1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getQuantity()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::Constant *CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 344 StructorType::Complete); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getQuantity()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 LValue CodeGenFunction:: 419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 420 const Expr *E = M->GetTemporaryExpr(); 421 422 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 423 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 424 "Reference should never be pseudo-strong!"); 425 426 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 427 // as that will cause the lifetime adjustment to be lost for ARC 428 auto ownership = M->getType().getObjCLifetime(); 429 if (ownership != Qualifiers::OCL_None && 430 ownership != Qualifiers::OCL_ExplicitNone) { 431 Address Object = createReferenceTemporary(*this, M, E); 432 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 433 Object = Address(llvm::ConstantExpr::getBitCast(Var, 434 ConvertTypeForMem(E->getType()) 435 ->getPointerTo(Object.getAddressSpace())), 436 Object.getAlignment()); 437 438 // createReferenceTemporary will promote the temporary to a global with a 439 // constant initializer if it can. It can only do this to a value of 440 // ARC-manageable type if the value is global and therefore "immune" to 441 // ref-counting operations. Therefore we have no need to emit either a 442 // dynamic initialization or a cleanup and we can just return the address 443 // of the temporary. 444 if (Var->hasInitializer()) 445 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 446 447 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 448 } 449 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 450 AlignmentSource::Decl); 451 452 switch (getEvaluationKind(E->getType())) { 453 default: llvm_unreachable("expected scalar or aggregate expression"); 454 case TEK_Scalar: 455 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 456 break; 457 case TEK_Aggregate: { 458 EmitAggExpr(E, AggValueSlot::forAddr(Object, 459 E->getType().getQualifiers(), 460 AggValueSlot::IsDestructed, 461 AggValueSlot::DoesNotNeedGCBarriers, 462 AggValueSlot::IsNotAliased, 463 AggValueSlot::DoesNotOverlap)); 464 break; 465 } 466 } 467 468 pushTemporaryCleanup(*this, M, E, Object); 469 return RefTempDst; 470 } 471 472 SmallVector<const Expr *, 2> CommaLHSs; 473 SmallVector<SubobjectAdjustment, 2> Adjustments; 474 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 475 476 for (const auto &Ignored : CommaLHSs) 477 EmitIgnoredExpr(Ignored); 478 479 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 480 if (opaque->getType()->isRecordType()) { 481 assert(Adjustments.empty()); 482 return EmitOpaqueValueLValue(opaque); 483 } 484 } 485 486 // Create and initialize the reference temporary. 487 Address Alloca = Address::invalid(); 488 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 489 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 490 Object.getPointer()->stripPointerCasts())) { 491 Object = Address(llvm::ConstantExpr::getBitCast( 492 cast<llvm::Constant>(Object.getPointer()), 493 ConvertTypeForMem(E->getType())->getPointerTo()), 494 Object.getAlignment()); 495 // If the temporary is a global and has a constant initializer or is a 496 // constant temporary that we promoted to a global, we may have already 497 // initialized it. 498 if (!Var->hasInitializer()) { 499 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 500 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 501 } 502 } else { 503 switch (M->getStorageDuration()) { 504 case SD_Automatic: 505 if (auto *Size = EmitLifetimeStart( 506 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 507 Alloca.getPointer())) { 508 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 509 Alloca, Size); 510 } 511 break; 512 513 case SD_FullExpression: { 514 if (!ShouldEmitLifetimeMarkers) 515 break; 516 517 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 518 // marker. Instead, start the lifetime of a conditional temporary earlier 519 // so that it's unconditional. Don't do this in ASan's use-after-scope 520 // mode so that it gets the more precise lifetime marks. If the type has 521 // a non-trivial destructor, we'll have a cleanup block for it anyway, 522 // so this typically doesn't help; skip it in that case. 523 ConditionalEvaluation *OldConditional = nullptr; 524 CGBuilderTy::InsertPoint OldIP; 525 if (isInConditionalBranch() && !E->getType().isDestructedType() && 526 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 527 OldConditional = OutermostConditional; 528 OutermostConditional = nullptr; 529 530 OldIP = Builder.saveIP(); 531 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 532 Builder.restoreIP(CGBuilderTy::InsertPoint( 533 Block, llvm::BasicBlock::iterator(Block->back()))); 534 } 535 536 if (auto *Size = EmitLifetimeStart( 537 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 538 Alloca.getPointer())) { 539 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 540 Size); 541 } 542 543 if (OldConditional) { 544 OutermostConditional = OldConditional; 545 Builder.restoreIP(OldIP); 546 } 547 break; 548 } 549 550 default: 551 break; 552 } 553 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 554 } 555 pushTemporaryCleanup(*this, M, E, Object); 556 557 // Perform derived-to-base casts and/or field accesses, to get from the 558 // temporary object we created (and, potentially, for which we extended 559 // the lifetime) to the subobject we're binding the reference to. 560 for (unsigned I = Adjustments.size(); I != 0; --I) { 561 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 562 switch (Adjustment.Kind) { 563 case SubobjectAdjustment::DerivedToBaseAdjustment: 564 Object = 565 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 566 Adjustment.DerivedToBase.BasePath->path_begin(), 567 Adjustment.DerivedToBase.BasePath->path_end(), 568 /*NullCheckValue=*/ false, E->getExprLoc()); 569 break; 570 571 case SubobjectAdjustment::FieldAdjustment: { 572 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 573 LV = EmitLValueForField(LV, Adjustment.Field); 574 assert(LV.isSimple() && 575 "materialized temporary field is not a simple lvalue"); 576 Object = LV.getAddress(); 577 break; 578 } 579 580 case SubobjectAdjustment::MemberPointerAdjustment: { 581 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 582 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 583 Adjustment.Ptr.MPT); 584 break; 585 } 586 } 587 } 588 589 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 590 } 591 592 RValue 593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 594 // Emit the expression as an lvalue. 595 LValue LV = EmitLValue(E); 596 assert(LV.isSimple()); 597 llvm::Value *Value = LV.getPointer(); 598 599 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 600 // C++11 [dcl.ref]p5 (as amended by core issue 453): 601 // If a glvalue to which a reference is directly bound designates neither 602 // an existing object or function of an appropriate type nor a region of 603 // storage of suitable size and alignment to contain an object of the 604 // reference's type, the behavior is undefined. 605 QualType Ty = E->getType(); 606 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 607 } 608 609 return RValue::get(Value); 610 } 611 612 613 /// getAccessedFieldNo - Given an encoded value and a result number, return the 614 /// input field number being accessed. 615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 616 const llvm::Constant *Elts) { 617 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 618 ->getZExtValue(); 619 } 620 621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 623 llvm::Value *High) { 624 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 625 llvm::Value *K47 = Builder.getInt64(47); 626 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 627 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 628 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 629 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 630 return Builder.CreateMul(B1, KMul); 631 } 632 633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 634 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 635 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 636 } 637 638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 639 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 640 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 641 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 642 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 643 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 644 } 645 646 bool CodeGenFunction::sanitizePerformTypeCheck() const { 647 return SanOpts.has(SanitizerKind::Null) | 648 SanOpts.has(SanitizerKind::Alignment) | 649 SanOpts.has(SanitizerKind::ObjectSize) | 650 SanOpts.has(SanitizerKind::Vptr); 651 } 652 653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 654 llvm::Value *Ptr, QualType Ty, 655 CharUnits Alignment, 656 SanitizerSet SkippedChecks) { 657 if (!sanitizePerformTypeCheck()) 658 return; 659 660 // Don't check pointers outside the default address space. The null check 661 // isn't correct, the object-size check isn't supported by LLVM, and we can't 662 // communicate the addresses to the runtime handler for the vptr check. 663 if (Ptr->getType()->getPointerAddressSpace()) 664 return; 665 666 // Don't check pointers to volatile data. The behavior here is implementation- 667 // defined. 668 if (Ty.isVolatileQualified()) 669 return; 670 671 SanitizerScope SanScope(this); 672 673 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 674 llvm::BasicBlock *Done = nullptr; 675 676 // Quickly determine whether we have a pointer to an alloca. It's possible 677 // to skip null checks, and some alignment checks, for these pointers. This 678 // can reduce compile-time significantly. 679 auto PtrToAlloca = 680 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 681 682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 683 llvm::Value *IsNonNull = nullptr; 684 bool IsGuaranteedNonNull = 685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 686 bool AllowNullPointers = isNullPointerAllowed(TCK); 687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 688 !IsGuaranteedNonNull) { 689 // The glvalue must not be an empty glvalue. 690 IsNonNull = Builder.CreateIsNotNull(Ptr); 691 692 // The IR builder can constant-fold the null check if the pointer points to 693 // a constant. 694 IsGuaranteedNonNull = IsNonNull == True; 695 696 // Skip the null check if the pointer is known to be non-null. 697 if (!IsGuaranteedNonNull) { 698 if (AllowNullPointers) { 699 // When performing pointer casts, it's OK if the value is null. 700 // Skip the remaining checks in that case. 701 Done = createBasicBlock("null"); 702 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 703 Builder.CreateCondBr(IsNonNull, Rest, Done); 704 EmitBlock(Rest); 705 } else { 706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 707 } 708 } 709 } 710 711 if (SanOpts.has(SanitizerKind::ObjectSize) && 712 !SkippedChecks.has(SanitizerKind::ObjectSize) && 713 !Ty->isIncompleteType()) { 714 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 715 716 // The glvalue must refer to a large enough storage region. 717 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 718 // to check this. 719 // FIXME: Get object address space 720 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 721 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 722 llvm::Value *Min = Builder.getFalse(); 723 llvm::Value *NullIsUnknown = Builder.getFalse(); 724 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 725 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 726 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 727 llvm::ConstantInt::get(IntPtrTy, Size)); 728 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 729 } 730 731 uint64_t AlignVal = 0; 732 llvm::Value *PtrAsInt = nullptr; 733 734 if (SanOpts.has(SanitizerKind::Alignment) && 735 !SkippedChecks.has(SanitizerKind::Alignment)) { 736 AlignVal = Alignment.getQuantity(); 737 if (!Ty->isIncompleteType() && !AlignVal) 738 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 739 740 // The glvalue must be suitably aligned. 741 if (AlignVal > 1 && 742 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 743 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 744 llvm::Value *Align = Builder.CreateAnd( 745 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 746 llvm::Value *Aligned = 747 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 748 if (Aligned != True) 749 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 750 } 751 } 752 753 if (Checks.size() > 0) { 754 // Make sure we're not losing information. Alignment needs to be a power of 755 // 2 756 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 757 llvm::Constant *StaticData[] = { 758 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 759 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 760 llvm::ConstantInt::get(Int8Ty, TCK)}; 761 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 762 PtrAsInt ? PtrAsInt : Ptr); 763 } 764 765 // If possible, check that the vptr indicates that there is a subobject of 766 // type Ty at offset zero within this object. 767 // 768 // C++11 [basic.life]p5,6: 769 // [For storage which does not refer to an object within its lifetime] 770 // The program has undefined behavior if: 771 // -- the [pointer or glvalue] is used to access a non-static data member 772 // or call a non-static member function 773 if (SanOpts.has(SanitizerKind::Vptr) && 774 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 775 // Ensure that the pointer is non-null before loading it. If there is no 776 // compile-time guarantee, reuse the run-time null check or emit a new one. 777 if (!IsGuaranteedNonNull) { 778 if (!IsNonNull) 779 IsNonNull = Builder.CreateIsNotNull(Ptr); 780 if (!Done) 781 Done = createBasicBlock("vptr.null"); 782 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 783 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 784 EmitBlock(VptrNotNull); 785 } 786 787 // Compute a hash of the mangled name of the type. 788 // 789 // FIXME: This is not guaranteed to be deterministic! Move to a 790 // fingerprinting mechanism once LLVM provides one. For the time 791 // being the implementation happens to be deterministic. 792 SmallString<64> MangledName; 793 llvm::raw_svector_ostream Out(MangledName); 794 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 795 Out); 796 797 // Blacklist based on the mangled type. 798 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 799 SanitizerKind::Vptr, Out.str())) { 800 llvm::hash_code TypeHash = hash_value(Out.str()); 801 802 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 803 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 804 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 805 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 806 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 807 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 808 809 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 810 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 811 812 // Look the hash up in our cache. 813 const int CacheSize = 128; 814 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 815 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 816 "__ubsan_vptr_type_cache"); 817 llvm::Value *Slot = Builder.CreateAnd(Hash, 818 llvm::ConstantInt::get(IntPtrTy, 819 CacheSize-1)); 820 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 821 llvm::Value *CacheVal = 822 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 823 getPointerAlign()); 824 825 // If the hash isn't in the cache, call a runtime handler to perform the 826 // hard work of checking whether the vptr is for an object of the right 827 // type. This will either fill in the cache and return, or produce a 828 // diagnostic. 829 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 830 llvm::Constant *StaticData[] = { 831 EmitCheckSourceLocation(Loc), 832 EmitCheckTypeDescriptor(Ty), 833 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 834 llvm::ConstantInt::get(Int8Ty, TCK) 835 }; 836 llvm::Value *DynamicData[] = { Ptr, Hash }; 837 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 838 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 839 DynamicData); 840 } 841 } 842 843 if (Done) { 844 Builder.CreateBr(Done); 845 EmitBlock(Done); 846 } 847 } 848 849 /// Determine whether this expression refers to a flexible array member in a 850 /// struct. We disable array bounds checks for such members. 851 static bool isFlexibleArrayMemberExpr(const Expr *E) { 852 // For compatibility with existing code, we treat arrays of length 0 or 853 // 1 as flexible array members. 854 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 855 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 856 if (CAT->getSize().ugt(1)) 857 return false; 858 } else if (!isa<IncompleteArrayType>(AT)) 859 return false; 860 861 E = E->IgnoreParens(); 862 863 // A flexible array member must be the last member in the class. 864 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 865 // FIXME: If the base type of the member expr is not FD->getParent(), 866 // this should not be treated as a flexible array member access. 867 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 868 RecordDecl::field_iterator FI( 869 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 870 return ++FI == FD->getParent()->field_end(); 871 } 872 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 873 return IRE->getDecl()->getNextIvar() == nullptr; 874 } 875 876 return false; 877 } 878 879 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 880 QualType EltTy) { 881 ASTContext &C = getContext(); 882 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 883 if (!EltSize) 884 return nullptr; 885 886 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 887 if (!ArrayDeclRef) 888 return nullptr; 889 890 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 891 if (!ParamDecl) 892 return nullptr; 893 894 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 895 if (!POSAttr) 896 return nullptr; 897 898 // Don't load the size if it's a lower bound. 899 int POSType = POSAttr->getType(); 900 if (POSType != 0 && POSType != 1) 901 return nullptr; 902 903 // Find the implicit size parameter. 904 auto PassedSizeIt = SizeArguments.find(ParamDecl); 905 if (PassedSizeIt == SizeArguments.end()) 906 return nullptr; 907 908 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 909 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 910 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 911 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 912 C.getSizeType(), E->getExprLoc()); 913 llvm::Value *SizeOfElement = 914 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 915 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 916 } 917 918 /// If Base is known to point to the start of an array, return the length of 919 /// that array. Return 0 if the length cannot be determined. 920 static llvm::Value *getArrayIndexingBound( 921 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 922 // For the vector indexing extension, the bound is the number of elements. 923 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 924 IndexedType = Base->getType(); 925 return CGF.Builder.getInt32(VT->getNumElements()); 926 } 927 928 Base = Base->IgnoreParens(); 929 930 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 931 if (CE->getCastKind() == CK_ArrayToPointerDecay && 932 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 933 IndexedType = CE->getSubExpr()->getType(); 934 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 935 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 936 return CGF.Builder.getInt(CAT->getSize()); 937 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 938 return CGF.getVLASize(VAT).NumElts; 939 // Ignore pass_object_size here. It's not applicable on decayed pointers. 940 } 941 } 942 943 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 944 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 945 IndexedType = Base->getType(); 946 return POS; 947 } 948 949 return nullptr; 950 } 951 952 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 953 llvm::Value *Index, QualType IndexType, 954 bool Accessed) { 955 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 956 "should not be called unless adding bounds checks"); 957 SanitizerScope SanScope(this); 958 959 QualType IndexedType; 960 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 961 if (!Bound) 962 return; 963 964 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 965 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 966 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 967 968 llvm::Constant *StaticData[] = { 969 EmitCheckSourceLocation(E->getExprLoc()), 970 EmitCheckTypeDescriptor(IndexedType), 971 EmitCheckTypeDescriptor(IndexType) 972 }; 973 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 974 : Builder.CreateICmpULE(IndexVal, BoundVal); 975 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 976 SanitizerHandler::OutOfBounds, StaticData, Index); 977 } 978 979 980 CodeGenFunction::ComplexPairTy CodeGenFunction:: 981 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 982 bool isInc, bool isPre) { 983 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 984 985 llvm::Value *NextVal; 986 if (isa<llvm::IntegerType>(InVal.first->getType())) { 987 uint64_t AmountVal = isInc ? 1 : -1; 988 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 989 990 // Add the inc/dec to the real part. 991 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 992 } else { 993 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 994 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 995 if (!isInc) 996 FVal.changeSign(); 997 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 998 999 // Add the inc/dec to the real part. 1000 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1001 } 1002 1003 ComplexPairTy IncVal(NextVal, InVal.second); 1004 1005 // Store the updated result through the lvalue. 1006 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1007 1008 // If this is a postinc, return the value read from memory, otherwise use the 1009 // updated value. 1010 return isPre ? IncVal : InVal; 1011 } 1012 1013 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1014 CodeGenFunction *CGF) { 1015 // Bind VLAs in the cast type. 1016 if (CGF && E->getType()->isVariablyModifiedType()) 1017 CGF->EmitVariablyModifiedType(E->getType()); 1018 1019 if (CGDebugInfo *DI = getModuleDebugInfo()) 1020 DI->EmitExplicitCastType(E->getType()); 1021 } 1022 1023 //===----------------------------------------------------------------------===// 1024 // LValue Expression Emission 1025 //===----------------------------------------------------------------------===// 1026 1027 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1028 /// derive a more accurate bound on the alignment of the pointer. 1029 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1030 LValueBaseInfo *BaseInfo, 1031 TBAAAccessInfo *TBAAInfo) { 1032 // We allow this with ObjC object pointers because of fragile ABIs. 1033 assert(E->getType()->isPointerType() || 1034 E->getType()->isObjCObjectPointerType()); 1035 E = E->IgnoreParens(); 1036 1037 // Casts: 1038 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1039 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1040 CGM.EmitExplicitCastExprType(ECE, this); 1041 1042 switch (CE->getCastKind()) { 1043 // Non-converting casts (but not C's implicit conversion from void*). 1044 case CK_BitCast: 1045 case CK_NoOp: 1046 case CK_AddressSpaceConversion: 1047 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1048 if (PtrTy->getPointeeType()->isVoidType()) 1049 break; 1050 1051 LValueBaseInfo InnerBaseInfo; 1052 TBAAAccessInfo InnerTBAAInfo; 1053 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1054 &InnerBaseInfo, 1055 &InnerTBAAInfo); 1056 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1057 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1058 1059 if (isa<ExplicitCastExpr>(CE)) { 1060 LValueBaseInfo TargetTypeBaseInfo; 1061 TBAAAccessInfo TargetTypeTBAAInfo; 1062 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1063 &TargetTypeBaseInfo, 1064 &TargetTypeTBAAInfo); 1065 if (TBAAInfo) 1066 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1067 TargetTypeTBAAInfo); 1068 // If the source l-value is opaque, honor the alignment of the 1069 // casted-to type. 1070 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1071 if (BaseInfo) 1072 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1073 Addr = Address(Addr.getPointer(), Align); 1074 } 1075 } 1076 1077 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1078 CE->getCastKind() == CK_BitCast) { 1079 if (auto PT = E->getType()->getAs<PointerType>()) 1080 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1081 /*MayBeNull=*/true, 1082 CodeGenFunction::CFITCK_UnrelatedCast, 1083 CE->getBeginLoc()); 1084 } 1085 return CE->getCastKind() != CK_AddressSpaceConversion 1086 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1087 : Builder.CreateAddrSpaceCast(Addr, 1088 ConvertType(E->getType())); 1089 } 1090 break; 1091 1092 // Array-to-pointer decay. 1093 case CK_ArrayToPointerDecay: 1094 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1095 1096 // Derived-to-base conversions. 1097 case CK_UncheckedDerivedToBase: 1098 case CK_DerivedToBase: { 1099 // TODO: Support accesses to members of base classes in TBAA. For now, we 1100 // conservatively pretend that the complete object is of the base class 1101 // type. 1102 if (TBAAInfo) 1103 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1104 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1105 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1106 return GetAddressOfBaseClass(Addr, Derived, 1107 CE->path_begin(), CE->path_end(), 1108 ShouldNullCheckClassCastValue(CE), 1109 CE->getExprLoc()); 1110 } 1111 1112 // TODO: Is there any reason to treat base-to-derived conversions 1113 // specially? 1114 default: 1115 break; 1116 } 1117 } 1118 1119 // Unary &. 1120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1121 if (UO->getOpcode() == UO_AddrOf) { 1122 LValue LV = EmitLValue(UO->getSubExpr()); 1123 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1124 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1125 return LV.getAddress(); 1126 } 1127 } 1128 1129 // TODO: conditional operators, comma. 1130 1131 // Otherwise, use the alignment of the type. 1132 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1133 TBAAInfo); 1134 return Address(EmitScalarExpr(E), Align); 1135 } 1136 1137 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1138 if (Ty->isVoidType()) 1139 return RValue::get(nullptr); 1140 1141 switch (getEvaluationKind(Ty)) { 1142 case TEK_Complex: { 1143 llvm::Type *EltTy = 1144 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1145 llvm::Value *U = llvm::UndefValue::get(EltTy); 1146 return RValue::getComplex(std::make_pair(U, U)); 1147 } 1148 1149 // If this is a use of an undefined aggregate type, the aggregate must have an 1150 // identifiable address. Just because the contents of the value are undefined 1151 // doesn't mean that the address can't be taken and compared. 1152 case TEK_Aggregate: { 1153 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1154 return RValue::getAggregate(DestPtr); 1155 } 1156 1157 case TEK_Scalar: 1158 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1159 } 1160 llvm_unreachable("bad evaluation kind"); 1161 } 1162 1163 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1164 const char *Name) { 1165 ErrorUnsupported(E, Name); 1166 return GetUndefRValue(E->getType()); 1167 } 1168 1169 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1170 const char *Name) { 1171 ErrorUnsupported(E, Name); 1172 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1173 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1174 E->getType()); 1175 } 1176 1177 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1178 const Expr *Base = Obj; 1179 while (!isa<CXXThisExpr>(Base)) { 1180 // The result of a dynamic_cast can be null. 1181 if (isa<CXXDynamicCastExpr>(Base)) 1182 return false; 1183 1184 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1185 Base = CE->getSubExpr(); 1186 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1187 Base = PE->getSubExpr(); 1188 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1189 if (UO->getOpcode() == UO_Extension) 1190 Base = UO->getSubExpr(); 1191 else 1192 return false; 1193 } else { 1194 return false; 1195 } 1196 } 1197 return true; 1198 } 1199 1200 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1201 LValue LV; 1202 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1203 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1204 else 1205 LV = EmitLValue(E); 1206 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1207 SanitizerSet SkippedChecks; 1208 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1209 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1210 if (IsBaseCXXThis) 1211 SkippedChecks.set(SanitizerKind::Alignment, true); 1212 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1213 SkippedChecks.set(SanitizerKind::Null, true); 1214 } 1215 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1216 E->getType(), LV.getAlignment(), SkippedChecks); 1217 } 1218 return LV; 1219 } 1220 1221 /// EmitLValue - Emit code to compute a designator that specifies the location 1222 /// of the expression. 1223 /// 1224 /// This can return one of two things: a simple address or a bitfield reference. 1225 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1226 /// an LLVM pointer type. 1227 /// 1228 /// If this returns a bitfield reference, nothing about the pointee type of the 1229 /// LLVM value is known: For example, it may not be a pointer to an integer. 1230 /// 1231 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1232 /// this method guarantees that the returned pointer type will point to an LLVM 1233 /// type of the same size of the lvalue's type. If the lvalue has a variable 1234 /// length type, this is not possible. 1235 /// 1236 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1237 ApplyDebugLocation DL(*this, E); 1238 switch (E->getStmtClass()) { 1239 default: return EmitUnsupportedLValue(E, "l-value expression"); 1240 1241 case Expr::ObjCPropertyRefExprClass: 1242 llvm_unreachable("cannot emit a property reference directly"); 1243 1244 case Expr::ObjCSelectorExprClass: 1245 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1246 case Expr::ObjCIsaExprClass: 1247 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1248 case Expr::BinaryOperatorClass: 1249 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1250 case Expr::CompoundAssignOperatorClass: { 1251 QualType Ty = E->getType(); 1252 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1253 Ty = AT->getValueType(); 1254 if (!Ty->isAnyComplexType()) 1255 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1256 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1257 } 1258 case Expr::CallExprClass: 1259 case Expr::CXXMemberCallExprClass: 1260 case Expr::CXXOperatorCallExprClass: 1261 case Expr::UserDefinedLiteralClass: 1262 return EmitCallExprLValue(cast<CallExpr>(E)); 1263 case Expr::VAArgExprClass: 1264 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1265 case Expr::DeclRefExprClass: 1266 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1267 case Expr::ConstantExprClass: 1268 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1269 case Expr::ParenExprClass: 1270 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1271 case Expr::GenericSelectionExprClass: 1272 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1273 case Expr::PredefinedExprClass: 1274 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1275 case Expr::StringLiteralClass: 1276 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1277 case Expr::ObjCEncodeExprClass: 1278 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1279 case Expr::PseudoObjectExprClass: 1280 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1281 case Expr::InitListExprClass: 1282 return EmitInitListLValue(cast<InitListExpr>(E)); 1283 case Expr::CXXTemporaryObjectExprClass: 1284 case Expr::CXXConstructExprClass: 1285 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1286 case Expr::CXXBindTemporaryExprClass: 1287 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1288 case Expr::CXXUuidofExprClass: 1289 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1290 1291 case Expr::ExprWithCleanupsClass: { 1292 const auto *cleanups = cast<ExprWithCleanups>(E); 1293 enterFullExpression(cleanups); 1294 RunCleanupsScope Scope(*this); 1295 LValue LV = EmitLValue(cleanups->getSubExpr()); 1296 if (LV.isSimple()) { 1297 // Defend against branches out of gnu statement expressions surrounded by 1298 // cleanups. 1299 llvm::Value *V = LV.getPointer(); 1300 Scope.ForceCleanup({&V}); 1301 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1302 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1303 } 1304 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1305 // bitfield lvalue or some other non-simple lvalue? 1306 return LV; 1307 } 1308 1309 case Expr::CXXDefaultArgExprClass: 1310 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1311 case Expr::CXXDefaultInitExprClass: { 1312 CXXDefaultInitExprScope Scope(*this); 1313 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1314 } 1315 case Expr::CXXTypeidExprClass: 1316 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1317 1318 case Expr::ObjCMessageExprClass: 1319 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1320 case Expr::ObjCIvarRefExprClass: 1321 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1322 case Expr::StmtExprClass: 1323 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1324 case Expr::UnaryOperatorClass: 1325 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1326 case Expr::ArraySubscriptExprClass: 1327 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1328 case Expr::OMPArraySectionExprClass: 1329 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1330 case Expr::ExtVectorElementExprClass: 1331 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1332 case Expr::MemberExprClass: 1333 return EmitMemberExpr(cast<MemberExpr>(E)); 1334 case Expr::CompoundLiteralExprClass: 1335 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1336 case Expr::ConditionalOperatorClass: 1337 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1338 case Expr::BinaryConditionalOperatorClass: 1339 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1340 case Expr::ChooseExprClass: 1341 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1342 case Expr::OpaqueValueExprClass: 1343 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1344 case Expr::SubstNonTypeTemplateParmExprClass: 1345 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1346 case Expr::ImplicitCastExprClass: 1347 case Expr::CStyleCastExprClass: 1348 case Expr::CXXFunctionalCastExprClass: 1349 case Expr::CXXStaticCastExprClass: 1350 case Expr::CXXDynamicCastExprClass: 1351 case Expr::CXXReinterpretCastExprClass: 1352 case Expr::CXXConstCastExprClass: 1353 case Expr::ObjCBridgedCastExprClass: 1354 return EmitCastLValue(cast<CastExpr>(E)); 1355 1356 case Expr::MaterializeTemporaryExprClass: 1357 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1358 1359 case Expr::CoawaitExprClass: 1360 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1361 case Expr::CoyieldExprClass: 1362 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1363 } 1364 } 1365 1366 /// Given an object of the given canonical type, can we safely copy a 1367 /// value out of it based on its initializer? 1368 static bool isConstantEmittableObjectType(QualType type) { 1369 assert(type.isCanonical()); 1370 assert(!type->isReferenceType()); 1371 1372 // Must be const-qualified but non-volatile. 1373 Qualifiers qs = type.getLocalQualifiers(); 1374 if (!qs.hasConst() || qs.hasVolatile()) return false; 1375 1376 // Otherwise, all object types satisfy this except C++ classes with 1377 // mutable subobjects or non-trivial copy/destroy behavior. 1378 if (const auto *RT = dyn_cast<RecordType>(type)) 1379 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1380 if (RD->hasMutableFields() || !RD->isTrivial()) 1381 return false; 1382 1383 return true; 1384 } 1385 1386 /// Can we constant-emit a load of a reference to a variable of the 1387 /// given type? This is different from predicates like 1388 /// Decl::isUsableInConstantExpressions because we do want it to apply 1389 /// in situations that don't necessarily satisfy the language's rules 1390 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1391 /// to do this with const float variables even if those variables 1392 /// aren't marked 'constexpr'. 1393 enum ConstantEmissionKind { 1394 CEK_None, 1395 CEK_AsReferenceOnly, 1396 CEK_AsValueOrReference, 1397 CEK_AsValueOnly 1398 }; 1399 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1400 type = type.getCanonicalType(); 1401 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1402 if (isConstantEmittableObjectType(ref->getPointeeType())) 1403 return CEK_AsValueOrReference; 1404 return CEK_AsReferenceOnly; 1405 } 1406 if (isConstantEmittableObjectType(type)) 1407 return CEK_AsValueOnly; 1408 return CEK_None; 1409 } 1410 1411 /// Try to emit a reference to the given value without producing it as 1412 /// an l-value. This is actually more than an optimization: we can't 1413 /// produce an l-value for variables that we never actually captured 1414 /// in a block or lambda, which means const int variables or constexpr 1415 /// literals or similar. 1416 CodeGenFunction::ConstantEmission 1417 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1418 ValueDecl *value = refExpr->getDecl(); 1419 1420 // The value needs to be an enum constant or a constant variable. 1421 ConstantEmissionKind CEK; 1422 if (isa<ParmVarDecl>(value)) { 1423 CEK = CEK_None; 1424 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1425 CEK = checkVarTypeForConstantEmission(var->getType()); 1426 } else if (isa<EnumConstantDecl>(value)) { 1427 CEK = CEK_AsValueOnly; 1428 } else { 1429 CEK = CEK_None; 1430 } 1431 if (CEK == CEK_None) return ConstantEmission(); 1432 1433 Expr::EvalResult result; 1434 bool resultIsReference; 1435 QualType resultType; 1436 1437 // It's best to evaluate all the way as an r-value if that's permitted. 1438 if (CEK != CEK_AsReferenceOnly && 1439 refExpr->EvaluateAsRValue(result, getContext())) { 1440 resultIsReference = false; 1441 resultType = refExpr->getType(); 1442 1443 // Otherwise, try to evaluate as an l-value. 1444 } else if (CEK != CEK_AsValueOnly && 1445 refExpr->EvaluateAsLValue(result, getContext())) { 1446 resultIsReference = true; 1447 resultType = value->getType(); 1448 1449 // Failure. 1450 } else { 1451 return ConstantEmission(); 1452 } 1453 1454 // In any case, if the initializer has side-effects, abandon ship. 1455 if (result.HasSideEffects) 1456 return ConstantEmission(); 1457 1458 // Emit as a constant. 1459 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1460 result.Val, resultType); 1461 1462 // Make sure we emit a debug reference to the global variable. 1463 // This should probably fire even for 1464 if (isa<VarDecl>(value)) { 1465 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1466 EmitDeclRefExprDbgValue(refExpr, result.Val); 1467 } else { 1468 assert(isa<EnumConstantDecl>(value)); 1469 EmitDeclRefExprDbgValue(refExpr, result.Val); 1470 } 1471 1472 // If we emitted a reference constant, we need to dereference that. 1473 if (resultIsReference) 1474 return ConstantEmission::forReference(C); 1475 1476 return ConstantEmission::forValue(C); 1477 } 1478 1479 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1480 const MemberExpr *ME) { 1481 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1482 // Try to emit static variable member expressions as DREs. 1483 return DeclRefExpr::Create( 1484 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1485 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1486 ME->getType(), ME->getValueKind()); 1487 } 1488 return nullptr; 1489 } 1490 1491 CodeGenFunction::ConstantEmission 1492 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1493 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1494 return tryEmitAsConstant(DRE); 1495 return ConstantEmission(); 1496 } 1497 1498 llvm::Value *CodeGenFunction::emitScalarConstant( 1499 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1500 assert(Constant && "not a constant"); 1501 if (Constant.isReference()) 1502 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1503 E->getExprLoc()) 1504 .getScalarVal(); 1505 return Constant.getValue(); 1506 } 1507 1508 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1509 SourceLocation Loc) { 1510 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1511 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1512 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1513 } 1514 1515 static bool hasBooleanRepresentation(QualType Ty) { 1516 if (Ty->isBooleanType()) 1517 return true; 1518 1519 if (const EnumType *ET = Ty->getAs<EnumType>()) 1520 return ET->getDecl()->getIntegerType()->isBooleanType(); 1521 1522 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1523 return hasBooleanRepresentation(AT->getValueType()); 1524 1525 return false; 1526 } 1527 1528 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1529 llvm::APInt &Min, llvm::APInt &End, 1530 bool StrictEnums, bool IsBool) { 1531 const EnumType *ET = Ty->getAs<EnumType>(); 1532 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1533 ET && !ET->getDecl()->isFixed(); 1534 if (!IsBool && !IsRegularCPlusPlusEnum) 1535 return false; 1536 1537 if (IsBool) { 1538 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1539 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1540 } else { 1541 const EnumDecl *ED = ET->getDecl(); 1542 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1543 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1544 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1545 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1546 1547 if (NumNegativeBits) { 1548 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1549 assert(NumBits <= Bitwidth); 1550 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1551 Min = -End; 1552 } else { 1553 assert(NumPositiveBits <= Bitwidth); 1554 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1555 Min = llvm::APInt(Bitwidth, 0); 1556 } 1557 } 1558 return true; 1559 } 1560 1561 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1562 llvm::APInt Min, End; 1563 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1564 hasBooleanRepresentation(Ty))) 1565 return nullptr; 1566 1567 llvm::MDBuilder MDHelper(getLLVMContext()); 1568 return MDHelper.createRange(Min, End); 1569 } 1570 1571 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1572 SourceLocation Loc) { 1573 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1574 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1575 if (!HasBoolCheck && !HasEnumCheck) 1576 return false; 1577 1578 bool IsBool = hasBooleanRepresentation(Ty) || 1579 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1580 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1581 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1582 if (!NeedsBoolCheck && !NeedsEnumCheck) 1583 return false; 1584 1585 // Single-bit booleans don't need to be checked. Special-case this to avoid 1586 // a bit width mismatch when handling bitfield values. This is handled by 1587 // EmitFromMemory for the non-bitfield case. 1588 if (IsBool && 1589 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1590 return false; 1591 1592 llvm::APInt Min, End; 1593 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1594 return true; 1595 1596 auto &Ctx = getLLVMContext(); 1597 SanitizerScope SanScope(this); 1598 llvm::Value *Check; 1599 --End; 1600 if (!Min) { 1601 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1602 } else { 1603 llvm::Value *Upper = 1604 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1605 llvm::Value *Lower = 1606 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1607 Check = Builder.CreateAnd(Upper, Lower); 1608 } 1609 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1610 EmitCheckTypeDescriptor(Ty)}; 1611 SanitizerMask Kind = 1612 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1613 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1614 StaticArgs, EmitCheckValue(Value)); 1615 return true; 1616 } 1617 1618 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1619 QualType Ty, 1620 SourceLocation Loc, 1621 LValueBaseInfo BaseInfo, 1622 TBAAAccessInfo TBAAInfo, 1623 bool isNontemporal) { 1624 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1625 // For better performance, handle vector loads differently. 1626 if (Ty->isVectorType()) { 1627 const llvm::Type *EltTy = Addr.getElementType(); 1628 1629 const auto *VTy = cast<llvm::VectorType>(EltTy); 1630 1631 // Handle vectors of size 3 like size 4 for better performance. 1632 if (VTy->getNumElements() == 3) { 1633 1634 // Bitcast to vec4 type. 1635 llvm::VectorType *vec4Ty = 1636 llvm::VectorType::get(VTy->getElementType(), 4); 1637 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1638 // Now load value. 1639 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1640 1641 // Shuffle vector to get vec3. 1642 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1643 {0, 1, 2}, "extractVec"); 1644 return EmitFromMemory(V, Ty); 1645 } 1646 } 1647 } 1648 1649 // Atomic operations have to be done on integral types. 1650 LValue AtomicLValue = 1651 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1652 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1653 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1654 } 1655 1656 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1657 if (isNontemporal) { 1658 llvm::MDNode *Node = llvm::MDNode::get( 1659 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1660 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1661 } 1662 1663 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1664 1665 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1666 // In order to prevent the optimizer from throwing away the check, don't 1667 // attach range metadata to the load. 1668 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1669 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1670 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1671 1672 return EmitFromMemory(Load, Ty); 1673 } 1674 1675 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1676 // Bool has a different representation in memory than in registers. 1677 if (hasBooleanRepresentation(Ty)) { 1678 // This should really always be an i1, but sometimes it's already 1679 // an i8, and it's awkward to track those cases down. 1680 if (Value->getType()->isIntegerTy(1)) 1681 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1682 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1683 "wrong value rep of bool"); 1684 } 1685 1686 return Value; 1687 } 1688 1689 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1690 // Bool has a different representation in memory than in registers. 1691 if (hasBooleanRepresentation(Ty)) { 1692 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1693 "wrong value rep of bool"); 1694 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1695 } 1696 1697 return Value; 1698 } 1699 1700 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1701 bool Volatile, QualType Ty, 1702 LValueBaseInfo BaseInfo, 1703 TBAAAccessInfo TBAAInfo, 1704 bool isInit, bool isNontemporal) { 1705 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1706 // Handle vectors differently to get better performance. 1707 if (Ty->isVectorType()) { 1708 llvm::Type *SrcTy = Value->getType(); 1709 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1710 // Handle vec3 special. 1711 if (VecTy && VecTy->getNumElements() == 3) { 1712 // Our source is a vec3, do a shuffle vector to make it a vec4. 1713 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1714 Builder.getInt32(2), 1715 llvm::UndefValue::get(Builder.getInt32Ty())}; 1716 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1717 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1718 MaskV, "extractVec"); 1719 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1720 } 1721 if (Addr.getElementType() != SrcTy) { 1722 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1723 } 1724 } 1725 } 1726 1727 Value = EmitToMemory(Value, Ty); 1728 1729 LValue AtomicLValue = 1730 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1731 if (Ty->isAtomicType() || 1732 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1733 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1734 return; 1735 } 1736 1737 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1738 if (isNontemporal) { 1739 llvm::MDNode *Node = 1740 llvm::MDNode::get(Store->getContext(), 1741 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1742 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1743 } 1744 1745 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1746 } 1747 1748 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1749 bool isInit) { 1750 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1751 lvalue.getType(), lvalue.getBaseInfo(), 1752 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1753 } 1754 1755 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1756 /// method emits the address of the lvalue, then loads the result as an rvalue, 1757 /// returning the rvalue. 1758 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1759 if (LV.isObjCWeak()) { 1760 // load of a __weak object. 1761 Address AddrWeakObj = LV.getAddress(); 1762 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1763 AddrWeakObj)); 1764 } 1765 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1766 // In MRC mode, we do a load+autorelease. 1767 if (!getLangOpts().ObjCAutoRefCount) { 1768 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1769 } 1770 1771 // In ARC mode, we load retained and then consume the value. 1772 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1773 Object = EmitObjCConsumeObject(LV.getType(), Object); 1774 return RValue::get(Object); 1775 } 1776 1777 if (LV.isSimple()) { 1778 assert(!LV.getType()->isFunctionType()); 1779 1780 // Everything needs a load. 1781 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1782 } 1783 1784 if (LV.isVectorElt()) { 1785 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1786 LV.isVolatileQualified()); 1787 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1788 "vecext")); 1789 } 1790 1791 // If this is a reference to a subset of the elements of a vector, either 1792 // shuffle the input or extract/insert them as appropriate. 1793 if (LV.isExtVectorElt()) 1794 return EmitLoadOfExtVectorElementLValue(LV); 1795 1796 // Global Register variables always invoke intrinsics 1797 if (LV.isGlobalReg()) 1798 return EmitLoadOfGlobalRegLValue(LV); 1799 1800 assert(LV.isBitField() && "Unknown LValue type!"); 1801 return EmitLoadOfBitfieldLValue(LV, Loc); 1802 } 1803 1804 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1805 SourceLocation Loc) { 1806 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1807 1808 // Get the output type. 1809 llvm::Type *ResLTy = ConvertType(LV.getType()); 1810 1811 Address Ptr = LV.getBitFieldAddress(); 1812 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1813 1814 if (Info.IsSigned) { 1815 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1816 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1817 if (HighBits) 1818 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1819 if (Info.Offset + HighBits) 1820 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1821 } else { 1822 if (Info.Offset) 1823 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1824 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1825 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1826 Info.Size), 1827 "bf.clear"); 1828 } 1829 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1830 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1831 return RValue::get(Val); 1832 } 1833 1834 // If this is a reference to a subset of the elements of a vector, create an 1835 // appropriate shufflevector. 1836 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1837 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1838 LV.isVolatileQualified()); 1839 1840 const llvm::Constant *Elts = LV.getExtVectorElts(); 1841 1842 // If the result of the expression is a non-vector type, we must be extracting 1843 // a single element. Just codegen as an extractelement. 1844 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1845 if (!ExprVT) { 1846 unsigned InIdx = getAccessedFieldNo(0, Elts); 1847 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1848 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1849 } 1850 1851 // Always use shuffle vector to try to retain the original program structure 1852 unsigned NumResultElts = ExprVT->getNumElements(); 1853 1854 SmallVector<llvm::Constant*, 4> Mask; 1855 for (unsigned i = 0; i != NumResultElts; ++i) 1856 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1857 1858 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1859 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1860 MaskV); 1861 return RValue::get(Vec); 1862 } 1863 1864 /// Generates lvalue for partial ext_vector access. 1865 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1866 Address VectorAddress = LV.getExtVectorAddress(); 1867 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1868 QualType EQT = ExprVT->getElementType(); 1869 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1870 1871 Address CastToPointerElement = 1872 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1873 "conv.ptr.element"); 1874 1875 const llvm::Constant *Elts = LV.getExtVectorElts(); 1876 unsigned ix = getAccessedFieldNo(0, Elts); 1877 1878 Address VectorBasePtrPlusIx = 1879 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1880 getContext().getTypeSizeInChars(EQT), 1881 "vector.elt"); 1882 1883 return VectorBasePtrPlusIx; 1884 } 1885 1886 /// Load of global gamed gegisters are always calls to intrinsics. 1887 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1888 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1889 "Bad type for register variable"); 1890 llvm::MDNode *RegName = cast<llvm::MDNode>( 1891 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1892 1893 // We accept integer and pointer types only 1894 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1895 llvm::Type *Ty = OrigTy; 1896 if (OrigTy->isPointerTy()) 1897 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1898 llvm::Type *Types[] = { Ty }; 1899 1900 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1901 llvm::Value *Call = Builder.CreateCall( 1902 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1903 if (OrigTy->isPointerTy()) 1904 Call = Builder.CreateIntToPtr(Call, OrigTy); 1905 return RValue::get(Call); 1906 } 1907 1908 1909 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1910 /// lvalue, where both are guaranteed to the have the same type, and that type 1911 /// is 'Ty'. 1912 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1913 bool isInit) { 1914 if (!Dst.isSimple()) { 1915 if (Dst.isVectorElt()) { 1916 // Read/modify/write the vector, inserting the new element. 1917 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1918 Dst.isVolatileQualified()); 1919 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1920 Dst.getVectorIdx(), "vecins"); 1921 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1922 Dst.isVolatileQualified()); 1923 return; 1924 } 1925 1926 // If this is an update of extended vector elements, insert them as 1927 // appropriate. 1928 if (Dst.isExtVectorElt()) 1929 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1930 1931 if (Dst.isGlobalReg()) 1932 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1933 1934 assert(Dst.isBitField() && "Unknown LValue type"); 1935 return EmitStoreThroughBitfieldLValue(Src, Dst); 1936 } 1937 1938 // There's special magic for assigning into an ARC-qualified l-value. 1939 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1940 switch (Lifetime) { 1941 case Qualifiers::OCL_None: 1942 llvm_unreachable("present but none"); 1943 1944 case Qualifiers::OCL_ExplicitNone: 1945 // nothing special 1946 break; 1947 1948 case Qualifiers::OCL_Strong: 1949 if (isInit) { 1950 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1951 break; 1952 } 1953 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1954 return; 1955 1956 case Qualifiers::OCL_Weak: 1957 if (isInit) 1958 // Initialize and then skip the primitive store. 1959 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1960 else 1961 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1962 return; 1963 1964 case Qualifiers::OCL_Autoreleasing: 1965 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1966 Src.getScalarVal())); 1967 // fall into the normal path 1968 break; 1969 } 1970 } 1971 1972 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1973 // load of a __weak object. 1974 Address LvalueDst = Dst.getAddress(); 1975 llvm::Value *src = Src.getScalarVal(); 1976 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1977 return; 1978 } 1979 1980 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1981 // load of a __strong object. 1982 Address LvalueDst = Dst.getAddress(); 1983 llvm::Value *src = Src.getScalarVal(); 1984 if (Dst.isObjCIvar()) { 1985 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1986 llvm::Type *ResultType = IntPtrTy; 1987 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1988 llvm::Value *RHS = dst.getPointer(); 1989 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1990 llvm::Value *LHS = 1991 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1992 "sub.ptr.lhs.cast"); 1993 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1994 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1995 BytesBetween); 1996 } else if (Dst.isGlobalObjCRef()) { 1997 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1998 Dst.isThreadLocalRef()); 1999 } 2000 else 2001 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2002 return; 2003 } 2004 2005 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2006 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2007 } 2008 2009 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2010 llvm::Value **Result) { 2011 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2012 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2013 Address Ptr = Dst.getBitFieldAddress(); 2014 2015 // Get the source value, truncated to the width of the bit-field. 2016 llvm::Value *SrcVal = Src.getScalarVal(); 2017 2018 // Cast the source to the storage type and shift it into place. 2019 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2020 /*IsSigned=*/false); 2021 llvm::Value *MaskedVal = SrcVal; 2022 2023 // See if there are other bits in the bitfield's storage we'll need to load 2024 // and mask together with source before storing. 2025 if (Info.StorageSize != Info.Size) { 2026 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2027 llvm::Value *Val = 2028 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2029 2030 // Mask the source value as needed. 2031 if (!hasBooleanRepresentation(Dst.getType())) 2032 SrcVal = Builder.CreateAnd(SrcVal, 2033 llvm::APInt::getLowBitsSet(Info.StorageSize, 2034 Info.Size), 2035 "bf.value"); 2036 MaskedVal = SrcVal; 2037 if (Info.Offset) 2038 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2039 2040 // Mask out the original value. 2041 Val = Builder.CreateAnd(Val, 2042 ~llvm::APInt::getBitsSet(Info.StorageSize, 2043 Info.Offset, 2044 Info.Offset + Info.Size), 2045 "bf.clear"); 2046 2047 // Or together the unchanged values and the source value. 2048 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2049 } else { 2050 assert(Info.Offset == 0); 2051 } 2052 2053 // Write the new value back out. 2054 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2055 2056 // Return the new value of the bit-field, if requested. 2057 if (Result) { 2058 llvm::Value *ResultVal = MaskedVal; 2059 2060 // Sign extend the value if needed. 2061 if (Info.IsSigned) { 2062 assert(Info.Size <= Info.StorageSize); 2063 unsigned HighBits = Info.StorageSize - Info.Size; 2064 if (HighBits) { 2065 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2066 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2067 } 2068 } 2069 2070 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2071 "bf.result.cast"); 2072 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2073 } 2074 } 2075 2076 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2077 LValue Dst) { 2078 // This access turns into a read/modify/write of the vector. Load the input 2079 // value now. 2080 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2081 Dst.isVolatileQualified()); 2082 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2083 2084 llvm::Value *SrcVal = Src.getScalarVal(); 2085 2086 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2087 unsigned NumSrcElts = VTy->getNumElements(); 2088 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2089 if (NumDstElts == NumSrcElts) { 2090 // Use shuffle vector is the src and destination are the same number of 2091 // elements and restore the vector mask since it is on the side it will be 2092 // stored. 2093 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2094 for (unsigned i = 0; i != NumSrcElts; ++i) 2095 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2096 2097 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2098 Vec = Builder.CreateShuffleVector(SrcVal, 2099 llvm::UndefValue::get(Vec->getType()), 2100 MaskV); 2101 } else if (NumDstElts > NumSrcElts) { 2102 // Extended the source vector to the same length and then shuffle it 2103 // into the destination. 2104 // FIXME: since we're shuffling with undef, can we just use the indices 2105 // into that? This could be simpler. 2106 SmallVector<llvm::Constant*, 4> ExtMask; 2107 for (unsigned i = 0; i != NumSrcElts; ++i) 2108 ExtMask.push_back(Builder.getInt32(i)); 2109 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2110 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2111 llvm::Value *ExtSrcVal = 2112 Builder.CreateShuffleVector(SrcVal, 2113 llvm::UndefValue::get(SrcVal->getType()), 2114 ExtMaskV); 2115 // build identity 2116 SmallVector<llvm::Constant*, 4> Mask; 2117 for (unsigned i = 0; i != NumDstElts; ++i) 2118 Mask.push_back(Builder.getInt32(i)); 2119 2120 // When the vector size is odd and .odd or .hi is used, the last element 2121 // of the Elts constant array will be one past the size of the vector. 2122 // Ignore the last element here, if it is greater than the mask size. 2123 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2124 NumSrcElts--; 2125 2126 // modify when what gets shuffled in 2127 for (unsigned i = 0; i != NumSrcElts; ++i) 2128 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2129 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2130 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2131 } else { 2132 // We should never shorten the vector 2133 llvm_unreachable("unexpected shorten vector length"); 2134 } 2135 } else { 2136 // If the Src is a scalar (not a vector) it must be updating one element. 2137 unsigned InIdx = getAccessedFieldNo(0, Elts); 2138 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2139 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2140 } 2141 2142 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2143 Dst.isVolatileQualified()); 2144 } 2145 2146 /// Store of global named registers are always calls to intrinsics. 2147 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2148 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2149 "Bad type for register variable"); 2150 llvm::MDNode *RegName = cast<llvm::MDNode>( 2151 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2152 assert(RegName && "Register LValue is not metadata"); 2153 2154 // We accept integer and pointer types only 2155 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2156 llvm::Type *Ty = OrigTy; 2157 if (OrigTy->isPointerTy()) 2158 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2159 llvm::Type *Types[] = { Ty }; 2160 2161 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2162 llvm::Value *Value = Src.getScalarVal(); 2163 if (OrigTy->isPointerTy()) 2164 Value = Builder.CreatePtrToInt(Value, Ty); 2165 Builder.CreateCall( 2166 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2167 } 2168 2169 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2170 // generating write-barries API. It is currently a global, ivar, 2171 // or neither. 2172 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2173 LValue &LV, 2174 bool IsMemberAccess=false) { 2175 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2176 return; 2177 2178 if (isa<ObjCIvarRefExpr>(E)) { 2179 QualType ExpTy = E->getType(); 2180 if (IsMemberAccess && ExpTy->isPointerType()) { 2181 // If ivar is a structure pointer, assigning to field of 2182 // this struct follows gcc's behavior and makes it a non-ivar 2183 // writer-barrier conservatively. 2184 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2185 if (ExpTy->isRecordType()) { 2186 LV.setObjCIvar(false); 2187 return; 2188 } 2189 } 2190 LV.setObjCIvar(true); 2191 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2192 LV.setBaseIvarExp(Exp->getBase()); 2193 LV.setObjCArray(E->getType()->isArrayType()); 2194 return; 2195 } 2196 2197 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2198 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2199 if (VD->hasGlobalStorage()) { 2200 LV.setGlobalObjCRef(true); 2201 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2202 } 2203 } 2204 LV.setObjCArray(E->getType()->isArrayType()); 2205 return; 2206 } 2207 2208 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2209 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2210 return; 2211 } 2212 2213 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2214 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2215 if (LV.isObjCIvar()) { 2216 // If cast is to a structure pointer, follow gcc's behavior and make it 2217 // a non-ivar write-barrier. 2218 QualType ExpTy = E->getType(); 2219 if (ExpTy->isPointerType()) 2220 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2221 if (ExpTy->isRecordType()) 2222 LV.setObjCIvar(false); 2223 } 2224 return; 2225 } 2226 2227 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2228 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2229 return; 2230 } 2231 2232 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2233 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2234 return; 2235 } 2236 2237 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2238 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2239 return; 2240 } 2241 2242 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2243 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2244 return; 2245 } 2246 2247 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2248 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2249 if (LV.isObjCIvar() && !LV.isObjCArray()) 2250 // Using array syntax to assigning to what an ivar points to is not 2251 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2252 LV.setObjCIvar(false); 2253 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2254 // Using array syntax to assigning to what global points to is not 2255 // same as assigning to the global itself. {id *G;} G[i] = 0; 2256 LV.setGlobalObjCRef(false); 2257 return; 2258 } 2259 2260 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2261 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2262 // We don't know if member is an 'ivar', but this flag is looked at 2263 // only in the context of LV.isObjCIvar(). 2264 LV.setObjCArray(E->getType()->isArrayType()); 2265 return; 2266 } 2267 } 2268 2269 static llvm::Value * 2270 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2271 llvm::Value *V, llvm::Type *IRType, 2272 StringRef Name = StringRef()) { 2273 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2274 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2275 } 2276 2277 static LValue EmitThreadPrivateVarDeclLValue( 2278 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2279 llvm::Type *RealVarTy, SourceLocation Loc) { 2280 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2281 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2282 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2283 } 2284 2285 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2286 const VarDecl *VD, QualType T) { 2287 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2288 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2289 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) 2290 return Address::invalid(); 2291 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); 2292 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2293 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2294 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2295 } 2296 2297 Address 2298 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2299 LValueBaseInfo *PointeeBaseInfo, 2300 TBAAAccessInfo *PointeeTBAAInfo) { 2301 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2302 RefLVal.isVolatile()); 2303 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2304 2305 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2306 PointeeBaseInfo, PointeeTBAAInfo, 2307 /* forPointeeType= */ true); 2308 return Address(Load, Align); 2309 } 2310 2311 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2312 LValueBaseInfo PointeeBaseInfo; 2313 TBAAAccessInfo PointeeTBAAInfo; 2314 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2315 &PointeeTBAAInfo); 2316 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2317 PointeeBaseInfo, PointeeTBAAInfo); 2318 } 2319 2320 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2321 const PointerType *PtrTy, 2322 LValueBaseInfo *BaseInfo, 2323 TBAAAccessInfo *TBAAInfo) { 2324 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2325 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2326 BaseInfo, TBAAInfo, 2327 /*forPointeeType=*/true)); 2328 } 2329 2330 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2331 const PointerType *PtrTy) { 2332 LValueBaseInfo BaseInfo; 2333 TBAAAccessInfo TBAAInfo; 2334 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2335 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2336 } 2337 2338 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2339 const Expr *E, const VarDecl *VD) { 2340 QualType T = E->getType(); 2341 2342 // If it's thread_local, emit a call to its wrapper function instead. 2343 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2344 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2345 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2346 // Check if the variable is marked as declare target with link clause in 2347 // device codegen. 2348 if (CGF.getLangOpts().OpenMPIsDevice) { 2349 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2350 if (Addr.isValid()) 2351 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2352 } 2353 2354 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2355 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2356 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2357 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2358 Address Addr(V, Alignment); 2359 // Emit reference to the private copy of the variable if it is an OpenMP 2360 // threadprivate variable. 2361 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2362 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2363 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2364 E->getExprLoc()); 2365 } 2366 LValue LV = VD->getType()->isReferenceType() ? 2367 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2368 AlignmentSource::Decl) : 2369 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2370 setObjCGCLValueClass(CGF.getContext(), E, LV); 2371 return LV; 2372 } 2373 2374 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2375 const FunctionDecl *FD) { 2376 if (FD->hasAttr<WeakRefAttr>()) { 2377 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2378 return aliasee.getPointer(); 2379 } 2380 2381 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2382 if (!FD->hasPrototype()) { 2383 if (const FunctionProtoType *Proto = 2384 FD->getType()->getAs<FunctionProtoType>()) { 2385 // Ugly case: for a K&R-style definition, the type of the definition 2386 // isn't the same as the type of a use. Correct for this with a 2387 // bitcast. 2388 QualType NoProtoType = 2389 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2390 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2391 V = llvm::ConstantExpr::getBitCast(V, 2392 CGM.getTypes().ConvertType(NoProtoType)); 2393 } 2394 } 2395 return V; 2396 } 2397 2398 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2399 const Expr *E, const FunctionDecl *FD) { 2400 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2401 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2402 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2403 AlignmentSource::Decl); 2404 } 2405 2406 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2407 llvm::Value *ThisValue) { 2408 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2409 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2410 return CGF.EmitLValueForField(LV, FD); 2411 } 2412 2413 /// Named Registers are named metadata pointing to the register name 2414 /// which will be read from/written to as an argument to the intrinsic 2415 /// @llvm.read/write_register. 2416 /// So far, only the name is being passed down, but other options such as 2417 /// register type, allocation type or even optimization options could be 2418 /// passed down via the metadata node. 2419 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2420 SmallString<64> Name("llvm.named.register."); 2421 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2422 assert(Asm->getLabel().size() < 64-Name.size() && 2423 "Register name too big"); 2424 Name.append(Asm->getLabel()); 2425 llvm::NamedMDNode *M = 2426 CGM.getModule().getOrInsertNamedMetadata(Name); 2427 if (M->getNumOperands() == 0) { 2428 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2429 Asm->getLabel()); 2430 llvm::Metadata *Ops[] = {Str}; 2431 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2432 } 2433 2434 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2435 2436 llvm::Value *Ptr = 2437 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2438 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2439 } 2440 2441 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2442 const NamedDecl *ND = E->getDecl(); 2443 QualType T = E->getType(); 2444 2445 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2446 // Global Named registers access via intrinsics only 2447 if (VD->getStorageClass() == SC_Register && 2448 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2449 return EmitGlobalNamedRegister(VD, CGM); 2450 2451 // A DeclRefExpr for a reference initialized by a constant expression can 2452 // appear without being odr-used. Directly emit the constant initializer. 2453 const Expr *Init = VD->getAnyInitializer(VD); 2454 const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl); 2455 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2456 VD->isUsableInConstantExpressions(getContext()) && 2457 VD->checkInitIsICE() && 2458 // Do not emit if it is private OpenMP variable. 2459 !(E->refersToEnclosingVariableOrCapture() && 2460 ((CapturedStmtInfo && 2461 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2462 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2463 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2464 (BD && BD->capturesVariable(VD))))) { 2465 llvm::Constant *Val = 2466 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2467 *VD->evaluateValue(), 2468 VD->getType()); 2469 assert(Val && "failed to emit reference constant expression"); 2470 // FIXME: Eventually we will want to emit vector element references. 2471 2472 // Should we be using the alignment of the constant pointer we emitted? 2473 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2474 /* BaseInfo= */ nullptr, 2475 /* TBAAInfo= */ nullptr, 2476 /* forPointeeType= */ true); 2477 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2478 } 2479 2480 // Check for captured variables. 2481 if (E->refersToEnclosingVariableOrCapture()) { 2482 VD = VD->getCanonicalDecl(); 2483 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2484 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2485 else if (CapturedStmtInfo) { 2486 auto I = LocalDeclMap.find(VD); 2487 if (I != LocalDeclMap.end()) { 2488 if (VD->getType()->isReferenceType()) 2489 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2490 AlignmentSource::Decl); 2491 return MakeAddrLValue(I->second, T); 2492 } 2493 LValue CapLVal = 2494 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2495 CapturedStmtInfo->getContextValue()); 2496 return MakeAddrLValue( 2497 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2498 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2499 CapLVal.getTBAAInfo()); 2500 } 2501 2502 assert(isa<BlockDecl>(CurCodeDecl)); 2503 Address addr = GetAddrOfBlockDecl(VD); 2504 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2505 } 2506 } 2507 2508 // FIXME: We should be able to assert this for FunctionDecls as well! 2509 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2510 // those with a valid source location. 2511 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2512 !E->getLocation().isValid()) && 2513 "Should not use decl without marking it used!"); 2514 2515 if (ND->hasAttr<WeakRefAttr>()) { 2516 const auto *VD = cast<ValueDecl>(ND); 2517 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2518 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2519 } 2520 2521 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2522 // Check if this is a global variable. 2523 if (VD->hasLinkage() || VD->isStaticDataMember()) 2524 return EmitGlobalVarDeclLValue(*this, E, VD); 2525 2526 Address addr = Address::invalid(); 2527 2528 // The variable should generally be present in the local decl map. 2529 auto iter = LocalDeclMap.find(VD); 2530 if (iter != LocalDeclMap.end()) { 2531 addr = iter->second; 2532 2533 // Otherwise, it might be static local we haven't emitted yet for 2534 // some reason; most likely, because it's in an outer function. 2535 } else if (VD->isStaticLocal()) { 2536 addr = Address(CGM.getOrCreateStaticVarDecl( 2537 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2538 getContext().getDeclAlign(VD)); 2539 2540 // No other cases for now. 2541 } else { 2542 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2543 } 2544 2545 2546 // Check for OpenMP threadprivate variables. 2547 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2548 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2549 return EmitThreadPrivateVarDeclLValue( 2550 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2551 E->getExprLoc()); 2552 } 2553 2554 // Drill into block byref variables. 2555 bool isBlockByref = VD->isEscapingByref(); 2556 if (isBlockByref) { 2557 addr = emitBlockByrefAddress(addr, VD); 2558 } 2559 2560 // Drill into reference types. 2561 LValue LV = VD->getType()->isReferenceType() ? 2562 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2563 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2564 2565 bool isLocalStorage = VD->hasLocalStorage(); 2566 2567 bool NonGCable = isLocalStorage && 2568 !VD->getType()->isReferenceType() && 2569 !isBlockByref; 2570 if (NonGCable) { 2571 LV.getQuals().removeObjCGCAttr(); 2572 LV.setNonGC(true); 2573 } 2574 2575 bool isImpreciseLifetime = 2576 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2577 if (isImpreciseLifetime) 2578 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2579 setObjCGCLValueClass(getContext(), E, LV); 2580 return LV; 2581 } 2582 2583 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2584 return EmitFunctionDeclLValue(*this, E, FD); 2585 2586 // FIXME: While we're emitting a binding from an enclosing scope, all other 2587 // DeclRefExprs we see should be implicitly treated as if they also refer to 2588 // an enclosing scope. 2589 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2590 return EmitLValue(BD->getBinding()); 2591 2592 llvm_unreachable("Unhandled DeclRefExpr"); 2593 } 2594 2595 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2596 // __extension__ doesn't affect lvalue-ness. 2597 if (E->getOpcode() == UO_Extension) 2598 return EmitLValue(E->getSubExpr()); 2599 2600 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2601 switch (E->getOpcode()) { 2602 default: llvm_unreachable("Unknown unary operator lvalue!"); 2603 case UO_Deref: { 2604 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2605 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2606 2607 LValueBaseInfo BaseInfo; 2608 TBAAAccessInfo TBAAInfo; 2609 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2610 &TBAAInfo); 2611 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2612 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2613 2614 // We should not generate __weak write barrier on indirect reference 2615 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2616 // But, we continue to generate __strong write barrier on indirect write 2617 // into a pointer to object. 2618 if (getLangOpts().ObjC && 2619 getLangOpts().getGC() != LangOptions::NonGC && 2620 LV.isObjCWeak()) 2621 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2622 return LV; 2623 } 2624 case UO_Real: 2625 case UO_Imag: { 2626 LValue LV = EmitLValue(E->getSubExpr()); 2627 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2628 2629 // __real is valid on scalars. This is a faster way of testing that. 2630 // __imag can only produce an rvalue on scalars. 2631 if (E->getOpcode() == UO_Real && 2632 !LV.getAddress().getElementType()->isStructTy()) { 2633 assert(E->getSubExpr()->getType()->isArithmeticType()); 2634 return LV; 2635 } 2636 2637 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2638 2639 Address Component = 2640 (E->getOpcode() == UO_Real 2641 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2642 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2643 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2644 CGM.getTBAAInfoForSubobject(LV, T)); 2645 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2646 return ElemLV; 2647 } 2648 case UO_PreInc: 2649 case UO_PreDec: { 2650 LValue LV = EmitLValue(E->getSubExpr()); 2651 bool isInc = E->getOpcode() == UO_PreInc; 2652 2653 if (E->getType()->isAnyComplexType()) 2654 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2655 else 2656 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2657 return LV; 2658 } 2659 } 2660 } 2661 2662 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2663 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2664 E->getType(), AlignmentSource::Decl); 2665 } 2666 2667 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2668 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2669 E->getType(), AlignmentSource::Decl); 2670 } 2671 2672 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2673 auto SL = E->getFunctionName(); 2674 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2675 StringRef FnName = CurFn->getName(); 2676 if (FnName.startswith("\01")) 2677 FnName = FnName.substr(1); 2678 StringRef NameItems[] = { 2679 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2680 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2681 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2682 std::string Name = SL->getString(); 2683 if (!Name.empty()) { 2684 unsigned Discriminator = 2685 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2686 if (Discriminator) 2687 Name += "_" + Twine(Discriminator + 1).str(); 2688 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2689 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2690 } else { 2691 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2692 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2693 } 2694 } 2695 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2696 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2697 } 2698 2699 /// Emit a type description suitable for use by a runtime sanitizer library. The 2700 /// format of a type descriptor is 2701 /// 2702 /// \code 2703 /// { i16 TypeKind, i16 TypeInfo } 2704 /// \endcode 2705 /// 2706 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2707 /// integer, 1 for a floating point value, and -1 for anything else. 2708 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2709 // Only emit each type's descriptor once. 2710 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2711 return C; 2712 2713 uint16_t TypeKind = -1; 2714 uint16_t TypeInfo = 0; 2715 2716 if (T->isIntegerType()) { 2717 TypeKind = 0; 2718 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2719 (T->isSignedIntegerType() ? 1 : 0); 2720 } else if (T->isFloatingType()) { 2721 TypeKind = 1; 2722 TypeInfo = getContext().getTypeSize(T); 2723 } 2724 2725 // Format the type name as if for a diagnostic, including quotes and 2726 // optionally an 'aka'. 2727 SmallString<32> Buffer; 2728 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2729 (intptr_t)T.getAsOpaquePtr(), 2730 StringRef(), StringRef(), None, Buffer, 2731 None); 2732 2733 llvm::Constant *Components[] = { 2734 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2735 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2736 }; 2737 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2738 2739 auto *GV = new llvm::GlobalVariable( 2740 CGM.getModule(), Descriptor->getType(), 2741 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2742 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2743 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2744 2745 // Remember the descriptor for this type. 2746 CGM.setTypeDescriptorInMap(T, GV); 2747 2748 return GV; 2749 } 2750 2751 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2752 llvm::Type *TargetTy = IntPtrTy; 2753 2754 if (V->getType() == TargetTy) 2755 return V; 2756 2757 // Floating-point types which fit into intptr_t are bitcast to integers 2758 // and then passed directly (after zero-extension, if necessary). 2759 if (V->getType()->isFloatingPointTy()) { 2760 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2761 if (Bits <= TargetTy->getIntegerBitWidth()) 2762 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2763 Bits)); 2764 } 2765 2766 // Integers which fit in intptr_t are zero-extended and passed directly. 2767 if (V->getType()->isIntegerTy() && 2768 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2769 return Builder.CreateZExt(V, TargetTy); 2770 2771 // Pointers are passed directly, everything else is passed by address. 2772 if (!V->getType()->isPointerTy()) { 2773 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2774 Builder.CreateStore(V, Ptr); 2775 V = Ptr.getPointer(); 2776 } 2777 return Builder.CreatePtrToInt(V, TargetTy); 2778 } 2779 2780 /// Emit a representation of a SourceLocation for passing to a handler 2781 /// in a sanitizer runtime library. The format for this data is: 2782 /// \code 2783 /// struct SourceLocation { 2784 /// const char *Filename; 2785 /// int32_t Line, Column; 2786 /// }; 2787 /// \endcode 2788 /// For an invalid SourceLocation, the Filename pointer is null. 2789 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2790 llvm::Constant *Filename; 2791 int Line, Column; 2792 2793 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2794 if (PLoc.isValid()) { 2795 StringRef FilenameString = PLoc.getFilename(); 2796 2797 int PathComponentsToStrip = 2798 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2799 if (PathComponentsToStrip < 0) { 2800 assert(PathComponentsToStrip != INT_MIN); 2801 int PathComponentsToKeep = -PathComponentsToStrip; 2802 auto I = llvm::sys::path::rbegin(FilenameString); 2803 auto E = llvm::sys::path::rend(FilenameString); 2804 while (I != E && --PathComponentsToKeep) 2805 ++I; 2806 2807 FilenameString = FilenameString.substr(I - E); 2808 } else if (PathComponentsToStrip > 0) { 2809 auto I = llvm::sys::path::begin(FilenameString); 2810 auto E = llvm::sys::path::end(FilenameString); 2811 while (I != E && PathComponentsToStrip--) 2812 ++I; 2813 2814 if (I != E) 2815 FilenameString = 2816 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2817 else 2818 FilenameString = llvm::sys::path::filename(FilenameString); 2819 } 2820 2821 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2822 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2823 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2824 Filename = FilenameGV.getPointer(); 2825 Line = PLoc.getLine(); 2826 Column = PLoc.getColumn(); 2827 } else { 2828 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2829 Line = Column = 0; 2830 } 2831 2832 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2833 Builder.getInt32(Column)}; 2834 2835 return llvm::ConstantStruct::getAnon(Data); 2836 } 2837 2838 namespace { 2839 /// Specify under what conditions this check can be recovered 2840 enum class CheckRecoverableKind { 2841 /// Always terminate program execution if this check fails. 2842 Unrecoverable, 2843 /// Check supports recovering, runtime has both fatal (noreturn) and 2844 /// non-fatal handlers for this check. 2845 Recoverable, 2846 /// Runtime conditionally aborts, always need to support recovery. 2847 AlwaysRecoverable 2848 }; 2849 } 2850 2851 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2852 assert(llvm::countPopulation(Kind) == 1); 2853 switch (Kind) { 2854 case SanitizerKind::Vptr: 2855 return CheckRecoverableKind::AlwaysRecoverable; 2856 case SanitizerKind::Return: 2857 case SanitizerKind::Unreachable: 2858 return CheckRecoverableKind::Unrecoverable; 2859 default: 2860 return CheckRecoverableKind::Recoverable; 2861 } 2862 } 2863 2864 namespace { 2865 struct SanitizerHandlerInfo { 2866 char const *const Name; 2867 unsigned Version; 2868 }; 2869 } 2870 2871 const SanitizerHandlerInfo SanitizerHandlers[] = { 2872 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2873 LIST_SANITIZER_CHECKS 2874 #undef SANITIZER_CHECK 2875 }; 2876 2877 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2878 llvm::FunctionType *FnType, 2879 ArrayRef<llvm::Value *> FnArgs, 2880 SanitizerHandler CheckHandler, 2881 CheckRecoverableKind RecoverKind, bool IsFatal, 2882 llvm::BasicBlock *ContBB) { 2883 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2884 Optional<ApplyDebugLocation> DL; 2885 if (!CGF.Builder.getCurrentDebugLocation()) { 2886 // Ensure that the call has at least an artificial debug location. 2887 DL.emplace(CGF, SourceLocation()); 2888 } 2889 bool NeedsAbortSuffix = 2890 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2891 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2892 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2893 const StringRef CheckName = CheckInfo.Name; 2894 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2895 if (CheckInfo.Version && !MinimalRuntime) 2896 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2897 if (MinimalRuntime) 2898 FnName += "_minimal"; 2899 if (NeedsAbortSuffix) 2900 FnName += "_abort"; 2901 bool MayReturn = 2902 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2903 2904 llvm::AttrBuilder B; 2905 if (!MayReturn) { 2906 B.addAttribute(llvm::Attribute::NoReturn) 2907 .addAttribute(llvm::Attribute::NoUnwind); 2908 } 2909 B.addAttribute(llvm::Attribute::UWTable); 2910 2911 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2912 FnType, FnName, 2913 llvm::AttributeList::get(CGF.getLLVMContext(), 2914 llvm::AttributeList::FunctionIndex, B), 2915 /*Local=*/true); 2916 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2917 if (!MayReturn) { 2918 HandlerCall->setDoesNotReturn(); 2919 CGF.Builder.CreateUnreachable(); 2920 } else { 2921 CGF.Builder.CreateBr(ContBB); 2922 } 2923 } 2924 2925 void CodeGenFunction::EmitCheck( 2926 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2927 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2928 ArrayRef<llvm::Value *> DynamicArgs) { 2929 assert(IsSanitizerScope); 2930 assert(Checked.size() > 0); 2931 assert(CheckHandler >= 0 && 2932 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2933 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2934 2935 llvm::Value *FatalCond = nullptr; 2936 llvm::Value *RecoverableCond = nullptr; 2937 llvm::Value *TrapCond = nullptr; 2938 for (int i = 0, n = Checked.size(); i < n; ++i) { 2939 llvm::Value *Check = Checked[i].first; 2940 // -fsanitize-trap= overrides -fsanitize-recover=. 2941 llvm::Value *&Cond = 2942 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2943 ? TrapCond 2944 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2945 ? RecoverableCond 2946 : FatalCond; 2947 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2948 } 2949 2950 if (TrapCond) 2951 EmitTrapCheck(TrapCond); 2952 if (!FatalCond && !RecoverableCond) 2953 return; 2954 2955 llvm::Value *JointCond; 2956 if (FatalCond && RecoverableCond) 2957 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2958 else 2959 JointCond = FatalCond ? FatalCond : RecoverableCond; 2960 assert(JointCond); 2961 2962 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2963 assert(SanOpts.has(Checked[0].second)); 2964 #ifndef NDEBUG 2965 for (int i = 1, n = Checked.size(); i < n; ++i) { 2966 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2967 "All recoverable kinds in a single check must be same!"); 2968 assert(SanOpts.has(Checked[i].second)); 2969 } 2970 #endif 2971 2972 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2973 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2974 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2975 // Give hint that we very much don't expect to execute the handler 2976 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2977 llvm::MDBuilder MDHelper(getLLVMContext()); 2978 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2979 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2980 EmitBlock(Handlers); 2981 2982 // Handler functions take an i8* pointing to the (handler-specific) static 2983 // information block, followed by a sequence of intptr_t arguments 2984 // representing operand values. 2985 SmallVector<llvm::Value *, 4> Args; 2986 SmallVector<llvm::Type *, 4> ArgTypes; 2987 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2988 Args.reserve(DynamicArgs.size() + 1); 2989 ArgTypes.reserve(DynamicArgs.size() + 1); 2990 2991 // Emit handler arguments and create handler function type. 2992 if (!StaticArgs.empty()) { 2993 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2994 auto *InfoPtr = 2995 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2996 llvm::GlobalVariable::PrivateLinkage, Info); 2997 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2998 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2999 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3000 ArgTypes.push_back(Int8PtrTy); 3001 } 3002 3003 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3004 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3005 ArgTypes.push_back(IntPtrTy); 3006 } 3007 } 3008 3009 llvm::FunctionType *FnType = 3010 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3011 3012 if (!FatalCond || !RecoverableCond) { 3013 // Simple case: we need to generate a single handler call, either 3014 // fatal, or non-fatal. 3015 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3016 (FatalCond != nullptr), Cont); 3017 } else { 3018 // Emit two handler calls: first one for set of unrecoverable checks, 3019 // another one for recoverable. 3020 llvm::BasicBlock *NonFatalHandlerBB = 3021 createBasicBlock("non_fatal." + CheckName); 3022 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3023 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3024 EmitBlock(FatalHandlerBB); 3025 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3026 NonFatalHandlerBB); 3027 EmitBlock(NonFatalHandlerBB); 3028 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3029 Cont); 3030 } 3031 3032 EmitBlock(Cont); 3033 } 3034 3035 void CodeGenFunction::EmitCfiSlowPathCheck( 3036 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3037 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3038 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3039 3040 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3041 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3042 3043 llvm::MDBuilder MDHelper(getLLVMContext()); 3044 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3045 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3046 3047 EmitBlock(CheckBB); 3048 3049 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3050 3051 llvm::CallInst *CheckCall; 3052 llvm::Constant *SlowPathFn; 3053 if (WithDiag) { 3054 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3055 auto *InfoPtr = 3056 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3057 llvm::GlobalVariable::PrivateLinkage, Info); 3058 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3059 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3060 3061 SlowPathFn = CGM.getModule().getOrInsertFunction( 3062 "__cfi_slowpath_diag", 3063 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3064 false)); 3065 CheckCall = Builder.CreateCall( 3066 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3067 } else { 3068 SlowPathFn = CGM.getModule().getOrInsertFunction( 3069 "__cfi_slowpath", 3070 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3071 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3072 } 3073 3074 CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); 3075 CheckCall->setDoesNotThrow(); 3076 3077 EmitBlock(Cont); 3078 } 3079 3080 // Emit a stub for __cfi_check function so that the linker knows about this 3081 // symbol in LTO mode. 3082 void CodeGenFunction::EmitCfiCheckStub() { 3083 llvm::Module *M = &CGM.getModule(); 3084 auto &Ctx = M->getContext(); 3085 llvm::Function *F = llvm::Function::Create( 3086 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3087 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3088 CGM.setDSOLocal(F); 3089 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3090 // FIXME: consider emitting an intrinsic call like 3091 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3092 // which can be lowered in CrossDSOCFI pass to the actual contents of 3093 // __cfi_check. This would allow inlining of __cfi_check calls. 3094 llvm::CallInst::Create( 3095 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3096 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3097 } 3098 3099 // This function is basically a switch over the CFI failure kind, which is 3100 // extracted from CFICheckFailData (1st function argument). Each case is either 3101 // llvm.trap or a call to one of the two runtime handlers, based on 3102 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3103 // failure kind) traps, but this should really never happen. CFICheckFailData 3104 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3105 // check kind; in this case __cfi_check_fail traps as well. 3106 void CodeGenFunction::EmitCfiCheckFail() { 3107 SanitizerScope SanScope(this); 3108 FunctionArgList Args; 3109 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3110 ImplicitParamDecl::Other); 3111 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3112 ImplicitParamDecl::Other); 3113 Args.push_back(&ArgData); 3114 Args.push_back(&ArgAddr); 3115 3116 const CGFunctionInfo &FI = 3117 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3118 3119 llvm::Function *F = llvm::Function::Create( 3120 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3121 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3122 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3123 3124 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3125 SourceLocation()); 3126 3127 // This function should not be affected by blacklist. This function does 3128 // not have a source location, but "src:*" would still apply. Revert any 3129 // changes to SanOpts made in StartFunction. 3130 SanOpts = CGM.getLangOpts().Sanitize; 3131 3132 llvm::Value *Data = 3133 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3134 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3135 llvm::Value *Addr = 3136 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3137 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3138 3139 // Data == nullptr means the calling module has trap behaviour for this check. 3140 llvm::Value *DataIsNotNullPtr = 3141 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3142 EmitTrapCheck(DataIsNotNullPtr); 3143 3144 llvm::StructType *SourceLocationTy = 3145 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3146 llvm::StructType *CfiCheckFailDataTy = 3147 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3148 3149 llvm::Value *V = Builder.CreateConstGEP2_32( 3150 CfiCheckFailDataTy, 3151 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3152 0); 3153 Address CheckKindAddr(V, getIntAlign()); 3154 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3155 3156 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3157 CGM.getLLVMContext(), 3158 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3159 llvm::Value *ValidVtable = Builder.CreateZExt( 3160 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3161 {Addr, AllVtables}), 3162 IntPtrTy); 3163 3164 const std::pair<int, SanitizerMask> CheckKinds[] = { 3165 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3166 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3167 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3168 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3169 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3170 3171 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3172 for (auto CheckKindMaskPair : CheckKinds) { 3173 int Kind = CheckKindMaskPair.first; 3174 SanitizerMask Mask = CheckKindMaskPair.second; 3175 llvm::Value *Cond = 3176 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3177 if (CGM.getLangOpts().Sanitize.has(Mask)) 3178 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3179 {Data, Addr, ValidVtable}); 3180 else 3181 EmitTrapCheck(Cond); 3182 } 3183 3184 FinishFunction(); 3185 // The only reference to this function will be created during LTO link. 3186 // Make sure it survives until then. 3187 CGM.addUsedGlobal(F); 3188 } 3189 3190 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3191 if (SanOpts.has(SanitizerKind::Unreachable)) { 3192 SanitizerScope SanScope(this); 3193 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3194 SanitizerKind::Unreachable), 3195 SanitizerHandler::BuiltinUnreachable, 3196 EmitCheckSourceLocation(Loc), None); 3197 } 3198 Builder.CreateUnreachable(); 3199 } 3200 3201 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3202 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3203 3204 // If we're optimizing, collapse all calls to trap down to just one per 3205 // function to save on code size. 3206 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3207 TrapBB = createBasicBlock("trap"); 3208 Builder.CreateCondBr(Checked, Cont, TrapBB); 3209 EmitBlock(TrapBB); 3210 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3211 TrapCall->setDoesNotReturn(); 3212 TrapCall->setDoesNotThrow(); 3213 Builder.CreateUnreachable(); 3214 } else { 3215 Builder.CreateCondBr(Checked, Cont, TrapBB); 3216 } 3217 3218 EmitBlock(Cont); 3219 } 3220 3221 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3222 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3223 3224 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3225 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3226 CGM.getCodeGenOpts().TrapFuncName); 3227 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3228 } 3229 3230 return TrapCall; 3231 } 3232 3233 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3234 LValueBaseInfo *BaseInfo, 3235 TBAAAccessInfo *TBAAInfo) { 3236 assert(E->getType()->isArrayType() && 3237 "Array to pointer decay must have array source type!"); 3238 3239 // Expressions of array type can't be bitfields or vector elements. 3240 LValue LV = EmitLValue(E); 3241 Address Addr = LV.getAddress(); 3242 3243 // If the array type was an incomplete type, we need to make sure 3244 // the decay ends up being the right type. 3245 llvm::Type *NewTy = ConvertType(E->getType()); 3246 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3247 3248 // Note that VLA pointers are always decayed, so we don't need to do 3249 // anything here. 3250 if (!E->getType()->isVariableArrayType()) { 3251 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3252 "Expected pointer to array"); 3253 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3254 } 3255 3256 // The result of this decay conversion points to an array element within the 3257 // base lvalue. However, since TBAA currently does not support representing 3258 // accesses to elements of member arrays, we conservatively represent accesses 3259 // to the pointee object as if it had no any base lvalue specified. 3260 // TODO: Support TBAA for member arrays. 3261 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3262 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3263 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3264 3265 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3266 } 3267 3268 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3269 /// array to pointer, return the array subexpression. 3270 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3271 // If this isn't just an array->pointer decay, bail out. 3272 const auto *CE = dyn_cast<CastExpr>(E); 3273 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3274 return nullptr; 3275 3276 // If this is a decay from variable width array, bail out. 3277 const Expr *SubExpr = CE->getSubExpr(); 3278 if (SubExpr->getType()->isVariableArrayType()) 3279 return nullptr; 3280 3281 return SubExpr; 3282 } 3283 3284 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3285 llvm::Value *ptr, 3286 ArrayRef<llvm::Value*> indices, 3287 bool inbounds, 3288 bool signedIndices, 3289 SourceLocation loc, 3290 const llvm::Twine &name = "arrayidx") { 3291 if (inbounds) { 3292 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3293 CodeGenFunction::NotSubtraction, loc, 3294 name); 3295 } else { 3296 return CGF.Builder.CreateGEP(ptr, indices, name); 3297 } 3298 } 3299 3300 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3301 llvm::Value *idx, 3302 CharUnits eltSize) { 3303 // If we have a constant index, we can use the exact offset of the 3304 // element we're accessing. 3305 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3306 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3307 return arrayAlign.alignmentAtOffset(offset); 3308 3309 // Otherwise, use the worst-case alignment for any element. 3310 } else { 3311 return arrayAlign.alignmentOfArrayElement(eltSize); 3312 } 3313 } 3314 3315 static QualType getFixedSizeElementType(const ASTContext &ctx, 3316 const VariableArrayType *vla) { 3317 QualType eltType; 3318 do { 3319 eltType = vla->getElementType(); 3320 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3321 return eltType; 3322 } 3323 3324 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3325 ArrayRef<llvm::Value *> indices, 3326 QualType eltType, bool inbounds, 3327 bool signedIndices, SourceLocation loc, 3328 const llvm::Twine &name = "arrayidx") { 3329 // All the indices except that last must be zero. 3330 #ifndef NDEBUG 3331 for (auto idx : indices.drop_back()) 3332 assert(isa<llvm::ConstantInt>(idx) && 3333 cast<llvm::ConstantInt>(idx)->isZero()); 3334 #endif 3335 3336 // Determine the element size of the statically-sized base. This is 3337 // the thing that the indices are expressed in terms of. 3338 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3339 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3340 } 3341 3342 // We can use that to compute the best alignment of the element. 3343 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3344 CharUnits eltAlign = 3345 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3346 3347 llvm::Value *eltPtr = emitArraySubscriptGEP( 3348 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3349 return Address(eltPtr, eltAlign); 3350 } 3351 3352 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3353 bool Accessed) { 3354 // The index must always be an integer, which is not an aggregate. Emit it 3355 // in lexical order (this complexity is, sadly, required by C++17). 3356 llvm::Value *IdxPre = 3357 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3358 bool SignedIndices = false; 3359 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3360 auto *Idx = IdxPre; 3361 if (E->getLHS() != E->getIdx()) { 3362 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3363 Idx = EmitScalarExpr(E->getIdx()); 3364 } 3365 3366 QualType IdxTy = E->getIdx()->getType(); 3367 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3368 SignedIndices |= IdxSigned; 3369 3370 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3371 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3372 3373 // Extend or truncate the index type to 32 or 64-bits. 3374 if (Promote && Idx->getType() != IntPtrTy) 3375 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3376 3377 return Idx; 3378 }; 3379 IdxPre = nullptr; 3380 3381 // If the base is a vector type, then we are forming a vector element lvalue 3382 // with this subscript. 3383 if (E->getBase()->getType()->isVectorType() && 3384 !isa<ExtVectorElementExpr>(E->getBase())) { 3385 // Emit the vector as an lvalue to get its address. 3386 LValue LHS = EmitLValue(E->getBase()); 3387 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3388 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3389 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3390 LHS.getBaseInfo(), TBAAAccessInfo()); 3391 } 3392 3393 // All the other cases basically behave like simple offsetting. 3394 3395 // Handle the extvector case we ignored above. 3396 if (isa<ExtVectorElementExpr>(E->getBase())) { 3397 LValue LV = EmitLValue(E->getBase()); 3398 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3399 Address Addr = EmitExtVectorElementLValue(LV); 3400 3401 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3402 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3403 SignedIndices, E->getExprLoc()); 3404 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3405 CGM.getTBAAInfoForSubobject(LV, EltType)); 3406 } 3407 3408 LValueBaseInfo EltBaseInfo; 3409 TBAAAccessInfo EltTBAAInfo; 3410 Address Addr = Address::invalid(); 3411 if (const VariableArrayType *vla = 3412 getContext().getAsVariableArrayType(E->getType())) { 3413 // The base must be a pointer, which is not an aggregate. Emit 3414 // it. It needs to be emitted first in case it's what captures 3415 // the VLA bounds. 3416 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3417 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3418 3419 // The element count here is the total number of non-VLA elements. 3420 llvm::Value *numElements = getVLASize(vla).NumElts; 3421 3422 // Effectively, the multiply by the VLA size is part of the GEP. 3423 // GEP indexes are signed, and scaling an index isn't permitted to 3424 // signed-overflow, so we use the same semantics for our explicit 3425 // multiply. We suppress this if overflow is not undefined behavior. 3426 if (getLangOpts().isSignedOverflowDefined()) { 3427 Idx = Builder.CreateMul(Idx, numElements); 3428 } else { 3429 Idx = Builder.CreateNSWMul(Idx, numElements); 3430 } 3431 3432 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3433 !getLangOpts().isSignedOverflowDefined(), 3434 SignedIndices, E->getExprLoc()); 3435 3436 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3437 // Indexing over an interface, as in "NSString *P; P[4];" 3438 3439 // Emit the base pointer. 3440 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3441 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3442 3443 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3444 llvm::Value *InterfaceSizeVal = 3445 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3446 3447 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3448 3449 // We don't necessarily build correct LLVM struct types for ObjC 3450 // interfaces, so we can't rely on GEP to do this scaling 3451 // correctly, so we need to cast to i8*. FIXME: is this actually 3452 // true? A lot of other things in the fragile ABI would break... 3453 llvm::Type *OrigBaseTy = Addr.getType(); 3454 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3455 3456 // Do the GEP. 3457 CharUnits EltAlign = 3458 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3459 llvm::Value *EltPtr = 3460 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3461 SignedIndices, E->getExprLoc()); 3462 Addr = Address(EltPtr, EltAlign); 3463 3464 // Cast back. 3465 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3466 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3467 // If this is A[i] where A is an array, the frontend will have decayed the 3468 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3469 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3470 // "gep x, i" here. Emit one "gep A, 0, i". 3471 assert(Array->getType()->isArrayType() && 3472 "Array to pointer decay must have array source type!"); 3473 LValue ArrayLV; 3474 // For simple multidimensional array indexing, set the 'accessed' flag for 3475 // better bounds-checking of the base expression. 3476 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3477 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3478 else 3479 ArrayLV = EmitLValue(Array); 3480 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3481 3482 // Propagate the alignment from the array itself to the result. 3483 Addr = emitArraySubscriptGEP( 3484 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3485 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3486 E->getExprLoc()); 3487 EltBaseInfo = ArrayLV.getBaseInfo(); 3488 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3489 } else { 3490 // The base must be a pointer; emit it with an estimate of its alignment. 3491 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3492 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3493 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3494 !getLangOpts().isSignedOverflowDefined(), 3495 SignedIndices, E->getExprLoc()); 3496 } 3497 3498 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3499 3500 if (getLangOpts().ObjC && 3501 getLangOpts().getGC() != LangOptions::NonGC) { 3502 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3503 setObjCGCLValueClass(getContext(), E, LV); 3504 } 3505 return LV; 3506 } 3507 3508 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3509 LValueBaseInfo &BaseInfo, 3510 TBAAAccessInfo &TBAAInfo, 3511 QualType BaseTy, QualType ElTy, 3512 bool IsLowerBound) { 3513 LValue BaseLVal; 3514 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3515 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3516 if (BaseTy->isArrayType()) { 3517 Address Addr = BaseLVal.getAddress(); 3518 BaseInfo = BaseLVal.getBaseInfo(); 3519 3520 // If the array type was an incomplete type, we need to make sure 3521 // the decay ends up being the right type. 3522 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3523 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3524 3525 // Note that VLA pointers are always decayed, so we don't need to do 3526 // anything here. 3527 if (!BaseTy->isVariableArrayType()) { 3528 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3529 "Expected pointer to array"); 3530 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3531 "arraydecay"); 3532 } 3533 3534 return CGF.Builder.CreateElementBitCast(Addr, 3535 CGF.ConvertTypeForMem(ElTy)); 3536 } 3537 LValueBaseInfo TypeBaseInfo; 3538 TBAAAccessInfo TypeTBAAInfo; 3539 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3540 &TypeTBAAInfo); 3541 BaseInfo.mergeForCast(TypeBaseInfo); 3542 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3543 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3544 } 3545 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3546 } 3547 3548 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3549 bool IsLowerBound) { 3550 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3551 QualType ResultExprTy; 3552 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3553 ResultExprTy = AT->getElementType(); 3554 else 3555 ResultExprTy = BaseTy->getPointeeType(); 3556 llvm::Value *Idx = nullptr; 3557 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3558 // Requesting lower bound or upper bound, but without provided length and 3559 // without ':' symbol for the default length -> length = 1. 3560 // Idx = LowerBound ?: 0; 3561 if (auto *LowerBound = E->getLowerBound()) { 3562 Idx = Builder.CreateIntCast( 3563 EmitScalarExpr(LowerBound), IntPtrTy, 3564 LowerBound->getType()->hasSignedIntegerRepresentation()); 3565 } else 3566 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3567 } else { 3568 // Try to emit length or lower bound as constant. If this is possible, 1 3569 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3570 // IR (LB + Len) - 1. 3571 auto &C = CGM.getContext(); 3572 auto *Length = E->getLength(); 3573 llvm::APSInt ConstLength; 3574 if (Length) { 3575 // Idx = LowerBound + Length - 1; 3576 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3577 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3578 Length = nullptr; 3579 } 3580 auto *LowerBound = E->getLowerBound(); 3581 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3582 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3583 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3584 LowerBound = nullptr; 3585 } 3586 if (!Length) 3587 --ConstLength; 3588 else if (!LowerBound) 3589 --ConstLowerBound; 3590 3591 if (Length || LowerBound) { 3592 auto *LowerBoundVal = 3593 LowerBound 3594 ? Builder.CreateIntCast( 3595 EmitScalarExpr(LowerBound), IntPtrTy, 3596 LowerBound->getType()->hasSignedIntegerRepresentation()) 3597 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3598 auto *LengthVal = 3599 Length 3600 ? Builder.CreateIntCast( 3601 EmitScalarExpr(Length), IntPtrTy, 3602 Length->getType()->hasSignedIntegerRepresentation()) 3603 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3604 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3605 /*HasNUW=*/false, 3606 !getLangOpts().isSignedOverflowDefined()); 3607 if (Length && LowerBound) { 3608 Idx = Builder.CreateSub( 3609 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3610 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3611 } 3612 } else 3613 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3614 } else { 3615 // Idx = ArraySize - 1; 3616 QualType ArrayTy = BaseTy->isPointerType() 3617 ? E->getBase()->IgnoreParenImpCasts()->getType() 3618 : BaseTy; 3619 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3620 Length = VAT->getSizeExpr(); 3621 if (Length->isIntegerConstantExpr(ConstLength, C)) 3622 Length = nullptr; 3623 } else { 3624 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3625 ConstLength = CAT->getSize(); 3626 } 3627 if (Length) { 3628 auto *LengthVal = Builder.CreateIntCast( 3629 EmitScalarExpr(Length), IntPtrTy, 3630 Length->getType()->hasSignedIntegerRepresentation()); 3631 Idx = Builder.CreateSub( 3632 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3633 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3634 } else { 3635 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3636 --ConstLength; 3637 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3638 } 3639 } 3640 } 3641 assert(Idx); 3642 3643 Address EltPtr = Address::invalid(); 3644 LValueBaseInfo BaseInfo; 3645 TBAAAccessInfo TBAAInfo; 3646 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3647 // The base must be a pointer, which is not an aggregate. Emit 3648 // it. It needs to be emitted first in case it's what captures 3649 // the VLA bounds. 3650 Address Base = 3651 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3652 BaseTy, VLA->getElementType(), IsLowerBound); 3653 // The element count here is the total number of non-VLA elements. 3654 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3655 3656 // Effectively, the multiply by the VLA size is part of the GEP. 3657 // GEP indexes are signed, and scaling an index isn't permitted to 3658 // signed-overflow, so we use the same semantics for our explicit 3659 // multiply. We suppress this if overflow is not undefined behavior. 3660 if (getLangOpts().isSignedOverflowDefined()) 3661 Idx = Builder.CreateMul(Idx, NumElements); 3662 else 3663 Idx = Builder.CreateNSWMul(Idx, NumElements); 3664 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3665 !getLangOpts().isSignedOverflowDefined(), 3666 /*SignedIndices=*/false, E->getExprLoc()); 3667 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3668 // If this is A[i] where A is an array, the frontend will have decayed the 3669 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3670 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3671 // "gep x, i" here. Emit one "gep A, 0, i". 3672 assert(Array->getType()->isArrayType() && 3673 "Array to pointer decay must have array source type!"); 3674 LValue ArrayLV; 3675 // For simple multidimensional array indexing, set the 'accessed' flag for 3676 // better bounds-checking of the base expression. 3677 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3678 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3679 else 3680 ArrayLV = EmitLValue(Array); 3681 3682 // Propagate the alignment from the array itself to the result. 3683 EltPtr = emitArraySubscriptGEP( 3684 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3685 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3686 /*SignedIndices=*/false, E->getExprLoc()); 3687 BaseInfo = ArrayLV.getBaseInfo(); 3688 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3689 } else { 3690 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3691 TBAAInfo, BaseTy, ResultExprTy, 3692 IsLowerBound); 3693 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3694 !getLangOpts().isSignedOverflowDefined(), 3695 /*SignedIndices=*/false, E->getExprLoc()); 3696 } 3697 3698 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3699 } 3700 3701 LValue CodeGenFunction:: 3702 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3703 // Emit the base vector as an l-value. 3704 LValue Base; 3705 3706 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3707 if (E->isArrow()) { 3708 // If it is a pointer to a vector, emit the address and form an lvalue with 3709 // it. 3710 LValueBaseInfo BaseInfo; 3711 TBAAAccessInfo TBAAInfo; 3712 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3713 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3714 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3715 Base.getQuals().removeObjCGCAttr(); 3716 } else if (E->getBase()->isGLValue()) { 3717 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3718 // emit the base as an lvalue. 3719 assert(E->getBase()->getType()->isVectorType()); 3720 Base = EmitLValue(E->getBase()); 3721 } else { 3722 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3723 assert(E->getBase()->getType()->isVectorType() && 3724 "Result must be a vector"); 3725 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3726 3727 // Store the vector to memory (because LValue wants an address). 3728 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3729 Builder.CreateStore(Vec, VecMem); 3730 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3731 AlignmentSource::Decl); 3732 } 3733 3734 QualType type = 3735 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3736 3737 // Encode the element access list into a vector of unsigned indices. 3738 SmallVector<uint32_t, 4> Indices; 3739 E->getEncodedElementAccess(Indices); 3740 3741 if (Base.isSimple()) { 3742 llvm::Constant *CV = 3743 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3744 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3745 Base.getBaseInfo(), TBAAAccessInfo()); 3746 } 3747 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3748 3749 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3750 SmallVector<llvm::Constant *, 4> CElts; 3751 3752 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3753 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3754 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3755 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3756 Base.getBaseInfo(), TBAAAccessInfo()); 3757 } 3758 3759 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3760 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3761 EmitIgnoredExpr(E->getBase()); 3762 return EmitDeclRefLValue(DRE); 3763 } 3764 3765 Expr *BaseExpr = E->getBase(); 3766 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3767 LValue BaseLV; 3768 if (E->isArrow()) { 3769 LValueBaseInfo BaseInfo; 3770 TBAAAccessInfo TBAAInfo; 3771 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3772 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3773 SanitizerSet SkippedChecks; 3774 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3775 if (IsBaseCXXThis) 3776 SkippedChecks.set(SanitizerKind::Alignment, true); 3777 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3778 SkippedChecks.set(SanitizerKind::Null, true); 3779 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3780 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3781 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3782 } else 3783 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3784 3785 NamedDecl *ND = E->getMemberDecl(); 3786 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3787 LValue LV = EmitLValueForField(BaseLV, Field); 3788 setObjCGCLValueClass(getContext(), E, LV); 3789 return LV; 3790 } 3791 3792 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3793 return EmitFunctionDeclLValue(*this, E, FD); 3794 3795 llvm_unreachable("Unhandled member declaration!"); 3796 } 3797 3798 /// Given that we are currently emitting a lambda, emit an l-value for 3799 /// one of its members. 3800 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3801 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3802 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3803 QualType LambdaTagType = 3804 getContext().getTagDeclType(Field->getParent()); 3805 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3806 return EmitLValueForField(LambdaLV, Field); 3807 } 3808 3809 /// Drill down to the storage of a field without walking into 3810 /// reference types. 3811 /// 3812 /// The resulting address doesn't necessarily have the right type. 3813 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3814 const FieldDecl *field) { 3815 const RecordDecl *rec = field->getParent(); 3816 3817 unsigned idx = 3818 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3819 3820 CharUnits offset; 3821 // Adjust the alignment down to the given offset. 3822 // As a special case, if the LLVM field index is 0, we know that this 3823 // is zero. 3824 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3825 .getFieldOffset(field->getFieldIndex()) == 0) && 3826 "LLVM field at index zero had non-zero offset?"); 3827 if (idx != 0) { 3828 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3829 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3830 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3831 } 3832 3833 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3834 } 3835 3836 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3837 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3838 if (!RD) 3839 return false; 3840 3841 if (RD->isDynamicClass()) 3842 return true; 3843 3844 for (const auto &Base : RD->bases()) 3845 if (hasAnyVptr(Base.getType(), Context)) 3846 return true; 3847 3848 for (const FieldDecl *Field : RD->fields()) 3849 if (hasAnyVptr(Field->getType(), Context)) 3850 return true; 3851 3852 return false; 3853 } 3854 3855 LValue CodeGenFunction::EmitLValueForField(LValue base, 3856 const FieldDecl *field) { 3857 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3858 3859 if (field->isBitField()) { 3860 const CGRecordLayout &RL = 3861 CGM.getTypes().getCGRecordLayout(field->getParent()); 3862 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3863 Address Addr = base.getAddress(); 3864 unsigned Idx = RL.getLLVMFieldNo(field); 3865 if (Idx != 0) 3866 // For structs, we GEP to the field that the record layout suggests. 3867 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3868 field->getName()); 3869 // Get the access type. 3870 llvm::Type *FieldIntTy = 3871 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3872 if (Addr.getElementType() != FieldIntTy) 3873 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3874 3875 QualType fieldType = 3876 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3877 // TODO: Support TBAA for bit fields. 3878 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3879 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3880 TBAAAccessInfo()); 3881 } 3882 3883 // Fields of may-alias structures are may-alias themselves. 3884 // FIXME: this should get propagated down through anonymous structs 3885 // and unions. 3886 QualType FieldType = field->getType(); 3887 const RecordDecl *rec = field->getParent(); 3888 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3889 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3890 TBAAAccessInfo FieldTBAAInfo; 3891 if (base.getTBAAInfo().isMayAlias() || 3892 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3893 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3894 } else if (rec->isUnion()) { 3895 // TODO: Support TBAA for unions. 3896 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3897 } else { 3898 // If no base type been assigned for the base access, then try to generate 3899 // one for this base lvalue. 3900 FieldTBAAInfo = base.getTBAAInfo(); 3901 if (!FieldTBAAInfo.BaseType) { 3902 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3903 assert(!FieldTBAAInfo.Offset && 3904 "Nonzero offset for an access with no base type!"); 3905 } 3906 3907 // Adjust offset to be relative to the base type. 3908 const ASTRecordLayout &Layout = 3909 getContext().getASTRecordLayout(field->getParent()); 3910 unsigned CharWidth = getContext().getCharWidth(); 3911 if (FieldTBAAInfo.BaseType) 3912 FieldTBAAInfo.Offset += 3913 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3914 3915 // Update the final access type and size. 3916 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3917 FieldTBAAInfo.Size = 3918 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3919 } 3920 3921 Address addr = base.getAddress(); 3922 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 3923 if (CGM.getCodeGenOpts().StrictVTablePointers && 3924 ClassDef->isDynamicClass()) { 3925 // Getting to any field of dynamic object requires stripping dynamic 3926 // information provided by invariant.group. This is because accessing 3927 // fields may leak the real address of dynamic object, which could result 3928 // in miscompilation when leaked pointer would be compared. 3929 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 3930 addr = Address(stripped, addr.getAlignment()); 3931 } 3932 } 3933 3934 unsigned RecordCVR = base.getVRQualifiers(); 3935 if (rec->isUnion()) { 3936 // For unions, there is no pointer adjustment. 3937 assert(!FieldType->isReferenceType() && "union has reference member"); 3938 if (CGM.getCodeGenOpts().StrictVTablePointers && 3939 hasAnyVptr(FieldType, getContext())) 3940 // Because unions can easily skip invariant.barriers, we need to add 3941 // a barrier every time CXXRecord field with vptr is referenced. 3942 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3943 addr.getAlignment()); 3944 } else { 3945 // For structs, we GEP to the field that the record layout suggests. 3946 addr = emitAddrOfFieldStorage(*this, addr, field); 3947 3948 // If this is a reference field, load the reference right now. 3949 if (FieldType->isReferenceType()) { 3950 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3951 FieldTBAAInfo); 3952 if (RecordCVR & Qualifiers::Volatile) 3953 RefLVal.getQuals().addVolatile(); 3954 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3955 3956 // Qualifiers on the struct don't apply to the referencee. 3957 RecordCVR = 0; 3958 FieldType = FieldType->getPointeeType(); 3959 } 3960 } 3961 3962 // Make sure that the address is pointing to the right type. This is critical 3963 // for both unions and structs. A union needs a bitcast, a struct element 3964 // will need a bitcast if the LLVM type laid out doesn't match the desired 3965 // type. 3966 addr = Builder.CreateElementBitCast( 3967 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3968 3969 if (field->hasAttr<AnnotateAttr>()) 3970 addr = EmitFieldAnnotations(field, addr); 3971 3972 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3973 LV.getQuals().addCVRQualifiers(RecordCVR); 3974 3975 // __weak attribute on a field is ignored. 3976 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3977 LV.getQuals().removeObjCGCAttr(); 3978 3979 return LV; 3980 } 3981 3982 LValue 3983 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3984 const FieldDecl *Field) { 3985 QualType FieldType = Field->getType(); 3986 3987 if (!FieldType->isReferenceType()) 3988 return EmitLValueForField(Base, Field); 3989 3990 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3991 3992 // Make sure that the address is pointing to the right type. 3993 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3994 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3995 3996 // TODO: Generate TBAA information that describes this access as a structure 3997 // member access and not just an access to an object of the field's type. This 3998 // should be similar to what we do in EmitLValueForField(). 3999 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4000 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4001 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4002 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4003 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4004 } 4005 4006 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4007 if (E->isFileScope()) { 4008 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4009 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4010 } 4011 if (E->getType()->isVariablyModifiedType()) 4012 // make sure to emit the VLA size. 4013 EmitVariablyModifiedType(E->getType()); 4014 4015 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4016 const Expr *InitExpr = E->getInitializer(); 4017 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4018 4019 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4020 /*Init*/ true); 4021 4022 return Result; 4023 } 4024 4025 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4026 if (!E->isGLValue()) 4027 // Initializing an aggregate temporary in C++11: T{...}. 4028 return EmitAggExprToLValue(E); 4029 4030 // An lvalue initializer list must be initializing a reference. 4031 assert(E->isTransparent() && "non-transparent glvalue init list"); 4032 return EmitLValue(E->getInit(0)); 4033 } 4034 4035 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4036 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4037 /// LValue is returned and the current block has been terminated. 4038 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4039 const Expr *Operand) { 4040 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4041 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4042 return None; 4043 } 4044 4045 return CGF.EmitLValue(Operand); 4046 } 4047 4048 LValue CodeGenFunction:: 4049 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4050 if (!expr->isGLValue()) { 4051 // ?: here should be an aggregate. 4052 assert(hasAggregateEvaluationKind(expr->getType()) && 4053 "Unexpected conditional operator!"); 4054 return EmitAggExprToLValue(expr); 4055 } 4056 4057 OpaqueValueMapping binding(*this, expr); 4058 4059 const Expr *condExpr = expr->getCond(); 4060 bool CondExprBool; 4061 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4062 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4063 if (!CondExprBool) std::swap(live, dead); 4064 4065 if (!ContainsLabel(dead)) { 4066 // If the true case is live, we need to track its region. 4067 if (CondExprBool) 4068 incrementProfileCounter(expr); 4069 return EmitLValue(live); 4070 } 4071 } 4072 4073 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4074 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4075 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4076 4077 ConditionalEvaluation eval(*this); 4078 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4079 4080 // Any temporaries created here are conditional. 4081 EmitBlock(lhsBlock); 4082 incrementProfileCounter(expr); 4083 eval.begin(*this); 4084 Optional<LValue> lhs = 4085 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4086 eval.end(*this); 4087 4088 if (lhs && !lhs->isSimple()) 4089 return EmitUnsupportedLValue(expr, "conditional operator"); 4090 4091 lhsBlock = Builder.GetInsertBlock(); 4092 if (lhs) 4093 Builder.CreateBr(contBlock); 4094 4095 // Any temporaries created here are conditional. 4096 EmitBlock(rhsBlock); 4097 eval.begin(*this); 4098 Optional<LValue> rhs = 4099 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4100 eval.end(*this); 4101 if (rhs && !rhs->isSimple()) 4102 return EmitUnsupportedLValue(expr, "conditional operator"); 4103 rhsBlock = Builder.GetInsertBlock(); 4104 4105 EmitBlock(contBlock); 4106 4107 if (lhs && rhs) { 4108 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4109 2, "cond-lvalue"); 4110 phi->addIncoming(lhs->getPointer(), lhsBlock); 4111 phi->addIncoming(rhs->getPointer(), rhsBlock); 4112 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4113 AlignmentSource alignSource = 4114 std::max(lhs->getBaseInfo().getAlignmentSource(), 4115 rhs->getBaseInfo().getAlignmentSource()); 4116 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4117 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4118 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4119 TBAAInfo); 4120 } else { 4121 assert((lhs || rhs) && 4122 "both operands of glvalue conditional are throw-expressions?"); 4123 return lhs ? *lhs : *rhs; 4124 } 4125 } 4126 4127 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4128 /// type. If the cast is to a reference, we can have the usual lvalue result, 4129 /// otherwise if a cast is needed by the code generator in an lvalue context, 4130 /// then it must mean that we need the address of an aggregate in order to 4131 /// access one of its members. This can happen for all the reasons that casts 4132 /// are permitted with aggregate result, including noop aggregate casts, and 4133 /// cast from scalar to union. 4134 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4135 switch (E->getCastKind()) { 4136 case CK_ToVoid: 4137 case CK_BitCast: 4138 case CK_ArrayToPointerDecay: 4139 case CK_FunctionToPointerDecay: 4140 case CK_NullToMemberPointer: 4141 case CK_NullToPointer: 4142 case CK_IntegralToPointer: 4143 case CK_PointerToIntegral: 4144 case CK_PointerToBoolean: 4145 case CK_VectorSplat: 4146 case CK_IntegralCast: 4147 case CK_BooleanToSignedIntegral: 4148 case CK_IntegralToBoolean: 4149 case CK_IntegralToFloating: 4150 case CK_FloatingToIntegral: 4151 case CK_FloatingToBoolean: 4152 case CK_FloatingCast: 4153 case CK_FloatingRealToComplex: 4154 case CK_FloatingComplexToReal: 4155 case CK_FloatingComplexToBoolean: 4156 case CK_FloatingComplexCast: 4157 case CK_FloatingComplexToIntegralComplex: 4158 case CK_IntegralRealToComplex: 4159 case CK_IntegralComplexToReal: 4160 case CK_IntegralComplexToBoolean: 4161 case CK_IntegralComplexCast: 4162 case CK_IntegralComplexToFloatingComplex: 4163 case CK_DerivedToBaseMemberPointer: 4164 case CK_BaseToDerivedMemberPointer: 4165 case CK_MemberPointerToBoolean: 4166 case CK_ReinterpretMemberPointer: 4167 case CK_AnyPointerToBlockPointerCast: 4168 case CK_ARCProduceObject: 4169 case CK_ARCConsumeObject: 4170 case CK_ARCReclaimReturnedObject: 4171 case CK_ARCExtendBlockObject: 4172 case CK_CopyAndAutoreleaseBlockObject: 4173 case CK_IntToOCLSampler: 4174 case CK_FixedPointCast: 4175 case CK_FixedPointToBoolean: 4176 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4177 4178 case CK_Dependent: 4179 llvm_unreachable("dependent cast kind in IR gen!"); 4180 4181 case CK_BuiltinFnToFnPtr: 4182 llvm_unreachable("builtin functions are handled elsewhere"); 4183 4184 // These are never l-values; just use the aggregate emission code. 4185 case CK_NonAtomicToAtomic: 4186 case CK_AtomicToNonAtomic: 4187 return EmitAggExprToLValue(E); 4188 4189 case CK_Dynamic: { 4190 LValue LV = EmitLValue(E->getSubExpr()); 4191 Address V = LV.getAddress(); 4192 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4193 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4194 } 4195 4196 case CK_ConstructorConversion: 4197 case CK_UserDefinedConversion: 4198 case CK_CPointerToObjCPointerCast: 4199 case CK_BlockPointerToObjCPointerCast: 4200 case CK_NoOp: 4201 case CK_LValueToRValue: 4202 return EmitLValue(E->getSubExpr()); 4203 4204 case CK_UncheckedDerivedToBase: 4205 case CK_DerivedToBase: { 4206 const RecordType *DerivedClassTy = 4207 E->getSubExpr()->getType()->getAs<RecordType>(); 4208 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4209 4210 LValue LV = EmitLValue(E->getSubExpr()); 4211 Address This = LV.getAddress(); 4212 4213 // Perform the derived-to-base conversion 4214 Address Base = GetAddressOfBaseClass( 4215 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4216 /*NullCheckValue=*/false, E->getExprLoc()); 4217 4218 // TODO: Support accesses to members of base classes in TBAA. For now, we 4219 // conservatively pretend that the complete object is of the base class 4220 // type. 4221 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4222 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4223 } 4224 case CK_ToUnion: 4225 return EmitAggExprToLValue(E); 4226 case CK_BaseToDerived: { 4227 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4228 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4229 4230 LValue LV = EmitLValue(E->getSubExpr()); 4231 4232 // Perform the base-to-derived conversion 4233 Address Derived = 4234 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4235 E->path_begin(), E->path_end(), 4236 /*NullCheckValue=*/false); 4237 4238 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4239 // performed and the object is not of the derived type. 4240 if (sanitizePerformTypeCheck()) 4241 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4242 Derived.getPointer(), E->getType()); 4243 4244 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4245 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4246 /*MayBeNull=*/false, CFITCK_DerivedCast, 4247 E->getBeginLoc()); 4248 4249 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4250 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4251 } 4252 case CK_LValueBitCast: { 4253 // This must be a reinterpret_cast (or c-style equivalent). 4254 const auto *CE = cast<ExplicitCastExpr>(E); 4255 4256 CGM.EmitExplicitCastExprType(CE, this); 4257 LValue LV = EmitLValue(E->getSubExpr()); 4258 Address V = Builder.CreateBitCast(LV.getAddress(), 4259 ConvertType(CE->getTypeAsWritten())); 4260 4261 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4262 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4263 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4264 E->getBeginLoc()); 4265 4266 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4267 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4268 } 4269 case CK_AddressSpaceConversion: { 4270 LValue LV = EmitLValue(E->getSubExpr()); 4271 QualType DestTy = getContext().getPointerType(E->getType()); 4272 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4273 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4274 E->getType().getAddressSpace(), ConvertType(DestTy)); 4275 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), 4276 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4277 } 4278 case CK_ObjCObjectLValueCast: { 4279 LValue LV = EmitLValue(E->getSubExpr()); 4280 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4281 ConvertType(E->getType())); 4282 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4283 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4284 } 4285 case CK_ZeroToOCLOpaqueType: 4286 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4287 } 4288 4289 llvm_unreachable("Unhandled lvalue cast kind?"); 4290 } 4291 4292 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4293 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4294 return getOrCreateOpaqueLValueMapping(e); 4295 } 4296 4297 LValue 4298 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4299 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4300 4301 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4302 it = OpaqueLValues.find(e); 4303 4304 if (it != OpaqueLValues.end()) 4305 return it->second; 4306 4307 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4308 return EmitLValue(e->getSourceExpr()); 4309 } 4310 4311 RValue 4312 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4313 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4314 4315 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4316 it = OpaqueRValues.find(e); 4317 4318 if (it != OpaqueRValues.end()) 4319 return it->second; 4320 4321 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4322 return EmitAnyExpr(e->getSourceExpr()); 4323 } 4324 4325 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4326 const FieldDecl *FD, 4327 SourceLocation Loc) { 4328 QualType FT = FD->getType(); 4329 LValue FieldLV = EmitLValueForField(LV, FD); 4330 switch (getEvaluationKind(FT)) { 4331 case TEK_Complex: 4332 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4333 case TEK_Aggregate: 4334 return FieldLV.asAggregateRValue(); 4335 case TEK_Scalar: 4336 // This routine is used to load fields one-by-one to perform a copy, so 4337 // don't load reference fields. 4338 if (FD->getType()->isReferenceType()) 4339 return RValue::get(FieldLV.getPointer()); 4340 return EmitLoadOfLValue(FieldLV, Loc); 4341 } 4342 llvm_unreachable("bad evaluation kind"); 4343 } 4344 4345 //===--------------------------------------------------------------------===// 4346 // Expression Emission 4347 //===--------------------------------------------------------------------===// 4348 4349 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4350 ReturnValueSlot ReturnValue) { 4351 // Builtins never have block type. 4352 if (E->getCallee()->getType()->isBlockPointerType()) 4353 return EmitBlockCallExpr(E, ReturnValue); 4354 4355 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4356 return EmitCXXMemberCallExpr(CE, ReturnValue); 4357 4358 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4359 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4360 4361 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4362 if (const CXXMethodDecl *MD = 4363 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4364 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4365 4366 CGCallee callee = EmitCallee(E->getCallee()); 4367 4368 if (callee.isBuiltin()) { 4369 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4370 E, ReturnValue); 4371 } 4372 4373 if (callee.isPseudoDestructor()) { 4374 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4375 } 4376 4377 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4378 } 4379 4380 /// Emit a CallExpr without considering whether it might be a subclass. 4381 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4382 ReturnValueSlot ReturnValue) { 4383 CGCallee Callee = EmitCallee(E->getCallee()); 4384 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4385 } 4386 4387 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4388 if (auto builtinID = FD->getBuiltinID()) { 4389 return CGCallee::forBuiltin(builtinID, FD); 4390 } 4391 4392 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4393 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4394 } 4395 4396 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4397 E = E->IgnoreParens(); 4398 4399 // Look through function-to-pointer decay. 4400 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4401 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4402 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4403 return EmitCallee(ICE->getSubExpr()); 4404 } 4405 4406 // Resolve direct calls. 4407 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4408 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4409 return EmitDirectCallee(*this, FD); 4410 } 4411 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4412 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4413 EmitIgnoredExpr(ME->getBase()); 4414 return EmitDirectCallee(*this, FD); 4415 } 4416 4417 // Look through template substitutions. 4418 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4419 return EmitCallee(NTTP->getReplacement()); 4420 4421 // Treat pseudo-destructor calls differently. 4422 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4423 return CGCallee::forPseudoDestructor(PDE); 4424 } 4425 4426 // Otherwise, we have an indirect reference. 4427 llvm::Value *calleePtr; 4428 QualType functionType; 4429 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4430 calleePtr = EmitScalarExpr(E); 4431 functionType = ptrType->getPointeeType(); 4432 } else { 4433 functionType = E->getType(); 4434 calleePtr = EmitLValue(E).getPointer(); 4435 } 4436 assert(functionType->isFunctionType()); 4437 4438 GlobalDecl GD; 4439 if (const auto *VD = 4440 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4441 GD = GlobalDecl(VD); 4442 4443 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4444 CGCallee callee(calleeInfo, calleePtr); 4445 return callee; 4446 } 4447 4448 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4449 // Comma expressions just emit their LHS then their RHS as an l-value. 4450 if (E->getOpcode() == BO_Comma) { 4451 EmitIgnoredExpr(E->getLHS()); 4452 EnsureInsertPoint(); 4453 return EmitLValue(E->getRHS()); 4454 } 4455 4456 if (E->getOpcode() == BO_PtrMemD || 4457 E->getOpcode() == BO_PtrMemI) 4458 return EmitPointerToDataMemberBinaryExpr(E); 4459 4460 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4461 4462 // Note that in all of these cases, __block variables need the RHS 4463 // evaluated first just in case the variable gets moved by the RHS. 4464 4465 switch (getEvaluationKind(E->getType())) { 4466 case TEK_Scalar: { 4467 switch (E->getLHS()->getType().getObjCLifetime()) { 4468 case Qualifiers::OCL_Strong: 4469 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4470 4471 case Qualifiers::OCL_Autoreleasing: 4472 return EmitARCStoreAutoreleasing(E).first; 4473 4474 // No reason to do any of these differently. 4475 case Qualifiers::OCL_None: 4476 case Qualifiers::OCL_ExplicitNone: 4477 case Qualifiers::OCL_Weak: 4478 break; 4479 } 4480 4481 RValue RV = EmitAnyExpr(E->getRHS()); 4482 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4483 if (RV.isScalar()) 4484 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4485 EmitStoreThroughLValue(RV, LV); 4486 return LV; 4487 } 4488 4489 case TEK_Complex: 4490 return EmitComplexAssignmentLValue(E); 4491 4492 case TEK_Aggregate: 4493 return EmitAggExprToLValue(E); 4494 } 4495 llvm_unreachable("bad evaluation kind"); 4496 } 4497 4498 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4499 RValue RV = EmitCallExpr(E); 4500 4501 if (!RV.isScalar()) 4502 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4503 AlignmentSource::Decl); 4504 4505 assert(E->getCallReturnType(getContext())->isReferenceType() && 4506 "Can't have a scalar return unless the return type is a " 4507 "reference type!"); 4508 4509 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4510 } 4511 4512 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4513 // FIXME: This shouldn't require another copy. 4514 return EmitAggExprToLValue(E); 4515 } 4516 4517 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4518 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4519 && "binding l-value to type which needs a temporary"); 4520 AggValueSlot Slot = CreateAggTemp(E->getType()); 4521 EmitCXXConstructExpr(E, Slot); 4522 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4523 } 4524 4525 LValue 4526 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4527 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4528 } 4529 4530 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4531 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4532 ConvertType(E->getType())); 4533 } 4534 4535 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4536 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4537 AlignmentSource::Decl); 4538 } 4539 4540 LValue 4541 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4542 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4543 Slot.setExternallyDestructed(); 4544 EmitAggExpr(E->getSubExpr(), Slot); 4545 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4546 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4547 } 4548 4549 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4550 RValue RV = EmitObjCMessageExpr(E); 4551 4552 if (!RV.isScalar()) 4553 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4554 AlignmentSource::Decl); 4555 4556 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4557 "Can't have a scalar return unless the return type is a " 4558 "reference type!"); 4559 4560 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4561 } 4562 4563 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4564 Address V = 4565 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4566 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4567 } 4568 4569 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4570 const ObjCIvarDecl *Ivar) { 4571 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4572 } 4573 4574 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4575 llvm::Value *BaseValue, 4576 const ObjCIvarDecl *Ivar, 4577 unsigned CVRQualifiers) { 4578 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4579 Ivar, CVRQualifiers); 4580 } 4581 4582 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4583 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4584 llvm::Value *BaseValue = nullptr; 4585 const Expr *BaseExpr = E->getBase(); 4586 Qualifiers BaseQuals; 4587 QualType ObjectTy; 4588 if (E->isArrow()) { 4589 BaseValue = EmitScalarExpr(BaseExpr); 4590 ObjectTy = BaseExpr->getType()->getPointeeType(); 4591 BaseQuals = ObjectTy.getQualifiers(); 4592 } else { 4593 LValue BaseLV = EmitLValue(BaseExpr); 4594 BaseValue = BaseLV.getPointer(); 4595 ObjectTy = BaseExpr->getType(); 4596 BaseQuals = ObjectTy.getQualifiers(); 4597 } 4598 4599 LValue LV = 4600 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4601 BaseQuals.getCVRQualifiers()); 4602 setObjCGCLValueClass(getContext(), E, LV); 4603 return LV; 4604 } 4605 4606 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4607 // Can only get l-value for message expression returning aggregate type 4608 RValue RV = EmitAnyExprToTemp(E); 4609 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4610 AlignmentSource::Decl); 4611 } 4612 4613 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4614 const CallExpr *E, ReturnValueSlot ReturnValue, 4615 llvm::Value *Chain) { 4616 // Get the actual function type. The callee type will always be a pointer to 4617 // function type or a block pointer type. 4618 assert(CalleeType->isFunctionPointerType() && 4619 "Call must have function pointer type!"); 4620 4621 const Decl *TargetDecl = 4622 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4623 4624 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4625 // We can only guarantee that a function is called from the correct 4626 // context/function based on the appropriate target attributes, 4627 // so only check in the case where we have both always_inline and target 4628 // since otherwise we could be making a conditional call after a check for 4629 // the proper cpu features (and it won't cause code generation issues due to 4630 // function based code generation). 4631 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4632 TargetDecl->hasAttr<TargetAttr>()) 4633 checkTargetFeatures(E, FD); 4634 4635 CalleeType = getContext().getCanonicalType(CalleeType); 4636 4637 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4638 4639 CGCallee Callee = OrigCallee; 4640 4641 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4642 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4643 if (llvm::Constant *PrefixSig = 4644 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4645 SanitizerScope SanScope(this); 4646 // Remove any (C++17) exception specifications, to allow calling e.g. a 4647 // noexcept function through a non-noexcept pointer. 4648 auto ProtoTy = 4649 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4650 llvm::Constant *FTRTTIConst = 4651 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4652 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4653 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4654 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4655 4656 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4657 4658 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4659 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4660 llvm::Value *CalleeSigPtr = 4661 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4662 llvm::Value *CalleeSig = 4663 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4664 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4665 4666 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4667 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4668 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4669 4670 EmitBlock(TypeCheck); 4671 llvm::Value *CalleeRTTIPtr = 4672 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4673 llvm::Value *CalleeRTTIEncoded = 4674 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4675 llvm::Value *CalleeRTTI = 4676 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4677 llvm::Value *CalleeRTTIMatch = 4678 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4679 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4680 EmitCheckTypeDescriptor(CalleeType)}; 4681 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4682 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4683 4684 Builder.CreateBr(Cont); 4685 EmitBlock(Cont); 4686 } 4687 } 4688 4689 const auto *FnType = cast<FunctionType>(PointeeType); 4690 4691 // If we are checking indirect calls and this call is indirect, check that the 4692 // function pointer is a member of the bit set for the function type. 4693 if (SanOpts.has(SanitizerKind::CFIICall) && 4694 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4695 SanitizerScope SanScope(this); 4696 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4697 4698 llvm::Metadata *MD; 4699 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4700 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4701 else 4702 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4703 4704 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4705 4706 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4707 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4708 llvm::Value *TypeTest = Builder.CreateCall( 4709 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4710 4711 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4712 llvm::Constant *StaticData[] = { 4713 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4714 EmitCheckSourceLocation(E->getBeginLoc()), 4715 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4716 }; 4717 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4718 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4719 CastedCallee, StaticData); 4720 } else { 4721 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4722 SanitizerHandler::CFICheckFail, StaticData, 4723 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4724 } 4725 } 4726 4727 CallArgList Args; 4728 if (Chain) 4729 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4730 CGM.getContext().VoidPtrTy); 4731 4732 // C++17 requires that we evaluate arguments to a call using assignment syntax 4733 // right-to-left, and that we evaluate arguments to certain other operators 4734 // left-to-right. Note that we allow this to override the order dictated by 4735 // the calling convention on the MS ABI, which means that parameter 4736 // destruction order is not necessarily reverse construction order. 4737 // FIXME: Revisit this based on C++ committee response to unimplementability. 4738 EvaluationOrder Order = EvaluationOrder::Default; 4739 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4740 if (OCE->isAssignmentOp()) 4741 Order = EvaluationOrder::ForceRightToLeft; 4742 else { 4743 switch (OCE->getOperator()) { 4744 case OO_LessLess: 4745 case OO_GreaterGreater: 4746 case OO_AmpAmp: 4747 case OO_PipePipe: 4748 case OO_Comma: 4749 case OO_ArrowStar: 4750 Order = EvaluationOrder::ForceLeftToRight; 4751 break; 4752 default: 4753 break; 4754 } 4755 } 4756 } 4757 4758 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4759 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4760 4761 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4762 Args, FnType, /*isChainCall=*/Chain); 4763 4764 // C99 6.5.2.2p6: 4765 // If the expression that denotes the called function has a type 4766 // that does not include a prototype, [the default argument 4767 // promotions are performed]. If the number of arguments does not 4768 // equal the number of parameters, the behavior is undefined. If 4769 // the function is defined with a type that includes a prototype, 4770 // and either the prototype ends with an ellipsis (, ...) or the 4771 // types of the arguments after promotion are not compatible with 4772 // the types of the parameters, the behavior is undefined. If the 4773 // function is defined with a type that does not include a 4774 // prototype, and the types of the arguments after promotion are 4775 // not compatible with those of the parameters after promotion, 4776 // the behavior is undefined [except in some trivial cases]. 4777 // That is, in the general case, we should assume that a call 4778 // through an unprototyped function type works like a *non-variadic* 4779 // call. The way we make this work is to cast to the exact type 4780 // of the promoted arguments. 4781 // 4782 // Chain calls use this same code path to add the invisible chain parameter 4783 // to the function type. 4784 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4785 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4786 CalleeTy = CalleeTy->getPointerTo(); 4787 4788 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4789 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4790 Callee.setFunctionPointer(CalleePtr); 4791 } 4792 4793 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4794 } 4795 4796 LValue CodeGenFunction:: 4797 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4798 Address BaseAddr = Address::invalid(); 4799 if (E->getOpcode() == BO_PtrMemI) { 4800 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4801 } else { 4802 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4803 } 4804 4805 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4806 4807 const MemberPointerType *MPT 4808 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4809 4810 LValueBaseInfo BaseInfo; 4811 TBAAAccessInfo TBAAInfo; 4812 Address MemberAddr = 4813 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4814 &TBAAInfo); 4815 4816 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4817 } 4818 4819 /// Given the address of a temporary variable, produce an r-value of 4820 /// its type. 4821 RValue CodeGenFunction::convertTempToRValue(Address addr, 4822 QualType type, 4823 SourceLocation loc) { 4824 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4825 switch (getEvaluationKind(type)) { 4826 case TEK_Complex: 4827 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4828 case TEK_Aggregate: 4829 return lvalue.asAggregateRValue(); 4830 case TEK_Scalar: 4831 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4832 } 4833 llvm_unreachable("bad evaluation kind"); 4834 } 4835 4836 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4837 assert(Val->getType()->isFPOrFPVectorTy()); 4838 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4839 return; 4840 4841 llvm::MDBuilder MDHelper(getLLVMContext()); 4842 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4843 4844 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4845 } 4846 4847 namespace { 4848 struct LValueOrRValue { 4849 LValue LV; 4850 RValue RV; 4851 }; 4852 } 4853 4854 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4855 const PseudoObjectExpr *E, 4856 bool forLValue, 4857 AggValueSlot slot) { 4858 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4859 4860 // Find the result expression, if any. 4861 const Expr *resultExpr = E->getResultExpr(); 4862 LValueOrRValue result; 4863 4864 for (PseudoObjectExpr::const_semantics_iterator 4865 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4866 const Expr *semantic = *i; 4867 4868 // If this semantic expression is an opaque value, bind it 4869 // to the result of its source expression. 4870 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4871 // Skip unique OVEs. 4872 if (ov->isUnique()) { 4873 assert(ov != resultExpr && 4874 "A unique OVE cannot be used as the result expression"); 4875 continue; 4876 } 4877 4878 // If this is the result expression, we may need to evaluate 4879 // directly into the slot. 4880 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4881 OVMA opaqueData; 4882 if (ov == resultExpr && ov->isRValue() && !forLValue && 4883 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4884 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4885 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4886 AlignmentSource::Decl); 4887 opaqueData = OVMA::bind(CGF, ov, LV); 4888 result.RV = slot.asRValue(); 4889 4890 // Otherwise, emit as normal. 4891 } else { 4892 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4893 4894 // If this is the result, also evaluate the result now. 4895 if (ov == resultExpr) { 4896 if (forLValue) 4897 result.LV = CGF.EmitLValue(ov); 4898 else 4899 result.RV = CGF.EmitAnyExpr(ov, slot); 4900 } 4901 } 4902 4903 opaques.push_back(opaqueData); 4904 4905 // Otherwise, if the expression is the result, evaluate it 4906 // and remember the result. 4907 } else if (semantic == resultExpr) { 4908 if (forLValue) 4909 result.LV = CGF.EmitLValue(semantic); 4910 else 4911 result.RV = CGF.EmitAnyExpr(semantic, slot); 4912 4913 // Otherwise, evaluate the expression in an ignored context. 4914 } else { 4915 CGF.EmitIgnoredExpr(semantic); 4916 } 4917 } 4918 4919 // Unbind all the opaques now. 4920 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4921 opaques[i].unbind(CGF); 4922 4923 return result; 4924 } 4925 4926 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4927 AggValueSlot slot) { 4928 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4929 } 4930 4931 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4932 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4933 } 4934