1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/LLVMContext.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===--------------------------------------------------------------------===// 32 // Miscellaneous Helper Methods 33 //===--------------------------------------------------------------------===// 34 35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 36 unsigned addressSpace = 37 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 38 39 llvm::PointerType *destType = Int8PtrTy; 40 if (addressSpace) 41 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 42 43 if (value->getType() == destType) return value; 44 return Builder.CreateBitCast(value, destType); 45 } 46 47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 48 /// block. 49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 50 const Twine &Name) { 51 if (!Builder.isNamePreserving()) 52 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 53 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 54 } 55 56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 57 llvm::Value *Init) { 58 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 59 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 60 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 61 } 62 63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 64 const Twine &Name) { 65 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 66 // FIXME: Should we prefer the preferred type alignment here? 67 CharUnits Align = getContext().getTypeAlignInChars(Ty); 68 Alloc->setAlignment(Align.getQuantity()); 69 return Alloc; 70 } 71 72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 73 const Twine &Name) { 74 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 75 // FIXME: Should we prefer the preferred type alignment here? 76 CharUnits Align = getContext().getTypeAlignInChars(Ty); 77 Alloc->setAlignment(Align.getQuantity()); 78 return Alloc; 79 } 80 81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 82 /// expression and compare the result against zero, returning an Int1Ty value. 83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 84 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 85 llvm::Value *MemPtr = EmitScalarExpr(E); 86 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 87 } 88 89 QualType BoolTy = getContext().BoolTy; 90 if (!E->getType()->isAnyComplexType()) 91 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 92 93 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 94 } 95 96 /// EmitIgnoredExpr - Emit code to compute the specified expression, 97 /// ignoring the result. 98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 99 if (E->isRValue()) 100 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 101 102 // Just emit it as an l-value and drop the result. 103 EmitLValue(E); 104 } 105 106 /// EmitAnyExpr - Emit code to compute the specified expression which 107 /// can have any type. The result is returned as an RValue struct. 108 /// If this is an aggregate expression, AggSlot indicates where the 109 /// result should be returned. 110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 111 bool IgnoreResult) { 112 if (!hasAggregateLLVMType(E->getType())) 113 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 114 else if (E->getType()->isAnyComplexType()) 115 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 116 117 EmitAggExpr(E, AggSlot, IgnoreResult); 118 return AggSlot.asRValue(); 119 } 120 121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 122 /// always be accessible even if no aggregate location is provided. 123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 124 AggValueSlot AggSlot = AggValueSlot::ignored(); 125 126 if (hasAggregateLLVMType(E->getType()) && 127 !E->getType()->isAnyComplexType()) 128 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 129 return EmitAnyExpr(E, AggSlot); 130 } 131 132 /// EmitAnyExprToMem - Evaluate an expression into a given memory 133 /// location. 134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 135 llvm::Value *Location, 136 Qualifiers Quals, 137 bool IsInit) { 138 // FIXME: This function should take an LValue as an argument. 139 if (E->getType()->isAnyComplexType()) { 140 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 141 } else if (hasAggregateLLVMType(E->getType())) { 142 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 143 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 144 AggValueSlot::IsDestructed_t(IsInit), 145 AggValueSlot::DoesNotNeedGCBarriers, 146 AggValueSlot::IsAliased_t(!IsInit))); 147 } else { 148 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 149 LValue LV = MakeAddrLValue(Location, E->getType()); 150 EmitStoreThroughLValue(RV, LV); 151 } 152 } 153 154 namespace { 155 /// \brief An adjustment to be made to the temporary created when emitting a 156 /// reference binding, which accesses a particular subobject of that temporary. 157 struct SubobjectAdjustment { 158 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 159 160 union { 161 struct { 162 const CastExpr *BasePath; 163 const CXXRecordDecl *DerivedClass; 164 } DerivedToBase; 165 166 FieldDecl *Field; 167 }; 168 169 SubobjectAdjustment(const CastExpr *BasePath, 170 const CXXRecordDecl *DerivedClass) 171 : Kind(DerivedToBaseAdjustment) { 172 DerivedToBase.BasePath = BasePath; 173 DerivedToBase.DerivedClass = DerivedClass; 174 } 175 176 SubobjectAdjustment(FieldDecl *Field) 177 : Kind(FieldAdjustment) { 178 this->Field = Field; 179 } 180 }; 181 } 182 183 static llvm::Value * 184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 185 const NamedDecl *InitializedDecl) { 186 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 187 if (VD->hasGlobalStorage()) { 188 SmallString<256> Name; 189 llvm::raw_svector_ostream Out(Name); 190 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 191 Out.flush(); 192 193 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 194 195 // Create the reference temporary. 196 llvm::GlobalValue *RefTemp = 197 new llvm::GlobalVariable(CGF.CGM.getModule(), 198 RefTempTy, /*isConstant=*/false, 199 llvm::GlobalValue::InternalLinkage, 200 llvm::Constant::getNullValue(RefTempTy), 201 Name.str()); 202 return RefTemp; 203 } 204 } 205 206 return CGF.CreateMemTemp(Type, "ref.tmp"); 207 } 208 209 static llvm::Value * 210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 211 llvm::Value *&ReferenceTemporary, 212 const CXXDestructorDecl *&ReferenceTemporaryDtor, 213 QualType &ObjCARCReferenceLifetimeType, 214 const NamedDecl *InitializedDecl) { 215 // Look through single-element init lists that claim to be lvalues. They're 216 // just syntactic wrappers in this case. 217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 218 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 219 E = ILE->getInit(0); 220 } 221 222 // Look through expressions for materialized temporaries (for now). 223 if (const MaterializeTemporaryExpr *M 224 = dyn_cast<MaterializeTemporaryExpr>(E)) { 225 // Objective-C++ ARC: 226 // If we are binding a reference to a temporary that has ownership, we 227 // need to perform retain/release operations on the temporary. 228 if (CGF.getContext().getLangOptions().ObjCAutoRefCount && 229 E->getType()->isObjCLifetimeType() && 230 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 231 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 233 ObjCARCReferenceLifetimeType = E->getType(); 234 235 E = M->GetTemporaryExpr(); 236 } 237 238 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 239 E = DAE->getExpr(); 240 241 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 242 CGF.enterFullExpression(EWC); 243 CodeGenFunction::RunCleanupsScope Scope(CGF); 244 245 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 246 ReferenceTemporary, 247 ReferenceTemporaryDtor, 248 ObjCARCReferenceLifetimeType, 249 InitializedDecl); 250 } 251 252 RValue RV; 253 if (E->isGLValue()) { 254 // Emit the expression as an lvalue. 255 LValue LV = CGF.EmitLValue(E); 256 257 if (LV.isSimple()) 258 return LV.getAddress(); 259 260 // We have to load the lvalue. 261 RV = CGF.EmitLoadOfLValue(LV); 262 } else { 263 if (!ObjCARCReferenceLifetimeType.isNull()) { 264 ReferenceTemporary = CreateReferenceTemporary(CGF, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 268 269 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 270 ObjCARCReferenceLifetimeType); 271 272 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 273 RefTempDst, false); 274 275 bool ExtendsLifeOfTemporary = false; 276 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 277 if (Var->extendsLifetimeOfTemporary()) 278 ExtendsLifeOfTemporary = true; 279 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 280 ExtendsLifeOfTemporary = true; 281 } 282 283 if (!ExtendsLifeOfTemporary) { 284 // Since the lifetime of this temporary isn't going to be extended, 285 // we need to clean it up ourselves at the end of the full expression. 286 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 287 case Qualifiers::OCL_None: 288 case Qualifiers::OCL_ExplicitNone: 289 case Qualifiers::OCL_Autoreleasing: 290 break; 291 292 case Qualifiers::OCL_Strong: { 293 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 294 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 295 CGF.pushDestroy(cleanupKind, 296 ReferenceTemporary, 297 ObjCARCReferenceLifetimeType, 298 CodeGenFunction::destroyARCStrongImprecise, 299 cleanupKind & EHCleanup); 300 break; 301 } 302 303 case Qualifiers::OCL_Weak: 304 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 305 CGF.pushDestroy(NormalAndEHCleanup, 306 ReferenceTemporary, 307 ObjCARCReferenceLifetimeType, 308 CodeGenFunction::destroyARCWeak, 309 /*useEHCleanupForArray*/ true); 310 break; 311 } 312 313 ObjCARCReferenceLifetimeType = QualType(); 314 } 315 316 return ReferenceTemporary; 317 } 318 319 SmallVector<SubobjectAdjustment, 2> Adjustments; 320 while (true) { 321 E = E->IgnoreParens(); 322 323 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 324 if ((CE->getCastKind() == CK_DerivedToBase || 325 CE->getCastKind() == CK_UncheckedDerivedToBase) && 326 E->getType()->isRecordType()) { 327 E = CE->getSubExpr(); 328 CXXRecordDecl *Derived 329 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 330 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 331 continue; 332 } 333 334 if (CE->getCastKind() == CK_NoOp) { 335 E = CE->getSubExpr(); 336 continue; 337 } 338 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 339 if (!ME->isArrow() && ME->getBase()->isRValue()) { 340 assert(ME->getBase()->getType()->isRecordType()); 341 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 342 E = ME->getBase(); 343 Adjustments.push_back(SubobjectAdjustment(Field)); 344 continue; 345 } 346 } 347 } 348 349 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 350 if (opaque->getType()->isRecordType()) 351 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 352 353 // Nothing changed. 354 break; 355 } 356 357 // Create a reference temporary if necessary. 358 AggValueSlot AggSlot = AggValueSlot::ignored(); 359 if (CGF.hasAggregateLLVMType(E->getType()) && 360 !E->getType()->isAnyComplexType()) { 361 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 362 InitializedDecl); 363 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 364 AggValueSlot::IsDestructed_t isDestructed 365 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 366 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 367 Qualifiers(), isDestructed, 368 AggValueSlot::DoesNotNeedGCBarriers, 369 AggValueSlot::IsNotAliased); 370 } 371 372 if (InitializedDecl) { 373 // Get the destructor for the reference temporary. 374 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 375 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 376 if (!ClassDecl->hasTrivialDestructor()) 377 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 378 } 379 } 380 381 RV = CGF.EmitAnyExpr(E, AggSlot); 382 383 // Check if need to perform derived-to-base casts and/or field accesses, to 384 // get from the temporary object we created (and, potentially, for which we 385 // extended the lifetime) to the subobject we're binding the reference to. 386 if (!Adjustments.empty()) { 387 llvm::Value *Object = RV.getAggregateAddr(); 388 for (unsigned I = Adjustments.size(); I != 0; --I) { 389 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 390 switch (Adjustment.Kind) { 391 case SubobjectAdjustment::DerivedToBaseAdjustment: 392 Object = 393 CGF.GetAddressOfBaseClass(Object, 394 Adjustment.DerivedToBase.DerivedClass, 395 Adjustment.DerivedToBase.BasePath->path_begin(), 396 Adjustment.DerivedToBase.BasePath->path_end(), 397 /*NullCheckValue=*/false); 398 break; 399 400 case SubobjectAdjustment::FieldAdjustment: { 401 LValue LV = 402 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 403 if (LV.isSimple()) { 404 Object = LV.getAddress(); 405 break; 406 } 407 408 // For non-simple lvalues, we actually have to create a copy of 409 // the object we're binding to. 410 QualType T = Adjustment.Field->getType().getNonReferenceType() 411 .getUnqualifiedType(); 412 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 413 LValue TempLV = CGF.MakeAddrLValue(Object, 414 Adjustment.Field->getType()); 415 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 416 break; 417 } 418 419 } 420 } 421 422 return Object; 423 } 424 } 425 426 if (RV.isAggregate()) 427 return RV.getAggregateAddr(); 428 429 // Create a temporary variable that we can bind the reference to. 430 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 431 InitializedDecl); 432 433 434 unsigned Alignment = 435 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 436 if (RV.isScalar()) 437 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 438 /*Volatile=*/false, Alignment, E->getType()); 439 else 440 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 441 /*Volatile=*/false); 442 return ReferenceTemporary; 443 } 444 445 RValue 446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 447 const NamedDecl *InitializedDecl) { 448 llvm::Value *ReferenceTemporary = 0; 449 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 450 QualType ObjCARCReferenceLifetimeType; 451 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 452 ReferenceTemporaryDtor, 453 ObjCARCReferenceLifetimeType, 454 InitializedDecl); 455 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 456 return RValue::get(Value); 457 458 // Make sure to call the destructor for the reference temporary. 459 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 460 if (VD && VD->hasGlobalStorage()) { 461 if (ReferenceTemporaryDtor) { 462 llvm::Constant *DtorFn = 463 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 464 EmitCXXGlobalDtorRegistration(DtorFn, 465 cast<llvm::Constant>(ReferenceTemporary)); 466 } else { 467 assert(!ObjCARCReferenceLifetimeType.isNull()); 468 // Note: We intentionally do not register a global "destructor" to 469 // release the object. 470 } 471 472 return RValue::get(Value); 473 } 474 475 if (ReferenceTemporaryDtor) 476 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 477 else { 478 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 479 case Qualifiers::OCL_None: 480 llvm_unreachable( 481 "Not a reference temporary that needs to be deallocated"); 482 case Qualifiers::OCL_ExplicitNone: 483 case Qualifiers::OCL_Autoreleasing: 484 // Nothing to do. 485 break; 486 487 case Qualifiers::OCL_Strong: { 488 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 489 CleanupKind cleanupKind = getARCCleanupKind(); 490 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 491 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 492 cleanupKind & EHCleanup); 493 break; 494 } 495 496 case Qualifiers::OCL_Weak: { 497 // __weak objects always get EH cleanups; otherwise, exceptions 498 // could cause really nasty crashes instead of mere leaks. 499 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 500 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 501 break; 502 } 503 } 504 } 505 506 return RValue::get(Value); 507 } 508 509 510 /// getAccessedFieldNo - Given an encoded value and a result number, return the 511 /// input field number being accessed. 512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 513 const llvm::Constant *Elts) { 514 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 515 ->getZExtValue(); 516 } 517 518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 519 if (!CatchUndefined) 520 return; 521 522 // This needs to be to the standard address space. 523 Address = Builder.CreateBitCast(Address, Int8PtrTy); 524 525 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 526 527 // In time, people may want to control this and use a 1 here. 528 llvm::Value *Arg = Builder.getFalse(); 529 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 530 llvm::BasicBlock *Cont = createBasicBlock(); 531 llvm::BasicBlock *Check = createBasicBlock(); 532 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 533 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 534 535 EmitBlock(Check); 536 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 537 llvm::ConstantInt::get(IntPtrTy, Size)), 538 Cont, getTrapBB()); 539 EmitBlock(Cont); 540 } 541 542 543 CodeGenFunction::ComplexPairTy CodeGenFunction:: 544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 545 bool isInc, bool isPre) { 546 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 547 LV.isVolatileQualified()); 548 549 llvm::Value *NextVal; 550 if (isa<llvm::IntegerType>(InVal.first->getType())) { 551 uint64_t AmountVal = isInc ? 1 : -1; 552 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 553 554 // Add the inc/dec to the real part. 555 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 556 } else { 557 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 558 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 559 if (!isInc) 560 FVal.changeSign(); 561 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 562 563 // Add the inc/dec to the real part. 564 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 565 } 566 567 ComplexPairTy IncVal(NextVal, InVal.second); 568 569 // Store the updated result through the lvalue. 570 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 571 572 // If this is a postinc, return the value read from memory, otherwise use the 573 // updated value. 574 return isPre ? IncVal : InVal; 575 } 576 577 578 //===----------------------------------------------------------------------===// 579 // LValue Expression Emission 580 //===----------------------------------------------------------------------===// 581 582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 583 if (Ty->isVoidType()) 584 return RValue::get(0); 585 586 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 587 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 588 llvm::Value *U = llvm::UndefValue::get(EltTy); 589 return RValue::getComplex(std::make_pair(U, U)); 590 } 591 592 // If this is a use of an undefined aggregate type, the aggregate must have an 593 // identifiable address. Just because the contents of the value are undefined 594 // doesn't mean that the address can't be taken and compared. 595 if (hasAggregateLLVMType(Ty)) { 596 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 597 return RValue::getAggregate(DestPtr); 598 } 599 600 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 601 } 602 603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 604 const char *Name) { 605 ErrorUnsupported(E, Name); 606 return GetUndefRValue(E->getType()); 607 } 608 609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 610 const char *Name) { 611 ErrorUnsupported(E, Name); 612 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 613 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 614 } 615 616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 617 LValue LV = EmitLValue(E); 618 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 619 EmitCheck(LV.getAddress(), 620 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 621 return LV; 622 } 623 624 /// EmitLValue - Emit code to compute a designator that specifies the location 625 /// of the expression. 626 /// 627 /// This can return one of two things: a simple address or a bitfield reference. 628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 629 /// an LLVM pointer type. 630 /// 631 /// If this returns a bitfield reference, nothing about the pointee type of the 632 /// LLVM value is known: For example, it may not be a pointer to an integer. 633 /// 634 /// If this returns a normal address, and if the lvalue's C type is fixed size, 635 /// this method guarantees that the returned pointer type will point to an LLVM 636 /// type of the same size of the lvalue's type. If the lvalue has a variable 637 /// length type, this is not possible. 638 /// 639 LValue CodeGenFunction::EmitLValue(const Expr *E) { 640 switch (E->getStmtClass()) { 641 default: return EmitUnsupportedLValue(E, "l-value expression"); 642 643 case Expr::ObjCPropertyRefExprClass: 644 llvm_unreachable("cannot emit a property reference directly"); 645 646 case Expr::ObjCSelectorExprClass: 647 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 648 case Expr::ObjCIsaExprClass: 649 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 650 case Expr::BinaryOperatorClass: 651 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 652 case Expr::CompoundAssignOperatorClass: 653 if (!E->getType()->isAnyComplexType()) 654 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 655 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 656 case Expr::CallExprClass: 657 case Expr::CXXMemberCallExprClass: 658 case Expr::CXXOperatorCallExprClass: 659 return EmitCallExprLValue(cast<CallExpr>(E)); 660 case Expr::VAArgExprClass: 661 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 662 case Expr::DeclRefExprClass: 663 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 664 case Expr::ParenExprClass: 665 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 666 case Expr::GenericSelectionExprClass: 667 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 668 case Expr::PredefinedExprClass: 669 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 670 case Expr::StringLiteralClass: 671 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 672 case Expr::ObjCEncodeExprClass: 673 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 674 case Expr::PseudoObjectExprClass: 675 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 676 case Expr::InitListExprClass: 677 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 678 "Only single-element init list can be lvalue."); 679 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 680 681 case Expr::BlockDeclRefExprClass: 682 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 683 684 case Expr::CXXTemporaryObjectExprClass: 685 case Expr::CXXConstructExprClass: 686 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 687 case Expr::CXXBindTemporaryExprClass: 688 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 689 case Expr::LambdaExprClass: 690 return EmitLambdaLValue(cast<LambdaExpr>(E)); 691 692 case Expr::ExprWithCleanupsClass: { 693 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 694 enterFullExpression(cleanups); 695 RunCleanupsScope Scope(*this); 696 return EmitLValue(cleanups->getSubExpr()); 697 } 698 699 case Expr::CXXScalarValueInitExprClass: 700 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 701 case Expr::CXXDefaultArgExprClass: 702 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 703 case Expr::CXXTypeidExprClass: 704 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 705 706 case Expr::ObjCMessageExprClass: 707 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 708 case Expr::ObjCIvarRefExprClass: 709 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 710 case Expr::StmtExprClass: 711 return EmitStmtExprLValue(cast<StmtExpr>(E)); 712 case Expr::UnaryOperatorClass: 713 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 714 case Expr::ArraySubscriptExprClass: 715 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 716 case Expr::ExtVectorElementExprClass: 717 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 718 case Expr::MemberExprClass: 719 return EmitMemberExpr(cast<MemberExpr>(E)); 720 case Expr::CompoundLiteralExprClass: 721 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 722 case Expr::ConditionalOperatorClass: 723 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 724 case Expr::BinaryConditionalOperatorClass: 725 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 726 case Expr::ChooseExprClass: 727 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 728 case Expr::OpaqueValueExprClass: 729 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 730 case Expr::SubstNonTypeTemplateParmExprClass: 731 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 732 case Expr::ImplicitCastExprClass: 733 case Expr::CStyleCastExprClass: 734 case Expr::CXXFunctionalCastExprClass: 735 case Expr::CXXStaticCastExprClass: 736 case Expr::CXXDynamicCastExprClass: 737 case Expr::CXXReinterpretCastExprClass: 738 case Expr::CXXConstCastExprClass: 739 case Expr::ObjCBridgedCastExprClass: 740 return EmitCastLValue(cast<CastExpr>(E)); 741 742 case Expr::MaterializeTemporaryExprClass: 743 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 744 } 745 } 746 747 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 748 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 749 lvalue.getAlignment().getQuantity(), 750 lvalue.getType(), lvalue.getTBAAInfo()); 751 } 752 753 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 754 unsigned Alignment, QualType Ty, 755 llvm::MDNode *TBAAInfo) { 756 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 757 if (Volatile) 758 Load->setVolatile(true); 759 if (Alignment) 760 Load->setAlignment(Alignment); 761 if (TBAAInfo) 762 CGM.DecorateInstruction(Load, TBAAInfo); 763 // If this is an atomic type, all normal reads must be atomic 764 if (Ty->isAtomicType()) 765 Load->setAtomic(llvm::SequentiallyConsistent); 766 767 return EmitFromMemory(Load, Ty); 768 } 769 770 static bool isBooleanUnderlyingType(QualType Ty) { 771 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 772 return ET->getDecl()->getIntegerType()->isBooleanType(); 773 return false; 774 } 775 776 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 777 // Bool has a different representation in memory than in registers. 778 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 779 // This should really always be an i1, but sometimes it's already 780 // an i8, and it's awkward to track those cases down. 781 if (Value->getType()->isIntegerTy(1)) 782 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 783 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 784 } 785 786 return Value; 787 } 788 789 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 790 // Bool has a different representation in memory than in registers. 791 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 792 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 793 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 794 } 795 796 return Value; 797 } 798 799 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 800 bool Volatile, unsigned Alignment, 801 QualType Ty, 802 llvm::MDNode *TBAAInfo, 803 bool isInit) { 804 Value = EmitToMemory(Value, Ty); 805 806 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 807 if (Alignment) 808 Store->setAlignment(Alignment); 809 if (TBAAInfo) 810 CGM.DecorateInstruction(Store, TBAAInfo); 811 if (!isInit && Ty->isAtomicType()) 812 Store->setAtomic(llvm::SequentiallyConsistent); 813 } 814 815 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 816 bool isInit) { 817 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 818 lvalue.getAlignment().getQuantity(), lvalue.getType(), 819 lvalue.getTBAAInfo(), isInit); 820 } 821 822 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 823 /// method emits the address of the lvalue, then loads the result as an rvalue, 824 /// returning the rvalue. 825 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 826 if (LV.isObjCWeak()) { 827 // load of a __weak object. 828 llvm::Value *AddrWeakObj = LV.getAddress(); 829 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 830 AddrWeakObj)); 831 } 832 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 833 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 834 835 if (LV.isSimple()) { 836 assert(!LV.getType()->isFunctionType()); 837 838 // Everything needs a load. 839 return RValue::get(EmitLoadOfScalar(LV)); 840 } 841 842 if (LV.isVectorElt()) { 843 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 844 LV.isVolatileQualified()); 845 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 846 "vecext")); 847 } 848 849 // If this is a reference to a subset of the elements of a vector, either 850 // shuffle the input or extract/insert them as appropriate. 851 if (LV.isExtVectorElt()) 852 return EmitLoadOfExtVectorElementLValue(LV); 853 854 assert(LV.isBitField() && "Unknown LValue type!"); 855 return EmitLoadOfBitfieldLValue(LV); 856 } 857 858 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 859 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 860 861 // Get the output type. 862 llvm::Type *ResLTy = ConvertType(LV.getType()); 863 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 864 865 // Compute the result as an OR of all of the individual component accesses. 866 llvm::Value *Res = 0; 867 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 868 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 869 870 // Get the field pointer. 871 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 872 873 // Only offset by the field index if used, so that incoming values are not 874 // required to be structures. 875 if (AI.FieldIndex) 876 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 877 878 // Offset by the byte offset, if used. 879 if (!AI.FieldByteOffset.isZero()) { 880 Ptr = EmitCastToVoidPtr(Ptr); 881 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 882 "bf.field.offs"); 883 } 884 885 // Cast to the access type. 886 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 887 CGM.getContext().getTargetAddressSpace(LV.getType())); 888 Ptr = Builder.CreateBitCast(Ptr, PTy); 889 890 // Perform the load. 891 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 892 if (!AI.AccessAlignment.isZero()) 893 Load->setAlignment(AI.AccessAlignment.getQuantity()); 894 895 // Shift out unused low bits and mask out unused high bits. 896 llvm::Value *Val = Load; 897 if (AI.FieldBitStart) 898 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 899 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 900 AI.TargetBitWidth), 901 "bf.clear"); 902 903 // Extend or truncate to the target size. 904 if (AI.AccessWidth < ResSizeInBits) 905 Val = Builder.CreateZExt(Val, ResLTy); 906 else if (AI.AccessWidth > ResSizeInBits) 907 Val = Builder.CreateTrunc(Val, ResLTy); 908 909 // Shift into place, and OR into the result. 910 if (AI.TargetBitOffset) 911 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 912 Res = Res ? Builder.CreateOr(Res, Val) : Val; 913 } 914 915 // If the bit-field is signed, perform the sign-extension. 916 // 917 // FIXME: This can easily be folded into the load of the high bits, which 918 // could also eliminate the mask of high bits in some situations. 919 if (Info.isSigned()) { 920 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 921 if (ExtraBits) 922 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 923 ExtraBits, "bf.val.sext"); 924 } 925 926 return RValue::get(Res); 927 } 928 929 // If this is a reference to a subset of the elements of a vector, create an 930 // appropriate shufflevector. 931 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 932 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 933 LV.isVolatileQualified()); 934 935 const llvm::Constant *Elts = LV.getExtVectorElts(); 936 937 // If the result of the expression is a non-vector type, we must be extracting 938 // a single element. Just codegen as an extractelement. 939 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 940 if (!ExprVT) { 941 unsigned InIdx = getAccessedFieldNo(0, Elts); 942 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 943 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 944 } 945 946 // Always use shuffle vector to try to retain the original program structure 947 unsigned NumResultElts = ExprVT->getNumElements(); 948 949 SmallVector<llvm::Constant*, 4> Mask; 950 for (unsigned i = 0; i != NumResultElts; ++i) 951 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 952 953 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 954 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 955 MaskV); 956 return RValue::get(Vec); 957 } 958 959 960 961 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 962 /// lvalue, where both are guaranteed to the have the same type, and that type 963 /// is 'Ty'. 964 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 965 if (!Dst.isSimple()) { 966 if (Dst.isVectorElt()) { 967 // Read/modify/write the vector, inserting the new element. 968 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 969 Dst.isVolatileQualified()); 970 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 971 Dst.getVectorIdx(), "vecins"); 972 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 973 return; 974 } 975 976 // If this is an update of extended vector elements, insert them as 977 // appropriate. 978 if (Dst.isExtVectorElt()) 979 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 980 981 assert(Dst.isBitField() && "Unknown LValue type"); 982 return EmitStoreThroughBitfieldLValue(Src, Dst); 983 } 984 985 // There's special magic for assigning into an ARC-qualified l-value. 986 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 987 switch (Lifetime) { 988 case Qualifiers::OCL_None: 989 llvm_unreachable("present but none"); 990 991 case Qualifiers::OCL_ExplicitNone: 992 // nothing special 993 break; 994 995 case Qualifiers::OCL_Strong: 996 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 997 return; 998 999 case Qualifiers::OCL_Weak: 1000 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1001 return; 1002 1003 case Qualifiers::OCL_Autoreleasing: 1004 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1005 Src.getScalarVal())); 1006 // fall into the normal path 1007 break; 1008 } 1009 } 1010 1011 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1012 // load of a __weak object. 1013 llvm::Value *LvalueDst = Dst.getAddress(); 1014 llvm::Value *src = Src.getScalarVal(); 1015 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1016 return; 1017 } 1018 1019 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1020 // load of a __strong object. 1021 llvm::Value *LvalueDst = Dst.getAddress(); 1022 llvm::Value *src = Src.getScalarVal(); 1023 if (Dst.isObjCIvar()) { 1024 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1025 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1026 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1027 llvm::Value *dst = RHS; 1028 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1029 llvm::Value *LHS = 1030 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1031 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1032 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1033 BytesBetween); 1034 } else if (Dst.isGlobalObjCRef()) { 1035 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1036 Dst.isThreadLocalRef()); 1037 } 1038 else 1039 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1040 return; 1041 } 1042 1043 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1044 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1045 } 1046 1047 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1048 llvm::Value **Result) { 1049 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1050 1051 // Get the output type. 1052 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1053 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1054 1055 // Get the source value, truncated to the width of the bit-field. 1056 llvm::Value *SrcVal = Src.getScalarVal(); 1057 1058 if (Dst.getType()->isBooleanType()) 1059 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1060 1061 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1062 Info.getSize()), 1063 "bf.value"); 1064 1065 // Return the new value of the bit-field, if requested. 1066 if (Result) { 1067 // Cast back to the proper type for result. 1068 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1069 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1070 "bf.reload.val"); 1071 1072 // Sign extend if necessary. 1073 if (Info.isSigned()) { 1074 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1075 if (ExtraBits) 1076 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1077 ExtraBits, "bf.reload.sext"); 1078 } 1079 1080 *Result = ReloadVal; 1081 } 1082 1083 // Iterate over the components, writing each piece to memory. 1084 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1085 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1086 1087 // Get the field pointer. 1088 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1089 unsigned addressSpace = 1090 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1091 1092 // Only offset by the field index if used, so that incoming values are not 1093 // required to be structures. 1094 if (AI.FieldIndex) 1095 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1096 1097 // Offset by the byte offset, if used. 1098 if (!AI.FieldByteOffset.isZero()) { 1099 Ptr = EmitCastToVoidPtr(Ptr); 1100 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1101 "bf.field.offs"); 1102 } 1103 1104 // Cast to the access type. 1105 llvm::Type *AccessLTy = 1106 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1107 1108 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1109 Ptr = Builder.CreateBitCast(Ptr, PTy); 1110 1111 // Extract the piece of the bit-field value to write in this access, limited 1112 // to the values that are part of this access. 1113 llvm::Value *Val = SrcVal; 1114 if (AI.TargetBitOffset) 1115 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1116 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1117 AI.TargetBitWidth)); 1118 1119 // Extend or truncate to the access size. 1120 if (ResSizeInBits < AI.AccessWidth) 1121 Val = Builder.CreateZExt(Val, AccessLTy); 1122 else if (ResSizeInBits > AI.AccessWidth) 1123 Val = Builder.CreateTrunc(Val, AccessLTy); 1124 1125 // Shift into the position in memory. 1126 if (AI.FieldBitStart) 1127 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1128 1129 // If necessary, load and OR in bits that are outside of the bit-field. 1130 if (AI.TargetBitWidth != AI.AccessWidth) { 1131 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1132 if (!AI.AccessAlignment.isZero()) 1133 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1134 1135 // Compute the mask for zeroing the bits that are part of the bit-field. 1136 llvm::APInt InvMask = 1137 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1138 AI.FieldBitStart + AI.TargetBitWidth); 1139 1140 // Apply the mask and OR in to the value to write. 1141 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1142 } 1143 1144 // Write the value. 1145 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1146 Dst.isVolatileQualified()); 1147 if (!AI.AccessAlignment.isZero()) 1148 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1149 } 1150 } 1151 1152 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1153 LValue Dst) { 1154 // This access turns into a read/modify/write of the vector. Load the input 1155 // value now. 1156 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 1157 Dst.isVolatileQualified()); 1158 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1159 1160 llvm::Value *SrcVal = Src.getScalarVal(); 1161 1162 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1163 unsigned NumSrcElts = VTy->getNumElements(); 1164 unsigned NumDstElts = 1165 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1166 if (NumDstElts == NumSrcElts) { 1167 // Use shuffle vector is the src and destination are the same number of 1168 // elements and restore the vector mask since it is on the side it will be 1169 // stored. 1170 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1171 for (unsigned i = 0; i != NumSrcElts; ++i) 1172 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1173 1174 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1175 Vec = Builder.CreateShuffleVector(SrcVal, 1176 llvm::UndefValue::get(Vec->getType()), 1177 MaskV); 1178 } else if (NumDstElts > NumSrcElts) { 1179 // Extended the source vector to the same length and then shuffle it 1180 // into the destination. 1181 // FIXME: since we're shuffling with undef, can we just use the indices 1182 // into that? This could be simpler. 1183 SmallVector<llvm::Constant*, 4> ExtMask; 1184 unsigned i; 1185 for (i = 0; i != NumSrcElts; ++i) 1186 ExtMask.push_back(Builder.getInt32(i)); 1187 for (; i != NumDstElts; ++i) 1188 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 1189 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1190 llvm::Value *ExtSrcVal = 1191 Builder.CreateShuffleVector(SrcVal, 1192 llvm::UndefValue::get(SrcVal->getType()), 1193 ExtMaskV); 1194 // build identity 1195 SmallVector<llvm::Constant*, 4> Mask; 1196 for (unsigned i = 0; i != NumDstElts; ++i) 1197 Mask.push_back(Builder.getInt32(i)); 1198 1199 // modify when what gets shuffled in 1200 for (unsigned i = 0; i != NumSrcElts; ++i) 1201 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1202 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1203 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1204 } else { 1205 // We should never shorten the vector 1206 llvm_unreachable("unexpected shorten vector length"); 1207 } 1208 } else { 1209 // If the Src is a scalar (not a vector) it must be updating one element. 1210 unsigned InIdx = getAccessedFieldNo(0, Elts); 1211 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1212 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1213 } 1214 1215 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1216 } 1217 1218 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1219 // generating write-barries API. It is currently a global, ivar, 1220 // or neither. 1221 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1222 LValue &LV, 1223 bool IsMemberAccess=false) { 1224 if (Ctx.getLangOptions().getGC() == LangOptions::NonGC) 1225 return; 1226 1227 if (isa<ObjCIvarRefExpr>(E)) { 1228 QualType ExpTy = E->getType(); 1229 if (IsMemberAccess && ExpTy->isPointerType()) { 1230 // If ivar is a structure pointer, assigning to field of 1231 // this struct follows gcc's behavior and makes it a non-ivar 1232 // writer-barrier conservatively. 1233 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1234 if (ExpTy->isRecordType()) { 1235 LV.setObjCIvar(false); 1236 return; 1237 } 1238 } 1239 LV.setObjCIvar(true); 1240 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1241 LV.setBaseIvarExp(Exp->getBase()); 1242 LV.setObjCArray(E->getType()->isArrayType()); 1243 return; 1244 } 1245 1246 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1247 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1248 if (VD->hasGlobalStorage()) { 1249 LV.setGlobalObjCRef(true); 1250 LV.setThreadLocalRef(VD->isThreadSpecified()); 1251 } 1252 } 1253 LV.setObjCArray(E->getType()->isArrayType()); 1254 return; 1255 } 1256 1257 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1258 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1259 return; 1260 } 1261 1262 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1263 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1264 if (LV.isObjCIvar()) { 1265 // If cast is to a structure pointer, follow gcc's behavior and make it 1266 // a non-ivar write-barrier. 1267 QualType ExpTy = E->getType(); 1268 if (ExpTy->isPointerType()) 1269 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1270 if (ExpTy->isRecordType()) 1271 LV.setObjCIvar(false); 1272 } 1273 return; 1274 } 1275 1276 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1277 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1278 return; 1279 } 1280 1281 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1282 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1283 return; 1284 } 1285 1286 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1287 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1288 return; 1289 } 1290 1291 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1292 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1293 return; 1294 } 1295 1296 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1297 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1298 if (LV.isObjCIvar() && !LV.isObjCArray()) 1299 // Using array syntax to assigning to what an ivar points to is not 1300 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1301 LV.setObjCIvar(false); 1302 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1303 // Using array syntax to assigning to what global points to is not 1304 // same as assigning to the global itself. {id *G;} G[i] = 0; 1305 LV.setGlobalObjCRef(false); 1306 return; 1307 } 1308 1309 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1310 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1311 // We don't know if member is an 'ivar', but this flag is looked at 1312 // only in the context of LV.isObjCIvar(). 1313 LV.setObjCArray(E->getType()->isArrayType()); 1314 return; 1315 } 1316 } 1317 1318 static llvm::Value * 1319 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1320 llvm::Value *V, llvm::Type *IRType, 1321 StringRef Name = StringRef()) { 1322 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1323 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1324 } 1325 1326 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1327 const Expr *E, const VarDecl *VD) { 1328 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1329 "Var decl must have external storage or be a file var decl!"); 1330 1331 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1332 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1333 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1334 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1335 QualType T = E->getType(); 1336 LValue LV; 1337 if (VD->getType()->isReferenceType()) { 1338 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1339 LI->setAlignment(Alignment.getQuantity()); 1340 V = LI; 1341 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1342 } else { 1343 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1344 } 1345 setObjCGCLValueClass(CGF.getContext(), E, LV); 1346 return LV; 1347 } 1348 1349 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1350 const Expr *E, const FunctionDecl *FD) { 1351 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1352 if (!FD->hasPrototype()) { 1353 if (const FunctionProtoType *Proto = 1354 FD->getType()->getAs<FunctionProtoType>()) { 1355 // Ugly case: for a K&R-style definition, the type of the definition 1356 // isn't the same as the type of a use. Correct for this with a 1357 // bitcast. 1358 QualType NoProtoType = 1359 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1360 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1361 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1362 } 1363 } 1364 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1365 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1366 } 1367 1368 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1369 const NamedDecl *ND = E->getDecl(); 1370 CharUnits Alignment = getContext().getDeclAlign(ND); 1371 QualType T = E->getType(); 1372 1373 // FIXME: We should be able to assert this for FunctionDecls as well! 1374 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1375 // those with a valid source location. 1376 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1377 !E->getLocation().isValid()) && 1378 "Should not use decl without marking it used!"); 1379 1380 if (ND->hasAttr<WeakRefAttr>()) { 1381 const ValueDecl *VD = cast<ValueDecl>(ND); 1382 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1383 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1384 } 1385 1386 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1387 1388 // Check if this is a global variable. 1389 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1390 return EmitGlobalVarDeclLValue(*this, E, VD); 1391 1392 bool NonGCable = VD->hasLocalStorage() && 1393 !VD->getType()->isReferenceType() && 1394 !VD->hasAttr<BlocksAttr>(); 1395 1396 llvm::Value *V = LocalDeclMap[VD]; 1397 if (!V && VD->isStaticLocal()) 1398 V = CGM.getStaticLocalDeclAddress(VD); 1399 1400 // Use special handling for lambdas. 1401 if (!V) 1402 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) 1403 return EmitLValueForField(CXXABIThisValue, FD, 0); 1404 1405 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1406 1407 if (VD->hasAttr<BlocksAttr>()) 1408 V = BuildBlockByrefAddress(V, VD); 1409 1410 LValue LV; 1411 if (VD->getType()->isReferenceType()) { 1412 llvm::LoadInst *LI = Builder.CreateLoad(V); 1413 LI->setAlignment(Alignment.getQuantity()); 1414 V = LI; 1415 LV = MakeNaturalAlignAddrLValue(V, T); 1416 } else { 1417 LV = MakeAddrLValue(V, T, Alignment); 1418 } 1419 1420 if (NonGCable) { 1421 LV.getQuals().removeObjCGCAttr(); 1422 LV.setNonGC(true); 1423 } 1424 setObjCGCLValueClass(getContext(), E, LV); 1425 return LV; 1426 } 1427 1428 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1429 return EmitFunctionDeclLValue(*this, E, fn); 1430 1431 llvm_unreachable("Unhandled DeclRefExpr"); 1432 } 1433 1434 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1435 CharUnits Alignment = getContext().getDeclAlign(E->getDecl()); 1436 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1437 } 1438 1439 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1440 // __extension__ doesn't affect lvalue-ness. 1441 if (E->getOpcode() == UO_Extension) 1442 return EmitLValue(E->getSubExpr()); 1443 1444 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1445 switch (E->getOpcode()) { 1446 default: llvm_unreachable("Unknown unary operator lvalue!"); 1447 case UO_Deref: { 1448 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1449 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1450 1451 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1452 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1453 1454 // We should not generate __weak write barrier on indirect reference 1455 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1456 // But, we continue to generate __strong write barrier on indirect write 1457 // into a pointer to object. 1458 if (getContext().getLangOptions().ObjC1 && 1459 getContext().getLangOptions().getGC() != LangOptions::NonGC && 1460 LV.isObjCWeak()) 1461 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1462 return LV; 1463 } 1464 case UO_Real: 1465 case UO_Imag: { 1466 LValue LV = EmitLValue(E->getSubExpr()); 1467 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1468 llvm::Value *Addr = LV.getAddress(); 1469 1470 // real and imag are valid on scalars. This is a faster way of 1471 // testing that. 1472 if (!cast<llvm::PointerType>(Addr->getType()) 1473 ->getElementType()->isStructTy()) { 1474 assert(E->getSubExpr()->getType()->isArithmeticType()); 1475 return LV; 1476 } 1477 1478 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1479 1480 unsigned Idx = E->getOpcode() == UO_Imag; 1481 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1482 Idx, "idx"), 1483 ExprTy); 1484 } 1485 case UO_PreInc: 1486 case UO_PreDec: { 1487 LValue LV = EmitLValue(E->getSubExpr()); 1488 bool isInc = E->getOpcode() == UO_PreInc; 1489 1490 if (E->getType()->isAnyComplexType()) 1491 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1492 else 1493 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1494 return LV; 1495 } 1496 } 1497 } 1498 1499 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1500 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1501 E->getType()); 1502 } 1503 1504 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1505 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1506 E->getType()); 1507 } 1508 1509 1510 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1511 switch (E->getIdentType()) { 1512 default: 1513 return EmitUnsupportedLValue(E, "predefined expression"); 1514 1515 case PredefinedExpr::Func: 1516 case PredefinedExpr::Function: 1517 case PredefinedExpr::PrettyFunction: { 1518 unsigned Type = E->getIdentType(); 1519 std::string GlobalVarName; 1520 1521 switch (Type) { 1522 default: llvm_unreachable("Invalid type"); 1523 case PredefinedExpr::Func: 1524 GlobalVarName = "__func__."; 1525 break; 1526 case PredefinedExpr::Function: 1527 GlobalVarName = "__FUNCTION__."; 1528 break; 1529 case PredefinedExpr::PrettyFunction: 1530 GlobalVarName = "__PRETTY_FUNCTION__."; 1531 break; 1532 } 1533 1534 StringRef FnName = CurFn->getName(); 1535 if (FnName.startswith("\01")) 1536 FnName = FnName.substr(1); 1537 GlobalVarName += FnName; 1538 1539 const Decl *CurDecl = CurCodeDecl; 1540 if (CurDecl == 0) 1541 CurDecl = getContext().getTranslationUnitDecl(); 1542 1543 std::string FunctionName = 1544 (isa<BlockDecl>(CurDecl) 1545 ? FnName.str() 1546 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1547 1548 llvm::Constant *C = 1549 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1550 return MakeAddrLValue(C, E->getType()); 1551 } 1552 } 1553 } 1554 1555 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1556 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1557 1558 // If we are not optimzing, don't collapse all calls to trap in the function 1559 // to the same call, that way, in the debugger they can see which operation 1560 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1561 // to just one per function to save on codesize. 1562 if (GCO.OptimizationLevel && TrapBB) 1563 return TrapBB; 1564 1565 llvm::BasicBlock *Cont = 0; 1566 if (HaveInsertPoint()) { 1567 Cont = createBasicBlock("cont"); 1568 EmitBranch(Cont); 1569 } 1570 TrapBB = createBasicBlock("trap"); 1571 EmitBlock(TrapBB); 1572 1573 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1574 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1575 TrapCall->setDoesNotReturn(); 1576 TrapCall->setDoesNotThrow(); 1577 Builder.CreateUnreachable(); 1578 1579 if (Cont) 1580 EmitBlock(Cont); 1581 return TrapBB; 1582 } 1583 1584 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1585 /// array to pointer, return the array subexpression. 1586 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1587 // If this isn't just an array->pointer decay, bail out. 1588 const CastExpr *CE = dyn_cast<CastExpr>(E); 1589 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1590 return 0; 1591 1592 // If this is a decay from variable width array, bail out. 1593 const Expr *SubExpr = CE->getSubExpr(); 1594 if (SubExpr->getType()->isVariableArrayType()) 1595 return 0; 1596 1597 return SubExpr; 1598 } 1599 1600 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1601 // The index must always be an integer, which is not an aggregate. Emit it. 1602 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1603 QualType IdxTy = E->getIdx()->getType(); 1604 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1605 1606 // If the base is a vector type, then we are forming a vector element lvalue 1607 // with this subscript. 1608 if (E->getBase()->getType()->isVectorType()) { 1609 // Emit the vector as an lvalue to get its address. 1610 LValue LHS = EmitLValue(E->getBase()); 1611 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1612 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1613 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1614 E->getBase()->getType()); 1615 } 1616 1617 // Extend or truncate the index type to 32 or 64-bits. 1618 if (Idx->getType() != IntPtrTy) 1619 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1620 1621 // FIXME: As llvm implements the object size checking, this can come out. 1622 if (CatchUndefined) { 1623 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1624 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1625 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1626 if (const ConstantArrayType *CAT 1627 = getContext().getAsConstantArrayType(DRE->getType())) { 1628 llvm::APInt Size = CAT->getSize(); 1629 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1630 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1631 llvm::ConstantInt::get(Idx->getType(), Size)), 1632 Cont, getTrapBB()); 1633 EmitBlock(Cont); 1634 } 1635 } 1636 } 1637 } 1638 } 1639 1640 // We know that the pointer points to a type of the correct size, unless the 1641 // size is a VLA or Objective-C interface. 1642 llvm::Value *Address = 0; 1643 CharUnits ArrayAlignment; 1644 if (const VariableArrayType *vla = 1645 getContext().getAsVariableArrayType(E->getType())) { 1646 // The base must be a pointer, which is not an aggregate. Emit 1647 // it. It needs to be emitted first in case it's what captures 1648 // the VLA bounds. 1649 Address = EmitScalarExpr(E->getBase()); 1650 1651 // The element count here is the total number of non-VLA elements. 1652 llvm::Value *numElements = getVLASize(vla).first; 1653 1654 // Effectively, the multiply by the VLA size is part of the GEP. 1655 // GEP indexes are signed, and scaling an index isn't permitted to 1656 // signed-overflow, so we use the same semantics for our explicit 1657 // multiply. We suppress this if overflow is not undefined behavior. 1658 if (getLangOptions().isSignedOverflowDefined()) { 1659 Idx = Builder.CreateMul(Idx, numElements); 1660 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1661 } else { 1662 Idx = Builder.CreateNSWMul(Idx, numElements); 1663 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1664 } 1665 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1666 // Indexing over an interface, as in "NSString *P; P[4];" 1667 llvm::Value *InterfaceSize = 1668 llvm::ConstantInt::get(Idx->getType(), 1669 getContext().getTypeSizeInChars(OIT).getQuantity()); 1670 1671 Idx = Builder.CreateMul(Idx, InterfaceSize); 1672 1673 // The base must be a pointer, which is not an aggregate. Emit it. 1674 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1675 Address = EmitCastToVoidPtr(Base); 1676 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1677 Address = Builder.CreateBitCast(Address, Base->getType()); 1678 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1679 // If this is A[i] where A is an array, the frontend will have decayed the 1680 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1681 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1682 // "gep x, i" here. Emit one "gep A, 0, i". 1683 assert(Array->getType()->isArrayType() && 1684 "Array to pointer decay must have array source type!"); 1685 LValue ArrayLV = EmitLValue(Array); 1686 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1687 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1688 llvm::Value *Args[] = { Zero, Idx }; 1689 1690 // Propagate the alignment from the array itself to the result. 1691 ArrayAlignment = ArrayLV.getAlignment(); 1692 1693 if (getContext().getLangOptions().isSignedOverflowDefined()) 1694 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1695 else 1696 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1697 } else { 1698 // The base must be a pointer, which is not an aggregate. Emit it. 1699 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1700 if (getContext().getLangOptions().isSignedOverflowDefined()) 1701 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1702 else 1703 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1704 } 1705 1706 QualType T = E->getBase()->getType()->getPointeeType(); 1707 assert(!T.isNull() && 1708 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1709 1710 1711 // Limit the alignment to that of the result type. 1712 LValue LV; 1713 if (!ArrayAlignment.isZero()) { 1714 CharUnits Align = getContext().getTypeAlignInChars(T); 1715 ArrayAlignment = std::min(Align, ArrayAlignment); 1716 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1717 } else { 1718 LV = MakeNaturalAlignAddrLValue(Address, T); 1719 } 1720 1721 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1722 1723 if (getContext().getLangOptions().ObjC1 && 1724 getContext().getLangOptions().getGC() != LangOptions::NonGC) { 1725 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1726 setObjCGCLValueClass(getContext(), E, LV); 1727 } 1728 return LV; 1729 } 1730 1731 static 1732 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1733 SmallVector<unsigned, 4> &Elts) { 1734 SmallVector<llvm::Constant*, 4> CElts; 1735 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1736 CElts.push_back(Builder.getInt32(Elts[i])); 1737 1738 return llvm::ConstantVector::get(CElts); 1739 } 1740 1741 LValue CodeGenFunction:: 1742 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1743 // Emit the base vector as an l-value. 1744 LValue Base; 1745 1746 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1747 if (E->isArrow()) { 1748 // If it is a pointer to a vector, emit the address and form an lvalue with 1749 // it. 1750 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1751 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1752 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1753 Base.getQuals().removeObjCGCAttr(); 1754 } else if (E->getBase()->isGLValue()) { 1755 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1756 // emit the base as an lvalue. 1757 assert(E->getBase()->getType()->isVectorType()); 1758 Base = EmitLValue(E->getBase()); 1759 } else { 1760 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1761 assert(E->getBase()->getType()->isVectorType() && 1762 "Result must be a vector"); 1763 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1764 1765 // Store the vector to memory (because LValue wants an address). 1766 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1767 Builder.CreateStore(Vec, VecMem); 1768 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1769 } 1770 1771 QualType type = 1772 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1773 1774 // Encode the element access list into a vector of unsigned indices. 1775 SmallVector<unsigned, 4> Indices; 1776 E->getEncodedElementAccess(Indices); 1777 1778 if (Base.isSimple()) { 1779 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1780 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type); 1781 } 1782 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1783 1784 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1785 SmallVector<llvm::Constant *, 4> CElts; 1786 1787 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1788 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1789 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1790 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type); 1791 } 1792 1793 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1794 bool isNonGC = false; 1795 Expr *BaseExpr = E->getBase(); 1796 llvm::Value *BaseValue = NULL; 1797 Qualifiers BaseQuals; 1798 1799 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1800 if (E->isArrow()) { 1801 BaseValue = EmitScalarExpr(BaseExpr); 1802 const PointerType *PTy = 1803 BaseExpr->getType()->getAs<PointerType>(); 1804 BaseQuals = PTy->getPointeeType().getQualifiers(); 1805 } else { 1806 LValue BaseLV = EmitLValue(BaseExpr); 1807 if (BaseLV.isNonGC()) 1808 isNonGC = true; 1809 // FIXME: this isn't right for bitfields. 1810 BaseValue = BaseLV.getAddress(); 1811 QualType BaseTy = BaseExpr->getType(); 1812 BaseQuals = BaseTy.getQualifiers(); 1813 } 1814 1815 NamedDecl *ND = E->getMemberDecl(); 1816 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1817 LValue LV = EmitLValueForField(BaseValue, Field, 1818 BaseQuals.getCVRQualifiers()); 1819 LV.setNonGC(isNonGC); 1820 setObjCGCLValueClass(getContext(), E, LV); 1821 return LV; 1822 } 1823 1824 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1825 return EmitGlobalVarDeclLValue(*this, E, VD); 1826 1827 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1828 return EmitFunctionDeclLValue(*this, E, FD); 1829 1830 llvm_unreachable("Unhandled member declaration!"); 1831 } 1832 1833 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1834 const FieldDecl *Field, 1835 unsigned CVRQualifiers) { 1836 const CGRecordLayout &RL = 1837 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1838 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1839 return LValue::MakeBitfield(BaseValue, Info, 1840 Field->getType().withCVRQualifiers(CVRQualifiers)); 1841 } 1842 1843 /// EmitLValueForAnonRecordField - Given that the field is a member of 1844 /// an anonymous struct or union buried inside a record, and given 1845 /// that the base value is a pointer to the enclosing record, derive 1846 /// an lvalue for the ultimate field. 1847 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1848 const IndirectFieldDecl *Field, 1849 unsigned CVRQualifiers) { 1850 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1851 IEnd = Field->chain_end(); 1852 while (true) { 1853 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 1854 CVRQualifiers); 1855 if (++I == IEnd) return LV; 1856 1857 assert(LV.isSimple()); 1858 BaseValue = LV.getAddress(); 1859 CVRQualifiers |= LV.getVRQualifiers(); 1860 } 1861 } 1862 1863 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1864 const FieldDecl *field, 1865 unsigned cvr) { 1866 if (field->isBitField()) 1867 return EmitLValueForBitfield(baseAddr, field, cvr); 1868 1869 const RecordDecl *rec = field->getParent(); 1870 QualType type = field->getType(); 1871 CharUnits alignment = getContext().getDeclAlign(field); 1872 1873 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1874 1875 llvm::Value *addr = baseAddr; 1876 if (rec->isUnion()) { 1877 // For unions, there is no pointer adjustment. 1878 assert(!type->isReferenceType() && "union has reference member"); 1879 } else { 1880 // For structs, we GEP to the field that the record layout suggests. 1881 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 1882 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 1883 1884 // If this is a reference field, load the reference right now. 1885 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 1886 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 1887 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 1888 load->setAlignment(alignment.getQuantity()); 1889 1890 if (CGM.shouldUseTBAA()) { 1891 llvm::MDNode *tbaa; 1892 if (mayAlias) 1893 tbaa = CGM.getTBAAInfo(getContext().CharTy); 1894 else 1895 tbaa = CGM.getTBAAInfo(type); 1896 CGM.DecorateInstruction(load, tbaa); 1897 } 1898 1899 addr = load; 1900 mayAlias = false; 1901 type = refType->getPointeeType(); 1902 if (type->isIncompleteType()) 1903 alignment = CharUnits(); 1904 else 1905 alignment = getContext().getTypeAlignInChars(type); 1906 cvr = 0; // qualifiers don't recursively apply to referencee 1907 } 1908 } 1909 1910 // Make sure that the address is pointing to the right type. This is critical 1911 // for both unions and structs. A union needs a bitcast, a struct element 1912 // will need a bitcast if the LLVM type laid out doesn't match the desired 1913 // type. 1914 addr = EmitBitCastOfLValueToProperType(*this, addr, 1915 CGM.getTypes().ConvertTypeForMem(type), 1916 field->getName()); 1917 1918 if (field->hasAttr<AnnotateAttr>()) 1919 addr = EmitFieldAnnotations(field, addr); 1920 1921 LValue LV = MakeAddrLValue(addr, type, alignment); 1922 LV.getQuals().addCVRQualifiers(cvr); 1923 1924 // __weak attribute on a field is ignored. 1925 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1926 LV.getQuals().removeObjCGCAttr(); 1927 1928 // Fields of may_alias structs act like 'char' for TBAA purposes. 1929 // FIXME: this should get propagated down through anonymous structs 1930 // and unions. 1931 if (mayAlias && LV.getTBAAInfo()) 1932 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 1933 1934 return LV; 1935 } 1936 1937 LValue 1938 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 1939 const FieldDecl *Field, 1940 unsigned CVRQualifiers) { 1941 QualType FieldType = Field->getType(); 1942 1943 if (!FieldType->isReferenceType()) 1944 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1945 1946 const CGRecordLayout &RL = 1947 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1948 unsigned idx = RL.getLLVMFieldNo(Field); 1949 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx); 1950 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1951 1952 1953 // Make sure that the address is pointing to the right type. This is critical 1954 // for both unions and structs. A union needs a bitcast, a struct element 1955 // will need a bitcast if the LLVM type laid out doesn't match the desired 1956 // type. 1957 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 1958 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1959 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 1960 1961 CharUnits Alignment = getContext().getDeclAlign(Field); 1962 return MakeAddrLValue(V, FieldType, Alignment); 1963 } 1964 1965 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 1966 if (E->isFileScope()) { 1967 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 1968 return MakeAddrLValue(GlobalPtr, E->getType()); 1969 } 1970 1971 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1972 const Expr *InitExpr = E->getInitializer(); 1973 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1974 1975 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 1976 /*Init*/ true); 1977 1978 return Result; 1979 } 1980 1981 LValue CodeGenFunction:: 1982 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 1983 if (!expr->isGLValue()) { 1984 // ?: here should be an aggregate. 1985 assert((hasAggregateLLVMType(expr->getType()) && 1986 !expr->getType()->isAnyComplexType()) && 1987 "Unexpected conditional operator!"); 1988 return EmitAggExprToLValue(expr); 1989 } 1990 1991 OpaqueValueMapping binding(*this, expr); 1992 1993 const Expr *condExpr = expr->getCond(); 1994 bool CondExprBool; 1995 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 1996 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 1997 if (!CondExprBool) std::swap(live, dead); 1998 1999 if (!ContainsLabel(dead)) 2000 return EmitLValue(live); 2001 } 2002 2003 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2004 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2005 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2006 2007 ConditionalEvaluation eval(*this); 2008 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2009 2010 // Any temporaries created here are conditional. 2011 EmitBlock(lhsBlock); 2012 eval.begin(*this); 2013 LValue lhs = EmitLValue(expr->getTrueExpr()); 2014 eval.end(*this); 2015 2016 if (!lhs.isSimple()) 2017 return EmitUnsupportedLValue(expr, "conditional operator"); 2018 2019 lhsBlock = Builder.GetInsertBlock(); 2020 Builder.CreateBr(contBlock); 2021 2022 // Any temporaries created here are conditional. 2023 EmitBlock(rhsBlock); 2024 eval.begin(*this); 2025 LValue rhs = EmitLValue(expr->getFalseExpr()); 2026 eval.end(*this); 2027 if (!rhs.isSimple()) 2028 return EmitUnsupportedLValue(expr, "conditional operator"); 2029 rhsBlock = Builder.GetInsertBlock(); 2030 2031 EmitBlock(contBlock); 2032 2033 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2034 "cond-lvalue"); 2035 phi->addIncoming(lhs.getAddress(), lhsBlock); 2036 phi->addIncoming(rhs.getAddress(), rhsBlock); 2037 return MakeAddrLValue(phi, expr->getType()); 2038 } 2039 2040 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2041 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 2042 /// otherwise if a cast is needed by the code generator in an lvalue context, 2043 /// then it must mean that we need the address of an aggregate in order to 2044 /// access one of its fields. This can happen for all the reasons that casts 2045 /// are permitted with aggregate result, including noop aggregate casts, and 2046 /// cast from scalar to union. 2047 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2048 switch (E->getCastKind()) { 2049 case CK_ToVoid: 2050 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2051 2052 case CK_Dependent: 2053 llvm_unreachable("dependent cast kind in IR gen!"); 2054 2055 // These two casts are currently treated as no-ops, although they could 2056 // potentially be real operations depending on the target's ABI. 2057 case CK_NonAtomicToAtomic: 2058 case CK_AtomicToNonAtomic: 2059 2060 case CK_NoOp: 2061 case CK_LValueToRValue: 2062 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2063 || E->getType()->isRecordType()) 2064 return EmitLValue(E->getSubExpr()); 2065 // Fall through to synthesize a temporary. 2066 2067 case CK_BitCast: 2068 case CK_ArrayToPointerDecay: 2069 case CK_FunctionToPointerDecay: 2070 case CK_NullToMemberPointer: 2071 case CK_NullToPointer: 2072 case CK_IntegralToPointer: 2073 case CK_PointerToIntegral: 2074 case CK_PointerToBoolean: 2075 case CK_VectorSplat: 2076 case CK_IntegralCast: 2077 case CK_IntegralToBoolean: 2078 case CK_IntegralToFloating: 2079 case CK_FloatingToIntegral: 2080 case CK_FloatingToBoolean: 2081 case CK_FloatingCast: 2082 case CK_FloatingRealToComplex: 2083 case CK_FloatingComplexToReal: 2084 case CK_FloatingComplexToBoolean: 2085 case CK_FloatingComplexCast: 2086 case CK_FloatingComplexToIntegralComplex: 2087 case CK_IntegralRealToComplex: 2088 case CK_IntegralComplexToReal: 2089 case CK_IntegralComplexToBoolean: 2090 case CK_IntegralComplexCast: 2091 case CK_IntegralComplexToFloatingComplex: 2092 case CK_DerivedToBaseMemberPointer: 2093 case CK_BaseToDerivedMemberPointer: 2094 case CK_MemberPointerToBoolean: 2095 case CK_AnyPointerToBlockPointerCast: 2096 case CK_ARCProduceObject: 2097 case CK_ARCConsumeObject: 2098 case CK_ARCReclaimReturnedObject: 2099 case CK_ARCExtendBlockObject: { 2100 // These casts only produce lvalues when we're binding a reference to a 2101 // temporary realized from a (converted) pure rvalue. Emit the expression 2102 // as a value, copy it into a temporary, and return an lvalue referring to 2103 // that temporary. 2104 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2105 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2106 return MakeAddrLValue(V, E->getType()); 2107 } 2108 2109 case CK_Dynamic: { 2110 LValue LV = EmitLValue(E->getSubExpr()); 2111 llvm::Value *V = LV.getAddress(); 2112 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2113 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2114 } 2115 2116 case CK_ConstructorConversion: 2117 case CK_UserDefinedConversion: 2118 case CK_CPointerToObjCPointerCast: 2119 case CK_BlockPointerToObjCPointerCast: 2120 return EmitLValue(E->getSubExpr()); 2121 2122 case CK_UncheckedDerivedToBase: 2123 case CK_DerivedToBase: { 2124 const RecordType *DerivedClassTy = 2125 E->getSubExpr()->getType()->getAs<RecordType>(); 2126 CXXRecordDecl *DerivedClassDecl = 2127 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2128 2129 LValue LV = EmitLValue(E->getSubExpr()); 2130 llvm::Value *This = LV.getAddress(); 2131 2132 // Perform the derived-to-base conversion 2133 llvm::Value *Base = 2134 GetAddressOfBaseClass(This, DerivedClassDecl, 2135 E->path_begin(), E->path_end(), 2136 /*NullCheckValue=*/false); 2137 2138 return MakeAddrLValue(Base, E->getType()); 2139 } 2140 case CK_ToUnion: 2141 return EmitAggExprToLValue(E); 2142 case CK_BaseToDerived: { 2143 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2144 CXXRecordDecl *DerivedClassDecl = 2145 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2146 2147 LValue LV = EmitLValue(E->getSubExpr()); 2148 2149 // Perform the base-to-derived conversion 2150 llvm::Value *Derived = 2151 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2152 E->path_begin(), E->path_end(), 2153 /*NullCheckValue=*/false); 2154 2155 return MakeAddrLValue(Derived, E->getType()); 2156 } 2157 case CK_LValueBitCast: { 2158 // This must be a reinterpret_cast (or c-style equivalent). 2159 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2160 2161 LValue LV = EmitLValue(E->getSubExpr()); 2162 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2163 ConvertType(CE->getTypeAsWritten())); 2164 return MakeAddrLValue(V, E->getType()); 2165 } 2166 case CK_ObjCObjectLValueCast: { 2167 LValue LV = EmitLValue(E->getSubExpr()); 2168 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2169 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2170 ConvertType(ToType)); 2171 return MakeAddrLValue(V, E->getType()); 2172 } 2173 } 2174 2175 llvm_unreachable("Unhandled lvalue cast kind?"); 2176 } 2177 2178 LValue CodeGenFunction::EmitNullInitializationLValue( 2179 const CXXScalarValueInitExpr *E) { 2180 QualType Ty = E->getType(); 2181 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2182 EmitNullInitialization(LV.getAddress(), Ty); 2183 return LV; 2184 } 2185 2186 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2187 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2188 return getOpaqueLValueMapping(e); 2189 } 2190 2191 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2192 const MaterializeTemporaryExpr *E) { 2193 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2194 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2195 } 2196 2197 2198 //===--------------------------------------------------------------------===// 2199 // Expression Emission 2200 //===--------------------------------------------------------------------===// 2201 2202 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2203 ReturnValueSlot ReturnValue) { 2204 if (CGDebugInfo *DI = getDebugInfo()) 2205 DI->EmitLocation(Builder, E->getLocStart()); 2206 2207 // Builtins never have block type. 2208 if (E->getCallee()->getType()->isBlockPointerType()) 2209 return EmitBlockCallExpr(E, ReturnValue); 2210 2211 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2212 return EmitCXXMemberCallExpr(CE, ReturnValue); 2213 2214 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2215 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2216 2217 const Decl *TargetDecl = E->getCalleeDecl(); 2218 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2219 if (unsigned builtinID = FD->getBuiltinID()) 2220 return EmitBuiltinExpr(FD, builtinID, E); 2221 } 2222 2223 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2224 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2225 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2226 2227 if (const CXXPseudoDestructorExpr *PseudoDtor 2228 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2229 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2230 if (getContext().getLangOptions().ObjCAutoRefCount && 2231 DestroyedType->isObjCLifetimeType() && 2232 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2233 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2234 // Automatic Reference Counting: 2235 // If the pseudo-expression names a retainable object with weak or 2236 // strong lifetime, the object shall be released. 2237 Expr *BaseExpr = PseudoDtor->getBase(); 2238 llvm::Value *BaseValue = NULL; 2239 Qualifiers BaseQuals; 2240 2241 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2242 if (PseudoDtor->isArrow()) { 2243 BaseValue = EmitScalarExpr(BaseExpr); 2244 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2245 BaseQuals = PTy->getPointeeType().getQualifiers(); 2246 } else { 2247 LValue BaseLV = EmitLValue(BaseExpr); 2248 BaseValue = BaseLV.getAddress(); 2249 QualType BaseTy = BaseExpr->getType(); 2250 BaseQuals = BaseTy.getQualifiers(); 2251 } 2252 2253 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2254 case Qualifiers::OCL_None: 2255 case Qualifiers::OCL_ExplicitNone: 2256 case Qualifiers::OCL_Autoreleasing: 2257 break; 2258 2259 case Qualifiers::OCL_Strong: 2260 EmitARCRelease(Builder.CreateLoad(BaseValue, 2261 PseudoDtor->getDestroyedType().isVolatileQualified()), 2262 /*precise*/ true); 2263 break; 2264 2265 case Qualifiers::OCL_Weak: 2266 EmitARCDestroyWeak(BaseValue); 2267 break; 2268 } 2269 } else { 2270 // C++ [expr.pseudo]p1: 2271 // The result shall only be used as the operand for the function call 2272 // operator (), and the result of such a call has type void. The only 2273 // effect is the evaluation of the postfix-expression before the dot or 2274 // arrow. 2275 EmitScalarExpr(E->getCallee()); 2276 } 2277 2278 return RValue::get(0); 2279 } 2280 2281 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2282 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2283 E->arg_begin(), E->arg_end(), TargetDecl); 2284 } 2285 2286 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2287 // Comma expressions just emit their LHS then their RHS as an l-value. 2288 if (E->getOpcode() == BO_Comma) { 2289 EmitIgnoredExpr(E->getLHS()); 2290 EnsureInsertPoint(); 2291 return EmitLValue(E->getRHS()); 2292 } 2293 2294 if (E->getOpcode() == BO_PtrMemD || 2295 E->getOpcode() == BO_PtrMemI) 2296 return EmitPointerToDataMemberBinaryExpr(E); 2297 2298 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2299 2300 // Note that in all of these cases, __block variables need the RHS 2301 // evaluated first just in case the variable gets moved by the RHS. 2302 2303 if (!hasAggregateLLVMType(E->getType())) { 2304 switch (E->getLHS()->getType().getObjCLifetime()) { 2305 case Qualifiers::OCL_Strong: 2306 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2307 2308 case Qualifiers::OCL_Autoreleasing: 2309 return EmitARCStoreAutoreleasing(E).first; 2310 2311 // No reason to do any of these differently. 2312 case Qualifiers::OCL_None: 2313 case Qualifiers::OCL_ExplicitNone: 2314 case Qualifiers::OCL_Weak: 2315 break; 2316 } 2317 2318 RValue RV = EmitAnyExpr(E->getRHS()); 2319 LValue LV = EmitLValue(E->getLHS()); 2320 EmitStoreThroughLValue(RV, LV); 2321 return LV; 2322 } 2323 2324 if (E->getType()->isAnyComplexType()) 2325 return EmitComplexAssignmentLValue(E); 2326 2327 return EmitAggExprToLValue(E); 2328 } 2329 2330 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2331 RValue RV = EmitCallExpr(E); 2332 2333 if (!RV.isScalar()) 2334 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2335 2336 assert(E->getCallReturnType()->isReferenceType() && 2337 "Can't have a scalar return unless the return type is a " 2338 "reference type!"); 2339 2340 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2341 } 2342 2343 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2344 // FIXME: This shouldn't require another copy. 2345 return EmitAggExprToLValue(E); 2346 } 2347 2348 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2349 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2350 && "binding l-value to type which needs a temporary"); 2351 AggValueSlot Slot = CreateAggTemp(E->getType()); 2352 EmitCXXConstructExpr(E, Slot); 2353 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2354 } 2355 2356 LValue 2357 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2358 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2359 } 2360 2361 LValue 2362 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2363 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2364 Slot.setExternallyDestructed(); 2365 EmitAggExpr(E->getSubExpr(), Slot); 2366 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2367 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2368 } 2369 2370 LValue 2371 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2372 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2373 EmitLambdaExpr(E, Slot); 2374 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2375 } 2376 2377 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2378 RValue RV = EmitObjCMessageExpr(E); 2379 2380 if (!RV.isScalar()) 2381 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2382 2383 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2384 "Can't have a scalar return unless the return type is a " 2385 "reference type!"); 2386 2387 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2388 } 2389 2390 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2391 llvm::Value *V = 2392 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2393 return MakeAddrLValue(V, E->getType()); 2394 } 2395 2396 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2397 const ObjCIvarDecl *Ivar) { 2398 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2399 } 2400 2401 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2402 llvm::Value *BaseValue, 2403 const ObjCIvarDecl *Ivar, 2404 unsigned CVRQualifiers) { 2405 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2406 Ivar, CVRQualifiers); 2407 } 2408 2409 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2410 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2411 llvm::Value *BaseValue = 0; 2412 const Expr *BaseExpr = E->getBase(); 2413 Qualifiers BaseQuals; 2414 QualType ObjectTy; 2415 if (E->isArrow()) { 2416 BaseValue = EmitScalarExpr(BaseExpr); 2417 ObjectTy = BaseExpr->getType()->getPointeeType(); 2418 BaseQuals = ObjectTy.getQualifiers(); 2419 } else { 2420 LValue BaseLV = EmitLValue(BaseExpr); 2421 // FIXME: this isn't right for bitfields. 2422 BaseValue = BaseLV.getAddress(); 2423 ObjectTy = BaseExpr->getType(); 2424 BaseQuals = ObjectTy.getQualifiers(); 2425 } 2426 2427 LValue LV = 2428 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2429 BaseQuals.getCVRQualifiers()); 2430 setObjCGCLValueClass(getContext(), E, LV); 2431 return LV; 2432 } 2433 2434 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2435 // Can only get l-value for message expression returning aggregate type 2436 RValue RV = EmitAnyExprToTemp(E); 2437 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2438 } 2439 2440 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2441 ReturnValueSlot ReturnValue, 2442 CallExpr::const_arg_iterator ArgBeg, 2443 CallExpr::const_arg_iterator ArgEnd, 2444 const Decl *TargetDecl) { 2445 // Get the actual function type. The callee type will always be a pointer to 2446 // function type or a block pointer type. 2447 assert(CalleeType->isFunctionPointerType() && 2448 "Call must have function pointer type!"); 2449 2450 CalleeType = getContext().getCanonicalType(CalleeType); 2451 2452 const FunctionType *FnType 2453 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2454 2455 CallArgList Args; 2456 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2457 2458 const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(Args, FnType); 2459 2460 // C99 6.5.2.2p6: 2461 // If the expression that denotes the called function has a type 2462 // that does not include a prototype, [the default argument 2463 // promotions are performed]. If the number of arguments does not 2464 // equal the number of parameters, the behavior is undefined. If 2465 // the function is defined with a type that includes a prototype, 2466 // and either the prototype ends with an ellipsis (, ...) or the 2467 // types of the arguments after promotion are not compatible with 2468 // the types of the parameters, the behavior is undefined. If the 2469 // function is defined with a type that does not include a 2470 // prototype, and the types of the arguments after promotion are 2471 // not compatible with those of the parameters after promotion, 2472 // the behavior is undefined [except in some trivial cases]. 2473 // That is, in the general case, we should assume that a call 2474 // through an unprototyped function type works like a *non-variadic* 2475 // call. The way we make this work is to cast to the exact type 2476 // of the promoted arguments. 2477 if (isa<FunctionNoProtoType>(FnType) && 2478 !getTargetHooks().isNoProtoCallVariadic(FnInfo)) { 2479 assert(cast<llvm::FunctionType>(Callee->getType()->getContainedType(0)) 2480 ->isVarArg()); 2481 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo, false); 2482 CalleeTy = CalleeTy->getPointerTo(); 2483 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2484 } 2485 2486 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2487 } 2488 2489 LValue CodeGenFunction:: 2490 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2491 llvm::Value *BaseV; 2492 if (E->getOpcode() == BO_PtrMemI) 2493 BaseV = EmitScalarExpr(E->getLHS()); 2494 else 2495 BaseV = EmitLValue(E->getLHS()).getAddress(); 2496 2497 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2498 2499 const MemberPointerType *MPT 2500 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2501 2502 llvm::Value *AddV = 2503 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2504 2505 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2506 } 2507 2508 static void 2509 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2510 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2511 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2512 if (E->isCmpXChg()) { 2513 // Note that cmpxchg only supports specifying one ordering and 2514 // doesn't support weak cmpxchg, at least at the moment. 2515 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2516 LoadVal1->setAlignment(Align); 2517 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2518 LoadVal2->setAlignment(Align); 2519 llvm::AtomicCmpXchgInst *CXI = 2520 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2521 CXI->setVolatile(E->isVolatile()); 2522 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2523 StoreVal1->setAlignment(Align); 2524 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2525 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2526 return; 2527 } 2528 2529 if (E->getOp() == AtomicExpr::Load) { 2530 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2531 Load->setAtomic(Order); 2532 Load->setAlignment(Size); 2533 Load->setVolatile(E->isVolatile()); 2534 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2535 StoreDest->setAlignment(Align); 2536 return; 2537 } 2538 2539 if (E->getOp() == AtomicExpr::Store) { 2540 assert(!Dest && "Store does not return a value"); 2541 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2542 LoadVal1->setAlignment(Align); 2543 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2544 Store->setAtomic(Order); 2545 Store->setAlignment(Size); 2546 Store->setVolatile(E->isVolatile()); 2547 return; 2548 } 2549 2550 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2551 switch (E->getOp()) { 2552 case AtomicExpr::CmpXchgWeak: 2553 case AtomicExpr::CmpXchgStrong: 2554 case AtomicExpr::Store: 2555 case AtomicExpr::Init: 2556 case AtomicExpr::Load: assert(0 && "Already handled!"); 2557 case AtomicExpr::Add: Op = llvm::AtomicRMWInst::Add; break; 2558 case AtomicExpr::Sub: Op = llvm::AtomicRMWInst::Sub; break; 2559 case AtomicExpr::And: Op = llvm::AtomicRMWInst::And; break; 2560 case AtomicExpr::Or: Op = llvm::AtomicRMWInst::Or; break; 2561 case AtomicExpr::Xor: Op = llvm::AtomicRMWInst::Xor; break; 2562 case AtomicExpr::Xchg: Op = llvm::AtomicRMWInst::Xchg; break; 2563 } 2564 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2565 LoadVal1->setAlignment(Align); 2566 llvm::AtomicRMWInst *RMWI = 2567 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2568 RMWI->setVolatile(E->isVolatile()); 2569 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest); 2570 StoreDest->setAlignment(Align); 2571 } 2572 2573 // This function emits any expression (scalar, complex, or aggregate) 2574 // into a temporary alloca. 2575 static llvm::Value * 2576 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2577 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2578 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2579 /*Init*/ true); 2580 return DeclPtr; 2581 } 2582 2583 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2584 llvm::Value *Dest) { 2585 if (Ty->isAnyComplexType()) 2586 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2587 if (CGF.hasAggregateLLVMType(Ty)) 2588 return RValue::getAggregate(Dest); 2589 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2590 } 2591 2592 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2593 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2594 QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType(); 2595 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2596 uint64_t Size = sizeChars.getQuantity(); 2597 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2598 unsigned Align = alignChars.getQuantity(); 2599 unsigned MaxInlineWidth = 2600 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2601 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2602 2603 2604 2605 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2606 Ptr = EmitScalarExpr(E->getPtr()); 2607 2608 if (E->getOp() == AtomicExpr::Init) { 2609 assert(!Dest && "Init does not return a value"); 2610 Val1 = EmitScalarExpr(E->getVal1()); 2611 llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr); 2612 Store->setAlignment(Size); 2613 Store->setVolatile(E->isVolatile()); 2614 return RValue::get(0); 2615 } 2616 2617 Order = EmitScalarExpr(E->getOrder()); 2618 if (E->isCmpXChg()) { 2619 Val1 = EmitScalarExpr(E->getVal1()); 2620 Val2 = EmitValToTemp(*this, E->getVal2()); 2621 OrderFail = EmitScalarExpr(E->getOrderFail()); 2622 (void)OrderFail; // OrderFail is unused at the moment 2623 } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) && 2624 MemTy->isPointerType()) { 2625 // For pointers, we're required to do a bit of math: adding 1 to an int* 2626 // is not the same as adding 1 to a uintptr_t. 2627 QualType Val1Ty = E->getVal1()->getType(); 2628 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2629 CharUnits PointeeIncAmt = 2630 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2631 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2632 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2633 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2634 } else if (E->getOp() != AtomicExpr::Load) { 2635 Val1 = EmitValToTemp(*this, E->getVal1()); 2636 } 2637 2638 if (E->getOp() != AtomicExpr::Store && !Dest) 2639 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2640 2641 if (UseLibcall) { 2642 // FIXME: Finalize what the libcalls are actually supposed to look like. 2643 // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2644 return EmitUnsupportedRValue(E, "atomic library call"); 2645 } 2646 #if 0 2647 if (UseLibcall) { 2648 const char* LibCallName; 2649 switch (E->getOp()) { 2650 case AtomicExpr::CmpXchgWeak: 2651 LibCallName = "__atomic_compare_exchange_generic"; break; 2652 case AtomicExpr::CmpXchgStrong: 2653 LibCallName = "__atomic_compare_exchange_generic"; break; 2654 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 2655 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 2656 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 2657 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 2658 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 2659 case AtomicExpr::Xchg: LibCallName = "__atomic_exchange_generic"; break; 2660 case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break; 2661 case AtomicExpr::Load: LibCallName = "__atomic_load_generic"; break; 2662 } 2663 llvm::SmallVector<QualType, 4> Params; 2664 CallArgList Args; 2665 QualType RetTy = getContext().VoidTy; 2666 if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg()) 2667 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2668 getContext().VoidPtrTy); 2669 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2670 getContext().VoidPtrTy); 2671 if (E->getOp() != AtomicExpr::Load) 2672 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2673 getContext().VoidPtrTy); 2674 if (E->isCmpXChg()) { 2675 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2676 getContext().VoidPtrTy); 2677 RetTy = getContext().IntTy; 2678 } 2679 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2680 getContext().getSizeType()); 2681 const CGFunctionInfo &FuncInfo = 2682 CGM.getTypes().getFunctionInfo(RetTy, Args, FunctionType::ExtInfo()); 2683 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false); 2684 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 2685 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 2686 if (E->isCmpXChg()) 2687 return Res; 2688 if (E->getOp() == AtomicExpr::Store) 2689 return RValue::get(0); 2690 return ConvertTempToRValue(*this, E->getType(), Dest); 2691 } 2692 #endif 2693 llvm::Type *IPtrTy = 2694 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 2695 llvm::Value *OrigDest = Dest; 2696 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 2697 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 2698 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 2699 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 2700 2701 if (isa<llvm::ConstantInt>(Order)) { 2702 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2703 switch (ord) { 2704 case 0: // memory_order_relaxed 2705 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2706 llvm::Monotonic); 2707 break; 2708 case 1: // memory_order_consume 2709 case 2: // memory_order_acquire 2710 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2711 llvm::Acquire); 2712 break; 2713 case 3: // memory_order_release 2714 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2715 llvm::Release); 2716 break; 2717 case 4: // memory_order_acq_rel 2718 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2719 llvm::AcquireRelease); 2720 break; 2721 case 5: // memory_order_seq_cst 2722 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2723 llvm::SequentiallyConsistent); 2724 break; 2725 default: // invalid order 2726 // We should not ever get here normally, but it's hard to 2727 // enforce that in general. 2728 break; 2729 } 2730 if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init) 2731 return RValue::get(0); 2732 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2733 } 2734 2735 // Long case, when Order isn't obviously constant. 2736 2737 // Create all the relevant BB's 2738 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 2739 *AcqRelBB = 0, *SeqCstBB = 0; 2740 MonotonicBB = createBasicBlock("monotonic", CurFn); 2741 if (E->getOp() != AtomicExpr::Store) 2742 AcquireBB = createBasicBlock("acquire", CurFn); 2743 if (E->getOp() != AtomicExpr::Load) 2744 ReleaseBB = createBasicBlock("release", CurFn); 2745 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) 2746 AcqRelBB = createBasicBlock("acqrel", CurFn); 2747 SeqCstBB = createBasicBlock("seqcst", CurFn); 2748 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 2749 2750 // Create the switch for the split 2751 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 2752 // doesn't matter unless someone is crazy enough to use something that 2753 // doesn't fold to a constant for the ordering. 2754 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 2755 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 2756 2757 // Emit all the different atomics 2758 Builder.SetInsertPoint(MonotonicBB); 2759 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2760 llvm::Monotonic); 2761 Builder.CreateBr(ContBB); 2762 if (E->getOp() != AtomicExpr::Store) { 2763 Builder.SetInsertPoint(AcquireBB); 2764 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2765 llvm::Acquire); 2766 Builder.CreateBr(ContBB); 2767 SI->addCase(Builder.getInt32(1), AcquireBB); 2768 SI->addCase(Builder.getInt32(2), AcquireBB); 2769 } 2770 if (E->getOp() != AtomicExpr::Load) { 2771 Builder.SetInsertPoint(ReleaseBB); 2772 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2773 llvm::Release); 2774 Builder.CreateBr(ContBB); 2775 SI->addCase(Builder.getInt32(3), ReleaseBB); 2776 } 2777 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) { 2778 Builder.SetInsertPoint(AcqRelBB); 2779 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2780 llvm::AcquireRelease); 2781 Builder.CreateBr(ContBB); 2782 SI->addCase(Builder.getInt32(4), AcqRelBB); 2783 } 2784 Builder.SetInsertPoint(SeqCstBB); 2785 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2786 llvm::SequentiallyConsistent); 2787 Builder.CreateBr(ContBB); 2788 SI->addCase(Builder.getInt32(5), SeqCstBB); 2789 2790 // Cleanup and return 2791 Builder.SetInsertPoint(ContBB); 2792 if (E->getOp() == AtomicExpr::Store) 2793 return RValue::get(0); 2794 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2795 } 2796 2797 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2798 unsigned AccuracyD) { 2799 assert(Val->getType()->isFPOrFPVectorTy()); 2800 if (!AccuracyN || !isa<llvm::Instruction>(Val)) 2801 return; 2802 2803 llvm::Value *Vals[2]; 2804 Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN); 2805 Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD); 2806 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals); 2807 2808 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy, 2809 Node); 2810 } 2811 2812 namespace { 2813 struct LValueOrRValue { 2814 LValue LV; 2815 RValue RV; 2816 }; 2817 } 2818 2819 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 2820 const PseudoObjectExpr *E, 2821 bool forLValue, 2822 AggValueSlot slot) { 2823 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2824 2825 // Find the result expression, if any. 2826 const Expr *resultExpr = E->getResultExpr(); 2827 LValueOrRValue result; 2828 2829 for (PseudoObjectExpr::const_semantics_iterator 2830 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2831 const Expr *semantic = *i; 2832 2833 // If this semantic expression is an opaque value, bind it 2834 // to the result of its source expression. 2835 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2836 2837 // If this is the result expression, we may need to evaluate 2838 // directly into the slot. 2839 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2840 OVMA opaqueData; 2841 if (ov == resultExpr && ov->isRValue() && !forLValue && 2842 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 2843 !ov->getType()->isAnyComplexType()) { 2844 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 2845 2846 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 2847 opaqueData = OVMA::bind(CGF, ov, LV); 2848 result.RV = slot.asRValue(); 2849 2850 // Otherwise, emit as normal. 2851 } else { 2852 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2853 2854 // If this is the result, also evaluate the result now. 2855 if (ov == resultExpr) { 2856 if (forLValue) 2857 result.LV = CGF.EmitLValue(ov); 2858 else 2859 result.RV = CGF.EmitAnyExpr(ov, slot); 2860 } 2861 } 2862 2863 opaques.push_back(opaqueData); 2864 2865 // Otherwise, if the expression is the result, evaluate it 2866 // and remember the result. 2867 } else if (semantic == resultExpr) { 2868 if (forLValue) 2869 result.LV = CGF.EmitLValue(semantic); 2870 else 2871 result.RV = CGF.EmitAnyExpr(semantic, slot); 2872 2873 // Otherwise, evaluate the expression in an ignored context. 2874 } else { 2875 CGF.EmitIgnoredExpr(semantic); 2876 } 2877 } 2878 2879 // Unbind all the opaques now. 2880 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2881 opaques[i].unbind(CGF); 2882 2883 return result; 2884 } 2885 2886 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 2887 AggValueSlot slot) { 2888 return emitPseudoObjectExpr(*this, E, false, slot).RV; 2889 } 2890 2891 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 2892 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 2893 } 2894