1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/StmtCXX.h" 15 16 #include "llvm/Intrinsics.h" 17 #include "llvm/IntrinsicInst.h" 18 #include "llvm/Support/CallSite.h" 19 20 #include "CGObjCRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CGException.h" 23 #include "CGCleanup.h" 24 #include "TargetInfo.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 29 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) { 30 // void *__cxa_allocate_exception(size_t thrown_size); 31 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 32 std::vector<const llvm::Type*> Args(1, SizeTy); 33 34 const llvm::FunctionType *FTy = 35 llvm::FunctionType::get(llvm::Type::getInt8PtrTy(CGF.getLLVMContext()), 36 Args, false); 37 38 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 39 } 40 41 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) { 42 // void __cxa_free_exception(void *thrown_exception); 43 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 44 std::vector<const llvm::Type*> Args(1, Int8PtrTy); 45 46 const llvm::FunctionType *FTy = 47 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 48 Args, false); 49 50 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 51 } 52 53 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) { 54 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 55 // void (*dest) (void *)); 56 57 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 58 std::vector<const llvm::Type*> Args(3, Int8PtrTy); 59 60 const llvm::FunctionType *FTy = 61 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 62 Args, false); 63 64 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 65 } 66 67 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) { 68 // void __cxa_rethrow(); 69 70 const llvm::FunctionType *FTy = 71 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false); 72 73 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 74 } 75 76 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) { 77 // void *__cxa_get_exception_ptr(void*); 78 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 79 std::vector<const llvm::Type*> Args(1, Int8PtrTy); 80 81 const llvm::FunctionType *FTy = 82 llvm::FunctionType::get(Int8PtrTy, Args, false); 83 84 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 85 } 86 87 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) { 88 // void *__cxa_begin_catch(void*); 89 90 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 91 std::vector<const llvm::Type*> Args(1, Int8PtrTy); 92 93 const llvm::FunctionType *FTy = 94 llvm::FunctionType::get(Int8PtrTy, Args, false); 95 96 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 97 } 98 99 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) { 100 // void __cxa_end_catch(); 101 102 const llvm::FunctionType *FTy = 103 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false); 104 105 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 106 } 107 108 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) { 109 // void __cxa_call_unexepcted(void *thrown_exception); 110 111 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 112 std::vector<const llvm::Type*> Args(1, Int8PtrTy); 113 114 const llvm::FunctionType *FTy = 115 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 116 Args, false); 117 118 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 119 } 120 121 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 122 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext()); 123 std::vector<const llvm::Type*> Args(1, Int8PtrTy); 124 125 const llvm::FunctionType *FTy = 126 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), Args, 127 false); 128 129 if (CGM.getLangOptions().SjLjExceptions) 130 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 131 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 132 } 133 134 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) { 135 // void __terminate(); 136 137 const llvm::FunctionType *FTy = 138 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false); 139 140 return CGF.CGM.CreateRuntimeFunction(FTy, 141 CGF.CGM.getLangOptions().CPlusPlus ? "_ZSt9terminatev" : "abort"); 142 } 143 144 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF, 145 llvm::StringRef Name) { 146 const llvm::Type *Int8PtrTy = 147 llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 148 std::vector<const llvm::Type*> Args(1, Int8PtrTy); 149 150 const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); 151 const llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, Args, false); 152 153 return CGF.CGM.CreateRuntimeFunction(FTy, Name); 154 } 155 156 const EHPersonality EHPersonality::GNU_C("__gcc_personality_v0"); 157 const EHPersonality EHPersonality::GNU_C_SJLJ("__gcc_personality_sj0"); 158 const EHPersonality EHPersonality::NeXT_ObjC("__objc_personality_v0"); 159 const EHPersonality EHPersonality::GNU_CPlusPlus("__gxx_personality_v0"); 160 const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ("__gxx_personality_sj0"); 161 const EHPersonality EHPersonality::GNU_ObjC("__gnu_objc_personality_v0", 162 "objc_exception_throw"); 163 const EHPersonality EHPersonality::GNU_ObjCXX("__gnustep_objcxx_personality_v0"); 164 165 static const EHPersonality &getCPersonality(const LangOptions &L) { 166 if (L.SjLjExceptions) 167 return EHPersonality::GNU_C_SJLJ; 168 return EHPersonality::GNU_C; 169 } 170 171 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 172 if (L.NeXTRuntime) { 173 if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; 174 else return getCPersonality(L); 175 } else { 176 return EHPersonality::GNU_ObjC; 177 } 178 } 179 180 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 181 if (L.SjLjExceptions) 182 return EHPersonality::GNU_CPlusPlus_SJLJ; 183 else 184 return EHPersonality::GNU_CPlusPlus; 185 } 186 187 /// Determines the personality function to use when both C++ 188 /// and Objective-C exceptions are being caught. 189 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 190 // The ObjC personality defers to the C++ personality for non-ObjC 191 // handlers. Unlike the C++ case, we use the same personality 192 // function on targets using (backend-driven) SJLJ EH. 193 if (L.NeXTRuntime) { 194 if (L.ObjCNonFragileABI) 195 return EHPersonality::NeXT_ObjC; 196 197 // In the fragile ABI, just use C++ exception handling and hope 198 // they're not doing crazy exception mixing. 199 else 200 return getCXXPersonality(L); 201 } 202 203 // The GNU runtime's personality function inherently doesn't support 204 // mixed EH. Use the C++ personality just to avoid returning null. 205 return EHPersonality::GNU_ObjCXX; 206 } 207 208 const EHPersonality &EHPersonality::get(const LangOptions &L) { 209 if (L.CPlusPlus && L.ObjC1) 210 return getObjCXXPersonality(L); 211 else if (L.CPlusPlus) 212 return getCXXPersonality(L); 213 else if (L.ObjC1) 214 return getObjCPersonality(L); 215 else 216 return getCPersonality(L); 217 } 218 219 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 220 const EHPersonality &Personality) { 221 llvm::Constant *Fn = 222 CGM.CreateRuntimeFunction(llvm::FunctionType::get( 223 llvm::Type::getInt32Ty(CGM.getLLVMContext()), 224 true), 225 Personality.getPersonalityFnName()); 226 return Fn; 227 } 228 229 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 230 const EHPersonality &Personality) { 231 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 232 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 233 } 234 235 /// Check whether a personality function could reasonably be swapped 236 /// for a C++ personality function. 237 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 238 for (llvm::Constant::use_iterator 239 I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { 240 llvm::User *User = *I; 241 242 // Conditionally white-list bitcasts. 243 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) { 244 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 245 if (!PersonalityHasOnlyCXXUses(CE)) 246 return false; 247 continue; 248 } 249 250 // Otherwise, it has to be a selector call. 251 if (!isa<llvm::EHSelectorInst>(User)) return false; 252 253 llvm::EHSelectorInst *Selector = cast<llvm::EHSelectorInst>(User); 254 for (unsigned I = 2, E = Selector->getNumArgOperands(); I != E; ++I) { 255 // Look for something that would've been returned by the ObjC 256 // runtime's GetEHType() method. 257 llvm::GlobalVariable *GV 258 = dyn_cast<llvm::GlobalVariable>(Selector->getArgOperand(I)); 259 if (!GV) continue; 260 261 // ObjC EH selector entries are always global variables with 262 // names starting like this. 263 if (GV->getName().startswith("OBJC_EHTYPE")) 264 return false; 265 } 266 } 267 268 return true; 269 } 270 271 /// Try to use the C++ personality function in ObjC++. Not doing this 272 /// can cause some incompatibilities with gcc, which is more 273 /// aggressive about only using the ObjC++ personality in a function 274 /// when it really needs it. 275 void CodeGenModule::SimplifyPersonality() { 276 // For now, this is really a Darwin-specific operation. 277 if (Context.Target.getTriple().getOS() != llvm::Triple::Darwin) 278 return; 279 280 // If we're not in ObjC++ -fexceptions, there's nothing to do. 281 if (!Features.CPlusPlus || !Features.ObjC1 || !Features.Exceptions) 282 return; 283 284 const EHPersonality &ObjCXX = EHPersonality::get(Features); 285 const EHPersonality &CXX = getCXXPersonality(Features); 286 if (&ObjCXX == &CXX || 287 ObjCXX.getPersonalityFnName() == CXX.getPersonalityFnName()) 288 return; 289 290 llvm::Function *Fn = 291 getModule().getFunction(ObjCXX.getPersonalityFnName()); 292 293 // Nothing to do if it's unused. 294 if (!Fn || Fn->use_empty()) return; 295 296 // Can't do the optimization if it has non-C++ uses. 297 if (!PersonalityHasOnlyCXXUses(Fn)) return; 298 299 // Create the C++ personality function and kill off the old 300 // function. 301 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 302 303 // This can happen if the user is screwing with us. 304 if (Fn->getType() != CXXFn->getType()) return; 305 306 Fn->replaceAllUsesWith(CXXFn); 307 Fn->eraseFromParent(); 308 } 309 310 /// Returns the value to inject into a selector to indicate the 311 /// presence of a catch-all. 312 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 313 // Possibly we should use @llvm.eh.catch.all.value here. 314 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 315 } 316 317 /// Returns the value to inject into a selector to indicate the 318 /// presence of a cleanup. 319 static llvm::Constant *getCleanupValue(CodeGenFunction &CGF) { 320 return llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 321 } 322 323 namespace { 324 /// A cleanup to free the exception object if its initialization 325 /// throws. 326 struct FreeException { 327 static void Emit(CodeGenFunction &CGF, bool forEH, 328 llvm::Value *exn) { 329 CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn) 330 ->setDoesNotThrow(); 331 } 332 }; 333 } 334 335 // Emits an exception expression into the given location. This 336 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 337 // call is required, an exception within that copy ctor causes 338 // std::terminate to be invoked. 339 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 340 llvm::Value *addr) { 341 // Make sure the exception object is cleaned up if there's an 342 // exception during initialization. 343 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 344 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 345 346 // __cxa_allocate_exception returns a void*; we need to cast this 347 // to the appropriate type for the object. 348 const llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 349 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 350 351 // FIXME: this isn't quite right! If there's a final unelided call 352 // to a copy constructor, then according to [except.terminate]p1 we 353 // must call std::terminate() if that constructor throws, because 354 // technically that copy occurs after the exception expression is 355 // evaluated but before the exception is caught. But the best way 356 // to handle that is to teach EmitAggExpr to do the final copy 357 // differently if it can't be elided. 358 CGF.EmitAnyExprToMem(e, typedAddr, /*Volatile*/ false, /*IsInit*/ true); 359 360 // Deactivate the cleanup block. 361 CGF.DeactivateCleanupBlock(cleanup); 362 } 363 364 llvm::Value *CodeGenFunction::getExceptionSlot() { 365 if (!ExceptionSlot) { 366 const llvm::Type *i8p = llvm::Type::getInt8PtrTy(getLLVMContext()); 367 ExceptionSlot = CreateTempAlloca(i8p, "exn.slot"); 368 } 369 return ExceptionSlot; 370 } 371 372 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) { 373 if (!E->getSubExpr()) { 374 if (getInvokeDest()) { 375 Builder.CreateInvoke(getReThrowFn(*this), 376 getUnreachableBlock(), 377 getInvokeDest()) 378 ->setDoesNotReturn(); 379 } else { 380 Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn(); 381 Builder.CreateUnreachable(); 382 } 383 384 // throw is an expression, and the expression emitters expect us 385 // to leave ourselves at a valid insertion point. 386 EmitBlock(createBasicBlock("throw.cont")); 387 388 return; 389 } 390 391 QualType ThrowType = E->getSubExpr()->getType(); 392 393 // Now allocate the exception object. 394 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 395 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 396 397 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this); 398 llvm::CallInst *ExceptionPtr = 399 Builder.CreateCall(AllocExceptionFn, 400 llvm::ConstantInt::get(SizeTy, TypeSize), 401 "exception"); 402 ExceptionPtr->setDoesNotThrow(); 403 404 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 405 406 // Now throw the exception. 407 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext()); 408 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 409 /*ForEH=*/true); 410 411 // The address of the destructor. If the exception type has a 412 // trivial destructor (or isn't a record), we just pass null. 413 llvm::Constant *Dtor = 0; 414 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 415 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 416 if (!Record->hasTrivialDestructor()) { 417 CXXDestructorDecl *DtorD = Record->getDestructor(); 418 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 419 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 420 } 421 } 422 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 423 424 if (getInvokeDest()) { 425 llvm::InvokeInst *ThrowCall = 426 Builder.CreateInvoke3(getThrowFn(*this), 427 getUnreachableBlock(), getInvokeDest(), 428 ExceptionPtr, TypeInfo, Dtor); 429 ThrowCall->setDoesNotReturn(); 430 } else { 431 llvm::CallInst *ThrowCall = 432 Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor); 433 ThrowCall->setDoesNotReturn(); 434 Builder.CreateUnreachable(); 435 } 436 437 // throw is an expression, and the expression emitters expect us 438 // to leave ourselves at a valid insertion point. 439 EmitBlock(createBasicBlock("throw.cont")); 440 } 441 442 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 443 if (!CGM.getLangOptions().CXXExceptions) 444 return; 445 446 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 447 if (FD == 0) 448 return; 449 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 450 if (Proto == 0) 451 return; 452 453 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 454 if (isNoexceptExceptionSpec(EST)) { 455 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 456 // noexcept functions are simple terminate scopes. 457 EHStack.pushTerminate(); 458 } 459 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 460 unsigned NumExceptions = Proto->getNumExceptions(); 461 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 462 463 for (unsigned I = 0; I != NumExceptions; ++I) { 464 QualType Ty = Proto->getExceptionType(I); 465 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 466 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 467 /*ForEH=*/true); 468 Filter->setFilter(I, EHType); 469 } 470 } 471 } 472 473 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 474 if (!CGM.getLangOptions().CXXExceptions) 475 return; 476 477 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 478 if (FD == 0) 479 return; 480 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 481 if (Proto == 0) 482 return; 483 484 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 485 if (isNoexceptExceptionSpec(EST)) { 486 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 487 EHStack.popTerminate(); 488 } 489 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 490 EHStack.popFilter(); 491 } 492 } 493 494 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 495 EnterCXXTryStmt(S); 496 EmitStmt(S.getTryBlock()); 497 ExitCXXTryStmt(S); 498 } 499 500 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 501 unsigned NumHandlers = S.getNumHandlers(); 502 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 503 504 for (unsigned I = 0; I != NumHandlers; ++I) { 505 const CXXCatchStmt *C = S.getHandler(I); 506 507 llvm::BasicBlock *Handler = createBasicBlock("catch"); 508 if (C->getExceptionDecl()) { 509 // FIXME: Dropping the reference type on the type into makes it 510 // impossible to correctly implement catch-by-reference 511 // semantics for pointers. Unfortunately, this is what all 512 // existing compilers do, and it's not clear that the standard 513 // personality routine is capable of doing this right. See C++ DR 388: 514 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 515 QualType CaughtType = C->getCaughtType(); 516 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 517 518 llvm::Value *TypeInfo = 0; 519 if (CaughtType->isObjCObjectPointerType()) 520 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 521 else 522 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 523 CatchScope->setHandler(I, TypeInfo, Handler); 524 } else { 525 // No exception decl indicates '...', a catch-all. 526 CatchScope->setCatchAllHandler(I, Handler); 527 } 528 } 529 } 530 531 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 532 /// affect exception handling. Currently, the only non-EH scopes are 533 /// normal-only cleanup scopes. 534 static bool isNonEHScope(const EHScope &S) { 535 switch (S.getKind()) { 536 case EHScope::Cleanup: 537 return !cast<EHCleanupScope>(S).isEHCleanup(); 538 case EHScope::Filter: 539 case EHScope::Catch: 540 case EHScope::Terminate: 541 return false; 542 } 543 544 // Suppress warning. 545 return false; 546 } 547 548 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 549 assert(EHStack.requiresLandingPad()); 550 assert(!EHStack.empty()); 551 552 if (!CGM.getLangOptions().Exceptions) 553 return 0; 554 555 // Check the innermost scope for a cached landing pad. If this is 556 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 557 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 558 if (LP) return LP; 559 560 // Build the landing pad for this scope. 561 LP = EmitLandingPad(); 562 assert(LP); 563 564 // Cache the landing pad on the innermost scope. If this is a 565 // non-EH scope, cache the landing pad on the enclosing scope, too. 566 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 567 ir->setCachedLandingPad(LP); 568 if (!isNonEHScope(*ir)) break; 569 } 570 571 return LP; 572 } 573 574 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 575 assert(EHStack.requiresLandingPad()); 576 577 // This function contains a hack to work around a design flaw in 578 // LLVM's EH IR which breaks semantics after inlining. This same 579 // hack is implemented in llvm-gcc. 580 // 581 // The LLVM EH abstraction is basically a thin veneer over the 582 // traditional GCC zero-cost design: for each range of instructions 583 // in the function, there is (at most) one "landing pad" with an 584 // associated chain of EH actions. A language-specific personality 585 // function interprets this chain of actions and (1) decides whether 586 // or not to resume execution at the landing pad and (2) if so, 587 // provides an integer indicating why it's stopping. In LLVM IR, 588 // the association of a landing pad with a range of instructions is 589 // achieved via an invoke instruction, the chain of actions becomes 590 // the arguments to the @llvm.eh.selector call, and the selector 591 // call returns the integer indicator. Other than the required 592 // presence of two intrinsic function calls in the landing pad, 593 // the IR exactly describes the layout of the output code. 594 // 595 // A principal advantage of this design is that it is completely 596 // language-agnostic; in theory, the LLVM optimizers can treat 597 // landing pads neutrally, and targets need only know how to lower 598 // the intrinsics to have a functioning exceptions system (assuming 599 // that platform exceptions follow something approximately like the 600 // GCC design). Unfortunately, landing pads cannot be combined in a 601 // language-agnostic way: given selectors A and B, there is no way 602 // to make a single landing pad which faithfully represents the 603 // semantics of propagating an exception first through A, then 604 // through B, without knowing how the personality will interpret the 605 // (lowered form of the) selectors. This means that inlining has no 606 // choice but to crudely chain invokes (i.e., to ignore invokes in 607 // the inlined function, but to turn all unwindable calls into 608 // invokes), which is only semantically valid if every unwind stops 609 // at every landing pad. 610 // 611 // Therefore, the invoke-inline hack is to guarantee that every 612 // landing pad has a catch-all. 613 const bool UseInvokeInlineHack = true; 614 615 for (EHScopeStack::iterator ir = EHStack.begin(); ; ) { 616 assert(ir != EHStack.end() && 617 "stack requiring landing pad is nothing but non-EH scopes?"); 618 619 // If this is a terminate scope, just use the singleton terminate 620 // landing pad. 621 if (isa<EHTerminateScope>(*ir)) 622 return getTerminateLandingPad(); 623 624 // If this isn't an EH scope, iterate; otherwise break out. 625 if (!isNonEHScope(*ir)) break; 626 ++ir; 627 628 // We haven't checked this scope for a cached landing pad yet. 629 if (llvm::BasicBlock *LP = ir->getCachedLandingPad()) 630 return LP; 631 } 632 633 // Save the current IR generation state. 634 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 635 636 const EHPersonality &Personality = EHPersonality::get(getLangOptions()); 637 638 // Create and configure the landing pad. 639 llvm::BasicBlock *LP = createBasicBlock("lpad"); 640 EmitBlock(LP); 641 642 // Save the exception pointer. It's safe to use a single exception 643 // pointer per function because EH cleanups can never have nested 644 // try/catches. 645 llvm::CallInst *Exn = 646 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn"); 647 Exn->setDoesNotThrow(); 648 Builder.CreateStore(Exn, getExceptionSlot()); 649 650 // Build the selector arguments. 651 llvm::SmallVector<llvm::Value*, 8> EHSelector; 652 EHSelector.push_back(Exn); 653 EHSelector.push_back(getOpaquePersonalityFn(CGM, Personality)); 654 655 // Accumulate all the handlers in scope. 656 llvm::DenseMap<llvm::Value*, UnwindDest> EHHandlers; 657 UnwindDest CatchAll; 658 bool HasEHCleanup = false; 659 bool HasEHFilter = false; 660 llvm::SmallVector<llvm::Value*, 8> EHFilters; 661 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 662 I != E; ++I) { 663 664 switch (I->getKind()) { 665 case EHScope::Cleanup: 666 if (!HasEHCleanup) 667 HasEHCleanup = cast<EHCleanupScope>(*I).isEHCleanup(); 668 // We otherwise don't care about cleanups. 669 continue; 670 671 case EHScope::Filter: { 672 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 673 assert(!CatchAll.isValid() && "EH filter reached after catch-all"); 674 675 // Filter scopes get added to the selector in weird ways. 676 EHFilterScope &Filter = cast<EHFilterScope>(*I); 677 HasEHFilter = true; 678 679 // Add all the filter values which we aren't already explicitly 680 // catching. 681 for (unsigned I = 0, E = Filter.getNumFilters(); I != E; ++I) { 682 llvm::Value *FV = Filter.getFilter(I); 683 if (!EHHandlers.count(FV)) 684 EHFilters.push_back(FV); 685 } 686 goto done; 687 } 688 689 case EHScope::Terminate: 690 // Terminate scopes are basically catch-alls. 691 assert(!CatchAll.isValid()); 692 CatchAll = UnwindDest(getTerminateHandler(), 693 EHStack.getEnclosingEHCleanup(I), 694 cast<EHTerminateScope>(*I).getDestIndex()); 695 goto done; 696 697 case EHScope::Catch: 698 break; 699 } 700 701 EHCatchScope &Catch = cast<EHCatchScope>(*I); 702 for (unsigned HI = 0, HE = Catch.getNumHandlers(); HI != HE; ++HI) { 703 EHCatchScope::Handler Handler = Catch.getHandler(HI); 704 705 // Catch-all. We should only have one of these per catch. 706 if (!Handler.Type) { 707 assert(!CatchAll.isValid()); 708 CatchAll = UnwindDest(Handler.Block, 709 EHStack.getEnclosingEHCleanup(I), 710 Handler.Index); 711 continue; 712 } 713 714 // Check whether we already have a handler for this type. 715 UnwindDest &Dest = EHHandlers[Handler.Type]; 716 if (Dest.isValid()) continue; 717 718 EHSelector.push_back(Handler.Type); 719 Dest = UnwindDest(Handler.Block, 720 EHStack.getEnclosingEHCleanup(I), 721 Handler.Index); 722 } 723 724 // Stop if we found a catch-all. 725 if (CatchAll.isValid()) break; 726 } 727 728 done: 729 unsigned LastToEmitInLoop = EHSelector.size(); 730 731 // If we have a catch-all, add null to the selector. 732 if (CatchAll.isValid()) { 733 EHSelector.push_back(getCatchAllValue(*this)); 734 735 // If we have an EH filter, we need to add those handlers in the 736 // right place in the selector, which is to say, at the end. 737 } else if (HasEHFilter) { 738 // Create a filter expression: an integer constant saying how many 739 // filters there are (+1 to avoid ambiguity with 0 for cleanup), 740 // followed by the filter types. The personality routine only 741 // lands here if the filter doesn't match. 742 EHSelector.push_back(llvm::ConstantInt::get(Builder.getInt32Ty(), 743 EHFilters.size() + 1)); 744 EHSelector.append(EHFilters.begin(), EHFilters.end()); 745 746 // Also check whether we need a cleanup. 747 if (UseInvokeInlineHack || HasEHCleanup) 748 EHSelector.push_back(UseInvokeInlineHack 749 ? getCatchAllValue(*this) 750 : getCleanupValue(*this)); 751 752 // Otherwise, signal that we at least have cleanups. 753 } else if (UseInvokeInlineHack || HasEHCleanup) { 754 EHSelector.push_back(UseInvokeInlineHack 755 ? getCatchAllValue(*this) 756 : getCleanupValue(*this)); 757 } else { 758 assert(LastToEmitInLoop > 2); 759 LastToEmitInLoop--; 760 } 761 762 assert(EHSelector.size() >= 3 && "selector call has only two arguments!"); 763 764 // Tell the backend how to generate the landing pad. 765 llvm::CallInst *Selection = 766 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector), 767 EHSelector.begin(), EHSelector.end(), "eh.selector"); 768 Selection->setDoesNotThrow(); 769 770 // Select the right handler. 771 llvm::Value *llvm_eh_typeid_for = 772 CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 773 774 // The results of llvm_eh_typeid_for aren't reliable --- at least 775 // not locally --- so we basically have to do this as an 'if' chain. 776 // We walk through the first N-1 catch clauses, testing and chaining, 777 // and then fall into the final clause (which is either a cleanup, a 778 // filter (possibly with a cleanup), a catch-all, or another catch). 779 for (unsigned I = 2; I != LastToEmitInLoop; ++I) { 780 llvm::Value *Type = EHSelector[I]; 781 UnwindDest Dest = EHHandlers[Type]; 782 assert(Dest.isValid() && "no handler entry for value in selector?"); 783 784 // Figure out where to branch on a match. As a debug code-size 785 // optimization, if the scope depth matches the innermost cleanup, 786 // we branch directly to the catch handler. 787 llvm::BasicBlock *Match = Dest.getBlock(); 788 bool MatchNeedsCleanup = 789 Dest.getScopeDepth() != EHStack.getInnermostEHCleanup(); 790 if (MatchNeedsCleanup) 791 Match = createBasicBlock("eh.match"); 792 793 llvm::BasicBlock *Next = createBasicBlock("eh.next"); 794 795 // Check whether the exception matches. 796 llvm::CallInst *Id 797 = Builder.CreateCall(llvm_eh_typeid_for, 798 Builder.CreateBitCast(Type, Int8PtrTy)); 799 Id->setDoesNotThrow(); 800 Builder.CreateCondBr(Builder.CreateICmpEQ(Selection, Id), 801 Match, Next); 802 803 // Emit match code if necessary. 804 if (MatchNeedsCleanup) { 805 EmitBlock(Match); 806 EmitBranchThroughEHCleanup(Dest); 807 } 808 809 // Continue to the next match. 810 EmitBlock(Next); 811 } 812 813 // Emit the final case in the selector. 814 // This might be a catch-all.... 815 if (CatchAll.isValid()) { 816 assert(isa<llvm::ConstantPointerNull>(EHSelector.back())); 817 EmitBranchThroughEHCleanup(CatchAll); 818 819 // ...or an EH filter... 820 } else if (HasEHFilter) { 821 llvm::Value *SavedSelection = Selection; 822 823 // First, unwind out to the outermost scope if necessary. 824 if (EHStack.hasEHCleanups()) { 825 // The end here might not dominate the beginning, so we might need to 826 // save the selector if we need it. 827 llvm::AllocaInst *SelectorVar = 0; 828 if (HasEHCleanup) { 829 SelectorVar = CreateTempAlloca(Builder.getInt32Ty(), "selector.var"); 830 Builder.CreateStore(Selection, SelectorVar); 831 } 832 833 llvm::BasicBlock *CleanupContBB = createBasicBlock("ehspec.cleanup.cont"); 834 EmitBranchThroughEHCleanup(UnwindDest(CleanupContBB, EHStack.stable_end(), 835 EHStack.getNextEHDestIndex())); 836 EmitBlock(CleanupContBB); 837 838 if (HasEHCleanup) 839 SavedSelection = Builder.CreateLoad(SelectorVar, "ehspec.saved-selector"); 840 } 841 842 // If there was a cleanup, we'll need to actually check whether we 843 // landed here because the filter triggered. 844 if (UseInvokeInlineHack || HasEHCleanup) { 845 llvm::BasicBlock *RethrowBB = createBasicBlock("cleanup"); 846 llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected"); 847 848 llvm::Constant *Zero = llvm::ConstantInt::get(Builder.getInt32Ty(), 0); 849 llvm::Value *FailsFilter = 850 Builder.CreateICmpSLT(SavedSelection, Zero, "ehspec.fails"); 851 Builder.CreateCondBr(FailsFilter, UnexpectedBB, RethrowBB); 852 853 // The rethrow block is where we land if this was a cleanup. 854 // TODO: can this be _Unwind_Resume if the InvokeInlineHack is off? 855 EmitBlock(RethrowBB); 856 Builder.CreateCall(getUnwindResumeOrRethrowFn(), 857 Builder.CreateLoad(getExceptionSlot())) 858 ->setDoesNotReturn(); 859 Builder.CreateUnreachable(); 860 861 EmitBlock(UnexpectedBB); 862 } 863 864 // Call __cxa_call_unexpected. This doesn't need to be an invoke 865 // because __cxa_call_unexpected magically filters exceptions 866 // according to the last landing pad the exception was thrown 867 // into. Seriously. 868 Builder.CreateCall(getUnexpectedFn(*this), 869 Builder.CreateLoad(getExceptionSlot())) 870 ->setDoesNotReturn(); 871 Builder.CreateUnreachable(); 872 873 // ...or a normal catch handler... 874 } else if (!UseInvokeInlineHack && !HasEHCleanup) { 875 llvm::Value *Type = EHSelector.back(); 876 EmitBranchThroughEHCleanup(EHHandlers[Type]); 877 878 // ...or a cleanup. 879 } else { 880 EmitBranchThroughEHCleanup(getRethrowDest()); 881 } 882 883 // Restore the old IR generation state. 884 Builder.restoreIP(SavedIP); 885 886 return LP; 887 } 888 889 namespace { 890 /// A cleanup to call __cxa_end_catch. In many cases, the caught 891 /// exception type lets us state definitively that the thrown exception 892 /// type does not have a destructor. In particular: 893 /// - Catch-alls tell us nothing, so we have to conservatively 894 /// assume that the thrown exception might have a destructor. 895 /// - Catches by reference behave according to their base types. 896 /// - Catches of non-record types will only trigger for exceptions 897 /// of non-record types, which never have destructors. 898 /// - Catches of record types can trigger for arbitrary subclasses 899 /// of the caught type, so we have to assume the actual thrown 900 /// exception type might have a throwing destructor, even if the 901 /// caught type's destructor is trivial or nothrow. 902 struct CallEndCatch : EHScopeStack::Cleanup { 903 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 904 bool MightThrow; 905 906 void Emit(CodeGenFunction &CGF, bool IsForEH) { 907 if (!MightThrow) { 908 CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow(); 909 return; 910 } 911 912 CGF.EmitCallOrInvoke(getEndCatchFn(CGF), 0, 0); 913 } 914 }; 915 } 916 917 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 918 /// __cxa_end_catch. 919 /// 920 /// \param EndMightThrow - true if __cxa_end_catch might throw 921 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 922 llvm::Value *Exn, 923 bool EndMightThrow) { 924 llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn); 925 Call->setDoesNotThrow(); 926 927 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 928 929 return Call; 930 } 931 932 /// A "special initializer" callback for initializing a catch 933 /// parameter during catch initialization. 934 static void InitCatchParam(CodeGenFunction &CGF, 935 const VarDecl &CatchParam, 936 llvm::Value *ParamAddr) { 937 // Load the exception from where the landing pad saved it. 938 llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn"); 939 940 CanQualType CatchType = 941 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 942 const llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 943 944 // If we're catching by reference, we can just cast the object 945 // pointer to the appropriate pointer. 946 if (isa<ReferenceType>(CatchType)) { 947 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 948 bool EndCatchMightThrow = CaughtType->isRecordType(); 949 950 // __cxa_begin_catch returns the adjusted object pointer. 951 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 952 953 // We have no way to tell the personality function that we're 954 // catching by reference, so if we're catching a pointer, 955 // __cxa_begin_catch will actually return that pointer by value. 956 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 957 QualType PointeeType = PT->getPointeeType(); 958 959 // When catching by reference, generally we should just ignore 960 // this by-value pointer and use the exception object instead. 961 if (!PointeeType->isRecordType()) { 962 963 // Exn points to the struct _Unwind_Exception header, which 964 // we have to skip past in order to reach the exception data. 965 unsigned HeaderSize = 966 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 967 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 968 969 // However, if we're catching a pointer-to-record type that won't 970 // work, because the personality function might have adjusted 971 // the pointer. There's actually no way for us to fully satisfy 972 // the language/ABI contract here: we can't use Exn because it 973 // might have the wrong adjustment, but we can't use the by-value 974 // pointer because it's off by a level of abstraction. 975 // 976 // The current solution is to dump the adjusted pointer into an 977 // alloca, which breaks language semantics (because changing the 978 // pointer doesn't change the exception) but at least works. 979 // The better solution would be to filter out non-exact matches 980 // and rethrow them, but this is tricky because the rethrow 981 // really needs to be catchable by other sites at this landing 982 // pad. The best solution is to fix the personality function. 983 } else { 984 // Pull the pointer for the reference type off. 985 const llvm::Type *PtrTy = 986 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 987 988 // Create the temporary and write the adjusted pointer into it. 989 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 990 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 991 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 992 993 // Bind the reference to the temporary. 994 AdjustedExn = ExnPtrTmp; 995 } 996 } 997 998 llvm::Value *ExnCast = 999 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 1000 CGF.Builder.CreateStore(ExnCast, ParamAddr); 1001 return; 1002 } 1003 1004 // Non-aggregates (plus complexes). 1005 bool IsComplex = false; 1006 if (!CGF.hasAggregateLLVMType(CatchType) || 1007 (IsComplex = CatchType->isAnyComplexType())) { 1008 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 1009 1010 // If the catch type is a pointer type, __cxa_begin_catch returns 1011 // the pointer by value. 1012 if (CatchType->hasPointerRepresentation()) { 1013 llvm::Value *CastExn = 1014 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1015 CGF.Builder.CreateStore(CastExn, ParamAddr); 1016 return; 1017 } 1018 1019 // Otherwise, it returns a pointer into the exception object. 1020 1021 const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1022 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1023 1024 if (IsComplex) { 1025 CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false), 1026 ParamAddr, /*volatile*/ false); 1027 } else { 1028 unsigned Alignment = 1029 CGF.getContext().getDeclAlign(&CatchParam).getQuantity(); 1030 llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar"); 1031 CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment, 1032 CatchType); 1033 } 1034 return; 1035 } 1036 1037 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1038 1039 const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1040 1041 // Check for a copy expression. If we don't have a copy expression, 1042 // that means a trivial copy is okay. 1043 const Expr *copyExpr = CatchParam.getInit(); 1044 if (!copyExpr) { 1045 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1046 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1047 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); 1048 return; 1049 } 1050 1051 // We have to call __cxa_get_exception_ptr to get the adjusted 1052 // pointer before copying. 1053 llvm::CallInst *rawAdjustedExn = 1054 CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn); 1055 rawAdjustedExn->setDoesNotThrow(); 1056 1057 // Cast that to the appropriate type. 1058 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1059 1060 // The copy expression is defined in terms of an OpaqueValueExpr. 1061 // Find it and map it to the adjusted expression. 1062 CodeGenFunction::OpaqueValueMapping 1063 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1064 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1065 1066 // Call the copy ctor in a terminate scope. 1067 CGF.EHStack.pushTerminate(); 1068 1069 // Perform the copy construction. 1070 CGF.EmitAggExpr(copyExpr, AggValueSlot::forAddr(ParamAddr, false, false)); 1071 1072 // Leave the terminate scope. 1073 CGF.EHStack.popTerminate(); 1074 1075 // Undo the opaque value mapping. 1076 opaque.pop(); 1077 1078 // Finally we can call __cxa_begin_catch. 1079 CallBeginCatch(CGF, Exn, true); 1080 } 1081 1082 /// Begins a catch statement by initializing the catch variable and 1083 /// calling __cxa_begin_catch. 1084 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1085 // We have to be very careful with the ordering of cleanups here: 1086 // C++ [except.throw]p4: 1087 // The destruction [of the exception temporary] occurs 1088 // immediately after the destruction of the object declared in 1089 // the exception-declaration in the handler. 1090 // 1091 // So the precise ordering is: 1092 // 1. Construct catch variable. 1093 // 2. __cxa_begin_catch 1094 // 3. Enter __cxa_end_catch cleanup 1095 // 4. Enter dtor cleanup 1096 // 1097 // We do this by using a slightly abnormal initialization process. 1098 // Delegation sequence: 1099 // - ExitCXXTryStmt opens a RunCleanupsScope 1100 // - EmitAutoVarAlloca creates the variable and debug info 1101 // - InitCatchParam initializes the variable from the exception 1102 // - CallBeginCatch calls __cxa_begin_catch 1103 // - CallBeginCatch enters the __cxa_end_catch cleanup 1104 // - EmitAutoVarCleanups enters the variable destructor cleanup 1105 // - EmitCXXTryStmt emits the code for the catch body 1106 // - EmitCXXTryStmt close the RunCleanupsScope 1107 1108 VarDecl *CatchParam = S->getExceptionDecl(); 1109 if (!CatchParam) { 1110 llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn"); 1111 CallBeginCatch(CGF, Exn, true); 1112 return; 1113 } 1114 1115 // Emit the local. 1116 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1117 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); 1118 CGF.EmitAutoVarCleanups(var); 1119 } 1120 1121 namespace { 1122 struct CallRethrow : EHScopeStack::Cleanup { 1123 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1124 CGF.EmitCallOrInvoke(getReThrowFn(CGF), 0, 0); 1125 } 1126 }; 1127 } 1128 1129 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1130 unsigned NumHandlers = S.getNumHandlers(); 1131 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1132 assert(CatchScope.getNumHandlers() == NumHandlers); 1133 1134 // Copy the handler blocks off before we pop the EH stack. Emitting 1135 // the handlers might scribble on this memory. 1136 llvm::SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1137 memcpy(Handlers.data(), CatchScope.begin(), 1138 NumHandlers * sizeof(EHCatchScope::Handler)); 1139 EHStack.popCatch(); 1140 1141 // The fall-through block. 1142 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1143 1144 // We just emitted the body of the try; jump to the continue block. 1145 if (HaveInsertPoint()) 1146 Builder.CreateBr(ContBB); 1147 1148 // Determine if we need an implicit rethrow for all these catch handlers. 1149 bool ImplicitRethrow = false; 1150 if (IsFnTryBlock) 1151 ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1152 isa<CXXConstructorDecl>(CurCodeDecl); 1153 1154 for (unsigned I = 0; I != NumHandlers; ++I) { 1155 llvm::BasicBlock *CatchBlock = Handlers[I].Block; 1156 EmitBlock(CatchBlock); 1157 1158 // Catch the exception if this isn't a catch-all. 1159 const CXXCatchStmt *C = S.getHandler(I); 1160 1161 // Enter a cleanup scope, including the catch variable and the 1162 // end-catch. 1163 RunCleanupsScope CatchScope(*this); 1164 1165 // Initialize the catch variable and set up the cleanups. 1166 BeginCatch(*this, C); 1167 1168 // If there's an implicit rethrow, push a normal "cleanup" to call 1169 // _cxa_rethrow. This needs to happen before __cxa_end_catch is 1170 // called, and so it is pushed after BeginCatch. 1171 if (ImplicitRethrow) 1172 EHStack.pushCleanup<CallRethrow>(NormalCleanup); 1173 1174 // Perform the body of the catch. 1175 EmitStmt(C->getHandlerBlock()); 1176 1177 // Fall out through the catch cleanups. 1178 CatchScope.ForceCleanup(); 1179 1180 // Branch out of the try. 1181 if (HaveInsertPoint()) 1182 Builder.CreateBr(ContBB); 1183 } 1184 1185 EmitBlock(ContBB); 1186 } 1187 1188 namespace { 1189 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1190 llvm::Value *ForEHVar; 1191 llvm::Value *EndCatchFn; 1192 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1193 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1194 1195 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1196 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1197 llvm::BasicBlock *CleanupContBB = 1198 CGF.createBasicBlock("finally.cleanup.cont"); 1199 1200 llvm::Value *ShouldEndCatch = 1201 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1202 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1203 CGF.EmitBlock(EndCatchBB); 1204 CGF.EmitCallOrInvoke(EndCatchFn, 0, 0); // catch-all, so might throw 1205 CGF.EmitBlock(CleanupContBB); 1206 } 1207 }; 1208 1209 struct PerformFinally : EHScopeStack::Cleanup { 1210 const Stmt *Body; 1211 llvm::Value *ForEHVar; 1212 llvm::Value *EndCatchFn; 1213 llvm::Value *RethrowFn; 1214 llvm::Value *SavedExnVar; 1215 1216 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1217 llvm::Value *EndCatchFn, 1218 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1219 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1220 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1221 1222 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1223 // Enter a cleanup to call the end-catch function if one was provided. 1224 if (EndCatchFn) 1225 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1226 ForEHVar, EndCatchFn); 1227 1228 // Save the current cleanup destination in case there are 1229 // cleanups in the finally block. 1230 llvm::Value *SavedCleanupDest = 1231 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1232 "cleanup.dest.saved"); 1233 1234 // Emit the finally block. 1235 CGF.EmitStmt(Body); 1236 1237 // If the end of the finally is reachable, check whether this was 1238 // for EH. If so, rethrow. 1239 if (CGF.HaveInsertPoint()) { 1240 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1241 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1242 1243 llvm::Value *ShouldRethrow = 1244 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1245 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1246 1247 CGF.EmitBlock(RethrowBB); 1248 if (SavedExnVar) { 1249 llvm::Value *Args[] = { CGF.Builder.CreateLoad(SavedExnVar) }; 1250 CGF.EmitCallOrInvoke(RethrowFn, Args, Args+1); 1251 } else { 1252 CGF.EmitCallOrInvoke(RethrowFn, 0, 0); 1253 } 1254 CGF.Builder.CreateUnreachable(); 1255 1256 CGF.EmitBlock(ContBB); 1257 1258 // Restore the cleanup destination. 1259 CGF.Builder.CreateStore(SavedCleanupDest, 1260 CGF.getNormalCleanupDestSlot()); 1261 } 1262 1263 // Leave the end-catch cleanup. As an optimization, pretend that 1264 // the fallthrough path was inaccessible; we've dynamically proven 1265 // that we're not in the EH case along that path. 1266 if (EndCatchFn) { 1267 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1268 CGF.PopCleanupBlock(); 1269 CGF.Builder.restoreIP(SavedIP); 1270 } 1271 1272 // Now make sure we actually have an insertion point or the 1273 // cleanup gods will hate us. 1274 CGF.EnsureInsertPoint(); 1275 } 1276 }; 1277 } 1278 1279 /// Enters a finally block for an implementation using zero-cost 1280 /// exceptions. This is mostly general, but hard-codes some 1281 /// language/ABI-specific behavior in the catch-all sections. 1282 CodeGenFunction::FinallyInfo 1283 CodeGenFunction::EnterFinallyBlock(const Stmt *Body, 1284 llvm::Constant *BeginCatchFn, 1285 llvm::Constant *EndCatchFn, 1286 llvm::Constant *RethrowFn) { 1287 assert((BeginCatchFn != 0) == (EndCatchFn != 0) && 1288 "begin/end catch functions not paired"); 1289 assert(RethrowFn && "rethrow function is required"); 1290 1291 // The rethrow function has one of the following two types: 1292 // void (*)() 1293 // void (*)(void*) 1294 // In the latter case we need to pass it the exception object. 1295 // But we can't use the exception slot because the @finally might 1296 // have a landing pad (which would overwrite the exception slot). 1297 const llvm::FunctionType *RethrowFnTy = 1298 cast<llvm::FunctionType>( 1299 cast<llvm::PointerType>(RethrowFn->getType()) 1300 ->getElementType()); 1301 llvm::Value *SavedExnVar = 0; 1302 if (RethrowFnTy->getNumParams()) 1303 SavedExnVar = CreateTempAlloca(Builder.getInt8PtrTy(), "finally.exn"); 1304 1305 // A finally block is a statement which must be executed on any edge 1306 // out of a given scope. Unlike a cleanup, the finally block may 1307 // contain arbitrary control flow leading out of itself. In 1308 // addition, finally blocks should always be executed, even if there 1309 // are no catch handlers higher on the stack. Therefore, we 1310 // surround the protected scope with a combination of a normal 1311 // cleanup (to catch attempts to break out of the block via normal 1312 // control flow) and an EH catch-all (semantically "outside" any try 1313 // statement to which the finally block might have been attached). 1314 // The finally block itself is generated in the context of a cleanup 1315 // which conditionally leaves the catch-all. 1316 1317 FinallyInfo Info; 1318 1319 // Jump destination for performing the finally block on an exception 1320 // edge. We'll never actually reach this block, so unreachable is 1321 // fine. 1322 JumpDest RethrowDest = getJumpDestInCurrentScope(getUnreachableBlock()); 1323 1324 // Whether the finally block is being executed for EH purposes. 1325 llvm::AllocaInst *ForEHVar = CreateTempAlloca(Builder.getInt1Ty(), 1326 "finally.for-eh"); 1327 InitTempAlloca(ForEHVar, llvm::ConstantInt::getFalse(getLLVMContext())); 1328 1329 // Enter a normal cleanup which will perform the @finally block. 1330 EHStack.pushCleanup<PerformFinally>(NormalCleanup, Body, 1331 ForEHVar, EndCatchFn, 1332 RethrowFn, SavedExnVar); 1333 1334 // Enter a catch-all scope. 1335 llvm::BasicBlock *CatchAllBB = createBasicBlock("finally.catchall"); 1336 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1337 Builder.SetInsertPoint(CatchAllBB); 1338 1339 // If there's a begin-catch function, call it. 1340 if (BeginCatchFn) { 1341 Builder.CreateCall(BeginCatchFn, Builder.CreateLoad(getExceptionSlot())) 1342 ->setDoesNotThrow(); 1343 } 1344 1345 // If we need to remember the exception pointer to rethrow later, do so. 1346 if (SavedExnVar) { 1347 llvm::Value *SavedExn = Builder.CreateLoad(getExceptionSlot()); 1348 Builder.CreateStore(SavedExn, SavedExnVar); 1349 } 1350 1351 // Tell the finally block that we're in EH. 1352 Builder.CreateStore(llvm::ConstantInt::getTrue(getLLVMContext()), ForEHVar); 1353 1354 // Thread a jump through the finally cleanup. 1355 EmitBranchThroughCleanup(RethrowDest); 1356 1357 Builder.restoreIP(SavedIP); 1358 1359 EHCatchScope *CatchScope = EHStack.pushCatch(1); 1360 CatchScope->setCatchAllHandler(0, CatchAllBB); 1361 1362 return Info; 1363 } 1364 1365 void CodeGenFunction::ExitFinallyBlock(FinallyInfo &Info) { 1366 // Leave the finally catch-all. 1367 EHCatchScope &Catch = cast<EHCatchScope>(*EHStack.begin()); 1368 llvm::BasicBlock *CatchAllBB = Catch.getHandler(0).Block; 1369 EHStack.popCatch(); 1370 1371 // And leave the normal cleanup. 1372 PopCleanupBlock(); 1373 1374 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1375 EmitBlock(CatchAllBB, true); 1376 1377 Builder.restoreIP(SavedIP); 1378 } 1379 1380 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1381 if (TerminateLandingPad) 1382 return TerminateLandingPad; 1383 1384 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1385 1386 // This will get inserted at the end of the function. 1387 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1388 Builder.SetInsertPoint(TerminateLandingPad); 1389 1390 // Tell the backend that this is a landing pad. 1391 llvm::CallInst *Exn = 1392 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn"); 1393 Exn->setDoesNotThrow(); 1394 1395 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions()); 1396 1397 // Tell the backend what the exception table should be: 1398 // nothing but a catch-all. 1399 llvm::Value *Args[3] = { Exn, getOpaquePersonalityFn(CGM, Personality), 1400 getCatchAllValue(*this) }; 1401 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector), 1402 Args, Args+3, "eh.selector") 1403 ->setDoesNotThrow(); 1404 1405 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1406 TerminateCall->setDoesNotReturn(); 1407 TerminateCall->setDoesNotThrow(); 1408 Builder.CreateUnreachable(); 1409 1410 // Restore the saved insertion state. 1411 Builder.restoreIP(SavedIP); 1412 1413 return TerminateLandingPad; 1414 } 1415 1416 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1417 if (TerminateHandler) 1418 return TerminateHandler; 1419 1420 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1421 1422 // Set up the terminate handler. This block is inserted at the very 1423 // end of the function by FinishFunction. 1424 TerminateHandler = createBasicBlock("terminate.handler"); 1425 Builder.SetInsertPoint(TerminateHandler); 1426 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1427 TerminateCall->setDoesNotReturn(); 1428 TerminateCall->setDoesNotThrow(); 1429 Builder.CreateUnreachable(); 1430 1431 // Restore the saved insertion state. 1432 Builder.restoreIP(SavedIP); 1433 1434 return TerminateHandler; 1435 } 1436 1437 CodeGenFunction::UnwindDest CodeGenFunction::getRethrowDest() { 1438 if (RethrowBlock.isValid()) return RethrowBlock; 1439 1440 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1441 1442 // We emit a jump to a notional label at the outermost unwind state. 1443 llvm::BasicBlock *Unwind = createBasicBlock("eh.resume"); 1444 Builder.SetInsertPoint(Unwind); 1445 1446 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions()); 1447 1448 // This can always be a call because we necessarily didn't find 1449 // anything on the EH stack which needs our help. 1450 llvm::StringRef RethrowName = Personality.getCatchallRethrowFnName(); 1451 llvm::Constant *RethrowFn; 1452 if (!RethrowName.empty()) 1453 RethrowFn = getCatchallRethrowFn(*this, RethrowName); 1454 else 1455 RethrowFn = getUnwindResumeOrRethrowFn(); 1456 1457 Builder.CreateCall(RethrowFn, Builder.CreateLoad(getExceptionSlot())) 1458 ->setDoesNotReturn(); 1459 Builder.CreateUnreachable(); 1460 1461 Builder.restoreIP(SavedIP); 1462 1463 RethrowBlock = UnwindDest(Unwind, EHStack.stable_end(), 0); 1464 return RethrowBlock; 1465 } 1466 1467