1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtCXX.h" 19 #include "llvm/Intrinsics.h" 20 #include "llvm/Support/CallSite.h" 21 22 using namespace clang; 23 using namespace CodeGen; 24 25 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) { 26 // void *__cxa_allocate_exception(size_t thrown_size); 27 28 llvm::FunctionType *FTy = 29 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.SizeTy, /*IsVarArgs=*/false); 30 31 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 32 } 33 34 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) { 35 // void __cxa_free_exception(void *thrown_exception); 36 37 llvm::FunctionType *FTy = 38 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 39 40 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 41 } 42 43 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) { 44 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 45 // void (*dest) (void *)); 46 47 llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; 48 llvm::FunctionType *FTy = 49 llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false); 50 51 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 52 } 53 54 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) { 55 // void __cxa_rethrow(); 56 57 llvm::FunctionType *FTy = 58 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 59 60 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 61 } 62 63 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) { 64 // void *__cxa_get_exception_ptr(void*); 65 66 llvm::FunctionType *FTy = 67 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 68 69 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 70 } 71 72 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) { 73 // void *__cxa_begin_catch(void*); 74 75 llvm::FunctionType *FTy = 76 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 77 78 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 79 } 80 81 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) { 82 // void __cxa_end_catch(); 83 84 llvm::FunctionType *FTy = 85 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 86 87 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 88 } 89 90 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) { 91 // void __cxa_call_unexepcted(void *thrown_exception); 92 93 llvm::FunctionType *FTy = 94 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 95 96 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 97 } 98 99 llvm::Constant *CodeGenFunction::getUnwindResumeFn() { 100 llvm::FunctionType *FTy = 101 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 102 103 if (CGM.getLangOpts().SjLjExceptions) 104 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); 105 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); 106 } 107 108 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 109 llvm::FunctionType *FTy = 110 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 111 112 if (CGM.getLangOpts().SjLjExceptions) 113 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 114 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 115 } 116 117 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) { 118 // void __terminate(); 119 120 llvm::FunctionType *FTy = 121 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 122 123 StringRef name; 124 125 // In C++, use std::terminate(). 126 if (CGF.getLangOpts().CPlusPlus) 127 name = "_ZSt9terminatev"; // FIXME: mangling! 128 else if (CGF.getLangOpts().ObjC1 && 129 CGF.getLangOpts().ObjCRuntime.hasTerminate()) 130 name = "objc_terminate"; 131 else 132 name = "abort"; 133 return CGF.CGM.CreateRuntimeFunction(FTy, name); 134 } 135 136 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF, 137 StringRef Name) { 138 llvm::FunctionType *FTy = 139 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 140 141 return CGF.CGM.CreateRuntimeFunction(FTy, Name); 142 } 143 144 namespace { 145 /// The exceptions personality for a function. 146 struct EHPersonality { 147 const char *PersonalityFn; 148 149 // If this is non-null, this personality requires a non-standard 150 // function for rethrowing an exception after a catchall cleanup. 151 // This function must have prototype void(void*). 152 const char *CatchallRethrowFn; 153 154 static const EHPersonality &get(const LangOptions &Lang); 155 static const EHPersonality GNU_C; 156 static const EHPersonality GNU_C_SJLJ; 157 static const EHPersonality GNU_ObjC; 158 static const EHPersonality GNU_ObjCXX; 159 static const EHPersonality NeXT_ObjC; 160 static const EHPersonality GNU_CPlusPlus; 161 static const EHPersonality GNU_CPlusPlus_SJLJ; 162 }; 163 } 164 165 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 }; 166 const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 }; 167 const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 }; 168 const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0}; 169 const EHPersonality 170 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 }; 171 const EHPersonality 172 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; 173 const EHPersonality 174 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 }; 175 176 static const EHPersonality &getCPersonality(const LangOptions &L) { 177 if (L.SjLjExceptions) 178 return EHPersonality::GNU_C_SJLJ; 179 return EHPersonality::GNU_C; 180 } 181 182 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 183 switch (L.ObjCRuntime.getKind()) { 184 case ObjCRuntime::FragileMacOSX: 185 return getCPersonality(L); 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 return EHPersonality::NeXT_ObjC; 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 return EHPersonality::GNU_ObjC; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 197 if (L.SjLjExceptions) 198 return EHPersonality::GNU_CPlusPlus_SJLJ; 199 else 200 return EHPersonality::GNU_CPlusPlus; 201 } 202 203 /// Determines the personality function to use when both C++ 204 /// and Objective-C exceptions are being caught. 205 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 206 switch (L.ObjCRuntime.getKind()) { 207 // The ObjC personality defers to the C++ personality for non-ObjC 208 // handlers. Unlike the C++ case, we use the same personality 209 // function on targets using (backend-driven) SJLJ EH. 210 case ObjCRuntime::MacOSX: 211 case ObjCRuntime::iOS: 212 return EHPersonality::NeXT_ObjC; 213 214 // In the fragile ABI, just use C++ exception handling and hope 215 // they're not doing crazy exception mixing. 216 case ObjCRuntime::FragileMacOSX: 217 return getCXXPersonality(L); 218 219 // The GCC runtime's personality function inherently doesn't support 220 // mixed EH. Use the C++ personality just to avoid returning null. 221 case ObjCRuntime::GCC: 222 return EHPersonality::GNU_ObjC; 223 case ObjCRuntime::GNUstep: 224 return EHPersonality::GNU_ObjCXX; 225 } 226 llvm_unreachable("bad runtime kind"); 227 } 228 229 const EHPersonality &EHPersonality::get(const LangOptions &L) { 230 if (L.CPlusPlus && L.ObjC1) 231 return getObjCXXPersonality(L); 232 else if (L.CPlusPlus) 233 return getCXXPersonality(L); 234 else if (L.ObjC1) 235 return getObjCPersonality(L); 236 else 237 return getCPersonality(L); 238 } 239 240 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 241 const EHPersonality &Personality) { 242 llvm::Constant *Fn = 243 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), 244 Personality.PersonalityFn); 245 return Fn; 246 } 247 248 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 249 const EHPersonality &Personality) { 250 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 251 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 252 } 253 254 /// Check whether a personality function could reasonably be swapped 255 /// for a C++ personality function. 256 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 257 for (llvm::Constant::use_iterator 258 I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { 259 llvm::User *User = *I; 260 261 // Conditionally white-list bitcasts. 262 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) { 263 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 264 if (!PersonalityHasOnlyCXXUses(CE)) 265 return false; 266 continue; 267 } 268 269 // Otherwise, it has to be a landingpad instruction. 270 llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User); 271 if (!LPI) return false; 272 273 for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { 274 // Look for something that would've been returned by the ObjC 275 // runtime's GetEHType() method. 276 llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); 277 if (LPI->isCatch(I)) { 278 // Check if the catch value has the ObjC prefix. 279 if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) 280 // ObjC EH selector entries are always global variables with 281 // names starting like this. 282 if (GV->getName().startswith("OBJC_EHTYPE")) 283 return false; 284 } else { 285 // Check if any of the filter values have the ObjC prefix. 286 llvm::Constant *CVal = cast<llvm::Constant>(Val); 287 for (llvm::User::op_iterator 288 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { 289 if (llvm::GlobalVariable *GV = 290 cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) 291 // ObjC EH selector entries are always global variables with 292 // names starting like this. 293 if (GV->getName().startswith("OBJC_EHTYPE")) 294 return false; 295 } 296 } 297 } 298 } 299 300 return true; 301 } 302 303 /// Try to use the C++ personality function in ObjC++. Not doing this 304 /// can cause some incompatibilities with gcc, which is more 305 /// aggressive about only using the ObjC++ personality in a function 306 /// when it really needs it. 307 void CodeGenModule::SimplifyPersonality() { 308 // For now, this is really a Darwin-specific operation. 309 if (!Context.getTargetInfo().getTriple().isOSDarwin()) 310 return; 311 312 // If we're not in ObjC++ -fexceptions, there's nothing to do. 313 if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) 314 return; 315 316 const EHPersonality &ObjCXX = EHPersonality::get(LangOpts); 317 const EHPersonality &CXX = getCXXPersonality(LangOpts); 318 if (&ObjCXX == &CXX) 319 return; 320 321 assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && 322 "Different EHPersonalities using the same personality function."); 323 324 llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); 325 326 // Nothing to do if it's unused. 327 if (!Fn || Fn->use_empty()) return; 328 329 // Can't do the optimization if it has non-C++ uses. 330 if (!PersonalityHasOnlyCXXUses(Fn)) return; 331 332 // Create the C++ personality function and kill off the old 333 // function. 334 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 335 336 // This can happen if the user is screwing with us. 337 if (Fn->getType() != CXXFn->getType()) return; 338 339 Fn->replaceAllUsesWith(CXXFn); 340 Fn->eraseFromParent(); 341 } 342 343 /// Returns the value to inject into a selector to indicate the 344 /// presence of a catch-all. 345 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 346 // Possibly we should use @llvm.eh.catch.all.value here. 347 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 348 } 349 350 namespace { 351 /// A cleanup to free the exception object if its initialization 352 /// throws. 353 struct FreeException : EHScopeStack::Cleanup { 354 llvm::Value *exn; 355 FreeException(llvm::Value *exn) : exn(exn) {} 356 void Emit(CodeGenFunction &CGF, Flags flags) { 357 CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn) 358 ->setDoesNotThrow(); 359 } 360 }; 361 } 362 363 // Emits an exception expression into the given location. This 364 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 365 // call is required, an exception within that copy ctor causes 366 // std::terminate to be invoked. 367 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 368 llvm::Value *addr) { 369 // Make sure the exception object is cleaned up if there's an 370 // exception during initialization. 371 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 372 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 373 374 // __cxa_allocate_exception returns a void*; we need to cast this 375 // to the appropriate type for the object. 376 llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 377 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 378 379 // FIXME: this isn't quite right! If there's a final unelided call 380 // to a copy constructor, then according to [except.terminate]p1 we 381 // must call std::terminate() if that constructor throws, because 382 // technically that copy occurs after the exception expression is 383 // evaluated but before the exception is caught. But the best way 384 // to handle that is to teach EmitAggExpr to do the final copy 385 // differently if it can't be elided. 386 CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), 387 /*IsInit*/ true); 388 389 // Deactivate the cleanup block. 390 CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); 391 } 392 393 llvm::Value *CodeGenFunction::getExceptionSlot() { 394 if (!ExceptionSlot) 395 ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); 396 return ExceptionSlot; 397 } 398 399 llvm::Value *CodeGenFunction::getEHSelectorSlot() { 400 if (!EHSelectorSlot) 401 EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); 402 return EHSelectorSlot; 403 } 404 405 llvm::Value *CodeGenFunction::getExceptionFromSlot() { 406 return Builder.CreateLoad(getExceptionSlot(), "exn"); 407 } 408 409 llvm::Value *CodeGenFunction::getSelectorFromSlot() { 410 return Builder.CreateLoad(getEHSelectorSlot(), "sel"); 411 } 412 413 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) { 414 if (!E->getSubExpr()) { 415 if (getInvokeDest()) { 416 Builder.CreateInvoke(getReThrowFn(*this), 417 getUnreachableBlock(), 418 getInvokeDest()) 419 ->setDoesNotReturn(); 420 } else { 421 Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn(); 422 Builder.CreateUnreachable(); 423 } 424 425 // throw is an expression, and the expression emitters expect us 426 // to leave ourselves at a valid insertion point. 427 EmitBlock(createBasicBlock("throw.cont")); 428 429 return; 430 } 431 432 QualType ThrowType = E->getSubExpr()->getType(); 433 434 // Now allocate the exception object. 435 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 436 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 437 438 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this); 439 llvm::CallInst *ExceptionPtr = 440 Builder.CreateCall(AllocExceptionFn, 441 llvm::ConstantInt::get(SizeTy, TypeSize), 442 "exception"); 443 ExceptionPtr->setDoesNotThrow(); 444 445 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 446 447 // Now throw the exception. 448 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 449 /*ForEH=*/true); 450 451 // The address of the destructor. If the exception type has a 452 // trivial destructor (or isn't a record), we just pass null. 453 llvm::Constant *Dtor = 0; 454 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 455 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 456 if (!Record->hasTrivialDestructor()) { 457 CXXDestructorDecl *DtorD = Record->getDestructor(); 458 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 459 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 460 } 461 } 462 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 463 464 if (getInvokeDest()) { 465 llvm::InvokeInst *ThrowCall = 466 Builder.CreateInvoke3(getThrowFn(*this), 467 getUnreachableBlock(), getInvokeDest(), 468 ExceptionPtr, TypeInfo, Dtor); 469 ThrowCall->setDoesNotReturn(); 470 } else { 471 llvm::CallInst *ThrowCall = 472 Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor); 473 ThrowCall->setDoesNotReturn(); 474 Builder.CreateUnreachable(); 475 } 476 477 // throw is an expression, and the expression emitters expect us 478 // to leave ourselves at a valid insertion point. 479 EmitBlock(createBasicBlock("throw.cont")); 480 } 481 482 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 483 if (!CGM.getLangOpts().CXXExceptions) 484 return; 485 486 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 487 if (FD == 0) 488 return; 489 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 490 if (Proto == 0) 491 return; 492 493 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 494 if (isNoexceptExceptionSpec(EST)) { 495 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 496 // noexcept functions are simple terminate scopes. 497 EHStack.pushTerminate(); 498 } 499 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 500 unsigned NumExceptions = Proto->getNumExceptions(); 501 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 502 503 for (unsigned I = 0; I != NumExceptions; ++I) { 504 QualType Ty = Proto->getExceptionType(I); 505 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 506 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 507 /*ForEH=*/true); 508 Filter->setFilter(I, EHType); 509 } 510 } 511 } 512 513 /// Emit the dispatch block for a filter scope if necessary. 514 static void emitFilterDispatchBlock(CodeGenFunction &CGF, 515 EHFilterScope &filterScope) { 516 llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); 517 if (!dispatchBlock) return; 518 if (dispatchBlock->use_empty()) { 519 delete dispatchBlock; 520 return; 521 } 522 523 CGF.EmitBlockAfterUses(dispatchBlock); 524 525 // If this isn't a catch-all filter, we need to check whether we got 526 // here because the filter triggered. 527 if (filterScope.getNumFilters()) { 528 // Load the selector value. 529 llvm::Value *selector = CGF.getSelectorFromSlot(); 530 llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); 531 532 llvm::Value *zero = CGF.Builder.getInt32(0); 533 llvm::Value *failsFilter = 534 CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); 535 CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock()); 536 537 CGF.EmitBlock(unexpectedBB); 538 } 539 540 // Call __cxa_call_unexpected. This doesn't need to be an invoke 541 // because __cxa_call_unexpected magically filters exceptions 542 // according to the last landing pad the exception was thrown 543 // into. Seriously. 544 llvm::Value *exn = CGF.getExceptionFromSlot(); 545 CGF.Builder.CreateCall(getUnexpectedFn(CGF), exn) 546 ->setDoesNotReturn(); 547 CGF.Builder.CreateUnreachable(); 548 } 549 550 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 551 if (!CGM.getLangOpts().CXXExceptions) 552 return; 553 554 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 555 if (FD == 0) 556 return; 557 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 558 if (Proto == 0) 559 return; 560 561 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 562 if (isNoexceptExceptionSpec(EST)) { 563 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 564 EHStack.popTerminate(); 565 } 566 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 567 EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); 568 emitFilterDispatchBlock(*this, filterScope); 569 EHStack.popFilter(); 570 } 571 } 572 573 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 574 EnterCXXTryStmt(S); 575 EmitStmt(S.getTryBlock()); 576 ExitCXXTryStmt(S); 577 } 578 579 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 580 unsigned NumHandlers = S.getNumHandlers(); 581 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 582 583 for (unsigned I = 0; I != NumHandlers; ++I) { 584 const CXXCatchStmt *C = S.getHandler(I); 585 586 llvm::BasicBlock *Handler = createBasicBlock("catch"); 587 if (C->getExceptionDecl()) { 588 // FIXME: Dropping the reference type on the type into makes it 589 // impossible to correctly implement catch-by-reference 590 // semantics for pointers. Unfortunately, this is what all 591 // existing compilers do, and it's not clear that the standard 592 // personality routine is capable of doing this right. See C++ DR 388: 593 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 594 QualType CaughtType = C->getCaughtType(); 595 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 596 597 llvm::Value *TypeInfo = 0; 598 if (CaughtType->isObjCObjectPointerType()) 599 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 600 else 601 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 602 CatchScope->setHandler(I, TypeInfo, Handler); 603 } else { 604 // No exception decl indicates '...', a catch-all. 605 CatchScope->setCatchAllHandler(I, Handler); 606 } 607 } 608 } 609 610 llvm::BasicBlock * 611 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { 612 // The dispatch block for the end of the scope chain is a block that 613 // just resumes unwinding. 614 if (si == EHStack.stable_end()) 615 return getEHResumeBlock(); 616 617 // Otherwise, we should look at the actual scope. 618 EHScope &scope = *EHStack.find(si); 619 620 llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); 621 if (!dispatchBlock) { 622 switch (scope.getKind()) { 623 case EHScope::Catch: { 624 // Apply a special case to a single catch-all. 625 EHCatchScope &catchScope = cast<EHCatchScope>(scope); 626 if (catchScope.getNumHandlers() == 1 && 627 catchScope.getHandler(0).isCatchAll()) { 628 dispatchBlock = catchScope.getHandler(0).Block; 629 630 // Otherwise, make a dispatch block. 631 } else { 632 dispatchBlock = createBasicBlock("catch.dispatch"); 633 } 634 break; 635 } 636 637 case EHScope::Cleanup: 638 dispatchBlock = createBasicBlock("ehcleanup"); 639 break; 640 641 case EHScope::Filter: 642 dispatchBlock = createBasicBlock("filter.dispatch"); 643 break; 644 645 case EHScope::Terminate: 646 dispatchBlock = getTerminateHandler(); 647 break; 648 } 649 scope.setCachedEHDispatchBlock(dispatchBlock); 650 } 651 return dispatchBlock; 652 } 653 654 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 655 /// affect exception handling. Currently, the only non-EH scopes are 656 /// normal-only cleanup scopes. 657 static bool isNonEHScope(const EHScope &S) { 658 switch (S.getKind()) { 659 case EHScope::Cleanup: 660 return !cast<EHCleanupScope>(S).isEHCleanup(); 661 case EHScope::Filter: 662 case EHScope::Catch: 663 case EHScope::Terminate: 664 return false; 665 } 666 667 llvm_unreachable("Invalid EHScope Kind!"); 668 } 669 670 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 671 assert(EHStack.requiresLandingPad()); 672 assert(!EHStack.empty()); 673 674 if (!CGM.getLangOpts().Exceptions) 675 return 0; 676 677 // Check the innermost scope for a cached landing pad. If this is 678 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 679 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 680 if (LP) return LP; 681 682 // Build the landing pad for this scope. 683 LP = EmitLandingPad(); 684 assert(LP); 685 686 // Cache the landing pad on the innermost scope. If this is a 687 // non-EH scope, cache the landing pad on the enclosing scope, too. 688 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 689 ir->setCachedLandingPad(LP); 690 if (!isNonEHScope(*ir)) break; 691 } 692 693 return LP; 694 } 695 696 // This code contains a hack to work around a design flaw in 697 // LLVM's EH IR which breaks semantics after inlining. This same 698 // hack is implemented in llvm-gcc. 699 // 700 // The LLVM EH abstraction is basically a thin veneer over the 701 // traditional GCC zero-cost design: for each range of instructions 702 // in the function, there is (at most) one "landing pad" with an 703 // associated chain of EH actions. A language-specific personality 704 // function interprets this chain of actions and (1) decides whether 705 // or not to resume execution at the landing pad and (2) if so, 706 // provides an integer indicating why it's stopping. In LLVM IR, 707 // the association of a landing pad with a range of instructions is 708 // achieved via an invoke instruction, the chain of actions becomes 709 // the arguments to the @llvm.eh.selector call, and the selector 710 // call returns the integer indicator. Other than the required 711 // presence of two intrinsic function calls in the landing pad, 712 // the IR exactly describes the layout of the output code. 713 // 714 // A principal advantage of this design is that it is completely 715 // language-agnostic; in theory, the LLVM optimizers can treat 716 // landing pads neutrally, and targets need only know how to lower 717 // the intrinsics to have a functioning exceptions system (assuming 718 // that platform exceptions follow something approximately like the 719 // GCC design). Unfortunately, landing pads cannot be combined in a 720 // language-agnostic way: given selectors A and B, there is no way 721 // to make a single landing pad which faithfully represents the 722 // semantics of propagating an exception first through A, then 723 // through B, without knowing how the personality will interpret the 724 // (lowered form of the) selectors. This means that inlining has no 725 // choice but to crudely chain invokes (i.e., to ignore invokes in 726 // the inlined function, but to turn all unwindable calls into 727 // invokes), which is only semantically valid if every unwind stops 728 // at every landing pad. 729 // 730 // Therefore, the invoke-inline hack is to guarantee that every 731 // landing pad has a catch-all. 732 enum CleanupHackLevel_t { 733 /// A level of hack that requires that all landing pads have 734 /// catch-alls. 735 CHL_MandatoryCatchall, 736 737 /// A level of hack that requires that all landing pads handle 738 /// cleanups. 739 CHL_MandatoryCleanup, 740 741 /// No hacks at all; ideal IR generation. 742 CHL_Ideal 743 }; 744 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; 745 746 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 747 assert(EHStack.requiresLandingPad()); 748 749 EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); 750 switch (innermostEHScope.getKind()) { 751 case EHScope::Terminate: 752 return getTerminateLandingPad(); 753 754 case EHScope::Catch: 755 case EHScope::Cleanup: 756 case EHScope::Filter: 757 if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) 758 return lpad; 759 } 760 761 // Save the current IR generation state. 762 CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); 763 764 const EHPersonality &personality = EHPersonality::get(getLangOpts()); 765 766 // Create and configure the landing pad. 767 llvm::BasicBlock *lpad = createBasicBlock("lpad"); 768 EmitBlock(lpad); 769 770 llvm::LandingPadInst *LPadInst = 771 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 772 getOpaquePersonalityFn(CGM, personality), 0); 773 774 llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); 775 Builder.CreateStore(LPadExn, getExceptionSlot()); 776 llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); 777 Builder.CreateStore(LPadSel, getEHSelectorSlot()); 778 779 // Save the exception pointer. It's safe to use a single exception 780 // pointer per function because EH cleanups can never have nested 781 // try/catches. 782 // Build the landingpad instruction. 783 784 // Accumulate all the handlers in scope. 785 bool hasCatchAll = false; 786 bool hasCleanup = false; 787 bool hasFilter = false; 788 SmallVector<llvm::Value*, 4> filterTypes; 789 llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; 790 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 791 I != E; ++I) { 792 793 switch (I->getKind()) { 794 case EHScope::Cleanup: 795 // If we have a cleanup, remember that. 796 hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); 797 continue; 798 799 case EHScope::Filter: { 800 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 801 assert(!hasCatchAll && "EH filter reached after catch-all"); 802 803 // Filter scopes get added to the landingpad in weird ways. 804 EHFilterScope &filter = cast<EHFilterScope>(*I); 805 hasFilter = true; 806 807 // Add all the filter values. 808 for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) 809 filterTypes.push_back(filter.getFilter(i)); 810 goto done; 811 } 812 813 case EHScope::Terminate: 814 // Terminate scopes are basically catch-alls. 815 assert(!hasCatchAll); 816 hasCatchAll = true; 817 goto done; 818 819 case EHScope::Catch: 820 break; 821 } 822 823 EHCatchScope &catchScope = cast<EHCatchScope>(*I); 824 for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { 825 EHCatchScope::Handler handler = catchScope.getHandler(hi); 826 827 // If this is a catch-all, register that and abort. 828 if (!handler.Type) { 829 assert(!hasCatchAll); 830 hasCatchAll = true; 831 goto done; 832 } 833 834 // Check whether we already have a handler for this type. 835 if (catchTypes.insert(handler.Type)) 836 // If not, add it directly to the landingpad. 837 LPadInst->addClause(handler.Type); 838 } 839 } 840 841 done: 842 // If we have a catch-all, add null to the landingpad. 843 assert(!(hasCatchAll && hasFilter)); 844 if (hasCatchAll) { 845 LPadInst->addClause(getCatchAllValue(*this)); 846 847 // If we have an EH filter, we need to add those handlers in the 848 // right place in the landingpad, which is to say, at the end. 849 } else if (hasFilter) { 850 // Create a filter expression: a constant array indicating which filter 851 // types there are. The personality routine only lands here if the filter 852 // doesn't match. 853 llvm::SmallVector<llvm::Constant*, 8> Filters; 854 llvm::ArrayType *AType = 855 llvm::ArrayType::get(!filterTypes.empty() ? 856 filterTypes[0]->getType() : Int8PtrTy, 857 filterTypes.size()); 858 859 for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) 860 Filters.push_back(cast<llvm::Constant>(filterTypes[i])); 861 llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); 862 LPadInst->addClause(FilterArray); 863 864 // Also check whether we need a cleanup. 865 if (hasCleanup) 866 LPadInst->setCleanup(true); 867 868 // Otherwise, signal that we at least have cleanups. 869 } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) { 870 if (CleanupHackLevel == CHL_MandatoryCatchall) 871 LPadInst->addClause(getCatchAllValue(*this)); 872 else 873 LPadInst->setCleanup(true); 874 } 875 876 assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && 877 "landingpad instruction has no clauses!"); 878 879 // Tell the backend how to generate the landing pad. 880 Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); 881 882 // Restore the old IR generation state. 883 Builder.restoreIP(savedIP); 884 885 return lpad; 886 } 887 888 namespace { 889 /// A cleanup to call __cxa_end_catch. In many cases, the caught 890 /// exception type lets us state definitively that the thrown exception 891 /// type does not have a destructor. In particular: 892 /// - Catch-alls tell us nothing, so we have to conservatively 893 /// assume that the thrown exception might have a destructor. 894 /// - Catches by reference behave according to their base types. 895 /// - Catches of non-record types will only trigger for exceptions 896 /// of non-record types, which never have destructors. 897 /// - Catches of record types can trigger for arbitrary subclasses 898 /// of the caught type, so we have to assume the actual thrown 899 /// exception type might have a throwing destructor, even if the 900 /// caught type's destructor is trivial or nothrow. 901 struct CallEndCatch : EHScopeStack::Cleanup { 902 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 903 bool MightThrow; 904 905 void Emit(CodeGenFunction &CGF, Flags flags) { 906 if (!MightThrow) { 907 CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow(); 908 return; 909 } 910 911 CGF.EmitCallOrInvoke(getEndCatchFn(CGF)); 912 } 913 }; 914 } 915 916 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 917 /// __cxa_end_catch. 918 /// 919 /// \param EndMightThrow - true if __cxa_end_catch might throw 920 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 921 llvm::Value *Exn, 922 bool EndMightThrow) { 923 llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn); 924 Call->setDoesNotThrow(); 925 926 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 927 928 return Call; 929 } 930 931 /// A "special initializer" callback for initializing a catch 932 /// parameter during catch initialization. 933 static void InitCatchParam(CodeGenFunction &CGF, 934 const VarDecl &CatchParam, 935 llvm::Value *ParamAddr) { 936 // Load the exception from where the landing pad saved it. 937 llvm::Value *Exn = CGF.getExceptionFromSlot(); 938 939 CanQualType CatchType = 940 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 941 llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 942 943 // If we're catching by reference, we can just cast the object 944 // pointer to the appropriate pointer. 945 if (isa<ReferenceType>(CatchType)) { 946 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 947 bool EndCatchMightThrow = CaughtType->isRecordType(); 948 949 // __cxa_begin_catch returns the adjusted object pointer. 950 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 951 952 // We have no way to tell the personality function that we're 953 // catching by reference, so if we're catching a pointer, 954 // __cxa_begin_catch will actually return that pointer by value. 955 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 956 QualType PointeeType = PT->getPointeeType(); 957 958 // When catching by reference, generally we should just ignore 959 // this by-value pointer and use the exception object instead. 960 if (!PointeeType->isRecordType()) { 961 962 // Exn points to the struct _Unwind_Exception header, which 963 // we have to skip past in order to reach the exception data. 964 unsigned HeaderSize = 965 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 966 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 967 968 // However, if we're catching a pointer-to-record type that won't 969 // work, because the personality function might have adjusted 970 // the pointer. There's actually no way for us to fully satisfy 971 // the language/ABI contract here: we can't use Exn because it 972 // might have the wrong adjustment, but we can't use the by-value 973 // pointer because it's off by a level of abstraction. 974 // 975 // The current solution is to dump the adjusted pointer into an 976 // alloca, which breaks language semantics (because changing the 977 // pointer doesn't change the exception) but at least works. 978 // The better solution would be to filter out non-exact matches 979 // and rethrow them, but this is tricky because the rethrow 980 // really needs to be catchable by other sites at this landing 981 // pad. The best solution is to fix the personality function. 982 } else { 983 // Pull the pointer for the reference type off. 984 llvm::Type *PtrTy = 985 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 986 987 // Create the temporary and write the adjusted pointer into it. 988 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 989 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 990 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 991 992 // Bind the reference to the temporary. 993 AdjustedExn = ExnPtrTmp; 994 } 995 } 996 997 llvm::Value *ExnCast = 998 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 999 CGF.Builder.CreateStore(ExnCast, ParamAddr); 1000 return; 1001 } 1002 1003 // Non-aggregates (plus complexes). 1004 bool IsComplex = false; 1005 if (!CGF.hasAggregateLLVMType(CatchType) || 1006 (IsComplex = CatchType->isAnyComplexType())) { 1007 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 1008 1009 // If the catch type is a pointer type, __cxa_begin_catch returns 1010 // the pointer by value. 1011 if (CatchType->hasPointerRepresentation()) { 1012 llvm::Value *CastExn = 1013 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1014 1015 switch (CatchType.getQualifiers().getObjCLifetime()) { 1016 case Qualifiers::OCL_Strong: 1017 CastExn = CGF.EmitARCRetainNonBlock(CastExn); 1018 // fallthrough 1019 1020 case Qualifiers::OCL_None: 1021 case Qualifiers::OCL_ExplicitNone: 1022 case Qualifiers::OCL_Autoreleasing: 1023 CGF.Builder.CreateStore(CastExn, ParamAddr); 1024 return; 1025 1026 case Qualifiers::OCL_Weak: 1027 CGF.EmitARCInitWeak(ParamAddr, CastExn); 1028 return; 1029 } 1030 llvm_unreachable("bad ownership qualifier!"); 1031 } 1032 1033 // Otherwise, it returns a pointer into the exception object. 1034 1035 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1036 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1037 1038 if (IsComplex) { 1039 CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false), 1040 ParamAddr, /*volatile*/ false); 1041 } else { 1042 unsigned Alignment = 1043 CGF.getContext().getDeclAlign(&CatchParam).getQuantity(); 1044 llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar"); 1045 CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment, 1046 CatchType); 1047 } 1048 return; 1049 } 1050 1051 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1052 1053 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1054 1055 // Check for a copy expression. If we don't have a copy expression, 1056 // that means a trivial copy is okay. 1057 const Expr *copyExpr = CatchParam.getInit(); 1058 if (!copyExpr) { 1059 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1060 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1061 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); 1062 return; 1063 } 1064 1065 // We have to call __cxa_get_exception_ptr to get the adjusted 1066 // pointer before copying. 1067 llvm::CallInst *rawAdjustedExn = 1068 CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn); 1069 rawAdjustedExn->setDoesNotThrow(); 1070 1071 // Cast that to the appropriate type. 1072 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1073 1074 // The copy expression is defined in terms of an OpaqueValueExpr. 1075 // Find it and map it to the adjusted expression. 1076 CodeGenFunction::OpaqueValueMapping 1077 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1078 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1079 1080 // Call the copy ctor in a terminate scope. 1081 CGF.EHStack.pushTerminate(); 1082 1083 // Perform the copy construction. 1084 CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam); 1085 CGF.EmitAggExpr(copyExpr, 1086 AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(), 1087 AggValueSlot::IsNotDestructed, 1088 AggValueSlot::DoesNotNeedGCBarriers, 1089 AggValueSlot::IsNotAliased)); 1090 1091 // Leave the terminate scope. 1092 CGF.EHStack.popTerminate(); 1093 1094 // Undo the opaque value mapping. 1095 opaque.pop(); 1096 1097 // Finally we can call __cxa_begin_catch. 1098 CallBeginCatch(CGF, Exn, true); 1099 } 1100 1101 /// Begins a catch statement by initializing the catch variable and 1102 /// calling __cxa_begin_catch. 1103 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1104 // We have to be very careful with the ordering of cleanups here: 1105 // C++ [except.throw]p4: 1106 // The destruction [of the exception temporary] occurs 1107 // immediately after the destruction of the object declared in 1108 // the exception-declaration in the handler. 1109 // 1110 // So the precise ordering is: 1111 // 1. Construct catch variable. 1112 // 2. __cxa_begin_catch 1113 // 3. Enter __cxa_end_catch cleanup 1114 // 4. Enter dtor cleanup 1115 // 1116 // We do this by using a slightly abnormal initialization process. 1117 // Delegation sequence: 1118 // - ExitCXXTryStmt opens a RunCleanupsScope 1119 // - EmitAutoVarAlloca creates the variable and debug info 1120 // - InitCatchParam initializes the variable from the exception 1121 // - CallBeginCatch calls __cxa_begin_catch 1122 // - CallBeginCatch enters the __cxa_end_catch cleanup 1123 // - EmitAutoVarCleanups enters the variable destructor cleanup 1124 // - EmitCXXTryStmt emits the code for the catch body 1125 // - EmitCXXTryStmt close the RunCleanupsScope 1126 1127 VarDecl *CatchParam = S->getExceptionDecl(); 1128 if (!CatchParam) { 1129 llvm::Value *Exn = CGF.getExceptionFromSlot(); 1130 CallBeginCatch(CGF, Exn, true); 1131 return; 1132 } 1133 1134 // Emit the local. 1135 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1136 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); 1137 CGF.EmitAutoVarCleanups(var); 1138 } 1139 1140 /// Emit the structure of the dispatch block for the given catch scope. 1141 /// It is an invariant that the dispatch block already exists. 1142 static void emitCatchDispatchBlock(CodeGenFunction &CGF, 1143 EHCatchScope &catchScope) { 1144 llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); 1145 assert(dispatchBlock); 1146 1147 // If there's only a single catch-all, getEHDispatchBlock returned 1148 // that catch-all as the dispatch block. 1149 if (catchScope.getNumHandlers() == 1 && 1150 catchScope.getHandler(0).isCatchAll()) { 1151 assert(dispatchBlock == catchScope.getHandler(0).Block); 1152 return; 1153 } 1154 1155 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); 1156 CGF.EmitBlockAfterUses(dispatchBlock); 1157 1158 // Select the right handler. 1159 llvm::Value *llvm_eh_typeid_for = 1160 CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 1161 1162 // Load the selector value. 1163 llvm::Value *selector = CGF.getSelectorFromSlot(); 1164 1165 // Test against each of the exception types we claim to catch. 1166 for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { 1167 assert(i < e && "ran off end of handlers!"); 1168 const EHCatchScope::Handler &handler = catchScope.getHandler(i); 1169 1170 llvm::Value *typeValue = handler.Type; 1171 assert(typeValue && "fell into catch-all case!"); 1172 typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); 1173 1174 // Figure out the next block. 1175 bool nextIsEnd; 1176 llvm::BasicBlock *nextBlock; 1177 1178 // If this is the last handler, we're at the end, and the next 1179 // block is the block for the enclosing EH scope. 1180 if (i + 1 == e) { 1181 nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); 1182 nextIsEnd = true; 1183 1184 // If the next handler is a catch-all, we're at the end, and the 1185 // next block is that handler. 1186 } else if (catchScope.getHandler(i+1).isCatchAll()) { 1187 nextBlock = catchScope.getHandler(i+1).Block; 1188 nextIsEnd = true; 1189 1190 // Otherwise, we're not at the end and we need a new block. 1191 } else { 1192 nextBlock = CGF.createBasicBlock("catch.fallthrough"); 1193 nextIsEnd = false; 1194 } 1195 1196 // Figure out the catch type's index in the LSDA's type table. 1197 llvm::CallInst *typeIndex = 1198 CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); 1199 typeIndex->setDoesNotThrow(); 1200 1201 llvm::Value *matchesTypeIndex = 1202 CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); 1203 CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); 1204 1205 // If the next handler is a catch-all, we're completely done. 1206 if (nextIsEnd) { 1207 CGF.Builder.restoreIP(savedIP); 1208 return; 1209 } 1210 // Otherwise we need to emit and continue at that block. 1211 CGF.EmitBlock(nextBlock); 1212 } 1213 } 1214 1215 void CodeGenFunction::popCatchScope() { 1216 EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); 1217 if (catchScope.hasEHBranches()) 1218 emitCatchDispatchBlock(*this, catchScope); 1219 EHStack.popCatch(); 1220 } 1221 1222 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1223 unsigned NumHandlers = S.getNumHandlers(); 1224 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1225 assert(CatchScope.getNumHandlers() == NumHandlers); 1226 1227 // If the catch was not required, bail out now. 1228 if (!CatchScope.hasEHBranches()) { 1229 EHStack.popCatch(); 1230 return; 1231 } 1232 1233 // Emit the structure of the EH dispatch for this catch. 1234 emitCatchDispatchBlock(*this, CatchScope); 1235 1236 // Copy the handler blocks off before we pop the EH stack. Emitting 1237 // the handlers might scribble on this memory. 1238 SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1239 memcpy(Handlers.data(), CatchScope.begin(), 1240 NumHandlers * sizeof(EHCatchScope::Handler)); 1241 1242 EHStack.popCatch(); 1243 1244 // The fall-through block. 1245 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1246 1247 // We just emitted the body of the try; jump to the continue block. 1248 if (HaveInsertPoint()) 1249 Builder.CreateBr(ContBB); 1250 1251 // Determine if we need an implicit rethrow for all these catch handlers; 1252 // see the comment below. 1253 bool doImplicitRethrow = false; 1254 if (IsFnTryBlock) 1255 doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1256 isa<CXXConstructorDecl>(CurCodeDecl); 1257 1258 // Perversely, we emit the handlers backwards precisely because we 1259 // want them to appear in source order. In all of these cases, the 1260 // catch block will have exactly one predecessor, which will be a 1261 // particular block in the catch dispatch. However, in the case of 1262 // a catch-all, one of the dispatch blocks will branch to two 1263 // different handlers, and EmitBlockAfterUses will cause the second 1264 // handler to be moved before the first. 1265 for (unsigned I = NumHandlers; I != 0; --I) { 1266 llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; 1267 EmitBlockAfterUses(CatchBlock); 1268 1269 // Catch the exception if this isn't a catch-all. 1270 const CXXCatchStmt *C = S.getHandler(I-1); 1271 1272 // Enter a cleanup scope, including the catch variable and the 1273 // end-catch. 1274 RunCleanupsScope CatchScope(*this); 1275 1276 // Initialize the catch variable and set up the cleanups. 1277 BeginCatch(*this, C); 1278 1279 // Perform the body of the catch. 1280 EmitStmt(C->getHandlerBlock()); 1281 1282 // [except.handle]p11: 1283 // The currently handled exception is rethrown if control 1284 // reaches the end of a handler of the function-try-block of a 1285 // constructor or destructor. 1286 1287 // It is important that we only do this on fallthrough and not on 1288 // return. Note that it's illegal to put a return in a 1289 // constructor function-try-block's catch handler (p14), so this 1290 // really only applies to destructors. 1291 if (doImplicitRethrow && HaveInsertPoint()) { 1292 EmitCallOrInvoke(getReThrowFn(*this)); 1293 Builder.CreateUnreachable(); 1294 Builder.ClearInsertionPoint(); 1295 } 1296 1297 // Fall out through the catch cleanups. 1298 CatchScope.ForceCleanup(); 1299 1300 // Branch out of the try. 1301 if (HaveInsertPoint()) 1302 Builder.CreateBr(ContBB); 1303 } 1304 1305 EmitBlock(ContBB); 1306 } 1307 1308 namespace { 1309 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1310 llvm::Value *ForEHVar; 1311 llvm::Value *EndCatchFn; 1312 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1313 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1314 1315 void Emit(CodeGenFunction &CGF, Flags flags) { 1316 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1317 llvm::BasicBlock *CleanupContBB = 1318 CGF.createBasicBlock("finally.cleanup.cont"); 1319 1320 llvm::Value *ShouldEndCatch = 1321 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1322 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1323 CGF.EmitBlock(EndCatchBB); 1324 CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw 1325 CGF.EmitBlock(CleanupContBB); 1326 } 1327 }; 1328 1329 struct PerformFinally : EHScopeStack::Cleanup { 1330 const Stmt *Body; 1331 llvm::Value *ForEHVar; 1332 llvm::Value *EndCatchFn; 1333 llvm::Value *RethrowFn; 1334 llvm::Value *SavedExnVar; 1335 1336 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1337 llvm::Value *EndCatchFn, 1338 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1339 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1340 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1341 1342 void Emit(CodeGenFunction &CGF, Flags flags) { 1343 // Enter a cleanup to call the end-catch function if one was provided. 1344 if (EndCatchFn) 1345 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1346 ForEHVar, EndCatchFn); 1347 1348 // Save the current cleanup destination in case there are 1349 // cleanups in the finally block. 1350 llvm::Value *SavedCleanupDest = 1351 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1352 "cleanup.dest.saved"); 1353 1354 // Emit the finally block. 1355 CGF.EmitStmt(Body); 1356 1357 // If the end of the finally is reachable, check whether this was 1358 // for EH. If so, rethrow. 1359 if (CGF.HaveInsertPoint()) { 1360 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1361 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1362 1363 llvm::Value *ShouldRethrow = 1364 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1365 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1366 1367 CGF.EmitBlock(RethrowBB); 1368 if (SavedExnVar) { 1369 CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar)); 1370 } else { 1371 CGF.EmitCallOrInvoke(RethrowFn); 1372 } 1373 CGF.Builder.CreateUnreachable(); 1374 1375 CGF.EmitBlock(ContBB); 1376 1377 // Restore the cleanup destination. 1378 CGF.Builder.CreateStore(SavedCleanupDest, 1379 CGF.getNormalCleanupDestSlot()); 1380 } 1381 1382 // Leave the end-catch cleanup. As an optimization, pretend that 1383 // the fallthrough path was inaccessible; we've dynamically proven 1384 // that we're not in the EH case along that path. 1385 if (EndCatchFn) { 1386 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1387 CGF.PopCleanupBlock(); 1388 CGF.Builder.restoreIP(SavedIP); 1389 } 1390 1391 // Now make sure we actually have an insertion point or the 1392 // cleanup gods will hate us. 1393 CGF.EnsureInsertPoint(); 1394 } 1395 }; 1396 } 1397 1398 /// Enters a finally block for an implementation using zero-cost 1399 /// exceptions. This is mostly general, but hard-codes some 1400 /// language/ABI-specific behavior in the catch-all sections. 1401 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, 1402 const Stmt *body, 1403 llvm::Constant *beginCatchFn, 1404 llvm::Constant *endCatchFn, 1405 llvm::Constant *rethrowFn) { 1406 assert((beginCatchFn != 0) == (endCatchFn != 0) && 1407 "begin/end catch functions not paired"); 1408 assert(rethrowFn && "rethrow function is required"); 1409 1410 BeginCatchFn = beginCatchFn; 1411 1412 // The rethrow function has one of the following two types: 1413 // void (*)() 1414 // void (*)(void*) 1415 // In the latter case we need to pass it the exception object. 1416 // But we can't use the exception slot because the @finally might 1417 // have a landing pad (which would overwrite the exception slot). 1418 llvm::FunctionType *rethrowFnTy = 1419 cast<llvm::FunctionType>( 1420 cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); 1421 SavedExnVar = 0; 1422 if (rethrowFnTy->getNumParams()) 1423 SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); 1424 1425 // A finally block is a statement which must be executed on any edge 1426 // out of a given scope. Unlike a cleanup, the finally block may 1427 // contain arbitrary control flow leading out of itself. In 1428 // addition, finally blocks should always be executed, even if there 1429 // are no catch handlers higher on the stack. Therefore, we 1430 // surround the protected scope with a combination of a normal 1431 // cleanup (to catch attempts to break out of the block via normal 1432 // control flow) and an EH catch-all (semantically "outside" any try 1433 // statement to which the finally block might have been attached). 1434 // The finally block itself is generated in the context of a cleanup 1435 // which conditionally leaves the catch-all. 1436 1437 // Jump destination for performing the finally block on an exception 1438 // edge. We'll never actually reach this block, so unreachable is 1439 // fine. 1440 RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); 1441 1442 // Whether the finally block is being executed for EH purposes. 1443 ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); 1444 CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); 1445 1446 // Enter a normal cleanup which will perform the @finally block. 1447 CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, 1448 ForEHVar, endCatchFn, 1449 rethrowFn, SavedExnVar); 1450 1451 // Enter a catch-all scope. 1452 llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); 1453 EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); 1454 catchScope->setCatchAllHandler(0, catchBB); 1455 } 1456 1457 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { 1458 // Leave the finally catch-all. 1459 EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); 1460 llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; 1461 1462 CGF.popCatchScope(); 1463 1464 // If there are any references to the catch-all block, emit it. 1465 if (catchBB->use_empty()) { 1466 delete catchBB; 1467 } else { 1468 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); 1469 CGF.EmitBlock(catchBB); 1470 1471 llvm::Value *exn = 0; 1472 1473 // If there's a begin-catch function, call it. 1474 if (BeginCatchFn) { 1475 exn = CGF.getExceptionFromSlot(); 1476 CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow(); 1477 } 1478 1479 // If we need to remember the exception pointer to rethrow later, do so. 1480 if (SavedExnVar) { 1481 if (!exn) exn = CGF.getExceptionFromSlot(); 1482 CGF.Builder.CreateStore(exn, SavedExnVar); 1483 } 1484 1485 // Tell the cleanups in the finally block that we're do this for EH. 1486 CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); 1487 1488 // Thread a jump through the finally cleanup. 1489 CGF.EmitBranchThroughCleanup(RethrowDest); 1490 1491 CGF.Builder.restoreIP(savedIP); 1492 } 1493 1494 // Finally, leave the @finally cleanup. 1495 CGF.PopCleanupBlock(); 1496 } 1497 1498 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1499 if (TerminateLandingPad) 1500 return TerminateLandingPad; 1501 1502 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1503 1504 // This will get inserted at the end of the function. 1505 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1506 Builder.SetInsertPoint(TerminateLandingPad); 1507 1508 // Tell the backend that this is a landing pad. 1509 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1510 llvm::LandingPadInst *LPadInst = 1511 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 1512 getOpaquePersonalityFn(CGM, Personality), 0); 1513 LPadInst->addClause(getCatchAllValue(*this)); 1514 1515 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1516 TerminateCall->setDoesNotReturn(); 1517 TerminateCall->setDoesNotThrow(); 1518 Builder.CreateUnreachable(); 1519 1520 // Restore the saved insertion state. 1521 Builder.restoreIP(SavedIP); 1522 1523 return TerminateLandingPad; 1524 } 1525 1526 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1527 if (TerminateHandler) 1528 return TerminateHandler; 1529 1530 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1531 1532 // Set up the terminate handler. This block is inserted at the very 1533 // end of the function by FinishFunction. 1534 TerminateHandler = createBasicBlock("terminate.handler"); 1535 Builder.SetInsertPoint(TerminateHandler); 1536 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1537 TerminateCall->setDoesNotReturn(); 1538 TerminateCall->setDoesNotThrow(); 1539 Builder.CreateUnreachable(); 1540 1541 // Restore the saved insertion state. 1542 Builder.restoreIP(SavedIP); 1543 1544 return TerminateHandler; 1545 } 1546 1547 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock() { 1548 if (EHResumeBlock) return EHResumeBlock; 1549 1550 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1551 1552 // We emit a jump to a notional label at the outermost unwind state. 1553 EHResumeBlock = createBasicBlock("eh.resume"); 1554 Builder.SetInsertPoint(EHResumeBlock); 1555 1556 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1557 1558 // This can always be a call because we necessarily didn't find 1559 // anything on the EH stack which needs our help. 1560 const char *RethrowName = Personality.CatchallRethrowFn; 1561 if (RethrowName != 0) { 1562 Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName), 1563 getExceptionFromSlot()) 1564 ->setDoesNotReturn(); 1565 } else { 1566 switch (CleanupHackLevel) { 1567 case CHL_MandatoryCatchall: 1568 // In mandatory-catchall mode, we need to use 1569 // _Unwind_Resume_or_Rethrow, or whatever the personality's 1570 // equivalent is. 1571 Builder.CreateCall(getUnwindResumeOrRethrowFn(), 1572 getExceptionFromSlot()) 1573 ->setDoesNotReturn(); 1574 break; 1575 case CHL_MandatoryCleanup: { 1576 // In mandatory-cleanup mode, we should use 'resume'. 1577 1578 // Recreate the landingpad's return value for the 'resume' instruction. 1579 llvm::Value *Exn = getExceptionFromSlot(); 1580 llvm::Value *Sel = getSelectorFromSlot(); 1581 1582 llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), 1583 Sel->getType(), NULL); 1584 llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); 1585 LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); 1586 LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); 1587 1588 Builder.CreateResume(LPadVal); 1589 Builder.restoreIP(SavedIP); 1590 return EHResumeBlock; 1591 } 1592 case CHL_Ideal: 1593 // In an idealized mode where we don't have to worry about the 1594 // optimizer combining landing pads, we should just use 1595 // _Unwind_Resume (or the personality's equivalent). 1596 Builder.CreateCall(getUnwindResumeFn(), getExceptionFromSlot()) 1597 ->setDoesNotReturn(); 1598 break; 1599 } 1600 } 1601 1602 Builder.CreateUnreachable(); 1603 1604 Builder.restoreIP(SavedIP); 1605 1606 return EHResumeBlock; 1607 } 1608