1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtCXX.h" 19 #include "clang/AST/StmtObjC.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Intrinsics.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) { 27 // void *__cxa_allocate_exception(size_t thrown_size); 28 29 llvm::FunctionType *FTy = 30 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false); 31 32 return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 33 } 34 35 static llvm::Constant *getFreeExceptionFn(CodeGenModule &CGM) { 36 // void __cxa_free_exception(void *thrown_exception); 37 38 llvm::FunctionType *FTy = 39 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 40 41 return CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 42 } 43 44 static llvm::Constant *getThrowFn(CodeGenModule &CGM) { 45 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 46 // void (*dest) (void *)); 47 48 llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy }; 49 llvm::FunctionType *FTy = 50 llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false); 51 52 return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 53 } 54 55 static llvm::Constant *getReThrowFn(CodeGenModule &CGM) { 56 // void __cxa_rethrow(); 57 58 llvm::FunctionType *FTy = 59 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 60 61 return CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 62 } 63 64 static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) { 65 // void *__cxa_get_exception_ptr(void*); 66 67 llvm::FunctionType *FTy = 68 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 69 70 return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 71 } 72 73 static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) { 74 // void *__cxa_begin_catch(void*); 75 76 llvm::FunctionType *FTy = 77 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 78 79 return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 80 } 81 82 static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) { 83 // void __cxa_end_catch(); 84 85 llvm::FunctionType *FTy = 86 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 87 88 return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 89 } 90 91 static llvm::Constant *getUnexpectedFn(CodeGenModule &CGM) { 92 // void __cxa_call_unexpected(void *thrown_exception); 93 94 llvm::FunctionType *FTy = 95 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 96 97 return CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 98 } 99 100 llvm::Constant *CodeGenFunction::getUnwindResumeFn() { 101 llvm::FunctionType *FTy = 102 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 103 104 if (CGM.getLangOpts().SjLjExceptions) 105 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); 106 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); 107 } 108 109 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 110 llvm::FunctionType *FTy = 111 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 112 113 if (CGM.getLangOpts().SjLjExceptions) 114 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 115 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 116 } 117 118 static llvm::Constant *getTerminateFn(CodeGenModule &CGM) { 119 // void __terminate(); 120 121 llvm::FunctionType *FTy = 122 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 123 124 StringRef name; 125 126 // In C++, use std::terminate(). 127 if (CGM.getLangOpts().CPlusPlus) 128 name = "_ZSt9terminatev"; // FIXME: mangling! 129 else if (CGM.getLangOpts().ObjC1 && 130 CGM.getLangOpts().ObjCRuntime.hasTerminate()) 131 name = "objc_terminate"; 132 else 133 name = "abort"; 134 return CGM.CreateRuntimeFunction(FTy, name); 135 } 136 137 static llvm::Constant *getCatchallRethrowFn(CodeGenModule &CGM, 138 StringRef Name) { 139 llvm::FunctionType *FTy = 140 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 141 142 return CGM.CreateRuntimeFunction(FTy, Name); 143 } 144 145 namespace { 146 /// The exceptions personality for a function. 147 struct EHPersonality { 148 const char *PersonalityFn; 149 150 // If this is non-null, this personality requires a non-standard 151 // function for rethrowing an exception after a catchall cleanup. 152 // This function must have prototype void(void*). 153 const char *CatchallRethrowFn; 154 155 static const EHPersonality &get(const LangOptions &Lang); 156 static const EHPersonality GNU_C; 157 static const EHPersonality GNU_C_SJLJ; 158 static const EHPersonality GNU_ObjC; 159 static const EHPersonality GNUstep_ObjC; 160 static const EHPersonality GNU_ObjCXX; 161 static const EHPersonality NeXT_ObjC; 162 static const EHPersonality GNU_CPlusPlus; 163 static const EHPersonality GNU_CPlusPlus_SJLJ; 164 }; 165 } 166 167 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 }; 168 const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 }; 169 const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 }; 170 const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0}; 171 const EHPersonality 172 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 }; 173 const EHPersonality 174 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; 175 const EHPersonality 176 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 }; 177 const EHPersonality 178 EHPersonality::GNUstep_ObjC = { "__gnustep_objc_personality_v0", 0 }; 179 180 static const EHPersonality &getCPersonality(const LangOptions &L) { 181 if (L.SjLjExceptions) 182 return EHPersonality::GNU_C_SJLJ; 183 return EHPersonality::GNU_C; 184 } 185 186 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 187 switch (L.ObjCRuntime.getKind()) { 188 case ObjCRuntime::FragileMacOSX: 189 return getCPersonality(L); 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 return EHPersonality::NeXT_ObjC; 193 case ObjCRuntime::GNUstep: 194 if (L.ObjCRuntime.getVersion() >= VersionTuple(1, 7)) 195 return EHPersonality::GNUstep_ObjC; 196 // fallthrough 197 case ObjCRuntime::GCC: 198 case ObjCRuntime::ObjFW: 199 return EHPersonality::GNU_ObjC; 200 } 201 llvm_unreachable("bad runtime kind"); 202 } 203 204 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 205 if (L.SjLjExceptions) 206 return EHPersonality::GNU_CPlusPlus_SJLJ; 207 else 208 return EHPersonality::GNU_CPlusPlus; 209 } 210 211 /// Determines the personality function to use when both C++ 212 /// and Objective-C exceptions are being caught. 213 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 214 switch (L.ObjCRuntime.getKind()) { 215 // The ObjC personality defers to the C++ personality for non-ObjC 216 // handlers. Unlike the C++ case, we use the same personality 217 // function on targets using (backend-driven) SJLJ EH. 218 case ObjCRuntime::MacOSX: 219 case ObjCRuntime::iOS: 220 return EHPersonality::NeXT_ObjC; 221 222 // In the fragile ABI, just use C++ exception handling and hope 223 // they're not doing crazy exception mixing. 224 case ObjCRuntime::FragileMacOSX: 225 return getCXXPersonality(L); 226 227 // The GCC runtime's personality function inherently doesn't support 228 // mixed EH. Use the C++ personality just to avoid returning null. 229 case ObjCRuntime::GCC: 230 case ObjCRuntime::ObjFW: // XXX: this will change soon 231 return EHPersonality::GNU_ObjC; 232 case ObjCRuntime::GNUstep: 233 return EHPersonality::GNU_ObjCXX; 234 } 235 llvm_unreachable("bad runtime kind"); 236 } 237 238 const EHPersonality &EHPersonality::get(const LangOptions &L) { 239 if (L.CPlusPlus && L.ObjC1) 240 return getObjCXXPersonality(L); 241 else if (L.CPlusPlus) 242 return getCXXPersonality(L); 243 else if (L.ObjC1) 244 return getObjCPersonality(L); 245 else 246 return getCPersonality(L); 247 } 248 249 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 250 const EHPersonality &Personality) { 251 llvm::Constant *Fn = 252 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), 253 Personality.PersonalityFn); 254 return Fn; 255 } 256 257 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 258 const EHPersonality &Personality) { 259 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 260 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 261 } 262 263 /// Check whether a personality function could reasonably be swapped 264 /// for a C++ personality function. 265 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 266 for (llvm::User *U : Fn->users()) { 267 // Conditionally white-list bitcasts. 268 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(U)) { 269 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 270 if (!PersonalityHasOnlyCXXUses(CE)) 271 return false; 272 continue; 273 } 274 275 // Otherwise, it has to be a landingpad instruction. 276 llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(U); 277 if (!LPI) return false; 278 279 for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { 280 // Look for something that would've been returned by the ObjC 281 // runtime's GetEHType() method. 282 llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); 283 if (LPI->isCatch(I)) { 284 // Check if the catch value has the ObjC prefix. 285 if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) 286 // ObjC EH selector entries are always global variables with 287 // names starting like this. 288 if (GV->getName().startswith("OBJC_EHTYPE")) 289 return false; 290 } else { 291 // Check if any of the filter values have the ObjC prefix. 292 llvm::Constant *CVal = cast<llvm::Constant>(Val); 293 for (llvm::User::op_iterator 294 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { 295 if (llvm::GlobalVariable *GV = 296 cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) 297 // ObjC EH selector entries are always global variables with 298 // names starting like this. 299 if (GV->getName().startswith("OBJC_EHTYPE")) 300 return false; 301 } 302 } 303 } 304 } 305 306 return true; 307 } 308 309 /// Try to use the C++ personality function in ObjC++. Not doing this 310 /// can cause some incompatibilities with gcc, which is more 311 /// aggressive about only using the ObjC++ personality in a function 312 /// when it really needs it. 313 void CodeGenModule::SimplifyPersonality() { 314 // If we're not in ObjC++ -fexceptions, there's nothing to do. 315 if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) 316 return; 317 318 // Both the problem this endeavors to fix and the way the logic 319 // above works is specific to the NeXT runtime. 320 if (!LangOpts.ObjCRuntime.isNeXTFamily()) 321 return; 322 323 const EHPersonality &ObjCXX = EHPersonality::get(LangOpts); 324 const EHPersonality &CXX = getCXXPersonality(LangOpts); 325 if (&ObjCXX == &CXX) 326 return; 327 328 assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && 329 "Different EHPersonalities using the same personality function."); 330 331 llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); 332 333 // Nothing to do if it's unused. 334 if (!Fn || Fn->use_empty()) return; 335 336 // Can't do the optimization if it has non-C++ uses. 337 if (!PersonalityHasOnlyCXXUses(Fn)) return; 338 339 // Create the C++ personality function and kill off the old 340 // function. 341 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 342 343 // This can happen if the user is screwing with us. 344 if (Fn->getType() != CXXFn->getType()) return; 345 346 Fn->replaceAllUsesWith(CXXFn); 347 Fn->eraseFromParent(); 348 } 349 350 /// Returns the value to inject into a selector to indicate the 351 /// presence of a catch-all. 352 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 353 // Possibly we should use @llvm.eh.catch.all.value here. 354 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 355 } 356 357 namespace { 358 /// A cleanup to free the exception object if its initialization 359 /// throws. 360 struct FreeException : EHScopeStack::Cleanup { 361 llvm::Value *exn; 362 FreeException(llvm::Value *exn) : exn(exn) {} 363 void Emit(CodeGenFunction &CGF, Flags flags) override { 364 CGF.EmitNounwindRuntimeCall(getFreeExceptionFn(CGF.CGM), exn); 365 } 366 }; 367 } 368 369 // Emits an exception expression into the given location. This 370 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 371 // call is required, an exception within that copy ctor causes 372 // std::terminate to be invoked. 373 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 374 llvm::Value *addr) { 375 // Make sure the exception object is cleaned up if there's an 376 // exception during initialization. 377 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 378 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 379 380 // __cxa_allocate_exception returns a void*; we need to cast this 381 // to the appropriate type for the object. 382 llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 383 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 384 385 // FIXME: this isn't quite right! If there's a final unelided call 386 // to a copy constructor, then according to [except.terminate]p1 we 387 // must call std::terminate() if that constructor throws, because 388 // technically that copy occurs after the exception expression is 389 // evaluated but before the exception is caught. But the best way 390 // to handle that is to teach EmitAggExpr to do the final copy 391 // differently if it can't be elided. 392 CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), 393 /*IsInit*/ true); 394 395 // Deactivate the cleanup block. 396 CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); 397 } 398 399 llvm::Value *CodeGenFunction::getExceptionSlot() { 400 if (!ExceptionSlot) 401 ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); 402 return ExceptionSlot; 403 } 404 405 llvm::Value *CodeGenFunction::getEHSelectorSlot() { 406 if (!EHSelectorSlot) 407 EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); 408 return EHSelectorSlot; 409 } 410 411 llvm::Value *CodeGenFunction::getExceptionFromSlot() { 412 return Builder.CreateLoad(getExceptionSlot(), "exn"); 413 } 414 415 llvm::Value *CodeGenFunction::getSelectorFromSlot() { 416 return Builder.CreateLoad(getEHSelectorSlot(), "sel"); 417 } 418 419 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E, 420 bool KeepInsertionPoint) { 421 if (CGM.getTarget().getTriple().isWindowsMSVCEnvironment()) { 422 ErrorUnsupported(E, "throw expression"); 423 return; 424 } 425 426 if (!E->getSubExpr()) { 427 EmitNoreturnRuntimeCallOrInvoke(getReThrowFn(CGM), 428 ArrayRef<llvm::Value*>()); 429 430 // throw is an expression, and the expression emitters expect us 431 // to leave ourselves at a valid insertion point. 432 if (KeepInsertionPoint) 433 EmitBlock(createBasicBlock("throw.cont")); 434 435 return; 436 } 437 438 QualType ThrowType = E->getSubExpr()->getType(); 439 440 if (ThrowType->isObjCObjectPointerType()) { 441 const Stmt *ThrowStmt = E->getSubExpr(); 442 const ObjCAtThrowStmt S(E->getExprLoc(), 443 const_cast<Stmt *>(ThrowStmt)); 444 CGM.getObjCRuntime().EmitThrowStmt(*this, S, false); 445 // This will clear insertion point which was not cleared in 446 // call to EmitThrowStmt. 447 if (KeepInsertionPoint) 448 EmitBlock(createBasicBlock("throw.cont")); 449 return; 450 } 451 452 // Now allocate the exception object. 453 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 454 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 455 456 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM); 457 llvm::CallInst *ExceptionPtr = 458 EmitNounwindRuntimeCall(AllocExceptionFn, 459 llvm::ConstantInt::get(SizeTy, TypeSize), 460 "exception"); 461 462 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 463 464 // Now throw the exception. 465 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 466 /*ForEH=*/true); 467 468 // The address of the destructor. If the exception type has a 469 // trivial destructor (or isn't a record), we just pass null. 470 llvm::Constant *Dtor = 0; 471 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 472 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 473 if (!Record->hasTrivialDestructor()) { 474 CXXDestructorDecl *DtorD = Record->getDestructor(); 475 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 476 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 477 } 478 } 479 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 480 481 llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; 482 EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); 483 484 // throw is an expression, and the expression emitters expect us 485 // to leave ourselves at a valid insertion point. 486 if (KeepInsertionPoint) 487 EmitBlock(createBasicBlock("throw.cont")); 488 } 489 490 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 491 if (!CGM.getLangOpts().CXXExceptions) 492 return; 493 494 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 495 if (FD == 0) { 496 // Check if CapturedDecl is nothrow and create terminate scope for it. 497 if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) { 498 if (CD->isNothrow()) 499 EHStack.pushTerminate(); 500 } 501 return; 502 } 503 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 504 if (Proto == 0) 505 return; 506 507 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 508 if (isNoexceptExceptionSpec(EST)) { 509 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 510 // noexcept functions are simple terminate scopes. 511 EHStack.pushTerminate(); 512 } 513 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 514 unsigned NumExceptions = Proto->getNumExceptions(); 515 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 516 517 for (unsigned I = 0; I != NumExceptions; ++I) { 518 QualType Ty = Proto->getExceptionType(I); 519 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 520 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 521 /*ForEH=*/true); 522 Filter->setFilter(I, EHType); 523 } 524 } 525 } 526 527 /// Emit the dispatch block for a filter scope if necessary. 528 static void emitFilterDispatchBlock(CodeGenFunction &CGF, 529 EHFilterScope &filterScope) { 530 llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); 531 if (!dispatchBlock) return; 532 if (dispatchBlock->use_empty()) { 533 delete dispatchBlock; 534 return; 535 } 536 537 CGF.EmitBlockAfterUses(dispatchBlock); 538 539 // If this isn't a catch-all filter, we need to check whether we got 540 // here because the filter triggered. 541 if (filterScope.getNumFilters()) { 542 // Load the selector value. 543 llvm::Value *selector = CGF.getSelectorFromSlot(); 544 llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); 545 546 llvm::Value *zero = CGF.Builder.getInt32(0); 547 llvm::Value *failsFilter = 548 CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); 549 CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock(false)); 550 551 CGF.EmitBlock(unexpectedBB); 552 } 553 554 // Call __cxa_call_unexpected. This doesn't need to be an invoke 555 // because __cxa_call_unexpected magically filters exceptions 556 // according to the last landing pad the exception was thrown 557 // into. Seriously. 558 llvm::Value *exn = CGF.getExceptionFromSlot(); 559 CGF.EmitRuntimeCall(getUnexpectedFn(CGF.CGM), exn) 560 ->setDoesNotReturn(); 561 CGF.Builder.CreateUnreachable(); 562 } 563 564 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 565 if (!CGM.getLangOpts().CXXExceptions) 566 return; 567 568 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 569 if (FD == 0) { 570 // Check if CapturedDecl is nothrow and pop terminate scope for it. 571 if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) { 572 if (CD->isNothrow()) 573 EHStack.popTerminate(); 574 } 575 return; 576 } 577 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 578 if (Proto == 0) 579 return; 580 581 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 582 if (isNoexceptExceptionSpec(EST)) { 583 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 584 EHStack.popTerminate(); 585 } 586 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 587 EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); 588 emitFilterDispatchBlock(*this, filterScope); 589 EHStack.popFilter(); 590 } 591 } 592 593 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 594 if (CGM.getTarget().getTriple().isWindowsMSVCEnvironment()) { 595 ErrorUnsupported(&S, "try statement"); 596 return; 597 } 598 599 EnterCXXTryStmt(S); 600 EmitStmt(S.getTryBlock()); 601 ExitCXXTryStmt(S); 602 } 603 604 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 605 unsigned NumHandlers = S.getNumHandlers(); 606 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 607 608 for (unsigned I = 0; I != NumHandlers; ++I) { 609 const CXXCatchStmt *C = S.getHandler(I); 610 611 llvm::BasicBlock *Handler = createBasicBlock("catch"); 612 if (C->getExceptionDecl()) { 613 // FIXME: Dropping the reference type on the type into makes it 614 // impossible to correctly implement catch-by-reference 615 // semantics for pointers. Unfortunately, this is what all 616 // existing compilers do, and it's not clear that the standard 617 // personality routine is capable of doing this right. See C++ DR 388: 618 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 619 QualType CaughtType = C->getCaughtType(); 620 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 621 622 llvm::Value *TypeInfo = 0; 623 if (CaughtType->isObjCObjectPointerType()) 624 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 625 else 626 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 627 CatchScope->setHandler(I, TypeInfo, Handler); 628 } else { 629 // No exception decl indicates '...', a catch-all. 630 CatchScope->setCatchAllHandler(I, Handler); 631 } 632 } 633 } 634 635 llvm::BasicBlock * 636 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { 637 // The dispatch block for the end of the scope chain is a block that 638 // just resumes unwinding. 639 if (si == EHStack.stable_end()) 640 return getEHResumeBlock(true); 641 642 // Otherwise, we should look at the actual scope. 643 EHScope &scope = *EHStack.find(si); 644 645 llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); 646 if (!dispatchBlock) { 647 switch (scope.getKind()) { 648 case EHScope::Catch: { 649 // Apply a special case to a single catch-all. 650 EHCatchScope &catchScope = cast<EHCatchScope>(scope); 651 if (catchScope.getNumHandlers() == 1 && 652 catchScope.getHandler(0).isCatchAll()) { 653 dispatchBlock = catchScope.getHandler(0).Block; 654 655 // Otherwise, make a dispatch block. 656 } else { 657 dispatchBlock = createBasicBlock("catch.dispatch"); 658 } 659 break; 660 } 661 662 case EHScope::Cleanup: 663 dispatchBlock = createBasicBlock("ehcleanup"); 664 break; 665 666 case EHScope::Filter: 667 dispatchBlock = createBasicBlock("filter.dispatch"); 668 break; 669 670 case EHScope::Terminate: 671 dispatchBlock = getTerminateHandler(); 672 break; 673 } 674 scope.setCachedEHDispatchBlock(dispatchBlock); 675 } 676 return dispatchBlock; 677 } 678 679 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 680 /// affect exception handling. Currently, the only non-EH scopes are 681 /// normal-only cleanup scopes. 682 static bool isNonEHScope(const EHScope &S) { 683 switch (S.getKind()) { 684 case EHScope::Cleanup: 685 return !cast<EHCleanupScope>(S).isEHCleanup(); 686 case EHScope::Filter: 687 case EHScope::Catch: 688 case EHScope::Terminate: 689 return false; 690 } 691 692 llvm_unreachable("Invalid EHScope Kind!"); 693 } 694 695 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 696 assert(EHStack.requiresLandingPad()); 697 assert(!EHStack.empty()); 698 699 if (!CGM.getLangOpts().Exceptions) 700 return 0; 701 702 // Check the innermost scope for a cached landing pad. If this is 703 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 704 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 705 if (LP) return LP; 706 707 // Build the landing pad for this scope. 708 LP = EmitLandingPad(); 709 assert(LP); 710 711 // Cache the landing pad on the innermost scope. If this is a 712 // non-EH scope, cache the landing pad on the enclosing scope, too. 713 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 714 ir->setCachedLandingPad(LP); 715 if (!isNonEHScope(*ir)) break; 716 } 717 718 return LP; 719 } 720 721 // This code contains a hack to work around a design flaw in 722 // LLVM's EH IR which breaks semantics after inlining. This same 723 // hack is implemented in llvm-gcc. 724 // 725 // The LLVM EH abstraction is basically a thin veneer over the 726 // traditional GCC zero-cost design: for each range of instructions 727 // in the function, there is (at most) one "landing pad" with an 728 // associated chain of EH actions. A language-specific personality 729 // function interprets this chain of actions and (1) decides whether 730 // or not to resume execution at the landing pad and (2) if so, 731 // provides an integer indicating why it's stopping. In LLVM IR, 732 // the association of a landing pad with a range of instructions is 733 // achieved via an invoke instruction, the chain of actions becomes 734 // the arguments to the @llvm.eh.selector call, and the selector 735 // call returns the integer indicator. Other than the required 736 // presence of two intrinsic function calls in the landing pad, 737 // the IR exactly describes the layout of the output code. 738 // 739 // A principal advantage of this design is that it is completely 740 // language-agnostic; in theory, the LLVM optimizers can treat 741 // landing pads neutrally, and targets need only know how to lower 742 // the intrinsics to have a functioning exceptions system (assuming 743 // that platform exceptions follow something approximately like the 744 // GCC design). Unfortunately, landing pads cannot be combined in a 745 // language-agnostic way: given selectors A and B, there is no way 746 // to make a single landing pad which faithfully represents the 747 // semantics of propagating an exception first through A, then 748 // through B, without knowing how the personality will interpret the 749 // (lowered form of the) selectors. This means that inlining has no 750 // choice but to crudely chain invokes (i.e., to ignore invokes in 751 // the inlined function, but to turn all unwindable calls into 752 // invokes), which is only semantically valid if every unwind stops 753 // at every landing pad. 754 // 755 // Therefore, the invoke-inline hack is to guarantee that every 756 // landing pad has a catch-all. 757 enum CleanupHackLevel_t { 758 /// A level of hack that requires that all landing pads have 759 /// catch-alls. 760 CHL_MandatoryCatchall, 761 762 /// A level of hack that requires that all landing pads handle 763 /// cleanups. 764 CHL_MandatoryCleanup, 765 766 /// No hacks at all; ideal IR generation. 767 CHL_Ideal 768 }; 769 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; 770 771 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 772 assert(EHStack.requiresLandingPad()); 773 774 EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); 775 switch (innermostEHScope.getKind()) { 776 case EHScope::Terminate: 777 return getTerminateLandingPad(); 778 779 case EHScope::Catch: 780 case EHScope::Cleanup: 781 case EHScope::Filter: 782 if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) 783 return lpad; 784 } 785 786 // Save the current IR generation state. 787 CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); 788 SaveAndRestoreLocation AutoRestoreLocation(*this, Builder); 789 if (CGDebugInfo *DI = getDebugInfo()) 790 DI->EmitLocation(Builder, CurEHLocation); 791 792 const EHPersonality &personality = EHPersonality::get(getLangOpts()); 793 794 // Create and configure the landing pad. 795 llvm::BasicBlock *lpad = createBasicBlock("lpad"); 796 EmitBlock(lpad); 797 798 llvm::LandingPadInst *LPadInst = 799 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 800 getOpaquePersonalityFn(CGM, personality), 0); 801 802 llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); 803 Builder.CreateStore(LPadExn, getExceptionSlot()); 804 llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); 805 Builder.CreateStore(LPadSel, getEHSelectorSlot()); 806 807 // Save the exception pointer. It's safe to use a single exception 808 // pointer per function because EH cleanups can never have nested 809 // try/catches. 810 // Build the landingpad instruction. 811 812 // Accumulate all the handlers in scope. 813 bool hasCatchAll = false; 814 bool hasCleanup = false; 815 bool hasFilter = false; 816 SmallVector<llvm::Value*, 4> filterTypes; 817 llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; 818 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 819 I != E; ++I) { 820 821 switch (I->getKind()) { 822 case EHScope::Cleanup: 823 // If we have a cleanup, remember that. 824 hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); 825 continue; 826 827 case EHScope::Filter: { 828 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 829 assert(!hasCatchAll && "EH filter reached after catch-all"); 830 831 // Filter scopes get added to the landingpad in weird ways. 832 EHFilterScope &filter = cast<EHFilterScope>(*I); 833 hasFilter = true; 834 835 // Add all the filter values. 836 for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) 837 filterTypes.push_back(filter.getFilter(i)); 838 goto done; 839 } 840 841 case EHScope::Terminate: 842 // Terminate scopes are basically catch-alls. 843 assert(!hasCatchAll); 844 hasCatchAll = true; 845 goto done; 846 847 case EHScope::Catch: 848 break; 849 } 850 851 EHCatchScope &catchScope = cast<EHCatchScope>(*I); 852 for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { 853 EHCatchScope::Handler handler = catchScope.getHandler(hi); 854 855 // If this is a catch-all, register that and abort. 856 if (!handler.Type) { 857 assert(!hasCatchAll); 858 hasCatchAll = true; 859 goto done; 860 } 861 862 // Check whether we already have a handler for this type. 863 if (catchTypes.insert(handler.Type)) 864 // If not, add it directly to the landingpad. 865 LPadInst->addClause(handler.Type); 866 } 867 } 868 869 done: 870 // If we have a catch-all, add null to the landingpad. 871 assert(!(hasCatchAll && hasFilter)); 872 if (hasCatchAll) { 873 LPadInst->addClause(getCatchAllValue(*this)); 874 875 // If we have an EH filter, we need to add those handlers in the 876 // right place in the landingpad, which is to say, at the end. 877 } else if (hasFilter) { 878 // Create a filter expression: a constant array indicating which filter 879 // types there are. The personality routine only lands here if the filter 880 // doesn't match. 881 SmallVector<llvm::Constant*, 8> Filters; 882 llvm::ArrayType *AType = 883 llvm::ArrayType::get(!filterTypes.empty() ? 884 filterTypes[0]->getType() : Int8PtrTy, 885 filterTypes.size()); 886 887 for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) 888 Filters.push_back(cast<llvm::Constant>(filterTypes[i])); 889 llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); 890 LPadInst->addClause(FilterArray); 891 892 // Also check whether we need a cleanup. 893 if (hasCleanup) 894 LPadInst->setCleanup(true); 895 896 // Otherwise, signal that we at least have cleanups. 897 } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) { 898 if (CleanupHackLevel == CHL_MandatoryCatchall) 899 LPadInst->addClause(getCatchAllValue(*this)); 900 else 901 LPadInst->setCleanup(true); 902 } 903 904 assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && 905 "landingpad instruction has no clauses!"); 906 907 // Tell the backend how to generate the landing pad. 908 Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); 909 910 // Restore the old IR generation state. 911 Builder.restoreIP(savedIP); 912 913 return lpad; 914 } 915 916 namespace { 917 /// A cleanup to call __cxa_end_catch. In many cases, the caught 918 /// exception type lets us state definitively that the thrown exception 919 /// type does not have a destructor. In particular: 920 /// - Catch-alls tell us nothing, so we have to conservatively 921 /// assume that the thrown exception might have a destructor. 922 /// - Catches by reference behave according to their base types. 923 /// - Catches of non-record types will only trigger for exceptions 924 /// of non-record types, which never have destructors. 925 /// - Catches of record types can trigger for arbitrary subclasses 926 /// of the caught type, so we have to assume the actual thrown 927 /// exception type might have a throwing destructor, even if the 928 /// caught type's destructor is trivial or nothrow. 929 struct CallEndCatch : EHScopeStack::Cleanup { 930 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 931 bool MightThrow; 932 933 void Emit(CodeGenFunction &CGF, Flags flags) override { 934 if (!MightThrow) { 935 CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); 936 return; 937 } 938 939 CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); 940 } 941 }; 942 } 943 944 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 945 /// __cxa_end_catch. 946 /// 947 /// \param EndMightThrow - true if __cxa_end_catch might throw 948 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 949 llvm::Value *Exn, 950 bool EndMightThrow) { 951 llvm::CallInst *call = 952 CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); 953 954 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 955 956 return call; 957 } 958 959 /// A "special initializer" callback for initializing a catch 960 /// parameter during catch initialization. 961 static void InitCatchParam(CodeGenFunction &CGF, 962 const VarDecl &CatchParam, 963 llvm::Value *ParamAddr, 964 SourceLocation Loc) { 965 // Load the exception from where the landing pad saved it. 966 llvm::Value *Exn = CGF.getExceptionFromSlot(); 967 968 CanQualType CatchType = 969 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 970 llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 971 972 // If we're catching by reference, we can just cast the object 973 // pointer to the appropriate pointer. 974 if (isa<ReferenceType>(CatchType)) { 975 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 976 bool EndCatchMightThrow = CaughtType->isRecordType(); 977 978 // __cxa_begin_catch returns the adjusted object pointer. 979 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 980 981 // We have no way to tell the personality function that we're 982 // catching by reference, so if we're catching a pointer, 983 // __cxa_begin_catch will actually return that pointer by value. 984 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 985 QualType PointeeType = PT->getPointeeType(); 986 987 // When catching by reference, generally we should just ignore 988 // this by-value pointer and use the exception object instead. 989 if (!PointeeType->isRecordType()) { 990 991 // Exn points to the struct _Unwind_Exception header, which 992 // we have to skip past in order to reach the exception data. 993 unsigned HeaderSize = 994 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 995 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 996 997 // However, if we're catching a pointer-to-record type that won't 998 // work, because the personality function might have adjusted 999 // the pointer. There's actually no way for us to fully satisfy 1000 // the language/ABI contract here: we can't use Exn because it 1001 // might have the wrong adjustment, but we can't use the by-value 1002 // pointer because it's off by a level of abstraction. 1003 // 1004 // The current solution is to dump the adjusted pointer into an 1005 // alloca, which breaks language semantics (because changing the 1006 // pointer doesn't change the exception) but at least works. 1007 // The better solution would be to filter out non-exact matches 1008 // and rethrow them, but this is tricky because the rethrow 1009 // really needs to be catchable by other sites at this landing 1010 // pad. The best solution is to fix the personality function. 1011 } else { 1012 // Pull the pointer for the reference type off. 1013 llvm::Type *PtrTy = 1014 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 1015 1016 // Create the temporary and write the adjusted pointer into it. 1017 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 1018 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1019 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 1020 1021 // Bind the reference to the temporary. 1022 AdjustedExn = ExnPtrTmp; 1023 } 1024 } 1025 1026 llvm::Value *ExnCast = 1027 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 1028 CGF.Builder.CreateStore(ExnCast, ParamAddr); 1029 return; 1030 } 1031 1032 // Scalars and complexes. 1033 TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); 1034 if (TEK != TEK_Aggregate) { 1035 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 1036 1037 // If the catch type is a pointer type, __cxa_begin_catch returns 1038 // the pointer by value. 1039 if (CatchType->hasPointerRepresentation()) { 1040 llvm::Value *CastExn = 1041 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1042 1043 switch (CatchType.getQualifiers().getObjCLifetime()) { 1044 case Qualifiers::OCL_Strong: 1045 CastExn = CGF.EmitARCRetainNonBlock(CastExn); 1046 // fallthrough 1047 1048 case Qualifiers::OCL_None: 1049 case Qualifiers::OCL_ExplicitNone: 1050 case Qualifiers::OCL_Autoreleasing: 1051 CGF.Builder.CreateStore(CastExn, ParamAddr); 1052 return; 1053 1054 case Qualifiers::OCL_Weak: 1055 CGF.EmitARCInitWeak(ParamAddr, CastExn); 1056 return; 1057 } 1058 llvm_unreachable("bad ownership qualifier!"); 1059 } 1060 1061 // Otherwise, it returns a pointer into the exception object. 1062 1063 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1064 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1065 1066 LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType); 1067 LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType, 1068 CGF.getContext().getDeclAlign(&CatchParam)); 1069 switch (TEK) { 1070 case TEK_Complex: 1071 CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV, 1072 /*init*/ true); 1073 return; 1074 case TEK_Scalar: { 1075 llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc); 1076 CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); 1077 return; 1078 } 1079 case TEK_Aggregate: 1080 llvm_unreachable("evaluation kind filtered out!"); 1081 } 1082 llvm_unreachable("bad evaluation kind"); 1083 } 1084 1085 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1086 1087 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1088 1089 // Check for a copy expression. If we don't have a copy expression, 1090 // that means a trivial copy is okay. 1091 const Expr *copyExpr = CatchParam.getInit(); 1092 if (!copyExpr) { 1093 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1094 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1095 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); 1096 return; 1097 } 1098 1099 // We have to call __cxa_get_exception_ptr to get the adjusted 1100 // pointer before copying. 1101 llvm::CallInst *rawAdjustedExn = 1102 CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); 1103 1104 // Cast that to the appropriate type. 1105 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1106 1107 // The copy expression is defined in terms of an OpaqueValueExpr. 1108 // Find it and map it to the adjusted expression. 1109 CodeGenFunction::OpaqueValueMapping 1110 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1111 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1112 1113 // Call the copy ctor in a terminate scope. 1114 CGF.EHStack.pushTerminate(); 1115 1116 // Perform the copy construction. 1117 CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam); 1118 CGF.EmitAggExpr(copyExpr, 1119 AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(), 1120 AggValueSlot::IsNotDestructed, 1121 AggValueSlot::DoesNotNeedGCBarriers, 1122 AggValueSlot::IsNotAliased)); 1123 1124 // Leave the terminate scope. 1125 CGF.EHStack.popTerminate(); 1126 1127 // Undo the opaque value mapping. 1128 opaque.pop(); 1129 1130 // Finally we can call __cxa_begin_catch. 1131 CallBeginCatch(CGF, Exn, true); 1132 } 1133 1134 /// Begins a catch statement by initializing the catch variable and 1135 /// calling __cxa_begin_catch. 1136 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1137 // We have to be very careful with the ordering of cleanups here: 1138 // C++ [except.throw]p4: 1139 // The destruction [of the exception temporary] occurs 1140 // immediately after the destruction of the object declared in 1141 // the exception-declaration in the handler. 1142 // 1143 // So the precise ordering is: 1144 // 1. Construct catch variable. 1145 // 2. __cxa_begin_catch 1146 // 3. Enter __cxa_end_catch cleanup 1147 // 4. Enter dtor cleanup 1148 // 1149 // We do this by using a slightly abnormal initialization process. 1150 // Delegation sequence: 1151 // - ExitCXXTryStmt opens a RunCleanupsScope 1152 // - EmitAutoVarAlloca creates the variable and debug info 1153 // - InitCatchParam initializes the variable from the exception 1154 // - CallBeginCatch calls __cxa_begin_catch 1155 // - CallBeginCatch enters the __cxa_end_catch cleanup 1156 // - EmitAutoVarCleanups enters the variable destructor cleanup 1157 // - EmitCXXTryStmt emits the code for the catch body 1158 // - EmitCXXTryStmt close the RunCleanupsScope 1159 1160 VarDecl *CatchParam = S->getExceptionDecl(); 1161 if (!CatchParam) { 1162 llvm::Value *Exn = CGF.getExceptionFromSlot(); 1163 CallBeginCatch(CGF, Exn, true); 1164 return; 1165 } 1166 1167 // Emit the local. 1168 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1169 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getLocStart()); 1170 CGF.EmitAutoVarCleanups(var); 1171 } 1172 1173 /// Emit the structure of the dispatch block for the given catch scope. 1174 /// It is an invariant that the dispatch block already exists. 1175 static void emitCatchDispatchBlock(CodeGenFunction &CGF, 1176 EHCatchScope &catchScope) { 1177 llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); 1178 assert(dispatchBlock); 1179 1180 // If there's only a single catch-all, getEHDispatchBlock returned 1181 // that catch-all as the dispatch block. 1182 if (catchScope.getNumHandlers() == 1 && 1183 catchScope.getHandler(0).isCatchAll()) { 1184 assert(dispatchBlock == catchScope.getHandler(0).Block); 1185 return; 1186 } 1187 1188 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); 1189 CGF.EmitBlockAfterUses(dispatchBlock); 1190 1191 // Select the right handler. 1192 llvm::Value *llvm_eh_typeid_for = 1193 CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 1194 1195 // Load the selector value. 1196 llvm::Value *selector = CGF.getSelectorFromSlot(); 1197 1198 // Test against each of the exception types we claim to catch. 1199 for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { 1200 assert(i < e && "ran off end of handlers!"); 1201 const EHCatchScope::Handler &handler = catchScope.getHandler(i); 1202 1203 llvm::Value *typeValue = handler.Type; 1204 assert(typeValue && "fell into catch-all case!"); 1205 typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); 1206 1207 // Figure out the next block. 1208 bool nextIsEnd; 1209 llvm::BasicBlock *nextBlock; 1210 1211 // If this is the last handler, we're at the end, and the next 1212 // block is the block for the enclosing EH scope. 1213 if (i + 1 == e) { 1214 nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); 1215 nextIsEnd = true; 1216 1217 // If the next handler is a catch-all, we're at the end, and the 1218 // next block is that handler. 1219 } else if (catchScope.getHandler(i+1).isCatchAll()) { 1220 nextBlock = catchScope.getHandler(i+1).Block; 1221 nextIsEnd = true; 1222 1223 // Otherwise, we're not at the end and we need a new block. 1224 } else { 1225 nextBlock = CGF.createBasicBlock("catch.fallthrough"); 1226 nextIsEnd = false; 1227 } 1228 1229 // Figure out the catch type's index in the LSDA's type table. 1230 llvm::CallInst *typeIndex = 1231 CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); 1232 typeIndex->setDoesNotThrow(); 1233 1234 llvm::Value *matchesTypeIndex = 1235 CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); 1236 CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); 1237 1238 // If the next handler is a catch-all, we're completely done. 1239 if (nextIsEnd) { 1240 CGF.Builder.restoreIP(savedIP); 1241 return; 1242 } 1243 // Otherwise we need to emit and continue at that block. 1244 CGF.EmitBlock(nextBlock); 1245 } 1246 } 1247 1248 void CodeGenFunction::popCatchScope() { 1249 EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); 1250 if (catchScope.hasEHBranches()) 1251 emitCatchDispatchBlock(*this, catchScope); 1252 EHStack.popCatch(); 1253 } 1254 1255 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1256 unsigned NumHandlers = S.getNumHandlers(); 1257 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1258 assert(CatchScope.getNumHandlers() == NumHandlers); 1259 1260 // If the catch was not required, bail out now. 1261 if (!CatchScope.hasEHBranches()) { 1262 CatchScope.clearHandlerBlocks(); 1263 EHStack.popCatch(); 1264 return; 1265 } 1266 1267 // Emit the structure of the EH dispatch for this catch. 1268 emitCatchDispatchBlock(*this, CatchScope); 1269 1270 // Copy the handler blocks off before we pop the EH stack. Emitting 1271 // the handlers might scribble on this memory. 1272 SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1273 memcpy(Handlers.data(), CatchScope.begin(), 1274 NumHandlers * sizeof(EHCatchScope::Handler)); 1275 1276 EHStack.popCatch(); 1277 1278 // The fall-through block. 1279 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1280 1281 // We just emitted the body of the try; jump to the continue block. 1282 if (HaveInsertPoint()) 1283 Builder.CreateBr(ContBB); 1284 1285 // Determine if we need an implicit rethrow for all these catch handlers; 1286 // see the comment below. 1287 bool doImplicitRethrow = false; 1288 if (IsFnTryBlock) 1289 doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1290 isa<CXXConstructorDecl>(CurCodeDecl); 1291 1292 // Perversely, we emit the handlers backwards precisely because we 1293 // want them to appear in source order. In all of these cases, the 1294 // catch block will have exactly one predecessor, which will be a 1295 // particular block in the catch dispatch. However, in the case of 1296 // a catch-all, one of the dispatch blocks will branch to two 1297 // different handlers, and EmitBlockAfterUses will cause the second 1298 // handler to be moved before the first. 1299 for (unsigned I = NumHandlers; I != 0; --I) { 1300 llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; 1301 EmitBlockAfterUses(CatchBlock); 1302 1303 // Catch the exception if this isn't a catch-all. 1304 const CXXCatchStmt *C = S.getHandler(I-1); 1305 1306 // Enter a cleanup scope, including the catch variable and the 1307 // end-catch. 1308 RunCleanupsScope CatchScope(*this); 1309 1310 // Initialize the catch variable and set up the cleanups. 1311 BeginCatch(*this, C); 1312 1313 // Emit the PGO counter increment. 1314 RegionCounter CatchCnt = getPGORegionCounter(C); 1315 CatchCnt.beginRegion(Builder); 1316 1317 // Perform the body of the catch. 1318 EmitStmt(C->getHandlerBlock()); 1319 1320 // [except.handle]p11: 1321 // The currently handled exception is rethrown if control 1322 // reaches the end of a handler of the function-try-block of a 1323 // constructor or destructor. 1324 1325 // It is important that we only do this on fallthrough and not on 1326 // return. Note that it's illegal to put a return in a 1327 // constructor function-try-block's catch handler (p14), so this 1328 // really only applies to destructors. 1329 if (doImplicitRethrow && HaveInsertPoint()) { 1330 EmitRuntimeCallOrInvoke(getReThrowFn(CGM)); 1331 Builder.CreateUnreachable(); 1332 Builder.ClearInsertionPoint(); 1333 } 1334 1335 // Fall out through the catch cleanups. 1336 CatchScope.ForceCleanup(); 1337 1338 // Branch out of the try. 1339 if (HaveInsertPoint()) 1340 Builder.CreateBr(ContBB); 1341 } 1342 1343 RegionCounter ContCnt = getPGORegionCounter(&S); 1344 EmitBlock(ContBB); 1345 ContCnt.beginRegion(Builder); 1346 } 1347 1348 namespace { 1349 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1350 llvm::Value *ForEHVar; 1351 llvm::Value *EndCatchFn; 1352 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1353 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1354 1355 void Emit(CodeGenFunction &CGF, Flags flags) override { 1356 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1357 llvm::BasicBlock *CleanupContBB = 1358 CGF.createBasicBlock("finally.cleanup.cont"); 1359 1360 llvm::Value *ShouldEndCatch = 1361 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1362 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1363 CGF.EmitBlock(EndCatchBB); 1364 CGF.EmitRuntimeCallOrInvoke(EndCatchFn); // catch-all, so might throw 1365 CGF.EmitBlock(CleanupContBB); 1366 } 1367 }; 1368 1369 struct PerformFinally : EHScopeStack::Cleanup { 1370 const Stmt *Body; 1371 llvm::Value *ForEHVar; 1372 llvm::Value *EndCatchFn; 1373 llvm::Value *RethrowFn; 1374 llvm::Value *SavedExnVar; 1375 1376 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1377 llvm::Value *EndCatchFn, 1378 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1379 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1380 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1381 1382 void Emit(CodeGenFunction &CGF, Flags flags) override { 1383 // Enter a cleanup to call the end-catch function if one was provided. 1384 if (EndCatchFn) 1385 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1386 ForEHVar, EndCatchFn); 1387 1388 // Save the current cleanup destination in case there are 1389 // cleanups in the finally block. 1390 llvm::Value *SavedCleanupDest = 1391 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1392 "cleanup.dest.saved"); 1393 1394 // Emit the finally block. 1395 CGF.EmitStmt(Body); 1396 1397 // If the end of the finally is reachable, check whether this was 1398 // for EH. If so, rethrow. 1399 if (CGF.HaveInsertPoint()) { 1400 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1401 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1402 1403 llvm::Value *ShouldRethrow = 1404 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1405 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1406 1407 CGF.EmitBlock(RethrowBB); 1408 if (SavedExnVar) { 1409 CGF.EmitRuntimeCallOrInvoke(RethrowFn, 1410 CGF.Builder.CreateLoad(SavedExnVar)); 1411 } else { 1412 CGF.EmitRuntimeCallOrInvoke(RethrowFn); 1413 } 1414 CGF.Builder.CreateUnreachable(); 1415 1416 CGF.EmitBlock(ContBB); 1417 1418 // Restore the cleanup destination. 1419 CGF.Builder.CreateStore(SavedCleanupDest, 1420 CGF.getNormalCleanupDestSlot()); 1421 } 1422 1423 // Leave the end-catch cleanup. As an optimization, pretend that 1424 // the fallthrough path was inaccessible; we've dynamically proven 1425 // that we're not in the EH case along that path. 1426 if (EndCatchFn) { 1427 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1428 CGF.PopCleanupBlock(); 1429 CGF.Builder.restoreIP(SavedIP); 1430 } 1431 1432 // Now make sure we actually have an insertion point or the 1433 // cleanup gods will hate us. 1434 CGF.EnsureInsertPoint(); 1435 } 1436 }; 1437 } 1438 1439 /// Enters a finally block for an implementation using zero-cost 1440 /// exceptions. This is mostly general, but hard-codes some 1441 /// language/ABI-specific behavior in the catch-all sections. 1442 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, 1443 const Stmt *body, 1444 llvm::Constant *beginCatchFn, 1445 llvm::Constant *endCatchFn, 1446 llvm::Constant *rethrowFn) { 1447 assert((beginCatchFn != 0) == (endCatchFn != 0) && 1448 "begin/end catch functions not paired"); 1449 assert(rethrowFn && "rethrow function is required"); 1450 1451 BeginCatchFn = beginCatchFn; 1452 1453 // The rethrow function has one of the following two types: 1454 // void (*)() 1455 // void (*)(void*) 1456 // In the latter case we need to pass it the exception object. 1457 // But we can't use the exception slot because the @finally might 1458 // have a landing pad (which would overwrite the exception slot). 1459 llvm::FunctionType *rethrowFnTy = 1460 cast<llvm::FunctionType>( 1461 cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); 1462 SavedExnVar = 0; 1463 if (rethrowFnTy->getNumParams()) 1464 SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); 1465 1466 // A finally block is a statement which must be executed on any edge 1467 // out of a given scope. Unlike a cleanup, the finally block may 1468 // contain arbitrary control flow leading out of itself. In 1469 // addition, finally blocks should always be executed, even if there 1470 // are no catch handlers higher on the stack. Therefore, we 1471 // surround the protected scope with a combination of a normal 1472 // cleanup (to catch attempts to break out of the block via normal 1473 // control flow) and an EH catch-all (semantically "outside" any try 1474 // statement to which the finally block might have been attached). 1475 // The finally block itself is generated in the context of a cleanup 1476 // which conditionally leaves the catch-all. 1477 1478 // Jump destination for performing the finally block on an exception 1479 // edge. We'll never actually reach this block, so unreachable is 1480 // fine. 1481 RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); 1482 1483 // Whether the finally block is being executed for EH purposes. 1484 ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); 1485 CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); 1486 1487 // Enter a normal cleanup which will perform the @finally block. 1488 CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, 1489 ForEHVar, endCatchFn, 1490 rethrowFn, SavedExnVar); 1491 1492 // Enter a catch-all scope. 1493 llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); 1494 EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); 1495 catchScope->setCatchAllHandler(0, catchBB); 1496 } 1497 1498 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { 1499 // Leave the finally catch-all. 1500 EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); 1501 llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; 1502 1503 CGF.popCatchScope(); 1504 1505 // If there are any references to the catch-all block, emit it. 1506 if (catchBB->use_empty()) { 1507 delete catchBB; 1508 } else { 1509 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); 1510 CGF.EmitBlock(catchBB); 1511 1512 llvm::Value *exn = 0; 1513 1514 // If there's a begin-catch function, call it. 1515 if (BeginCatchFn) { 1516 exn = CGF.getExceptionFromSlot(); 1517 CGF.EmitNounwindRuntimeCall(BeginCatchFn, exn); 1518 } 1519 1520 // If we need to remember the exception pointer to rethrow later, do so. 1521 if (SavedExnVar) { 1522 if (!exn) exn = CGF.getExceptionFromSlot(); 1523 CGF.Builder.CreateStore(exn, SavedExnVar); 1524 } 1525 1526 // Tell the cleanups in the finally block that we're do this for EH. 1527 CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); 1528 1529 // Thread a jump through the finally cleanup. 1530 CGF.EmitBranchThroughCleanup(RethrowDest); 1531 1532 CGF.Builder.restoreIP(savedIP); 1533 } 1534 1535 // Finally, leave the @finally cleanup. 1536 CGF.PopCleanupBlock(); 1537 } 1538 1539 /// In a terminate landing pad, should we use __clang__call_terminate 1540 /// or just a naked call to std::terminate? 1541 /// 1542 /// __clang_call_terminate calls __cxa_begin_catch, which then allows 1543 /// std::terminate to usefully report something about the 1544 /// violating exception. 1545 static bool useClangCallTerminate(CodeGenModule &CGM) { 1546 // Only do this for Itanium-family ABIs in C++ mode. 1547 return (CGM.getLangOpts().CPlusPlus && 1548 CGM.getTarget().getCXXABI().isItaniumFamily()); 1549 } 1550 1551 /// Get or define the following function: 1552 /// void @__clang_call_terminate(i8* %exn) nounwind noreturn 1553 /// This code is used only in C++. 1554 static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) { 1555 llvm::FunctionType *fnTy = 1556 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 1557 llvm::Constant *fnRef = 1558 CGM.CreateRuntimeFunction(fnTy, "__clang_call_terminate"); 1559 1560 llvm::Function *fn = dyn_cast<llvm::Function>(fnRef); 1561 if (fn && fn->empty()) { 1562 fn->setDoesNotThrow(); 1563 fn->setDoesNotReturn(); 1564 1565 // What we really want is to massively penalize inlining without 1566 // forbidding it completely. The difference between that and 1567 // 'noinline' is negligible. 1568 fn->addFnAttr(llvm::Attribute::NoInline); 1569 1570 // Allow this function to be shared across translation units, but 1571 // we don't want it to turn into an exported symbol. 1572 fn->setLinkage(llvm::Function::LinkOnceODRLinkage); 1573 fn->setVisibility(llvm::Function::HiddenVisibility); 1574 1575 // Set up the function. 1576 llvm::BasicBlock *entry = 1577 llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); 1578 CGBuilderTy builder(entry); 1579 1580 // Pull the exception pointer out of the parameter list. 1581 llvm::Value *exn = &*fn->arg_begin(); 1582 1583 // Call __cxa_begin_catch(exn). 1584 llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); 1585 catchCall->setDoesNotThrow(); 1586 catchCall->setCallingConv(CGM.getRuntimeCC()); 1587 1588 // Call std::terminate(). 1589 llvm::CallInst *termCall = builder.CreateCall(getTerminateFn(CGM)); 1590 termCall->setDoesNotThrow(); 1591 termCall->setDoesNotReturn(); 1592 termCall->setCallingConv(CGM.getRuntimeCC()); 1593 1594 // std::terminate cannot return. 1595 builder.CreateUnreachable(); 1596 } 1597 1598 return fnRef; 1599 } 1600 1601 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1602 if (TerminateLandingPad) 1603 return TerminateLandingPad; 1604 1605 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1606 1607 // This will get inserted at the end of the function. 1608 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1609 Builder.SetInsertPoint(TerminateLandingPad); 1610 1611 // Tell the backend that this is a landing pad. 1612 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1613 llvm::LandingPadInst *LPadInst = 1614 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 1615 getOpaquePersonalityFn(CGM, Personality), 0); 1616 LPadInst->addClause(getCatchAllValue(*this)); 1617 1618 llvm::CallInst *terminateCall; 1619 if (useClangCallTerminate(CGM)) { 1620 // Extract out the exception pointer. 1621 llvm::Value *exn = Builder.CreateExtractValue(LPadInst, 0); 1622 terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn); 1623 } else { 1624 terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM)); 1625 } 1626 terminateCall->setDoesNotReturn(); 1627 Builder.CreateUnreachable(); 1628 1629 // Restore the saved insertion state. 1630 Builder.restoreIP(SavedIP); 1631 1632 return TerminateLandingPad; 1633 } 1634 1635 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1636 if (TerminateHandler) 1637 return TerminateHandler; 1638 1639 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1640 1641 // Set up the terminate handler. This block is inserted at the very 1642 // end of the function by FinishFunction. 1643 TerminateHandler = createBasicBlock("terminate.handler"); 1644 Builder.SetInsertPoint(TerminateHandler); 1645 llvm::CallInst *terminateCall; 1646 if (useClangCallTerminate(CGM)) { 1647 // Load the exception pointer. 1648 llvm::Value *exn = getExceptionFromSlot(); 1649 terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn); 1650 } else { 1651 terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM)); 1652 } 1653 terminateCall->setDoesNotReturn(); 1654 Builder.CreateUnreachable(); 1655 1656 // Restore the saved insertion state. 1657 Builder.restoreIP(SavedIP); 1658 1659 return TerminateHandler; 1660 } 1661 1662 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) { 1663 if (EHResumeBlock) return EHResumeBlock; 1664 1665 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1666 1667 // We emit a jump to a notional label at the outermost unwind state. 1668 EHResumeBlock = createBasicBlock("eh.resume"); 1669 Builder.SetInsertPoint(EHResumeBlock); 1670 1671 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1672 1673 // This can always be a call because we necessarily didn't find 1674 // anything on the EH stack which needs our help. 1675 const char *RethrowName = Personality.CatchallRethrowFn; 1676 if (RethrowName != 0 && !isCleanup) { 1677 EmitRuntimeCall(getCatchallRethrowFn(CGM, RethrowName), 1678 getExceptionFromSlot()) 1679 ->setDoesNotReturn(); 1680 } else { 1681 switch (CleanupHackLevel) { 1682 case CHL_MandatoryCatchall: 1683 // In mandatory-catchall mode, we need to use 1684 // _Unwind_Resume_or_Rethrow, or whatever the personality's 1685 // equivalent is. 1686 EmitRuntimeCall(getUnwindResumeOrRethrowFn(), 1687 getExceptionFromSlot()) 1688 ->setDoesNotReturn(); 1689 break; 1690 case CHL_MandatoryCleanup: { 1691 // In mandatory-cleanup mode, we should use 'resume'. 1692 1693 // Recreate the landingpad's return value for the 'resume' instruction. 1694 llvm::Value *Exn = getExceptionFromSlot(); 1695 llvm::Value *Sel = getSelectorFromSlot(); 1696 1697 llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), 1698 Sel->getType(), NULL); 1699 llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); 1700 LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); 1701 LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); 1702 1703 Builder.CreateResume(LPadVal); 1704 Builder.restoreIP(SavedIP); 1705 return EHResumeBlock; 1706 } 1707 case CHL_Ideal: 1708 // In an idealized mode where we don't have to worry about the 1709 // optimizer combining landing pads, we should just use 1710 // _Unwind_Resume (or the personality's equivalent). 1711 EmitRuntimeCall(getUnwindResumeFn(), getExceptionFromSlot()) 1712 ->setDoesNotReturn(); 1713 break; 1714 } 1715 } 1716 1717 Builder.CreateUnreachable(); 1718 1719 Builder.restoreIP(SavedIP); 1720 1721 return EHResumeBlock; 1722 } 1723 1724 void CodeGenFunction::EmitSEHTryStmt(const SEHTryStmt &S) { 1725 CGM.ErrorUnsupported(&S, "SEH __try"); 1726 } 1727