1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ exception related code generation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/StmtCXX.h"
15 
16 #include "llvm/Intrinsics.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Support/CallSite.h"
19 
20 #include "CGObjCRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CGException.h"
23 #include "TargetInfo.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 /// Push an entry of the given size onto this protected-scope stack.
29 char *EHScopeStack::allocate(size_t Size) {
30   if (!StartOfBuffer) {
31     unsigned Capacity = 1024;
32     while (Capacity < Size) Capacity *= 2;
33     StartOfBuffer = new char[Capacity];
34     StartOfData = EndOfBuffer = StartOfBuffer + Capacity;
35   } else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) {
36     unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer;
37     unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer);
38 
39     unsigned NewCapacity = CurrentCapacity;
40     do {
41       NewCapacity *= 2;
42     } while (NewCapacity < UsedCapacity + Size);
43 
44     char *NewStartOfBuffer = new char[NewCapacity];
45     char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity;
46     char *NewStartOfData = NewEndOfBuffer - UsedCapacity;
47     memcpy(NewStartOfData, StartOfData, UsedCapacity);
48     delete [] StartOfBuffer;
49     StartOfBuffer = NewStartOfBuffer;
50     EndOfBuffer = NewEndOfBuffer;
51     StartOfData = NewStartOfData;
52   }
53 
54   assert(StartOfBuffer + Size <= StartOfData);
55   StartOfData -= Size;
56   return StartOfData;
57 }
58 
59 EHScopeStack::stable_iterator
60 EHScopeStack::getEnclosingEHCleanup(iterator it) const {
61   assert(it != end());
62   do {
63     if (isa<EHCleanupScope>(*it)) {
64       if (cast<EHCleanupScope>(*it).isEHCleanup())
65         return stabilize(it);
66       return cast<EHCleanupScope>(*it).getEnclosingEHCleanup();
67     }
68     ++it;
69   } while (it != end());
70   return stable_end();
71 }
72 
73 
74 void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) {
75   assert(((Size % sizeof(void*)) == 0) && "cleanup type is misaligned");
76   char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size));
77   bool IsNormalCleanup = Kind & NormalCleanup;
78   bool IsEHCleanup = Kind & EHCleanup;
79   bool IsActive = !(Kind & InactiveCleanup);
80   EHCleanupScope *Scope =
81     new (Buffer) EHCleanupScope(IsNormalCleanup,
82                                 IsEHCleanup,
83                                 IsActive,
84                                 Size,
85                                 BranchFixups.size(),
86                                 InnermostNormalCleanup,
87                                 InnermostEHCleanup);
88   if (IsNormalCleanup)
89     InnermostNormalCleanup = stable_begin();
90   if (IsEHCleanup)
91     InnermostEHCleanup = stable_begin();
92 
93   return Scope->getCleanupBuffer();
94 }
95 
96 void EHScopeStack::popCleanup() {
97   assert(!empty() && "popping exception stack when not empty");
98 
99   assert(isa<EHCleanupScope>(*begin()));
100   EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin());
101   InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup();
102   InnermostEHCleanup = Cleanup.getEnclosingEHCleanup();
103   StartOfData += Cleanup.getAllocatedSize();
104 
105   if (empty()) NextEHDestIndex = FirstEHDestIndex;
106 
107   // Destroy the cleanup.
108   Cleanup.~EHCleanupScope();
109 
110   // Check whether we can shrink the branch-fixups stack.
111   if (!BranchFixups.empty()) {
112     // If we no longer have any normal cleanups, all the fixups are
113     // complete.
114     if (!hasNormalCleanups())
115       BranchFixups.clear();
116 
117     // Otherwise we can still trim out unnecessary nulls.
118     else
119       popNullFixups();
120   }
121 }
122 
123 EHFilterScope *EHScopeStack::pushFilter(unsigned NumFilters) {
124   char *Buffer = allocate(EHFilterScope::getSizeForNumFilters(NumFilters));
125   CatchDepth++;
126   return new (Buffer) EHFilterScope(NumFilters);
127 }
128 
129 void EHScopeStack::popFilter() {
130   assert(!empty() && "popping exception stack when not empty");
131 
132   EHFilterScope &Filter = cast<EHFilterScope>(*begin());
133   StartOfData += EHFilterScope::getSizeForNumFilters(Filter.getNumFilters());
134 
135   if (empty()) NextEHDestIndex = FirstEHDestIndex;
136 
137   assert(CatchDepth > 0 && "mismatched filter push/pop");
138   CatchDepth--;
139 }
140 
141 EHCatchScope *EHScopeStack::pushCatch(unsigned NumHandlers) {
142   char *Buffer = allocate(EHCatchScope::getSizeForNumHandlers(NumHandlers));
143   CatchDepth++;
144   EHCatchScope *Scope = new (Buffer) EHCatchScope(NumHandlers);
145   for (unsigned I = 0; I != NumHandlers; ++I)
146     Scope->getHandlers()[I].Index = getNextEHDestIndex();
147   return Scope;
148 }
149 
150 void EHScopeStack::pushTerminate() {
151   char *Buffer = allocate(EHTerminateScope::getSize());
152   CatchDepth++;
153   new (Buffer) EHTerminateScope(getNextEHDestIndex());
154 }
155 
156 /// Remove any 'null' fixups on the stack.  However, we can't pop more
157 /// fixups than the fixup depth on the innermost normal cleanup, or
158 /// else fixups that we try to add to that cleanup will end up in the
159 /// wrong place.  We *could* try to shrink fixup depths, but that's
160 /// actually a lot of work for little benefit.
161 void EHScopeStack::popNullFixups() {
162   // We expect this to only be called when there's still an innermost
163   // normal cleanup;  otherwise there really shouldn't be any fixups.
164   assert(hasNormalCleanups());
165 
166   EHScopeStack::iterator it = find(InnermostNormalCleanup);
167   unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth();
168   assert(BranchFixups.size() >= MinSize && "fixup stack out of order");
169 
170   while (BranchFixups.size() > MinSize &&
171          BranchFixups.back().Destination == 0)
172     BranchFixups.pop_back();
173 }
174 
175 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) {
176   // void *__cxa_allocate_exception(size_t thrown_size);
177   const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
178   std::vector<const llvm::Type*> Args(1, SizeTy);
179 
180   const llvm::FunctionType *FTy =
181   llvm::FunctionType::get(llvm::Type::getInt8PtrTy(CGF.getLLVMContext()),
182                           Args, false);
183 
184   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
185 }
186 
187 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) {
188   // void __cxa_free_exception(void *thrown_exception);
189   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
190   std::vector<const llvm::Type*> Args(1, Int8PtrTy);
191 
192   const llvm::FunctionType *FTy =
193   llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
194                           Args, false);
195 
196   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
197 }
198 
199 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) {
200   // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
201   //                  void (*dest) (void *));
202 
203   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
204   std::vector<const llvm::Type*> Args(3, Int8PtrTy);
205 
206   const llvm::FunctionType *FTy =
207     llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
208                             Args, false);
209 
210   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
211 }
212 
213 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) {
214   // void __cxa_rethrow();
215 
216   const llvm::FunctionType *FTy =
217     llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false);
218 
219   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
220 }
221 
222 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) {
223   // void *__cxa_get_exception_ptr(void*);
224   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
225   std::vector<const llvm::Type*> Args(1, Int8PtrTy);
226 
227   const llvm::FunctionType *FTy =
228     llvm::FunctionType::get(Int8PtrTy, Args, false);
229 
230   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
231 }
232 
233 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) {
234   // void *__cxa_begin_catch(void*);
235 
236   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
237   std::vector<const llvm::Type*> Args(1, Int8PtrTy);
238 
239   const llvm::FunctionType *FTy =
240     llvm::FunctionType::get(Int8PtrTy, Args, false);
241 
242   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
243 }
244 
245 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) {
246   // void __cxa_end_catch();
247 
248   const llvm::FunctionType *FTy =
249     llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false);
250 
251   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
252 }
253 
254 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
255   // void __cxa_call_unexepcted(void *thrown_exception);
256 
257   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
258   std::vector<const llvm::Type*> Args(1, Int8PtrTy);
259 
260   const llvm::FunctionType *FTy =
261     llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
262                             Args, false);
263 
264   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
265 }
266 
267 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
268   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext());
269   std::vector<const llvm::Type*> Args(1, Int8PtrTy);
270 
271   const llvm::FunctionType *FTy =
272     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), Args,
273                             false);
274 
275   if (CGM.getLangOptions().SjLjExceptions)
276     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
277   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
278 }
279 
280 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) {
281   // void __terminate();
282 
283   const llvm::FunctionType *FTy =
284     llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false);
285 
286   return CGF.CGM.CreateRuntimeFunction(FTy,
287       CGF.CGM.getLangOptions().CPlusPlus ? "_ZSt9terminatev" : "abort");
288 }
289 
290 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF,
291                                             llvm::StringRef Name) {
292   const llvm::Type *Int8PtrTy =
293     llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
294   std::vector<const llvm::Type*> Args(1, Int8PtrTy);
295 
296   const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
297   const llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, Args, false);
298 
299   return CGF.CGM.CreateRuntimeFunction(FTy, Name);
300 }
301 
302 const EHPersonality EHPersonality::GNU_C("__gcc_personality_v0");
303 const EHPersonality EHPersonality::NeXT_ObjC("__objc_personality_v0");
304 const EHPersonality EHPersonality::GNU_CPlusPlus("__gxx_personality_v0");
305 const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ("__gxx_personality_sj0");
306 const EHPersonality EHPersonality::GNU_ObjC("__gnu_objc_personality_v0",
307                                             "objc_exception_throw");
308 
309 static const EHPersonality &getCPersonality(const LangOptions &L) {
310   return EHPersonality::GNU_C;
311 }
312 
313 static const EHPersonality &getObjCPersonality(const LangOptions &L) {
314   if (L.NeXTRuntime) {
315     if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC;
316     else return getCPersonality(L);
317   } else {
318     return EHPersonality::GNU_ObjC;
319   }
320 }
321 
322 static const EHPersonality &getCXXPersonality(const LangOptions &L) {
323   if (L.SjLjExceptions)
324     return EHPersonality::GNU_CPlusPlus_SJLJ;
325   else
326     return EHPersonality::GNU_CPlusPlus;
327 }
328 
329 /// Determines the personality function to use when both C++
330 /// and Objective-C exceptions are being caught.
331 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) {
332   // The ObjC personality defers to the C++ personality for non-ObjC
333   // handlers.  Unlike the C++ case, we use the same personality
334   // function on targets using (backend-driven) SJLJ EH.
335   if (L.NeXTRuntime) {
336     if (L.ObjCNonFragileABI)
337       return EHPersonality::NeXT_ObjC;
338 
339     // In the fragile ABI, just use C++ exception handling and hope
340     // they're not doing crazy exception mixing.
341     else
342       return getCXXPersonality(L);
343   }
344 
345   // The GNU runtime's personality function inherently doesn't support
346   // mixed EH.  Use the C++ personality just to avoid returning null.
347   return getCXXPersonality(L);
348 }
349 
350 const EHPersonality &EHPersonality::get(const LangOptions &L) {
351   if (L.CPlusPlus && L.ObjC1)
352     return getObjCXXPersonality(L);
353   else if (L.CPlusPlus)
354     return getCXXPersonality(L);
355   else if (L.ObjC1)
356     return getObjCPersonality(L);
357   else
358     return getCPersonality(L);
359 }
360 
361 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
362                                         const EHPersonality &Personality) {
363   llvm::Constant *Fn =
364     CGM.CreateRuntimeFunction(llvm::FunctionType::get(
365                                 llvm::Type::getInt32Ty(CGM.getLLVMContext()),
366                                 true),
367                               Personality.getPersonalityFnName());
368   return Fn;
369 }
370 
371 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
372                                         const EHPersonality &Personality) {
373   llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
374   return llvm::ConstantExpr::getBitCast(Fn, CGM.PtrToInt8Ty);
375 }
376 
377 /// Check whether a personality function could reasonably be swapped
378 /// for a C++ personality function.
379 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
380   for (llvm::Constant::use_iterator
381          I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) {
382     llvm::User *User = *I;
383 
384     // Conditionally white-list bitcasts.
385     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) {
386       if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
387       if (!PersonalityHasOnlyCXXUses(CE))
388         return false;
389       continue;
390     }
391 
392     // Otherwise, it has to be a selector call.
393     if (!isa<llvm::EHSelectorInst>(User)) return false;
394 
395     llvm::EHSelectorInst *Selector = cast<llvm::EHSelectorInst>(User);
396     for (unsigned I = 2, E = Selector->getNumArgOperands(); I != E; ++I) {
397       // Look for something that would've been returned by the ObjC
398       // runtime's GetEHType() method.
399       llvm::GlobalVariable *GV
400         = dyn_cast<llvm::GlobalVariable>(Selector->getArgOperand(I));
401       if (!GV) continue;
402 
403       // ObjC EH selector entries are always global variables with
404       // names starting like this.
405       if (GV->getName().startswith("OBJC_EHTYPE"))
406         return false;
407     }
408   }
409 
410   return true;
411 }
412 
413 /// Try to use the C++ personality function in ObjC++.  Not doing this
414 /// can cause some incompatibilities with gcc, which is more
415 /// aggressive about only using the ObjC++ personality in a function
416 /// when it really needs it.
417 void CodeGenModule::SimplifyPersonality() {
418   // For now, this is really a Darwin-specific operation.
419   if (Context.Target.getTriple().getOS() != llvm::Triple::Darwin)
420     return;
421 
422   // If we're not in ObjC++ -fexceptions, there's nothing to do.
423   if (!Features.CPlusPlus || !Features.ObjC1 || !Features.Exceptions)
424     return;
425 
426   const EHPersonality &ObjCXX = EHPersonality::get(Features);
427   const EHPersonality &CXX = getCXXPersonality(Features);
428   if (&ObjCXX == &CXX ||
429       ObjCXX.getPersonalityFnName() == CXX.getPersonalityFnName())
430     return;
431 
432   llvm::Function *Fn =
433     getModule().getFunction(ObjCXX.getPersonalityFnName());
434 
435   // Nothing to do if it's unused.
436   if (!Fn || Fn->use_empty()) return;
437 
438   // Can't do the optimization if it has non-C++ uses.
439   if (!PersonalityHasOnlyCXXUses(Fn)) return;
440 
441   // Create the C++ personality function and kill off the old
442   // function.
443   llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
444 
445   // This can happen if the user is screwing with us.
446   if (Fn->getType() != CXXFn->getType()) return;
447 
448   Fn->replaceAllUsesWith(CXXFn);
449   Fn->eraseFromParent();
450 }
451 
452 /// Returns the value to inject into a selector to indicate the
453 /// presence of a catch-all.
454 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
455   // Possibly we should use @llvm.eh.catch.all.value here.
456   return llvm::ConstantPointerNull::get(CGF.CGM.PtrToInt8Ty);
457 }
458 
459 /// Returns the value to inject into a selector to indicate the
460 /// presence of a cleanup.
461 static llvm::Constant *getCleanupValue(CodeGenFunction &CGF) {
462   return llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
463 }
464 
465 namespace {
466   /// A cleanup to free the exception object if its initialization
467   /// throws.
468   struct FreeExceptionCleanup : EHScopeStack::Cleanup {
469     FreeExceptionCleanup(llvm::Value *ShouldFreeVar,
470                          llvm::Value *ExnLocVar)
471       : ShouldFreeVar(ShouldFreeVar), ExnLocVar(ExnLocVar) {}
472 
473     llvm::Value *ShouldFreeVar;
474     llvm::Value *ExnLocVar;
475 
476     void Emit(CodeGenFunction &CGF, bool IsForEH) {
477       llvm::BasicBlock *FreeBB = CGF.createBasicBlock("free-exnobj");
478       llvm::BasicBlock *DoneBB = CGF.createBasicBlock("free-exnobj.done");
479 
480       llvm::Value *ShouldFree = CGF.Builder.CreateLoad(ShouldFreeVar,
481                                                        "should-free-exnobj");
482       CGF.Builder.CreateCondBr(ShouldFree, FreeBB, DoneBB);
483       CGF.EmitBlock(FreeBB);
484       llvm::Value *ExnLocLocal = CGF.Builder.CreateLoad(ExnLocVar, "exnobj");
485       CGF.Builder.CreateCall(getFreeExceptionFn(CGF), ExnLocLocal)
486         ->setDoesNotThrow();
487       CGF.EmitBlock(DoneBB);
488     }
489   };
490 }
491 
492 // Emits an exception expression into the given location.  This
493 // differs from EmitAnyExprToMem only in that, if a final copy-ctor
494 // call is required, an exception within that copy ctor causes
495 // std::terminate to be invoked.
496 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *E,
497                              llvm::Value *ExnLoc) {
498   // We want to release the allocated exception object if this
499   // expression throws.  We do this by pushing an EH-only cleanup
500   // block which, furthermore, deactivates itself after the expression
501   // is complete.
502   llvm::AllocaInst *ShouldFreeVar =
503     CGF.CreateTempAlloca(llvm::Type::getInt1Ty(CGF.getLLVMContext()),
504                          "should-free-exnobj.var");
505   CGF.InitTempAlloca(ShouldFreeVar,
506                      llvm::ConstantInt::getFalse(CGF.getLLVMContext()));
507 
508   // A variable holding the exception pointer.  This is necessary
509   // because the throw expression does not necessarily dominate the
510   // cleanup, for example if it appears in a conditional expression.
511   llvm::AllocaInst *ExnLocVar =
512     CGF.CreateTempAlloca(ExnLoc->getType(), "exnobj.var");
513 
514   // Make sure the exception object is cleaned up if there's an
515   // exception during initialization.
516   // FIXME: stmt expressions might require this to be a normal
517   // cleanup, too.
518   CGF.EHStack.pushCleanup<FreeExceptionCleanup>(EHCleanup,
519                                                 ShouldFreeVar,
520                                                 ExnLocVar);
521   EHScopeStack::stable_iterator Cleanup = CGF.EHStack.stable_begin();
522 
523   CGF.Builder.CreateStore(ExnLoc, ExnLocVar);
524   CGF.Builder.CreateStore(llvm::ConstantInt::getTrue(CGF.getLLVMContext()),
525                           ShouldFreeVar);
526 
527   // __cxa_allocate_exception returns a void*;  we need to cast this
528   // to the appropriate type for the object.
529   const llvm::Type *Ty = CGF.ConvertType(E->getType())->getPointerTo();
530   llvm::Value *TypedExnLoc = CGF.Builder.CreateBitCast(ExnLoc, Ty);
531 
532   // FIXME: this isn't quite right!  If there's a final unelided call
533   // to a copy constructor, then according to [except.terminate]p1 we
534   // must call std::terminate() if that constructor throws, because
535   // technically that copy occurs after the exception expression is
536   // evaluated but before the exception is caught.  But the best way
537   // to handle that is to teach EmitAggExpr to do the final copy
538   // differently if it can't be elided.
539   CGF.EmitAnyExprToMem(E, TypedExnLoc, /*Volatile*/ false, /*IsInit*/ true);
540 
541   CGF.Builder.CreateStore(llvm::ConstantInt::getFalse(CGF.getLLVMContext()),
542                           ShouldFreeVar);
543 
544   // Technically, the exception object is like a temporary; it has to
545   // be cleaned up when its full-expression is complete.
546   // Unfortunately, the AST represents full-expressions by creating a
547   // CXXExprWithTemporaries, which it only does when there are actually
548   // temporaries.
549   //
550   // If any cleanups have been added since we pushed ours, they must
551   // be from temporaries;  this will get popped at the same time.
552   // Otherwise we need to pop ours off.  FIXME: this is very brittle.
553   if (Cleanup == CGF.EHStack.stable_begin())
554     CGF.PopCleanupBlock();
555 }
556 
557 llvm::Value *CodeGenFunction::getExceptionSlot() {
558   if (!ExceptionSlot) {
559     const llvm::Type *i8p = llvm::Type::getInt8PtrTy(getLLVMContext());
560     ExceptionSlot = CreateTempAlloca(i8p, "exn.slot");
561   }
562   return ExceptionSlot;
563 }
564 
565 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
566   if (!E->getSubExpr()) {
567     if (getInvokeDest()) {
568       Builder.CreateInvoke(getReThrowFn(*this),
569                            getUnreachableBlock(),
570                            getInvokeDest())
571         ->setDoesNotReturn();
572     } else {
573       Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn();
574       Builder.CreateUnreachable();
575     }
576 
577     // Clear the insertion point to indicate we are in unreachable code.
578     Builder.ClearInsertionPoint();
579     return;
580   }
581 
582   QualType ThrowType = E->getSubExpr()->getType();
583 
584   // Now allocate the exception object.
585   const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
586   uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
587 
588   llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this);
589   llvm::CallInst *ExceptionPtr =
590     Builder.CreateCall(AllocExceptionFn,
591                        llvm::ConstantInt::get(SizeTy, TypeSize),
592                        "exception");
593   ExceptionPtr->setDoesNotThrow();
594 
595   EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
596 
597   // Now throw the exception.
598   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext());
599   llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, true);
600 
601   // The address of the destructor.  If the exception type has a
602   // trivial destructor (or isn't a record), we just pass null.
603   llvm::Constant *Dtor = 0;
604   if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
605     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
606     if (!Record->hasTrivialDestructor()) {
607       CXXDestructorDecl *DtorD = Record->getDestructor();
608       Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
609       Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
610     }
611   }
612   if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
613 
614   if (getInvokeDest()) {
615     llvm::InvokeInst *ThrowCall =
616       Builder.CreateInvoke3(getThrowFn(*this),
617                             getUnreachableBlock(), getInvokeDest(),
618                             ExceptionPtr, TypeInfo, Dtor);
619     ThrowCall->setDoesNotReturn();
620   } else {
621     llvm::CallInst *ThrowCall =
622       Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor);
623     ThrowCall->setDoesNotReturn();
624     Builder.CreateUnreachable();
625   }
626 
627   // Clear the insertion point to indicate we are in unreachable code.
628   Builder.ClearInsertionPoint();
629 
630   // FIXME: For now, emit a dummy basic block because expr emitters in generally
631   // are not ready to handle emitting expressions at unreachable points.
632   EnsureInsertPoint();
633 }
634 
635 void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
636   if (!Exceptions)
637     return;
638 
639   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
640   if (FD == 0)
641     return;
642   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
643   if (Proto == 0)
644     return;
645 
646   assert(!Proto->hasAnyExceptionSpec() && "function with parameter pack");
647 
648   if (!Proto->hasExceptionSpec())
649     return;
650 
651   unsigned NumExceptions = Proto->getNumExceptions();
652   EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
653 
654   for (unsigned I = 0; I != NumExceptions; ++I) {
655     QualType Ty = Proto->getExceptionType(I);
656     QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
657     llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, true);
658     Filter->setFilter(I, EHType);
659   }
660 }
661 
662 void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
663   if (!Exceptions)
664     return;
665 
666   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
667   if (FD == 0)
668     return;
669   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
670   if (Proto == 0)
671     return;
672 
673   if (!Proto->hasExceptionSpec())
674     return;
675 
676   EHStack.popFilter();
677 }
678 
679 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
680   EnterCXXTryStmt(S);
681   EmitStmt(S.getTryBlock());
682   ExitCXXTryStmt(S);
683 }
684 
685 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
686   unsigned NumHandlers = S.getNumHandlers();
687   EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
688 
689   for (unsigned I = 0; I != NumHandlers; ++I) {
690     const CXXCatchStmt *C = S.getHandler(I);
691 
692     llvm::BasicBlock *Handler = createBasicBlock("catch");
693     if (C->getExceptionDecl()) {
694       // FIXME: Dropping the reference type on the type into makes it
695       // impossible to correctly implement catch-by-reference
696       // semantics for pointers.  Unfortunately, this is what all
697       // existing compilers do, and it's not clear that the standard
698       // personality routine is capable of doing this right.  See C++ DR 388:
699       //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
700       QualType CaughtType = C->getCaughtType();
701       CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
702 
703       llvm::Value *TypeInfo = 0;
704       if (CaughtType->isObjCObjectPointerType())
705         TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
706       else
707         TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, true);
708       CatchScope->setHandler(I, TypeInfo, Handler);
709     } else {
710       // No exception decl indicates '...', a catch-all.
711       CatchScope->setCatchAllHandler(I, Handler);
712     }
713   }
714 }
715 
716 /// Check whether this is a non-EH scope, i.e. a scope which doesn't
717 /// affect exception handling.  Currently, the only non-EH scopes are
718 /// normal-only cleanup scopes.
719 static bool isNonEHScope(const EHScope &S) {
720   switch (S.getKind()) {
721   case EHScope::Cleanup:
722     return !cast<EHCleanupScope>(S).isEHCleanup();
723   case EHScope::Filter:
724   case EHScope::Catch:
725   case EHScope::Terminate:
726     return false;
727   }
728 
729   // Suppress warning.
730   return false;
731 }
732 
733 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
734   assert(EHStack.requiresLandingPad());
735   assert(!EHStack.empty());
736 
737   if (!Exceptions)
738     return 0;
739 
740   // Check the innermost scope for a cached landing pad.  If this is
741   // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
742   llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
743   if (LP) return LP;
744 
745   // Build the landing pad for this scope.
746   LP = EmitLandingPad();
747   assert(LP);
748 
749   // Cache the landing pad on the innermost scope.  If this is a
750   // non-EH scope, cache the landing pad on the enclosing scope, too.
751   for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
752     ir->setCachedLandingPad(LP);
753     if (!isNonEHScope(*ir)) break;
754   }
755 
756   return LP;
757 }
758 
759 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
760   assert(EHStack.requiresLandingPad());
761 
762   // This function contains a hack to work around a design flaw in
763   // LLVM's EH IR which breaks semantics after inlining.  This same
764   // hack is implemented in llvm-gcc.
765   //
766   // The LLVM EH abstraction is basically a thin veneer over the
767   // traditional GCC zero-cost design: for each range of instructions
768   // in the function, there is (at most) one "landing pad" with an
769   // associated chain of EH actions.  A language-specific personality
770   // function interprets this chain of actions and (1) decides whether
771   // or not to resume execution at the landing pad and (2) if so,
772   // provides an integer indicating why it's stopping.  In LLVM IR,
773   // the association of a landing pad with a range of instructions is
774   // achieved via an invoke instruction, the chain of actions becomes
775   // the arguments to the @llvm.eh.selector call, and the selector
776   // call returns the integer indicator.  Other than the required
777   // presence of two intrinsic function calls in the landing pad,
778   // the IR exactly describes the layout of the output code.
779   //
780   // A principal advantage of this design is that it is completely
781   // language-agnostic; in theory, the LLVM optimizers can treat
782   // landing pads neutrally, and targets need only know how to lower
783   // the intrinsics to have a functioning exceptions system (assuming
784   // that platform exceptions follow something approximately like the
785   // GCC design).  Unfortunately, landing pads cannot be combined in a
786   // language-agnostic way: given selectors A and B, there is no way
787   // to make a single landing pad which faithfully represents the
788   // semantics of propagating an exception first through A, then
789   // through B, without knowing how the personality will interpret the
790   // (lowered form of the) selectors.  This means that inlining has no
791   // choice but to crudely chain invokes (i.e., to ignore invokes in
792   // the inlined function, but to turn all unwindable calls into
793   // invokes), which is only semantically valid if every unwind stops
794   // at every landing pad.
795   //
796   // Therefore, the invoke-inline hack is to guarantee that every
797   // landing pad has a catch-all.
798   const bool UseInvokeInlineHack = true;
799 
800   for (EHScopeStack::iterator ir = EHStack.begin(); ; ) {
801     assert(ir != EHStack.end() &&
802            "stack requiring landing pad is nothing but non-EH scopes?");
803 
804     // If this is a terminate scope, just use the singleton terminate
805     // landing pad.
806     if (isa<EHTerminateScope>(*ir))
807       return getTerminateLandingPad();
808 
809     // If this isn't an EH scope, iterate; otherwise break out.
810     if (!isNonEHScope(*ir)) break;
811     ++ir;
812 
813     // We haven't checked this scope for a cached landing pad yet.
814     if (llvm::BasicBlock *LP = ir->getCachedLandingPad())
815       return LP;
816   }
817 
818   // Save the current IR generation state.
819   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
820 
821   const EHPersonality &Personality =
822     EHPersonality::get(CGF.CGM.getLangOptions());
823 
824   // Create and configure the landing pad.
825   llvm::BasicBlock *LP = createBasicBlock("lpad");
826   EmitBlock(LP);
827 
828   // Save the exception pointer.  It's safe to use a single exception
829   // pointer per function because EH cleanups can never have nested
830   // try/catches.
831   llvm::CallInst *Exn =
832     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn");
833   Exn->setDoesNotThrow();
834   Builder.CreateStore(Exn, getExceptionSlot());
835 
836   // Build the selector arguments.
837   llvm::SmallVector<llvm::Value*, 8> EHSelector;
838   EHSelector.push_back(Exn);
839   EHSelector.push_back(getOpaquePersonalityFn(CGM, Personality));
840 
841   // Accumulate all the handlers in scope.
842   llvm::DenseMap<llvm::Value*, UnwindDest> EHHandlers;
843   UnwindDest CatchAll;
844   bool HasEHCleanup = false;
845   bool HasEHFilter = false;
846   llvm::SmallVector<llvm::Value*, 8> EHFilters;
847   for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
848          I != E; ++I) {
849 
850     switch (I->getKind()) {
851     case EHScope::Cleanup:
852       if (!HasEHCleanup)
853         HasEHCleanup = cast<EHCleanupScope>(*I).isEHCleanup();
854       // We otherwise don't care about cleanups.
855       continue;
856 
857     case EHScope::Filter: {
858       assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
859       assert(!CatchAll.isValid() && "EH filter reached after catch-all");
860 
861       // Filter scopes get added to the selector in wierd ways.
862       EHFilterScope &Filter = cast<EHFilterScope>(*I);
863       HasEHFilter = true;
864 
865       // Add all the filter values which we aren't already explicitly
866       // catching.
867       for (unsigned I = 0, E = Filter.getNumFilters(); I != E; ++I) {
868         llvm::Value *FV = Filter.getFilter(I);
869         if (!EHHandlers.count(FV))
870           EHFilters.push_back(FV);
871       }
872       goto done;
873     }
874 
875     case EHScope::Terminate:
876       // Terminate scopes are basically catch-alls.
877       assert(!CatchAll.isValid());
878       CatchAll = UnwindDest(getTerminateHandler(),
879                             EHStack.getEnclosingEHCleanup(I),
880                             cast<EHTerminateScope>(*I).getDestIndex());
881       goto done;
882 
883     case EHScope::Catch:
884       break;
885     }
886 
887     EHCatchScope &Catch = cast<EHCatchScope>(*I);
888     for (unsigned HI = 0, HE = Catch.getNumHandlers(); HI != HE; ++HI) {
889       EHCatchScope::Handler Handler = Catch.getHandler(HI);
890 
891       // Catch-all.  We should only have one of these per catch.
892       if (!Handler.Type) {
893         assert(!CatchAll.isValid());
894         CatchAll = UnwindDest(Handler.Block,
895                               EHStack.getEnclosingEHCleanup(I),
896                               Handler.Index);
897         continue;
898       }
899 
900       // Check whether we already have a handler for this type.
901       UnwindDest &Dest = EHHandlers[Handler.Type];
902       if (Dest.isValid()) continue;
903 
904       EHSelector.push_back(Handler.Type);
905       Dest = UnwindDest(Handler.Block,
906                         EHStack.getEnclosingEHCleanup(I),
907                         Handler.Index);
908     }
909 
910     // Stop if we found a catch-all.
911     if (CatchAll.isValid()) break;
912   }
913 
914  done:
915   unsigned LastToEmitInLoop = EHSelector.size();
916 
917   // If we have a catch-all, add null to the selector.
918   if (CatchAll.isValid()) {
919     EHSelector.push_back(getCatchAllValue(CGF));
920 
921   // If we have an EH filter, we need to add those handlers in the
922   // right place in the selector, which is to say, at the end.
923   } else if (HasEHFilter) {
924     // Create a filter expression: an integer constant saying how many
925     // filters there are (+1 to avoid ambiguity with 0 for cleanup),
926     // followed by the filter types.  The personality routine only
927     // lands here if the filter doesn't match.
928     EHSelector.push_back(llvm::ConstantInt::get(Builder.getInt32Ty(),
929                                                 EHFilters.size() + 1));
930     EHSelector.append(EHFilters.begin(), EHFilters.end());
931 
932     // Also check whether we need a cleanup.
933     if (UseInvokeInlineHack || HasEHCleanup)
934       EHSelector.push_back(UseInvokeInlineHack
935                            ? getCatchAllValue(CGF)
936                            : getCleanupValue(CGF));
937 
938   // Otherwise, signal that we at least have cleanups.
939   } else if (UseInvokeInlineHack || HasEHCleanup) {
940     EHSelector.push_back(UseInvokeInlineHack
941                          ? getCatchAllValue(CGF)
942                          : getCleanupValue(CGF));
943   } else {
944     assert(LastToEmitInLoop > 2);
945     LastToEmitInLoop--;
946   }
947 
948   assert(EHSelector.size() >= 3 && "selector call has only two arguments!");
949 
950   // Tell the backend how to generate the landing pad.
951   llvm::CallInst *Selection =
952     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector),
953                        EHSelector.begin(), EHSelector.end(), "eh.selector");
954   Selection->setDoesNotThrow();
955 
956   // Select the right handler.
957   llvm::Value *llvm_eh_typeid_for =
958     CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
959 
960   // The results of llvm_eh_typeid_for aren't reliable --- at least
961   // not locally --- so we basically have to do this as an 'if' chain.
962   // We walk through the first N-1 catch clauses, testing and chaining,
963   // and then fall into the final clause (which is either a cleanup, a
964   // filter (possibly with a cleanup), a catch-all, or another catch).
965   for (unsigned I = 2; I != LastToEmitInLoop; ++I) {
966     llvm::Value *Type = EHSelector[I];
967     UnwindDest Dest = EHHandlers[Type];
968     assert(Dest.isValid() && "no handler entry for value in selector?");
969 
970     // Figure out where to branch on a match.  As a debug code-size
971     // optimization, if the scope depth matches the innermost cleanup,
972     // we branch directly to the catch handler.
973     llvm::BasicBlock *Match = Dest.getBlock();
974     bool MatchNeedsCleanup =
975       Dest.getScopeDepth() != EHStack.getInnermostEHCleanup();
976     if (MatchNeedsCleanup)
977       Match = createBasicBlock("eh.match");
978 
979     llvm::BasicBlock *Next = createBasicBlock("eh.next");
980 
981     // Check whether the exception matches.
982     llvm::CallInst *Id
983       = Builder.CreateCall(llvm_eh_typeid_for,
984                            Builder.CreateBitCast(Type, CGM.PtrToInt8Ty));
985     Id->setDoesNotThrow();
986     Builder.CreateCondBr(Builder.CreateICmpEQ(Selection, Id),
987                          Match, Next);
988 
989     // Emit match code if necessary.
990     if (MatchNeedsCleanup) {
991       EmitBlock(Match);
992       EmitBranchThroughEHCleanup(Dest);
993     }
994 
995     // Continue to the next match.
996     EmitBlock(Next);
997   }
998 
999   // Emit the final case in the selector.
1000   // This might be a catch-all....
1001   if (CatchAll.isValid()) {
1002     assert(isa<llvm::ConstantPointerNull>(EHSelector.back()));
1003     EmitBranchThroughEHCleanup(CatchAll);
1004 
1005   // ...or an EH filter...
1006   } else if (HasEHFilter) {
1007     llvm::Value *SavedSelection = Selection;
1008 
1009     // First, unwind out to the outermost scope if necessary.
1010     if (EHStack.hasEHCleanups()) {
1011       // The end here might not dominate the beginning, so we might need to
1012       // save the selector if we need it.
1013       llvm::AllocaInst *SelectorVar = 0;
1014       if (HasEHCleanup) {
1015         SelectorVar = CreateTempAlloca(Builder.getInt32Ty(), "selector.var");
1016         Builder.CreateStore(Selection, SelectorVar);
1017       }
1018 
1019       llvm::BasicBlock *CleanupContBB = createBasicBlock("ehspec.cleanup.cont");
1020       EmitBranchThroughEHCleanup(UnwindDest(CleanupContBB, EHStack.stable_end(),
1021                                             EHStack.getNextEHDestIndex()));
1022       EmitBlock(CleanupContBB);
1023 
1024       if (HasEHCleanup)
1025         SavedSelection = Builder.CreateLoad(SelectorVar, "ehspec.saved-selector");
1026     }
1027 
1028     // If there was a cleanup, we'll need to actually check whether we
1029     // landed here because the filter triggered.
1030     if (UseInvokeInlineHack || HasEHCleanup) {
1031       llvm::BasicBlock *RethrowBB = createBasicBlock("cleanup");
1032       llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected");
1033 
1034       llvm::Constant *Zero = llvm::ConstantInt::get(Builder.getInt32Ty(), 0);
1035       llvm::Value *FailsFilter =
1036         Builder.CreateICmpSLT(SavedSelection, Zero, "ehspec.fails");
1037       Builder.CreateCondBr(FailsFilter, UnexpectedBB, RethrowBB);
1038 
1039       // The rethrow block is where we land if this was a cleanup.
1040       // TODO: can this be _Unwind_Resume if the InvokeInlineHack is off?
1041       EmitBlock(RethrowBB);
1042       Builder.CreateCall(getUnwindResumeOrRethrowFn(),
1043                          Builder.CreateLoad(getExceptionSlot()))
1044         ->setDoesNotReturn();
1045       Builder.CreateUnreachable();
1046 
1047       EmitBlock(UnexpectedBB);
1048     }
1049 
1050     // Call __cxa_call_unexpected.  This doesn't need to be an invoke
1051     // because __cxa_call_unexpected magically filters exceptions
1052     // according to the last landing pad the exception was thrown
1053     // into.  Seriously.
1054     Builder.CreateCall(getUnexpectedFn(*this),
1055                        Builder.CreateLoad(getExceptionSlot()))
1056       ->setDoesNotReturn();
1057     Builder.CreateUnreachable();
1058 
1059   // ...or a normal catch handler...
1060   } else if (!UseInvokeInlineHack && !HasEHCleanup) {
1061     llvm::Value *Type = EHSelector.back();
1062     EmitBranchThroughEHCleanup(EHHandlers[Type]);
1063 
1064   // ...or a cleanup.
1065   } else {
1066     EmitBranchThroughEHCleanup(getRethrowDest());
1067   }
1068 
1069   // Restore the old IR generation state.
1070   Builder.restoreIP(SavedIP);
1071 
1072   return LP;
1073 }
1074 
1075 namespace {
1076   /// A cleanup to call __cxa_end_catch.  In many cases, the caught
1077   /// exception type lets us state definitively that the thrown exception
1078   /// type does not have a destructor.  In particular:
1079   ///   - Catch-alls tell us nothing, so we have to conservatively
1080   ///     assume that the thrown exception might have a destructor.
1081   ///   - Catches by reference behave according to their base types.
1082   ///   - Catches of non-record types will only trigger for exceptions
1083   ///     of non-record types, which never have destructors.
1084   ///   - Catches of record types can trigger for arbitrary subclasses
1085   ///     of the caught type, so we have to assume the actual thrown
1086   ///     exception type might have a throwing destructor, even if the
1087   ///     caught type's destructor is trivial or nothrow.
1088   struct CallEndCatch : EHScopeStack::Cleanup {
1089     CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
1090     bool MightThrow;
1091 
1092     void Emit(CodeGenFunction &CGF, bool IsForEH) {
1093       if (!MightThrow) {
1094         CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow();
1095         return;
1096       }
1097 
1098       CGF.EmitCallOrInvoke(getEndCatchFn(CGF), 0, 0);
1099     }
1100   };
1101 }
1102 
1103 /// Emits a call to __cxa_begin_catch and enters a cleanup to call
1104 /// __cxa_end_catch.
1105 ///
1106 /// \param EndMightThrow - true if __cxa_end_catch might throw
1107 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
1108                                    llvm::Value *Exn,
1109                                    bool EndMightThrow) {
1110   llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn);
1111   Call->setDoesNotThrow();
1112 
1113   CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
1114 
1115   return Call;
1116 }
1117 
1118 /// A "special initializer" callback for initializing a catch
1119 /// parameter during catch initialization.
1120 static void InitCatchParam(CodeGenFunction &CGF,
1121                            const VarDecl &CatchParam,
1122                            llvm::Value *ParamAddr) {
1123   // Load the exception from where the landing pad saved it.
1124   llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn");
1125 
1126   CanQualType CatchType =
1127     CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
1128   const llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
1129 
1130   // If we're catching by reference, we can just cast the object
1131   // pointer to the appropriate pointer.
1132   if (isa<ReferenceType>(CatchType)) {
1133     QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
1134     bool EndCatchMightThrow = CaughtType->isRecordType();
1135 
1136     // __cxa_begin_catch returns the adjusted object pointer.
1137     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
1138 
1139     // We have no way to tell the personality function that we're
1140     // catching by reference, so if we're catching a pointer,
1141     // __cxa_begin_catch will actually return that pointer by value.
1142     if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
1143       QualType PointeeType = PT->getPointeeType();
1144 
1145       // When catching by reference, generally we should just ignore
1146       // this by-value pointer and use the exception object instead.
1147       if (!PointeeType->isRecordType()) {
1148 
1149         // Exn points to the struct _Unwind_Exception header, which
1150         // we have to skip past in order to reach the exception data.
1151         unsigned HeaderSize =
1152           CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
1153         AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
1154 
1155       // However, if we're catching a pointer-to-record type that won't
1156       // work, because the personality function might have adjusted
1157       // the pointer.  There's actually no way for us to fully satisfy
1158       // the language/ABI contract here:  we can't use Exn because it
1159       // might have the wrong adjustment, but we can't use the by-value
1160       // pointer because it's off by a level of abstraction.
1161       //
1162       // The current solution is to dump the adjusted pointer into an
1163       // alloca, which breaks language semantics (because changing the
1164       // pointer doesn't change the exception) but at least works.
1165       // The better solution would be to filter out non-exact matches
1166       // and rethrow them, but this is tricky because the rethrow
1167       // really needs to be catchable by other sites at this landing
1168       // pad.  The best solution is to fix the personality function.
1169       } else {
1170         // Pull the pointer for the reference type off.
1171         const llvm::Type *PtrTy =
1172           cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
1173 
1174         // Create the temporary and write the adjusted pointer into it.
1175         llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
1176         llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1177         CGF.Builder.CreateStore(Casted, ExnPtrTmp);
1178 
1179         // Bind the reference to the temporary.
1180         AdjustedExn = ExnPtrTmp;
1181       }
1182     }
1183 
1184     llvm::Value *ExnCast =
1185       CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
1186     CGF.Builder.CreateStore(ExnCast, ParamAddr);
1187     return;
1188   }
1189 
1190   // Non-aggregates (plus complexes).
1191   bool IsComplex = false;
1192   if (!CGF.hasAggregateLLVMType(CatchType) ||
1193       (IsComplex = CatchType->isAnyComplexType())) {
1194     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
1195 
1196     // If the catch type is a pointer type, __cxa_begin_catch returns
1197     // the pointer by value.
1198     if (CatchType->hasPointerRepresentation()) {
1199       llvm::Value *CastExn =
1200         CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
1201       CGF.Builder.CreateStore(CastExn, ParamAddr);
1202       return;
1203     }
1204 
1205     // Otherwise, it returns a pointer into the exception object.
1206 
1207     const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1208     llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1209 
1210     if (IsComplex) {
1211       CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false),
1212                              ParamAddr, /*volatile*/ false);
1213     } else {
1214       unsigned Alignment =
1215         CGF.getContext().getDeclAlign(&CatchParam).getQuantity();
1216       llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar");
1217       CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment,
1218                             CatchType);
1219     }
1220     return;
1221   }
1222 
1223   // FIXME: this *really* needs to be done via a proper, Sema-emitted
1224   // initializer expression.
1225 
1226   CXXRecordDecl *RD = CatchType.getTypePtr()->getAsCXXRecordDecl();
1227   assert(RD && "aggregate catch type was not a record!");
1228 
1229   const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1230 
1231   if (RD->hasTrivialCopyConstructor()) {
1232     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, true);
1233     llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1234     CGF.EmitAggregateCopy(ParamAddr, Cast, CatchType);
1235     return;
1236   }
1237 
1238   // We have to call __cxa_get_exception_ptr to get the adjusted
1239   // pointer before copying.
1240   llvm::CallInst *AdjustedExn =
1241     CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn);
1242   AdjustedExn->setDoesNotThrow();
1243   llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1244 
1245   CXXConstructorDecl *CD = RD->getCopyConstructor(CGF.getContext(), 0);
1246   assert(CD && "record has no copy constructor!");
1247   llvm::Value *CopyCtor = CGF.CGM.GetAddrOfCXXConstructor(CD, Ctor_Complete);
1248 
1249   CallArgList CallArgs;
1250   CallArgs.push_back(std::make_pair(RValue::get(ParamAddr),
1251                                     CD->getThisType(CGF.getContext())));
1252   CallArgs.push_back(std::make_pair(RValue::get(Cast),
1253                                     CD->getParamDecl(0)->getType()));
1254 
1255   const FunctionProtoType *FPT
1256     = CD->getType()->getAs<FunctionProtoType>();
1257 
1258   // Call the copy ctor in a terminate scope.
1259   CGF.EHStack.pushTerminate();
1260   CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(CallArgs, FPT),
1261                CopyCtor, ReturnValueSlot(), CallArgs, CD);
1262   CGF.EHStack.popTerminate();
1263 
1264   // Finally we can call __cxa_begin_catch.
1265   CallBeginCatch(CGF, Exn, true);
1266 }
1267 
1268 /// Begins a catch statement by initializing the catch variable and
1269 /// calling __cxa_begin_catch.
1270 static void BeginCatch(CodeGenFunction &CGF,
1271                        const CXXCatchStmt *S) {
1272   // We have to be very careful with the ordering of cleanups here:
1273   //   C++ [except.throw]p4:
1274   //     The destruction [of the exception temporary] occurs
1275   //     immediately after the destruction of the object declared in
1276   //     the exception-declaration in the handler.
1277   //
1278   // So the precise ordering is:
1279   //   1.  Construct catch variable.
1280   //   2.  __cxa_begin_catch
1281   //   3.  Enter __cxa_end_catch cleanup
1282   //   4.  Enter dtor cleanup
1283   //
1284   // We do this by initializing the exception variable with a
1285   // "special initializer", InitCatchParam.  Delegation sequence:
1286   //   - ExitCXXTryStmt opens a RunCleanupsScope
1287   //     - EmitLocalBlockVarDecl creates the variable and debug info
1288   //       - InitCatchParam initializes the variable from the exception
1289   //         - CallBeginCatch calls __cxa_begin_catch
1290   //         - CallBeginCatch enters the __cxa_end_catch cleanup
1291   //     - EmitLocalBlockVarDecl enters the variable destructor cleanup
1292   //   - EmitCXXTryStmt emits the code for the catch body
1293   //   - EmitCXXTryStmt close the RunCleanupsScope
1294 
1295   VarDecl *CatchParam = S->getExceptionDecl();
1296   if (!CatchParam) {
1297     llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn");
1298     CallBeginCatch(CGF, Exn, true);
1299     return;
1300   }
1301 
1302   // Emit the local.
1303   CGF.EmitAutoVarDecl(*CatchParam, &InitCatchParam);
1304 }
1305 
1306 namespace {
1307   struct CallRethrow : EHScopeStack::Cleanup {
1308     void Emit(CodeGenFunction &CGF, bool IsForEH) {
1309       CGF.EmitCallOrInvoke(getReThrowFn(CGF), 0, 0);
1310     }
1311   };
1312 }
1313 
1314 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
1315   unsigned NumHandlers = S.getNumHandlers();
1316   EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
1317   assert(CatchScope.getNumHandlers() == NumHandlers);
1318 
1319   // Copy the handler blocks off before we pop the EH stack.  Emitting
1320   // the handlers might scribble on this memory.
1321   llvm::SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
1322   memcpy(Handlers.data(), CatchScope.begin(),
1323          NumHandlers * sizeof(EHCatchScope::Handler));
1324   EHStack.popCatch();
1325 
1326   // The fall-through block.
1327   llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
1328 
1329   // We just emitted the body of the try; jump to the continue block.
1330   if (HaveInsertPoint())
1331     Builder.CreateBr(ContBB);
1332 
1333   // Determine if we need an implicit rethrow for all these catch handlers.
1334   bool ImplicitRethrow = false;
1335   if (IsFnTryBlock)
1336     ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
1337                       isa<CXXConstructorDecl>(CurCodeDecl);
1338 
1339   for (unsigned I = 0; I != NumHandlers; ++I) {
1340     llvm::BasicBlock *CatchBlock = Handlers[I].Block;
1341     EmitBlock(CatchBlock);
1342 
1343     // Catch the exception if this isn't a catch-all.
1344     const CXXCatchStmt *C = S.getHandler(I);
1345 
1346     // Enter a cleanup scope, including the catch variable and the
1347     // end-catch.
1348     RunCleanupsScope CatchScope(*this);
1349 
1350     // Initialize the catch variable and set up the cleanups.
1351     BeginCatch(*this, C);
1352 
1353     // If there's an implicit rethrow, push a normal "cleanup" to call
1354     // _cxa_rethrow.  This needs to happen before __cxa_end_catch is
1355     // called, and so it is pushed after BeginCatch.
1356     if (ImplicitRethrow)
1357       EHStack.pushCleanup<CallRethrow>(NormalCleanup);
1358 
1359     // Perform the body of the catch.
1360     EmitStmt(C->getHandlerBlock());
1361 
1362     // Fall out through the catch cleanups.
1363     CatchScope.ForceCleanup();
1364 
1365     // Branch out of the try.
1366     if (HaveInsertPoint())
1367       Builder.CreateBr(ContBB);
1368   }
1369 
1370   EmitBlock(ContBB);
1371 }
1372 
1373 namespace {
1374   struct CallEndCatchForFinally : EHScopeStack::Cleanup {
1375     llvm::Value *ForEHVar;
1376     llvm::Value *EndCatchFn;
1377     CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
1378       : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
1379 
1380     void Emit(CodeGenFunction &CGF, bool IsForEH) {
1381       llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
1382       llvm::BasicBlock *CleanupContBB =
1383         CGF.createBasicBlock("finally.cleanup.cont");
1384 
1385       llvm::Value *ShouldEndCatch =
1386         CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
1387       CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
1388       CGF.EmitBlock(EndCatchBB);
1389       CGF.EmitCallOrInvoke(EndCatchFn, 0, 0); // catch-all, so might throw
1390       CGF.EmitBlock(CleanupContBB);
1391     }
1392   };
1393 
1394   struct PerformFinally : EHScopeStack::Cleanup {
1395     const Stmt *Body;
1396     llvm::Value *ForEHVar;
1397     llvm::Value *EndCatchFn;
1398     llvm::Value *RethrowFn;
1399     llvm::Value *SavedExnVar;
1400 
1401     PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
1402                    llvm::Value *EndCatchFn,
1403                    llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
1404       : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
1405         RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
1406 
1407     void Emit(CodeGenFunction &CGF, bool IsForEH) {
1408       // Enter a cleanup to call the end-catch function if one was provided.
1409       if (EndCatchFn)
1410         CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
1411                                                         ForEHVar, EndCatchFn);
1412 
1413       // Save the current cleanup destination in case there are
1414       // cleanups in the finally block.
1415       llvm::Value *SavedCleanupDest =
1416         CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
1417                                "cleanup.dest.saved");
1418 
1419       // Emit the finally block.
1420       CGF.EmitStmt(Body);
1421 
1422       // If the end of the finally is reachable, check whether this was
1423       // for EH.  If so, rethrow.
1424       if (CGF.HaveInsertPoint()) {
1425         llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
1426         llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
1427 
1428         llvm::Value *ShouldRethrow =
1429           CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
1430         CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
1431 
1432         CGF.EmitBlock(RethrowBB);
1433         if (SavedExnVar) {
1434           llvm::Value *Args[] = { CGF.Builder.CreateLoad(SavedExnVar) };
1435           CGF.EmitCallOrInvoke(RethrowFn, Args, Args+1);
1436         } else {
1437           CGF.EmitCallOrInvoke(RethrowFn, 0, 0);
1438         }
1439         CGF.Builder.CreateUnreachable();
1440 
1441         CGF.EmitBlock(ContBB);
1442 
1443         // Restore the cleanup destination.
1444         CGF.Builder.CreateStore(SavedCleanupDest,
1445                                 CGF.getNormalCleanupDestSlot());
1446       }
1447 
1448       // Leave the end-catch cleanup.  As an optimization, pretend that
1449       // the fallthrough path was inaccessible; we've dynamically proven
1450       // that we're not in the EH case along that path.
1451       if (EndCatchFn) {
1452         CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
1453         CGF.PopCleanupBlock();
1454         CGF.Builder.restoreIP(SavedIP);
1455       }
1456 
1457       // Now make sure we actually have an insertion point or the
1458       // cleanup gods will hate us.
1459       CGF.EnsureInsertPoint();
1460     }
1461   };
1462 }
1463 
1464 /// Enters a finally block for an implementation using zero-cost
1465 /// exceptions.  This is mostly general, but hard-codes some
1466 /// language/ABI-specific behavior in the catch-all sections.
1467 CodeGenFunction::FinallyInfo
1468 CodeGenFunction::EnterFinallyBlock(const Stmt *Body,
1469                                    llvm::Constant *BeginCatchFn,
1470                                    llvm::Constant *EndCatchFn,
1471                                    llvm::Constant *RethrowFn) {
1472   assert((BeginCatchFn != 0) == (EndCatchFn != 0) &&
1473          "begin/end catch functions not paired");
1474   assert(RethrowFn && "rethrow function is required");
1475 
1476   // The rethrow function has one of the following two types:
1477   //   void (*)()
1478   //   void (*)(void*)
1479   // In the latter case we need to pass it the exception object.
1480   // But we can't use the exception slot because the @finally might
1481   // have a landing pad (which would overwrite the exception slot).
1482   const llvm::FunctionType *RethrowFnTy =
1483     cast<llvm::FunctionType>(
1484       cast<llvm::PointerType>(RethrowFn->getType())
1485       ->getElementType());
1486   llvm::Value *SavedExnVar = 0;
1487   if (RethrowFnTy->getNumParams())
1488     SavedExnVar = CreateTempAlloca(Builder.getInt8PtrTy(), "finally.exn");
1489 
1490   // A finally block is a statement which must be executed on any edge
1491   // out of a given scope.  Unlike a cleanup, the finally block may
1492   // contain arbitrary control flow leading out of itself.  In
1493   // addition, finally blocks should always be executed, even if there
1494   // are no catch handlers higher on the stack.  Therefore, we
1495   // surround the protected scope with a combination of a normal
1496   // cleanup (to catch attempts to break out of the block via normal
1497   // control flow) and an EH catch-all (semantically "outside" any try
1498   // statement to which the finally block might have been attached).
1499   // The finally block itself is generated in the context of a cleanup
1500   // which conditionally leaves the catch-all.
1501 
1502   FinallyInfo Info;
1503 
1504   // Jump destination for performing the finally block on an exception
1505   // edge.  We'll never actually reach this block, so unreachable is
1506   // fine.
1507   JumpDest RethrowDest = getJumpDestInCurrentScope(getUnreachableBlock());
1508 
1509   // Whether the finally block is being executed for EH purposes.
1510   llvm::AllocaInst *ForEHVar = CreateTempAlloca(CGF.Builder.getInt1Ty(),
1511                                                 "finally.for-eh");
1512   InitTempAlloca(ForEHVar, llvm::ConstantInt::getFalse(getLLVMContext()));
1513 
1514   // Enter a normal cleanup which will perform the @finally block.
1515   EHStack.pushCleanup<PerformFinally>(NormalCleanup, Body,
1516                                       ForEHVar, EndCatchFn,
1517                                       RethrowFn, SavedExnVar);
1518 
1519   // Enter a catch-all scope.
1520   llvm::BasicBlock *CatchAllBB = createBasicBlock("finally.catchall");
1521   CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
1522   Builder.SetInsertPoint(CatchAllBB);
1523 
1524   // If there's a begin-catch function, call it.
1525   if (BeginCatchFn) {
1526     Builder.CreateCall(BeginCatchFn, Builder.CreateLoad(getExceptionSlot()))
1527       ->setDoesNotThrow();
1528   }
1529 
1530   // If we need to remember the exception pointer to rethrow later, do so.
1531   if (SavedExnVar) {
1532     llvm::Value *SavedExn = Builder.CreateLoad(getExceptionSlot());
1533     Builder.CreateStore(SavedExn, SavedExnVar);
1534   }
1535 
1536   // Tell the finally block that we're in EH.
1537   Builder.CreateStore(llvm::ConstantInt::getTrue(getLLVMContext()), ForEHVar);
1538 
1539   // Thread a jump through the finally cleanup.
1540   EmitBranchThroughCleanup(RethrowDest);
1541 
1542   Builder.restoreIP(SavedIP);
1543 
1544   EHCatchScope *CatchScope = EHStack.pushCatch(1);
1545   CatchScope->setCatchAllHandler(0, CatchAllBB);
1546 
1547   return Info;
1548 }
1549 
1550 void CodeGenFunction::ExitFinallyBlock(FinallyInfo &Info) {
1551   // Leave the finally catch-all.
1552   EHCatchScope &Catch = cast<EHCatchScope>(*EHStack.begin());
1553   llvm::BasicBlock *CatchAllBB = Catch.getHandler(0).Block;
1554   EHStack.popCatch();
1555 
1556   // And leave the normal cleanup.
1557   PopCleanupBlock();
1558 
1559   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1560   EmitBlock(CatchAllBB, true);
1561 
1562   Builder.restoreIP(SavedIP);
1563 }
1564 
1565 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
1566   if (TerminateLandingPad)
1567     return TerminateLandingPad;
1568 
1569   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1570 
1571   // This will get inserted at the end of the function.
1572   TerminateLandingPad = createBasicBlock("terminate.lpad");
1573   Builder.SetInsertPoint(TerminateLandingPad);
1574 
1575   // Tell the backend that this is a landing pad.
1576   llvm::CallInst *Exn =
1577     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn");
1578   Exn->setDoesNotThrow();
1579 
1580   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions());
1581 
1582   // Tell the backend what the exception table should be:
1583   // nothing but a catch-all.
1584   llvm::Value *Args[3] = { Exn, getOpaquePersonalityFn(CGM, Personality),
1585                            getCatchAllValue(*this) };
1586   Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector),
1587                      Args, Args+3, "eh.selector")
1588     ->setDoesNotThrow();
1589 
1590   llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1591   TerminateCall->setDoesNotReturn();
1592   TerminateCall->setDoesNotThrow();
1593   CGF.Builder.CreateUnreachable();
1594 
1595   // Restore the saved insertion state.
1596   Builder.restoreIP(SavedIP);
1597 
1598   return TerminateLandingPad;
1599 }
1600 
1601 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
1602   if (TerminateHandler)
1603     return TerminateHandler;
1604 
1605   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1606 
1607   // Set up the terminate handler.  This block is inserted at the very
1608   // end of the function by FinishFunction.
1609   TerminateHandler = createBasicBlock("terminate.handler");
1610   Builder.SetInsertPoint(TerminateHandler);
1611   llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1612   TerminateCall->setDoesNotReturn();
1613   TerminateCall->setDoesNotThrow();
1614   Builder.CreateUnreachable();
1615 
1616   // Restore the saved insertion state.
1617   Builder.restoreIP(SavedIP);
1618 
1619   return TerminateHandler;
1620 }
1621 
1622 CodeGenFunction::UnwindDest CodeGenFunction::getRethrowDest() {
1623   if (RethrowBlock.isValid()) return RethrowBlock;
1624 
1625   CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
1626 
1627   // We emit a jump to a notional label at the outermost unwind state.
1628   llvm::BasicBlock *Unwind = createBasicBlock("eh.resume");
1629   Builder.SetInsertPoint(Unwind);
1630 
1631   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions());
1632 
1633   // This can always be a call because we necessarily didn't find
1634   // anything on the EH stack which needs our help.
1635   llvm::StringRef RethrowName = Personality.getCatchallRethrowFnName();
1636   llvm::Constant *RethrowFn;
1637   if (!RethrowName.empty())
1638     RethrowFn = getCatchallRethrowFn(*this, RethrowName);
1639   else
1640     RethrowFn = getUnwindResumeOrRethrowFn();
1641 
1642   Builder.CreateCall(RethrowFn, Builder.CreateLoad(getExceptionSlot()))
1643     ->setDoesNotReturn();
1644   Builder.CreateUnreachable();
1645 
1646   Builder.restoreIP(SavedIP);
1647 
1648   RethrowBlock = UnwindDest(Unwind, EHStack.stable_end(), 0);
1649   return RethrowBlock;
1650 }
1651 
1652 EHScopeStack::Cleanup::~Cleanup() {
1653   llvm_unreachable("Cleanup is indestructable");
1654 }
1655