1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getQuantity());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::Constant *CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
344                                                StructorType::Complete);
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getQuantity());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->GetTemporaryExpr();
421 
422   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
423           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
424          "Reference should never be pseudo-strong!");
425 
426   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427   // as that will cause the lifetime adjustment to be lost for ARC
428   auto ownership = M->getType().getObjCLifetime();
429   if (ownership != Qualifiers::OCL_None &&
430       ownership != Qualifiers::OCL_ExplicitNone) {
431     Address Object = createReferenceTemporary(*this, M, E);
432     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433       Object = Address(llvm::ConstantExpr::getBitCast(Var,
434                            ConvertTypeForMem(E->getType())
435                              ->getPointerTo(Object.getAddressSpace())),
436                        Object.getAlignment());
437 
438       // createReferenceTemporary will promote the temporary to a global with a
439       // constant initializer if it can.  It can only do this to a value of
440       // ARC-manageable type if the value is global and therefore "immune" to
441       // ref-counting operations.  Therefore we have no need to emit either a
442       // dynamic initialization or a cleanup and we can just return the address
443       // of the temporary.
444       if (Var->hasInitializer())
445         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446 
447       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448     }
449     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450                                        AlignmentSource::Decl);
451 
452     switch (getEvaluationKind(E->getType())) {
453     default: llvm_unreachable("expected scalar or aggregate expression");
454     case TEK_Scalar:
455       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456       break;
457     case TEK_Aggregate: {
458       EmitAggExpr(E, AggValueSlot::forAddr(Object,
459                                            E->getType().getQualifiers(),
460                                            AggValueSlot::IsDestructed,
461                                            AggValueSlot::DoesNotNeedGCBarriers,
462                                            AggValueSlot::IsNotAliased,
463                                            AggValueSlot::DoesNotOverlap));
464       break;
465     }
466     }
467 
468     pushTemporaryCleanup(*this, M, E, Object);
469     return RefTempDst;
470   }
471 
472   SmallVector<const Expr *, 2> CommaLHSs;
473   SmallVector<SubobjectAdjustment, 2> Adjustments;
474   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475 
476   for (const auto &Ignored : CommaLHSs)
477     EmitIgnoredExpr(Ignored);
478 
479   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480     if (opaque->getType()->isRecordType()) {
481       assert(Adjustments.empty());
482       return EmitOpaqueValueLValue(opaque);
483     }
484   }
485 
486   // Create and initialize the reference temporary.
487   Address Alloca = Address::invalid();
488   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490           Object.getPointer()->stripPointerCasts())) {
491     Object = Address(llvm::ConstantExpr::getBitCast(
492                          cast<llvm::Constant>(Object.getPointer()),
493                          ConvertTypeForMem(E->getType())->getPointerTo()),
494                      Object.getAlignment());
495     // If the temporary is a global and has a constant initializer or is a
496     // constant temporary that we promoted to a global, we may have already
497     // initialized it.
498     if (!Var->hasInitializer()) {
499       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501     }
502   } else {
503     switch (M->getStorageDuration()) {
504     case SD_Automatic:
505       if (auto *Size = EmitLifetimeStart(
506               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507               Alloca.getPointer())) {
508         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509                                                   Alloca, Size);
510       }
511       break;
512 
513     case SD_FullExpression: {
514       if (!ShouldEmitLifetimeMarkers)
515         break;
516 
517       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518       // marker. Instead, start the lifetime of a conditional temporary earlier
519       // so that it's unconditional. Don't do this in ASan's use-after-scope
520       // mode so that it gets the more precise lifetime marks. If the type has
521       // a non-trivial destructor, we'll have a cleanup block for it anyway,
522       // so this typically doesn't help; skip it in that case.
523       ConditionalEvaluation *OldConditional = nullptr;
524       CGBuilderTy::InsertPoint OldIP;
525       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
526           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527         OldConditional = OutermostConditional;
528         OutermostConditional = nullptr;
529 
530         OldIP = Builder.saveIP();
531         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532         Builder.restoreIP(CGBuilderTy::InsertPoint(
533             Block, llvm::BasicBlock::iterator(Block->back())));
534       }
535 
536       if (auto *Size = EmitLifetimeStart(
537               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538               Alloca.getPointer())) {
539         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540                                              Size);
541       }
542 
543       if (OldConditional) {
544         OutermostConditional = OldConditional;
545         Builder.restoreIP(OldIP);
546       }
547       break;
548     }
549 
550     default:
551       break;
552     }
553     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554   }
555   pushTemporaryCleanup(*this, M, E, Object);
556 
557   // Perform derived-to-base casts and/or field accesses, to get from the
558   // temporary object we created (and, potentially, for which we extended
559   // the lifetime) to the subobject we're binding the reference to.
560   for (unsigned I = Adjustments.size(); I != 0; --I) {
561     SubobjectAdjustment &Adjustment = Adjustments[I-1];
562     switch (Adjustment.Kind) {
563     case SubobjectAdjustment::DerivedToBaseAdjustment:
564       Object =
565           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566                                 Adjustment.DerivedToBase.BasePath->path_begin(),
567                                 Adjustment.DerivedToBase.BasePath->path_end(),
568                                 /*NullCheckValue=*/ false, E->getExprLoc());
569       break;
570 
571     case SubobjectAdjustment::FieldAdjustment: {
572       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573       LV = EmitLValueForField(LV, Adjustment.Field);
574       assert(LV.isSimple() &&
575              "materialized temporary field is not a simple lvalue");
576       Object = LV.getAddress();
577       break;
578     }
579 
580     case SubobjectAdjustment::MemberPointerAdjustment: {
581       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583                                                Adjustment.Ptr.MPT);
584       break;
585     }
586     }
587   }
588 
589   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590 }
591 
592 RValue
593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594   // Emit the expression as an lvalue.
595   LValue LV = EmitLValue(E);
596   assert(LV.isSimple());
597   llvm::Value *Value = LV.getPointer();
598 
599   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600     // C++11 [dcl.ref]p5 (as amended by core issue 453):
601     //   If a glvalue to which a reference is directly bound designates neither
602     //   an existing object or function of an appropriate type nor a region of
603     //   storage of suitable size and alignment to contain an object of the
604     //   reference's type, the behavior is undefined.
605     QualType Ty = E->getType();
606     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607   }
608 
609   return RValue::get(Value);
610 }
611 
612 
613 /// getAccessedFieldNo - Given an encoded value and a result number, return the
614 /// input field number being accessed.
615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616                                              const llvm::Constant *Elts) {
617   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618       ->getZExtValue();
619 }
620 
621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623                                     llvm::Value *High) {
624   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625   llvm::Value *K47 = Builder.getInt64(47);
626   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630   return Builder.CreateMul(B1, KMul);
631 }
632 
633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636 }
637 
638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644 }
645 
646 bool CodeGenFunction::sanitizePerformTypeCheck() const {
647   return SanOpts.has(SanitizerKind::Null) |
648          SanOpts.has(SanitizerKind::Alignment) |
649          SanOpts.has(SanitizerKind::ObjectSize) |
650          SanOpts.has(SanitizerKind::Vptr);
651 }
652 
653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654                                     llvm::Value *Ptr, QualType Ty,
655                                     CharUnits Alignment,
656                                     SanitizerSet SkippedChecks) {
657   if (!sanitizePerformTypeCheck())
658     return;
659 
660   // Don't check pointers outside the default address space. The null check
661   // isn't correct, the object-size check isn't supported by LLVM, and we can't
662   // communicate the addresses to the runtime handler for the vptr check.
663   if (Ptr->getType()->getPointerAddressSpace())
664     return;
665 
666   // Don't check pointers to volatile data. The behavior here is implementation-
667   // defined.
668   if (Ty.isVolatileQualified())
669     return;
670 
671   SanitizerScope SanScope(this);
672 
673   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
674   llvm::BasicBlock *Done = nullptr;
675 
676   // Quickly determine whether we have a pointer to an alloca. It's possible
677   // to skip null checks, and some alignment checks, for these pointers. This
678   // can reduce compile-time significantly.
679   auto PtrToAlloca =
680       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
715 
716     // The glvalue must refer to a large enough storage region.
717     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
718     //        to check this.
719     // FIXME: Get object address space
720     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
721     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
722     llvm::Value *Min = Builder.getFalse();
723     llvm::Value *NullIsUnknown = Builder.getFalse();
724     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
725     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
726         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
727         llvm::ConstantInt::get(IntPtrTy, Size));
728     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
729   }
730 
731   uint64_t AlignVal = 0;
732   llvm::Value *PtrAsInt = nullptr;
733 
734   if (SanOpts.has(SanitizerKind::Alignment) &&
735       !SkippedChecks.has(SanitizerKind::Alignment)) {
736     AlignVal = Alignment.getQuantity();
737     if (!Ty->isIncompleteType() && !AlignVal)
738       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
739 
740     // The glvalue must be suitably aligned.
741     if (AlignVal > 1 &&
742         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
743       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
744       llvm::Value *Align = Builder.CreateAnd(
745           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
746       llvm::Value *Aligned =
747           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
748       if (Aligned != True)
749         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
750     }
751   }
752 
753   if (Checks.size() > 0) {
754     // Make sure we're not losing information. Alignment needs to be a power of
755     // 2
756     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
757     llvm::Constant *StaticData[] = {
758         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
759         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
760         llvm::ConstantInt::get(Int8Ty, TCK)};
761     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
762               PtrAsInt ? PtrAsInt : Ptr);
763   }
764 
765   // If possible, check that the vptr indicates that there is a subobject of
766   // type Ty at offset zero within this object.
767   //
768   // C++11 [basic.life]p5,6:
769   //   [For storage which does not refer to an object within its lifetime]
770   //   The program has undefined behavior if:
771   //    -- the [pointer or glvalue] is used to access a non-static data member
772   //       or call a non-static member function
773   if (SanOpts.has(SanitizerKind::Vptr) &&
774       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
775     // Ensure that the pointer is non-null before loading it. If there is no
776     // compile-time guarantee, reuse the run-time null check or emit a new one.
777     if (!IsGuaranteedNonNull) {
778       if (!IsNonNull)
779         IsNonNull = Builder.CreateIsNotNull(Ptr);
780       if (!Done)
781         Done = createBasicBlock("vptr.null");
782       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
783       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
784       EmitBlock(VptrNotNull);
785     }
786 
787     // Compute a hash of the mangled name of the type.
788     //
789     // FIXME: This is not guaranteed to be deterministic! Move to a
790     //        fingerprinting mechanism once LLVM provides one. For the time
791     //        being the implementation happens to be deterministic.
792     SmallString<64> MangledName;
793     llvm::raw_svector_ostream Out(MangledName);
794     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
795                                                      Out);
796 
797     // Blacklist based on the mangled type.
798     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
799             SanitizerKind::Vptr, Out.str())) {
800       llvm::hash_code TypeHash = hash_value(Out.str());
801 
802       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
803       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
804       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
805       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
806       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
807       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
808 
809       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
810       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
811 
812       // Look the hash up in our cache.
813       const int CacheSize = 128;
814       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
815       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
816                                                      "__ubsan_vptr_type_cache");
817       llvm::Value *Slot = Builder.CreateAnd(Hash,
818                                             llvm::ConstantInt::get(IntPtrTy,
819                                                                    CacheSize-1));
820       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
821       llvm::Value *CacheVal =
822         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
823                                   getPointerAlign());
824 
825       // If the hash isn't in the cache, call a runtime handler to perform the
826       // hard work of checking whether the vptr is for an object of the right
827       // type. This will either fill in the cache and return, or produce a
828       // diagnostic.
829       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
830       llvm::Constant *StaticData[] = {
831         EmitCheckSourceLocation(Loc),
832         EmitCheckTypeDescriptor(Ty),
833         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
834         llvm::ConstantInt::get(Int8Ty, TCK)
835       };
836       llvm::Value *DynamicData[] = { Ptr, Hash };
837       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
838                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
839                 DynamicData);
840     }
841   }
842 
843   if (Done) {
844     Builder.CreateBr(Done);
845     EmitBlock(Done);
846   }
847 }
848 
849 /// Determine whether this expression refers to a flexible array member in a
850 /// struct. We disable array bounds checks for such members.
851 static bool isFlexibleArrayMemberExpr(const Expr *E) {
852   // For compatibility with existing code, we treat arrays of length 0 or
853   // 1 as flexible array members.
854   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
855   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
856     if (CAT->getSize().ugt(1))
857       return false;
858   } else if (!isa<IncompleteArrayType>(AT))
859     return false;
860 
861   E = E->IgnoreParens();
862 
863   // A flexible array member must be the last member in the class.
864   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
865     // FIXME: If the base type of the member expr is not FD->getParent(),
866     // this should not be treated as a flexible array member access.
867     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
868       RecordDecl::field_iterator FI(
869           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
870       return ++FI == FD->getParent()->field_end();
871     }
872   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
873     return IRE->getDecl()->getNextIvar() == nullptr;
874   }
875 
876   return false;
877 }
878 
879 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
880                                                    QualType EltTy) {
881   ASTContext &C = getContext();
882   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
883   if (!EltSize)
884     return nullptr;
885 
886   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
887   if (!ArrayDeclRef)
888     return nullptr;
889 
890   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
891   if (!ParamDecl)
892     return nullptr;
893 
894   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
895   if (!POSAttr)
896     return nullptr;
897 
898   // Don't load the size if it's a lower bound.
899   int POSType = POSAttr->getType();
900   if (POSType != 0 && POSType != 1)
901     return nullptr;
902 
903   // Find the implicit size parameter.
904   auto PassedSizeIt = SizeArguments.find(ParamDecl);
905   if (PassedSizeIt == SizeArguments.end())
906     return nullptr;
907 
908   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
909   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
910   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
911   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
912                                               C.getSizeType(), E->getExprLoc());
913   llvm::Value *SizeOfElement =
914       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
915   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
916 }
917 
918 /// If Base is known to point to the start of an array, return the length of
919 /// that array. Return 0 if the length cannot be determined.
920 static llvm::Value *getArrayIndexingBound(
921     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
922   // For the vector indexing extension, the bound is the number of elements.
923   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
924     IndexedType = Base->getType();
925     return CGF.Builder.getInt32(VT->getNumElements());
926   }
927 
928   Base = Base->IgnoreParens();
929 
930   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
931     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
932         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
933       IndexedType = CE->getSubExpr()->getType();
934       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
935       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
936         return CGF.Builder.getInt(CAT->getSize());
937       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
938         return CGF.getVLASize(VAT).NumElts;
939       // Ignore pass_object_size here. It's not applicable on decayed pointers.
940     }
941   }
942 
943   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
944   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
945     IndexedType = Base->getType();
946     return POS;
947   }
948 
949   return nullptr;
950 }
951 
952 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
953                                       llvm::Value *Index, QualType IndexType,
954                                       bool Accessed) {
955   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
956          "should not be called unless adding bounds checks");
957   SanitizerScope SanScope(this);
958 
959   QualType IndexedType;
960   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
961   if (!Bound)
962     return;
963 
964   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
965   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
966   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
967 
968   llvm::Constant *StaticData[] = {
969     EmitCheckSourceLocation(E->getExprLoc()),
970     EmitCheckTypeDescriptor(IndexedType),
971     EmitCheckTypeDescriptor(IndexType)
972   };
973   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
974                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
975   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
976             SanitizerHandler::OutOfBounds, StaticData, Index);
977 }
978 
979 
980 CodeGenFunction::ComplexPairTy CodeGenFunction::
981 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
982                          bool isInc, bool isPre) {
983   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
984 
985   llvm::Value *NextVal;
986   if (isa<llvm::IntegerType>(InVal.first->getType())) {
987     uint64_t AmountVal = isInc ? 1 : -1;
988     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
989 
990     // Add the inc/dec to the real part.
991     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
992   } else {
993     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
994     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
995     if (!isInc)
996       FVal.changeSign();
997     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
998 
999     // Add the inc/dec to the real part.
1000     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1001   }
1002 
1003   ComplexPairTy IncVal(NextVal, InVal.second);
1004 
1005   // Store the updated result through the lvalue.
1006   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1007 
1008   // If this is a postinc, return the value read from memory, otherwise use the
1009   // updated value.
1010   return isPre ? IncVal : InVal;
1011 }
1012 
1013 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1014                                              CodeGenFunction *CGF) {
1015   // Bind VLAs in the cast type.
1016   if (CGF && E->getType()->isVariablyModifiedType())
1017     CGF->EmitVariablyModifiedType(E->getType());
1018 
1019   if (CGDebugInfo *DI = getModuleDebugInfo())
1020     DI->EmitExplicitCastType(E->getType());
1021 }
1022 
1023 //===----------------------------------------------------------------------===//
1024 //                         LValue Expression Emission
1025 //===----------------------------------------------------------------------===//
1026 
1027 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1028 /// derive a more accurate bound on the alignment of the pointer.
1029 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1030                                                   LValueBaseInfo *BaseInfo,
1031                                                   TBAAAccessInfo *TBAAInfo) {
1032   // We allow this with ObjC object pointers because of fragile ABIs.
1033   assert(E->getType()->isPointerType() ||
1034          E->getType()->isObjCObjectPointerType());
1035   E = E->IgnoreParens();
1036 
1037   // Casts:
1038   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1039     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1040       CGM.EmitExplicitCastExprType(ECE, this);
1041 
1042     switch (CE->getCastKind()) {
1043     // Non-converting casts (but not C's implicit conversion from void*).
1044     case CK_BitCast:
1045     case CK_NoOp:
1046     case CK_AddressSpaceConversion:
1047       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1048         if (PtrTy->getPointeeType()->isVoidType())
1049           break;
1050 
1051         LValueBaseInfo InnerBaseInfo;
1052         TBAAAccessInfo InnerTBAAInfo;
1053         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1054                                                 &InnerBaseInfo,
1055                                                 &InnerTBAAInfo);
1056         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1057         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1058 
1059         if (isa<ExplicitCastExpr>(CE)) {
1060           LValueBaseInfo TargetTypeBaseInfo;
1061           TBAAAccessInfo TargetTypeTBAAInfo;
1062           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1063                                                            &TargetTypeBaseInfo,
1064                                                            &TargetTypeTBAAInfo);
1065           if (TBAAInfo)
1066             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1067                                                  TargetTypeTBAAInfo);
1068           // If the source l-value is opaque, honor the alignment of the
1069           // casted-to type.
1070           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1071             if (BaseInfo)
1072               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1073             Addr = Address(Addr.getPointer(), Align);
1074           }
1075         }
1076 
1077         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1078             CE->getCastKind() == CK_BitCast) {
1079           if (auto PT = E->getType()->getAs<PointerType>())
1080             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1081                                       /*MayBeNull=*/true,
1082                                       CodeGenFunction::CFITCK_UnrelatedCast,
1083                                       CE->getBeginLoc());
1084         }
1085         return CE->getCastKind() != CK_AddressSpaceConversion
1086                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1087                    : Builder.CreateAddrSpaceCast(Addr,
1088                                                  ConvertType(E->getType()));
1089       }
1090       break;
1091 
1092     // Array-to-pointer decay.
1093     case CK_ArrayToPointerDecay:
1094       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1095 
1096     // Derived-to-base conversions.
1097     case CK_UncheckedDerivedToBase:
1098     case CK_DerivedToBase: {
1099       // TODO: Support accesses to members of base classes in TBAA. For now, we
1100       // conservatively pretend that the complete object is of the base class
1101       // type.
1102       if (TBAAInfo)
1103         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1104       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1105       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1106       return GetAddressOfBaseClass(Addr, Derived,
1107                                    CE->path_begin(), CE->path_end(),
1108                                    ShouldNullCheckClassCastValue(CE),
1109                                    CE->getExprLoc());
1110     }
1111 
1112     // TODO: Is there any reason to treat base-to-derived conversions
1113     // specially?
1114     default:
1115       break;
1116     }
1117   }
1118 
1119   // Unary &.
1120   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1121     if (UO->getOpcode() == UO_AddrOf) {
1122       LValue LV = EmitLValue(UO->getSubExpr());
1123       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1124       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1125       return LV.getAddress();
1126     }
1127   }
1128 
1129   // TODO: conditional operators, comma.
1130 
1131   // Otherwise, use the alignment of the type.
1132   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1133                                                    TBAAInfo);
1134   return Address(EmitScalarExpr(E), Align);
1135 }
1136 
1137 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1138   if (Ty->isVoidType())
1139     return RValue::get(nullptr);
1140 
1141   switch (getEvaluationKind(Ty)) {
1142   case TEK_Complex: {
1143     llvm::Type *EltTy =
1144       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1145     llvm::Value *U = llvm::UndefValue::get(EltTy);
1146     return RValue::getComplex(std::make_pair(U, U));
1147   }
1148 
1149   // If this is a use of an undefined aggregate type, the aggregate must have an
1150   // identifiable address.  Just because the contents of the value are undefined
1151   // doesn't mean that the address can't be taken and compared.
1152   case TEK_Aggregate: {
1153     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1154     return RValue::getAggregate(DestPtr);
1155   }
1156 
1157   case TEK_Scalar:
1158     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1159   }
1160   llvm_unreachable("bad evaluation kind");
1161 }
1162 
1163 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1164                                               const char *Name) {
1165   ErrorUnsupported(E, Name);
1166   return GetUndefRValue(E->getType());
1167 }
1168 
1169 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1170                                               const char *Name) {
1171   ErrorUnsupported(E, Name);
1172   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1173   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1174                         E->getType());
1175 }
1176 
1177 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1178   const Expr *Base = Obj;
1179   while (!isa<CXXThisExpr>(Base)) {
1180     // The result of a dynamic_cast can be null.
1181     if (isa<CXXDynamicCastExpr>(Base))
1182       return false;
1183 
1184     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1185       Base = CE->getSubExpr();
1186     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1187       Base = PE->getSubExpr();
1188     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1189       if (UO->getOpcode() == UO_Extension)
1190         Base = UO->getSubExpr();
1191       else
1192         return false;
1193     } else {
1194       return false;
1195     }
1196   }
1197   return true;
1198 }
1199 
1200 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1201   LValue LV;
1202   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1203     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1204   else
1205     LV = EmitLValue(E);
1206   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1207     SanitizerSet SkippedChecks;
1208     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1209       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1210       if (IsBaseCXXThis)
1211         SkippedChecks.set(SanitizerKind::Alignment, true);
1212       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1213         SkippedChecks.set(SanitizerKind::Null, true);
1214     }
1215     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1216                   E->getType(), LV.getAlignment(), SkippedChecks);
1217   }
1218   return LV;
1219 }
1220 
1221 /// EmitLValue - Emit code to compute a designator that specifies the location
1222 /// of the expression.
1223 ///
1224 /// This can return one of two things: a simple address or a bitfield reference.
1225 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1226 /// an LLVM pointer type.
1227 ///
1228 /// If this returns a bitfield reference, nothing about the pointee type of the
1229 /// LLVM value is known: For example, it may not be a pointer to an integer.
1230 ///
1231 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1232 /// this method guarantees that the returned pointer type will point to an LLVM
1233 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1234 /// length type, this is not possible.
1235 ///
1236 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1237   ApplyDebugLocation DL(*this, E);
1238   switch (E->getStmtClass()) {
1239   default: return EmitUnsupportedLValue(E, "l-value expression");
1240 
1241   case Expr::ObjCPropertyRefExprClass:
1242     llvm_unreachable("cannot emit a property reference directly");
1243 
1244   case Expr::ObjCSelectorExprClass:
1245     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1246   case Expr::ObjCIsaExprClass:
1247     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1248   case Expr::BinaryOperatorClass:
1249     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1250   case Expr::CompoundAssignOperatorClass: {
1251     QualType Ty = E->getType();
1252     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1253       Ty = AT->getValueType();
1254     if (!Ty->isAnyComplexType())
1255       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1256     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1257   }
1258   case Expr::CallExprClass:
1259   case Expr::CXXMemberCallExprClass:
1260   case Expr::CXXOperatorCallExprClass:
1261   case Expr::UserDefinedLiteralClass:
1262     return EmitCallExprLValue(cast<CallExpr>(E));
1263   case Expr::VAArgExprClass:
1264     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1265   case Expr::DeclRefExprClass:
1266     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1267   case Expr::ConstantExprClass:
1268     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1269   case Expr::ParenExprClass:
1270     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1271   case Expr::GenericSelectionExprClass:
1272     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1273   case Expr::PredefinedExprClass:
1274     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1275   case Expr::StringLiteralClass:
1276     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1277   case Expr::ObjCEncodeExprClass:
1278     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1279   case Expr::PseudoObjectExprClass:
1280     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1281   case Expr::InitListExprClass:
1282     return EmitInitListLValue(cast<InitListExpr>(E));
1283   case Expr::CXXTemporaryObjectExprClass:
1284   case Expr::CXXConstructExprClass:
1285     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1286   case Expr::CXXBindTemporaryExprClass:
1287     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1288   case Expr::CXXUuidofExprClass:
1289     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1290 
1291   case Expr::ExprWithCleanupsClass: {
1292     const auto *cleanups = cast<ExprWithCleanups>(E);
1293     enterFullExpression(cleanups);
1294     RunCleanupsScope Scope(*this);
1295     LValue LV = EmitLValue(cleanups->getSubExpr());
1296     if (LV.isSimple()) {
1297       // Defend against branches out of gnu statement expressions surrounded by
1298       // cleanups.
1299       llvm::Value *V = LV.getPointer();
1300       Scope.ForceCleanup({&V});
1301       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1302                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1303     }
1304     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1305     // bitfield lvalue or some other non-simple lvalue?
1306     return LV;
1307   }
1308 
1309   case Expr::CXXDefaultArgExprClass:
1310     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1311   case Expr::CXXDefaultInitExprClass: {
1312     CXXDefaultInitExprScope Scope(*this);
1313     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1314   }
1315   case Expr::CXXTypeidExprClass:
1316     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1317 
1318   case Expr::ObjCMessageExprClass:
1319     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1320   case Expr::ObjCIvarRefExprClass:
1321     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1322   case Expr::StmtExprClass:
1323     return EmitStmtExprLValue(cast<StmtExpr>(E));
1324   case Expr::UnaryOperatorClass:
1325     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1326   case Expr::ArraySubscriptExprClass:
1327     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1328   case Expr::OMPArraySectionExprClass:
1329     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1330   case Expr::ExtVectorElementExprClass:
1331     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1332   case Expr::MemberExprClass:
1333     return EmitMemberExpr(cast<MemberExpr>(E));
1334   case Expr::CompoundLiteralExprClass:
1335     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1336   case Expr::ConditionalOperatorClass:
1337     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1338   case Expr::BinaryConditionalOperatorClass:
1339     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1340   case Expr::ChooseExprClass:
1341     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1342   case Expr::OpaqueValueExprClass:
1343     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1344   case Expr::SubstNonTypeTemplateParmExprClass:
1345     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1346   case Expr::ImplicitCastExprClass:
1347   case Expr::CStyleCastExprClass:
1348   case Expr::CXXFunctionalCastExprClass:
1349   case Expr::CXXStaticCastExprClass:
1350   case Expr::CXXDynamicCastExprClass:
1351   case Expr::CXXReinterpretCastExprClass:
1352   case Expr::CXXConstCastExprClass:
1353   case Expr::ObjCBridgedCastExprClass:
1354     return EmitCastLValue(cast<CastExpr>(E));
1355 
1356   case Expr::MaterializeTemporaryExprClass:
1357     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1358 
1359   case Expr::CoawaitExprClass:
1360     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1361   case Expr::CoyieldExprClass:
1362     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1363   }
1364 }
1365 
1366 /// Given an object of the given canonical type, can we safely copy a
1367 /// value out of it based on its initializer?
1368 static bool isConstantEmittableObjectType(QualType type) {
1369   assert(type.isCanonical());
1370   assert(!type->isReferenceType());
1371 
1372   // Must be const-qualified but non-volatile.
1373   Qualifiers qs = type.getLocalQualifiers();
1374   if (!qs.hasConst() || qs.hasVolatile()) return false;
1375 
1376   // Otherwise, all object types satisfy this except C++ classes with
1377   // mutable subobjects or non-trivial copy/destroy behavior.
1378   if (const auto *RT = dyn_cast<RecordType>(type))
1379     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1380       if (RD->hasMutableFields() || !RD->isTrivial())
1381         return false;
1382 
1383   return true;
1384 }
1385 
1386 /// Can we constant-emit a load of a reference to a variable of the
1387 /// given type?  This is different from predicates like
1388 /// Decl::isUsableInConstantExpressions because we do want it to apply
1389 /// in situations that don't necessarily satisfy the language's rules
1390 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1391 /// to do this with const float variables even if those variables
1392 /// aren't marked 'constexpr'.
1393 enum ConstantEmissionKind {
1394   CEK_None,
1395   CEK_AsReferenceOnly,
1396   CEK_AsValueOrReference,
1397   CEK_AsValueOnly
1398 };
1399 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1400   type = type.getCanonicalType();
1401   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1402     if (isConstantEmittableObjectType(ref->getPointeeType()))
1403       return CEK_AsValueOrReference;
1404     return CEK_AsReferenceOnly;
1405   }
1406   if (isConstantEmittableObjectType(type))
1407     return CEK_AsValueOnly;
1408   return CEK_None;
1409 }
1410 
1411 /// Try to emit a reference to the given value without producing it as
1412 /// an l-value.  This is actually more than an optimization: we can't
1413 /// produce an l-value for variables that we never actually captured
1414 /// in a block or lambda, which means const int variables or constexpr
1415 /// literals or similar.
1416 CodeGenFunction::ConstantEmission
1417 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1418   ValueDecl *value = refExpr->getDecl();
1419 
1420   // The value needs to be an enum constant or a constant variable.
1421   ConstantEmissionKind CEK;
1422   if (isa<ParmVarDecl>(value)) {
1423     CEK = CEK_None;
1424   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1425     CEK = checkVarTypeForConstantEmission(var->getType());
1426   } else if (isa<EnumConstantDecl>(value)) {
1427     CEK = CEK_AsValueOnly;
1428   } else {
1429     CEK = CEK_None;
1430   }
1431   if (CEK == CEK_None) return ConstantEmission();
1432 
1433   Expr::EvalResult result;
1434   bool resultIsReference;
1435   QualType resultType;
1436 
1437   // It's best to evaluate all the way as an r-value if that's permitted.
1438   if (CEK != CEK_AsReferenceOnly &&
1439       refExpr->EvaluateAsRValue(result, getContext())) {
1440     resultIsReference = false;
1441     resultType = refExpr->getType();
1442 
1443   // Otherwise, try to evaluate as an l-value.
1444   } else if (CEK != CEK_AsValueOnly &&
1445              refExpr->EvaluateAsLValue(result, getContext())) {
1446     resultIsReference = true;
1447     resultType = value->getType();
1448 
1449   // Failure.
1450   } else {
1451     return ConstantEmission();
1452   }
1453 
1454   // In any case, if the initializer has side-effects, abandon ship.
1455   if (result.HasSideEffects)
1456     return ConstantEmission();
1457 
1458   // Emit as a constant.
1459   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1460                                                result.Val, resultType);
1461 
1462   // Make sure we emit a debug reference to the global variable.
1463   // This should probably fire even for
1464   if (isa<VarDecl>(value)) {
1465     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1466       EmitDeclRefExprDbgValue(refExpr, result.Val);
1467   } else {
1468     assert(isa<EnumConstantDecl>(value));
1469     EmitDeclRefExprDbgValue(refExpr, result.Val);
1470   }
1471 
1472   // If we emitted a reference constant, we need to dereference that.
1473   if (resultIsReference)
1474     return ConstantEmission::forReference(C);
1475 
1476   return ConstantEmission::forValue(C);
1477 }
1478 
1479 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1480                                                         const MemberExpr *ME) {
1481   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1482     // Try to emit static variable member expressions as DREs.
1483     return DeclRefExpr::Create(
1484         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1485         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1486         ME->getType(), ME->getValueKind());
1487   }
1488   return nullptr;
1489 }
1490 
1491 CodeGenFunction::ConstantEmission
1492 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1493   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1494     return tryEmitAsConstant(DRE);
1495   return ConstantEmission();
1496 }
1497 
1498 llvm::Value *CodeGenFunction::emitScalarConstant(
1499     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1500   assert(Constant && "not a constant");
1501   if (Constant.isReference())
1502     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1503                             E->getExprLoc())
1504         .getScalarVal();
1505   return Constant.getValue();
1506 }
1507 
1508 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1509                                                SourceLocation Loc) {
1510   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1511                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1512                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1513 }
1514 
1515 static bool hasBooleanRepresentation(QualType Ty) {
1516   if (Ty->isBooleanType())
1517     return true;
1518 
1519   if (const EnumType *ET = Ty->getAs<EnumType>())
1520     return ET->getDecl()->getIntegerType()->isBooleanType();
1521 
1522   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1523     return hasBooleanRepresentation(AT->getValueType());
1524 
1525   return false;
1526 }
1527 
1528 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1529                             llvm::APInt &Min, llvm::APInt &End,
1530                             bool StrictEnums, bool IsBool) {
1531   const EnumType *ET = Ty->getAs<EnumType>();
1532   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1533                                 ET && !ET->getDecl()->isFixed();
1534   if (!IsBool && !IsRegularCPlusPlusEnum)
1535     return false;
1536 
1537   if (IsBool) {
1538     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1539     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1540   } else {
1541     const EnumDecl *ED = ET->getDecl();
1542     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1543     unsigned Bitwidth = LTy->getScalarSizeInBits();
1544     unsigned NumNegativeBits = ED->getNumNegativeBits();
1545     unsigned NumPositiveBits = ED->getNumPositiveBits();
1546 
1547     if (NumNegativeBits) {
1548       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1549       assert(NumBits <= Bitwidth);
1550       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1551       Min = -End;
1552     } else {
1553       assert(NumPositiveBits <= Bitwidth);
1554       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1555       Min = llvm::APInt(Bitwidth, 0);
1556     }
1557   }
1558   return true;
1559 }
1560 
1561 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1562   llvm::APInt Min, End;
1563   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1564                        hasBooleanRepresentation(Ty)))
1565     return nullptr;
1566 
1567   llvm::MDBuilder MDHelper(getLLVMContext());
1568   return MDHelper.createRange(Min, End);
1569 }
1570 
1571 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1572                                            SourceLocation Loc) {
1573   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1574   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1575   if (!HasBoolCheck && !HasEnumCheck)
1576     return false;
1577 
1578   bool IsBool = hasBooleanRepresentation(Ty) ||
1579                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1580   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1581   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1582   if (!NeedsBoolCheck && !NeedsEnumCheck)
1583     return false;
1584 
1585   // Single-bit booleans don't need to be checked. Special-case this to avoid
1586   // a bit width mismatch when handling bitfield values. This is handled by
1587   // EmitFromMemory for the non-bitfield case.
1588   if (IsBool &&
1589       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1590     return false;
1591 
1592   llvm::APInt Min, End;
1593   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1594     return true;
1595 
1596   auto &Ctx = getLLVMContext();
1597   SanitizerScope SanScope(this);
1598   llvm::Value *Check;
1599   --End;
1600   if (!Min) {
1601     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1602   } else {
1603     llvm::Value *Upper =
1604         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1605     llvm::Value *Lower =
1606         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1607     Check = Builder.CreateAnd(Upper, Lower);
1608   }
1609   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1610                                   EmitCheckTypeDescriptor(Ty)};
1611   SanitizerMask Kind =
1612       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1613   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1614             StaticArgs, EmitCheckValue(Value));
1615   return true;
1616 }
1617 
1618 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1619                                                QualType Ty,
1620                                                SourceLocation Loc,
1621                                                LValueBaseInfo BaseInfo,
1622                                                TBAAAccessInfo TBAAInfo,
1623                                                bool isNontemporal) {
1624   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1625     // For better performance, handle vector loads differently.
1626     if (Ty->isVectorType()) {
1627       const llvm::Type *EltTy = Addr.getElementType();
1628 
1629       const auto *VTy = cast<llvm::VectorType>(EltTy);
1630 
1631       // Handle vectors of size 3 like size 4 for better performance.
1632       if (VTy->getNumElements() == 3) {
1633 
1634         // Bitcast to vec4 type.
1635         llvm::VectorType *vec4Ty =
1636             llvm::VectorType::get(VTy->getElementType(), 4);
1637         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1638         // Now load value.
1639         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1640 
1641         // Shuffle vector to get vec3.
1642         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1643                                         {0, 1, 2}, "extractVec");
1644         return EmitFromMemory(V, Ty);
1645       }
1646     }
1647   }
1648 
1649   // Atomic operations have to be done on integral types.
1650   LValue AtomicLValue =
1651       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1652   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1653     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1654   }
1655 
1656   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1657   if (isNontemporal) {
1658     llvm::MDNode *Node = llvm::MDNode::get(
1659         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1660     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1661   }
1662 
1663   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1664 
1665   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1666     // In order to prevent the optimizer from throwing away the check, don't
1667     // attach range metadata to the load.
1668   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1669     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1670       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1671 
1672   return EmitFromMemory(Load, Ty);
1673 }
1674 
1675 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1676   // Bool has a different representation in memory than in registers.
1677   if (hasBooleanRepresentation(Ty)) {
1678     // This should really always be an i1, but sometimes it's already
1679     // an i8, and it's awkward to track those cases down.
1680     if (Value->getType()->isIntegerTy(1))
1681       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1682     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1683            "wrong value rep of bool");
1684   }
1685 
1686   return Value;
1687 }
1688 
1689 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1690   // Bool has a different representation in memory than in registers.
1691   if (hasBooleanRepresentation(Ty)) {
1692     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1693            "wrong value rep of bool");
1694     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1695   }
1696 
1697   return Value;
1698 }
1699 
1700 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1701                                         bool Volatile, QualType Ty,
1702                                         LValueBaseInfo BaseInfo,
1703                                         TBAAAccessInfo TBAAInfo,
1704                                         bool isInit, bool isNontemporal) {
1705   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1706     // Handle vectors differently to get better performance.
1707     if (Ty->isVectorType()) {
1708       llvm::Type *SrcTy = Value->getType();
1709       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1710       // Handle vec3 special.
1711       if (VecTy && VecTy->getNumElements() == 3) {
1712         // Our source is a vec3, do a shuffle vector to make it a vec4.
1713         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1714                                   Builder.getInt32(2),
1715                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1716         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1717         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1718                                             MaskV, "extractVec");
1719         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1720       }
1721       if (Addr.getElementType() != SrcTy) {
1722         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1723       }
1724     }
1725   }
1726 
1727   Value = EmitToMemory(Value, Ty);
1728 
1729   LValue AtomicLValue =
1730       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1731   if (Ty->isAtomicType() ||
1732       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1733     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1734     return;
1735   }
1736 
1737   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1738   if (isNontemporal) {
1739     llvm::MDNode *Node =
1740         llvm::MDNode::get(Store->getContext(),
1741                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1742     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1743   }
1744 
1745   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1746 }
1747 
1748 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1749                                         bool isInit) {
1750   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1751                     lvalue.getType(), lvalue.getBaseInfo(),
1752                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1753 }
1754 
1755 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1756 /// method emits the address of the lvalue, then loads the result as an rvalue,
1757 /// returning the rvalue.
1758 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1759   if (LV.isObjCWeak()) {
1760     // load of a __weak object.
1761     Address AddrWeakObj = LV.getAddress();
1762     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1763                                                              AddrWeakObj));
1764   }
1765   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1766     // In MRC mode, we do a load+autorelease.
1767     if (!getLangOpts().ObjCAutoRefCount) {
1768       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1769     }
1770 
1771     // In ARC mode, we load retained and then consume the value.
1772     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1773     Object = EmitObjCConsumeObject(LV.getType(), Object);
1774     return RValue::get(Object);
1775   }
1776 
1777   if (LV.isSimple()) {
1778     assert(!LV.getType()->isFunctionType());
1779 
1780     // Everything needs a load.
1781     return RValue::get(EmitLoadOfScalar(LV, Loc));
1782   }
1783 
1784   if (LV.isVectorElt()) {
1785     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1786                                               LV.isVolatileQualified());
1787     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1788                                                     "vecext"));
1789   }
1790 
1791   // If this is a reference to a subset of the elements of a vector, either
1792   // shuffle the input or extract/insert them as appropriate.
1793   if (LV.isExtVectorElt())
1794     return EmitLoadOfExtVectorElementLValue(LV);
1795 
1796   // Global Register variables always invoke intrinsics
1797   if (LV.isGlobalReg())
1798     return EmitLoadOfGlobalRegLValue(LV);
1799 
1800   assert(LV.isBitField() && "Unknown LValue type!");
1801   return EmitLoadOfBitfieldLValue(LV, Loc);
1802 }
1803 
1804 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1805                                                  SourceLocation Loc) {
1806   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1807 
1808   // Get the output type.
1809   llvm::Type *ResLTy = ConvertType(LV.getType());
1810 
1811   Address Ptr = LV.getBitFieldAddress();
1812   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1813 
1814   if (Info.IsSigned) {
1815     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1816     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1817     if (HighBits)
1818       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1819     if (Info.Offset + HighBits)
1820       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1821   } else {
1822     if (Info.Offset)
1823       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1824     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1825       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1826                                                               Info.Size),
1827                               "bf.clear");
1828   }
1829   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1830   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1831   return RValue::get(Val);
1832 }
1833 
1834 // If this is a reference to a subset of the elements of a vector, create an
1835 // appropriate shufflevector.
1836 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1837   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1838                                         LV.isVolatileQualified());
1839 
1840   const llvm::Constant *Elts = LV.getExtVectorElts();
1841 
1842   // If the result of the expression is a non-vector type, we must be extracting
1843   // a single element.  Just codegen as an extractelement.
1844   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1845   if (!ExprVT) {
1846     unsigned InIdx = getAccessedFieldNo(0, Elts);
1847     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1848     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1849   }
1850 
1851   // Always use shuffle vector to try to retain the original program structure
1852   unsigned NumResultElts = ExprVT->getNumElements();
1853 
1854   SmallVector<llvm::Constant*, 4> Mask;
1855   for (unsigned i = 0; i != NumResultElts; ++i)
1856     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1857 
1858   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1859   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1860                                     MaskV);
1861   return RValue::get(Vec);
1862 }
1863 
1864 /// Generates lvalue for partial ext_vector access.
1865 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1866   Address VectorAddress = LV.getExtVectorAddress();
1867   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1868   QualType EQT = ExprVT->getElementType();
1869   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1870 
1871   Address CastToPointerElement =
1872     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1873                                  "conv.ptr.element");
1874 
1875   const llvm::Constant *Elts = LV.getExtVectorElts();
1876   unsigned ix = getAccessedFieldNo(0, Elts);
1877 
1878   Address VectorBasePtrPlusIx =
1879     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1880                                    getContext().getTypeSizeInChars(EQT),
1881                                    "vector.elt");
1882 
1883   return VectorBasePtrPlusIx;
1884 }
1885 
1886 /// Load of global gamed gegisters are always calls to intrinsics.
1887 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1888   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1889          "Bad type for register variable");
1890   llvm::MDNode *RegName = cast<llvm::MDNode>(
1891       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1892 
1893   // We accept integer and pointer types only
1894   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1895   llvm::Type *Ty = OrigTy;
1896   if (OrigTy->isPointerTy())
1897     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1898   llvm::Type *Types[] = { Ty };
1899 
1900   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1901   llvm::Value *Call = Builder.CreateCall(
1902       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1903   if (OrigTy->isPointerTy())
1904     Call = Builder.CreateIntToPtr(Call, OrigTy);
1905   return RValue::get(Call);
1906 }
1907 
1908 
1909 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1910 /// lvalue, where both are guaranteed to the have the same type, and that type
1911 /// is 'Ty'.
1912 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1913                                              bool isInit) {
1914   if (!Dst.isSimple()) {
1915     if (Dst.isVectorElt()) {
1916       // Read/modify/write the vector, inserting the new element.
1917       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1918                                             Dst.isVolatileQualified());
1919       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1920                                         Dst.getVectorIdx(), "vecins");
1921       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1922                           Dst.isVolatileQualified());
1923       return;
1924     }
1925 
1926     // If this is an update of extended vector elements, insert them as
1927     // appropriate.
1928     if (Dst.isExtVectorElt())
1929       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1930 
1931     if (Dst.isGlobalReg())
1932       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1933 
1934     assert(Dst.isBitField() && "Unknown LValue type");
1935     return EmitStoreThroughBitfieldLValue(Src, Dst);
1936   }
1937 
1938   // There's special magic for assigning into an ARC-qualified l-value.
1939   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1940     switch (Lifetime) {
1941     case Qualifiers::OCL_None:
1942       llvm_unreachable("present but none");
1943 
1944     case Qualifiers::OCL_ExplicitNone:
1945       // nothing special
1946       break;
1947 
1948     case Qualifiers::OCL_Strong:
1949       if (isInit) {
1950         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1951         break;
1952       }
1953       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1954       return;
1955 
1956     case Qualifiers::OCL_Weak:
1957       if (isInit)
1958         // Initialize and then skip the primitive store.
1959         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1960       else
1961         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1962       return;
1963 
1964     case Qualifiers::OCL_Autoreleasing:
1965       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1966                                                      Src.getScalarVal()));
1967       // fall into the normal path
1968       break;
1969     }
1970   }
1971 
1972   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1973     // load of a __weak object.
1974     Address LvalueDst = Dst.getAddress();
1975     llvm::Value *src = Src.getScalarVal();
1976      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1977     return;
1978   }
1979 
1980   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1981     // load of a __strong object.
1982     Address LvalueDst = Dst.getAddress();
1983     llvm::Value *src = Src.getScalarVal();
1984     if (Dst.isObjCIvar()) {
1985       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1986       llvm::Type *ResultType = IntPtrTy;
1987       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1988       llvm::Value *RHS = dst.getPointer();
1989       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1990       llvm::Value *LHS =
1991         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1992                                "sub.ptr.lhs.cast");
1993       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1994       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1995                                               BytesBetween);
1996     } else if (Dst.isGlobalObjCRef()) {
1997       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1998                                                 Dst.isThreadLocalRef());
1999     }
2000     else
2001       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2002     return;
2003   }
2004 
2005   assert(Src.isScalar() && "Can't emit an agg store with this method");
2006   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2007 }
2008 
2009 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2010                                                      llvm::Value **Result) {
2011   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2012   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2013   Address Ptr = Dst.getBitFieldAddress();
2014 
2015   // Get the source value, truncated to the width of the bit-field.
2016   llvm::Value *SrcVal = Src.getScalarVal();
2017 
2018   // Cast the source to the storage type and shift it into place.
2019   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2020                                  /*IsSigned=*/false);
2021   llvm::Value *MaskedVal = SrcVal;
2022 
2023   // See if there are other bits in the bitfield's storage we'll need to load
2024   // and mask together with source before storing.
2025   if (Info.StorageSize != Info.Size) {
2026     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2027     llvm::Value *Val =
2028       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2029 
2030     // Mask the source value as needed.
2031     if (!hasBooleanRepresentation(Dst.getType()))
2032       SrcVal = Builder.CreateAnd(SrcVal,
2033                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2034                                                             Info.Size),
2035                                  "bf.value");
2036     MaskedVal = SrcVal;
2037     if (Info.Offset)
2038       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2039 
2040     // Mask out the original value.
2041     Val = Builder.CreateAnd(Val,
2042                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2043                                                      Info.Offset,
2044                                                      Info.Offset + Info.Size),
2045                             "bf.clear");
2046 
2047     // Or together the unchanged values and the source value.
2048     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2049   } else {
2050     assert(Info.Offset == 0);
2051   }
2052 
2053   // Write the new value back out.
2054   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2055 
2056   // Return the new value of the bit-field, if requested.
2057   if (Result) {
2058     llvm::Value *ResultVal = MaskedVal;
2059 
2060     // Sign extend the value if needed.
2061     if (Info.IsSigned) {
2062       assert(Info.Size <= Info.StorageSize);
2063       unsigned HighBits = Info.StorageSize - Info.Size;
2064       if (HighBits) {
2065         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2066         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2067       }
2068     }
2069 
2070     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2071                                       "bf.result.cast");
2072     *Result = EmitFromMemory(ResultVal, Dst.getType());
2073   }
2074 }
2075 
2076 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2077                                                                LValue Dst) {
2078   // This access turns into a read/modify/write of the vector.  Load the input
2079   // value now.
2080   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2081                                         Dst.isVolatileQualified());
2082   const llvm::Constant *Elts = Dst.getExtVectorElts();
2083 
2084   llvm::Value *SrcVal = Src.getScalarVal();
2085 
2086   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2087     unsigned NumSrcElts = VTy->getNumElements();
2088     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2089     if (NumDstElts == NumSrcElts) {
2090       // Use shuffle vector is the src and destination are the same number of
2091       // elements and restore the vector mask since it is on the side it will be
2092       // stored.
2093       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2094       for (unsigned i = 0; i != NumSrcElts; ++i)
2095         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2096 
2097       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2098       Vec = Builder.CreateShuffleVector(SrcVal,
2099                                         llvm::UndefValue::get(Vec->getType()),
2100                                         MaskV);
2101     } else if (NumDstElts > NumSrcElts) {
2102       // Extended the source vector to the same length and then shuffle it
2103       // into the destination.
2104       // FIXME: since we're shuffling with undef, can we just use the indices
2105       //        into that?  This could be simpler.
2106       SmallVector<llvm::Constant*, 4> ExtMask;
2107       for (unsigned i = 0; i != NumSrcElts; ++i)
2108         ExtMask.push_back(Builder.getInt32(i));
2109       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2110       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2111       llvm::Value *ExtSrcVal =
2112         Builder.CreateShuffleVector(SrcVal,
2113                                     llvm::UndefValue::get(SrcVal->getType()),
2114                                     ExtMaskV);
2115       // build identity
2116       SmallVector<llvm::Constant*, 4> Mask;
2117       for (unsigned i = 0; i != NumDstElts; ++i)
2118         Mask.push_back(Builder.getInt32(i));
2119 
2120       // When the vector size is odd and .odd or .hi is used, the last element
2121       // of the Elts constant array will be one past the size of the vector.
2122       // Ignore the last element here, if it is greater than the mask size.
2123       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2124         NumSrcElts--;
2125 
2126       // modify when what gets shuffled in
2127       for (unsigned i = 0; i != NumSrcElts; ++i)
2128         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2129       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2130       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2131     } else {
2132       // We should never shorten the vector
2133       llvm_unreachable("unexpected shorten vector length");
2134     }
2135   } else {
2136     // If the Src is a scalar (not a vector) it must be updating one element.
2137     unsigned InIdx = getAccessedFieldNo(0, Elts);
2138     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2139     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2140   }
2141 
2142   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2143                       Dst.isVolatileQualified());
2144 }
2145 
2146 /// Store of global named registers are always calls to intrinsics.
2147 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2148   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2149          "Bad type for register variable");
2150   llvm::MDNode *RegName = cast<llvm::MDNode>(
2151       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2152   assert(RegName && "Register LValue is not metadata");
2153 
2154   // We accept integer and pointer types only
2155   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2156   llvm::Type *Ty = OrigTy;
2157   if (OrigTy->isPointerTy())
2158     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2159   llvm::Type *Types[] = { Ty };
2160 
2161   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2162   llvm::Value *Value = Src.getScalarVal();
2163   if (OrigTy->isPointerTy())
2164     Value = Builder.CreatePtrToInt(Value, Ty);
2165   Builder.CreateCall(
2166       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2167 }
2168 
2169 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2170 // generating write-barries API. It is currently a global, ivar,
2171 // or neither.
2172 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2173                                  LValue &LV,
2174                                  bool IsMemberAccess=false) {
2175   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2176     return;
2177 
2178   if (isa<ObjCIvarRefExpr>(E)) {
2179     QualType ExpTy = E->getType();
2180     if (IsMemberAccess && ExpTy->isPointerType()) {
2181       // If ivar is a structure pointer, assigning to field of
2182       // this struct follows gcc's behavior and makes it a non-ivar
2183       // writer-barrier conservatively.
2184       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2185       if (ExpTy->isRecordType()) {
2186         LV.setObjCIvar(false);
2187         return;
2188       }
2189     }
2190     LV.setObjCIvar(true);
2191     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2192     LV.setBaseIvarExp(Exp->getBase());
2193     LV.setObjCArray(E->getType()->isArrayType());
2194     return;
2195   }
2196 
2197   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2198     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2199       if (VD->hasGlobalStorage()) {
2200         LV.setGlobalObjCRef(true);
2201         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2202       }
2203     }
2204     LV.setObjCArray(E->getType()->isArrayType());
2205     return;
2206   }
2207 
2208   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2209     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2210     return;
2211   }
2212 
2213   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2214     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2215     if (LV.isObjCIvar()) {
2216       // If cast is to a structure pointer, follow gcc's behavior and make it
2217       // a non-ivar write-barrier.
2218       QualType ExpTy = E->getType();
2219       if (ExpTy->isPointerType())
2220         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2221       if (ExpTy->isRecordType())
2222         LV.setObjCIvar(false);
2223     }
2224     return;
2225   }
2226 
2227   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2228     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2229     return;
2230   }
2231 
2232   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2233     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2234     return;
2235   }
2236 
2237   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2238     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2239     return;
2240   }
2241 
2242   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2243     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2244     return;
2245   }
2246 
2247   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2248     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2249     if (LV.isObjCIvar() && !LV.isObjCArray())
2250       // Using array syntax to assigning to what an ivar points to is not
2251       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2252       LV.setObjCIvar(false);
2253     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2254       // Using array syntax to assigning to what global points to is not
2255       // same as assigning to the global itself. {id *G;} G[i] = 0;
2256       LV.setGlobalObjCRef(false);
2257     return;
2258   }
2259 
2260   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2261     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2262     // We don't know if member is an 'ivar', but this flag is looked at
2263     // only in the context of LV.isObjCIvar().
2264     LV.setObjCArray(E->getType()->isArrayType());
2265     return;
2266   }
2267 }
2268 
2269 static llvm::Value *
2270 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2271                                 llvm::Value *V, llvm::Type *IRType,
2272                                 StringRef Name = StringRef()) {
2273   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2274   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2275 }
2276 
2277 static LValue EmitThreadPrivateVarDeclLValue(
2278     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2279     llvm::Type *RealVarTy, SourceLocation Loc) {
2280   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2281   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2282   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2283 }
2284 
2285 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2286                                                const VarDecl *VD, QualType T) {
2287   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2288       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2289   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2290     return Address::invalid();
2291   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2292   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2293   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2294   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2295 }
2296 
2297 Address
2298 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2299                                      LValueBaseInfo *PointeeBaseInfo,
2300                                      TBAAAccessInfo *PointeeTBAAInfo) {
2301   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2302                                             RefLVal.isVolatile());
2303   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2304 
2305   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2306                                             PointeeBaseInfo, PointeeTBAAInfo,
2307                                             /* forPointeeType= */ true);
2308   return Address(Load, Align);
2309 }
2310 
2311 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2312   LValueBaseInfo PointeeBaseInfo;
2313   TBAAAccessInfo PointeeTBAAInfo;
2314   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2315                                             &PointeeTBAAInfo);
2316   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2317                         PointeeBaseInfo, PointeeTBAAInfo);
2318 }
2319 
2320 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2321                                            const PointerType *PtrTy,
2322                                            LValueBaseInfo *BaseInfo,
2323                                            TBAAAccessInfo *TBAAInfo) {
2324   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2325   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2326                                                BaseInfo, TBAAInfo,
2327                                                /*forPointeeType=*/true));
2328 }
2329 
2330 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2331                                                 const PointerType *PtrTy) {
2332   LValueBaseInfo BaseInfo;
2333   TBAAAccessInfo TBAAInfo;
2334   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2335   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2336 }
2337 
2338 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2339                                       const Expr *E, const VarDecl *VD) {
2340   QualType T = E->getType();
2341 
2342   // If it's thread_local, emit a call to its wrapper function instead.
2343   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2344       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2345     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2346   // Check if the variable is marked as declare target with link clause in
2347   // device codegen.
2348   if (CGF.getLangOpts().OpenMPIsDevice) {
2349     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2350     if (Addr.isValid())
2351       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2352   }
2353 
2354   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2355   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2356   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2357   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2358   Address Addr(V, Alignment);
2359   // Emit reference to the private copy of the variable if it is an OpenMP
2360   // threadprivate variable.
2361   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2362       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2363     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2364                                           E->getExprLoc());
2365   }
2366   LValue LV = VD->getType()->isReferenceType() ?
2367       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2368                                     AlignmentSource::Decl) :
2369       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2370   setObjCGCLValueClass(CGF.getContext(), E, LV);
2371   return LV;
2372 }
2373 
2374 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2375                                                const FunctionDecl *FD) {
2376   if (FD->hasAttr<WeakRefAttr>()) {
2377     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2378     return aliasee.getPointer();
2379   }
2380 
2381   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2382   if (!FD->hasPrototype()) {
2383     if (const FunctionProtoType *Proto =
2384             FD->getType()->getAs<FunctionProtoType>()) {
2385       // Ugly case: for a K&R-style definition, the type of the definition
2386       // isn't the same as the type of a use.  Correct for this with a
2387       // bitcast.
2388       QualType NoProtoType =
2389           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2390       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2391       V = llvm::ConstantExpr::getBitCast(V,
2392                                       CGM.getTypes().ConvertType(NoProtoType));
2393     }
2394   }
2395   return V;
2396 }
2397 
2398 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2399                                      const Expr *E, const FunctionDecl *FD) {
2400   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2401   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2402   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2403                             AlignmentSource::Decl);
2404 }
2405 
2406 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2407                                       llvm::Value *ThisValue) {
2408   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2409   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2410   return CGF.EmitLValueForField(LV, FD);
2411 }
2412 
2413 /// Named Registers are named metadata pointing to the register name
2414 /// which will be read from/written to as an argument to the intrinsic
2415 /// @llvm.read/write_register.
2416 /// So far, only the name is being passed down, but other options such as
2417 /// register type, allocation type or even optimization options could be
2418 /// passed down via the metadata node.
2419 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2420   SmallString<64> Name("llvm.named.register.");
2421   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2422   assert(Asm->getLabel().size() < 64-Name.size() &&
2423       "Register name too big");
2424   Name.append(Asm->getLabel());
2425   llvm::NamedMDNode *M =
2426     CGM.getModule().getOrInsertNamedMetadata(Name);
2427   if (M->getNumOperands() == 0) {
2428     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2429                                               Asm->getLabel());
2430     llvm::Metadata *Ops[] = {Str};
2431     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2432   }
2433 
2434   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2435 
2436   llvm::Value *Ptr =
2437     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2438   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2439 }
2440 
2441 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2442   const NamedDecl *ND = E->getDecl();
2443   QualType T = E->getType();
2444 
2445   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2446     // Global Named registers access via intrinsics only
2447     if (VD->getStorageClass() == SC_Register &&
2448         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2449       return EmitGlobalNamedRegister(VD, CGM);
2450 
2451     // A DeclRefExpr for a reference initialized by a constant expression can
2452     // appear without being odr-used. Directly emit the constant initializer.
2453     const Expr *Init = VD->getAnyInitializer(VD);
2454     const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
2455     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2456         VD->isUsableInConstantExpressions(getContext()) &&
2457         VD->checkInitIsICE() &&
2458         // Do not emit if it is private OpenMP variable.
2459         !(E->refersToEnclosingVariableOrCapture() &&
2460           ((CapturedStmtInfo &&
2461             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2462              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2463            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2464            (BD && BD->capturesVariable(VD))))) {
2465       llvm::Constant *Val =
2466         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2467                                             *VD->evaluateValue(),
2468                                             VD->getType());
2469       assert(Val && "failed to emit reference constant expression");
2470       // FIXME: Eventually we will want to emit vector element references.
2471 
2472       // Should we be using the alignment of the constant pointer we emitted?
2473       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2474                                                     /* BaseInfo= */ nullptr,
2475                                                     /* TBAAInfo= */ nullptr,
2476                                                     /* forPointeeType= */ true);
2477       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2478     }
2479 
2480     // Check for captured variables.
2481     if (E->refersToEnclosingVariableOrCapture()) {
2482       VD = VD->getCanonicalDecl();
2483       if (auto *FD = LambdaCaptureFields.lookup(VD))
2484         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2485       else if (CapturedStmtInfo) {
2486         auto I = LocalDeclMap.find(VD);
2487         if (I != LocalDeclMap.end()) {
2488           if (VD->getType()->isReferenceType())
2489             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2490                                              AlignmentSource::Decl);
2491           return MakeAddrLValue(I->second, T);
2492         }
2493         LValue CapLVal =
2494             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2495                                     CapturedStmtInfo->getContextValue());
2496         return MakeAddrLValue(
2497             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2498             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2499             CapLVal.getTBAAInfo());
2500       }
2501 
2502       assert(isa<BlockDecl>(CurCodeDecl));
2503       Address addr = GetAddrOfBlockDecl(VD);
2504       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2505     }
2506   }
2507 
2508   // FIXME: We should be able to assert this for FunctionDecls as well!
2509   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2510   // those with a valid source location.
2511   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2512           !E->getLocation().isValid()) &&
2513          "Should not use decl without marking it used!");
2514 
2515   if (ND->hasAttr<WeakRefAttr>()) {
2516     const auto *VD = cast<ValueDecl>(ND);
2517     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2518     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2519   }
2520 
2521   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2522     // Check if this is a global variable.
2523     if (VD->hasLinkage() || VD->isStaticDataMember())
2524       return EmitGlobalVarDeclLValue(*this, E, VD);
2525 
2526     Address addr = Address::invalid();
2527 
2528     // The variable should generally be present in the local decl map.
2529     auto iter = LocalDeclMap.find(VD);
2530     if (iter != LocalDeclMap.end()) {
2531       addr = iter->second;
2532 
2533     // Otherwise, it might be static local we haven't emitted yet for
2534     // some reason; most likely, because it's in an outer function.
2535     } else if (VD->isStaticLocal()) {
2536       addr = Address(CGM.getOrCreateStaticVarDecl(
2537           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2538                      getContext().getDeclAlign(VD));
2539 
2540     // No other cases for now.
2541     } else {
2542       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2543     }
2544 
2545 
2546     // Check for OpenMP threadprivate variables.
2547     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2548         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2549       return EmitThreadPrivateVarDeclLValue(
2550           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2551           E->getExprLoc());
2552     }
2553 
2554     // Drill into block byref variables.
2555     bool isBlockByref = VD->isEscapingByref();
2556     if (isBlockByref) {
2557       addr = emitBlockByrefAddress(addr, VD);
2558     }
2559 
2560     // Drill into reference types.
2561     LValue LV = VD->getType()->isReferenceType() ?
2562         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2563         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2564 
2565     bool isLocalStorage = VD->hasLocalStorage();
2566 
2567     bool NonGCable = isLocalStorage &&
2568                      !VD->getType()->isReferenceType() &&
2569                      !isBlockByref;
2570     if (NonGCable) {
2571       LV.getQuals().removeObjCGCAttr();
2572       LV.setNonGC(true);
2573     }
2574 
2575     bool isImpreciseLifetime =
2576       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2577     if (isImpreciseLifetime)
2578       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2579     setObjCGCLValueClass(getContext(), E, LV);
2580     return LV;
2581   }
2582 
2583   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2584     return EmitFunctionDeclLValue(*this, E, FD);
2585 
2586   // FIXME: While we're emitting a binding from an enclosing scope, all other
2587   // DeclRefExprs we see should be implicitly treated as if they also refer to
2588   // an enclosing scope.
2589   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2590     return EmitLValue(BD->getBinding());
2591 
2592   llvm_unreachable("Unhandled DeclRefExpr");
2593 }
2594 
2595 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2596   // __extension__ doesn't affect lvalue-ness.
2597   if (E->getOpcode() == UO_Extension)
2598     return EmitLValue(E->getSubExpr());
2599 
2600   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2601   switch (E->getOpcode()) {
2602   default: llvm_unreachable("Unknown unary operator lvalue!");
2603   case UO_Deref: {
2604     QualType T = E->getSubExpr()->getType()->getPointeeType();
2605     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2606 
2607     LValueBaseInfo BaseInfo;
2608     TBAAAccessInfo TBAAInfo;
2609     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2610                                             &TBAAInfo);
2611     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2612     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2613 
2614     // We should not generate __weak write barrier on indirect reference
2615     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2616     // But, we continue to generate __strong write barrier on indirect write
2617     // into a pointer to object.
2618     if (getLangOpts().ObjC &&
2619         getLangOpts().getGC() != LangOptions::NonGC &&
2620         LV.isObjCWeak())
2621       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2622     return LV;
2623   }
2624   case UO_Real:
2625   case UO_Imag: {
2626     LValue LV = EmitLValue(E->getSubExpr());
2627     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2628 
2629     // __real is valid on scalars.  This is a faster way of testing that.
2630     // __imag can only produce an rvalue on scalars.
2631     if (E->getOpcode() == UO_Real &&
2632         !LV.getAddress().getElementType()->isStructTy()) {
2633       assert(E->getSubExpr()->getType()->isArithmeticType());
2634       return LV;
2635     }
2636 
2637     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2638 
2639     Address Component =
2640       (E->getOpcode() == UO_Real
2641          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2642          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2643     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2644                                    CGM.getTBAAInfoForSubobject(LV, T));
2645     ElemLV.getQuals().addQualifiers(LV.getQuals());
2646     return ElemLV;
2647   }
2648   case UO_PreInc:
2649   case UO_PreDec: {
2650     LValue LV = EmitLValue(E->getSubExpr());
2651     bool isInc = E->getOpcode() == UO_PreInc;
2652 
2653     if (E->getType()->isAnyComplexType())
2654       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2655     else
2656       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2657     return LV;
2658   }
2659   }
2660 }
2661 
2662 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2663   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2664                         E->getType(), AlignmentSource::Decl);
2665 }
2666 
2667 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2668   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2669                         E->getType(), AlignmentSource::Decl);
2670 }
2671 
2672 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2673   auto SL = E->getFunctionName();
2674   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2675   StringRef FnName = CurFn->getName();
2676   if (FnName.startswith("\01"))
2677     FnName = FnName.substr(1);
2678   StringRef NameItems[] = {
2679       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2680   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2681   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2682     std::string Name = SL->getString();
2683     if (!Name.empty()) {
2684       unsigned Discriminator =
2685           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2686       if (Discriminator)
2687         Name += "_" + Twine(Discriminator + 1).str();
2688       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2689       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2690     } else {
2691       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2692       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2693     }
2694   }
2695   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2696   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2697 }
2698 
2699 /// Emit a type description suitable for use by a runtime sanitizer library. The
2700 /// format of a type descriptor is
2701 ///
2702 /// \code
2703 ///   { i16 TypeKind, i16 TypeInfo }
2704 /// \endcode
2705 ///
2706 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2707 /// integer, 1 for a floating point value, and -1 for anything else.
2708 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2709   // Only emit each type's descriptor once.
2710   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2711     return C;
2712 
2713   uint16_t TypeKind = -1;
2714   uint16_t TypeInfo = 0;
2715 
2716   if (T->isIntegerType()) {
2717     TypeKind = 0;
2718     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2719                (T->isSignedIntegerType() ? 1 : 0);
2720   } else if (T->isFloatingType()) {
2721     TypeKind = 1;
2722     TypeInfo = getContext().getTypeSize(T);
2723   }
2724 
2725   // Format the type name as if for a diagnostic, including quotes and
2726   // optionally an 'aka'.
2727   SmallString<32> Buffer;
2728   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2729                                     (intptr_t)T.getAsOpaquePtr(),
2730                                     StringRef(), StringRef(), None, Buffer,
2731                                     None);
2732 
2733   llvm::Constant *Components[] = {
2734     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2735     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2736   };
2737   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2738 
2739   auto *GV = new llvm::GlobalVariable(
2740       CGM.getModule(), Descriptor->getType(),
2741       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2742   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2743   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2744 
2745   // Remember the descriptor for this type.
2746   CGM.setTypeDescriptorInMap(T, GV);
2747 
2748   return GV;
2749 }
2750 
2751 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2752   llvm::Type *TargetTy = IntPtrTy;
2753 
2754   if (V->getType() == TargetTy)
2755     return V;
2756 
2757   // Floating-point types which fit into intptr_t are bitcast to integers
2758   // and then passed directly (after zero-extension, if necessary).
2759   if (V->getType()->isFloatingPointTy()) {
2760     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2761     if (Bits <= TargetTy->getIntegerBitWidth())
2762       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2763                                                          Bits));
2764   }
2765 
2766   // Integers which fit in intptr_t are zero-extended and passed directly.
2767   if (V->getType()->isIntegerTy() &&
2768       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2769     return Builder.CreateZExt(V, TargetTy);
2770 
2771   // Pointers are passed directly, everything else is passed by address.
2772   if (!V->getType()->isPointerTy()) {
2773     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2774     Builder.CreateStore(V, Ptr);
2775     V = Ptr.getPointer();
2776   }
2777   return Builder.CreatePtrToInt(V, TargetTy);
2778 }
2779 
2780 /// Emit a representation of a SourceLocation for passing to a handler
2781 /// in a sanitizer runtime library. The format for this data is:
2782 /// \code
2783 ///   struct SourceLocation {
2784 ///     const char *Filename;
2785 ///     int32_t Line, Column;
2786 ///   };
2787 /// \endcode
2788 /// For an invalid SourceLocation, the Filename pointer is null.
2789 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2790   llvm::Constant *Filename;
2791   int Line, Column;
2792 
2793   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2794   if (PLoc.isValid()) {
2795     StringRef FilenameString = PLoc.getFilename();
2796 
2797     int PathComponentsToStrip =
2798         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2799     if (PathComponentsToStrip < 0) {
2800       assert(PathComponentsToStrip != INT_MIN);
2801       int PathComponentsToKeep = -PathComponentsToStrip;
2802       auto I = llvm::sys::path::rbegin(FilenameString);
2803       auto E = llvm::sys::path::rend(FilenameString);
2804       while (I != E && --PathComponentsToKeep)
2805         ++I;
2806 
2807       FilenameString = FilenameString.substr(I - E);
2808     } else if (PathComponentsToStrip > 0) {
2809       auto I = llvm::sys::path::begin(FilenameString);
2810       auto E = llvm::sys::path::end(FilenameString);
2811       while (I != E && PathComponentsToStrip--)
2812         ++I;
2813 
2814       if (I != E)
2815         FilenameString =
2816             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2817       else
2818         FilenameString = llvm::sys::path::filename(FilenameString);
2819     }
2820 
2821     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2822     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2823                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2824     Filename = FilenameGV.getPointer();
2825     Line = PLoc.getLine();
2826     Column = PLoc.getColumn();
2827   } else {
2828     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2829     Line = Column = 0;
2830   }
2831 
2832   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2833                             Builder.getInt32(Column)};
2834 
2835   return llvm::ConstantStruct::getAnon(Data);
2836 }
2837 
2838 namespace {
2839 /// Specify under what conditions this check can be recovered
2840 enum class CheckRecoverableKind {
2841   /// Always terminate program execution if this check fails.
2842   Unrecoverable,
2843   /// Check supports recovering, runtime has both fatal (noreturn) and
2844   /// non-fatal handlers for this check.
2845   Recoverable,
2846   /// Runtime conditionally aborts, always need to support recovery.
2847   AlwaysRecoverable
2848 };
2849 }
2850 
2851 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2852   assert(llvm::countPopulation(Kind) == 1);
2853   switch (Kind) {
2854   case SanitizerKind::Vptr:
2855     return CheckRecoverableKind::AlwaysRecoverable;
2856   case SanitizerKind::Return:
2857   case SanitizerKind::Unreachable:
2858     return CheckRecoverableKind::Unrecoverable;
2859   default:
2860     return CheckRecoverableKind::Recoverable;
2861   }
2862 }
2863 
2864 namespace {
2865 struct SanitizerHandlerInfo {
2866   char const *const Name;
2867   unsigned Version;
2868 };
2869 }
2870 
2871 const SanitizerHandlerInfo SanitizerHandlers[] = {
2872 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2873     LIST_SANITIZER_CHECKS
2874 #undef SANITIZER_CHECK
2875 };
2876 
2877 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2878                                  llvm::FunctionType *FnType,
2879                                  ArrayRef<llvm::Value *> FnArgs,
2880                                  SanitizerHandler CheckHandler,
2881                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2882                                  llvm::BasicBlock *ContBB) {
2883   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2884   Optional<ApplyDebugLocation> DL;
2885   if (!CGF.Builder.getCurrentDebugLocation()) {
2886     // Ensure that the call has at least an artificial debug location.
2887     DL.emplace(CGF, SourceLocation());
2888   }
2889   bool NeedsAbortSuffix =
2890       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2891   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2892   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2893   const StringRef CheckName = CheckInfo.Name;
2894   std::string FnName = "__ubsan_handle_" + CheckName.str();
2895   if (CheckInfo.Version && !MinimalRuntime)
2896     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2897   if (MinimalRuntime)
2898     FnName += "_minimal";
2899   if (NeedsAbortSuffix)
2900     FnName += "_abort";
2901   bool MayReturn =
2902       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2903 
2904   llvm::AttrBuilder B;
2905   if (!MayReturn) {
2906     B.addAttribute(llvm::Attribute::NoReturn)
2907         .addAttribute(llvm::Attribute::NoUnwind);
2908   }
2909   B.addAttribute(llvm::Attribute::UWTable);
2910 
2911   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2912       FnType, FnName,
2913       llvm::AttributeList::get(CGF.getLLVMContext(),
2914                                llvm::AttributeList::FunctionIndex, B),
2915       /*Local=*/true);
2916   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2917   if (!MayReturn) {
2918     HandlerCall->setDoesNotReturn();
2919     CGF.Builder.CreateUnreachable();
2920   } else {
2921     CGF.Builder.CreateBr(ContBB);
2922   }
2923 }
2924 
2925 void CodeGenFunction::EmitCheck(
2926     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2927     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2928     ArrayRef<llvm::Value *> DynamicArgs) {
2929   assert(IsSanitizerScope);
2930   assert(Checked.size() > 0);
2931   assert(CheckHandler >= 0 &&
2932          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2933   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2934 
2935   llvm::Value *FatalCond = nullptr;
2936   llvm::Value *RecoverableCond = nullptr;
2937   llvm::Value *TrapCond = nullptr;
2938   for (int i = 0, n = Checked.size(); i < n; ++i) {
2939     llvm::Value *Check = Checked[i].first;
2940     // -fsanitize-trap= overrides -fsanitize-recover=.
2941     llvm::Value *&Cond =
2942         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2943             ? TrapCond
2944             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2945                   ? RecoverableCond
2946                   : FatalCond;
2947     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2948   }
2949 
2950   if (TrapCond)
2951     EmitTrapCheck(TrapCond);
2952   if (!FatalCond && !RecoverableCond)
2953     return;
2954 
2955   llvm::Value *JointCond;
2956   if (FatalCond && RecoverableCond)
2957     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2958   else
2959     JointCond = FatalCond ? FatalCond : RecoverableCond;
2960   assert(JointCond);
2961 
2962   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2963   assert(SanOpts.has(Checked[0].second));
2964 #ifndef NDEBUG
2965   for (int i = 1, n = Checked.size(); i < n; ++i) {
2966     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2967            "All recoverable kinds in a single check must be same!");
2968     assert(SanOpts.has(Checked[i].second));
2969   }
2970 #endif
2971 
2972   llvm::BasicBlock *Cont = createBasicBlock("cont");
2973   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2974   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2975   // Give hint that we very much don't expect to execute the handler
2976   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2977   llvm::MDBuilder MDHelper(getLLVMContext());
2978   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2979   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2980   EmitBlock(Handlers);
2981 
2982   // Handler functions take an i8* pointing to the (handler-specific) static
2983   // information block, followed by a sequence of intptr_t arguments
2984   // representing operand values.
2985   SmallVector<llvm::Value *, 4> Args;
2986   SmallVector<llvm::Type *, 4> ArgTypes;
2987   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2988     Args.reserve(DynamicArgs.size() + 1);
2989     ArgTypes.reserve(DynamicArgs.size() + 1);
2990 
2991     // Emit handler arguments and create handler function type.
2992     if (!StaticArgs.empty()) {
2993       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2994       auto *InfoPtr =
2995           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2996                                    llvm::GlobalVariable::PrivateLinkage, Info);
2997       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2998       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2999       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3000       ArgTypes.push_back(Int8PtrTy);
3001     }
3002 
3003     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3004       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3005       ArgTypes.push_back(IntPtrTy);
3006     }
3007   }
3008 
3009   llvm::FunctionType *FnType =
3010     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3011 
3012   if (!FatalCond || !RecoverableCond) {
3013     // Simple case: we need to generate a single handler call, either
3014     // fatal, or non-fatal.
3015     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3016                          (FatalCond != nullptr), Cont);
3017   } else {
3018     // Emit two handler calls: first one for set of unrecoverable checks,
3019     // another one for recoverable.
3020     llvm::BasicBlock *NonFatalHandlerBB =
3021         createBasicBlock("non_fatal." + CheckName);
3022     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3023     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3024     EmitBlock(FatalHandlerBB);
3025     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3026                          NonFatalHandlerBB);
3027     EmitBlock(NonFatalHandlerBB);
3028     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3029                          Cont);
3030   }
3031 
3032   EmitBlock(Cont);
3033 }
3034 
3035 void CodeGenFunction::EmitCfiSlowPathCheck(
3036     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3037     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3038   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3039 
3040   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3041   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3042 
3043   llvm::MDBuilder MDHelper(getLLVMContext());
3044   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3045   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3046 
3047   EmitBlock(CheckBB);
3048 
3049   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3050 
3051   llvm::CallInst *CheckCall;
3052   llvm::Constant *SlowPathFn;
3053   if (WithDiag) {
3054     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3055     auto *InfoPtr =
3056         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3057                                  llvm::GlobalVariable::PrivateLinkage, Info);
3058     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3059     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3060 
3061     SlowPathFn = CGM.getModule().getOrInsertFunction(
3062         "__cfi_slowpath_diag",
3063         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3064                                 false));
3065     CheckCall = Builder.CreateCall(
3066         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3067   } else {
3068     SlowPathFn = CGM.getModule().getOrInsertFunction(
3069         "__cfi_slowpath",
3070         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3071     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3072   }
3073 
3074   CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts()));
3075   CheckCall->setDoesNotThrow();
3076 
3077   EmitBlock(Cont);
3078 }
3079 
3080 // Emit a stub for __cfi_check function so that the linker knows about this
3081 // symbol in LTO mode.
3082 void CodeGenFunction::EmitCfiCheckStub() {
3083   llvm::Module *M = &CGM.getModule();
3084   auto &Ctx = M->getContext();
3085   llvm::Function *F = llvm::Function::Create(
3086       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3087       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3088   CGM.setDSOLocal(F);
3089   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3090   // FIXME: consider emitting an intrinsic call like
3091   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3092   // which can be lowered in CrossDSOCFI pass to the actual contents of
3093   // __cfi_check. This would allow inlining of __cfi_check calls.
3094   llvm::CallInst::Create(
3095       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3096   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3097 }
3098 
3099 // This function is basically a switch over the CFI failure kind, which is
3100 // extracted from CFICheckFailData (1st function argument). Each case is either
3101 // llvm.trap or a call to one of the two runtime handlers, based on
3102 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3103 // failure kind) traps, but this should really never happen.  CFICheckFailData
3104 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3105 // check kind; in this case __cfi_check_fail traps as well.
3106 void CodeGenFunction::EmitCfiCheckFail() {
3107   SanitizerScope SanScope(this);
3108   FunctionArgList Args;
3109   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3110                             ImplicitParamDecl::Other);
3111   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3112                             ImplicitParamDecl::Other);
3113   Args.push_back(&ArgData);
3114   Args.push_back(&ArgAddr);
3115 
3116   const CGFunctionInfo &FI =
3117     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3118 
3119   llvm::Function *F = llvm::Function::Create(
3120       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3121       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3122   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3123 
3124   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3125                 SourceLocation());
3126 
3127   // This function should not be affected by blacklist. This function does
3128   // not have a source location, but "src:*" would still apply. Revert any
3129   // changes to SanOpts made in StartFunction.
3130   SanOpts = CGM.getLangOpts().Sanitize;
3131 
3132   llvm::Value *Data =
3133       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3134                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3135   llvm::Value *Addr =
3136       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3137                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3138 
3139   // Data == nullptr means the calling module has trap behaviour for this check.
3140   llvm::Value *DataIsNotNullPtr =
3141       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3142   EmitTrapCheck(DataIsNotNullPtr);
3143 
3144   llvm::StructType *SourceLocationTy =
3145       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3146   llvm::StructType *CfiCheckFailDataTy =
3147       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3148 
3149   llvm::Value *V = Builder.CreateConstGEP2_32(
3150       CfiCheckFailDataTy,
3151       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3152       0);
3153   Address CheckKindAddr(V, getIntAlign());
3154   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3155 
3156   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3157       CGM.getLLVMContext(),
3158       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3159   llvm::Value *ValidVtable = Builder.CreateZExt(
3160       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3161                          {Addr, AllVtables}),
3162       IntPtrTy);
3163 
3164   const std::pair<int, SanitizerMask> CheckKinds[] = {
3165       {CFITCK_VCall, SanitizerKind::CFIVCall},
3166       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3167       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3168       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3169       {CFITCK_ICall, SanitizerKind::CFIICall}};
3170 
3171   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3172   for (auto CheckKindMaskPair : CheckKinds) {
3173     int Kind = CheckKindMaskPair.first;
3174     SanitizerMask Mask = CheckKindMaskPair.second;
3175     llvm::Value *Cond =
3176         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3177     if (CGM.getLangOpts().Sanitize.has(Mask))
3178       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3179                 {Data, Addr, ValidVtable});
3180     else
3181       EmitTrapCheck(Cond);
3182   }
3183 
3184   FinishFunction();
3185   // The only reference to this function will be created during LTO link.
3186   // Make sure it survives until then.
3187   CGM.addUsedGlobal(F);
3188 }
3189 
3190 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3191   if (SanOpts.has(SanitizerKind::Unreachable)) {
3192     SanitizerScope SanScope(this);
3193     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3194                              SanitizerKind::Unreachable),
3195               SanitizerHandler::BuiltinUnreachable,
3196               EmitCheckSourceLocation(Loc), None);
3197   }
3198   Builder.CreateUnreachable();
3199 }
3200 
3201 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3202   llvm::BasicBlock *Cont = createBasicBlock("cont");
3203 
3204   // If we're optimizing, collapse all calls to trap down to just one per
3205   // function to save on code size.
3206   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3207     TrapBB = createBasicBlock("trap");
3208     Builder.CreateCondBr(Checked, Cont, TrapBB);
3209     EmitBlock(TrapBB);
3210     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3211     TrapCall->setDoesNotReturn();
3212     TrapCall->setDoesNotThrow();
3213     Builder.CreateUnreachable();
3214   } else {
3215     Builder.CreateCondBr(Checked, Cont, TrapBB);
3216   }
3217 
3218   EmitBlock(Cont);
3219 }
3220 
3221 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3222   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3223 
3224   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3225     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3226                                   CGM.getCodeGenOpts().TrapFuncName);
3227     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3228   }
3229 
3230   return TrapCall;
3231 }
3232 
3233 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3234                                                  LValueBaseInfo *BaseInfo,
3235                                                  TBAAAccessInfo *TBAAInfo) {
3236   assert(E->getType()->isArrayType() &&
3237          "Array to pointer decay must have array source type!");
3238 
3239   // Expressions of array type can't be bitfields or vector elements.
3240   LValue LV = EmitLValue(E);
3241   Address Addr = LV.getAddress();
3242 
3243   // If the array type was an incomplete type, we need to make sure
3244   // the decay ends up being the right type.
3245   llvm::Type *NewTy = ConvertType(E->getType());
3246   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3247 
3248   // Note that VLA pointers are always decayed, so we don't need to do
3249   // anything here.
3250   if (!E->getType()->isVariableArrayType()) {
3251     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3252            "Expected pointer to array");
3253     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3254   }
3255 
3256   // The result of this decay conversion points to an array element within the
3257   // base lvalue. However, since TBAA currently does not support representing
3258   // accesses to elements of member arrays, we conservatively represent accesses
3259   // to the pointee object as if it had no any base lvalue specified.
3260   // TODO: Support TBAA for member arrays.
3261   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3262   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3263   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3264 
3265   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3266 }
3267 
3268 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3269 /// array to pointer, return the array subexpression.
3270 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3271   // If this isn't just an array->pointer decay, bail out.
3272   const auto *CE = dyn_cast<CastExpr>(E);
3273   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3274     return nullptr;
3275 
3276   // If this is a decay from variable width array, bail out.
3277   const Expr *SubExpr = CE->getSubExpr();
3278   if (SubExpr->getType()->isVariableArrayType())
3279     return nullptr;
3280 
3281   return SubExpr;
3282 }
3283 
3284 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3285                                           llvm::Value *ptr,
3286                                           ArrayRef<llvm::Value*> indices,
3287                                           bool inbounds,
3288                                           bool signedIndices,
3289                                           SourceLocation loc,
3290                                     const llvm::Twine &name = "arrayidx") {
3291   if (inbounds) {
3292     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3293                                       CodeGenFunction::NotSubtraction, loc,
3294                                       name);
3295   } else {
3296     return CGF.Builder.CreateGEP(ptr, indices, name);
3297   }
3298 }
3299 
3300 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3301                                       llvm::Value *idx,
3302                                       CharUnits eltSize) {
3303   // If we have a constant index, we can use the exact offset of the
3304   // element we're accessing.
3305   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3306     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3307     return arrayAlign.alignmentAtOffset(offset);
3308 
3309   // Otherwise, use the worst-case alignment for any element.
3310   } else {
3311     return arrayAlign.alignmentOfArrayElement(eltSize);
3312   }
3313 }
3314 
3315 static QualType getFixedSizeElementType(const ASTContext &ctx,
3316                                         const VariableArrayType *vla) {
3317   QualType eltType;
3318   do {
3319     eltType = vla->getElementType();
3320   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3321   return eltType;
3322 }
3323 
3324 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3325                                      ArrayRef<llvm::Value *> indices,
3326                                      QualType eltType, bool inbounds,
3327                                      bool signedIndices, SourceLocation loc,
3328                                      const llvm::Twine &name = "arrayidx") {
3329   // All the indices except that last must be zero.
3330 #ifndef NDEBUG
3331   for (auto idx : indices.drop_back())
3332     assert(isa<llvm::ConstantInt>(idx) &&
3333            cast<llvm::ConstantInt>(idx)->isZero());
3334 #endif
3335 
3336   // Determine the element size of the statically-sized base.  This is
3337   // the thing that the indices are expressed in terms of.
3338   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3339     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3340   }
3341 
3342   // We can use that to compute the best alignment of the element.
3343   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3344   CharUnits eltAlign =
3345     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3346 
3347   llvm::Value *eltPtr = emitArraySubscriptGEP(
3348       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3349   return Address(eltPtr, eltAlign);
3350 }
3351 
3352 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3353                                                bool Accessed) {
3354   // The index must always be an integer, which is not an aggregate.  Emit it
3355   // in lexical order (this complexity is, sadly, required by C++17).
3356   llvm::Value *IdxPre =
3357       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3358   bool SignedIndices = false;
3359   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3360     auto *Idx = IdxPre;
3361     if (E->getLHS() != E->getIdx()) {
3362       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3363       Idx = EmitScalarExpr(E->getIdx());
3364     }
3365 
3366     QualType IdxTy = E->getIdx()->getType();
3367     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3368     SignedIndices |= IdxSigned;
3369 
3370     if (SanOpts.has(SanitizerKind::ArrayBounds))
3371       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3372 
3373     // Extend or truncate the index type to 32 or 64-bits.
3374     if (Promote && Idx->getType() != IntPtrTy)
3375       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3376 
3377     return Idx;
3378   };
3379   IdxPre = nullptr;
3380 
3381   // If the base is a vector type, then we are forming a vector element lvalue
3382   // with this subscript.
3383   if (E->getBase()->getType()->isVectorType() &&
3384       !isa<ExtVectorElementExpr>(E->getBase())) {
3385     // Emit the vector as an lvalue to get its address.
3386     LValue LHS = EmitLValue(E->getBase());
3387     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3388     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3389     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3390                                  LHS.getBaseInfo(), TBAAAccessInfo());
3391   }
3392 
3393   // All the other cases basically behave like simple offsetting.
3394 
3395   // Handle the extvector case we ignored above.
3396   if (isa<ExtVectorElementExpr>(E->getBase())) {
3397     LValue LV = EmitLValue(E->getBase());
3398     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3399     Address Addr = EmitExtVectorElementLValue(LV);
3400 
3401     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3402     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3403                                  SignedIndices, E->getExprLoc());
3404     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3405                           CGM.getTBAAInfoForSubobject(LV, EltType));
3406   }
3407 
3408   LValueBaseInfo EltBaseInfo;
3409   TBAAAccessInfo EltTBAAInfo;
3410   Address Addr = Address::invalid();
3411   if (const VariableArrayType *vla =
3412            getContext().getAsVariableArrayType(E->getType())) {
3413     // The base must be a pointer, which is not an aggregate.  Emit
3414     // it.  It needs to be emitted first in case it's what captures
3415     // the VLA bounds.
3416     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3417     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3418 
3419     // The element count here is the total number of non-VLA elements.
3420     llvm::Value *numElements = getVLASize(vla).NumElts;
3421 
3422     // Effectively, the multiply by the VLA size is part of the GEP.
3423     // GEP indexes are signed, and scaling an index isn't permitted to
3424     // signed-overflow, so we use the same semantics for our explicit
3425     // multiply.  We suppress this if overflow is not undefined behavior.
3426     if (getLangOpts().isSignedOverflowDefined()) {
3427       Idx = Builder.CreateMul(Idx, numElements);
3428     } else {
3429       Idx = Builder.CreateNSWMul(Idx, numElements);
3430     }
3431 
3432     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3433                                  !getLangOpts().isSignedOverflowDefined(),
3434                                  SignedIndices, E->getExprLoc());
3435 
3436   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3437     // Indexing over an interface, as in "NSString *P; P[4];"
3438 
3439     // Emit the base pointer.
3440     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3441     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3442 
3443     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3444     llvm::Value *InterfaceSizeVal =
3445         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3446 
3447     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3448 
3449     // We don't necessarily build correct LLVM struct types for ObjC
3450     // interfaces, so we can't rely on GEP to do this scaling
3451     // correctly, so we need to cast to i8*.  FIXME: is this actually
3452     // true?  A lot of other things in the fragile ABI would break...
3453     llvm::Type *OrigBaseTy = Addr.getType();
3454     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3455 
3456     // Do the GEP.
3457     CharUnits EltAlign =
3458       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3459     llvm::Value *EltPtr =
3460         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3461                               SignedIndices, E->getExprLoc());
3462     Addr = Address(EltPtr, EltAlign);
3463 
3464     // Cast back.
3465     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3466   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3467     // If this is A[i] where A is an array, the frontend will have decayed the
3468     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3469     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3470     // "gep x, i" here.  Emit one "gep A, 0, i".
3471     assert(Array->getType()->isArrayType() &&
3472            "Array to pointer decay must have array source type!");
3473     LValue ArrayLV;
3474     // For simple multidimensional array indexing, set the 'accessed' flag for
3475     // better bounds-checking of the base expression.
3476     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3477       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3478     else
3479       ArrayLV = EmitLValue(Array);
3480     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3481 
3482     // Propagate the alignment from the array itself to the result.
3483     Addr = emitArraySubscriptGEP(
3484         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3485         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3486         E->getExprLoc());
3487     EltBaseInfo = ArrayLV.getBaseInfo();
3488     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3489   } else {
3490     // The base must be a pointer; emit it with an estimate of its alignment.
3491     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3492     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3493     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3494                                  !getLangOpts().isSignedOverflowDefined(),
3495                                  SignedIndices, E->getExprLoc());
3496   }
3497 
3498   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3499 
3500   if (getLangOpts().ObjC &&
3501       getLangOpts().getGC() != LangOptions::NonGC) {
3502     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3503     setObjCGCLValueClass(getContext(), E, LV);
3504   }
3505   return LV;
3506 }
3507 
3508 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3509                                        LValueBaseInfo &BaseInfo,
3510                                        TBAAAccessInfo &TBAAInfo,
3511                                        QualType BaseTy, QualType ElTy,
3512                                        bool IsLowerBound) {
3513   LValue BaseLVal;
3514   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3515     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3516     if (BaseTy->isArrayType()) {
3517       Address Addr = BaseLVal.getAddress();
3518       BaseInfo = BaseLVal.getBaseInfo();
3519 
3520       // If the array type was an incomplete type, we need to make sure
3521       // the decay ends up being the right type.
3522       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3523       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3524 
3525       // Note that VLA pointers are always decayed, so we don't need to do
3526       // anything here.
3527       if (!BaseTy->isVariableArrayType()) {
3528         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3529                "Expected pointer to array");
3530         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3531                                            "arraydecay");
3532       }
3533 
3534       return CGF.Builder.CreateElementBitCast(Addr,
3535                                               CGF.ConvertTypeForMem(ElTy));
3536     }
3537     LValueBaseInfo TypeBaseInfo;
3538     TBAAAccessInfo TypeTBAAInfo;
3539     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3540                                                   &TypeTBAAInfo);
3541     BaseInfo.mergeForCast(TypeBaseInfo);
3542     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3543     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3544   }
3545   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3546 }
3547 
3548 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3549                                                 bool IsLowerBound) {
3550   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3551   QualType ResultExprTy;
3552   if (auto *AT = getContext().getAsArrayType(BaseTy))
3553     ResultExprTy = AT->getElementType();
3554   else
3555     ResultExprTy = BaseTy->getPointeeType();
3556   llvm::Value *Idx = nullptr;
3557   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3558     // Requesting lower bound or upper bound, but without provided length and
3559     // without ':' symbol for the default length -> length = 1.
3560     // Idx = LowerBound ?: 0;
3561     if (auto *LowerBound = E->getLowerBound()) {
3562       Idx = Builder.CreateIntCast(
3563           EmitScalarExpr(LowerBound), IntPtrTy,
3564           LowerBound->getType()->hasSignedIntegerRepresentation());
3565     } else
3566       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3567   } else {
3568     // Try to emit length or lower bound as constant. If this is possible, 1
3569     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3570     // IR (LB + Len) - 1.
3571     auto &C = CGM.getContext();
3572     auto *Length = E->getLength();
3573     llvm::APSInt ConstLength;
3574     if (Length) {
3575       // Idx = LowerBound + Length - 1;
3576       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3577         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3578         Length = nullptr;
3579       }
3580       auto *LowerBound = E->getLowerBound();
3581       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3582       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3583         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3584         LowerBound = nullptr;
3585       }
3586       if (!Length)
3587         --ConstLength;
3588       else if (!LowerBound)
3589         --ConstLowerBound;
3590 
3591       if (Length || LowerBound) {
3592         auto *LowerBoundVal =
3593             LowerBound
3594                 ? Builder.CreateIntCast(
3595                       EmitScalarExpr(LowerBound), IntPtrTy,
3596                       LowerBound->getType()->hasSignedIntegerRepresentation())
3597                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3598         auto *LengthVal =
3599             Length
3600                 ? Builder.CreateIntCast(
3601                       EmitScalarExpr(Length), IntPtrTy,
3602                       Length->getType()->hasSignedIntegerRepresentation())
3603                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3604         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3605                                 /*HasNUW=*/false,
3606                                 !getLangOpts().isSignedOverflowDefined());
3607         if (Length && LowerBound) {
3608           Idx = Builder.CreateSub(
3609               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3610               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3611         }
3612       } else
3613         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3614     } else {
3615       // Idx = ArraySize - 1;
3616       QualType ArrayTy = BaseTy->isPointerType()
3617                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3618                              : BaseTy;
3619       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3620         Length = VAT->getSizeExpr();
3621         if (Length->isIntegerConstantExpr(ConstLength, C))
3622           Length = nullptr;
3623       } else {
3624         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3625         ConstLength = CAT->getSize();
3626       }
3627       if (Length) {
3628         auto *LengthVal = Builder.CreateIntCast(
3629             EmitScalarExpr(Length), IntPtrTy,
3630             Length->getType()->hasSignedIntegerRepresentation());
3631         Idx = Builder.CreateSub(
3632             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3633             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3634       } else {
3635         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3636         --ConstLength;
3637         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3638       }
3639     }
3640   }
3641   assert(Idx);
3642 
3643   Address EltPtr = Address::invalid();
3644   LValueBaseInfo BaseInfo;
3645   TBAAAccessInfo TBAAInfo;
3646   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3647     // The base must be a pointer, which is not an aggregate.  Emit
3648     // it.  It needs to be emitted first in case it's what captures
3649     // the VLA bounds.
3650     Address Base =
3651         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3652                                 BaseTy, VLA->getElementType(), IsLowerBound);
3653     // The element count here is the total number of non-VLA elements.
3654     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3655 
3656     // Effectively, the multiply by the VLA size is part of the GEP.
3657     // GEP indexes are signed, and scaling an index isn't permitted to
3658     // signed-overflow, so we use the same semantics for our explicit
3659     // multiply.  We suppress this if overflow is not undefined behavior.
3660     if (getLangOpts().isSignedOverflowDefined())
3661       Idx = Builder.CreateMul(Idx, NumElements);
3662     else
3663       Idx = Builder.CreateNSWMul(Idx, NumElements);
3664     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3665                                    !getLangOpts().isSignedOverflowDefined(),
3666                                    /*SignedIndices=*/false, E->getExprLoc());
3667   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3668     // If this is A[i] where A is an array, the frontend will have decayed the
3669     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3670     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3671     // "gep x, i" here.  Emit one "gep A, 0, i".
3672     assert(Array->getType()->isArrayType() &&
3673            "Array to pointer decay must have array source type!");
3674     LValue ArrayLV;
3675     // For simple multidimensional array indexing, set the 'accessed' flag for
3676     // better bounds-checking of the base expression.
3677     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3678       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3679     else
3680       ArrayLV = EmitLValue(Array);
3681 
3682     // Propagate the alignment from the array itself to the result.
3683     EltPtr = emitArraySubscriptGEP(
3684         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3685         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3686         /*SignedIndices=*/false, E->getExprLoc());
3687     BaseInfo = ArrayLV.getBaseInfo();
3688     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3689   } else {
3690     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3691                                            TBAAInfo, BaseTy, ResultExprTy,
3692                                            IsLowerBound);
3693     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3694                                    !getLangOpts().isSignedOverflowDefined(),
3695                                    /*SignedIndices=*/false, E->getExprLoc());
3696   }
3697 
3698   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3699 }
3700 
3701 LValue CodeGenFunction::
3702 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3703   // Emit the base vector as an l-value.
3704   LValue Base;
3705 
3706   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3707   if (E->isArrow()) {
3708     // If it is a pointer to a vector, emit the address and form an lvalue with
3709     // it.
3710     LValueBaseInfo BaseInfo;
3711     TBAAAccessInfo TBAAInfo;
3712     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3713     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3714     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3715     Base.getQuals().removeObjCGCAttr();
3716   } else if (E->getBase()->isGLValue()) {
3717     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3718     // emit the base as an lvalue.
3719     assert(E->getBase()->getType()->isVectorType());
3720     Base = EmitLValue(E->getBase());
3721   } else {
3722     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3723     assert(E->getBase()->getType()->isVectorType() &&
3724            "Result must be a vector");
3725     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3726 
3727     // Store the vector to memory (because LValue wants an address).
3728     Address VecMem = CreateMemTemp(E->getBase()->getType());
3729     Builder.CreateStore(Vec, VecMem);
3730     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3731                           AlignmentSource::Decl);
3732   }
3733 
3734   QualType type =
3735     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3736 
3737   // Encode the element access list into a vector of unsigned indices.
3738   SmallVector<uint32_t, 4> Indices;
3739   E->getEncodedElementAccess(Indices);
3740 
3741   if (Base.isSimple()) {
3742     llvm::Constant *CV =
3743         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3744     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3745                                     Base.getBaseInfo(), TBAAAccessInfo());
3746   }
3747   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3748 
3749   llvm::Constant *BaseElts = Base.getExtVectorElts();
3750   SmallVector<llvm::Constant *, 4> CElts;
3751 
3752   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3753     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3754   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3755   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3756                                   Base.getBaseInfo(), TBAAAccessInfo());
3757 }
3758 
3759 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3760   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3761     EmitIgnoredExpr(E->getBase());
3762     return EmitDeclRefLValue(DRE);
3763   }
3764 
3765   Expr *BaseExpr = E->getBase();
3766   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3767   LValue BaseLV;
3768   if (E->isArrow()) {
3769     LValueBaseInfo BaseInfo;
3770     TBAAAccessInfo TBAAInfo;
3771     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3772     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3773     SanitizerSet SkippedChecks;
3774     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3775     if (IsBaseCXXThis)
3776       SkippedChecks.set(SanitizerKind::Alignment, true);
3777     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3778       SkippedChecks.set(SanitizerKind::Null, true);
3779     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3780                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3781     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3782   } else
3783     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3784 
3785   NamedDecl *ND = E->getMemberDecl();
3786   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3787     LValue LV = EmitLValueForField(BaseLV, Field);
3788     setObjCGCLValueClass(getContext(), E, LV);
3789     return LV;
3790   }
3791 
3792   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3793     return EmitFunctionDeclLValue(*this, E, FD);
3794 
3795   llvm_unreachable("Unhandled member declaration!");
3796 }
3797 
3798 /// Given that we are currently emitting a lambda, emit an l-value for
3799 /// one of its members.
3800 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3801   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3802   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3803   QualType LambdaTagType =
3804     getContext().getTagDeclType(Field->getParent());
3805   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3806   return EmitLValueForField(LambdaLV, Field);
3807 }
3808 
3809 /// Drill down to the storage of a field without walking into
3810 /// reference types.
3811 ///
3812 /// The resulting address doesn't necessarily have the right type.
3813 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3814                                       const FieldDecl *field) {
3815   const RecordDecl *rec = field->getParent();
3816 
3817   unsigned idx =
3818     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3819 
3820   CharUnits offset;
3821   // Adjust the alignment down to the given offset.
3822   // As a special case, if the LLVM field index is 0, we know that this
3823   // is zero.
3824   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3825                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3826          "LLVM field at index zero had non-zero offset?");
3827   if (idx != 0) {
3828     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3829     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3830     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3831   }
3832 
3833   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3834 }
3835 
3836 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3837   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3838   if (!RD)
3839     return false;
3840 
3841   if (RD->isDynamicClass())
3842     return true;
3843 
3844   for (const auto &Base : RD->bases())
3845     if (hasAnyVptr(Base.getType(), Context))
3846       return true;
3847 
3848   for (const FieldDecl *Field : RD->fields())
3849     if (hasAnyVptr(Field->getType(), Context))
3850       return true;
3851 
3852   return false;
3853 }
3854 
3855 LValue CodeGenFunction::EmitLValueForField(LValue base,
3856                                            const FieldDecl *field) {
3857   LValueBaseInfo BaseInfo = base.getBaseInfo();
3858 
3859   if (field->isBitField()) {
3860     const CGRecordLayout &RL =
3861       CGM.getTypes().getCGRecordLayout(field->getParent());
3862     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3863     Address Addr = base.getAddress();
3864     unsigned Idx = RL.getLLVMFieldNo(field);
3865     if (Idx != 0)
3866       // For structs, we GEP to the field that the record layout suggests.
3867       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3868                                      field->getName());
3869     // Get the access type.
3870     llvm::Type *FieldIntTy =
3871       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3872     if (Addr.getElementType() != FieldIntTy)
3873       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3874 
3875     QualType fieldType =
3876       field->getType().withCVRQualifiers(base.getVRQualifiers());
3877     // TODO: Support TBAA for bit fields.
3878     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3879     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3880                                 TBAAAccessInfo());
3881   }
3882 
3883   // Fields of may-alias structures are may-alias themselves.
3884   // FIXME: this should get propagated down through anonymous structs
3885   // and unions.
3886   QualType FieldType = field->getType();
3887   const RecordDecl *rec = field->getParent();
3888   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3889   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3890   TBAAAccessInfo FieldTBAAInfo;
3891   if (base.getTBAAInfo().isMayAlias() ||
3892           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3893     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3894   } else if (rec->isUnion()) {
3895     // TODO: Support TBAA for unions.
3896     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3897   } else {
3898     // If no base type been assigned for the base access, then try to generate
3899     // one for this base lvalue.
3900     FieldTBAAInfo = base.getTBAAInfo();
3901     if (!FieldTBAAInfo.BaseType) {
3902         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3903         assert(!FieldTBAAInfo.Offset &&
3904                "Nonzero offset for an access with no base type!");
3905     }
3906 
3907     // Adjust offset to be relative to the base type.
3908     const ASTRecordLayout &Layout =
3909         getContext().getASTRecordLayout(field->getParent());
3910     unsigned CharWidth = getContext().getCharWidth();
3911     if (FieldTBAAInfo.BaseType)
3912       FieldTBAAInfo.Offset +=
3913           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3914 
3915     // Update the final access type and size.
3916     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3917     FieldTBAAInfo.Size =
3918         getContext().getTypeSizeInChars(FieldType).getQuantity();
3919   }
3920 
3921   Address addr = base.getAddress();
3922   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3923     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3924         ClassDef->isDynamicClass()) {
3925       // Getting to any field of dynamic object requires stripping dynamic
3926       // information provided by invariant.group.  This is because accessing
3927       // fields may leak the real address of dynamic object, which could result
3928       // in miscompilation when leaked pointer would be compared.
3929       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3930       addr = Address(stripped, addr.getAlignment());
3931     }
3932   }
3933 
3934   unsigned RecordCVR = base.getVRQualifiers();
3935   if (rec->isUnion()) {
3936     // For unions, there is no pointer adjustment.
3937     assert(!FieldType->isReferenceType() && "union has reference member");
3938     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3939         hasAnyVptr(FieldType, getContext()))
3940       // Because unions can easily skip invariant.barriers, we need to add
3941       // a barrier every time CXXRecord field with vptr is referenced.
3942       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3943                      addr.getAlignment());
3944   } else {
3945     // For structs, we GEP to the field that the record layout suggests.
3946     addr = emitAddrOfFieldStorage(*this, addr, field);
3947 
3948     // If this is a reference field, load the reference right now.
3949     if (FieldType->isReferenceType()) {
3950       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3951                                       FieldTBAAInfo);
3952       if (RecordCVR & Qualifiers::Volatile)
3953         RefLVal.getQuals().addVolatile();
3954       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3955 
3956       // Qualifiers on the struct don't apply to the referencee.
3957       RecordCVR = 0;
3958       FieldType = FieldType->getPointeeType();
3959     }
3960   }
3961 
3962   // Make sure that the address is pointing to the right type.  This is critical
3963   // for both unions and structs.  A union needs a bitcast, a struct element
3964   // will need a bitcast if the LLVM type laid out doesn't match the desired
3965   // type.
3966   addr = Builder.CreateElementBitCast(
3967       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3968 
3969   if (field->hasAttr<AnnotateAttr>())
3970     addr = EmitFieldAnnotations(field, addr);
3971 
3972   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3973   LV.getQuals().addCVRQualifiers(RecordCVR);
3974 
3975   // __weak attribute on a field is ignored.
3976   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3977     LV.getQuals().removeObjCGCAttr();
3978 
3979   return LV;
3980 }
3981 
3982 LValue
3983 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3984                                                   const FieldDecl *Field) {
3985   QualType FieldType = Field->getType();
3986 
3987   if (!FieldType->isReferenceType())
3988     return EmitLValueForField(Base, Field);
3989 
3990   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3991 
3992   // Make sure that the address is pointing to the right type.
3993   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3994   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3995 
3996   // TODO: Generate TBAA information that describes this access as a structure
3997   // member access and not just an access to an object of the field's type. This
3998   // should be similar to what we do in EmitLValueForField().
3999   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4000   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4001   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4002   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4003                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4004 }
4005 
4006 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4007   if (E->isFileScope()) {
4008     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4009     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4010   }
4011   if (E->getType()->isVariablyModifiedType())
4012     // make sure to emit the VLA size.
4013     EmitVariablyModifiedType(E->getType());
4014 
4015   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4016   const Expr *InitExpr = E->getInitializer();
4017   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4018 
4019   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4020                    /*Init*/ true);
4021 
4022   return Result;
4023 }
4024 
4025 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4026   if (!E->isGLValue())
4027     // Initializing an aggregate temporary in C++11: T{...}.
4028     return EmitAggExprToLValue(E);
4029 
4030   // An lvalue initializer list must be initializing a reference.
4031   assert(E->isTransparent() && "non-transparent glvalue init list");
4032   return EmitLValue(E->getInit(0));
4033 }
4034 
4035 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4036 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4037 /// LValue is returned and the current block has been terminated.
4038 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4039                                                     const Expr *Operand) {
4040   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4041     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4042     return None;
4043   }
4044 
4045   return CGF.EmitLValue(Operand);
4046 }
4047 
4048 LValue CodeGenFunction::
4049 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4050   if (!expr->isGLValue()) {
4051     // ?: here should be an aggregate.
4052     assert(hasAggregateEvaluationKind(expr->getType()) &&
4053            "Unexpected conditional operator!");
4054     return EmitAggExprToLValue(expr);
4055   }
4056 
4057   OpaqueValueMapping binding(*this, expr);
4058 
4059   const Expr *condExpr = expr->getCond();
4060   bool CondExprBool;
4061   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4062     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4063     if (!CondExprBool) std::swap(live, dead);
4064 
4065     if (!ContainsLabel(dead)) {
4066       // If the true case is live, we need to track its region.
4067       if (CondExprBool)
4068         incrementProfileCounter(expr);
4069       return EmitLValue(live);
4070     }
4071   }
4072 
4073   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4074   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4075   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4076 
4077   ConditionalEvaluation eval(*this);
4078   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4079 
4080   // Any temporaries created here are conditional.
4081   EmitBlock(lhsBlock);
4082   incrementProfileCounter(expr);
4083   eval.begin(*this);
4084   Optional<LValue> lhs =
4085       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4086   eval.end(*this);
4087 
4088   if (lhs && !lhs->isSimple())
4089     return EmitUnsupportedLValue(expr, "conditional operator");
4090 
4091   lhsBlock = Builder.GetInsertBlock();
4092   if (lhs)
4093     Builder.CreateBr(contBlock);
4094 
4095   // Any temporaries created here are conditional.
4096   EmitBlock(rhsBlock);
4097   eval.begin(*this);
4098   Optional<LValue> rhs =
4099       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4100   eval.end(*this);
4101   if (rhs && !rhs->isSimple())
4102     return EmitUnsupportedLValue(expr, "conditional operator");
4103   rhsBlock = Builder.GetInsertBlock();
4104 
4105   EmitBlock(contBlock);
4106 
4107   if (lhs && rhs) {
4108     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4109                                            2, "cond-lvalue");
4110     phi->addIncoming(lhs->getPointer(), lhsBlock);
4111     phi->addIncoming(rhs->getPointer(), rhsBlock);
4112     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4113     AlignmentSource alignSource =
4114       std::max(lhs->getBaseInfo().getAlignmentSource(),
4115                rhs->getBaseInfo().getAlignmentSource());
4116     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4117         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4118     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4119                           TBAAInfo);
4120   } else {
4121     assert((lhs || rhs) &&
4122            "both operands of glvalue conditional are throw-expressions?");
4123     return lhs ? *lhs : *rhs;
4124   }
4125 }
4126 
4127 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4128 /// type. If the cast is to a reference, we can have the usual lvalue result,
4129 /// otherwise if a cast is needed by the code generator in an lvalue context,
4130 /// then it must mean that we need the address of an aggregate in order to
4131 /// access one of its members.  This can happen for all the reasons that casts
4132 /// are permitted with aggregate result, including noop aggregate casts, and
4133 /// cast from scalar to union.
4134 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4135   switch (E->getCastKind()) {
4136   case CK_ToVoid:
4137   case CK_BitCast:
4138   case CK_ArrayToPointerDecay:
4139   case CK_FunctionToPointerDecay:
4140   case CK_NullToMemberPointer:
4141   case CK_NullToPointer:
4142   case CK_IntegralToPointer:
4143   case CK_PointerToIntegral:
4144   case CK_PointerToBoolean:
4145   case CK_VectorSplat:
4146   case CK_IntegralCast:
4147   case CK_BooleanToSignedIntegral:
4148   case CK_IntegralToBoolean:
4149   case CK_IntegralToFloating:
4150   case CK_FloatingToIntegral:
4151   case CK_FloatingToBoolean:
4152   case CK_FloatingCast:
4153   case CK_FloatingRealToComplex:
4154   case CK_FloatingComplexToReal:
4155   case CK_FloatingComplexToBoolean:
4156   case CK_FloatingComplexCast:
4157   case CK_FloatingComplexToIntegralComplex:
4158   case CK_IntegralRealToComplex:
4159   case CK_IntegralComplexToReal:
4160   case CK_IntegralComplexToBoolean:
4161   case CK_IntegralComplexCast:
4162   case CK_IntegralComplexToFloatingComplex:
4163   case CK_DerivedToBaseMemberPointer:
4164   case CK_BaseToDerivedMemberPointer:
4165   case CK_MemberPointerToBoolean:
4166   case CK_ReinterpretMemberPointer:
4167   case CK_AnyPointerToBlockPointerCast:
4168   case CK_ARCProduceObject:
4169   case CK_ARCConsumeObject:
4170   case CK_ARCReclaimReturnedObject:
4171   case CK_ARCExtendBlockObject:
4172   case CK_CopyAndAutoreleaseBlockObject:
4173   case CK_IntToOCLSampler:
4174   case CK_FixedPointCast:
4175   case CK_FixedPointToBoolean:
4176     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4177 
4178   case CK_Dependent:
4179     llvm_unreachable("dependent cast kind in IR gen!");
4180 
4181   case CK_BuiltinFnToFnPtr:
4182     llvm_unreachable("builtin functions are handled elsewhere");
4183 
4184   // These are never l-values; just use the aggregate emission code.
4185   case CK_NonAtomicToAtomic:
4186   case CK_AtomicToNonAtomic:
4187     return EmitAggExprToLValue(E);
4188 
4189   case CK_Dynamic: {
4190     LValue LV = EmitLValue(E->getSubExpr());
4191     Address V = LV.getAddress();
4192     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4193     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4194   }
4195 
4196   case CK_ConstructorConversion:
4197   case CK_UserDefinedConversion:
4198   case CK_CPointerToObjCPointerCast:
4199   case CK_BlockPointerToObjCPointerCast:
4200   case CK_NoOp:
4201   case CK_LValueToRValue:
4202     return EmitLValue(E->getSubExpr());
4203 
4204   case CK_UncheckedDerivedToBase:
4205   case CK_DerivedToBase: {
4206     const RecordType *DerivedClassTy =
4207       E->getSubExpr()->getType()->getAs<RecordType>();
4208     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4209 
4210     LValue LV = EmitLValue(E->getSubExpr());
4211     Address This = LV.getAddress();
4212 
4213     // Perform the derived-to-base conversion
4214     Address Base = GetAddressOfBaseClass(
4215         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4216         /*NullCheckValue=*/false, E->getExprLoc());
4217 
4218     // TODO: Support accesses to members of base classes in TBAA. For now, we
4219     // conservatively pretend that the complete object is of the base class
4220     // type.
4221     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4222                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4223   }
4224   case CK_ToUnion:
4225     return EmitAggExprToLValue(E);
4226   case CK_BaseToDerived: {
4227     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4228     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4229 
4230     LValue LV = EmitLValue(E->getSubExpr());
4231 
4232     // Perform the base-to-derived conversion
4233     Address Derived =
4234       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4235                                E->path_begin(), E->path_end(),
4236                                /*NullCheckValue=*/false);
4237 
4238     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4239     // performed and the object is not of the derived type.
4240     if (sanitizePerformTypeCheck())
4241       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4242                     Derived.getPointer(), E->getType());
4243 
4244     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4245       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4246                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4247                                 E->getBeginLoc());
4248 
4249     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4250                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4251   }
4252   case CK_LValueBitCast: {
4253     // This must be a reinterpret_cast (or c-style equivalent).
4254     const auto *CE = cast<ExplicitCastExpr>(E);
4255 
4256     CGM.EmitExplicitCastExprType(CE, this);
4257     LValue LV = EmitLValue(E->getSubExpr());
4258     Address V = Builder.CreateBitCast(LV.getAddress(),
4259                                       ConvertType(CE->getTypeAsWritten()));
4260 
4261     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4262       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4263                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4264                                 E->getBeginLoc());
4265 
4266     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4267                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4268   }
4269   case CK_AddressSpaceConversion: {
4270     LValue LV = EmitLValue(E->getSubExpr());
4271     QualType DestTy = getContext().getPointerType(E->getType());
4272     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4273         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4274         E->getType().getAddressSpace(), ConvertType(DestTy));
4275     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4276                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4277   }
4278   case CK_ObjCObjectLValueCast: {
4279     LValue LV = EmitLValue(E->getSubExpr());
4280     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4281                                              ConvertType(E->getType()));
4282     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4283                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4284   }
4285   case CK_ZeroToOCLOpaqueType:
4286     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4287   }
4288 
4289   llvm_unreachable("Unhandled lvalue cast kind?");
4290 }
4291 
4292 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4293   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4294   return getOrCreateOpaqueLValueMapping(e);
4295 }
4296 
4297 LValue
4298 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4299   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4300 
4301   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4302       it = OpaqueLValues.find(e);
4303 
4304   if (it != OpaqueLValues.end())
4305     return it->second;
4306 
4307   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4308   return EmitLValue(e->getSourceExpr());
4309 }
4310 
4311 RValue
4312 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4313   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4314 
4315   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4316       it = OpaqueRValues.find(e);
4317 
4318   if (it != OpaqueRValues.end())
4319     return it->second;
4320 
4321   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4322   return EmitAnyExpr(e->getSourceExpr());
4323 }
4324 
4325 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4326                                            const FieldDecl *FD,
4327                                            SourceLocation Loc) {
4328   QualType FT = FD->getType();
4329   LValue FieldLV = EmitLValueForField(LV, FD);
4330   switch (getEvaluationKind(FT)) {
4331   case TEK_Complex:
4332     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4333   case TEK_Aggregate:
4334     return FieldLV.asAggregateRValue();
4335   case TEK_Scalar:
4336     // This routine is used to load fields one-by-one to perform a copy, so
4337     // don't load reference fields.
4338     if (FD->getType()->isReferenceType())
4339       return RValue::get(FieldLV.getPointer());
4340     return EmitLoadOfLValue(FieldLV, Loc);
4341   }
4342   llvm_unreachable("bad evaluation kind");
4343 }
4344 
4345 //===--------------------------------------------------------------------===//
4346 //                             Expression Emission
4347 //===--------------------------------------------------------------------===//
4348 
4349 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4350                                      ReturnValueSlot ReturnValue) {
4351   // Builtins never have block type.
4352   if (E->getCallee()->getType()->isBlockPointerType())
4353     return EmitBlockCallExpr(E, ReturnValue);
4354 
4355   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4356     return EmitCXXMemberCallExpr(CE, ReturnValue);
4357 
4358   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4359     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4360 
4361   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4362     if (const CXXMethodDecl *MD =
4363           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4364       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4365 
4366   CGCallee callee = EmitCallee(E->getCallee());
4367 
4368   if (callee.isBuiltin()) {
4369     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4370                            E, ReturnValue);
4371   }
4372 
4373   if (callee.isPseudoDestructor()) {
4374     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4375   }
4376 
4377   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4378 }
4379 
4380 /// Emit a CallExpr without considering whether it might be a subclass.
4381 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4382                                            ReturnValueSlot ReturnValue) {
4383   CGCallee Callee = EmitCallee(E->getCallee());
4384   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4385 }
4386 
4387 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4388   if (auto builtinID = FD->getBuiltinID()) {
4389     return CGCallee::forBuiltin(builtinID, FD);
4390   }
4391 
4392   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4393   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4394 }
4395 
4396 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4397   E = E->IgnoreParens();
4398 
4399   // Look through function-to-pointer decay.
4400   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4401     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4402         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4403       return EmitCallee(ICE->getSubExpr());
4404     }
4405 
4406   // Resolve direct calls.
4407   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4408     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4409       return EmitDirectCallee(*this, FD);
4410     }
4411   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4412     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4413       EmitIgnoredExpr(ME->getBase());
4414       return EmitDirectCallee(*this, FD);
4415     }
4416 
4417   // Look through template substitutions.
4418   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4419     return EmitCallee(NTTP->getReplacement());
4420 
4421   // Treat pseudo-destructor calls differently.
4422   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4423     return CGCallee::forPseudoDestructor(PDE);
4424   }
4425 
4426   // Otherwise, we have an indirect reference.
4427   llvm::Value *calleePtr;
4428   QualType functionType;
4429   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4430     calleePtr = EmitScalarExpr(E);
4431     functionType = ptrType->getPointeeType();
4432   } else {
4433     functionType = E->getType();
4434     calleePtr = EmitLValue(E).getPointer();
4435   }
4436   assert(functionType->isFunctionType());
4437 
4438   GlobalDecl GD;
4439   if (const auto *VD =
4440           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4441     GD = GlobalDecl(VD);
4442 
4443   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4444   CGCallee callee(calleeInfo, calleePtr);
4445   return callee;
4446 }
4447 
4448 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4449   // Comma expressions just emit their LHS then their RHS as an l-value.
4450   if (E->getOpcode() == BO_Comma) {
4451     EmitIgnoredExpr(E->getLHS());
4452     EnsureInsertPoint();
4453     return EmitLValue(E->getRHS());
4454   }
4455 
4456   if (E->getOpcode() == BO_PtrMemD ||
4457       E->getOpcode() == BO_PtrMemI)
4458     return EmitPointerToDataMemberBinaryExpr(E);
4459 
4460   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4461 
4462   // Note that in all of these cases, __block variables need the RHS
4463   // evaluated first just in case the variable gets moved by the RHS.
4464 
4465   switch (getEvaluationKind(E->getType())) {
4466   case TEK_Scalar: {
4467     switch (E->getLHS()->getType().getObjCLifetime()) {
4468     case Qualifiers::OCL_Strong:
4469       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4470 
4471     case Qualifiers::OCL_Autoreleasing:
4472       return EmitARCStoreAutoreleasing(E).first;
4473 
4474     // No reason to do any of these differently.
4475     case Qualifiers::OCL_None:
4476     case Qualifiers::OCL_ExplicitNone:
4477     case Qualifiers::OCL_Weak:
4478       break;
4479     }
4480 
4481     RValue RV = EmitAnyExpr(E->getRHS());
4482     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4483     if (RV.isScalar())
4484       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4485     EmitStoreThroughLValue(RV, LV);
4486     return LV;
4487   }
4488 
4489   case TEK_Complex:
4490     return EmitComplexAssignmentLValue(E);
4491 
4492   case TEK_Aggregate:
4493     return EmitAggExprToLValue(E);
4494   }
4495   llvm_unreachable("bad evaluation kind");
4496 }
4497 
4498 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4499   RValue RV = EmitCallExpr(E);
4500 
4501   if (!RV.isScalar())
4502     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4503                           AlignmentSource::Decl);
4504 
4505   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4506          "Can't have a scalar return unless the return type is a "
4507          "reference type!");
4508 
4509   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4510 }
4511 
4512 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4513   // FIXME: This shouldn't require another copy.
4514   return EmitAggExprToLValue(E);
4515 }
4516 
4517 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4518   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4519          && "binding l-value to type which needs a temporary");
4520   AggValueSlot Slot = CreateAggTemp(E->getType());
4521   EmitCXXConstructExpr(E, Slot);
4522   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4523 }
4524 
4525 LValue
4526 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4527   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4528 }
4529 
4530 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4531   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4532                                       ConvertType(E->getType()));
4533 }
4534 
4535 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4536   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4537                         AlignmentSource::Decl);
4538 }
4539 
4540 LValue
4541 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4542   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4543   Slot.setExternallyDestructed();
4544   EmitAggExpr(E->getSubExpr(), Slot);
4545   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4546   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4547 }
4548 
4549 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4550   RValue RV = EmitObjCMessageExpr(E);
4551 
4552   if (!RV.isScalar())
4553     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4554                           AlignmentSource::Decl);
4555 
4556   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4557          "Can't have a scalar return unless the return type is a "
4558          "reference type!");
4559 
4560   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4561 }
4562 
4563 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4564   Address V =
4565     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4566   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4567 }
4568 
4569 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4570                                              const ObjCIvarDecl *Ivar) {
4571   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4572 }
4573 
4574 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4575                                           llvm::Value *BaseValue,
4576                                           const ObjCIvarDecl *Ivar,
4577                                           unsigned CVRQualifiers) {
4578   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4579                                                    Ivar, CVRQualifiers);
4580 }
4581 
4582 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4583   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4584   llvm::Value *BaseValue = nullptr;
4585   const Expr *BaseExpr = E->getBase();
4586   Qualifiers BaseQuals;
4587   QualType ObjectTy;
4588   if (E->isArrow()) {
4589     BaseValue = EmitScalarExpr(BaseExpr);
4590     ObjectTy = BaseExpr->getType()->getPointeeType();
4591     BaseQuals = ObjectTy.getQualifiers();
4592   } else {
4593     LValue BaseLV = EmitLValue(BaseExpr);
4594     BaseValue = BaseLV.getPointer();
4595     ObjectTy = BaseExpr->getType();
4596     BaseQuals = ObjectTy.getQualifiers();
4597   }
4598 
4599   LValue LV =
4600     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4601                       BaseQuals.getCVRQualifiers());
4602   setObjCGCLValueClass(getContext(), E, LV);
4603   return LV;
4604 }
4605 
4606 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4607   // Can only get l-value for message expression returning aggregate type
4608   RValue RV = EmitAnyExprToTemp(E);
4609   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4610                         AlignmentSource::Decl);
4611 }
4612 
4613 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4614                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4615                                  llvm::Value *Chain) {
4616   // Get the actual function type. The callee type will always be a pointer to
4617   // function type or a block pointer type.
4618   assert(CalleeType->isFunctionPointerType() &&
4619          "Call must have function pointer type!");
4620 
4621   const Decl *TargetDecl =
4622       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4623 
4624   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4625     // We can only guarantee that a function is called from the correct
4626     // context/function based on the appropriate target attributes,
4627     // so only check in the case where we have both always_inline and target
4628     // since otherwise we could be making a conditional call after a check for
4629     // the proper cpu features (and it won't cause code generation issues due to
4630     // function based code generation).
4631     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4632         TargetDecl->hasAttr<TargetAttr>())
4633       checkTargetFeatures(E, FD);
4634 
4635   CalleeType = getContext().getCanonicalType(CalleeType);
4636 
4637   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4638 
4639   CGCallee Callee = OrigCallee;
4640 
4641   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4642       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4643     if (llvm::Constant *PrefixSig =
4644             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4645       SanitizerScope SanScope(this);
4646       // Remove any (C++17) exception specifications, to allow calling e.g. a
4647       // noexcept function through a non-noexcept pointer.
4648       auto ProtoTy =
4649         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4650       llvm::Constant *FTRTTIConst =
4651           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4652       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4653       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4654           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4655 
4656       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4657 
4658       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4659           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4660       llvm::Value *CalleeSigPtr =
4661           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4662       llvm::Value *CalleeSig =
4663           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4664       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4665 
4666       llvm::BasicBlock *Cont = createBasicBlock("cont");
4667       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4668       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4669 
4670       EmitBlock(TypeCheck);
4671       llvm::Value *CalleeRTTIPtr =
4672           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4673       llvm::Value *CalleeRTTIEncoded =
4674           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4675       llvm::Value *CalleeRTTI =
4676           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4677       llvm::Value *CalleeRTTIMatch =
4678           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4679       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4680                                       EmitCheckTypeDescriptor(CalleeType)};
4681       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4682                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4683 
4684       Builder.CreateBr(Cont);
4685       EmitBlock(Cont);
4686     }
4687   }
4688 
4689   const auto *FnType = cast<FunctionType>(PointeeType);
4690 
4691   // If we are checking indirect calls and this call is indirect, check that the
4692   // function pointer is a member of the bit set for the function type.
4693   if (SanOpts.has(SanitizerKind::CFIICall) &&
4694       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4695     SanitizerScope SanScope(this);
4696     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4697 
4698     llvm::Metadata *MD;
4699     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4700       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4701     else
4702       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4703 
4704     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4705 
4706     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4707     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4708     llvm::Value *TypeTest = Builder.CreateCall(
4709         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4710 
4711     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4712     llvm::Constant *StaticData[] = {
4713         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4714         EmitCheckSourceLocation(E->getBeginLoc()),
4715         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4716     };
4717     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4718       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4719                            CastedCallee, StaticData);
4720     } else {
4721       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4722                 SanitizerHandler::CFICheckFail, StaticData,
4723                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4724     }
4725   }
4726 
4727   CallArgList Args;
4728   if (Chain)
4729     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4730              CGM.getContext().VoidPtrTy);
4731 
4732   // C++17 requires that we evaluate arguments to a call using assignment syntax
4733   // right-to-left, and that we evaluate arguments to certain other operators
4734   // left-to-right. Note that we allow this to override the order dictated by
4735   // the calling convention on the MS ABI, which means that parameter
4736   // destruction order is not necessarily reverse construction order.
4737   // FIXME: Revisit this based on C++ committee response to unimplementability.
4738   EvaluationOrder Order = EvaluationOrder::Default;
4739   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4740     if (OCE->isAssignmentOp())
4741       Order = EvaluationOrder::ForceRightToLeft;
4742     else {
4743       switch (OCE->getOperator()) {
4744       case OO_LessLess:
4745       case OO_GreaterGreater:
4746       case OO_AmpAmp:
4747       case OO_PipePipe:
4748       case OO_Comma:
4749       case OO_ArrowStar:
4750         Order = EvaluationOrder::ForceLeftToRight;
4751         break;
4752       default:
4753         break;
4754       }
4755     }
4756   }
4757 
4758   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4759                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4760 
4761   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4762       Args, FnType, /*isChainCall=*/Chain);
4763 
4764   // C99 6.5.2.2p6:
4765   //   If the expression that denotes the called function has a type
4766   //   that does not include a prototype, [the default argument
4767   //   promotions are performed]. If the number of arguments does not
4768   //   equal the number of parameters, the behavior is undefined. If
4769   //   the function is defined with a type that includes a prototype,
4770   //   and either the prototype ends with an ellipsis (, ...) or the
4771   //   types of the arguments after promotion are not compatible with
4772   //   the types of the parameters, the behavior is undefined. If the
4773   //   function is defined with a type that does not include a
4774   //   prototype, and the types of the arguments after promotion are
4775   //   not compatible with those of the parameters after promotion,
4776   //   the behavior is undefined [except in some trivial cases].
4777   // That is, in the general case, we should assume that a call
4778   // through an unprototyped function type works like a *non-variadic*
4779   // call.  The way we make this work is to cast to the exact type
4780   // of the promoted arguments.
4781   //
4782   // Chain calls use this same code path to add the invisible chain parameter
4783   // to the function type.
4784   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4785     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4786     CalleeTy = CalleeTy->getPointerTo();
4787 
4788     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4789     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4790     Callee.setFunctionPointer(CalleePtr);
4791   }
4792 
4793   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4794 }
4795 
4796 LValue CodeGenFunction::
4797 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4798   Address BaseAddr = Address::invalid();
4799   if (E->getOpcode() == BO_PtrMemI) {
4800     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4801   } else {
4802     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4803   }
4804 
4805   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4806 
4807   const MemberPointerType *MPT
4808     = E->getRHS()->getType()->getAs<MemberPointerType>();
4809 
4810   LValueBaseInfo BaseInfo;
4811   TBAAAccessInfo TBAAInfo;
4812   Address MemberAddr =
4813     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4814                                     &TBAAInfo);
4815 
4816   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4817 }
4818 
4819 /// Given the address of a temporary variable, produce an r-value of
4820 /// its type.
4821 RValue CodeGenFunction::convertTempToRValue(Address addr,
4822                                             QualType type,
4823                                             SourceLocation loc) {
4824   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4825   switch (getEvaluationKind(type)) {
4826   case TEK_Complex:
4827     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4828   case TEK_Aggregate:
4829     return lvalue.asAggregateRValue();
4830   case TEK_Scalar:
4831     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4832   }
4833   llvm_unreachable("bad evaluation kind");
4834 }
4835 
4836 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4837   assert(Val->getType()->isFPOrFPVectorTy());
4838   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4839     return;
4840 
4841   llvm::MDBuilder MDHelper(getLLVMContext());
4842   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4843 
4844   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4845 }
4846 
4847 namespace {
4848   struct LValueOrRValue {
4849     LValue LV;
4850     RValue RV;
4851   };
4852 }
4853 
4854 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4855                                            const PseudoObjectExpr *E,
4856                                            bool forLValue,
4857                                            AggValueSlot slot) {
4858   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4859 
4860   // Find the result expression, if any.
4861   const Expr *resultExpr = E->getResultExpr();
4862   LValueOrRValue result;
4863 
4864   for (PseudoObjectExpr::const_semantics_iterator
4865          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4866     const Expr *semantic = *i;
4867 
4868     // If this semantic expression is an opaque value, bind it
4869     // to the result of its source expression.
4870     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4871       // Skip unique OVEs.
4872       if (ov->isUnique()) {
4873         assert(ov != resultExpr &&
4874                "A unique OVE cannot be used as the result expression");
4875         continue;
4876       }
4877 
4878       // If this is the result expression, we may need to evaluate
4879       // directly into the slot.
4880       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4881       OVMA opaqueData;
4882       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4883           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4884         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4885         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4886                                        AlignmentSource::Decl);
4887         opaqueData = OVMA::bind(CGF, ov, LV);
4888         result.RV = slot.asRValue();
4889 
4890       // Otherwise, emit as normal.
4891       } else {
4892         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4893 
4894         // If this is the result, also evaluate the result now.
4895         if (ov == resultExpr) {
4896           if (forLValue)
4897             result.LV = CGF.EmitLValue(ov);
4898           else
4899             result.RV = CGF.EmitAnyExpr(ov, slot);
4900         }
4901       }
4902 
4903       opaques.push_back(opaqueData);
4904 
4905     // Otherwise, if the expression is the result, evaluate it
4906     // and remember the result.
4907     } else if (semantic == resultExpr) {
4908       if (forLValue)
4909         result.LV = CGF.EmitLValue(semantic);
4910       else
4911         result.RV = CGF.EmitAnyExpr(semantic, slot);
4912 
4913     // Otherwise, evaluate the expression in an ignored context.
4914     } else {
4915       CGF.EmitIgnoredExpr(semantic);
4916     }
4917   }
4918 
4919   // Unbind all the opaques now.
4920   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4921     opaques[i].unbind(CGF);
4922 
4923   return result;
4924 }
4925 
4926 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4927                                                AggValueSlot slot) {
4928   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4929 }
4930 
4931 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4932   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4933 }
4934