1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   auto *Alloca = Var.getPointer();
129   assert(isa<llvm::AllocaInst>(Alloca) ||
130          (isa<llvm::AddrSpaceCastInst>(Alloca) &&
131           isa<llvm::AllocaInst>(
132               cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));
133 
134   auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
135                                     Var.getAlignment().getAsAlign());
136   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
137   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
138 }
139 
140 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
141   CharUnits Align = getContext().getTypeAlignInChars(Ty);
142   return CreateTempAlloca(ConvertType(Ty), Align, Name);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
146                                        Address *Alloca) {
147   // FIXME: Should we prefer the preferred type alignment here?
148   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
152                                        const Twine &Name, Address *Alloca) {
153   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
154                                     /*ArraySize=*/nullptr, Alloca);
155 
156   if (Ty->isConstantMatrixType()) {
157     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
158     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
159                                                 ArrayTy->getNumElements());
160 
161     Result = Address(
162         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
163         Result.getAlignment());
164   }
165   return Result;
166 }
167 
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
169                                                   const Twine &Name) {
170   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
171 }
172 
173 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
174                                                   const Twine &Name) {
175   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
176                                   Name);
177 }
178 
179 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
180 /// expression and compare the result against zero, returning an Int1Ty value.
181 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
182   PGO.setCurrentStmt(E);
183   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
184     llvm::Value *MemPtr = EmitScalarExpr(E);
185     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
186   }
187 
188   QualType BoolTy = getContext().BoolTy;
189   SourceLocation Loc = E->getExprLoc();
190   if (!E->getType()->isAnyComplexType())
191     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
192 
193   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
194                                        Loc);
195 }
196 
197 /// EmitIgnoredExpr - Emit code to compute the specified expression,
198 /// ignoring the result.
199 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
200   if (E->isRValue())
201     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
202 
203   // Just emit it as an l-value and drop the result.
204   EmitLValue(E);
205 }
206 
207 /// EmitAnyExpr - Emit code to compute the specified expression which
208 /// can have any type.  The result is returned as an RValue struct.
209 /// If this is an aggregate expression, AggSlot indicates where the
210 /// result should be returned.
211 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
212                                     AggValueSlot aggSlot,
213                                     bool ignoreResult) {
214   switch (getEvaluationKind(E->getType())) {
215   case TEK_Scalar:
216     return RValue::get(EmitScalarExpr(E, ignoreResult));
217   case TEK_Complex:
218     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
219   case TEK_Aggregate:
220     if (!ignoreResult && aggSlot.isIgnored())
221       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
222     EmitAggExpr(E, aggSlot);
223     return aggSlot.asRValue();
224   }
225   llvm_unreachable("bad evaluation kind");
226 }
227 
228 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
229 /// always be accessible even if no aggregate location is provided.
230 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
231   AggValueSlot AggSlot = AggValueSlot::ignored();
232 
233   if (hasAggregateEvaluationKind(E->getType()))
234     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
235   return EmitAnyExpr(E, AggSlot);
236 }
237 
238 /// EmitAnyExprToMem - Evaluate an expression into a given memory
239 /// location.
240 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
241                                        Address Location,
242                                        Qualifiers Quals,
243                                        bool IsInit) {
244   // FIXME: This function should take an LValue as an argument.
245   switch (getEvaluationKind(E->getType())) {
246   case TEK_Complex:
247     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
248                               /*isInit*/ false);
249     return;
250 
251   case TEK_Aggregate: {
252     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
253                                          AggValueSlot::IsDestructed_t(IsInit),
254                                          AggValueSlot::DoesNotNeedGCBarriers,
255                                          AggValueSlot::IsAliased_t(!IsInit),
256                                          AggValueSlot::MayOverlap));
257     return;
258   }
259 
260   case TEK_Scalar: {
261     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
262     LValue LV = MakeAddrLValue(Location, E->getType());
263     EmitStoreThroughLValue(RV, LV);
264     return;
265   }
266   }
267   llvm_unreachable("bad evaluation kind");
268 }
269 
270 static void
271 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
272                      const Expr *E, Address ReferenceTemporary) {
273   // Objective-C++ ARC:
274   //   If we are binding a reference to a temporary that has ownership, we
275   //   need to perform retain/release operations on the temporary.
276   //
277   // FIXME: This should be looking at E, not M.
278   if (auto Lifetime = M->getType().getObjCLifetime()) {
279     switch (Lifetime) {
280     case Qualifiers::OCL_None:
281     case Qualifiers::OCL_ExplicitNone:
282       // Carry on to normal cleanup handling.
283       break;
284 
285     case Qualifiers::OCL_Autoreleasing:
286       // Nothing to do; cleaned up by an autorelease pool.
287       return;
288 
289     case Qualifiers::OCL_Strong:
290     case Qualifiers::OCL_Weak:
291       switch (StorageDuration Duration = M->getStorageDuration()) {
292       case SD_Static:
293         // Note: we intentionally do not register a cleanup to release
294         // the object on program termination.
295         return;
296 
297       case SD_Thread:
298         // FIXME: We should probably register a cleanup in this case.
299         return;
300 
301       case SD_Automatic:
302       case SD_FullExpression:
303         CodeGenFunction::Destroyer *Destroy;
304         CleanupKind CleanupKind;
305         if (Lifetime == Qualifiers::OCL_Strong) {
306           const ValueDecl *VD = M->getExtendingDecl();
307           bool Precise =
308               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
309           CleanupKind = CGF.getARCCleanupKind();
310           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
311                             : &CodeGenFunction::destroyARCStrongImprecise;
312         } else {
313           // __weak objects always get EH cleanups; otherwise, exceptions
314           // could cause really nasty crashes instead of mere leaks.
315           CleanupKind = NormalAndEHCleanup;
316           Destroy = &CodeGenFunction::destroyARCWeak;
317         }
318         if (Duration == SD_FullExpression)
319           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
320                           M->getType(), *Destroy,
321                           CleanupKind & EHCleanup);
322         else
323           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
324                                           M->getType(),
325                                           *Destroy, CleanupKind & EHCleanup);
326         return;
327 
328       case SD_Dynamic:
329         llvm_unreachable("temporary cannot have dynamic storage duration");
330       }
331       llvm_unreachable("unknown storage duration");
332     }
333   }
334 
335   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
336   if (const RecordType *RT =
337           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
338     // Get the destructor for the reference temporary.
339     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
340     if (!ClassDecl->hasTrivialDestructor())
341       ReferenceTemporaryDtor = ClassDecl->getDestructor();
342   }
343 
344   if (!ReferenceTemporaryDtor)
345     return;
346 
347   // Call the destructor for the temporary.
348   switch (M->getStorageDuration()) {
349   case SD_Static:
350   case SD_Thread: {
351     llvm::FunctionCallee CleanupFn;
352     llvm::Constant *CleanupArg;
353     if (E->getType()->isArrayType()) {
354       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
355           ReferenceTemporary, E->getType(),
356           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
357           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
358       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
359     } else {
360       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
361           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
362       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
363     }
364     CGF.CGM.getCXXABI().registerGlobalDtor(
365         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
366     break;
367   }
368 
369   case SD_FullExpression:
370     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
371                     CodeGenFunction::destroyCXXObject,
372                     CGF.getLangOpts().Exceptions);
373     break;
374 
375   case SD_Automatic:
376     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
377                                     ReferenceTemporary, E->getType(),
378                                     CodeGenFunction::destroyCXXObject,
379                                     CGF.getLangOpts().Exceptions);
380     break;
381 
382   case SD_Dynamic:
383     llvm_unreachable("temporary cannot have dynamic storage duration");
384   }
385 }
386 
387 static Address createReferenceTemporary(CodeGenFunction &CGF,
388                                         const MaterializeTemporaryExpr *M,
389                                         const Expr *Inner,
390                                         Address *Alloca = nullptr) {
391   auto &TCG = CGF.getTargetHooks();
392   switch (M->getStorageDuration()) {
393   case SD_FullExpression:
394   case SD_Automatic: {
395     // If we have a constant temporary array or record try to promote it into a
396     // constant global under the same rules a normal constant would've been
397     // promoted. This is easier on the optimizer and generally emits fewer
398     // instructions.
399     QualType Ty = Inner->getType();
400     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
401         (Ty->isArrayType() || Ty->isRecordType()) &&
402         CGF.CGM.isTypeConstant(Ty, true))
403       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
404         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
405           auto AS = AddrSpace.getValue();
406           auto *GV = new llvm::GlobalVariable(
407               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
408               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
409               llvm::GlobalValue::NotThreadLocal,
410               CGF.getContext().getTargetAddressSpace(AS));
411           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
412           GV->setAlignment(alignment.getAsAlign());
413           llvm::Constant *C = GV;
414           if (AS != LangAS::Default)
415             C = TCG.performAddrSpaceCast(
416                 CGF.CGM, GV, AS, LangAS::Default,
417                 GV->getValueType()->getPointerTo(
418                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
419           // FIXME: Should we put the new global into a COMDAT?
420           return Address(C, alignment);
421         }
422       }
423     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
424   }
425   case SD_Thread:
426   case SD_Static:
427     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
428 
429   case SD_Dynamic:
430     llvm_unreachable("temporary can't have dynamic storage duration");
431   }
432   llvm_unreachable("unknown storage duration");
433 }
434 
435 /// Helper method to check if the underlying ABI is AAPCS
436 static bool isAAPCS(const TargetInfo &TargetInfo) {
437   return TargetInfo.getABI().startswith("aapcs");
438 }
439 
440 LValue CodeGenFunction::
441 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
442   const Expr *E = M->getSubExpr();
443 
444   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
445           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
446          "Reference should never be pseudo-strong!");
447 
448   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
449   // as that will cause the lifetime adjustment to be lost for ARC
450   auto ownership = M->getType().getObjCLifetime();
451   if (ownership != Qualifiers::OCL_None &&
452       ownership != Qualifiers::OCL_ExplicitNone) {
453     Address Object = createReferenceTemporary(*this, M, E);
454     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
455       Object = Address(llvm::ConstantExpr::getBitCast(Var,
456                            ConvertTypeForMem(E->getType())
457                              ->getPointerTo(Object.getAddressSpace())),
458                        Object.getAlignment());
459 
460       // createReferenceTemporary will promote the temporary to a global with a
461       // constant initializer if it can.  It can only do this to a value of
462       // ARC-manageable type if the value is global and therefore "immune" to
463       // ref-counting operations.  Therefore we have no need to emit either a
464       // dynamic initialization or a cleanup and we can just return the address
465       // of the temporary.
466       if (Var->hasInitializer())
467         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
468 
469       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
470     }
471     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
472                                        AlignmentSource::Decl);
473 
474     switch (getEvaluationKind(E->getType())) {
475     default: llvm_unreachable("expected scalar or aggregate expression");
476     case TEK_Scalar:
477       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
478       break;
479     case TEK_Aggregate: {
480       EmitAggExpr(E, AggValueSlot::forAddr(Object,
481                                            E->getType().getQualifiers(),
482                                            AggValueSlot::IsDestructed,
483                                            AggValueSlot::DoesNotNeedGCBarriers,
484                                            AggValueSlot::IsNotAliased,
485                                            AggValueSlot::DoesNotOverlap));
486       break;
487     }
488     }
489 
490     pushTemporaryCleanup(*this, M, E, Object);
491     return RefTempDst;
492   }
493 
494   SmallVector<const Expr *, 2> CommaLHSs;
495   SmallVector<SubobjectAdjustment, 2> Adjustments;
496   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
497 
498   for (const auto &Ignored : CommaLHSs)
499     EmitIgnoredExpr(Ignored);
500 
501   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
502     if (opaque->getType()->isRecordType()) {
503       assert(Adjustments.empty());
504       return EmitOpaqueValueLValue(opaque);
505     }
506   }
507 
508   // Create and initialize the reference temporary.
509   Address Alloca = Address::invalid();
510   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
511   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
512           Object.getPointer()->stripPointerCasts())) {
513     Object = Address(llvm::ConstantExpr::getBitCast(
514                          cast<llvm::Constant>(Object.getPointer()),
515                          ConvertTypeForMem(E->getType())->getPointerTo()),
516                      Object.getAlignment());
517     // If the temporary is a global and has a constant initializer or is a
518     // constant temporary that we promoted to a global, we may have already
519     // initialized it.
520     if (!Var->hasInitializer()) {
521       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
522       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
523     }
524   } else {
525     switch (M->getStorageDuration()) {
526     case SD_Automatic:
527       if (auto *Size = EmitLifetimeStart(
528               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
529               Alloca.getPointer())) {
530         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
531                                                   Alloca, Size);
532       }
533       break;
534 
535     case SD_FullExpression: {
536       if (!ShouldEmitLifetimeMarkers)
537         break;
538 
539       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
540       // marker. Instead, start the lifetime of a conditional temporary earlier
541       // so that it's unconditional. Don't do this with sanitizers which need
542       // more precise lifetime marks.
543       ConditionalEvaluation *OldConditional = nullptr;
544       CGBuilderTy::InsertPoint OldIP;
545       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
546           !SanOpts.has(SanitizerKind::HWAddress) &&
547           !SanOpts.has(SanitizerKind::Memory) &&
548           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
549         OldConditional = OutermostConditional;
550         OutermostConditional = nullptr;
551 
552         OldIP = Builder.saveIP();
553         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
554         Builder.restoreIP(CGBuilderTy::InsertPoint(
555             Block, llvm::BasicBlock::iterator(Block->back())));
556       }
557 
558       if (auto *Size = EmitLifetimeStart(
559               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
560               Alloca.getPointer())) {
561         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
562                                              Size);
563       }
564 
565       if (OldConditional) {
566         OutermostConditional = OldConditional;
567         Builder.restoreIP(OldIP);
568       }
569       break;
570     }
571 
572     default:
573       break;
574     }
575     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
576   }
577   pushTemporaryCleanup(*this, M, E, Object);
578 
579   // Perform derived-to-base casts and/or field accesses, to get from the
580   // temporary object we created (and, potentially, for which we extended
581   // the lifetime) to the subobject we're binding the reference to.
582   for (unsigned I = Adjustments.size(); I != 0; --I) {
583     SubobjectAdjustment &Adjustment = Adjustments[I-1];
584     switch (Adjustment.Kind) {
585     case SubobjectAdjustment::DerivedToBaseAdjustment:
586       Object =
587           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
588                                 Adjustment.DerivedToBase.BasePath->path_begin(),
589                                 Adjustment.DerivedToBase.BasePath->path_end(),
590                                 /*NullCheckValue=*/ false, E->getExprLoc());
591       break;
592 
593     case SubobjectAdjustment::FieldAdjustment: {
594       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
595       LV = EmitLValueForField(LV, Adjustment.Field);
596       assert(LV.isSimple() &&
597              "materialized temporary field is not a simple lvalue");
598       Object = LV.getAddress(*this);
599       break;
600     }
601 
602     case SubobjectAdjustment::MemberPointerAdjustment: {
603       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
604       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
605                                                Adjustment.Ptr.MPT);
606       break;
607     }
608     }
609   }
610 
611   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
612 }
613 
614 RValue
615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
616   // Emit the expression as an lvalue.
617   LValue LV = EmitLValue(E);
618   assert(LV.isSimple());
619   llvm::Value *Value = LV.getPointer(*this);
620 
621   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
622     // C++11 [dcl.ref]p5 (as amended by core issue 453):
623     //   If a glvalue to which a reference is directly bound designates neither
624     //   an existing object or function of an appropriate type nor a region of
625     //   storage of suitable size and alignment to contain an object of the
626     //   reference's type, the behavior is undefined.
627     QualType Ty = E->getType();
628     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
629   }
630 
631   return RValue::get(Value);
632 }
633 
634 
635 /// getAccessedFieldNo - Given an encoded value and a result number, return the
636 /// input field number being accessed.
637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
638                                              const llvm::Constant *Elts) {
639   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
640       ->getZExtValue();
641 }
642 
643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
645                                     llvm::Value *High) {
646   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
647   llvm::Value *K47 = Builder.getInt64(47);
648   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
649   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
650   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
651   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
652   return Builder.CreateMul(B1, KMul);
653 }
654 
655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
656   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
657          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
658 }
659 
660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
661   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
662   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
663          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
664           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
665           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
666 }
667 
668 bool CodeGenFunction::sanitizePerformTypeCheck() const {
669   return SanOpts.has(SanitizerKind::Null) |
670          SanOpts.has(SanitizerKind::Alignment) |
671          SanOpts.has(SanitizerKind::ObjectSize) |
672          SanOpts.has(SanitizerKind::Vptr);
673 }
674 
675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
676                                     llvm::Value *Ptr, QualType Ty,
677                                     CharUnits Alignment,
678                                     SanitizerSet SkippedChecks,
679                                     llvm::Value *ArraySize) {
680   if (!sanitizePerformTypeCheck())
681     return;
682 
683   // Don't check pointers outside the default address space. The null check
684   // isn't correct, the object-size check isn't supported by LLVM, and we can't
685   // communicate the addresses to the runtime handler for the vptr check.
686   if (Ptr->getType()->getPointerAddressSpace())
687     return;
688 
689   // Don't check pointers to volatile data. The behavior here is implementation-
690   // defined.
691   if (Ty.isVolatileQualified())
692     return;
693 
694   SanitizerScope SanScope(this);
695 
696   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
697   llvm::BasicBlock *Done = nullptr;
698 
699   // Quickly determine whether we have a pointer to an alloca. It's possible
700   // to skip null checks, and some alignment checks, for these pointers. This
701   // can reduce compile-time significantly.
702   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
703 
704   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
705   llvm::Value *IsNonNull = nullptr;
706   bool IsGuaranteedNonNull =
707       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
708   bool AllowNullPointers = isNullPointerAllowed(TCK);
709   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
710       !IsGuaranteedNonNull) {
711     // The glvalue must not be an empty glvalue.
712     IsNonNull = Builder.CreateIsNotNull(Ptr);
713 
714     // The IR builder can constant-fold the null check if the pointer points to
715     // a constant.
716     IsGuaranteedNonNull = IsNonNull == True;
717 
718     // Skip the null check if the pointer is known to be non-null.
719     if (!IsGuaranteedNonNull) {
720       if (AllowNullPointers) {
721         // When performing pointer casts, it's OK if the value is null.
722         // Skip the remaining checks in that case.
723         Done = createBasicBlock("null");
724         llvm::BasicBlock *Rest = createBasicBlock("not.null");
725         Builder.CreateCondBr(IsNonNull, Rest, Done);
726         EmitBlock(Rest);
727       } else {
728         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
729       }
730     }
731   }
732 
733   if (SanOpts.has(SanitizerKind::ObjectSize) &&
734       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
735       !Ty->isIncompleteType()) {
736     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
737     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
738     if (ArraySize)
739       Size = Builder.CreateMul(Size, ArraySize);
740 
741     // Degenerate case: new X[0] does not need an objectsize check.
742     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
743     if (!ConstantSize || !ConstantSize->isNullValue()) {
744       // The glvalue must refer to a large enough storage region.
745       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
746       //        to check this.
747       // FIXME: Get object address space
748       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
749       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
750       llvm::Value *Min = Builder.getFalse();
751       llvm::Value *NullIsUnknown = Builder.getFalse();
752       llvm::Value *Dynamic = Builder.getFalse();
753       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
754       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
755           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
756       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
757     }
758   }
759 
760   uint64_t AlignVal = 0;
761   llvm::Value *PtrAsInt = nullptr;
762 
763   if (SanOpts.has(SanitizerKind::Alignment) &&
764       !SkippedChecks.has(SanitizerKind::Alignment)) {
765     AlignVal = Alignment.getQuantity();
766     if (!Ty->isIncompleteType() && !AlignVal)
767       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
768                                              /*ForPointeeType=*/true)
769                      .getQuantity();
770 
771     // The glvalue must be suitably aligned.
772     if (AlignVal > 1 &&
773         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
774       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
775       llvm::Value *Align = Builder.CreateAnd(
776           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
777       llvm::Value *Aligned =
778           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
779       if (Aligned != True)
780         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
781     }
782   }
783 
784   if (Checks.size() > 0) {
785     // Make sure we're not losing information. Alignment needs to be a power of
786     // 2
787     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
788     llvm::Constant *StaticData[] = {
789         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
790         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
791         llvm::ConstantInt::get(Int8Ty, TCK)};
792     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
793               PtrAsInt ? PtrAsInt : Ptr);
794   }
795 
796   // If possible, check that the vptr indicates that there is a subobject of
797   // type Ty at offset zero within this object.
798   //
799   // C++11 [basic.life]p5,6:
800   //   [For storage which does not refer to an object within its lifetime]
801   //   The program has undefined behavior if:
802   //    -- the [pointer or glvalue] is used to access a non-static data member
803   //       or call a non-static member function
804   if (SanOpts.has(SanitizerKind::Vptr) &&
805       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
806     // Ensure that the pointer is non-null before loading it. If there is no
807     // compile-time guarantee, reuse the run-time null check or emit a new one.
808     if (!IsGuaranteedNonNull) {
809       if (!IsNonNull)
810         IsNonNull = Builder.CreateIsNotNull(Ptr);
811       if (!Done)
812         Done = createBasicBlock("vptr.null");
813       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
814       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
815       EmitBlock(VptrNotNull);
816     }
817 
818     // Compute a hash of the mangled name of the type.
819     //
820     // FIXME: This is not guaranteed to be deterministic! Move to a
821     //        fingerprinting mechanism once LLVM provides one. For the time
822     //        being the implementation happens to be deterministic.
823     SmallString<64> MangledName;
824     llvm::raw_svector_ostream Out(MangledName);
825     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
826                                                      Out);
827 
828     // Blacklist based on the mangled type.
829     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
830             SanitizerKind::Vptr, Out.str())) {
831       llvm::hash_code TypeHash = hash_value(Out.str());
832 
833       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
834       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
835       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
836       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
837       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
838       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
839 
840       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
841       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
842 
843       // Look the hash up in our cache.
844       const int CacheSize = 128;
845       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
846       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
847                                                      "__ubsan_vptr_type_cache");
848       llvm::Value *Slot = Builder.CreateAnd(Hash,
849                                             llvm::ConstantInt::get(IntPtrTy,
850                                                                    CacheSize-1));
851       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
852       llvm::Value *CacheVal =
853         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
854                                   getPointerAlign());
855 
856       // If the hash isn't in the cache, call a runtime handler to perform the
857       // hard work of checking whether the vptr is for an object of the right
858       // type. This will either fill in the cache and return, or produce a
859       // diagnostic.
860       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
861       llvm::Constant *StaticData[] = {
862         EmitCheckSourceLocation(Loc),
863         EmitCheckTypeDescriptor(Ty),
864         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
865         llvm::ConstantInt::get(Int8Ty, TCK)
866       };
867       llvm::Value *DynamicData[] = { Ptr, Hash };
868       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
869                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
870                 DynamicData);
871     }
872   }
873 
874   if (Done) {
875     Builder.CreateBr(Done);
876     EmitBlock(Done);
877   }
878 }
879 
880 /// Determine whether this expression refers to a flexible array member in a
881 /// struct. We disable array bounds checks for such members.
882 static bool isFlexibleArrayMemberExpr(const Expr *E) {
883   // For compatibility with existing code, we treat arrays of length 0 or
884   // 1 as flexible array members.
885   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
886   // the two mechanisms.
887   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
888   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
889     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
890     // was produced by macro expansion.
891     if (CAT->getSize().ugt(1))
892       return false;
893   } else if (!isa<IncompleteArrayType>(AT))
894     return false;
895 
896   E = E->IgnoreParens();
897 
898   // A flexible array member must be the last member in the class.
899   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
900     // FIXME: If the base type of the member expr is not FD->getParent(),
901     // this should not be treated as a flexible array member access.
902     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
903       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
904       // member, only a T[0] or T[] member gets that treatment.
905       if (FD->getParent()->isUnion())
906         return true;
907       RecordDecl::field_iterator FI(
908           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
909       return ++FI == FD->getParent()->field_end();
910     }
911   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
912     return IRE->getDecl()->getNextIvar() == nullptr;
913   }
914 
915   return false;
916 }
917 
918 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
919                                                    QualType EltTy) {
920   ASTContext &C = getContext();
921   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
922   if (!EltSize)
923     return nullptr;
924 
925   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
926   if (!ArrayDeclRef)
927     return nullptr;
928 
929   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
930   if (!ParamDecl)
931     return nullptr;
932 
933   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
934   if (!POSAttr)
935     return nullptr;
936 
937   // Don't load the size if it's a lower bound.
938   int POSType = POSAttr->getType();
939   if (POSType != 0 && POSType != 1)
940     return nullptr;
941 
942   // Find the implicit size parameter.
943   auto PassedSizeIt = SizeArguments.find(ParamDecl);
944   if (PassedSizeIt == SizeArguments.end())
945     return nullptr;
946 
947   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
948   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
949   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
950   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
951                                               C.getSizeType(), E->getExprLoc());
952   llvm::Value *SizeOfElement =
953       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
954   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
955 }
956 
957 /// If Base is known to point to the start of an array, return the length of
958 /// that array. Return 0 if the length cannot be determined.
959 static llvm::Value *getArrayIndexingBound(
960     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
961   // For the vector indexing extension, the bound is the number of elements.
962   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
963     IndexedType = Base->getType();
964     return CGF.Builder.getInt32(VT->getNumElements());
965   }
966 
967   Base = Base->IgnoreParens();
968 
969   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
970     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
971         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
972       IndexedType = CE->getSubExpr()->getType();
973       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
974       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
975         return CGF.Builder.getInt(CAT->getSize());
976       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
977         return CGF.getVLASize(VAT).NumElts;
978       // Ignore pass_object_size here. It's not applicable on decayed pointers.
979     }
980   }
981 
982   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
983   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
984     IndexedType = Base->getType();
985     return POS;
986   }
987 
988   return nullptr;
989 }
990 
991 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
992                                       llvm::Value *Index, QualType IndexType,
993                                       bool Accessed) {
994   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
995          "should not be called unless adding bounds checks");
996   SanitizerScope SanScope(this);
997 
998   QualType IndexedType;
999   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1000   if (!Bound)
1001     return;
1002 
1003   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1004   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1005   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1006 
1007   llvm::Constant *StaticData[] = {
1008     EmitCheckSourceLocation(E->getExprLoc()),
1009     EmitCheckTypeDescriptor(IndexedType),
1010     EmitCheckTypeDescriptor(IndexType)
1011   };
1012   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1013                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1014   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1015             SanitizerHandler::OutOfBounds, StaticData, Index);
1016 }
1017 
1018 
1019 CodeGenFunction::ComplexPairTy CodeGenFunction::
1020 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1021                          bool isInc, bool isPre) {
1022   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1023 
1024   llvm::Value *NextVal;
1025   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1026     uint64_t AmountVal = isInc ? 1 : -1;
1027     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1028 
1029     // Add the inc/dec to the real part.
1030     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1031   } else {
1032     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1033     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1034     if (!isInc)
1035       FVal.changeSign();
1036     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1037 
1038     // Add the inc/dec to the real part.
1039     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1040   }
1041 
1042   ComplexPairTy IncVal(NextVal, InVal.second);
1043 
1044   // Store the updated result through the lvalue.
1045   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1046   if (getLangOpts().OpenMP)
1047     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1048                                                               E->getSubExpr());
1049 
1050   // If this is a postinc, return the value read from memory, otherwise use the
1051   // updated value.
1052   return isPre ? IncVal : InVal;
1053 }
1054 
1055 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1056                                              CodeGenFunction *CGF) {
1057   // Bind VLAs in the cast type.
1058   if (CGF && E->getType()->isVariablyModifiedType())
1059     CGF->EmitVariablyModifiedType(E->getType());
1060 
1061   if (CGDebugInfo *DI = getModuleDebugInfo())
1062     DI->EmitExplicitCastType(E->getType());
1063 }
1064 
1065 //===----------------------------------------------------------------------===//
1066 //                         LValue Expression Emission
1067 //===----------------------------------------------------------------------===//
1068 
1069 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1070 /// derive a more accurate bound on the alignment of the pointer.
1071 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1072                                                   LValueBaseInfo *BaseInfo,
1073                                                   TBAAAccessInfo *TBAAInfo) {
1074   // We allow this with ObjC object pointers because of fragile ABIs.
1075   assert(E->getType()->isPointerType() ||
1076          E->getType()->isObjCObjectPointerType());
1077   E = E->IgnoreParens();
1078 
1079   // Casts:
1080   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1081     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1082       CGM.EmitExplicitCastExprType(ECE, this);
1083 
1084     switch (CE->getCastKind()) {
1085     // Non-converting casts (but not C's implicit conversion from void*).
1086     case CK_BitCast:
1087     case CK_NoOp:
1088     case CK_AddressSpaceConversion:
1089       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1090         if (PtrTy->getPointeeType()->isVoidType())
1091           break;
1092 
1093         LValueBaseInfo InnerBaseInfo;
1094         TBAAAccessInfo InnerTBAAInfo;
1095         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1096                                                 &InnerBaseInfo,
1097                                                 &InnerTBAAInfo);
1098         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1099         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1100 
1101         if (isa<ExplicitCastExpr>(CE)) {
1102           LValueBaseInfo TargetTypeBaseInfo;
1103           TBAAAccessInfo TargetTypeTBAAInfo;
1104           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1105               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1106           if (TBAAInfo)
1107             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1108                                                  TargetTypeTBAAInfo);
1109           // If the source l-value is opaque, honor the alignment of the
1110           // casted-to type.
1111           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1112             if (BaseInfo)
1113               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1114             Addr = Address(Addr.getPointer(), Align);
1115           }
1116         }
1117 
1118         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1119             CE->getCastKind() == CK_BitCast) {
1120           if (auto PT = E->getType()->getAs<PointerType>())
1121             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1122                                       /*MayBeNull=*/true,
1123                                       CodeGenFunction::CFITCK_UnrelatedCast,
1124                                       CE->getBeginLoc());
1125         }
1126         return CE->getCastKind() != CK_AddressSpaceConversion
1127                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1128                    : Builder.CreateAddrSpaceCast(Addr,
1129                                                  ConvertType(E->getType()));
1130       }
1131       break;
1132 
1133     // Array-to-pointer decay.
1134     case CK_ArrayToPointerDecay:
1135       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1136 
1137     // Derived-to-base conversions.
1138     case CK_UncheckedDerivedToBase:
1139     case CK_DerivedToBase: {
1140       // TODO: Support accesses to members of base classes in TBAA. For now, we
1141       // conservatively pretend that the complete object is of the base class
1142       // type.
1143       if (TBAAInfo)
1144         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1145       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1146       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1147       return GetAddressOfBaseClass(Addr, Derived,
1148                                    CE->path_begin(), CE->path_end(),
1149                                    ShouldNullCheckClassCastValue(CE),
1150                                    CE->getExprLoc());
1151     }
1152 
1153     // TODO: Is there any reason to treat base-to-derived conversions
1154     // specially?
1155     default:
1156       break;
1157     }
1158   }
1159 
1160   // Unary &.
1161   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1162     if (UO->getOpcode() == UO_AddrOf) {
1163       LValue LV = EmitLValue(UO->getSubExpr());
1164       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1165       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1166       return LV.getAddress(*this);
1167     }
1168   }
1169 
1170   // TODO: conditional operators, comma.
1171 
1172   // Otherwise, use the alignment of the type.
1173   CharUnits Align =
1174       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1175   return Address(EmitScalarExpr(E), Align);
1176 }
1177 
1178 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1179   llvm::Value *V = RV.getScalarVal();
1180   if (auto MPT = T->getAs<MemberPointerType>())
1181     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1182   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1183 }
1184 
1185 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1186   if (Ty->isVoidType())
1187     return RValue::get(nullptr);
1188 
1189   switch (getEvaluationKind(Ty)) {
1190   case TEK_Complex: {
1191     llvm::Type *EltTy =
1192       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1193     llvm::Value *U = llvm::UndefValue::get(EltTy);
1194     return RValue::getComplex(std::make_pair(U, U));
1195   }
1196 
1197   // If this is a use of an undefined aggregate type, the aggregate must have an
1198   // identifiable address.  Just because the contents of the value are undefined
1199   // doesn't mean that the address can't be taken and compared.
1200   case TEK_Aggregate: {
1201     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1202     return RValue::getAggregate(DestPtr);
1203   }
1204 
1205   case TEK_Scalar:
1206     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1207   }
1208   llvm_unreachable("bad evaluation kind");
1209 }
1210 
1211 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1212                                               const char *Name) {
1213   ErrorUnsupported(E, Name);
1214   return GetUndefRValue(E->getType());
1215 }
1216 
1217 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1218                                               const char *Name) {
1219   ErrorUnsupported(E, Name);
1220   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1221   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1222                         E->getType());
1223 }
1224 
1225 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1226   const Expr *Base = Obj;
1227   while (!isa<CXXThisExpr>(Base)) {
1228     // The result of a dynamic_cast can be null.
1229     if (isa<CXXDynamicCastExpr>(Base))
1230       return false;
1231 
1232     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1233       Base = CE->getSubExpr();
1234     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1235       Base = PE->getSubExpr();
1236     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1237       if (UO->getOpcode() == UO_Extension)
1238         Base = UO->getSubExpr();
1239       else
1240         return false;
1241     } else {
1242       return false;
1243     }
1244   }
1245   return true;
1246 }
1247 
1248 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1249   LValue LV;
1250   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1251     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1252   else
1253     LV = EmitLValue(E);
1254   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1255     SanitizerSet SkippedChecks;
1256     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1257       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1258       if (IsBaseCXXThis)
1259         SkippedChecks.set(SanitizerKind::Alignment, true);
1260       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1261         SkippedChecks.set(SanitizerKind::Null, true);
1262     }
1263     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1264                   LV.getAlignment(), SkippedChecks);
1265   }
1266   return LV;
1267 }
1268 
1269 /// EmitLValue - Emit code to compute a designator that specifies the location
1270 /// of the expression.
1271 ///
1272 /// This can return one of two things: a simple address or a bitfield reference.
1273 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1274 /// an LLVM pointer type.
1275 ///
1276 /// If this returns a bitfield reference, nothing about the pointee type of the
1277 /// LLVM value is known: For example, it may not be a pointer to an integer.
1278 ///
1279 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1280 /// this method guarantees that the returned pointer type will point to an LLVM
1281 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1282 /// length type, this is not possible.
1283 ///
1284 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1285   ApplyDebugLocation DL(*this, E);
1286   switch (E->getStmtClass()) {
1287   default: return EmitUnsupportedLValue(E, "l-value expression");
1288 
1289   case Expr::ObjCPropertyRefExprClass:
1290     llvm_unreachable("cannot emit a property reference directly");
1291 
1292   case Expr::ObjCSelectorExprClass:
1293     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1294   case Expr::ObjCIsaExprClass:
1295     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1296   case Expr::BinaryOperatorClass:
1297     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1298   case Expr::CompoundAssignOperatorClass: {
1299     QualType Ty = E->getType();
1300     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1301       Ty = AT->getValueType();
1302     if (!Ty->isAnyComplexType())
1303       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1304     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1305   }
1306   case Expr::CallExprClass:
1307   case Expr::CXXMemberCallExprClass:
1308   case Expr::CXXOperatorCallExprClass:
1309   case Expr::UserDefinedLiteralClass:
1310     return EmitCallExprLValue(cast<CallExpr>(E));
1311   case Expr::CXXRewrittenBinaryOperatorClass:
1312     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1313   case Expr::VAArgExprClass:
1314     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1315   case Expr::DeclRefExprClass:
1316     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1317   case Expr::ConstantExprClass: {
1318     const ConstantExpr *CE = cast<ConstantExpr>(E);
1319     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1320       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1321                              ->getCallReturnType(getContext());
1322       return MakeNaturalAlignAddrLValue(Result, RetType);
1323     }
1324     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1325   }
1326   case Expr::ParenExprClass:
1327     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1328   case Expr::GenericSelectionExprClass:
1329     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1330   case Expr::PredefinedExprClass:
1331     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1332   case Expr::StringLiteralClass:
1333     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1334   case Expr::ObjCEncodeExprClass:
1335     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1336   case Expr::PseudoObjectExprClass:
1337     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1338   case Expr::InitListExprClass:
1339     return EmitInitListLValue(cast<InitListExpr>(E));
1340   case Expr::CXXTemporaryObjectExprClass:
1341   case Expr::CXXConstructExprClass:
1342     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1343   case Expr::CXXBindTemporaryExprClass:
1344     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1345   case Expr::CXXUuidofExprClass:
1346     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1347   case Expr::LambdaExprClass:
1348     return EmitAggExprToLValue(E);
1349 
1350   case Expr::ExprWithCleanupsClass: {
1351     const auto *cleanups = cast<ExprWithCleanups>(E);
1352     RunCleanupsScope Scope(*this);
1353     LValue LV = EmitLValue(cleanups->getSubExpr());
1354     if (LV.isSimple()) {
1355       // Defend against branches out of gnu statement expressions surrounded by
1356       // cleanups.
1357       llvm::Value *V = LV.getPointer(*this);
1358       Scope.ForceCleanup({&V});
1359       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1360                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1361     }
1362     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1363     // bitfield lvalue or some other non-simple lvalue?
1364     return LV;
1365   }
1366 
1367   case Expr::CXXDefaultArgExprClass: {
1368     auto *DAE = cast<CXXDefaultArgExpr>(E);
1369     CXXDefaultArgExprScope Scope(*this, DAE);
1370     return EmitLValue(DAE->getExpr());
1371   }
1372   case Expr::CXXDefaultInitExprClass: {
1373     auto *DIE = cast<CXXDefaultInitExpr>(E);
1374     CXXDefaultInitExprScope Scope(*this, DIE);
1375     return EmitLValue(DIE->getExpr());
1376   }
1377   case Expr::CXXTypeidExprClass:
1378     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1379 
1380   case Expr::ObjCMessageExprClass:
1381     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1382   case Expr::ObjCIvarRefExprClass:
1383     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1384   case Expr::StmtExprClass:
1385     return EmitStmtExprLValue(cast<StmtExpr>(E));
1386   case Expr::UnaryOperatorClass:
1387     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1388   case Expr::ArraySubscriptExprClass:
1389     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1390   case Expr::MatrixSubscriptExprClass:
1391     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1392   case Expr::OMPArraySectionExprClass:
1393     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1394   case Expr::ExtVectorElementExprClass:
1395     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1396   case Expr::MemberExprClass:
1397     return EmitMemberExpr(cast<MemberExpr>(E));
1398   case Expr::CompoundLiteralExprClass:
1399     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1400   case Expr::ConditionalOperatorClass:
1401     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1402   case Expr::BinaryConditionalOperatorClass:
1403     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1404   case Expr::ChooseExprClass:
1405     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1406   case Expr::OpaqueValueExprClass:
1407     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1408   case Expr::SubstNonTypeTemplateParmExprClass:
1409     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1410   case Expr::ImplicitCastExprClass:
1411   case Expr::CStyleCastExprClass:
1412   case Expr::CXXFunctionalCastExprClass:
1413   case Expr::CXXStaticCastExprClass:
1414   case Expr::CXXDynamicCastExprClass:
1415   case Expr::CXXReinterpretCastExprClass:
1416   case Expr::CXXConstCastExprClass:
1417   case Expr::CXXAddrspaceCastExprClass:
1418   case Expr::ObjCBridgedCastExprClass:
1419     return EmitCastLValue(cast<CastExpr>(E));
1420 
1421   case Expr::MaterializeTemporaryExprClass:
1422     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1423 
1424   case Expr::CoawaitExprClass:
1425     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1426   case Expr::CoyieldExprClass:
1427     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1428   }
1429 }
1430 
1431 /// Given an object of the given canonical type, can we safely copy a
1432 /// value out of it based on its initializer?
1433 static bool isConstantEmittableObjectType(QualType type) {
1434   assert(type.isCanonical());
1435   assert(!type->isReferenceType());
1436 
1437   // Must be const-qualified but non-volatile.
1438   Qualifiers qs = type.getLocalQualifiers();
1439   if (!qs.hasConst() || qs.hasVolatile()) return false;
1440 
1441   // Otherwise, all object types satisfy this except C++ classes with
1442   // mutable subobjects or non-trivial copy/destroy behavior.
1443   if (const auto *RT = dyn_cast<RecordType>(type))
1444     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1445       if (RD->hasMutableFields() || !RD->isTrivial())
1446         return false;
1447 
1448   return true;
1449 }
1450 
1451 /// Can we constant-emit a load of a reference to a variable of the
1452 /// given type?  This is different from predicates like
1453 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1454 /// in situations that don't necessarily satisfy the language's rules
1455 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1456 /// to do this with const float variables even if those variables
1457 /// aren't marked 'constexpr'.
1458 enum ConstantEmissionKind {
1459   CEK_None,
1460   CEK_AsReferenceOnly,
1461   CEK_AsValueOrReference,
1462   CEK_AsValueOnly
1463 };
1464 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1465   type = type.getCanonicalType();
1466   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1467     if (isConstantEmittableObjectType(ref->getPointeeType()))
1468       return CEK_AsValueOrReference;
1469     return CEK_AsReferenceOnly;
1470   }
1471   if (isConstantEmittableObjectType(type))
1472     return CEK_AsValueOnly;
1473   return CEK_None;
1474 }
1475 
1476 /// Try to emit a reference to the given value without producing it as
1477 /// an l-value.  This is just an optimization, but it avoids us needing
1478 /// to emit global copies of variables if they're named without triggering
1479 /// a formal use in a context where we can't emit a direct reference to them,
1480 /// for instance if a block or lambda or a member of a local class uses a
1481 /// const int variable or constexpr variable from an enclosing function.
1482 CodeGenFunction::ConstantEmission
1483 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1484   ValueDecl *value = refExpr->getDecl();
1485 
1486   // The value needs to be an enum constant or a constant variable.
1487   ConstantEmissionKind CEK;
1488   if (isa<ParmVarDecl>(value)) {
1489     CEK = CEK_None;
1490   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1491     CEK = checkVarTypeForConstantEmission(var->getType());
1492   } else if (isa<EnumConstantDecl>(value)) {
1493     CEK = CEK_AsValueOnly;
1494   } else {
1495     CEK = CEK_None;
1496   }
1497   if (CEK == CEK_None) return ConstantEmission();
1498 
1499   Expr::EvalResult result;
1500   bool resultIsReference;
1501   QualType resultType;
1502 
1503   // It's best to evaluate all the way as an r-value if that's permitted.
1504   if (CEK != CEK_AsReferenceOnly &&
1505       refExpr->EvaluateAsRValue(result, getContext())) {
1506     resultIsReference = false;
1507     resultType = refExpr->getType();
1508 
1509   // Otherwise, try to evaluate as an l-value.
1510   } else if (CEK != CEK_AsValueOnly &&
1511              refExpr->EvaluateAsLValue(result, getContext())) {
1512     resultIsReference = true;
1513     resultType = value->getType();
1514 
1515   // Failure.
1516   } else {
1517     return ConstantEmission();
1518   }
1519 
1520   // In any case, if the initializer has side-effects, abandon ship.
1521   if (result.HasSideEffects)
1522     return ConstantEmission();
1523 
1524   // Emit as a constant.
1525   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1526                                                result.Val, resultType);
1527 
1528   // Make sure we emit a debug reference to the global variable.
1529   // This should probably fire even for
1530   if (isa<VarDecl>(value)) {
1531     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1532       EmitDeclRefExprDbgValue(refExpr, result.Val);
1533   } else {
1534     assert(isa<EnumConstantDecl>(value));
1535     EmitDeclRefExprDbgValue(refExpr, result.Val);
1536   }
1537 
1538   // If we emitted a reference constant, we need to dereference that.
1539   if (resultIsReference)
1540     return ConstantEmission::forReference(C);
1541 
1542   return ConstantEmission::forValue(C);
1543 }
1544 
1545 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1546                                                         const MemberExpr *ME) {
1547   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1548     // Try to emit static variable member expressions as DREs.
1549     return DeclRefExpr::Create(
1550         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1551         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1552         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1553   }
1554   return nullptr;
1555 }
1556 
1557 CodeGenFunction::ConstantEmission
1558 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1559   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1560     return tryEmitAsConstant(DRE);
1561   return ConstantEmission();
1562 }
1563 
1564 llvm::Value *CodeGenFunction::emitScalarConstant(
1565     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1566   assert(Constant && "not a constant");
1567   if (Constant.isReference())
1568     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1569                             E->getExprLoc())
1570         .getScalarVal();
1571   return Constant.getValue();
1572 }
1573 
1574 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1575                                                SourceLocation Loc) {
1576   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1577                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1578                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1579 }
1580 
1581 static bool hasBooleanRepresentation(QualType Ty) {
1582   if (Ty->isBooleanType())
1583     return true;
1584 
1585   if (const EnumType *ET = Ty->getAs<EnumType>())
1586     return ET->getDecl()->getIntegerType()->isBooleanType();
1587 
1588   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1589     return hasBooleanRepresentation(AT->getValueType());
1590 
1591   return false;
1592 }
1593 
1594 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1595                             llvm::APInt &Min, llvm::APInt &End,
1596                             bool StrictEnums, bool IsBool) {
1597   const EnumType *ET = Ty->getAs<EnumType>();
1598   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1599                                 ET && !ET->getDecl()->isFixed();
1600   if (!IsBool && !IsRegularCPlusPlusEnum)
1601     return false;
1602 
1603   if (IsBool) {
1604     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1605     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1606   } else {
1607     const EnumDecl *ED = ET->getDecl();
1608     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1609     unsigned Bitwidth = LTy->getScalarSizeInBits();
1610     unsigned NumNegativeBits = ED->getNumNegativeBits();
1611     unsigned NumPositiveBits = ED->getNumPositiveBits();
1612 
1613     if (NumNegativeBits) {
1614       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1615       assert(NumBits <= Bitwidth);
1616       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1617       Min = -End;
1618     } else {
1619       assert(NumPositiveBits <= Bitwidth);
1620       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1621       Min = llvm::APInt(Bitwidth, 0);
1622     }
1623   }
1624   return true;
1625 }
1626 
1627 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1628   llvm::APInt Min, End;
1629   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1630                        hasBooleanRepresentation(Ty)))
1631     return nullptr;
1632 
1633   llvm::MDBuilder MDHelper(getLLVMContext());
1634   return MDHelper.createRange(Min, End);
1635 }
1636 
1637 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1638                                            SourceLocation Loc) {
1639   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1640   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1641   if (!HasBoolCheck && !HasEnumCheck)
1642     return false;
1643 
1644   bool IsBool = hasBooleanRepresentation(Ty) ||
1645                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1646   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1647   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1648   if (!NeedsBoolCheck && !NeedsEnumCheck)
1649     return false;
1650 
1651   // Single-bit booleans don't need to be checked. Special-case this to avoid
1652   // a bit width mismatch when handling bitfield values. This is handled by
1653   // EmitFromMemory for the non-bitfield case.
1654   if (IsBool &&
1655       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1656     return false;
1657 
1658   llvm::APInt Min, End;
1659   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1660     return true;
1661 
1662   auto &Ctx = getLLVMContext();
1663   SanitizerScope SanScope(this);
1664   llvm::Value *Check;
1665   --End;
1666   if (!Min) {
1667     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1668   } else {
1669     llvm::Value *Upper =
1670         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1671     llvm::Value *Lower =
1672         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1673     Check = Builder.CreateAnd(Upper, Lower);
1674   }
1675   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1676                                   EmitCheckTypeDescriptor(Ty)};
1677   SanitizerMask Kind =
1678       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1679   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1680             StaticArgs, EmitCheckValue(Value));
1681   return true;
1682 }
1683 
1684 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1685                                                QualType Ty,
1686                                                SourceLocation Loc,
1687                                                LValueBaseInfo BaseInfo,
1688                                                TBAAAccessInfo TBAAInfo,
1689                                                bool isNontemporal) {
1690   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1691     // For better performance, handle vector loads differently.
1692     if (Ty->isVectorType()) {
1693       const llvm::Type *EltTy = Addr.getElementType();
1694 
1695       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1696 
1697       // Handle vectors of size 3 like size 4 for better performance.
1698       if (VTy->getNumElements() == 3) {
1699 
1700         // Bitcast to vec4 type.
1701         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1702         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1703         // Now load value.
1704         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1705 
1706         // Shuffle vector to get vec3.
1707         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1708                                         ArrayRef<int>{0, 1, 2}, "extractVec");
1709         return EmitFromMemory(V, Ty);
1710       }
1711     }
1712   }
1713 
1714   // Atomic operations have to be done on integral types.
1715   LValue AtomicLValue =
1716       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1717   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1718     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1719   }
1720 
1721   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1722   if (isNontemporal) {
1723     llvm::MDNode *Node = llvm::MDNode::get(
1724         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1725     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1726   }
1727 
1728   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1729 
1730   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1731     // In order to prevent the optimizer from throwing away the check, don't
1732     // attach range metadata to the load.
1733   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1734     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1735       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1736 
1737   return EmitFromMemory(Load, Ty);
1738 }
1739 
1740 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1741   // Bool has a different representation in memory than in registers.
1742   if (hasBooleanRepresentation(Ty)) {
1743     // This should really always be an i1, but sometimes it's already
1744     // an i8, and it's awkward to track those cases down.
1745     if (Value->getType()->isIntegerTy(1))
1746       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1747     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1748            "wrong value rep of bool");
1749   }
1750 
1751   return Value;
1752 }
1753 
1754 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1755   // Bool has a different representation in memory than in registers.
1756   if (hasBooleanRepresentation(Ty)) {
1757     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1758            "wrong value rep of bool");
1759     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1760   }
1761 
1762   return Value;
1763 }
1764 
1765 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1766 // MatrixType), if it points to a array (the memory type of MatrixType).
1767 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1768                                          bool IsVector = true) {
1769   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1770       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1771   if (ArrayTy && IsVector) {
1772     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1773                                                 ArrayTy->getNumElements());
1774 
1775     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1776   }
1777   auto *VectorTy = dyn_cast<llvm::VectorType>(
1778       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1779   if (VectorTy && !IsVector) {
1780     auto *ArrayTy = llvm::ArrayType::get(
1781         VectorTy->getElementType(),
1782         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1783 
1784     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1785   }
1786 
1787   return Addr;
1788 }
1789 
1790 // Emit a store of a matrix LValue. This may require casting the original
1791 // pointer to memory address (ArrayType) to a pointer to the value type
1792 // (VectorType).
1793 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1794                                     bool isInit, CodeGenFunction &CGF) {
1795   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1796                                            value->getType()->isVectorTy());
1797   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1798                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1799                         lvalue.isNontemporal());
1800 }
1801 
1802 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1803                                         bool Volatile, QualType Ty,
1804                                         LValueBaseInfo BaseInfo,
1805                                         TBAAAccessInfo TBAAInfo,
1806                                         bool isInit, bool isNontemporal) {
1807   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1808     // Handle vectors differently to get better performance.
1809     if (Ty->isVectorType()) {
1810       llvm::Type *SrcTy = Value->getType();
1811       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1812       // Handle vec3 special.
1813       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1814         // Our source is a vec3, do a shuffle vector to make it a vec4.
1815         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1816                                             ArrayRef<int>{0, 1, 2, -1},
1817                                             "extractVec");
1818         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1819       }
1820       if (Addr.getElementType() != SrcTy) {
1821         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1822       }
1823     }
1824   }
1825 
1826   Value = EmitToMemory(Value, Ty);
1827 
1828   LValue AtomicLValue =
1829       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1830   if (Ty->isAtomicType() ||
1831       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1832     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1833     return;
1834   }
1835 
1836   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1837   if (isNontemporal) {
1838     llvm::MDNode *Node =
1839         llvm::MDNode::get(Store->getContext(),
1840                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1841     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1842   }
1843 
1844   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1845 }
1846 
1847 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1848                                         bool isInit) {
1849   if (lvalue.getType()->isConstantMatrixType()) {
1850     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1851     return;
1852   }
1853 
1854   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1855                     lvalue.getType(), lvalue.getBaseInfo(),
1856                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1857 }
1858 
1859 // Emit a load of a LValue of matrix type. This may require casting the pointer
1860 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1861 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1862                                      CodeGenFunction &CGF) {
1863   assert(LV.getType()->isConstantMatrixType());
1864   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1865   LV.setAddress(Addr);
1866   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1867 }
1868 
1869 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1870 /// method emits the address of the lvalue, then loads the result as an rvalue,
1871 /// returning the rvalue.
1872 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1873   if (LV.isObjCWeak()) {
1874     // load of a __weak object.
1875     Address AddrWeakObj = LV.getAddress(*this);
1876     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1877                                                              AddrWeakObj));
1878   }
1879   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1880     // In MRC mode, we do a load+autorelease.
1881     if (!getLangOpts().ObjCAutoRefCount) {
1882       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1883     }
1884 
1885     // In ARC mode, we load retained and then consume the value.
1886     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1887     Object = EmitObjCConsumeObject(LV.getType(), Object);
1888     return RValue::get(Object);
1889   }
1890 
1891   if (LV.isSimple()) {
1892     assert(!LV.getType()->isFunctionType());
1893 
1894     if (LV.getType()->isConstantMatrixType())
1895       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1896 
1897     // Everything needs a load.
1898     return RValue::get(EmitLoadOfScalar(LV, Loc));
1899   }
1900 
1901   if (LV.isVectorElt()) {
1902     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1903                                               LV.isVolatileQualified());
1904     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1905                                                     "vecext"));
1906   }
1907 
1908   // If this is a reference to a subset of the elements of a vector, either
1909   // shuffle the input or extract/insert them as appropriate.
1910   if (LV.isExtVectorElt()) {
1911     return EmitLoadOfExtVectorElementLValue(LV);
1912   }
1913 
1914   // Global Register variables always invoke intrinsics
1915   if (LV.isGlobalReg())
1916     return EmitLoadOfGlobalRegLValue(LV);
1917 
1918   if (LV.isMatrixElt()) {
1919     llvm::LoadInst *Load =
1920         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1921     return RValue::get(
1922         Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
1923   }
1924 
1925   assert(LV.isBitField() && "Unknown LValue type!");
1926   return EmitLoadOfBitfieldLValue(LV, Loc);
1927 }
1928 
1929 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1930                                                  SourceLocation Loc) {
1931   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1932 
1933   // Get the output type.
1934   llvm::Type *ResLTy = ConvertType(LV.getType());
1935 
1936   Address Ptr = LV.getBitFieldAddress();
1937   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1938 
1939   if (Info.IsSigned) {
1940     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1941     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1942     if (HighBits)
1943       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1944     if (Info.Offset + HighBits)
1945       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1946   } else {
1947     if (Info.Offset)
1948       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1949     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1950       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1951                                                               Info.Size),
1952                               "bf.clear");
1953   }
1954   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1955   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1956   return RValue::get(Val);
1957 }
1958 
1959 // If this is a reference to a subset of the elements of a vector, create an
1960 // appropriate shufflevector.
1961 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1962   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1963                                         LV.isVolatileQualified());
1964 
1965   const llvm::Constant *Elts = LV.getExtVectorElts();
1966 
1967   // If the result of the expression is a non-vector type, we must be extracting
1968   // a single element.  Just codegen as an extractelement.
1969   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1970   if (!ExprVT) {
1971     unsigned InIdx = getAccessedFieldNo(0, Elts);
1972     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1973     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1974   }
1975 
1976   // Always use shuffle vector to try to retain the original program structure
1977   unsigned NumResultElts = ExprVT->getNumElements();
1978 
1979   SmallVector<int, 4> Mask;
1980   for (unsigned i = 0; i != NumResultElts; ++i)
1981     Mask.push_back(getAccessedFieldNo(i, Elts));
1982 
1983   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1984                                     Mask);
1985   return RValue::get(Vec);
1986 }
1987 
1988 /// Generates lvalue for partial ext_vector access.
1989 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1990   Address VectorAddress = LV.getExtVectorAddress();
1991   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1992   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1993 
1994   Address CastToPointerElement =
1995     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1996                                  "conv.ptr.element");
1997 
1998   const llvm::Constant *Elts = LV.getExtVectorElts();
1999   unsigned ix = getAccessedFieldNo(0, Elts);
2000 
2001   Address VectorBasePtrPlusIx =
2002     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2003                                    "vector.elt");
2004 
2005   return VectorBasePtrPlusIx;
2006 }
2007 
2008 /// Load of global gamed gegisters are always calls to intrinsics.
2009 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2010   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2011          "Bad type for register variable");
2012   llvm::MDNode *RegName = cast<llvm::MDNode>(
2013       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2014 
2015   // We accept integer and pointer types only
2016   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2017   llvm::Type *Ty = OrigTy;
2018   if (OrigTy->isPointerTy())
2019     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2020   llvm::Type *Types[] = { Ty };
2021 
2022   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2023   llvm::Value *Call = Builder.CreateCall(
2024       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2025   if (OrigTy->isPointerTy())
2026     Call = Builder.CreateIntToPtr(Call, OrigTy);
2027   return RValue::get(Call);
2028 }
2029 
2030 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2031 /// lvalue, where both are guaranteed to the have the same type, and that type
2032 /// is 'Ty'.
2033 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2034                                              bool isInit) {
2035   if (!Dst.isSimple()) {
2036     if (Dst.isVectorElt()) {
2037       // Read/modify/write the vector, inserting the new element.
2038       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2039                                             Dst.isVolatileQualified());
2040       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2041                                         Dst.getVectorIdx(), "vecins");
2042       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2043                           Dst.isVolatileQualified());
2044       return;
2045     }
2046 
2047     // If this is an update of extended vector elements, insert them as
2048     // appropriate.
2049     if (Dst.isExtVectorElt())
2050       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2051 
2052     if (Dst.isGlobalReg())
2053       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2054 
2055     if (Dst.isMatrixElt()) {
2056       llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
2057       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2058                                         Dst.getMatrixIdx(), "matins");
2059       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2060                           Dst.isVolatileQualified());
2061       return;
2062     }
2063 
2064     assert(Dst.isBitField() && "Unknown LValue type");
2065     return EmitStoreThroughBitfieldLValue(Src, Dst);
2066   }
2067 
2068   // There's special magic for assigning into an ARC-qualified l-value.
2069   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2070     switch (Lifetime) {
2071     case Qualifiers::OCL_None:
2072       llvm_unreachable("present but none");
2073 
2074     case Qualifiers::OCL_ExplicitNone:
2075       // nothing special
2076       break;
2077 
2078     case Qualifiers::OCL_Strong:
2079       if (isInit) {
2080         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2081         break;
2082       }
2083       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2084       return;
2085 
2086     case Qualifiers::OCL_Weak:
2087       if (isInit)
2088         // Initialize and then skip the primitive store.
2089         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2090       else
2091         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2092                          /*ignore*/ true);
2093       return;
2094 
2095     case Qualifiers::OCL_Autoreleasing:
2096       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2097                                                      Src.getScalarVal()));
2098       // fall into the normal path
2099       break;
2100     }
2101   }
2102 
2103   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2104     // load of a __weak object.
2105     Address LvalueDst = Dst.getAddress(*this);
2106     llvm::Value *src = Src.getScalarVal();
2107      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2108     return;
2109   }
2110 
2111   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2112     // load of a __strong object.
2113     Address LvalueDst = Dst.getAddress(*this);
2114     llvm::Value *src = Src.getScalarVal();
2115     if (Dst.isObjCIvar()) {
2116       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2117       llvm::Type *ResultType = IntPtrTy;
2118       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2119       llvm::Value *RHS = dst.getPointer();
2120       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2121       llvm::Value *LHS =
2122         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2123                                "sub.ptr.lhs.cast");
2124       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2125       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2126                                               BytesBetween);
2127     } else if (Dst.isGlobalObjCRef()) {
2128       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2129                                                 Dst.isThreadLocalRef());
2130     }
2131     else
2132       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2133     return;
2134   }
2135 
2136   assert(Src.isScalar() && "Can't emit an agg store with this method");
2137   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2138 }
2139 
2140 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2141                                                      llvm::Value **Result) {
2142   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2143   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2144   Address Ptr = Dst.getBitFieldAddress();
2145 
2146   // Get the source value, truncated to the width of the bit-field.
2147   llvm::Value *SrcVal = Src.getScalarVal();
2148 
2149   // Cast the source to the storage type and shift it into place.
2150   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2151                                  /*isSigned=*/false);
2152   llvm::Value *MaskedVal = SrcVal;
2153 
2154   // See if there are other bits in the bitfield's storage we'll need to load
2155   // and mask together with source before storing.
2156   if (Info.StorageSize != Info.Size) {
2157     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2158     llvm::Value *Val =
2159       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2160 
2161     // Mask the source value as needed.
2162     if (!hasBooleanRepresentation(Dst.getType()))
2163       SrcVal = Builder.CreateAnd(SrcVal,
2164                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2165                                                             Info.Size),
2166                                  "bf.value");
2167     MaskedVal = SrcVal;
2168     if (Info.Offset)
2169       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2170 
2171     // Mask out the original value.
2172     Val = Builder.CreateAnd(Val,
2173                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2174                                                      Info.Offset,
2175                                                      Info.Offset + Info.Size),
2176                             "bf.clear");
2177 
2178     // Or together the unchanged values and the source value.
2179     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2180   } else {
2181     assert(Info.Offset == 0);
2182     // According to the AACPS:
2183     // When a volatile bit-field is written, and its container does not overlap
2184     // with any non-bit-field member, its container must be read exactly once and
2185     // written exactly once using the access width appropriate to the type of the
2186     // container. The two accesses are not atomic.
2187     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2188         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2189       Builder.CreateLoad(Ptr, true, "bf.load");
2190   }
2191 
2192   // Write the new value back out.
2193   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2194 
2195   // Return the new value of the bit-field, if requested.
2196   if (Result) {
2197     llvm::Value *ResultVal = MaskedVal;
2198 
2199     // Sign extend the value if needed.
2200     if (Info.IsSigned) {
2201       assert(Info.Size <= Info.StorageSize);
2202       unsigned HighBits = Info.StorageSize - Info.Size;
2203       if (HighBits) {
2204         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2205         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2206       }
2207     }
2208 
2209     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2210                                       "bf.result.cast");
2211     *Result = EmitFromMemory(ResultVal, Dst.getType());
2212   }
2213 }
2214 
2215 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2216                                                                LValue Dst) {
2217   // This access turns into a read/modify/write of the vector.  Load the input
2218   // value now.
2219   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2220                                         Dst.isVolatileQualified());
2221   const llvm::Constant *Elts = Dst.getExtVectorElts();
2222 
2223   llvm::Value *SrcVal = Src.getScalarVal();
2224 
2225   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2226     unsigned NumSrcElts = VTy->getNumElements();
2227     unsigned NumDstElts =
2228         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2229     if (NumDstElts == NumSrcElts) {
2230       // Use shuffle vector is the src and destination are the same number of
2231       // elements and restore the vector mask since it is on the side it will be
2232       // stored.
2233       SmallVector<int, 4> Mask(NumDstElts);
2234       for (unsigned i = 0; i != NumSrcElts; ++i)
2235         Mask[getAccessedFieldNo(i, Elts)] = i;
2236 
2237       Vec = Builder.CreateShuffleVector(
2238           SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
2239     } else if (NumDstElts > NumSrcElts) {
2240       // Extended the source vector to the same length and then shuffle it
2241       // into the destination.
2242       // FIXME: since we're shuffling with undef, can we just use the indices
2243       //        into that?  This could be simpler.
2244       SmallVector<int, 4> ExtMask;
2245       for (unsigned i = 0; i != NumSrcElts; ++i)
2246         ExtMask.push_back(i);
2247       ExtMask.resize(NumDstElts, -1);
2248       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
2249           SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
2250       // build identity
2251       SmallVector<int, 4> Mask;
2252       for (unsigned i = 0; i != NumDstElts; ++i)
2253         Mask.push_back(i);
2254 
2255       // When the vector size is odd and .odd or .hi is used, the last element
2256       // of the Elts constant array will be one past the size of the vector.
2257       // Ignore the last element here, if it is greater than the mask size.
2258       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2259         NumSrcElts--;
2260 
2261       // modify when what gets shuffled in
2262       for (unsigned i = 0; i != NumSrcElts; ++i)
2263         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2264       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2265     } else {
2266       // We should never shorten the vector
2267       llvm_unreachable("unexpected shorten vector length");
2268     }
2269   } else {
2270     // If the Src is a scalar (not a vector) it must be updating one element.
2271     unsigned InIdx = getAccessedFieldNo(0, Elts);
2272     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2273     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2274   }
2275 
2276   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2277                       Dst.isVolatileQualified());
2278 }
2279 
2280 /// Store of global named registers are always calls to intrinsics.
2281 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2282   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2283          "Bad type for register variable");
2284   llvm::MDNode *RegName = cast<llvm::MDNode>(
2285       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2286   assert(RegName && "Register LValue is not metadata");
2287 
2288   // We accept integer and pointer types only
2289   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2290   llvm::Type *Ty = OrigTy;
2291   if (OrigTy->isPointerTy())
2292     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2293   llvm::Type *Types[] = { Ty };
2294 
2295   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2296   llvm::Value *Value = Src.getScalarVal();
2297   if (OrigTy->isPointerTy())
2298     Value = Builder.CreatePtrToInt(Value, Ty);
2299   Builder.CreateCall(
2300       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2301 }
2302 
2303 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2304 // generating write-barries API. It is currently a global, ivar,
2305 // or neither.
2306 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2307                                  LValue &LV,
2308                                  bool IsMemberAccess=false) {
2309   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2310     return;
2311 
2312   if (isa<ObjCIvarRefExpr>(E)) {
2313     QualType ExpTy = E->getType();
2314     if (IsMemberAccess && ExpTy->isPointerType()) {
2315       // If ivar is a structure pointer, assigning to field of
2316       // this struct follows gcc's behavior and makes it a non-ivar
2317       // writer-barrier conservatively.
2318       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2319       if (ExpTy->isRecordType()) {
2320         LV.setObjCIvar(false);
2321         return;
2322       }
2323     }
2324     LV.setObjCIvar(true);
2325     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2326     LV.setBaseIvarExp(Exp->getBase());
2327     LV.setObjCArray(E->getType()->isArrayType());
2328     return;
2329   }
2330 
2331   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2332     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2333       if (VD->hasGlobalStorage()) {
2334         LV.setGlobalObjCRef(true);
2335         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2336       }
2337     }
2338     LV.setObjCArray(E->getType()->isArrayType());
2339     return;
2340   }
2341 
2342   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2343     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2344     return;
2345   }
2346 
2347   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2348     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2349     if (LV.isObjCIvar()) {
2350       // If cast is to a structure pointer, follow gcc's behavior and make it
2351       // a non-ivar write-barrier.
2352       QualType ExpTy = E->getType();
2353       if (ExpTy->isPointerType())
2354         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2355       if (ExpTy->isRecordType())
2356         LV.setObjCIvar(false);
2357     }
2358     return;
2359   }
2360 
2361   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2362     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2363     return;
2364   }
2365 
2366   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2367     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2368     return;
2369   }
2370 
2371   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2372     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2373     return;
2374   }
2375 
2376   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2377     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2378     return;
2379   }
2380 
2381   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2382     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2383     if (LV.isObjCIvar() && !LV.isObjCArray())
2384       // Using array syntax to assigning to what an ivar points to is not
2385       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2386       LV.setObjCIvar(false);
2387     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2388       // Using array syntax to assigning to what global points to is not
2389       // same as assigning to the global itself. {id *G;} G[i] = 0;
2390       LV.setGlobalObjCRef(false);
2391     return;
2392   }
2393 
2394   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2395     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2396     // We don't know if member is an 'ivar', but this flag is looked at
2397     // only in the context of LV.isObjCIvar().
2398     LV.setObjCArray(E->getType()->isArrayType());
2399     return;
2400   }
2401 }
2402 
2403 static llvm::Value *
2404 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2405                                 llvm::Value *V, llvm::Type *IRType,
2406                                 StringRef Name = StringRef()) {
2407   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2408   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2409 }
2410 
2411 static LValue EmitThreadPrivateVarDeclLValue(
2412     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2413     llvm::Type *RealVarTy, SourceLocation Loc) {
2414   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2415     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2416         CGF, VD, Addr, Loc);
2417   else
2418     Addr =
2419         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2420 
2421   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2422   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2423 }
2424 
2425 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2426                                            const VarDecl *VD, QualType T) {
2427   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2428       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2429   // Return an invalid address if variable is MT_To and unified
2430   // memory is not enabled. For all other cases: MT_Link and
2431   // MT_To with unified memory, return a valid address.
2432   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2433                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2434     return Address::invalid();
2435   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2436           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2437            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2438          "Expected link clause OR to clause with unified memory enabled.");
2439   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2440   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2441   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2442 }
2443 
2444 Address
2445 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2446                                      LValueBaseInfo *PointeeBaseInfo,
2447                                      TBAAAccessInfo *PointeeTBAAInfo) {
2448   llvm::LoadInst *Load =
2449       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2450   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2451 
2452   CharUnits Align = CGM.getNaturalTypeAlignment(
2453       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2454       /* forPointeeType= */ true);
2455   return Address(Load, Align);
2456 }
2457 
2458 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2459   LValueBaseInfo PointeeBaseInfo;
2460   TBAAAccessInfo PointeeTBAAInfo;
2461   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2462                                             &PointeeTBAAInfo);
2463   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2464                         PointeeBaseInfo, PointeeTBAAInfo);
2465 }
2466 
2467 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2468                                            const PointerType *PtrTy,
2469                                            LValueBaseInfo *BaseInfo,
2470                                            TBAAAccessInfo *TBAAInfo) {
2471   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2472   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2473                                                    BaseInfo, TBAAInfo,
2474                                                    /*forPointeeType=*/true));
2475 }
2476 
2477 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2478                                                 const PointerType *PtrTy) {
2479   LValueBaseInfo BaseInfo;
2480   TBAAAccessInfo TBAAInfo;
2481   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2482   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2483 }
2484 
2485 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2486                                       const Expr *E, const VarDecl *VD) {
2487   QualType T = E->getType();
2488 
2489   // If it's thread_local, emit a call to its wrapper function instead.
2490   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2491       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2492     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2493   // Check if the variable is marked as declare target with link clause in
2494   // device codegen.
2495   if (CGF.getLangOpts().OpenMPIsDevice) {
2496     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2497     if (Addr.isValid())
2498       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2499   }
2500 
2501   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2502   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2503   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2504   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2505   Address Addr(V, Alignment);
2506   // Emit reference to the private copy of the variable if it is an OpenMP
2507   // threadprivate variable.
2508   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2509       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2510     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2511                                           E->getExprLoc());
2512   }
2513   LValue LV = VD->getType()->isReferenceType() ?
2514       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2515                                     AlignmentSource::Decl) :
2516       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2517   setObjCGCLValueClass(CGF.getContext(), E, LV);
2518   return LV;
2519 }
2520 
2521 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2522                                                GlobalDecl GD) {
2523   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2524   if (FD->hasAttr<WeakRefAttr>()) {
2525     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2526     return aliasee.getPointer();
2527   }
2528 
2529   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2530   if (!FD->hasPrototype()) {
2531     if (const FunctionProtoType *Proto =
2532             FD->getType()->getAs<FunctionProtoType>()) {
2533       // Ugly case: for a K&R-style definition, the type of the definition
2534       // isn't the same as the type of a use.  Correct for this with a
2535       // bitcast.
2536       QualType NoProtoType =
2537           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2538       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2539       V = llvm::ConstantExpr::getBitCast(V,
2540                                       CGM.getTypes().ConvertType(NoProtoType));
2541     }
2542   }
2543   return V;
2544 }
2545 
2546 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2547                                      GlobalDecl GD) {
2548   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2549   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2550   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2551   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2552                             AlignmentSource::Decl);
2553 }
2554 
2555 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2556                                       llvm::Value *ThisValue) {
2557   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2558   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2559   return CGF.EmitLValueForField(LV, FD);
2560 }
2561 
2562 /// Named Registers are named metadata pointing to the register name
2563 /// which will be read from/written to as an argument to the intrinsic
2564 /// @llvm.read/write_register.
2565 /// So far, only the name is being passed down, but other options such as
2566 /// register type, allocation type or even optimization options could be
2567 /// passed down via the metadata node.
2568 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2569   SmallString<64> Name("llvm.named.register.");
2570   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2571   assert(Asm->getLabel().size() < 64-Name.size() &&
2572       "Register name too big");
2573   Name.append(Asm->getLabel());
2574   llvm::NamedMDNode *M =
2575     CGM.getModule().getOrInsertNamedMetadata(Name);
2576   if (M->getNumOperands() == 0) {
2577     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2578                                               Asm->getLabel());
2579     llvm::Metadata *Ops[] = {Str};
2580     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2581   }
2582 
2583   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2584 
2585   llvm::Value *Ptr =
2586     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2587   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2588 }
2589 
2590 /// Determine whether we can emit a reference to \p VD from the current
2591 /// context, despite not necessarily having seen an odr-use of the variable in
2592 /// this context.
2593 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2594                                                const DeclRefExpr *E,
2595                                                const VarDecl *VD,
2596                                                bool IsConstant) {
2597   // For a variable declared in an enclosing scope, do not emit a spurious
2598   // reference even if we have a capture, as that will emit an unwarranted
2599   // reference to our capture state, and will likely generate worse code than
2600   // emitting a local copy.
2601   if (E->refersToEnclosingVariableOrCapture())
2602     return false;
2603 
2604   // For a local declaration declared in this function, we can always reference
2605   // it even if we don't have an odr-use.
2606   if (VD->hasLocalStorage()) {
2607     return VD->getDeclContext() ==
2608            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2609   }
2610 
2611   // For a global declaration, we can emit a reference to it if we know
2612   // for sure that we are able to emit a definition of it.
2613   VD = VD->getDefinition(CGF.getContext());
2614   if (!VD)
2615     return false;
2616 
2617   // Don't emit a spurious reference if it might be to a variable that only
2618   // exists on a different device / target.
2619   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2620   // cross-target reference.
2621   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2622       CGF.getLangOpts().OpenCL) {
2623     return false;
2624   }
2625 
2626   // We can emit a spurious reference only if the linkage implies that we'll
2627   // be emitting a non-interposable symbol that will be retained until link
2628   // time.
2629   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2630   case llvm::GlobalValue::ExternalLinkage:
2631   case llvm::GlobalValue::LinkOnceODRLinkage:
2632   case llvm::GlobalValue::WeakODRLinkage:
2633   case llvm::GlobalValue::InternalLinkage:
2634   case llvm::GlobalValue::PrivateLinkage:
2635     return true;
2636   default:
2637     return false;
2638   }
2639 }
2640 
2641 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2642   const NamedDecl *ND = E->getDecl();
2643   QualType T = E->getType();
2644 
2645   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2646          "should not emit an unevaluated operand");
2647 
2648   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2649     // Global Named registers access via intrinsics only
2650     if (VD->getStorageClass() == SC_Register &&
2651         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2652       return EmitGlobalNamedRegister(VD, CGM);
2653 
2654     // If this DeclRefExpr does not constitute an odr-use of the variable,
2655     // we're not permitted to emit a reference to it in general, and it might
2656     // not be captured if capture would be necessary for a use. Emit the
2657     // constant value directly instead.
2658     if (E->isNonOdrUse() == NOUR_Constant &&
2659         (VD->getType()->isReferenceType() ||
2660          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2661       VD->getAnyInitializer(VD);
2662       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2663           E->getLocation(), *VD->evaluateValue(), VD->getType());
2664       assert(Val && "failed to emit constant expression");
2665 
2666       Address Addr = Address::invalid();
2667       if (!VD->getType()->isReferenceType()) {
2668         // Spill the constant value to a global.
2669         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2670                                            getContext().getDeclAlign(VD));
2671         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2672         auto *PTy = llvm::PointerType::get(
2673             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2674         if (PTy != Addr.getType())
2675           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2676       } else {
2677         // Should we be using the alignment of the constant pointer we emitted?
2678         CharUnits Alignment =
2679             CGM.getNaturalTypeAlignment(E->getType(),
2680                                         /* BaseInfo= */ nullptr,
2681                                         /* TBAAInfo= */ nullptr,
2682                                         /* forPointeeType= */ true);
2683         Addr = Address(Val, Alignment);
2684       }
2685       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2686     }
2687 
2688     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2689 
2690     // Check for captured variables.
2691     if (E->refersToEnclosingVariableOrCapture()) {
2692       VD = VD->getCanonicalDecl();
2693       if (auto *FD = LambdaCaptureFields.lookup(VD))
2694         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2695       if (CapturedStmtInfo) {
2696         auto I = LocalDeclMap.find(VD);
2697         if (I != LocalDeclMap.end()) {
2698           LValue CapLVal;
2699           if (VD->getType()->isReferenceType())
2700             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2701                                                 AlignmentSource::Decl);
2702           else
2703             CapLVal = MakeAddrLValue(I->second, T);
2704           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2705           // in simd context.
2706           if (getLangOpts().OpenMP &&
2707               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2708             CapLVal.setNontemporal(/*Value=*/true);
2709           return CapLVal;
2710         }
2711         LValue CapLVal =
2712             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2713                                     CapturedStmtInfo->getContextValue());
2714         CapLVal = MakeAddrLValue(
2715             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2716             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2717             CapLVal.getTBAAInfo());
2718         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2719         // in simd context.
2720         if (getLangOpts().OpenMP &&
2721             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2722           CapLVal.setNontemporal(/*Value=*/true);
2723         return CapLVal;
2724       }
2725 
2726       assert(isa<BlockDecl>(CurCodeDecl));
2727       Address addr = GetAddrOfBlockDecl(VD);
2728       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2729     }
2730   }
2731 
2732   // FIXME: We should be able to assert this for FunctionDecls as well!
2733   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2734   // those with a valid source location.
2735   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2736           !E->getLocation().isValid()) &&
2737          "Should not use decl without marking it used!");
2738 
2739   if (ND->hasAttr<WeakRefAttr>()) {
2740     const auto *VD = cast<ValueDecl>(ND);
2741     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2742     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2743   }
2744 
2745   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2746     // Check if this is a global variable.
2747     if (VD->hasLinkage() || VD->isStaticDataMember())
2748       return EmitGlobalVarDeclLValue(*this, E, VD);
2749 
2750     Address addr = Address::invalid();
2751 
2752     // The variable should generally be present in the local decl map.
2753     auto iter = LocalDeclMap.find(VD);
2754     if (iter != LocalDeclMap.end()) {
2755       addr = iter->second;
2756 
2757     // Otherwise, it might be static local we haven't emitted yet for
2758     // some reason; most likely, because it's in an outer function.
2759     } else if (VD->isStaticLocal()) {
2760       addr = Address(CGM.getOrCreateStaticVarDecl(
2761           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2762                      getContext().getDeclAlign(VD));
2763 
2764     // No other cases for now.
2765     } else {
2766       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2767     }
2768 
2769 
2770     // Check for OpenMP threadprivate variables.
2771     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2772         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2773       return EmitThreadPrivateVarDeclLValue(
2774           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2775           E->getExprLoc());
2776     }
2777 
2778     // Drill into block byref variables.
2779     bool isBlockByref = VD->isEscapingByref();
2780     if (isBlockByref) {
2781       addr = emitBlockByrefAddress(addr, VD);
2782     }
2783 
2784     // Drill into reference types.
2785     LValue LV = VD->getType()->isReferenceType() ?
2786         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2787         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2788 
2789     bool isLocalStorage = VD->hasLocalStorage();
2790 
2791     bool NonGCable = isLocalStorage &&
2792                      !VD->getType()->isReferenceType() &&
2793                      !isBlockByref;
2794     if (NonGCable) {
2795       LV.getQuals().removeObjCGCAttr();
2796       LV.setNonGC(true);
2797     }
2798 
2799     bool isImpreciseLifetime =
2800       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2801     if (isImpreciseLifetime)
2802       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2803     setObjCGCLValueClass(getContext(), E, LV);
2804     return LV;
2805   }
2806 
2807   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2808     return EmitFunctionDeclLValue(*this, E, FD);
2809 
2810   // FIXME: While we're emitting a binding from an enclosing scope, all other
2811   // DeclRefExprs we see should be implicitly treated as if they also refer to
2812   // an enclosing scope.
2813   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2814     return EmitLValue(BD->getBinding());
2815 
2816   // We can form DeclRefExprs naming GUID declarations when reconstituting
2817   // non-type template parameters into expressions.
2818   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2819     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2820                           AlignmentSource::Decl);
2821 
2822   llvm_unreachable("Unhandled DeclRefExpr");
2823 }
2824 
2825 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2826   // __extension__ doesn't affect lvalue-ness.
2827   if (E->getOpcode() == UO_Extension)
2828     return EmitLValue(E->getSubExpr());
2829 
2830   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2831   switch (E->getOpcode()) {
2832   default: llvm_unreachable("Unknown unary operator lvalue!");
2833   case UO_Deref: {
2834     QualType T = E->getSubExpr()->getType()->getPointeeType();
2835     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2836 
2837     LValueBaseInfo BaseInfo;
2838     TBAAAccessInfo TBAAInfo;
2839     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2840                                             &TBAAInfo);
2841     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2842     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2843 
2844     // We should not generate __weak write barrier on indirect reference
2845     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2846     // But, we continue to generate __strong write barrier on indirect write
2847     // into a pointer to object.
2848     if (getLangOpts().ObjC &&
2849         getLangOpts().getGC() != LangOptions::NonGC &&
2850         LV.isObjCWeak())
2851       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2852     return LV;
2853   }
2854   case UO_Real:
2855   case UO_Imag: {
2856     LValue LV = EmitLValue(E->getSubExpr());
2857     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2858 
2859     // __real is valid on scalars.  This is a faster way of testing that.
2860     // __imag can only produce an rvalue on scalars.
2861     if (E->getOpcode() == UO_Real &&
2862         !LV.getAddress(*this).getElementType()->isStructTy()) {
2863       assert(E->getSubExpr()->getType()->isArithmeticType());
2864       return LV;
2865     }
2866 
2867     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2868 
2869     Address Component =
2870         (E->getOpcode() == UO_Real
2871              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2872              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2873     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2874                                    CGM.getTBAAInfoForSubobject(LV, T));
2875     ElemLV.getQuals().addQualifiers(LV.getQuals());
2876     return ElemLV;
2877   }
2878   case UO_PreInc:
2879   case UO_PreDec: {
2880     LValue LV = EmitLValue(E->getSubExpr());
2881     bool isInc = E->getOpcode() == UO_PreInc;
2882 
2883     if (E->getType()->isAnyComplexType())
2884       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2885     else
2886       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2887     return LV;
2888   }
2889   }
2890 }
2891 
2892 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2893   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2894                         E->getType(), AlignmentSource::Decl);
2895 }
2896 
2897 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2898   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2899                         E->getType(), AlignmentSource::Decl);
2900 }
2901 
2902 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2903   auto SL = E->getFunctionName();
2904   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2905   StringRef FnName = CurFn->getName();
2906   if (FnName.startswith("\01"))
2907     FnName = FnName.substr(1);
2908   StringRef NameItems[] = {
2909       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2910   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2911   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2912     std::string Name = std::string(SL->getString());
2913     if (!Name.empty()) {
2914       unsigned Discriminator =
2915           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2916       if (Discriminator)
2917         Name += "_" + Twine(Discriminator + 1).str();
2918       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2919       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2920     } else {
2921       auto C =
2922           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2923       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2924     }
2925   }
2926   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2927   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2928 }
2929 
2930 /// Emit a type description suitable for use by a runtime sanitizer library. The
2931 /// format of a type descriptor is
2932 ///
2933 /// \code
2934 ///   { i16 TypeKind, i16 TypeInfo }
2935 /// \endcode
2936 ///
2937 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2938 /// integer, 1 for a floating point value, and -1 for anything else.
2939 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2940   // Only emit each type's descriptor once.
2941   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2942     return C;
2943 
2944   uint16_t TypeKind = -1;
2945   uint16_t TypeInfo = 0;
2946 
2947   if (T->isIntegerType()) {
2948     TypeKind = 0;
2949     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2950                (T->isSignedIntegerType() ? 1 : 0);
2951   } else if (T->isFloatingType()) {
2952     TypeKind = 1;
2953     TypeInfo = getContext().getTypeSize(T);
2954   }
2955 
2956   // Format the type name as if for a diagnostic, including quotes and
2957   // optionally an 'aka'.
2958   SmallString<32> Buffer;
2959   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2960                                     (intptr_t)T.getAsOpaquePtr(),
2961                                     StringRef(), StringRef(), None, Buffer,
2962                                     None);
2963 
2964   llvm::Constant *Components[] = {
2965     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2966     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2967   };
2968   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2969 
2970   auto *GV = new llvm::GlobalVariable(
2971       CGM.getModule(), Descriptor->getType(),
2972       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2973   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2974   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2975 
2976   // Remember the descriptor for this type.
2977   CGM.setTypeDescriptorInMap(T, GV);
2978 
2979   return GV;
2980 }
2981 
2982 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2983   llvm::Type *TargetTy = IntPtrTy;
2984 
2985   if (V->getType() == TargetTy)
2986     return V;
2987 
2988   // Floating-point types which fit into intptr_t are bitcast to integers
2989   // and then passed directly (after zero-extension, if necessary).
2990   if (V->getType()->isFloatingPointTy()) {
2991     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2992     if (Bits <= TargetTy->getIntegerBitWidth())
2993       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2994                                                          Bits));
2995   }
2996 
2997   // Integers which fit in intptr_t are zero-extended and passed directly.
2998   if (V->getType()->isIntegerTy() &&
2999       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3000     return Builder.CreateZExt(V, TargetTy);
3001 
3002   // Pointers are passed directly, everything else is passed by address.
3003   if (!V->getType()->isPointerTy()) {
3004     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3005     Builder.CreateStore(V, Ptr);
3006     V = Ptr.getPointer();
3007   }
3008   return Builder.CreatePtrToInt(V, TargetTy);
3009 }
3010 
3011 /// Emit a representation of a SourceLocation for passing to a handler
3012 /// in a sanitizer runtime library. The format for this data is:
3013 /// \code
3014 ///   struct SourceLocation {
3015 ///     const char *Filename;
3016 ///     int32_t Line, Column;
3017 ///   };
3018 /// \endcode
3019 /// For an invalid SourceLocation, the Filename pointer is null.
3020 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3021   llvm::Constant *Filename;
3022   int Line, Column;
3023 
3024   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3025   if (PLoc.isValid()) {
3026     StringRef FilenameString = PLoc.getFilename();
3027 
3028     int PathComponentsToStrip =
3029         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3030     if (PathComponentsToStrip < 0) {
3031       assert(PathComponentsToStrip != INT_MIN);
3032       int PathComponentsToKeep = -PathComponentsToStrip;
3033       auto I = llvm::sys::path::rbegin(FilenameString);
3034       auto E = llvm::sys::path::rend(FilenameString);
3035       while (I != E && --PathComponentsToKeep)
3036         ++I;
3037 
3038       FilenameString = FilenameString.substr(I - E);
3039     } else if (PathComponentsToStrip > 0) {
3040       auto I = llvm::sys::path::begin(FilenameString);
3041       auto E = llvm::sys::path::end(FilenameString);
3042       while (I != E && PathComponentsToStrip--)
3043         ++I;
3044 
3045       if (I != E)
3046         FilenameString =
3047             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3048       else
3049         FilenameString = llvm::sys::path::filename(FilenameString);
3050     }
3051 
3052     auto FilenameGV =
3053         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3054     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3055                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3056     Filename = FilenameGV.getPointer();
3057     Line = PLoc.getLine();
3058     Column = PLoc.getColumn();
3059   } else {
3060     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3061     Line = Column = 0;
3062   }
3063 
3064   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3065                             Builder.getInt32(Column)};
3066 
3067   return llvm::ConstantStruct::getAnon(Data);
3068 }
3069 
3070 namespace {
3071 /// Specify under what conditions this check can be recovered
3072 enum class CheckRecoverableKind {
3073   /// Always terminate program execution if this check fails.
3074   Unrecoverable,
3075   /// Check supports recovering, runtime has both fatal (noreturn) and
3076   /// non-fatal handlers for this check.
3077   Recoverable,
3078   /// Runtime conditionally aborts, always need to support recovery.
3079   AlwaysRecoverable
3080 };
3081 }
3082 
3083 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3084   assert(Kind.countPopulation() == 1);
3085   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3086     return CheckRecoverableKind::AlwaysRecoverable;
3087   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3088     return CheckRecoverableKind::Unrecoverable;
3089   else
3090     return CheckRecoverableKind::Recoverable;
3091 }
3092 
3093 namespace {
3094 struct SanitizerHandlerInfo {
3095   char const *const Name;
3096   unsigned Version;
3097 };
3098 }
3099 
3100 const SanitizerHandlerInfo SanitizerHandlers[] = {
3101 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3102     LIST_SANITIZER_CHECKS
3103 #undef SANITIZER_CHECK
3104 };
3105 
3106 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3107                                  llvm::FunctionType *FnType,
3108                                  ArrayRef<llvm::Value *> FnArgs,
3109                                  SanitizerHandler CheckHandler,
3110                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3111                                  llvm::BasicBlock *ContBB) {
3112   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3113   Optional<ApplyDebugLocation> DL;
3114   if (!CGF.Builder.getCurrentDebugLocation()) {
3115     // Ensure that the call has at least an artificial debug location.
3116     DL.emplace(CGF, SourceLocation());
3117   }
3118   bool NeedsAbortSuffix =
3119       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3120   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3121   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3122   const StringRef CheckName = CheckInfo.Name;
3123   std::string FnName = "__ubsan_handle_" + CheckName.str();
3124   if (CheckInfo.Version && !MinimalRuntime)
3125     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3126   if (MinimalRuntime)
3127     FnName += "_minimal";
3128   if (NeedsAbortSuffix)
3129     FnName += "_abort";
3130   bool MayReturn =
3131       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3132 
3133   llvm::AttrBuilder B;
3134   if (!MayReturn) {
3135     B.addAttribute(llvm::Attribute::NoReturn)
3136         .addAttribute(llvm::Attribute::NoUnwind);
3137   }
3138   B.addAttribute(llvm::Attribute::UWTable);
3139 
3140   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3141       FnType, FnName,
3142       llvm::AttributeList::get(CGF.getLLVMContext(),
3143                                llvm::AttributeList::FunctionIndex, B),
3144       /*Local=*/true);
3145   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3146   if (!MayReturn) {
3147     HandlerCall->setDoesNotReturn();
3148     CGF.Builder.CreateUnreachable();
3149   } else {
3150     CGF.Builder.CreateBr(ContBB);
3151   }
3152 }
3153 
3154 void CodeGenFunction::EmitCheck(
3155     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3156     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3157     ArrayRef<llvm::Value *> DynamicArgs) {
3158   assert(IsSanitizerScope);
3159   assert(Checked.size() > 0);
3160   assert(CheckHandler >= 0 &&
3161          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3162   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3163 
3164   llvm::Value *FatalCond = nullptr;
3165   llvm::Value *RecoverableCond = nullptr;
3166   llvm::Value *TrapCond = nullptr;
3167   for (int i = 0, n = Checked.size(); i < n; ++i) {
3168     llvm::Value *Check = Checked[i].first;
3169     // -fsanitize-trap= overrides -fsanitize-recover=.
3170     llvm::Value *&Cond =
3171         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3172             ? TrapCond
3173             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3174                   ? RecoverableCond
3175                   : FatalCond;
3176     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3177   }
3178 
3179   if (TrapCond)
3180     EmitTrapCheck(TrapCond);
3181   if (!FatalCond && !RecoverableCond)
3182     return;
3183 
3184   llvm::Value *JointCond;
3185   if (FatalCond && RecoverableCond)
3186     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3187   else
3188     JointCond = FatalCond ? FatalCond : RecoverableCond;
3189   assert(JointCond);
3190 
3191   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3192   assert(SanOpts.has(Checked[0].second));
3193 #ifndef NDEBUG
3194   for (int i = 1, n = Checked.size(); i < n; ++i) {
3195     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3196            "All recoverable kinds in a single check must be same!");
3197     assert(SanOpts.has(Checked[i].second));
3198   }
3199 #endif
3200 
3201   llvm::BasicBlock *Cont = createBasicBlock("cont");
3202   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3203   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3204   // Give hint that we very much don't expect to execute the handler
3205   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3206   llvm::MDBuilder MDHelper(getLLVMContext());
3207   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3208   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3209   EmitBlock(Handlers);
3210 
3211   // Handler functions take an i8* pointing to the (handler-specific) static
3212   // information block, followed by a sequence of intptr_t arguments
3213   // representing operand values.
3214   SmallVector<llvm::Value *, 4> Args;
3215   SmallVector<llvm::Type *, 4> ArgTypes;
3216   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3217     Args.reserve(DynamicArgs.size() + 1);
3218     ArgTypes.reserve(DynamicArgs.size() + 1);
3219 
3220     // Emit handler arguments and create handler function type.
3221     if (!StaticArgs.empty()) {
3222       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3223       auto *InfoPtr =
3224           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3225                                    llvm::GlobalVariable::PrivateLinkage, Info);
3226       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3227       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3228       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3229       ArgTypes.push_back(Int8PtrTy);
3230     }
3231 
3232     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3233       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3234       ArgTypes.push_back(IntPtrTy);
3235     }
3236   }
3237 
3238   llvm::FunctionType *FnType =
3239     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3240 
3241   if (!FatalCond || !RecoverableCond) {
3242     // Simple case: we need to generate a single handler call, either
3243     // fatal, or non-fatal.
3244     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3245                          (FatalCond != nullptr), Cont);
3246   } else {
3247     // Emit two handler calls: first one for set of unrecoverable checks,
3248     // another one for recoverable.
3249     llvm::BasicBlock *NonFatalHandlerBB =
3250         createBasicBlock("non_fatal." + CheckName);
3251     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3252     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3253     EmitBlock(FatalHandlerBB);
3254     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3255                          NonFatalHandlerBB);
3256     EmitBlock(NonFatalHandlerBB);
3257     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3258                          Cont);
3259   }
3260 
3261   EmitBlock(Cont);
3262 }
3263 
3264 void CodeGenFunction::EmitCfiSlowPathCheck(
3265     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3266     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3267   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3268 
3269   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3270   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3271 
3272   llvm::MDBuilder MDHelper(getLLVMContext());
3273   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3274   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3275 
3276   EmitBlock(CheckBB);
3277 
3278   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3279 
3280   llvm::CallInst *CheckCall;
3281   llvm::FunctionCallee SlowPathFn;
3282   if (WithDiag) {
3283     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3284     auto *InfoPtr =
3285         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3286                                  llvm::GlobalVariable::PrivateLinkage, Info);
3287     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3288     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3289 
3290     SlowPathFn = CGM.getModule().getOrInsertFunction(
3291         "__cfi_slowpath_diag",
3292         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3293                                 false));
3294     CheckCall = Builder.CreateCall(
3295         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3296   } else {
3297     SlowPathFn = CGM.getModule().getOrInsertFunction(
3298         "__cfi_slowpath",
3299         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3300     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3301   }
3302 
3303   CGM.setDSOLocal(
3304       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3305   CheckCall->setDoesNotThrow();
3306 
3307   EmitBlock(Cont);
3308 }
3309 
3310 // Emit a stub for __cfi_check function so that the linker knows about this
3311 // symbol in LTO mode.
3312 void CodeGenFunction::EmitCfiCheckStub() {
3313   llvm::Module *M = &CGM.getModule();
3314   auto &Ctx = M->getContext();
3315   llvm::Function *F = llvm::Function::Create(
3316       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3317       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3318   CGM.setDSOLocal(F);
3319   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3320   // FIXME: consider emitting an intrinsic call like
3321   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3322   // which can be lowered in CrossDSOCFI pass to the actual contents of
3323   // __cfi_check. This would allow inlining of __cfi_check calls.
3324   llvm::CallInst::Create(
3325       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3326   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3327 }
3328 
3329 // This function is basically a switch over the CFI failure kind, which is
3330 // extracted from CFICheckFailData (1st function argument). Each case is either
3331 // llvm.trap or a call to one of the two runtime handlers, based on
3332 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3333 // failure kind) traps, but this should really never happen.  CFICheckFailData
3334 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3335 // check kind; in this case __cfi_check_fail traps as well.
3336 void CodeGenFunction::EmitCfiCheckFail() {
3337   SanitizerScope SanScope(this);
3338   FunctionArgList Args;
3339   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3340                             ImplicitParamDecl::Other);
3341   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3342                             ImplicitParamDecl::Other);
3343   Args.push_back(&ArgData);
3344   Args.push_back(&ArgAddr);
3345 
3346   const CGFunctionInfo &FI =
3347     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3348 
3349   llvm::Function *F = llvm::Function::Create(
3350       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3351       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3352 
3353   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3354   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3355   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3356 
3357   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3358                 SourceLocation());
3359 
3360   // This function should not be affected by blacklist. This function does
3361   // not have a source location, but "src:*" would still apply. Revert any
3362   // changes to SanOpts made in StartFunction.
3363   SanOpts = CGM.getLangOpts().Sanitize;
3364 
3365   llvm::Value *Data =
3366       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3367                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3368   llvm::Value *Addr =
3369       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3370                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3371 
3372   // Data == nullptr means the calling module has trap behaviour for this check.
3373   llvm::Value *DataIsNotNullPtr =
3374       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3375   EmitTrapCheck(DataIsNotNullPtr);
3376 
3377   llvm::StructType *SourceLocationTy =
3378       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3379   llvm::StructType *CfiCheckFailDataTy =
3380       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3381 
3382   llvm::Value *V = Builder.CreateConstGEP2_32(
3383       CfiCheckFailDataTy,
3384       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3385       0);
3386   Address CheckKindAddr(V, getIntAlign());
3387   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3388 
3389   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3390       CGM.getLLVMContext(),
3391       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3392   llvm::Value *ValidVtable = Builder.CreateZExt(
3393       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3394                          {Addr, AllVtables}),
3395       IntPtrTy);
3396 
3397   const std::pair<int, SanitizerMask> CheckKinds[] = {
3398       {CFITCK_VCall, SanitizerKind::CFIVCall},
3399       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3400       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3401       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3402       {CFITCK_ICall, SanitizerKind::CFIICall}};
3403 
3404   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3405   for (auto CheckKindMaskPair : CheckKinds) {
3406     int Kind = CheckKindMaskPair.first;
3407     SanitizerMask Mask = CheckKindMaskPair.second;
3408     llvm::Value *Cond =
3409         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3410     if (CGM.getLangOpts().Sanitize.has(Mask))
3411       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3412                 {Data, Addr, ValidVtable});
3413     else
3414       EmitTrapCheck(Cond);
3415   }
3416 
3417   FinishFunction();
3418   // The only reference to this function will be created during LTO link.
3419   // Make sure it survives until then.
3420   CGM.addUsedGlobal(F);
3421 }
3422 
3423 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3424   if (SanOpts.has(SanitizerKind::Unreachable)) {
3425     SanitizerScope SanScope(this);
3426     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3427                              SanitizerKind::Unreachable),
3428               SanitizerHandler::BuiltinUnreachable,
3429               EmitCheckSourceLocation(Loc), None);
3430   }
3431   Builder.CreateUnreachable();
3432 }
3433 
3434 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3435   llvm::BasicBlock *Cont = createBasicBlock("cont");
3436 
3437   // If we're optimizing, collapse all calls to trap down to just one per
3438   // function to save on code size.
3439   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3440     TrapBB = createBasicBlock("trap");
3441     Builder.CreateCondBr(Checked, Cont, TrapBB);
3442     EmitBlock(TrapBB);
3443     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3444     TrapCall->setDoesNotReturn();
3445     TrapCall->setDoesNotThrow();
3446     Builder.CreateUnreachable();
3447   } else {
3448     Builder.CreateCondBr(Checked, Cont, TrapBB);
3449   }
3450 
3451   EmitBlock(Cont);
3452 }
3453 
3454 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3455   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3456 
3457   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3458     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3459                                   CGM.getCodeGenOpts().TrapFuncName);
3460     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3461   }
3462 
3463   return TrapCall;
3464 }
3465 
3466 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3467                                                  LValueBaseInfo *BaseInfo,
3468                                                  TBAAAccessInfo *TBAAInfo) {
3469   assert(E->getType()->isArrayType() &&
3470          "Array to pointer decay must have array source type!");
3471 
3472   // Expressions of array type can't be bitfields or vector elements.
3473   LValue LV = EmitLValue(E);
3474   Address Addr = LV.getAddress(*this);
3475 
3476   // If the array type was an incomplete type, we need to make sure
3477   // the decay ends up being the right type.
3478   llvm::Type *NewTy = ConvertType(E->getType());
3479   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3480 
3481   // Note that VLA pointers are always decayed, so we don't need to do
3482   // anything here.
3483   if (!E->getType()->isVariableArrayType()) {
3484     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3485            "Expected pointer to array");
3486     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3487   }
3488 
3489   // The result of this decay conversion points to an array element within the
3490   // base lvalue. However, since TBAA currently does not support representing
3491   // accesses to elements of member arrays, we conservatively represent accesses
3492   // to the pointee object as if it had no any base lvalue specified.
3493   // TODO: Support TBAA for member arrays.
3494   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3495   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3496   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3497 
3498   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3499 }
3500 
3501 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3502 /// array to pointer, return the array subexpression.
3503 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3504   // If this isn't just an array->pointer decay, bail out.
3505   const auto *CE = dyn_cast<CastExpr>(E);
3506   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3507     return nullptr;
3508 
3509   // If this is a decay from variable width array, bail out.
3510   const Expr *SubExpr = CE->getSubExpr();
3511   if (SubExpr->getType()->isVariableArrayType())
3512     return nullptr;
3513 
3514   return SubExpr;
3515 }
3516 
3517 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3518                                           llvm::Value *ptr,
3519                                           ArrayRef<llvm::Value*> indices,
3520                                           bool inbounds,
3521                                           bool signedIndices,
3522                                           SourceLocation loc,
3523                                     const llvm::Twine &name = "arrayidx") {
3524   if (inbounds) {
3525     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3526                                       CodeGenFunction::NotSubtraction, loc,
3527                                       name);
3528   } else {
3529     return CGF.Builder.CreateGEP(ptr, indices, name);
3530   }
3531 }
3532 
3533 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3534                                       llvm::Value *idx,
3535                                       CharUnits eltSize) {
3536   // If we have a constant index, we can use the exact offset of the
3537   // element we're accessing.
3538   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3539     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3540     return arrayAlign.alignmentAtOffset(offset);
3541 
3542   // Otherwise, use the worst-case alignment for any element.
3543   } else {
3544     return arrayAlign.alignmentOfArrayElement(eltSize);
3545   }
3546 }
3547 
3548 static QualType getFixedSizeElementType(const ASTContext &ctx,
3549                                         const VariableArrayType *vla) {
3550   QualType eltType;
3551   do {
3552     eltType = vla->getElementType();
3553   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3554   return eltType;
3555 }
3556 
3557 /// Given an array base, check whether its member access belongs to a record
3558 /// with preserve_access_index attribute or not.
3559 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3560   if (!ArrayBase || !CGF.getDebugInfo())
3561     return false;
3562 
3563   // Only support base as either a MemberExpr or DeclRefExpr.
3564   // DeclRefExpr to cover cases like:
3565   //    struct s { int a; int b[10]; };
3566   //    struct s *p;
3567   //    p[1].a
3568   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3569   // p->b[5] is a MemberExpr example.
3570   const Expr *E = ArrayBase->IgnoreImpCasts();
3571   if (const auto *ME = dyn_cast<MemberExpr>(E))
3572     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3573 
3574   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3575     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3576     if (!VarDef)
3577       return false;
3578 
3579     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3580     if (!PtrT)
3581       return false;
3582 
3583     const auto *PointeeT = PtrT->getPointeeType()
3584                              ->getUnqualifiedDesugaredType();
3585     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3586       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3587     return false;
3588   }
3589 
3590   return false;
3591 }
3592 
3593 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3594                                      ArrayRef<llvm::Value *> indices,
3595                                      QualType eltType, bool inbounds,
3596                                      bool signedIndices, SourceLocation loc,
3597                                      QualType *arrayType = nullptr,
3598                                      const Expr *Base = nullptr,
3599                                      const llvm::Twine &name = "arrayidx") {
3600   // All the indices except that last must be zero.
3601 #ifndef NDEBUG
3602   for (auto idx : indices.drop_back())
3603     assert(isa<llvm::ConstantInt>(idx) &&
3604            cast<llvm::ConstantInt>(idx)->isZero());
3605 #endif
3606 
3607   // Determine the element size of the statically-sized base.  This is
3608   // the thing that the indices are expressed in terms of.
3609   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3610     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3611   }
3612 
3613   // We can use that to compute the best alignment of the element.
3614   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3615   CharUnits eltAlign =
3616     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3617 
3618   llvm::Value *eltPtr;
3619   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3620   if (!LastIndex ||
3621       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3622     eltPtr = emitArraySubscriptGEP(
3623         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3624         loc, name);
3625   } else {
3626     // Remember the original array subscript for bpf target
3627     unsigned idx = LastIndex->getZExtValue();
3628     llvm::DIType *DbgInfo = nullptr;
3629     if (arrayType)
3630       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3631     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3632                                                         addr.getPointer(),
3633                                                         indices.size() - 1,
3634                                                         idx, DbgInfo);
3635   }
3636 
3637   return Address(eltPtr, eltAlign);
3638 }
3639 
3640 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3641                                                bool Accessed) {
3642   // The index must always be an integer, which is not an aggregate.  Emit it
3643   // in lexical order (this complexity is, sadly, required by C++17).
3644   llvm::Value *IdxPre =
3645       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3646   bool SignedIndices = false;
3647   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3648     auto *Idx = IdxPre;
3649     if (E->getLHS() != E->getIdx()) {
3650       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3651       Idx = EmitScalarExpr(E->getIdx());
3652     }
3653 
3654     QualType IdxTy = E->getIdx()->getType();
3655     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3656     SignedIndices |= IdxSigned;
3657 
3658     if (SanOpts.has(SanitizerKind::ArrayBounds))
3659       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3660 
3661     // Extend or truncate the index type to 32 or 64-bits.
3662     if (Promote && Idx->getType() != IntPtrTy)
3663       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3664 
3665     return Idx;
3666   };
3667   IdxPre = nullptr;
3668 
3669   // If the base is a vector type, then we are forming a vector element lvalue
3670   // with this subscript.
3671   if (E->getBase()->getType()->isVectorType() &&
3672       !isa<ExtVectorElementExpr>(E->getBase())) {
3673     // Emit the vector as an lvalue to get its address.
3674     LValue LHS = EmitLValue(E->getBase());
3675     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3676     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3677     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3678                                  E->getBase()->getType(), LHS.getBaseInfo(),
3679                                  TBAAAccessInfo());
3680   }
3681 
3682   // All the other cases basically behave like simple offsetting.
3683 
3684   // Handle the extvector case we ignored above.
3685   if (isa<ExtVectorElementExpr>(E->getBase())) {
3686     LValue LV = EmitLValue(E->getBase());
3687     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3688     Address Addr = EmitExtVectorElementLValue(LV);
3689 
3690     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3691     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3692                                  SignedIndices, E->getExprLoc());
3693     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3694                           CGM.getTBAAInfoForSubobject(LV, EltType));
3695   }
3696 
3697   LValueBaseInfo EltBaseInfo;
3698   TBAAAccessInfo EltTBAAInfo;
3699   Address Addr = Address::invalid();
3700   if (const VariableArrayType *vla =
3701            getContext().getAsVariableArrayType(E->getType())) {
3702     // The base must be a pointer, which is not an aggregate.  Emit
3703     // it.  It needs to be emitted first in case it's what captures
3704     // the VLA bounds.
3705     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3706     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3707 
3708     // The element count here is the total number of non-VLA elements.
3709     llvm::Value *numElements = getVLASize(vla).NumElts;
3710 
3711     // Effectively, the multiply by the VLA size is part of the GEP.
3712     // GEP indexes are signed, and scaling an index isn't permitted to
3713     // signed-overflow, so we use the same semantics for our explicit
3714     // multiply.  We suppress this if overflow is not undefined behavior.
3715     if (getLangOpts().isSignedOverflowDefined()) {
3716       Idx = Builder.CreateMul(Idx, numElements);
3717     } else {
3718       Idx = Builder.CreateNSWMul(Idx, numElements);
3719     }
3720 
3721     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3722                                  !getLangOpts().isSignedOverflowDefined(),
3723                                  SignedIndices, E->getExprLoc());
3724 
3725   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3726     // Indexing over an interface, as in "NSString *P; P[4];"
3727 
3728     // Emit the base pointer.
3729     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3730     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3731 
3732     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3733     llvm::Value *InterfaceSizeVal =
3734         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3735 
3736     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3737 
3738     // We don't necessarily build correct LLVM struct types for ObjC
3739     // interfaces, so we can't rely on GEP to do this scaling
3740     // correctly, so we need to cast to i8*.  FIXME: is this actually
3741     // true?  A lot of other things in the fragile ABI would break...
3742     llvm::Type *OrigBaseTy = Addr.getType();
3743     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3744 
3745     // Do the GEP.
3746     CharUnits EltAlign =
3747       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3748     llvm::Value *EltPtr =
3749         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3750                               SignedIndices, E->getExprLoc());
3751     Addr = Address(EltPtr, EltAlign);
3752 
3753     // Cast back.
3754     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3755   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3756     // If this is A[i] where A is an array, the frontend will have decayed the
3757     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3758     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3759     // "gep x, i" here.  Emit one "gep A, 0, i".
3760     assert(Array->getType()->isArrayType() &&
3761            "Array to pointer decay must have array source type!");
3762     LValue ArrayLV;
3763     // For simple multidimensional array indexing, set the 'accessed' flag for
3764     // better bounds-checking of the base expression.
3765     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3766       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3767     else
3768       ArrayLV = EmitLValue(Array);
3769     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3770 
3771     // Propagate the alignment from the array itself to the result.
3772     QualType arrayType = Array->getType();
3773     Addr = emitArraySubscriptGEP(
3774         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3775         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3776         E->getExprLoc(), &arrayType, E->getBase());
3777     EltBaseInfo = ArrayLV.getBaseInfo();
3778     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3779   } else {
3780     // The base must be a pointer; emit it with an estimate of its alignment.
3781     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3782     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3783     QualType ptrType = E->getBase()->getType();
3784     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3785                                  !getLangOpts().isSignedOverflowDefined(),
3786                                  SignedIndices, E->getExprLoc(), &ptrType,
3787                                  E->getBase());
3788   }
3789 
3790   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3791 
3792   if (getLangOpts().ObjC &&
3793       getLangOpts().getGC() != LangOptions::NonGC) {
3794     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3795     setObjCGCLValueClass(getContext(), E, LV);
3796   }
3797   return LV;
3798 }
3799 
3800 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3801   assert(
3802       !E->isIncomplete() &&
3803       "incomplete matrix subscript expressions should be rejected during Sema");
3804   LValue Base = EmitLValue(E->getBase());
3805   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3806   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3807   llvm::Value *NumRows = Builder.getIntN(
3808       RowIdx->getType()->getScalarSizeInBits(),
3809       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
3810   llvm::Value *FinalIdx =
3811       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3812   return LValue::MakeMatrixElt(
3813       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3814       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3815 }
3816 
3817 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3818                                        LValueBaseInfo &BaseInfo,
3819                                        TBAAAccessInfo &TBAAInfo,
3820                                        QualType BaseTy, QualType ElTy,
3821                                        bool IsLowerBound) {
3822   LValue BaseLVal;
3823   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3824     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3825     if (BaseTy->isArrayType()) {
3826       Address Addr = BaseLVal.getAddress(CGF);
3827       BaseInfo = BaseLVal.getBaseInfo();
3828 
3829       // If the array type was an incomplete type, we need to make sure
3830       // the decay ends up being the right type.
3831       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3832       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3833 
3834       // Note that VLA pointers are always decayed, so we don't need to do
3835       // anything here.
3836       if (!BaseTy->isVariableArrayType()) {
3837         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3838                "Expected pointer to array");
3839         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3840       }
3841 
3842       return CGF.Builder.CreateElementBitCast(Addr,
3843                                               CGF.ConvertTypeForMem(ElTy));
3844     }
3845     LValueBaseInfo TypeBaseInfo;
3846     TBAAAccessInfo TypeTBAAInfo;
3847     CharUnits Align =
3848         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3849     BaseInfo.mergeForCast(TypeBaseInfo);
3850     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3851     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3852   }
3853   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3854 }
3855 
3856 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3857                                                 bool IsLowerBound) {
3858   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3859   QualType ResultExprTy;
3860   if (auto *AT = getContext().getAsArrayType(BaseTy))
3861     ResultExprTy = AT->getElementType();
3862   else
3863     ResultExprTy = BaseTy->getPointeeType();
3864   llvm::Value *Idx = nullptr;
3865   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3866     // Requesting lower bound or upper bound, but without provided length and
3867     // without ':' symbol for the default length -> length = 1.
3868     // Idx = LowerBound ?: 0;
3869     if (auto *LowerBound = E->getLowerBound()) {
3870       Idx = Builder.CreateIntCast(
3871           EmitScalarExpr(LowerBound), IntPtrTy,
3872           LowerBound->getType()->hasSignedIntegerRepresentation());
3873     } else
3874       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3875   } else {
3876     // Try to emit length or lower bound as constant. If this is possible, 1
3877     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3878     // IR (LB + Len) - 1.
3879     auto &C = CGM.getContext();
3880     auto *Length = E->getLength();
3881     llvm::APSInt ConstLength;
3882     if (Length) {
3883       // Idx = LowerBound + Length - 1;
3884       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3885         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3886         Length = nullptr;
3887       }
3888       auto *LowerBound = E->getLowerBound();
3889       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3890       if (LowerBound) {
3891         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3892           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3893           LowerBound = nullptr;
3894         }
3895       }
3896       if (!Length)
3897         --ConstLength;
3898       else if (!LowerBound)
3899         --ConstLowerBound;
3900 
3901       if (Length || LowerBound) {
3902         auto *LowerBoundVal =
3903             LowerBound
3904                 ? Builder.CreateIntCast(
3905                       EmitScalarExpr(LowerBound), IntPtrTy,
3906                       LowerBound->getType()->hasSignedIntegerRepresentation())
3907                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3908         auto *LengthVal =
3909             Length
3910                 ? Builder.CreateIntCast(
3911                       EmitScalarExpr(Length), IntPtrTy,
3912                       Length->getType()->hasSignedIntegerRepresentation())
3913                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3914         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3915                                 /*HasNUW=*/false,
3916                                 !getLangOpts().isSignedOverflowDefined());
3917         if (Length && LowerBound) {
3918           Idx = Builder.CreateSub(
3919               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3920               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3921         }
3922       } else
3923         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3924     } else {
3925       // Idx = ArraySize - 1;
3926       QualType ArrayTy = BaseTy->isPointerType()
3927                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3928                              : BaseTy;
3929       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3930         Length = VAT->getSizeExpr();
3931         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3932           ConstLength = *L;
3933           Length = nullptr;
3934         }
3935       } else {
3936         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3937         ConstLength = CAT->getSize();
3938       }
3939       if (Length) {
3940         auto *LengthVal = Builder.CreateIntCast(
3941             EmitScalarExpr(Length), IntPtrTy,
3942             Length->getType()->hasSignedIntegerRepresentation());
3943         Idx = Builder.CreateSub(
3944             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3945             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3946       } else {
3947         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3948         --ConstLength;
3949         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3950       }
3951     }
3952   }
3953   assert(Idx);
3954 
3955   Address EltPtr = Address::invalid();
3956   LValueBaseInfo BaseInfo;
3957   TBAAAccessInfo TBAAInfo;
3958   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3959     // The base must be a pointer, which is not an aggregate.  Emit
3960     // it.  It needs to be emitted first in case it's what captures
3961     // the VLA bounds.
3962     Address Base =
3963         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3964                                 BaseTy, VLA->getElementType(), IsLowerBound);
3965     // The element count here is the total number of non-VLA elements.
3966     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3967 
3968     // Effectively, the multiply by the VLA size is part of the GEP.
3969     // GEP indexes are signed, and scaling an index isn't permitted to
3970     // signed-overflow, so we use the same semantics for our explicit
3971     // multiply.  We suppress this if overflow is not undefined behavior.
3972     if (getLangOpts().isSignedOverflowDefined())
3973       Idx = Builder.CreateMul(Idx, NumElements);
3974     else
3975       Idx = Builder.CreateNSWMul(Idx, NumElements);
3976     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3977                                    !getLangOpts().isSignedOverflowDefined(),
3978                                    /*signedIndices=*/false, E->getExprLoc());
3979   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3980     // If this is A[i] where A is an array, the frontend will have decayed the
3981     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3982     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3983     // "gep x, i" here.  Emit one "gep A, 0, i".
3984     assert(Array->getType()->isArrayType() &&
3985            "Array to pointer decay must have array source type!");
3986     LValue ArrayLV;
3987     // For simple multidimensional array indexing, set the 'accessed' flag for
3988     // better bounds-checking of the base expression.
3989     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3990       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3991     else
3992       ArrayLV = EmitLValue(Array);
3993 
3994     // Propagate the alignment from the array itself to the result.
3995     EltPtr = emitArraySubscriptGEP(
3996         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3997         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3998         /*signedIndices=*/false, E->getExprLoc());
3999     BaseInfo = ArrayLV.getBaseInfo();
4000     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4001   } else {
4002     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4003                                            TBAAInfo, BaseTy, ResultExprTy,
4004                                            IsLowerBound);
4005     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4006                                    !getLangOpts().isSignedOverflowDefined(),
4007                                    /*signedIndices=*/false, E->getExprLoc());
4008   }
4009 
4010   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4011 }
4012 
4013 LValue CodeGenFunction::
4014 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4015   // Emit the base vector as an l-value.
4016   LValue Base;
4017 
4018   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4019   if (E->isArrow()) {
4020     // If it is a pointer to a vector, emit the address and form an lvalue with
4021     // it.
4022     LValueBaseInfo BaseInfo;
4023     TBAAAccessInfo TBAAInfo;
4024     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4025     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4026     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4027     Base.getQuals().removeObjCGCAttr();
4028   } else if (E->getBase()->isGLValue()) {
4029     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4030     // emit the base as an lvalue.
4031     assert(E->getBase()->getType()->isVectorType());
4032     Base = EmitLValue(E->getBase());
4033   } else {
4034     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4035     assert(E->getBase()->getType()->isVectorType() &&
4036            "Result must be a vector");
4037     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4038 
4039     // Store the vector to memory (because LValue wants an address).
4040     Address VecMem = CreateMemTemp(E->getBase()->getType());
4041     Builder.CreateStore(Vec, VecMem);
4042     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4043                           AlignmentSource::Decl);
4044   }
4045 
4046   QualType type =
4047     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4048 
4049   // Encode the element access list into a vector of unsigned indices.
4050   SmallVector<uint32_t, 4> Indices;
4051   E->getEncodedElementAccess(Indices);
4052 
4053   if (Base.isSimple()) {
4054     llvm::Constant *CV =
4055         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4056     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4057                                     Base.getBaseInfo(), TBAAAccessInfo());
4058   }
4059   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4060 
4061   llvm::Constant *BaseElts = Base.getExtVectorElts();
4062   SmallVector<llvm::Constant *, 4> CElts;
4063 
4064   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4065     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4066   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4067   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4068                                   Base.getBaseInfo(), TBAAAccessInfo());
4069 }
4070 
4071 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4072   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4073     EmitIgnoredExpr(E->getBase());
4074     return EmitDeclRefLValue(DRE);
4075   }
4076 
4077   Expr *BaseExpr = E->getBase();
4078   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4079   LValue BaseLV;
4080   if (E->isArrow()) {
4081     LValueBaseInfo BaseInfo;
4082     TBAAAccessInfo TBAAInfo;
4083     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4084     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4085     SanitizerSet SkippedChecks;
4086     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4087     if (IsBaseCXXThis)
4088       SkippedChecks.set(SanitizerKind::Alignment, true);
4089     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4090       SkippedChecks.set(SanitizerKind::Null, true);
4091     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4092                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4093     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4094   } else
4095     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4096 
4097   NamedDecl *ND = E->getMemberDecl();
4098   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4099     LValue LV = EmitLValueForField(BaseLV, Field);
4100     setObjCGCLValueClass(getContext(), E, LV);
4101     if (getLangOpts().OpenMP) {
4102       // If the member was explicitly marked as nontemporal, mark it as
4103       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4104       // to children as nontemporal too.
4105       if ((IsWrappedCXXThis(BaseExpr) &&
4106            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4107           BaseLV.isNontemporal())
4108         LV.setNontemporal(/*Value=*/true);
4109     }
4110     return LV;
4111   }
4112 
4113   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4114     return EmitFunctionDeclLValue(*this, E, FD);
4115 
4116   llvm_unreachable("Unhandled member declaration!");
4117 }
4118 
4119 /// Given that we are currently emitting a lambda, emit an l-value for
4120 /// one of its members.
4121 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4122   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4123   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4124   QualType LambdaTagType =
4125     getContext().getTagDeclType(Field->getParent());
4126   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4127   return EmitLValueForField(LambdaLV, Field);
4128 }
4129 
4130 /// Get the field index in the debug info. The debug info structure/union
4131 /// will ignore the unnamed bitfields.
4132 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4133                                              unsigned FieldIndex) {
4134   unsigned I = 0, Skipped = 0;
4135 
4136   for (auto F : Rec->getDefinition()->fields()) {
4137     if (I == FieldIndex)
4138       break;
4139     if (F->isUnnamedBitfield())
4140       Skipped++;
4141     I++;
4142   }
4143 
4144   return FieldIndex - Skipped;
4145 }
4146 
4147 /// Get the address of a zero-sized field within a record. The resulting
4148 /// address doesn't necessarily have the right type.
4149 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4150                                        const FieldDecl *Field) {
4151   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4152       CGF.getContext().getFieldOffset(Field));
4153   if (Offset.isZero())
4154     return Base;
4155   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4156   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4157 }
4158 
4159 /// Drill down to the storage of a field without walking into
4160 /// reference types.
4161 ///
4162 /// The resulting address doesn't necessarily have the right type.
4163 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4164                                       const FieldDecl *field) {
4165   if (field->isZeroSize(CGF.getContext()))
4166     return emitAddrOfZeroSizeField(CGF, base, field);
4167 
4168   const RecordDecl *rec = field->getParent();
4169 
4170   unsigned idx =
4171     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4172 
4173   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4174 }
4175 
4176 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4177                                         Address addr, const FieldDecl *field) {
4178   const RecordDecl *rec = field->getParent();
4179   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4180       base.getType(), rec->getLocation());
4181 
4182   unsigned idx =
4183       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4184 
4185   return CGF.Builder.CreatePreserveStructAccessIndex(
4186       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4187 }
4188 
4189 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4190   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4191   if (!RD)
4192     return false;
4193 
4194   if (RD->isDynamicClass())
4195     return true;
4196 
4197   for (const auto &Base : RD->bases())
4198     if (hasAnyVptr(Base.getType(), Context))
4199       return true;
4200 
4201   for (const FieldDecl *Field : RD->fields())
4202     if (hasAnyVptr(Field->getType(), Context))
4203       return true;
4204 
4205   return false;
4206 }
4207 
4208 LValue CodeGenFunction::EmitLValueForField(LValue base,
4209                                            const FieldDecl *field) {
4210   LValueBaseInfo BaseInfo = base.getBaseInfo();
4211 
4212   if (field->isBitField()) {
4213     const CGRecordLayout &RL =
4214       CGM.getTypes().getCGRecordLayout(field->getParent());
4215     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4216     Address Addr = base.getAddress(*this);
4217     unsigned Idx = RL.getLLVMFieldNo(field);
4218     const RecordDecl *rec = field->getParent();
4219     if (!IsInPreservedAIRegion &&
4220         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4221       if (Idx != 0)
4222         // For structs, we GEP to the field that the record layout suggests.
4223         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4224     } else {
4225       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4226           getContext().getRecordType(rec), rec->getLocation());
4227       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4228           getDebugInfoFIndex(rec, field->getFieldIndex()),
4229           DbgInfo);
4230     }
4231 
4232     // Get the access type.
4233     llvm::Type *FieldIntTy =
4234       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4235     if (Addr.getElementType() != FieldIntTy)
4236       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4237 
4238     QualType fieldType =
4239       field->getType().withCVRQualifiers(base.getVRQualifiers());
4240     // TODO: Support TBAA for bit fields.
4241     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4242     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4243                                 TBAAAccessInfo());
4244   }
4245 
4246   // Fields of may-alias structures are may-alias themselves.
4247   // FIXME: this should get propagated down through anonymous structs
4248   // and unions.
4249   QualType FieldType = field->getType();
4250   const RecordDecl *rec = field->getParent();
4251   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4252   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4253   TBAAAccessInfo FieldTBAAInfo;
4254   if (base.getTBAAInfo().isMayAlias() ||
4255           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4256     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4257   } else if (rec->isUnion()) {
4258     // TODO: Support TBAA for unions.
4259     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4260   } else {
4261     // If no base type been assigned for the base access, then try to generate
4262     // one for this base lvalue.
4263     FieldTBAAInfo = base.getTBAAInfo();
4264     if (!FieldTBAAInfo.BaseType) {
4265         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4266         assert(!FieldTBAAInfo.Offset &&
4267                "Nonzero offset for an access with no base type!");
4268     }
4269 
4270     // Adjust offset to be relative to the base type.
4271     const ASTRecordLayout &Layout =
4272         getContext().getASTRecordLayout(field->getParent());
4273     unsigned CharWidth = getContext().getCharWidth();
4274     if (FieldTBAAInfo.BaseType)
4275       FieldTBAAInfo.Offset +=
4276           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4277 
4278     // Update the final access type and size.
4279     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4280     FieldTBAAInfo.Size =
4281         getContext().getTypeSizeInChars(FieldType).getQuantity();
4282   }
4283 
4284   Address addr = base.getAddress(*this);
4285   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4286     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4287         ClassDef->isDynamicClass()) {
4288       // Getting to any field of dynamic object requires stripping dynamic
4289       // information provided by invariant.group.  This is because accessing
4290       // fields may leak the real address of dynamic object, which could result
4291       // in miscompilation when leaked pointer would be compared.
4292       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4293       addr = Address(stripped, addr.getAlignment());
4294     }
4295   }
4296 
4297   unsigned RecordCVR = base.getVRQualifiers();
4298   if (rec->isUnion()) {
4299     // For unions, there is no pointer adjustment.
4300     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4301         hasAnyVptr(FieldType, getContext()))
4302       // Because unions can easily skip invariant.barriers, we need to add
4303       // a barrier every time CXXRecord field with vptr is referenced.
4304       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4305                      addr.getAlignment());
4306 
4307     if (IsInPreservedAIRegion ||
4308         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4309       // Remember the original union field index
4310       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4311           rec->getLocation());
4312       addr = Address(
4313           Builder.CreatePreserveUnionAccessIndex(
4314               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4315           addr.getAlignment());
4316     }
4317 
4318     if (FieldType->isReferenceType())
4319       addr = Builder.CreateElementBitCast(
4320           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4321   } else {
4322     if (!IsInPreservedAIRegion &&
4323         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4324       // For structs, we GEP to the field that the record layout suggests.
4325       addr = emitAddrOfFieldStorage(*this, addr, field);
4326     else
4327       // Remember the original struct field index
4328       addr = emitPreserveStructAccess(*this, base, addr, field);
4329   }
4330 
4331   // If this is a reference field, load the reference right now.
4332   if (FieldType->isReferenceType()) {
4333     LValue RefLVal =
4334         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4335     if (RecordCVR & Qualifiers::Volatile)
4336       RefLVal.getQuals().addVolatile();
4337     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4338 
4339     // Qualifiers on the struct don't apply to the referencee.
4340     RecordCVR = 0;
4341     FieldType = FieldType->getPointeeType();
4342   }
4343 
4344   // Make sure that the address is pointing to the right type.  This is critical
4345   // for both unions and structs.  A union needs a bitcast, a struct element
4346   // will need a bitcast if the LLVM type laid out doesn't match the desired
4347   // type.
4348   addr = Builder.CreateElementBitCast(
4349       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4350 
4351   if (field->hasAttr<AnnotateAttr>())
4352     addr = EmitFieldAnnotations(field, addr);
4353 
4354   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4355   LV.getQuals().addCVRQualifiers(RecordCVR);
4356 
4357   // __weak attribute on a field is ignored.
4358   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4359     LV.getQuals().removeObjCGCAttr();
4360 
4361   return LV;
4362 }
4363 
4364 LValue
4365 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4366                                                   const FieldDecl *Field) {
4367   QualType FieldType = Field->getType();
4368 
4369   if (!FieldType->isReferenceType())
4370     return EmitLValueForField(Base, Field);
4371 
4372   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4373 
4374   // Make sure that the address is pointing to the right type.
4375   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4376   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4377 
4378   // TODO: Generate TBAA information that describes this access as a structure
4379   // member access and not just an access to an object of the field's type. This
4380   // should be similar to what we do in EmitLValueForField().
4381   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4382   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4383   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4384   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4385                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4386 }
4387 
4388 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4389   if (E->isFileScope()) {
4390     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4391     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4392   }
4393   if (E->getType()->isVariablyModifiedType())
4394     // make sure to emit the VLA size.
4395     EmitVariablyModifiedType(E->getType());
4396 
4397   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4398   const Expr *InitExpr = E->getInitializer();
4399   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4400 
4401   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4402                    /*Init*/ true);
4403 
4404   // Block-scope compound literals are destroyed at the end of the enclosing
4405   // scope in C.
4406   if (!getLangOpts().CPlusPlus)
4407     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4408       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4409                                   E->getType(), getDestroyer(DtorKind),
4410                                   DtorKind & EHCleanup);
4411 
4412   return Result;
4413 }
4414 
4415 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4416   if (!E->isGLValue())
4417     // Initializing an aggregate temporary in C++11: T{...}.
4418     return EmitAggExprToLValue(E);
4419 
4420   // An lvalue initializer list must be initializing a reference.
4421   assert(E->isTransparent() && "non-transparent glvalue init list");
4422   return EmitLValue(E->getInit(0));
4423 }
4424 
4425 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4426 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4427 /// LValue is returned and the current block has been terminated.
4428 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4429                                                     const Expr *Operand) {
4430   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4431     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4432     return None;
4433   }
4434 
4435   return CGF.EmitLValue(Operand);
4436 }
4437 
4438 LValue CodeGenFunction::
4439 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4440   if (!expr->isGLValue()) {
4441     // ?: here should be an aggregate.
4442     assert(hasAggregateEvaluationKind(expr->getType()) &&
4443            "Unexpected conditional operator!");
4444     return EmitAggExprToLValue(expr);
4445   }
4446 
4447   OpaqueValueMapping binding(*this, expr);
4448 
4449   const Expr *condExpr = expr->getCond();
4450   bool CondExprBool;
4451   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4452     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4453     if (!CondExprBool) std::swap(live, dead);
4454 
4455     if (!ContainsLabel(dead)) {
4456       // If the true case is live, we need to track its region.
4457       if (CondExprBool)
4458         incrementProfileCounter(expr);
4459       // If a throw expression we emit it and return an undefined lvalue
4460       // because it can't be used.
4461       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4462         EmitCXXThrowExpr(ThrowExpr);
4463         llvm::Type *Ty =
4464             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4465         return MakeAddrLValue(
4466             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4467             dead->getType());
4468       }
4469       return EmitLValue(live);
4470     }
4471   }
4472 
4473   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4474   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4475   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4476 
4477   ConditionalEvaluation eval(*this);
4478   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4479 
4480   // Any temporaries created here are conditional.
4481   EmitBlock(lhsBlock);
4482   incrementProfileCounter(expr);
4483   eval.begin(*this);
4484   Optional<LValue> lhs =
4485       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4486   eval.end(*this);
4487 
4488   if (lhs && !lhs->isSimple())
4489     return EmitUnsupportedLValue(expr, "conditional operator");
4490 
4491   lhsBlock = Builder.GetInsertBlock();
4492   if (lhs)
4493     Builder.CreateBr(contBlock);
4494 
4495   // Any temporaries created here are conditional.
4496   EmitBlock(rhsBlock);
4497   eval.begin(*this);
4498   Optional<LValue> rhs =
4499       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4500   eval.end(*this);
4501   if (rhs && !rhs->isSimple())
4502     return EmitUnsupportedLValue(expr, "conditional operator");
4503   rhsBlock = Builder.GetInsertBlock();
4504 
4505   EmitBlock(contBlock);
4506 
4507   if (lhs && rhs) {
4508     llvm::PHINode *phi =
4509         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4510     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4511     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4512     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4513     AlignmentSource alignSource =
4514       std::max(lhs->getBaseInfo().getAlignmentSource(),
4515                rhs->getBaseInfo().getAlignmentSource());
4516     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4517         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4518     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4519                           TBAAInfo);
4520   } else {
4521     assert((lhs || rhs) &&
4522            "both operands of glvalue conditional are throw-expressions?");
4523     return lhs ? *lhs : *rhs;
4524   }
4525 }
4526 
4527 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4528 /// type. If the cast is to a reference, we can have the usual lvalue result,
4529 /// otherwise if a cast is needed by the code generator in an lvalue context,
4530 /// then it must mean that we need the address of an aggregate in order to
4531 /// access one of its members.  This can happen for all the reasons that casts
4532 /// are permitted with aggregate result, including noop aggregate casts, and
4533 /// cast from scalar to union.
4534 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4535   switch (E->getCastKind()) {
4536   case CK_ToVoid:
4537   case CK_BitCast:
4538   case CK_LValueToRValueBitCast:
4539   case CK_ArrayToPointerDecay:
4540   case CK_FunctionToPointerDecay:
4541   case CK_NullToMemberPointer:
4542   case CK_NullToPointer:
4543   case CK_IntegralToPointer:
4544   case CK_PointerToIntegral:
4545   case CK_PointerToBoolean:
4546   case CK_VectorSplat:
4547   case CK_IntegralCast:
4548   case CK_BooleanToSignedIntegral:
4549   case CK_IntegralToBoolean:
4550   case CK_IntegralToFloating:
4551   case CK_FloatingToIntegral:
4552   case CK_FloatingToBoolean:
4553   case CK_FloatingCast:
4554   case CK_FloatingRealToComplex:
4555   case CK_FloatingComplexToReal:
4556   case CK_FloatingComplexToBoolean:
4557   case CK_FloatingComplexCast:
4558   case CK_FloatingComplexToIntegralComplex:
4559   case CK_IntegralRealToComplex:
4560   case CK_IntegralComplexToReal:
4561   case CK_IntegralComplexToBoolean:
4562   case CK_IntegralComplexCast:
4563   case CK_IntegralComplexToFloatingComplex:
4564   case CK_DerivedToBaseMemberPointer:
4565   case CK_BaseToDerivedMemberPointer:
4566   case CK_MemberPointerToBoolean:
4567   case CK_ReinterpretMemberPointer:
4568   case CK_AnyPointerToBlockPointerCast:
4569   case CK_ARCProduceObject:
4570   case CK_ARCConsumeObject:
4571   case CK_ARCReclaimReturnedObject:
4572   case CK_ARCExtendBlockObject:
4573   case CK_CopyAndAutoreleaseBlockObject:
4574   case CK_IntToOCLSampler:
4575   case CK_FixedPointCast:
4576   case CK_FixedPointToBoolean:
4577   case CK_FixedPointToIntegral:
4578   case CK_IntegralToFixedPoint:
4579     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4580 
4581   case CK_Dependent:
4582     llvm_unreachable("dependent cast kind in IR gen!");
4583 
4584   case CK_BuiltinFnToFnPtr:
4585     llvm_unreachable("builtin functions are handled elsewhere");
4586 
4587   // These are never l-values; just use the aggregate emission code.
4588   case CK_NonAtomicToAtomic:
4589   case CK_AtomicToNonAtomic:
4590     return EmitAggExprToLValue(E);
4591 
4592   case CK_Dynamic: {
4593     LValue LV = EmitLValue(E->getSubExpr());
4594     Address V = LV.getAddress(*this);
4595     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4596     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4597   }
4598 
4599   case CK_ConstructorConversion:
4600   case CK_UserDefinedConversion:
4601   case CK_CPointerToObjCPointerCast:
4602   case CK_BlockPointerToObjCPointerCast:
4603   case CK_NoOp:
4604   case CK_LValueToRValue:
4605     return EmitLValue(E->getSubExpr());
4606 
4607   case CK_UncheckedDerivedToBase:
4608   case CK_DerivedToBase: {
4609     const auto *DerivedClassTy =
4610         E->getSubExpr()->getType()->castAs<RecordType>();
4611     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4612 
4613     LValue LV = EmitLValue(E->getSubExpr());
4614     Address This = LV.getAddress(*this);
4615 
4616     // Perform the derived-to-base conversion
4617     Address Base = GetAddressOfBaseClass(
4618         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4619         /*NullCheckValue=*/false, E->getExprLoc());
4620 
4621     // TODO: Support accesses to members of base classes in TBAA. For now, we
4622     // conservatively pretend that the complete object is of the base class
4623     // type.
4624     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4625                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4626   }
4627   case CK_ToUnion:
4628     return EmitAggExprToLValue(E);
4629   case CK_BaseToDerived: {
4630     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4631     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4632 
4633     LValue LV = EmitLValue(E->getSubExpr());
4634 
4635     // Perform the base-to-derived conversion
4636     Address Derived = GetAddressOfDerivedClass(
4637         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4638         /*NullCheckValue=*/false);
4639 
4640     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4641     // performed and the object is not of the derived type.
4642     if (sanitizePerformTypeCheck())
4643       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4644                     Derived.getPointer(), E->getType());
4645 
4646     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4647       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4648                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4649                                 E->getBeginLoc());
4650 
4651     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4652                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4653   }
4654   case CK_LValueBitCast: {
4655     // This must be a reinterpret_cast (or c-style equivalent).
4656     const auto *CE = cast<ExplicitCastExpr>(E);
4657 
4658     CGM.EmitExplicitCastExprType(CE, this);
4659     LValue LV = EmitLValue(E->getSubExpr());
4660     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4661                                       ConvertType(CE->getTypeAsWritten()));
4662 
4663     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4664       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4665                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4666                                 E->getBeginLoc());
4667 
4668     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4669                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4670   }
4671   case CK_AddressSpaceConversion: {
4672     LValue LV = EmitLValue(E->getSubExpr());
4673     QualType DestTy = getContext().getPointerType(E->getType());
4674     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4675         *this, LV.getPointer(*this),
4676         E->getSubExpr()->getType().getAddressSpace(),
4677         E->getType().getAddressSpace(), ConvertType(DestTy));
4678     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4679                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4680   }
4681   case CK_ObjCObjectLValueCast: {
4682     LValue LV = EmitLValue(E->getSubExpr());
4683     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4684                                              ConvertType(E->getType()));
4685     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4686                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4687   }
4688   case CK_ZeroToOCLOpaqueType:
4689     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4690   }
4691 
4692   llvm_unreachable("Unhandled lvalue cast kind?");
4693 }
4694 
4695 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4696   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4697   return getOrCreateOpaqueLValueMapping(e);
4698 }
4699 
4700 LValue
4701 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4702   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4703 
4704   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4705       it = OpaqueLValues.find(e);
4706 
4707   if (it != OpaqueLValues.end())
4708     return it->second;
4709 
4710   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4711   return EmitLValue(e->getSourceExpr());
4712 }
4713 
4714 RValue
4715 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4716   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4717 
4718   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4719       it = OpaqueRValues.find(e);
4720 
4721   if (it != OpaqueRValues.end())
4722     return it->second;
4723 
4724   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4725   return EmitAnyExpr(e->getSourceExpr());
4726 }
4727 
4728 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4729                                            const FieldDecl *FD,
4730                                            SourceLocation Loc) {
4731   QualType FT = FD->getType();
4732   LValue FieldLV = EmitLValueForField(LV, FD);
4733   switch (getEvaluationKind(FT)) {
4734   case TEK_Complex:
4735     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4736   case TEK_Aggregate:
4737     return FieldLV.asAggregateRValue(*this);
4738   case TEK_Scalar:
4739     // This routine is used to load fields one-by-one to perform a copy, so
4740     // don't load reference fields.
4741     if (FD->getType()->isReferenceType())
4742       return RValue::get(FieldLV.getPointer(*this));
4743     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4744     // primitive load.
4745     if (FieldLV.isBitField())
4746       return EmitLoadOfLValue(FieldLV, Loc);
4747     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4748   }
4749   llvm_unreachable("bad evaluation kind");
4750 }
4751 
4752 //===--------------------------------------------------------------------===//
4753 //                             Expression Emission
4754 //===--------------------------------------------------------------------===//
4755 
4756 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4757                                      ReturnValueSlot ReturnValue) {
4758   // Builtins never have block type.
4759   if (E->getCallee()->getType()->isBlockPointerType())
4760     return EmitBlockCallExpr(E, ReturnValue);
4761 
4762   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4763     return EmitCXXMemberCallExpr(CE, ReturnValue);
4764 
4765   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4766     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4767 
4768   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4769     if (const CXXMethodDecl *MD =
4770           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4771       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4772 
4773   CGCallee callee = EmitCallee(E->getCallee());
4774 
4775   if (callee.isBuiltin()) {
4776     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4777                            E, ReturnValue);
4778   }
4779 
4780   if (callee.isPseudoDestructor()) {
4781     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4782   }
4783 
4784   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4785 }
4786 
4787 /// Emit a CallExpr without considering whether it might be a subclass.
4788 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4789                                            ReturnValueSlot ReturnValue) {
4790   CGCallee Callee = EmitCallee(E->getCallee());
4791   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4792 }
4793 
4794 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4795   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4796 
4797   if (auto builtinID = FD->getBuiltinID()) {
4798     // Replaceable builtin provide their own implementation of a builtin. Unless
4799     // we are in the builtin implementation itself, don't call the actual
4800     // builtin. If we are in the builtin implementation, avoid trivial infinite
4801     // recursion.
4802     if (!FD->isInlineBuiltinDeclaration() ||
4803         CGF.CurFn->getName() == FD->getName())
4804       return CGCallee::forBuiltin(builtinID, FD);
4805   }
4806 
4807   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4808   return CGCallee::forDirect(calleePtr, GD);
4809 }
4810 
4811 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4812   E = E->IgnoreParens();
4813 
4814   // Look through function-to-pointer decay.
4815   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4816     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4817         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4818       return EmitCallee(ICE->getSubExpr());
4819     }
4820 
4821   // Resolve direct calls.
4822   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4823     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4824       return EmitDirectCallee(*this, FD);
4825     }
4826   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4827     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4828       EmitIgnoredExpr(ME->getBase());
4829       return EmitDirectCallee(*this, FD);
4830     }
4831 
4832   // Look through template substitutions.
4833   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4834     return EmitCallee(NTTP->getReplacement());
4835 
4836   // Treat pseudo-destructor calls differently.
4837   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4838     return CGCallee::forPseudoDestructor(PDE);
4839   }
4840 
4841   // Otherwise, we have an indirect reference.
4842   llvm::Value *calleePtr;
4843   QualType functionType;
4844   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4845     calleePtr = EmitScalarExpr(E);
4846     functionType = ptrType->getPointeeType();
4847   } else {
4848     functionType = E->getType();
4849     calleePtr = EmitLValue(E).getPointer(*this);
4850   }
4851   assert(functionType->isFunctionType());
4852 
4853   GlobalDecl GD;
4854   if (const auto *VD =
4855           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4856     GD = GlobalDecl(VD);
4857 
4858   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4859   CGCallee callee(calleeInfo, calleePtr);
4860   return callee;
4861 }
4862 
4863 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4864   // Comma expressions just emit their LHS then their RHS as an l-value.
4865   if (E->getOpcode() == BO_Comma) {
4866     EmitIgnoredExpr(E->getLHS());
4867     EnsureInsertPoint();
4868     return EmitLValue(E->getRHS());
4869   }
4870 
4871   if (E->getOpcode() == BO_PtrMemD ||
4872       E->getOpcode() == BO_PtrMemI)
4873     return EmitPointerToDataMemberBinaryExpr(E);
4874 
4875   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4876 
4877   // Note that in all of these cases, __block variables need the RHS
4878   // evaluated first just in case the variable gets moved by the RHS.
4879 
4880   switch (getEvaluationKind(E->getType())) {
4881   case TEK_Scalar: {
4882     switch (E->getLHS()->getType().getObjCLifetime()) {
4883     case Qualifiers::OCL_Strong:
4884       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4885 
4886     case Qualifiers::OCL_Autoreleasing:
4887       return EmitARCStoreAutoreleasing(E).first;
4888 
4889     // No reason to do any of these differently.
4890     case Qualifiers::OCL_None:
4891     case Qualifiers::OCL_ExplicitNone:
4892     case Qualifiers::OCL_Weak:
4893       break;
4894     }
4895 
4896     RValue RV = EmitAnyExpr(E->getRHS());
4897     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4898     if (RV.isScalar())
4899       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4900     EmitStoreThroughLValue(RV, LV);
4901     if (getLangOpts().OpenMP)
4902       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4903                                                                 E->getLHS());
4904     return LV;
4905   }
4906 
4907   case TEK_Complex:
4908     return EmitComplexAssignmentLValue(E);
4909 
4910   case TEK_Aggregate:
4911     return EmitAggExprToLValue(E);
4912   }
4913   llvm_unreachable("bad evaluation kind");
4914 }
4915 
4916 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4917   RValue RV = EmitCallExpr(E);
4918 
4919   if (!RV.isScalar())
4920     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4921                           AlignmentSource::Decl);
4922 
4923   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4924          "Can't have a scalar return unless the return type is a "
4925          "reference type!");
4926 
4927   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4928 }
4929 
4930 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4931   // FIXME: This shouldn't require another copy.
4932   return EmitAggExprToLValue(E);
4933 }
4934 
4935 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4936   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4937          && "binding l-value to type which needs a temporary");
4938   AggValueSlot Slot = CreateAggTemp(E->getType());
4939   EmitCXXConstructExpr(E, Slot);
4940   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4941 }
4942 
4943 LValue
4944 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4945   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4946 }
4947 
4948 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4949   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
4950                                       ConvertType(E->getType()));
4951 }
4952 
4953 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4954   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4955                         AlignmentSource::Decl);
4956 }
4957 
4958 LValue
4959 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4960   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4961   Slot.setExternallyDestructed();
4962   EmitAggExpr(E->getSubExpr(), Slot);
4963   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4964   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4965 }
4966 
4967 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4968   RValue RV = EmitObjCMessageExpr(E);
4969 
4970   if (!RV.isScalar())
4971     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4972                           AlignmentSource::Decl);
4973 
4974   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4975          "Can't have a scalar return unless the return type is a "
4976          "reference type!");
4977 
4978   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4979 }
4980 
4981 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4982   Address V =
4983     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4984   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4985 }
4986 
4987 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4988                                              const ObjCIvarDecl *Ivar) {
4989   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4990 }
4991 
4992 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4993                                           llvm::Value *BaseValue,
4994                                           const ObjCIvarDecl *Ivar,
4995                                           unsigned CVRQualifiers) {
4996   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4997                                                    Ivar, CVRQualifiers);
4998 }
4999 
5000 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5001   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5002   llvm::Value *BaseValue = nullptr;
5003   const Expr *BaseExpr = E->getBase();
5004   Qualifiers BaseQuals;
5005   QualType ObjectTy;
5006   if (E->isArrow()) {
5007     BaseValue = EmitScalarExpr(BaseExpr);
5008     ObjectTy = BaseExpr->getType()->getPointeeType();
5009     BaseQuals = ObjectTy.getQualifiers();
5010   } else {
5011     LValue BaseLV = EmitLValue(BaseExpr);
5012     BaseValue = BaseLV.getPointer(*this);
5013     ObjectTy = BaseExpr->getType();
5014     BaseQuals = ObjectTy.getQualifiers();
5015   }
5016 
5017   LValue LV =
5018     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5019                       BaseQuals.getCVRQualifiers());
5020   setObjCGCLValueClass(getContext(), E, LV);
5021   return LV;
5022 }
5023 
5024 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5025   // Can only get l-value for message expression returning aggregate type
5026   RValue RV = EmitAnyExprToTemp(E);
5027   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5028                         AlignmentSource::Decl);
5029 }
5030 
5031 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5032                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5033                                  llvm::Value *Chain) {
5034   // Get the actual function type. The callee type will always be a pointer to
5035   // function type or a block pointer type.
5036   assert(CalleeType->isFunctionPointerType() &&
5037          "Call must have function pointer type!");
5038 
5039   const Decl *TargetDecl =
5040       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5041 
5042   CalleeType = getContext().getCanonicalType(CalleeType);
5043 
5044   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5045 
5046   CGCallee Callee = OrigCallee;
5047 
5048   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5049       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5050     if (llvm::Constant *PrefixSig =
5051             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5052       SanitizerScope SanScope(this);
5053       // Remove any (C++17) exception specifications, to allow calling e.g. a
5054       // noexcept function through a non-noexcept pointer.
5055       auto ProtoTy =
5056         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5057       llvm::Constant *FTRTTIConst =
5058           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5059       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
5060       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5061           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
5062 
5063       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5064 
5065       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5066           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5067       llvm::Value *CalleeSigPtr =
5068           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5069       llvm::Value *CalleeSig =
5070           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5071       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5072 
5073       llvm::BasicBlock *Cont = createBasicBlock("cont");
5074       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5075       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5076 
5077       EmitBlock(TypeCheck);
5078       llvm::Value *CalleeRTTIPtr =
5079           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5080       llvm::Value *CalleeRTTIEncoded =
5081           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5082       llvm::Value *CalleeRTTI =
5083           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5084       llvm::Value *CalleeRTTIMatch =
5085           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5086       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5087                                       EmitCheckTypeDescriptor(CalleeType)};
5088       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5089                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5090                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5091 
5092       Builder.CreateBr(Cont);
5093       EmitBlock(Cont);
5094     }
5095   }
5096 
5097   const auto *FnType = cast<FunctionType>(PointeeType);
5098 
5099   // If we are checking indirect calls and this call is indirect, check that the
5100   // function pointer is a member of the bit set for the function type.
5101   if (SanOpts.has(SanitizerKind::CFIICall) &&
5102       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5103     SanitizerScope SanScope(this);
5104     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5105 
5106     llvm::Metadata *MD;
5107     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5108       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5109     else
5110       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5111 
5112     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5113 
5114     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5115     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5116     llvm::Value *TypeTest = Builder.CreateCall(
5117         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5118 
5119     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5120     llvm::Constant *StaticData[] = {
5121         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5122         EmitCheckSourceLocation(E->getBeginLoc()),
5123         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5124     };
5125     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5126       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5127                            CastedCallee, StaticData);
5128     } else {
5129       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5130                 SanitizerHandler::CFICheckFail, StaticData,
5131                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5132     }
5133   }
5134 
5135   CallArgList Args;
5136   if (Chain)
5137     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5138              CGM.getContext().VoidPtrTy);
5139 
5140   // C++17 requires that we evaluate arguments to a call using assignment syntax
5141   // right-to-left, and that we evaluate arguments to certain other operators
5142   // left-to-right. Note that we allow this to override the order dictated by
5143   // the calling convention on the MS ABI, which means that parameter
5144   // destruction order is not necessarily reverse construction order.
5145   // FIXME: Revisit this based on C++ committee response to unimplementability.
5146   EvaluationOrder Order = EvaluationOrder::Default;
5147   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5148     if (OCE->isAssignmentOp())
5149       Order = EvaluationOrder::ForceRightToLeft;
5150     else {
5151       switch (OCE->getOperator()) {
5152       case OO_LessLess:
5153       case OO_GreaterGreater:
5154       case OO_AmpAmp:
5155       case OO_PipePipe:
5156       case OO_Comma:
5157       case OO_ArrowStar:
5158         Order = EvaluationOrder::ForceLeftToRight;
5159         break;
5160       default:
5161         break;
5162       }
5163     }
5164   }
5165 
5166   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5167                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5168 
5169   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5170       Args, FnType, /*ChainCall=*/Chain);
5171 
5172   // C99 6.5.2.2p6:
5173   //   If the expression that denotes the called function has a type
5174   //   that does not include a prototype, [the default argument
5175   //   promotions are performed]. If the number of arguments does not
5176   //   equal the number of parameters, the behavior is undefined. If
5177   //   the function is defined with a type that includes a prototype,
5178   //   and either the prototype ends with an ellipsis (, ...) or the
5179   //   types of the arguments after promotion are not compatible with
5180   //   the types of the parameters, the behavior is undefined. If the
5181   //   function is defined with a type that does not include a
5182   //   prototype, and the types of the arguments after promotion are
5183   //   not compatible with those of the parameters after promotion,
5184   //   the behavior is undefined [except in some trivial cases].
5185   // That is, in the general case, we should assume that a call
5186   // through an unprototyped function type works like a *non-variadic*
5187   // call.  The way we make this work is to cast to the exact type
5188   // of the promoted arguments.
5189   //
5190   // Chain calls use this same code path to add the invisible chain parameter
5191   // to the function type.
5192   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5193     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5194     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5195     CalleeTy = CalleeTy->getPointerTo(AS);
5196 
5197     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5198     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5199     Callee.setFunctionPointer(CalleePtr);
5200   }
5201 
5202   llvm::CallBase *CallOrInvoke = nullptr;
5203   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5204                          E->getExprLoc());
5205 
5206   // Generate function declaration DISuprogram in order to be used
5207   // in debug info about call sites.
5208   if (CGDebugInfo *DI = getDebugInfo()) {
5209     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5210       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5211                                   CalleeDecl);
5212   }
5213 
5214   return Call;
5215 }
5216 
5217 LValue CodeGenFunction::
5218 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5219   Address BaseAddr = Address::invalid();
5220   if (E->getOpcode() == BO_PtrMemI) {
5221     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5222   } else {
5223     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5224   }
5225 
5226   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5227   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5228 
5229   LValueBaseInfo BaseInfo;
5230   TBAAAccessInfo TBAAInfo;
5231   Address MemberAddr =
5232     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5233                                     &TBAAInfo);
5234 
5235   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5236 }
5237 
5238 /// Given the address of a temporary variable, produce an r-value of
5239 /// its type.
5240 RValue CodeGenFunction::convertTempToRValue(Address addr,
5241                                             QualType type,
5242                                             SourceLocation loc) {
5243   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5244   switch (getEvaluationKind(type)) {
5245   case TEK_Complex:
5246     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5247   case TEK_Aggregate:
5248     return lvalue.asAggregateRValue(*this);
5249   case TEK_Scalar:
5250     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5251   }
5252   llvm_unreachable("bad evaluation kind");
5253 }
5254 
5255 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5256   assert(Val->getType()->isFPOrFPVectorTy());
5257   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5258     return;
5259 
5260   llvm::MDBuilder MDHelper(getLLVMContext());
5261   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5262 
5263   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5264 }
5265 
5266 namespace {
5267   struct LValueOrRValue {
5268     LValue LV;
5269     RValue RV;
5270   };
5271 }
5272 
5273 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5274                                            const PseudoObjectExpr *E,
5275                                            bool forLValue,
5276                                            AggValueSlot slot) {
5277   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5278 
5279   // Find the result expression, if any.
5280   const Expr *resultExpr = E->getResultExpr();
5281   LValueOrRValue result;
5282 
5283   for (PseudoObjectExpr::const_semantics_iterator
5284          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5285     const Expr *semantic = *i;
5286 
5287     // If this semantic expression is an opaque value, bind it
5288     // to the result of its source expression.
5289     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5290       // Skip unique OVEs.
5291       if (ov->isUnique()) {
5292         assert(ov != resultExpr &&
5293                "A unique OVE cannot be used as the result expression");
5294         continue;
5295       }
5296 
5297       // If this is the result expression, we may need to evaluate
5298       // directly into the slot.
5299       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5300       OVMA opaqueData;
5301       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5302           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5303         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5304         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5305                                        AlignmentSource::Decl);
5306         opaqueData = OVMA::bind(CGF, ov, LV);
5307         result.RV = slot.asRValue();
5308 
5309       // Otherwise, emit as normal.
5310       } else {
5311         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5312 
5313         // If this is the result, also evaluate the result now.
5314         if (ov == resultExpr) {
5315           if (forLValue)
5316             result.LV = CGF.EmitLValue(ov);
5317           else
5318             result.RV = CGF.EmitAnyExpr(ov, slot);
5319         }
5320       }
5321 
5322       opaques.push_back(opaqueData);
5323 
5324     // Otherwise, if the expression is the result, evaluate it
5325     // and remember the result.
5326     } else if (semantic == resultExpr) {
5327       if (forLValue)
5328         result.LV = CGF.EmitLValue(semantic);
5329       else
5330         result.RV = CGF.EmitAnyExpr(semantic, slot);
5331 
5332     // Otherwise, evaluate the expression in an ignored context.
5333     } else {
5334       CGF.EmitIgnoredExpr(semantic);
5335     }
5336   }
5337 
5338   // Unbind all the opaques now.
5339   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5340     opaques[i].unbind(CGF);
5341 
5342   return result;
5343 }
5344 
5345 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5346                                                AggValueSlot slot) {
5347   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5348 }
5349 
5350 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5351   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5352 }
5353