368 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2369 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2370 E->getExprLoc()); 2371 } 2372 LValue LV = VD->getType()->isReferenceType() ? 2373 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2374 AlignmentSource::Decl) : 2375 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2376 setObjCGCLValueClass(CGF.getContext(), E, LV); 2377 return LV; 2378 } 2379 2380 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2381 const FunctionDecl *FD) { 2382 if (FD->hasAttr<WeakRefAttr>()) { 2383 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2384 return aliasee.getPointer(); 2385 } 2386 2387 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2388 if (!FD->hasPrototype()) { 2389 if (const FunctionProtoType *Proto = 2390 FD->getType()->getAs<FunctionProtoType>()) { 2391 // Ugly case: for a K&R-style definition, the type of the definition 2392 // isn't the same as the type of a use. Correct for this with a 2393 // bitcast. 2394 QualType NoProtoType = 2395 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2396 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2397 V = llvm::ConstantExpr::getBitCast(V, 2398 CGM.getTypes().ConvertType(NoProtoType)); 2399 } 2400 } 2401 return V; 2402 } 2403 2404 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2405 const Expr *E, const FunctionDecl *FD) { 2406 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2407 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2408 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2409 AlignmentSource::Decl); 2410 } 2411 2412 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2413 llvm::Value *ThisValue) { 2414 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2415 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2416 return CGF.EmitLValueForField(LV, FD); 2417 } 2418 2419 /// Named Registers are named metadata pointing to the register name 2420 /// which will be read from/written to as an argument to the intrinsic 2421 /// @llvm.read/write_register. 2422 /// So far, only the name is being passed down, but other options such as 2423 /// register type, allocation type or even optimization options could be 2424 /// passed down via the metadata node. 2425 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2426 SmallString<64> Name("llvm.named.register."); 2427 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2428 assert(Asm->getLabel().size() < 64-Name.size() && 2429 "Register name too big"); 2430 Name.append(Asm->getLabel()); 2431 llvm::NamedMDNode *M = 2432 CGM.getModule().getOrInsertNamedMetadata(Name); 2433 if (M->getNumOperands() == 0) { 2434 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2435 Asm->getLabel()); 2436 llvm::Metadata *Ops[] = {Str}; 2437 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2438 } 2439 2440 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2441 2442 llvm::Value *Ptr = 2443 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2444 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2445 } 2446 2447 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2448 const NamedDecl *ND = E->getDecl(); 2449 QualType T = E->getType(); 2450 2451 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2452 // Global Named registers access via intrinsics only 2453 if (VD->getStorageClass() == SC_Register && 2454 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2455 return EmitGlobalNamedRegister(VD, CGM); 2456 2457 // A DeclRefExpr for a reference initialized by a constant expression can 2458 // appear without being odr-used. Directly emit the constant initializer. 2459 const Expr *Init = VD->getAnyInitializer(VD); 2460 const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl); 2461 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2462 VD->isUsableInConstantExpressions(getContext()) && 2463 VD->checkInitIsICE() && 2464 // Do not emit if it is private OpenMP variable. 2465 !(E->refersToEnclosingVariableOrCapture() && 2466 ((CapturedStmtInfo && 2467 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2468 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2469 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2470 (BD && BD->capturesVariable(VD))))) { 2471 llvm::Constant *Val = 2472 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2473 *VD->evaluateValue(), 2474 VD->getType()); 2475 assert(Val && "failed to emit reference constant expression"); 2476 // FIXME: Eventually we will want to emit vector element references. 2477 2478 // Should we be using the alignment of the constant pointer we emitted? 2479 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2480 /* BaseInfo= */ nullptr, 2481 /* TBAAInfo= */ nullptr, 2482 /* forPointeeType= */ true); 2483 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2484 } 2485 2486 // Check for captured variables. 2487 if (E->refersToEnclosingVariableOrCapture()) { 2488 VD = VD->getCanonicalDecl(); 2489 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2490 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2491 else if (CapturedStmtInfo) { 2492 auto I = LocalDeclMap.find(VD); 2493 if (I != LocalDeclMap.end()) { 2494 if (VD->getType()->isReferenceType()) 2495 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2496 AlignmentSource::Decl); 2497 return MakeAddrLValue(I->second, T); 2498 } 2499 LValue CapLVal = 2500 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2501 CapturedStmtInfo->getContextValue()); 2502 return MakeAddrLValue( 2503 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2504 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2505 CapLVal.getTBAAInfo()); 2506 } 2507 2508 assert(isa<BlockDecl>(CurCodeDecl)); 2509 Address addr = GetAddrOfBlockDecl(VD); 2510 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2511 } 2512 } 2513 2514 // FIXME: We should be able to assert this for FunctionDecls as well! 2515 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2516 // those with a valid source location. 2517 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2518 !E->getLocation().isValid()) && 2519 "Should not use decl without marking it used!"); 2520 2521 if (ND->hasAttr<WeakRefAttr>()) { 2522 const auto *VD = cast<ValueDecl>(ND); 2523 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2524 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2525 } 2526 2527 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2528 // Check if this is a global variable. 2529 if (VD->hasLinkage() || VD->isStaticDataMember()) 2530 return EmitGlobalVarDeclLValue(*this, E, VD); 2531 2532 Address addr = Address::invalid(); 2533 2534 // The variable should generally be present in the local decl map. 2535 auto iter = LocalDeclMap.find(VD); 2536 if (iter != LocalDeclMap.end()) { 2537 addr = iter->second; 2538 2539 // Otherwise, it might be static local we haven't emitted yet for 2540 // some reason; most likely, because it's in an outer function. 2541 } else if (VD->isStaticLocal()) { 2542 addr = Address(CGM.getOrCreateStaticVarDecl( 2543 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2544 getContext().getDeclAlign(VD)); 2545 2546 // No other cases for now. 2547 } else { 2548 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2549 } 2550 2551 2552 // Check for OpenMP threadprivate variables. 2553 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2554 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2555 return EmitThreadPrivateVarDeclLValue( 2556 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2557 E->getExprLoc()); 2558 } 2559 2560 // Drill into block byref variables. 2561 bool isBlockByref = VD->isEscapingByref(); 2562 if (isBlockByref) { 2563 addr = emitBlockByrefAddress(addr, VD); 2564 } 2565 2566 // Drill into reference types. 2567 LValue LV = VD->getType()->isReferenceType() ? 2568 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2569 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2570 2571 bool isLocalStorage = VD->hasLocalStorage(); 2572 2573 bool NonGCable = isLocalStorage && 2574 !VD->getType()->isReferenceType() && 2575 !isBlockByref; 2576 if (NonGCable) { 2577 LV.getQuals().removeObjCGCAttr(); 2578 LV.setNonGC(true); 2579 } 2580 2581 bool isImpreciseLifetime = 2582 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2583 if (isImpreciseLifetime) 2584 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2585 setObjCGCLValueClass(getContext(), E, LV); 2586 return LV; 2587 } 2588 2589 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2590 return EmitFunctionDeclLValue(*this, E, FD); 2591 2592 // FIXME: While we're emitting a binding from an enclosing scope, all other 2593 // DeclRefExprs we see should be implicitly treated as if they also refer to 2594 // an enclosing scope. 2595 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2596 return EmitLValue(BD->getBinding()); 2597 2598 llvm_unreachable("Unhandled DeclRefExpr"); 2599 } 2600 2601 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2602 // __extension__ doesn't affect lvalue-ness. 2603 if (E->getOpcode() == UO_Extension) 2604 return EmitLValue(E->getSubExpr()); 2605 2606 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2607 switch (E->getOpcode()) { 2608 default: llvm_unreachable("Unknown unary operator lvalue!"); 2609 case UO_Deref: { 2610 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2611 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2612 2613 LValueBaseInfo BaseInfo; 2614 TBAAAccessInfo TBAAInfo; 2615 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2616 &TBAAInfo); 2617 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2618 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2619 2620 // We should not generate __weak write barrier on indirect reference 2621 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2622 // But, we continue to generate __strong write barrier on indirect write 2623 // into a pointer to object. 2624 if (getLangOpts().ObjC && 2625 getLangOpts().getGC() != LangOptions::NonGC && 2626 LV.isObjCWeak()) 2627 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2628 return LV; 2629 } 2630 case UO_Real: 2631 case UO_Imag: { 2632 LValue LV = EmitLValue(E->getSubExpr()); 2633 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2634 2635 // __real is valid on scalars. This is a faster way of testing that. 2636 // __imag can only produce an rvalue on scalars. 2637 if (E->getOpcode() == UO_Real && 2638 !LV.getAddress().getElementType()->isStructTy()) { 2639 assert(E->getSubExpr()->getType()->isArithmeticType()); 2640 return LV; 2641 } 2642 2643 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2644 2645 Address Component = 2646 (E->getOpcode() == UO_Real 2647 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2648 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2649 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2650 CGM.getTBAAInfoForSubobject(LV, T)); 2651 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2652 return ElemLV; 2653 } 2654 case UO_PreInc: 2655 case UO_PreDec: { 2656 LValue LV = EmitLValue(E->getSubExpr()); 2657 bool isInc = E->getOpcode() == UO_PreInc; 2658 2659 if (E->getType()->isAnyComplexType()) 2660 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2661 else 2662 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2663 return LV; 2664 } 2665 } 2666 } 2667 2668 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2669 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2670 E->getType(), AlignmentSource::Decl); 2671 } 2672 2673 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2674 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2675 E->getType(), AlignmentSource::Decl); 2676 } 2677 2678 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2679 auto SL = E->getFunctionName(); 2680 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2681 StringRef FnName = CurFn->getName(); 2682 if (FnName.startswith("\01")) 2683 FnName = FnName.substr(1); 2684 StringRef NameItems[] = { 2685 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2686 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2687 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2688 std::string Name = SL->getString(); 2689 if (!Name.empty()) { 2690 unsigned Discriminator = 2691 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2692 if (Discriminator) 2693 Name += "_" + Twine(Discriminator + 1).str(); 2694 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2695 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2696 } else { 2697 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2698 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2699 } 2700 } 2701 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2702 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2703 } 2704 2705 /// Emit a type description suitable for use by a runtime sanitizer library. The 2706 /// format of a type descriptor is 2707 /// 2708 /// \code 2709 /// { i16 TypeKind, i16 TypeInfo } 2710 /// \endcode 2711 /// 2712 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2713 /// integer, 1 for a floating point value, and -1 for anything else. 2714 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2715 // Only emit each type's descriptor once. 2716 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2717 return C; 2718 2719 uint16_t TypeKind = -1; 2720 uint16_t TypeInfo = 0; 2721 2722 if (T->isIntegerType()) { 2723 TypeKind = 0; 2724 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2725 (T->isSignedIntegerType() ? 1 : 0); 2726 } else if (T->isFloatingType()) { 2727 TypeKind = 1; 2728 TypeInfo = getContext().getTypeSize(T); 2729 } 2730 2731 // Format the type name as if for a diagnostic, including quotes and 2732 // optionally an 'aka'. 2733 SmallString<32> Buffer; 2734 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2735 (intptr_t)T.getAsOpaquePtr(), 2736 StringRef(), StringRef(), None, Buffer, 2737 None); 2738 2739 llvm::Constant *Components[] = { 2740 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2741 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2742 }; 2743 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2744 2745 auto *GV = new llvm::GlobalVariable( 2746 CGM.getModule(), Descriptor->getType(), 2747 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2748 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2749 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2750 2751 // Remember the descriptor for this type. 2752 CGM.setTypeDescriptorInMap(T, GV); 2753 2754 return GV; 2755 } 2756 2757 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2758 llvm::Type *TargetTy = IntPtrTy; 2759 2760 if (V->getType() == TargetTy) 2761 return V; 2762 2763 // Floating-point types which fit into intptr_t are bitcast to integers 2764 // and then passed directly (after zero-extension, if necessary). 2765 if (V->getType()->isFloatingPointTy()) { 2766 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2767 if (Bits <= TargetTy->getIntegerBitWidth()) 2768 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2769 Bits)); 2770 } 2771 2772 // Integers which fit in intptr_t are zero-extended and passed directly. 2773 if (V->getType()->isIntegerTy() && 2774 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2775 return Builder.CreateZExt(V, TargetTy); 2776 2777 // Pointers are passed directly, everything else is passed by address. 2778 if (!V->getType()->isPointerTy()) { 2779 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2780 Builder.CreateStore(V, Ptr); 2781 V = Ptr.getPointer(); 2782 } 2783 return Builder.CreatePtrToInt(V, TargetTy); 2784 } 2785 2786 /// Emit a representation of a SourceLocation for passing to a handler 2787 /// in a sanitizer runtime library. The format for this data is: 2788 /// \code 2789 /// struct SourceLocation { 2790 /// const char *Filename; 2791 /// int32_t Line, Column; 2792 /// }; 2793 /// \endcode 2794 /// For an invalid SourceLocation, the Filename pointer is null. 2795 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2796 llvm::Constant *Filename; 2797 int Line, Column; 2798 2799 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2800 if (PLoc.isValid()) { 2801 StringRef FilenameString = PLoc.getFilename(); 2802 2803 int PathComponentsToStrip = 2804 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2805 if (PathComponentsToStrip < 0) { 2806 assert(PathComponentsToStrip != INT_MIN); 2807 int PathComponentsToKeep = -PathComponentsToStrip; 2808 auto I = llvm::sys::path::rbegin(FilenameString); 2809 auto E = llvm::sys::path::rend(FilenameString); 2810 while (I != E && --PathComponentsToKeep) 2811 ++I; 2812 2813 FilenameString = FilenameString.substr(I - E); 2814 } else if (PathComponentsToStrip > 0) { 2815 auto I = llvm::sys::path::begin(FilenameString); 2816 auto E = llvm::sys::path::end(FilenameString); 2817 while (I != E && PathComponentsToStrip--) 2818 ++I; 2819 2820 if (I != E) 2821 FilenameString = 2822 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2823 else 2824 FilenameString = llvm::sys::path::filename(FilenameString); 2825 } 2826 2827 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2828 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2829 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2830 Filename = FilenameGV.getPointer(); 2831 Line = PLoc.getLine(); 2832 Column = PLoc.getColumn(); 2833 } else { 2834 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2835 Line = Column = 0; 2836 } 2837 2838 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2839 Builder.getInt32(Column)}; 2840 2841 return llvm::ConstantStruct::getAnon(Data); 2842 } 2843 2844 namespace { 2845 /// Specify under what conditions this check can be recovered 2846 enum class CheckRecoverableKind { 2847 /// Always terminate program execution if this check fails. 2848 Unrecoverable, 2849 /// Check supports recovering, runtime has both fatal (noreturn) and 2850 /// non-fatal handlers for this check. 2851 Recoverable, 2852 /// Runtime conditionally aborts, always need to support recovery. 2853 AlwaysRecoverable 2854 }; 2855 } 2856 2857 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2858 assert(Kind.countPopulation() == 1); 2859 if (Kind == SanitizerKind::Vptr) 2860 return CheckRecoverableKind::AlwaysRecoverable; 2861 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2862 return CheckRecoverableKind::Unrecoverable; 2863 else 2864 return CheckRecoverableKind::Recoverable; 2865 } 2866 2867 namespace { 2868 struct SanitizerHandlerInfo { 2869 char const *const Name; 2870 unsigned Version; 2871 }; 2872 } 2873 2874 const SanitizerHandlerInfo SanitizerHandlers[] = { 2875 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2876 LIST_SANITIZER_CHECKS 2877 #undef SANITIZER_CHECK 2878 }; 2879 2880 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2881 llvm::FunctionType *FnType, 2882 ArrayRef<llvm::Value *> FnArgs, 2883 SanitizerHandler CheckHandler, 2884 CheckRecoverableKind RecoverKind, bool IsFatal, 2885 llvm::BasicBlock *ContBB) { 2886 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2887 Optional<ApplyDebugLocation> DL; 2888 if (!CGF.Builder.getCurrentDebugLocation()) { 2889 // Ensure that the call has at least an artificial debug location. 2890 DL.emplace(CGF, SourceLocation()); 2891 } 2892 bool NeedsAbortSuffix = 2893 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2894 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2895 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2896 const StringRef CheckName = CheckInfo.Name; 2897 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2898 if (CheckInfo.Version && !MinimalRuntime) 2899 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2900 if (MinimalRuntime) 2901 FnName += "_minimal"; 2902 if (NeedsAbortSuffix) 2903 FnName += "_abort"; 2904 bool MayReturn = 2905 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2906 2907 llvm::AttrBuilder B; 2908 if (!MayReturn) { 2909 B.addAttribute(llvm::Attribute::NoReturn) 2910 .addAttribute(llvm::Attribute::NoUnwind); 2911 } 2912 B.addAttribute(llvm::Attribute::UWTable); 2913 2914 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 2915 FnType, FnName, 2916 llvm::AttributeList::get(CGF.getLLVMContext(), 2917 llvm::AttributeList::FunctionIndex, B), 2918 /*Local=*/true); 2919 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2920 if (!MayReturn) { 2921 HandlerCall->setDoesNotReturn(); 2922 CGF.Builder.CreateUnreachable(); 2923 } else { 2924 CGF.Builder.CreateBr(ContBB); 2925 } 2926 } 2927 2928 void CodeGenFunction::EmitCheck( 2929 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2930 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2931 ArrayRef<llvm::Value *> DynamicArgs) { 2932 assert(IsSanitizerScope); 2933 assert(Checked.size() > 0); 2934 assert(CheckHandler >= 0 && 2935 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2936 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2937 2938 llvm::Value *FatalCond = nullptr; 2939 llvm::Value *RecoverableCond = nullptr; 2940 llvm::Value *TrapCond = nullptr; 2941 for (int i = 0, n = Checked.size(); i < n; ++i) { 2942 llvm::Value *Check = Checked[i].first; 2943 // -fsanitize-trap= overrides -fsanitize-recover=. 2944 llvm::Value *&Cond = 2945 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2946 ? TrapCond 2947 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2948 ? RecoverableCond 2949 : FatalCond; 2950 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2951 } 2952 2953 if (TrapCond) 2954 EmitTrapCheck(TrapCond); 2955 if (!FatalCond && !RecoverableCond) 2956 return; 2957 2958 llvm::Value *JointCond; 2959 if (FatalCond && RecoverableCond) 2960 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2961 else 2962 JointCond = FatalCond ? FatalCond : RecoverableCond; 2963 assert(JointCond); 2964 2965 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2966 assert(SanOpts.has(Checked[0].second)); 2967 #ifndef NDEBUG 2968 for (int i = 1, n = Checked.size(); i < n; ++i) { 2969 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2970 "All recoverable kinds in a single check must be same!"); 2971 assert(SanOpts.has(Checked[i].second)); 2972 } 2973 #endif 2974 2975 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2976 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2977 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2978 // Give hint that we very much don't expect to execute the handler 2979 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2980 llvm::MDBuilder MDHelper(getLLVMContext()); 2981 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2982 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2983 EmitBlock(Handlers); 2984 2985 // Handler functions take an i8* pointing to the (handler-specific) static 2986 // information block, followed by a sequence of intptr_t arguments 2987 // representing operand values. 2988 SmallVector<llvm::Value *, 4> Args; 2989 SmallVector<llvm::Type *, 4> ArgTypes; 2990 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2991 Args.reserve(DynamicArgs.size() + 1); 2992 ArgTypes.reserve(DynamicArgs.size() + 1); 2993 2994 // Emit handler arguments and create handler function type. 2995 if (!StaticArgs.empty()) { 2996 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2997 auto *InfoPtr = 2998 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2999 llvm::GlobalVariable::PrivateLinkage, Info); 3000 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3001 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3002 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3003 ArgTypes.push_back(Int8PtrTy); 3004 } 3005 3006 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3007 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3008 ArgTypes.push_back(IntPtrTy); 3009 } 3010 } 3011 3012 llvm::FunctionType *FnType = 3013 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3014 3015 if (!FatalCond || !RecoverableCond) { 3016 // Simple case: we need to generate a single handler call, either 3017 // fatal, or non-fatal. 3018 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3019 (FatalCond != nullptr), Cont); 3020 } else { 3021 // Emit two handler calls: first one for set of unrecoverable checks, 3022 // another one for recoverable. 3023 llvm::BasicBlock *NonFatalHandlerBB = 3024 createBasicBlock("non_fatal." + CheckName); 3025 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3026 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3027 EmitBlock(FatalHandlerBB); 3028 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3029 NonFatalHandlerBB); 3030 EmitBlock(NonFatalHandlerBB); 3031 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3032 Cont); 3033 } 3034 3035 EmitBlock(Cont); 3036 } 3037 3038 void CodeGenFunction::EmitCfiSlowPathCheck( 3039 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3040 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3041 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3042 3043 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3044 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3045 3046 llvm::MDBuilder MDHelper(getLLVMContext()); 3047 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3048 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3049 3050 EmitBlock(CheckBB); 3051 3052 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3053 3054 llvm::CallInst *CheckCall; 3055 llvm::FunctionCallee SlowPathFn; 3056 if (WithDiag) { 3057 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3058 auto *InfoPtr = 3059 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3060 llvm::GlobalVariable::PrivateLinkage, Info); 3061 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3062 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3063 3064 SlowPathFn = CGM.getModule().getOrInsertFunction( 3065 "__cfi_slowpath_diag", 3066 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3067 false)); 3068 CheckCall = Builder.CreateCall( 3069 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3070 } else { 3071 SlowPathFn = CGM.getModule().getOrInsertFunction( 3072 "__cfi_slowpath", 3073 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3074 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3075 } 3076 3077 CGM.setDSOLocal( 3078 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3079 CheckCall->setDoesNotThrow(); 3080 3081 EmitBlock(Cont); 3082 } 3083 3084 // Emit a stub for __cfi_check function so that the linker knows about this 3085 // symbol in LTO mode. 3086 void CodeGenFunction::EmitCfiCheckStub() { 3087 llvm::Module *M = &CGM.getModule(); 3088 auto &Ctx = M->getContext(); 3089 llvm::Function *F = llvm::Function::Create( 3090 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3091 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3092 CGM.setDSOLocal(F); 3093 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3094 // FIXME: consider emitting an intrinsic call like 3095 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3096 // which can be lowered in CrossDSOCFI pass to the actual contents of 3097 // __cfi_check. This would allow inlining of __cfi_check calls. 3098 llvm::CallInst::Create( 3099 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3100 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3101 } 3102 3103 // This function is basically a switch over the CFI failure kind, which is 3104 // extracted from CFICheckFailData (1st function argument). Each case is either 3105 // llvm.trap or a call to one of the two runtime handlers, based on 3106 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3107 // failure kind) traps, but this should really never happen. CFICheckFailData 3108 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3109 // check kind; in this case __cfi_check_fail traps as well. 3110 void CodeGenFunction::EmitCfiCheckFail() { 3111 SanitizerScope SanScope(this); 3112 FunctionArgList Args; 3113 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3114 ImplicitParamDecl::Other); 3115 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3116 ImplicitParamDecl::Other); 3117 Args.push_back(&ArgData); 3118 Args.push_back(&ArgAddr); 3119 3120 const CGFunctionInfo &FI = 3121 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3122 3123 llvm::Function *F = llvm::Function::Create( 3124 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3125 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3126 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3127 3128 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3129 SourceLocation()); 3130 3131 // This function should not be affected by blacklist. This function does 3132 // not have a source location, but "src:*" would still apply. Revert any 3133 // changes to SanOpts made in StartFunction. 3134 SanOpts = CGM.getLangOpts().Sanitize; 3135 3136 llvm::Value *Data = 3137 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3138 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3139 llvm::Value *Addr = 3140 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3141 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3142 3143 // Data == nullptr means the calling module has trap behaviour for this check. 3144 llvm::Value *DataIsNotNullPtr = 3145 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3146 EmitTrapCheck(DataIsNotNullPtr); 3147 3148 llvm::StructType *SourceLocationTy = 3149 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3150 llvm::StructType *CfiCheckFailDataTy = 3151 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3152 3153 llvm::Value *V = Builder.CreateConstGEP2_32( 3154 CfiCheckFailDataTy, 3155 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3156 0); 3157 Address CheckKindAddr(V, getIntAlign()); 3158 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3159 3160 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3161 CGM.getLLVMContext(), 3162 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3163 llvm::Value *ValidVtable = Builder.CreateZExt( 3164 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3165 {Addr, AllVtables}), 3166 IntPtrTy); 3167 3168 const std::pair<int, SanitizerMask> CheckKinds[] = { 3169 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3170 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3171 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3172 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3173 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3174 3175 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3176 for (auto CheckKindMaskPair : CheckKinds) { 3177 int Kind = CheckKindMaskPair.first; 3178 SanitizerMask Mask = CheckKindMaskPair.second; 3179 llvm::Value *Cond = 3180 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3181 if (CGM.getLangOpts().Sanitize.has(Mask)) 3182 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3183 {Data, Addr, ValidVtable}); 3184 else 3185 EmitTrapCheck(Cond); 3186 } 3187 3188 FinishFunction(); 3189 // The only reference to this function will be created during LTO link. 3190 // Make sure it survives until then. 3191 CGM.addUsedGlobal(F); 3192 } 3193 3194 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3195 if (SanOpts.has(SanitizerKind::Unreachable)) { 3196 SanitizerScope SanScope(this); 3197 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3198 SanitizerKind::Unreachable), 3199 SanitizerHandler::BuiltinUnreachable, 3200 EmitCheckSourceLocation(Loc), None); 3201 } 3202 Builder.CreateUnreachable(); 3203 } 3204 3205 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3206 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3207 3208 // If we're optimizing, collapse all calls to trap down to just one per 3209 // function to save on code size. 3210 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3211 TrapBB = createBasicBlock("trap"); 3212 Builder.CreateCondBr(Checked, Cont, TrapBB); 3213 EmitBlock(TrapBB); 3214 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3215 TrapCall->setDoesNotReturn(); 3216 TrapCall->setDoesNotThrow(); 3217 Builder.CreateUnreachable(); 3218 } else { 3219 Builder.CreateCondBr(Checked, Cont, TrapBB); 3220 } 3221 3222 EmitBlock(Cont); 3223 } 3224 3225 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3226 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3227 3228 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3229 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3230 CGM.getCodeGenOpts().TrapFuncName); 3231 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3232 } 3233 3234 return TrapCall; 3235 } 3236 3237 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3238 LValueBaseInfo *BaseInfo, 3239 TBAAAccessInfo *TBAAInfo) { 3240 assert(E->getType()->isArrayType() && 3241 "Array to pointer decay must have array source type!"); 3242 3243 // Expressions of array type can't be bitfields or vector elements. 3244 LValue LV = EmitLValue(E); 3245 Address Addr = LV.getAddress(); 3246 3247 // If the array type was an incomplete type, we need to make sure 3248 // the decay ends up being the right type. 3249 llvm::Type *NewTy = ConvertType(E->getType()); 3250 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3251 3252 // Note that VLA pointers are always decayed, so we don't need to do 3253 // anything here. 3254 if (!E->getType()->isVariableArrayType()) { 3255 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3256 "Expected pointer to array"); 3257 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3258 } 3259 3260 // The result of this decay conversion points to an array element within the 3261 // base lvalue. However, since TBAA currently does not support representing 3262 // accesses to elements of member arrays, we conservatively represent accesses 3263 // to the pointee object as if it had no any base lvalue specified. 3264 // TODO: Support TBAA for member arrays. 3265 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3266 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3267 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3268 3269 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3270 } 3271 3272 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3273 /// array to pointer, return the array subexpression. 3274 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3275 // If this isn't just an array->pointer decay, bail out. 3276 const auto *CE = dyn_cast<CastExpr>(E); 3277 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3278 return nullptr; 3279 3280 // If this is a decay from variable width array, bail out. 3281 const Expr *SubExpr = CE->getSubExpr(); 3282 if (SubExpr->getType()->isVariableArrayType()) 3283 return nullptr; 3284 3285 return SubExpr; 3286 } 3287 3288 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3289 llvm::Value *ptr, 3290 ArrayRef<llvm::Value*> indices, 3291 bool inbounds, 3292 bool signedIndices, 3293 SourceLocation loc, 3294 const llvm::Twine &name = "arrayidx") { 3295 if (inbounds) { 3296 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3297 CodeGenFunction::NotSubtraction, loc, 3298 name); 3299 } else { 3300 return CGF.Builder.CreateGEP(ptr, indices, name); 3301 } 3302 } 3303 3304 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3305 llvm::Value *idx, 3306 CharUnits eltSize) { 3307 // If we have a constant index, we can use the exact offset of the 3308 // element we're accessing. 3309 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3310 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3311 return arrayAlign.alignmentAtOffset(offset); 3312 3313 // Otherwise, use the worst-case alignment for any element. 3314 } else { 3315 return arrayAlign.alignmentOfArrayElement(eltSize); 3316 } 3317 } 3318 3319 static QualType getFixedSizeElementType(const ASTContext &ctx, 3320 const VariableArrayType *vla) { 3321 QualType eltType; 3322 do { 3323 eltType = vla->getElementType(); 3324 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3325 return eltType; 3326 } 3327 3328 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3329 ArrayRef<llvm::Value *> indices, 3330 QualType eltType, bool inbounds, 3331 bool signedIndices, SourceLocation loc, 3332 const llvm::Twine &name = "arrayidx") { 3333 // All the indices except that last must be zero. 3334 #ifndef NDEBUG 3335 for (auto idx : indices.drop_back()) 3336 assert(isa<llvm::ConstantInt>(idx) && 3337 cast<llvm::ConstantInt>(idx)->isZero()); 3338 #endif 3339 3340 // Determine the element size of the statically-sized base. This is 3341 // the thing that the indices are expressed in terms of. 3342 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3343 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3344 } 3345 3346 // We can use that to compute the best alignment of the element. 3347 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3348 CharUnits eltAlign = 3349 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3350 3351 llvm::Value *eltPtr = emitArraySubscriptGEP( 3352 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3353 return Address(eltPtr, eltAlign); 3354 } 3355 3356 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3357 bool Accessed) { 3358 // The index must always be an integer, which is not an aggregate. Emit it 3359 // in lexical order (this complexity is, sadly, required by C++17). 3360 llvm::Value *IdxPre = 3361 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3362 bool SignedIndices = false; 3363 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3364 auto *Idx = IdxPre; 3365 if (E->getLHS() != E->getIdx()) { 3366 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3367 Idx = EmitScalarExpr(E->getIdx()); 3368 } 3369 3370 QualType IdxTy = E->getIdx()->getType(); 3371 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3372 SignedIndices |= IdxSigned; 3373 3374 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3375 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3376 3377 // Extend or truncate the index type to 32 or 64-bits. 3378 if (Promote && Idx->getType() != IntPtrTy) 3379 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3380 3381 return Idx; 3382 }; 3383 IdxPre = nullptr; 3384 3385 // If the base is a vector type, then we are forming a vector element lvalue 3386 // with this subscript. 3387 if (E->getBase()->getType()->isVectorType() && 3388 !isa<ExtVectorElementExpr>(E->getBase())) { 3389 // Emit the vector as an lvalue to get its address. 3390 LValue LHS = EmitLValue(E->getBase()); 3391 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3392 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3393 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3394 LHS.getBaseInfo(), TBAAAccessInfo()); 3395 } 3396 3397 // All the other cases basically behave like simple offsetting. 3398 3399 // Handle the extvector case we ignored above. 3400 if (isa<ExtVectorElementExpr>(E->getBase())) { 3401 LValue LV = EmitLValue(E->getBase()); 3402 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3403 Address Addr = EmitExtVectorElementLValue(LV); 3404 3405 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3406 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3407 SignedIndices, E->getExprLoc()); 3408 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3409 CGM.getTBAAInfoForSubobject(LV, EltType)); 3410 } 3411 3412 LValueBaseInfo EltBaseInfo; 3413 TBAAAccessInfo EltTBAAInfo; 3414 Address Addr = Address::invalid(); 3415 if (const VariableArrayType *vla = 3416 getContext().getAsVariableArrayType(E->getType())) { 3417 // The base must be a pointer, which is not an aggregate. Emit 3418 // it. It needs to be emitted first in case it's what captures 3419 // the VLA bounds. 3420 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3421 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3422 3423 // The element count here is the total number of non-VLA elements. 3424 llvm::Value *numElements = getVLASize(vla).NumElts; 3425 3426 // Effectively, the multiply by the VLA size is part of the GEP. 3427 // GEP indexes are signed, and scaling an index isn't permitted to 3428 // signed-overflow, so we use the same semantics for our explicit 3429 // multiply. We suppress this if overflow is not undefined behavior. 3430 if (getLangOpts().isSignedOverflowDefined()) { 3431 Idx = Builder.CreateMul(Idx, numElements); 3432 } else { 3433 Idx = Builder.CreateNSWMul(Idx, numElements); 3434 } 3435 3436 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3437 !getLangOpts().isSignedOverflowDefined(), 3438 SignedIndices, E->getExprLoc()); 3439 3440 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3441 // Indexing over an interface, as in "NSString *P; P[4];" 3442 3443 // Emit the base pointer. 3444 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3445 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3446 3447 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3448 llvm::Value *InterfaceSizeVal = 3449 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3450 3451 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3452 3453 // We don't necessarily build correct LLVM struct types for ObjC 3454 // interfaces, so we can't rely on GEP to do this scaling 3455 // correctly, so we need to cast to i8*. FIXME: is this actually 3456 // true? A lot of other things in the fragile ABI would break... 3457 llvm::Type *OrigBaseTy = Addr.getType(); 3458 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3459 3460 // Do the GEP. 3461 CharUnits EltAlign = 3462 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3463 llvm::Value *EltPtr = 3464 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3465 SignedIndices, E->getExprLoc()); 3466 Addr = Address(EltPtr, EltAlign); 3467 3468 // Cast back. 3469 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3470 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3471 // If this is A[i] where A is an array, the frontend will have decayed the 3472 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3473 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3474 // "gep x, i" here. Emit one "gep A, 0, i". 3475 assert(Array->getType()->isArrayType() && 3476 "Array to pointer decay must have array source type!"); 3477 LValue ArrayLV; 3478 // For simple multidimensional array indexing, set the 'accessed' flag for 3479 // better bounds-checking of the base expression. 3480 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3481 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3482 else 3483 ArrayLV = EmitLValue(Array); 3484 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3485 3486 // Propagate the alignment from the array itself to the result. 3487 Addr = emitArraySubscriptGEP( 3488 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3489 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3490 E->getExprLoc()); 3491 EltBaseInfo = ArrayLV.getBaseInfo(); 3492 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3493 } else { 3494 // The base must be a pointer; emit it with an estimate of its alignment. 3495 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3496 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3497 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3498 !getLangOpts().isSignedOverflowDefined(), 3499 SignedIndices, E->getExprLoc()); 3500 } 3501 3502 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3503 3504 if (getLangOpts().ObjC && 3505 getLangOpts().getGC() != LangOptions::NonGC) { 3506 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3507 setObjCGCLValueClass(getContext(), E, LV); 3508 } 3509 return LV; 3510 } 3511 3512 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3513 LValueBaseInfo &BaseInfo, 3514 TBAAAccessInfo &TBAAInfo, 3515 QualType BaseTy, QualType ElTy, 3516 bool IsLowerBound) { 3517 LValue BaseLVal; 3518 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3519 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3520 if (BaseTy->isArrayType()) { 3521 Address Addr = BaseLVal.getAddress(); 3522 BaseInfo = BaseLVal.getBaseInfo(); 3523 3524 // If the array type was an incomplete type, we need to make sure 3525 // the decay ends up being the right type. 3526 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3527 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3528 3529 // Note that VLA pointers are always decayed, so we don't need to do 3530 // anything here. 3531 if (!BaseTy->isVariableArrayType()) { 3532 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3533 "Expected pointer to array"); 3534 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3535 } 3536 3537 return CGF.Builder.CreateElementBitCast(Addr, 3538 CGF.ConvertTypeForMem(ElTy)); 3539 } 3540 LValueBaseInfo TypeBaseInfo; 3541 TBAAAccessInfo TypeTBAAInfo; 3542 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3543 &TypeTBAAInfo); 3544 BaseInfo.mergeForCast(TypeBaseInfo); 3545 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3546 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3547 } 3548 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3549 } 3550 3551 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3552 bool IsLowerBound) { 3553 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3554 QualType ResultExprTy; 3555 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3556 ResultExprTy = AT->getElementType(); 3557 else 3558 ResultExprTy = BaseTy->getPointeeType(); 3559 llvm::Value *Idx = nullptr; 3560 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3561 // Requesting lower bound or upper bound, but without provided length and 3562 // without ':' symbol for the default length -> length = 1. 3563 // Idx = LowerBound ?: 0; 3564 if (auto *LowerBound = E->getLowerBound()) { 3565 Idx = Builder.CreateIntCast( 3566 EmitScalarExpr(LowerBound), IntPtrTy, 3567 LowerBound->getType()->hasSignedIntegerRepresentation()); 3568 } else 3569 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3570 } else { 3571 // Try to emit length or lower bound as constant. If this is possible, 1 3572 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3573 // IR (LB + Len) - 1. 3574 auto &C = CGM.getContext(); 3575 auto *Length = E->getLength(); 3576 llvm::APSInt ConstLength; 3577 if (Length) { 3578 // Idx = LowerBound + Length - 1; 3579 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3580 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3581 Length = nullptr; 3582 } 3583 auto *LowerBound = E->getLowerBound(); 3584 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3585 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3586 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3587 LowerBound = nullptr; 3588 } 3589 if (!Length) 3590 --ConstLength; 3591 else if (!LowerBound) 3592 --ConstLowerBound; 3593 3594 if (Length || LowerBound) { 3595 auto *LowerBoundVal = 3596 LowerBound 3597 ? Builder.CreateIntCast( 3598 EmitScalarExpr(LowerBound), IntPtrTy, 3599 LowerBound->getType()->hasSignedIntegerRepresentation()) 3600 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3601 auto *LengthVal = 3602 Length 3603 ? Builder.CreateIntCast( 3604 EmitScalarExpr(Length), IntPtrTy, 3605 Length->getType()->hasSignedIntegerRepresentation()) 3606 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3607 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3608 /*HasNUW=*/false, 3609 !getLangOpts().isSignedOverflowDefined()); 3610 if (Length && LowerBound) { 3611 Idx = Builder.CreateSub( 3612 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3613 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3614 } 3615 } else 3616 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3617 } else { 3618 // Idx = ArraySize - 1; 3619 QualType ArrayTy = BaseTy->isPointerType() 3620 ? E->getBase()->IgnoreParenImpCasts()->getType() 3621 : BaseTy; 3622 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3623 Length = VAT->getSizeExpr(); 3624 if (Length->isIntegerConstantExpr(ConstLength, C)) 3625 Length = nullptr; 3626 } else { 3627 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3628 ConstLength = CAT->getSize(); 3629 } 3630 if (Length) { 3631 auto *LengthVal = Builder.CreateIntCast( 3632 EmitScalarExpr(Length), IntPtrTy, 3633 Length->getType()->hasSignedIntegerRepresentation()); 3634 Idx = Builder.CreateSub( 3635 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3636 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3637 } else { 3638 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3639 --ConstLength; 3640 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3641 } 3642 } 3643 } 3644 assert(Idx); 3645 3646 Address EltPtr = Address::invalid(); 3647 LValueBaseInfo BaseInfo; 3648 TBAAAccessInfo TBAAInfo; 3649 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3650 // The base must be a pointer, which is not an aggregate. Emit 3651 // it. It needs to be emitted first in case it's what captures 3652 // the VLA bounds. 3653 Address Base = 3654 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3655 BaseTy, VLA->getElementType(), IsLowerBound); 3656 // The element count here is the total number of non-VLA elements. 3657 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3658 3659 // Effectively, the multiply by the VLA size is part of the GEP. 3660 // GEP indexes are signed, and scaling an index isn't permitted to 3661 // signed-overflow, so we use the same semantics for our explicit 3662 // multiply. We suppress this if overflow is not undefined behavior. 3663 if (getLangOpts().isSignedOverflowDefined()) 3664 Idx = Builder.CreateMul(Idx, NumElements); 3665 else 3666 Idx = Builder.CreateNSWMul(Idx, NumElements); 3667 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3668 !getLangOpts().isSignedOverflowDefined(), 3669 /*SignedIndices=*/false, E->getExprLoc()); 3670 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3671 // If this is A[i] where A is an array, the frontend will have decayed the 3672 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3673 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3674 // "gep x, i" here. Emit one "gep A, 0, i". 3675 assert(Array->getType()->isArrayType() && 3676 "Array to pointer decay must have array source type!"); 3677 LValue ArrayLV; 3678 // For simple multidimensional array indexing, set the 'accessed' flag for 3679 // better bounds-checking of the base expression. 3680 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3681 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3682 else 3683 ArrayLV = EmitLValue(Array); 3684 3685 // Propagate the alignment from the array itself to the result. 3686 EltPtr = emitArraySubscriptGEP( 3687 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3688 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3689 /*SignedIndices=*/false, E->getExprLoc()); 3690 BaseInfo = ArrayLV.getBaseInfo(); 3691 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3692 } else { 3693 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3694 TBAAInfo, BaseTy, ResultExprTy, 3695 IsLowerBound); 3696 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3697 !getLangOpts().isSignedOverflowDefined(), 3698 /*SignedIndices=*/false, E->getExprLoc()); 3699 } 3700 3701 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3702 } 3703 3704 LValue CodeGenFunction:: 3705 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3706 // Emit the base vector as an l-value. 3707 LValue Base; 3708 3709 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3710 if (E->isArrow()) { 3711 // If it is a pointer to a vector, emit the address and form an lvalue with 3712 // it. 3713 LValueBaseInfo BaseInfo; 3714 TBAAAccessInfo TBAAInfo; 3715 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3716 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3717 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3718 Base.getQuals().removeObjCGCAttr(); 3719 } else if (E->getBase()->isGLValue()) { 3720 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3721 // emit the base as an lvalue. 3722 assert(E->getBase()->getType()->isVectorType()); 3723 Base = EmitLValue(E->getBase()); 3724 } else { 3725 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3726 assert(E->getBase()->getType()->isVectorType() && 3727 "Result must be a vector"); 3728 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3729 3730 // Store the vector to memory (because LValue wants an address). 3731 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3732 Builder.CreateStore(Vec, VecMem); 3733 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3734 AlignmentSource::Decl); 3735 } 3736 3737 QualType type = 3738 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3739 3740 // Encode the element access list into a vector of unsigned indices. 3741 SmallVector<uint32_t, 4> Indices; 3742 E->getEncodedElementAccess(Indices); 3743 3744 if (Base.isSimple()) { 3745 llvm::Constant *CV = 3746 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3747 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3748 Base.getBaseInfo(), TBAAAccessInfo()); 3749 } 3750 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3751 3752 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3753 SmallVector<llvm::Constant *, 4> CElts; 3754 3755 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3756 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3757 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3758 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3759 Base.getBaseInfo(), TBAAAccessInfo()); 3760 } 3761 3762 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3763 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3764 EmitIgnoredExpr(E->getBase()); 3765 return EmitDeclRefLValue(DRE); 3766 } 3767 3768 Expr *BaseExpr = E->getBase(); 3769 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3770 LValue BaseLV; 3771 if (E->isArrow()) { 3772 LValueBaseInfo BaseInfo; 3773 TBAAAccessInfo TBAAInfo; 3774 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3775 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3776 SanitizerSet SkippedChecks; 3777 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3778 if (IsBaseCXXThis) 3779 SkippedChecks.set(SanitizerKind::Alignment, true); 3780 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3781 SkippedChecks.set(SanitizerKind::Null, true); 3782 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3783 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3784 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3785 } else 3786 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3787 3788 NamedDecl *ND = E->getMemberDecl(); 3789 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3790 LValue LV = EmitLValueForField(BaseLV, Field); 3791 setObjCGCLValueClass(getContext(), E, LV); 3792 return LV; 3793 } 3794 3795 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3796 return EmitFunctionDeclLValue(*this, E, FD); 3797 3798 llvm_unreachable("Unhandled member declaration!"); 3799 } 3800 3801 /// Given that we are currently emitting a lambda, emit an l-value for 3802 /// one of its members. 3803 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3804 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3805 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3806 QualType LambdaTagType = 3807 getContext().getTagDeclType(Field->getParent()); 3808 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3809 return EmitLValueForField(LambdaLV, Field); 3810 } 3811 3812 /// Drill down to the storage of a field without walking into 3813 /// reference types. 3814 /// 3815 /// The resulting address doesn't necessarily have the right type. 3816 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3817 const FieldDecl *field) { 3818 const RecordDecl *rec = field->getParent(); 3819 3820 unsigned idx = 3821 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3822 3823 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 3824 } 3825 3826 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3827 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3828 if (!RD) 3829 return false; 3830 3831 if (RD->isDynamicClass()) 3832 return true; 3833 3834 for (const auto &Base : RD->bases()) 3835 if (hasAnyVptr(Base.getType(), Context)) 3836 return true; 3837 3838 for (const FieldDecl *Field : RD->fields()) 3839 if (hasAnyVptr(Field->getType(), Context)) 3840 return true; 3841 3842 return false; 3843 } 3844 3845 LValue CodeGenFunction::EmitLValueForField(LValue base, 3846 const FieldDecl *field) { 3847 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3848 3849 if (field->isBitField()) { 3850 const CGRecordLayout &RL = 3851 CGM.getTypes().getCGRecordLayout(field->getParent()); 3852 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3853 Address Addr = base.getAddress(); 3854 unsigned Idx = RL.getLLVMFieldNo(field); 3855 if (Idx != 0) 3856 // For structs, we GEP to the field that the record layout suggests. 3857 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 3858 // Get the access type. 3859 llvm::Type *FieldIntTy = 3860 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3861 if (Addr.getElementType() != FieldIntTy) 3862 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3863 3864 QualType fieldType = 3865 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3866 // TODO: Support TBAA for bit fields. 3867 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3868 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3869 TBAAAccessInfo()); 3870 } 3871 3872 // Fields of may-alias structures are may-alias themselves. 3873 // FIXME: this should get propagated down through anonymous structs 3874 // and unions. 3875 QualType FieldType = field->getType(); 3876 const RecordDecl *rec = field->getParent(); 3877 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3878 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3879 TBAAAccessInfo FieldTBAAInfo; 3880 if (base.getTBAAInfo().isMayAlias() || 3881 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3882 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3883 } else if (rec->isUnion()) { 3884 // TODO: Support TBAA for unions. 3885 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3886 } else { 3887 // If no base type been assigned for the base access, then try to generate 3888 // one for this base lvalue. 3889 FieldTBAAInfo = base.getTBAAInfo(); 3890 if (!FieldTBAAInfo.BaseType) { 3891 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3892 assert(!FieldTBAAInfo.Offset && 3893 "Nonzero offset for an access with no base type!"); 3894 } 3895 3896 // Adjust offset to be relative to the base type. 3897 const ASTRecordLayout &Layout = 3898 getContext().getASTRecordLayout(field->getParent()); 3899 unsigned CharWidth = getContext().getCharWidth(); 3900 if (FieldTBAAInfo.BaseType) 3901 FieldTBAAInfo.Offset += 3902 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3903 3904 // Update the final access type and size. 3905 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3906 FieldTBAAInfo.Size = 3907 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3908 } 3909 3910 Address addr = base.getAddress(); 3911 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 3912 if (CGM.getCodeGenOpts().StrictVTablePointers && 3913 ClassDef->isDynamicClass()) { 3914 // Getting to any field of dynamic object requires stripping dynamic 3915 // information provided by invariant.group. This is because accessing 3916 // fields may leak the real address of dynamic object, which could result 3917 // in miscompilation when leaked pointer would be compared. 3918 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 3919 addr = Address(stripped, addr.getAlignment()); 3920 } 3921 } 3922 3923 unsigned RecordCVR = base.getVRQualifiers(); 3924 if (rec->isUnion()) { 3925 // For unions, there is no pointer adjustment. 3926 assert(!FieldType->isReferenceType() && "union has reference member"); 3927 if (CGM.getCodeGenOpts().StrictVTablePointers && 3928 hasAnyVptr(FieldType, getContext())) 3929 // Because unions can easily skip invariant.barriers, we need to add 3930 // a barrier every time CXXRecord field with vptr is referenced. 3931 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3932 addr.getAlignment()); 3933 } else { 3934 // For structs, we GEP to the field that the record layout suggests. 3935 addr = emitAddrOfFieldStorage(*this, addr, field); 3936 3937 // If this is a reference field, load the reference right now. 3938 if (FieldType->isReferenceType()) { 3939 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3940 FieldTBAAInfo); 3941 if (RecordCVR & Qualifiers::Volatile) 3942 RefLVal.getQuals().addVolatile(); 3943 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3944 3945 // Qualifiers on the struct don't apply to the referencee. 3946 RecordCVR = 0; 3947 FieldType = FieldType->getPointeeType(); 3948 } 3949 } 3950 3951 // Make sure that the address is pointing to the right type. This is critical 3952 // for both unions and structs. A union needs a bitcast, a struct element 3953 // will need a bitcast if the LLVM type laid out doesn't match the desired 3954 // type. 3955 addr = Builder.CreateElementBitCast( 3956 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3957 3958 if (field->hasAttr<AnnotateAttr>()) 3959 addr = EmitFieldAnnotations(field, addr); 3960 3961 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3962 LV.getQuals().addCVRQualifiers(RecordCVR); 3963 3964 // __weak attribute on a field is ignored. 3965 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3966 LV.getQuals().removeObjCGCAttr(); 3967 3968 return LV; 3969 } 3970 3971 LValue 3972 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3973 const FieldDecl *Field) { 3974 QualType FieldType = Field->getType(); 3975 3976 if (!FieldType->isReferenceType()) 3977 return EmitLValueForField(Base, Field); 3978 3979 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3980 3981 // Make sure that the address is pointing to the right type. 3982 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3983 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3984 3985 // TODO: Generate TBAA information that describes this access as a structure 3986 // member access and not just an access to an object of the field's type. This 3987 // should be similar to what we do in EmitLValueForField(). 3988 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3989 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3990 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3991 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3992 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3993 } 3994 3995 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3996 if (E->isFileScope()) { 3997 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3998 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3999 } 4000 if (E->getType()->isVariablyModifiedType()) 4001 // make sure to emit the VLA size. 4002 EmitVariablyModifiedType(E->getType()); 4003 4004 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4005 const Expr *InitExpr = E->getInitializer(); 4006 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4007 4008 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4009 /*Init*/ true); 4010 4011 return Result; 4012 } 4013 4014 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4015 if (!E->isGLValue()) 4016 // Initializing an aggregate temporary in C++11: T{...}. 4017 return EmitAggExprToLValue(E); 4018 4019 // An lvalue initializer list must be initializing a reference. 4020 assert(E->isTransparent() && "non-transparent glvalue init list"); 4021 return EmitLValue(E->getInit(0)); 4022 } 4023 4024 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4025 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4026 /// LValue is returned and the current block has been terminated. 4027 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4028 const Expr *Operand) { 4029 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4030 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4031 return None; 4032 } 4033 4034 return CGF.EmitLValue(Operand); 4035 } 4036 4037 LValue CodeGenFunction:: 4038 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4039 if (!expr->isGLValue()) { 4040 // ?: here should be an aggregate. 4041 assert(hasAggregateEvaluationKind(expr->getType()) && 4042 "Unexpected conditional operator!"); 4043 return EmitAggExprToLValue(expr); 4044 } 4045 4046 OpaqueValueMapping binding(*this, expr); 4047 4048 const Expr *condExpr = expr->getCond(); 4049 bool CondExprBool; 4050 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4051 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4052 if (!CondExprBool) std::swap(live, dead); 4053 4054 if (!ContainsLabel(dead)) { 4055 // If the true case is live, we need to track its region. 4056 if (CondExprBool) 4057 incrementProfileCounter(expr); 4058 return EmitLValue(live); 4059 } 4060 } 4061 4062 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4063 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4064 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4065 4066 ConditionalEvaluation eval(*this); 4067 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4068 4069 // Any temporaries created here are conditional. 4070 EmitBlock(lhsBlock); 4071 incrementProfileCounter(expr); 4072 eval.begin(*this); 4073 Optional<LValue> lhs = 4074 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4075 eval.end(*this); 4076 4077 if (lhs && !lhs->isSimple()) 4078 return EmitUnsupportedLValue(expr, "conditional operator"); 4079 4080 lhsBlock = Builder.GetInsertBlock(); 4081 if (lhs) 4082 Builder.CreateBr(contBlock); 4083 4084 // Any temporaries created here are conditional. 4085 EmitBlock(rhsBlock); 4086 eval.begin(*this); 4087 Optional<LValue> rhs = 4088 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4089 eval.end(*this); 4090 if (rhs && !rhs->isSimple()) 4091 return EmitUnsupportedLValue(expr, "conditional operator"); 4092 rhsBlock = Builder.GetInsertBlock(); 4093 4094 EmitBlock(contBlock); 4095 4096 if (lhs && rhs) { 4097 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4098 2, "cond-lvalue"); 4099 phi->addIncoming(lhs->getPointer(), lhsBlock); 4100 phi->addIncoming(rhs->getPointer(), rhsBlock); 4101 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4102 AlignmentSource alignSource = 4103 std::max(lhs->getBaseInfo().getAlignmentSource(), 4104 rhs->getBaseInfo().getAlignmentSource()); 4105 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4106 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4107 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4108 TBAAInfo); 4109 } else { 4110 assert((lhs || rhs) && 4111 "both operands of glvalue conditional are throw-expressions?"); 4112 return lhs ? *lhs : *rhs; 4113 } 4114 } 4115 4116 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4117 /// type. If the cast is to a reference, we can have the usual lvalue result, 4118 /// otherwise if a cast is needed by the code generator in an lvalue context, 4119 /// then it must mean that we need the address of an aggregate in order to 4120 /// access one of its members. This can happen for all the reasons that casts 4121 /// are permitted with aggregate result, including noop aggregate casts, and 4122 /// cast from scalar to union. 4123 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4124 switch (E->getCastKind()) { 4125 case CK_ToVoid: 4126 case CK_BitCast: 4127 case CK_ArrayToPointerDecay: 4128 case CK_FunctionToPointerDecay: 4129 case CK_NullToMemberPointer: 4130 case CK_NullToPointer: 4131 case CK_IntegralToPointer: 4132 case CK_PointerToIntegral: 4133 case CK_PointerToBoolean: 4134 case CK_VectorSplat: 4135 case CK_IntegralCast: 4136 case CK_BooleanToSignedIntegral: 4137 case CK_IntegralToBoolean: 4138 case CK_IntegralToFloating: 4139 case CK_FloatingToIntegral: 4140 case CK_FloatingToBoolean: 4141 case CK_FloatingCast: 4142 case CK_FloatingRealToComplex: 4143 case CK_FloatingComplexToReal: 4144 case CK_FloatingComplexToBoolean: 4145 case CK_FloatingComplexCast: 4146 case CK_FloatingComplexToIntegralComplex: 4147 case CK_IntegralRealToComplex: 4148 case CK_IntegralComplexToReal: 4149 case CK_IntegralComplexToBoolean: 4150 case CK_IntegralComplexCast: 4151 case CK_IntegralComplexToFloatingComplex: 4152 case CK_DerivedToBaseMemberPointer: 4153 case CK_BaseToDerivedMemberPointer: 4154 case CK_MemberPointerToBoolean: 4155 case CK_ReinterpretMemberPointer: 4156 case CK_AnyPointerToBlockPointerCast: 4157 case CK_ARCProduceObject: 4158 case CK_ARCConsumeObject: 4159 case CK_ARCReclaimReturnedObject: 4160 case CK_ARCExtendBlockObject: 4161 case CK_CopyAndAutoreleaseBlockObject: 4162 case CK_IntToOCLSampler: 4163 case CK_FixedPointCast: 4164 case CK_FixedPointToBoolean: 4165 case CK_FixedPointToIntegral: 4166 case CK_IntegralToFixedPoint: 4167 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4168 4169 case CK_Dependent: 4170 llvm_unreachable("dependent cast kind in IR gen!"); 4171 4172 case CK_BuiltinFnToFnPtr: 4173 llvm_unreachable("builtin functions are handled elsewhere"); 4174 4175 // These are never l-values; just use the aggregate emission code. 4176 case CK_NonAtomicToAtomic: 4177 case CK_AtomicToNonAtomic: 4178 return EmitAggExprToLValue(E); 4179 4180 case CK_Dynamic: { 4181 LValue LV = EmitLValue(E->getSubExpr()); 4182 Address V = LV.getAddress(); 4183 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4184 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4185 } 4186 4187 case CK_ConstructorConversion: 4188 case CK_UserDefinedConversion: 4189 case CK_CPointerToObjCPointerCast: 4190 case CK_BlockPointerToObjCPointerCast: 4191 case CK_NoOp: 4192 case CK_LValueToRValue: 4193 return EmitLValue(E->getSubExpr()); 4194 4195 case CK_UncheckedDerivedToBase: 4196 case CK_DerivedToBase: { 4197 const RecordType *DerivedClassTy = 4198 E->getSubExpr()->getType()->getAs<RecordType>(); 4199 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4200 4201 LValue LV = EmitLValue(E->getSubExpr()); 4202 Address This = LV.getAddress(); 4203 4204 // Perform the derived-to-base conversion 4205 Address Base = GetAddressOfBaseClass( 4206 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4207 /*NullCheckValue=*/false, E->getExprLoc()); 4208 4209 // TODO: Support accesses to members of base classes in TBAA. For now, we 4210 // conservatively pretend that the complete object is of the base class 4211 // type. 4212 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4213 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4214 } 4215 case CK_ToUnion: 4216 return EmitAggExprToLValue(E); 4217 case CK_BaseToDerived: { 4218 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4219 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4220 4221 LValue LV = EmitLValue(E->getSubExpr()); 4222 4223 // Perform the base-to-derived conversion 4224 Address Derived = 4225 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4226 E->path_begin(), E->path_end(), 4227 /*NullCheckValue=*/false); 4228 4229 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4230 // performed and the object is not of the derived type. 4231 if (sanitizePerformTypeCheck()) 4232 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4233 Derived.getPointer(), E->getType()); 4234 4235 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4236 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4237 /*MayBeNull=*/false, CFITCK_DerivedCast, 4238 E->getBeginLoc()); 4239 4240 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4241 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4242 } 4243 case CK_LValueBitCast: { 4244 // This must be a reinterpret_cast (or c-style equivalent). 4245 const auto *CE = cast<ExplicitCastExpr>(E); 4246 4247 CGM.EmitExplicitCastExprType(CE, this); 4248 LValue LV = EmitLValue(E->getSubExpr()); 4249 Address V = Builder.CreateBitCast(LV.getAddress(), 4250 ConvertType(CE->getTypeAsWritten())); 4251 4252 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4253 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4254 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4255 E->getBeginLoc()); 4256 4257 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4258 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4259 } 4260 case CK_AddressSpaceConversion: { 4261 LValue LV = EmitLValue(E->getSubExpr()); 4262 QualType DestTy = getContext().getPointerType(E->getType()); 4263 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4264 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4265 E->getType().getAddressSpace(), ConvertType(DestTy)); 4266 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), 4267 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4268 } 4269 case CK_ObjCObjectLValueCast: { 4270 LValue LV = EmitLValue(E->getSubExpr()); 4271 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4272 ConvertType(E->getType())); 4273 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4274 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4275 } 4276 case CK_ZeroToOCLOpaqueType: 4277 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4278 } 4279 4280 llvm_unreachable("Unhandled lvalue cast kind?"); 4281 } 4282 4283 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4284 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4285 return getOrCreateOpaqueLValueMapping(e); 4286 } 4287 4288 LValue 4289 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4290 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4291 4292 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4293 it = OpaqueLValues.find(e); 4294 4295 if (it != OpaqueLValues.end()) 4296 return it->second; 4297 4298 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4299 return EmitLValue(e->getSourceExpr()); 4300 } 4301 4302 RValue 4303 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4304 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4305 4306 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4307 it = OpaqueRValues.find(e); 4308 4309 if (it != OpaqueRValues.end()) 4310 return it->second; 4311 4312 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4313 return EmitAnyExpr(e->getSourceExpr()); 4314 } 4315 4316 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4317 const FieldDecl *FD, 4318 SourceLocation Loc) { 4319 QualType FT = FD->getType(); 4320 LValue FieldLV = EmitLValueForField(LV, FD); 4321 switch (getEvaluationKind(FT)) { 4322 case TEK_Complex: 4323 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4324 case TEK_Aggregate: 4325 return FieldLV.asAggregateRValue(); 4326 case TEK_Scalar: 4327 // This routine is used to load fields one-by-one to perform a copy, so 4328 // don't load reference fields. 4329 if (FD->getType()->isReferenceType()) 4330 return RValue::get(FieldLV.getPointer()); 4331 return EmitLoadOfLValue(FieldLV, Loc); 4332 } 4333 llvm_unreachable("bad evaluation kind"); 4334 } 4335 4336 //===--------------------------------------------------------------------===// 4337 // Expression Emission 4338 //===--------------------------------------------------------------------===// 4339 4340 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4341 ReturnValueSlot ReturnValue) { 4342 // Builtins never have block type. 4343 if (E->getCallee()->getType()->isBlockPointerType()) 4344 return EmitBlockCallExpr(E, ReturnValue); 4345 4346 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4347 return EmitCXXMemberCallExpr(CE, ReturnValue); 4348 4349 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4350 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4351 4352 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4353 if (const CXXMethodDecl *MD = 4354 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4355 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4356 4357 CGCallee callee = EmitCallee(E->getCallee()); 4358 4359 if (callee.isBuiltin()) { 4360 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4361 E, ReturnValue); 4362 } 4363 4364 if (callee.isPseudoDestructor()) { 4365 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4366 } 4367 4368 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4369 } 4370 4371 /// Emit a CallExpr without considering whether it might be a subclass. 4372 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4373 ReturnValueSlot ReturnValue) { 4374 CGCallee Callee = EmitCallee(E->getCallee()); 4375 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4376 } 4377 4378 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4379 if (auto builtinID = FD->getBuiltinID()) { 4380 return CGCallee::forBuiltin(builtinID, FD); 4381 } 4382 4383 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4384 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4385 } 4386 4387 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4388 E = E->IgnoreParens(); 4389 4390 // Look through function-to-pointer decay. 4391 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4392 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4393 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4394 return EmitCallee(ICE->getSubExpr()); 4395 } 4396 4397 // Resolve direct calls. 4398 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4399 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4400 return EmitDirectCallee(*this, FD); 4401 } 4402 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4403 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4404 EmitIgnoredExpr(ME->getBase()); 4405 return EmitDirectCallee(*this, FD); 4406 } 4407 4408 // Look through template substitutions. 4409 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4410 return EmitCallee(NTTP->getReplacement()); 4411 4412 // Treat pseudo-destructor calls differently. 4413 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4414 return CGCallee::forPseudoDestructor(PDE); 4415 } 4416 4417 // Otherwise, we have an indirect reference. 4418 llvm::Value *calleePtr; 4419 QualType functionType; 4420 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4421 calleePtr = EmitScalarExpr(E); 4422 functionType = ptrType->getPointeeType(); 4423 } else { 4424 functionType = E->getType(); 4425 calleePtr = EmitLValue(E).getPointer(); 4426 } 4427 assert(functionType->isFunctionType()); 4428 4429 GlobalDecl GD; 4430 if (const auto *VD = 4431 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4432 GD = GlobalDecl(VD); 4433 4434 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4435 CGCallee callee(calleeInfo, calleePtr); 4436 return callee; 4437 } 4438 4439 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4440 // Comma expressions just emit their LHS then their RHS as an l-value. 4441 if (E->getOpcode() == BO_Comma) { 4442 EmitIgnoredExpr(E->getLHS()); 4443 EnsureInsertPoint(); 4444 return EmitLValue(E->getRHS()); 4445 } 4446 4447 if (E->getOpcode() == BO_PtrMemD || 4448 E->getOpcode() == BO_PtrMemI) 4449 return EmitPointerToDataMemberBinaryExpr(E); 4450 4451 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4452 4453 // Note that in all of these cases, __block variables need the RHS 4454 // evaluated first just in case the variable gets moved by the RHS. 4455 4456 switch (getEvaluationKind(E->getType())) { 4457 case TEK_Scalar: { 4458 switch (E->getLHS()->getType().getObjCLifetime()) { 4459 case Qualifiers::OCL_Strong: 4460 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4461 4462 case Qualifiers::OCL_Autoreleasing: 4463 return EmitARCStoreAutoreleasing(E).first; 4464 4465 // No reason to do any of these differently. 4466 case Qualifiers::OCL_None: 4467 case Qualifiers::OCL_ExplicitNone: 4468 case Qualifiers::OCL_Weak: 4469 break; 4470 } 4471 4472 RValue RV = EmitAnyExpr(E->getRHS()); 4473 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4474 if (RV.isScalar()) 4475 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4476 EmitStoreThroughLValue(RV, LV); 4477 return LV; 4478 } 4479 4480 case TEK_Complex: 4481 return EmitComplexAssignmentLValue(E); 4482 4483 case TEK_Aggregate: 4484 return EmitAggExprToLValue(E); 4485 } 4486 llvm_unreachable("bad evaluation kind"); 4487 } 4488 4489 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4490 RValue RV = EmitCallExpr(E); 4491 4492 if (!RV.isScalar()) 4493 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4494 AlignmentSource::Decl); 4495 4496 assert(E->getCallReturnType(getContext())->isReferenceType() && 4497 "Can't have a scalar return unless the return type is a " 4498 "reference type!"); 4499 4500 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4501 } 4502 4503 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4504 // FIXME: This shouldn't require another copy. 4505 return EmitAggExprToLValue(E); 4506 } 4507 4508 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4509 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4510 && "binding l-value to type which needs a temporary"); 4511 AggValueSlot Slot = CreateAggTemp(E->getType()); 4512 EmitCXXConstructExpr(E, Slot); 4513 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4514 } 4515 4516 LValue 4517 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4518 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4519 } 4520 4521 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4522 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4523 ConvertType(E->getType())); 4524 } 4525 4526 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4527 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4528 AlignmentSource::Decl); 4529 } 4530 4531 LValue 4532 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4533 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4534 Slot.setExternallyDestructed(); 4535 EmitAggExpr(E->getSubExpr(), Slot); 4536 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4537 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4538 } 4539 4540 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4541 RValue RV = EmitObjCMessageExpr(E); 4542 4543 if (!RV.isScalar()) 4544 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4545 AlignmentSource::Decl); 4546 4547 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4548 "Can't have a scalar return unless the return type is a " 4549 "reference type!"); 4550 4551 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4552 } 4553 4554 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4555 Address V = 4556 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4557 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4558 } 4559 4560 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4561 const ObjCIvarDecl *Ivar) { 4562 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4563 } 4564 4565 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4566 llvm::Value *BaseValue, 4567 const ObjCIvarDecl *Ivar, 4568 unsigned CVRQualifiers) { 4569 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4570 Ivar, CVRQualifiers); 4571 } 4572 4573 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4574 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4575 llvm::Value *BaseValue = nullptr; 4576 const Expr *BaseExpr = E->getBase(); 4577 Qualifiers BaseQuals; 4578 QualType ObjectTy; 4579 if (E->isArrow()) { 4580 BaseValue = EmitScalarExpr(BaseExpr); 4581 ObjectTy = BaseExpr->getType()->getPointeeType(); 4582 BaseQuals = ObjectTy.getQualifiers(); 4583 } else { 4584 LValue BaseLV = EmitLValue(BaseExpr); 4585 BaseValue = BaseLV.getPointer(); 4586 ObjectTy = BaseExpr->getType(); 4587 BaseQuals = ObjectTy.getQualifiers(); 4588 } 4589 4590 LValue LV = 4591 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4592 BaseQuals.getCVRQualifiers()); 4593 setObjCGCLValueClass(getContext(), E, LV); 4594 return LV; 4595 } 4596 4597 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4598 // Can only get l-value for message expression returning aggregate type 4599 RValue RV = EmitAnyExprToTemp(E); 4600 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4601 AlignmentSource::Decl); 4602 } 4603 4604 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4605 const CallExpr *E, ReturnValueSlot ReturnValue, 4606 llvm::Value *Chain) { 4607 // Get the actual function type. The callee type will always be a pointer to 4608 // function type or a block pointer type. 4609 assert(CalleeType->isFunctionPointerType() && 4610 "Call must have function pointer type!"); 4611 4612 const Decl *TargetDecl = 4613 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4614 4615 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4616 // We can only guarantee that a function is called from the correct 4617 // context/function based on the appropriate target attributes, 4618 // so only check in the case where we have both always_inline and target 4619 // since otherwise we could be making a conditional call after a check for 4620 // the proper cpu features (and it won't cause code generation issues due to 4621 // function based code generation). 4622 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4623 TargetDecl->hasAttr<TargetAttr>()) 4624 checkTargetFeatures(E, FD); 4625 4626 CalleeType = getContext().getCanonicalType(CalleeType); 4627 4628 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4629 4630 CGCallee Callee = OrigCallee; 4631 4632 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4633 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4634 if (llvm::Constant *PrefixSig = 4635 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4636 SanitizerScope SanScope(this); 4637 // Remove any (C++17) exception specifications, to allow calling e.g. a 4638 // noexcept function through a non-noexcept pointer. 4639 auto ProtoTy = 4640 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4641 llvm::Constant *FTRTTIConst = 4642 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4643 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4644 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4645 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4646 4647 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4648 4649 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4650 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4651 llvm::Value *CalleeSigPtr = 4652 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4653 llvm::Value *CalleeSig = 4654 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4655 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4656 4657 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4658 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4659 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4660 4661 EmitBlock(TypeCheck); 4662 llvm::Value *CalleeRTTIPtr = 4663 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4664 llvm::Value *CalleeRTTIEncoded = 4665 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4666 llvm::Value *CalleeRTTI = 4667 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4668 llvm::Value *CalleeRTTIMatch = 4669 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4670 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4671 EmitCheckTypeDescriptor(CalleeType)}; 4672 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4673 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4674 4675 Builder.CreateBr(Cont); 4676 EmitBlock(Cont); 4677 } 4678 } 4679 4680 const auto *FnType = cast<FunctionType>(PointeeType); 4681 4682 // If we are checking indirect calls and this call is indirect, check that the 4683 // function pointer is a member of the bit set for the function type. 4684 if (SanOpts.has(SanitizerKind::CFIICall) && 4685 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4686 SanitizerScope SanScope(this); 4687 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4688 4689 llvm::Metadata *MD; 4690 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4691 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4692 else 4693 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4694 4695 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4696 4697 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4698 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4699 llvm::Value *TypeTest = Builder.CreateCall( 4700 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4701 4702 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4703 llvm::Constant *StaticData[] = { 4704 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4705 EmitCheckSourceLocation(E->getBeginLoc()), 4706 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4707 }; 4708 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4709 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4710 CastedCallee, StaticData); 4711 } else { 4712 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4713 SanitizerHandler::CFICheckFail, StaticData, 4714 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4715 } 4716 } 4717 4718 CallArgList Args; 4719 if (Chain) 4720 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4721 CGM.getContext().VoidPtrTy); 4722 4723 // C++17 requires that we evaluate arguments to a call using assignment syntax 4724 // right-to-left, and that we evaluate arguments to certain other operators 4725 // left-to-right. Note that we allow this to override the order dictated by 4726 // the calling convention on the MS ABI, which means that parameter 4727 // destruction order is not necessarily reverse construction order. 4728 // FIXME: Revisit this based on C++ committee response to unimplementability. 4729 EvaluationOrder Order = EvaluationOrder::Default; 4730 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4731 if (OCE->isAssignmentOp()) 4732 Order = EvaluationOrder::ForceRightToLeft; 4733 else { 4734 switch (OCE->getOperator()) { 4735 case OO_LessLess: 4736 case OO_GreaterGreater: 4737 case OO_AmpAmp: 4738 case OO_PipePipe: 4739 case OO_Comma: 4740 case OO_ArrowStar: 4741 Order = EvaluationOrder::ForceLeftToRight; 4742 break; 4743 default: 4744 break; 4745 } 4746 } 4747 } 4748 4749 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4750 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4751 4752 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4753 Args, FnType, /*isChainCall=*/Chain); 4754 4755 // C99 6.5.2.2p6: 4756 // If the expression that denotes the called function has a type 4757 // that does not include a prototype, [the default argument 4758 // promotions are performed]. If the number of arguments does not 4759 // equal the number of parameters, the behavior is undefined. If 4760 // the function is defined with a type that includes a prototype, 4761 // and either the prototype ends with an ellipsis (, ...) or the 4762 // types of the arguments after promotion are not compatible with 4763 // the types of the parameters, the behavior is undefined. If the 4764 // function is defined with a type that does not include a 4765 // prototype, and the types of the arguments after promotion are 4766 // not compatible with those of the parameters after promotion, 4767 // the behavior is undefined [except in some trivial cases]. 4768 // That is, in the general case, we should assume that a call 4769 // through an unprototyped function type works like a *non-variadic* 4770 // call. The way we make this work is to cast to the exact type 4771 // of the promoted arguments. 4772 // 4773 // Chain calls use this same code path to add the invisible chain parameter 4774 // to the function type. 4775 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4776 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4777 CalleeTy = CalleeTy->getPointerTo(); 4778 4779 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4780 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4781 Callee.setFunctionPointer(CalleePtr); 4782 } 4783 4784 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4785 } 4786 4787 LValue CodeGenFunction:: 4788 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4789 Address BaseAddr = Address::invalid(); 4790 if (E->getOpcode() == BO_PtrMemI) { 4791 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4792 } else { 4793 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4794 } 4795 4796 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4797 4798 const MemberPointerType *MPT 4799 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4800 4801 LValueBaseInfo BaseInfo; 4802 TBAAAccessInfo TBAAInfo; 4803 Address MemberAddr = 4804 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4805 &TBAAInfo); 4806 4807 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4808 } 4809 4810 /// Given the address of a temporary variable, produce an r-value of 4811 /// its type. 4812 RValue CodeGenFunction::convertTempToRValue(Address addr, 4813 QualType type, 4814 SourceLocation loc) { 4815 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4816 switch (getEvaluationKind(type)) { 4817 case TEK_Complex: 4818 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4819 case TEK_Aggregate: 4820 return lvalue.asAggregateRValue(); 4821 case TEK_Scalar: 4822 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4823 } 4824 llvm_unreachable("bad evaluation kind"); 4825 } 4826 4827 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4828 assert(Val->getType()->isFPOrFPVectorTy()); 4829 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4830 return; 4831 4832 llvm::MDBuilder MDHelper(getLLVMContext()); 4833 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4834 4835 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4836 } 4837 4838 namespace { 4839 struct LValueOrRValue { 4840 LValue LV; 4841 RValue RV; 4842 }; 4843 } 4844 4845 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4846 const PseudoObjectExpr *E, 4847 bool forLValue, 4848 AggValueSlot slot) { 4849 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4850 4851 // Find the result expression, if any. 4852 const Expr *resultExpr = E->getResultExpr(); 4853 LValueOrRValue result; 4854 4855 for (PseudoObjectExpr::const_semantics_iterator 4856 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4857 const Expr *semantic = *i; 4858 4859 // If this semantic expression is an opaque value, bind it 4860 // to the result of its source expression. 4861 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4862 // Skip unique OVEs. 4863 if (ov->isUnique()) { 4864 assert(ov != resultExpr && 4865 "A unique OVE cannot be used as the result expression"); 4866 continue; 4867 } 4868 4869 // If this is the result expression, we may need to evaluate 4870 // directly into the slot. 4871 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4872 OVMA opaqueData; 4873 if (ov == resultExpr && ov->isRValue() && !forLValue && 4874 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4875 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4876 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4877 AlignmentSource::Decl); 4878 opaqueData = OVMA::bind(CGF, ov, LV); 4879 result.RV = slot.asRValue(); 4880 4881 // Otherwise, emit as normal. 4882 } else { 4883 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4884 4885 // If this is the result, also evaluate the result now. 4886 if (ov == resultExpr) { 4887 if (forLValue) 4888 result.LV = CGF.EmitLValue(ov); 4889 else 4890 result.RV = CGF.EmitAnyExpr(ov, slot); 4891 } 4892 } 4893 4894 opaques.push_back(opaqueData); 4895 4896 // Otherwise, if the expression is the result, evaluate it 4897 // and remember the result. 4898 } else if (semantic == resultExpr) { 4899 if (forLValue) 4900 result.LV = CGF.EmitLValue(semantic); 4901 else 4902 result.RV = CGF.EmitAnyExpr(semantic, slot); 4903 4904 // Otherwise, evaluate the expression in an ignored context. 4905 } else { 4906 CGF.EmitIgnoredExpr(semantic); 4907 } 4908 } 4909 4910 // Unbind all the opaques now. 4911 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4912 opaques[i].unbind(CGF); 4913 4914 return result; 4915 } 4916 4917 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4918 AggValueSlot slot) { 4919 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4920 } 4921 4922 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4923 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4924 } 4925