1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtCXX.h" 19 #include "clang/AST/StmtObjC.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Intrinsics.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) { 27 // void *__cxa_allocate_exception(size_t thrown_size); 28 29 llvm::FunctionType *FTy = 30 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false); 31 32 return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 33 } 34 35 static llvm::Constant *getFreeExceptionFn(CodeGenModule &CGM) { 36 // void __cxa_free_exception(void *thrown_exception); 37 38 llvm::FunctionType *FTy = 39 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 40 41 return CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 42 } 43 44 static llvm::Constant *getThrowFn(CodeGenModule &CGM) { 45 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 46 // void (*dest) (void *)); 47 48 llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy }; 49 llvm::FunctionType *FTy = 50 llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false); 51 52 return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 53 } 54 55 static llvm::Constant *getReThrowFn(CodeGenModule &CGM) { 56 // void __cxa_rethrow(); 57 58 llvm::FunctionType *FTy = 59 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 60 61 return CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 62 } 63 64 static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) { 65 // void *__cxa_get_exception_ptr(void*); 66 67 llvm::FunctionType *FTy = 68 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 69 70 return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 71 } 72 73 static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) { 74 // void *__cxa_begin_catch(void*); 75 76 llvm::FunctionType *FTy = 77 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 78 79 return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 80 } 81 82 static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) { 83 // void __cxa_end_catch(); 84 85 llvm::FunctionType *FTy = 86 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 87 88 return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 89 } 90 91 static llvm::Constant *getUnexpectedFn(CodeGenModule &CGM) { 92 // void __cxa_call_unexpected(void *thrown_exception); 93 94 llvm::FunctionType *FTy = 95 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 96 97 return CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 98 } 99 100 llvm::Constant *CodeGenFunction::getUnwindResumeFn() { 101 llvm::FunctionType *FTy = 102 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 103 104 if (CGM.getLangOpts().SjLjExceptions) 105 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); 106 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); 107 } 108 109 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 110 llvm::FunctionType *FTy = 111 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 112 113 if (CGM.getLangOpts().SjLjExceptions) 114 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 115 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 116 } 117 118 static llvm::Constant *getTerminateFn(CodeGenModule &CGM) { 119 // void __terminate(); 120 121 llvm::FunctionType *FTy = 122 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 123 124 StringRef name; 125 126 // In C++, use std::terminate(). 127 if (CGM.getLangOpts().CPlusPlus) 128 name = "_ZSt9terminatev"; // FIXME: mangling! 129 else if (CGM.getLangOpts().ObjC1 && 130 CGM.getLangOpts().ObjCRuntime.hasTerminate()) 131 name = "objc_terminate"; 132 else 133 name = "abort"; 134 return CGM.CreateRuntimeFunction(FTy, name); 135 } 136 137 static llvm::Constant *getCatchallRethrowFn(CodeGenModule &CGM, 138 StringRef Name) { 139 llvm::FunctionType *FTy = 140 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 141 142 return CGM.CreateRuntimeFunction(FTy, Name); 143 } 144 145 namespace { 146 /// The exceptions personality for a function. 147 struct EHPersonality { 148 const char *PersonalityFn; 149 150 // If this is non-null, this personality requires a non-standard 151 // function for rethrowing an exception after a catchall cleanup. 152 // This function must have prototype void(void*). 153 const char *CatchallRethrowFn; 154 155 static const EHPersonality &get(const LangOptions &Lang); 156 static const EHPersonality GNU_C; 157 static const EHPersonality GNU_C_SJLJ; 158 static const EHPersonality GNU_ObjC; 159 static const EHPersonality GNUstep_ObjC; 160 static const EHPersonality GNU_ObjCXX; 161 static const EHPersonality NeXT_ObjC; 162 static const EHPersonality GNU_CPlusPlus; 163 static const EHPersonality GNU_CPlusPlus_SJLJ; 164 }; 165 } 166 167 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", nullptr }; 168 const EHPersonality 169 EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", nullptr }; 170 const EHPersonality 171 EHPersonality::NeXT_ObjC = { "__objc_personality_v0", nullptr }; 172 const EHPersonality 173 EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", nullptr }; 174 const EHPersonality 175 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", nullptr }; 176 const EHPersonality 177 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; 178 const EHPersonality 179 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", nullptr }; 180 const EHPersonality 181 EHPersonality::GNUstep_ObjC = { "__gnustep_objc_personality_v0", nullptr }; 182 183 static const EHPersonality &getCPersonality(const LangOptions &L) { 184 if (L.SjLjExceptions) 185 return EHPersonality::GNU_C_SJLJ; 186 return EHPersonality::GNU_C; 187 } 188 189 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 190 switch (L.ObjCRuntime.getKind()) { 191 case ObjCRuntime::FragileMacOSX: 192 return getCPersonality(L); 193 case ObjCRuntime::MacOSX: 194 case ObjCRuntime::iOS: 195 return EHPersonality::NeXT_ObjC; 196 case ObjCRuntime::GNUstep: 197 if (L.ObjCRuntime.getVersion() >= VersionTuple(1, 7)) 198 return EHPersonality::GNUstep_ObjC; 199 // fallthrough 200 case ObjCRuntime::GCC: 201 case ObjCRuntime::ObjFW: 202 return EHPersonality::GNU_ObjC; 203 } 204 llvm_unreachable("bad runtime kind"); 205 } 206 207 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 208 if (L.SjLjExceptions) 209 return EHPersonality::GNU_CPlusPlus_SJLJ; 210 else 211 return EHPersonality::GNU_CPlusPlus; 212 } 213 214 /// Determines the personality function to use when both C++ 215 /// and Objective-C exceptions are being caught. 216 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 217 switch (L.ObjCRuntime.getKind()) { 218 // The ObjC personality defers to the C++ personality for non-ObjC 219 // handlers. Unlike the C++ case, we use the same personality 220 // function on targets using (backend-driven) SJLJ EH. 221 case ObjCRuntime::MacOSX: 222 case ObjCRuntime::iOS: 223 return EHPersonality::NeXT_ObjC; 224 225 // In the fragile ABI, just use C++ exception handling and hope 226 // they're not doing crazy exception mixing. 227 case ObjCRuntime::FragileMacOSX: 228 return getCXXPersonality(L); 229 230 // The GCC runtime's personality function inherently doesn't support 231 // mixed EH. Use the C++ personality just to avoid returning null. 232 case ObjCRuntime::GCC: 233 case ObjCRuntime::ObjFW: // XXX: this will change soon 234 return EHPersonality::GNU_ObjC; 235 case ObjCRuntime::GNUstep: 236 return EHPersonality::GNU_ObjCXX; 237 } 238 llvm_unreachable("bad runtime kind"); 239 } 240 241 const EHPersonality &EHPersonality::get(const LangOptions &L) { 242 if (L.CPlusPlus && L.ObjC1) 243 return getObjCXXPersonality(L); 244 else if (L.CPlusPlus) 245 return getCXXPersonality(L); 246 else if (L.ObjC1) 247 return getObjCPersonality(L); 248 else 249 return getCPersonality(L); 250 } 251 252 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 253 const EHPersonality &Personality) { 254 llvm::Constant *Fn = 255 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), 256 Personality.PersonalityFn); 257 return Fn; 258 } 259 260 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 261 const EHPersonality &Personality) { 262 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 263 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 264 } 265 266 /// Check whether a personality function could reasonably be swapped 267 /// for a C++ personality function. 268 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 269 for (llvm::User *U : Fn->users()) { 270 // Conditionally white-list bitcasts. 271 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(U)) { 272 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 273 if (!PersonalityHasOnlyCXXUses(CE)) 274 return false; 275 continue; 276 } 277 278 // Otherwise, it has to be a landingpad instruction. 279 llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(U); 280 if (!LPI) return false; 281 282 for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { 283 // Look for something that would've been returned by the ObjC 284 // runtime's GetEHType() method. 285 llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); 286 if (LPI->isCatch(I)) { 287 // Check if the catch value has the ObjC prefix. 288 if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) 289 // ObjC EH selector entries are always global variables with 290 // names starting like this. 291 if (GV->getName().startswith("OBJC_EHTYPE")) 292 return false; 293 } else { 294 // Check if any of the filter values have the ObjC prefix. 295 llvm::Constant *CVal = cast<llvm::Constant>(Val); 296 for (llvm::User::op_iterator 297 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { 298 if (llvm::GlobalVariable *GV = 299 cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) 300 // ObjC EH selector entries are always global variables with 301 // names starting like this. 302 if (GV->getName().startswith("OBJC_EHTYPE")) 303 return false; 304 } 305 } 306 } 307 } 308 309 return true; 310 } 311 312 /// Try to use the C++ personality function in ObjC++. Not doing this 313 /// can cause some incompatibilities with gcc, which is more 314 /// aggressive about only using the ObjC++ personality in a function 315 /// when it really needs it. 316 void CodeGenModule::SimplifyPersonality() { 317 // If we're not in ObjC++ -fexceptions, there's nothing to do. 318 if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) 319 return; 320 321 // Both the problem this endeavors to fix and the way the logic 322 // above works is specific to the NeXT runtime. 323 if (!LangOpts.ObjCRuntime.isNeXTFamily()) 324 return; 325 326 const EHPersonality &ObjCXX = EHPersonality::get(LangOpts); 327 const EHPersonality &CXX = getCXXPersonality(LangOpts); 328 if (&ObjCXX == &CXX) 329 return; 330 331 assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && 332 "Different EHPersonalities using the same personality function."); 333 334 llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); 335 336 // Nothing to do if it's unused. 337 if (!Fn || Fn->use_empty()) return; 338 339 // Can't do the optimization if it has non-C++ uses. 340 if (!PersonalityHasOnlyCXXUses(Fn)) return; 341 342 // Create the C++ personality function and kill off the old 343 // function. 344 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 345 346 // This can happen if the user is screwing with us. 347 if (Fn->getType() != CXXFn->getType()) return; 348 349 Fn->replaceAllUsesWith(CXXFn); 350 Fn->eraseFromParent(); 351 } 352 353 /// Returns the value to inject into a selector to indicate the 354 /// presence of a catch-all. 355 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 356 // Possibly we should use @llvm.eh.catch.all.value here. 357 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 358 } 359 360 namespace { 361 /// A cleanup to free the exception object if its initialization 362 /// throws. 363 struct FreeException : EHScopeStack::Cleanup { 364 llvm::Value *exn; 365 FreeException(llvm::Value *exn) : exn(exn) {} 366 void Emit(CodeGenFunction &CGF, Flags flags) override { 367 CGF.EmitNounwindRuntimeCall(getFreeExceptionFn(CGF.CGM), exn); 368 } 369 }; 370 } 371 372 // Emits an exception expression into the given location. This 373 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 374 // call is required, an exception within that copy ctor causes 375 // std::terminate to be invoked. 376 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 377 llvm::Value *addr) { 378 // Make sure the exception object is cleaned up if there's an 379 // exception during initialization. 380 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 381 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 382 383 // __cxa_allocate_exception returns a void*; we need to cast this 384 // to the appropriate type for the object. 385 llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 386 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 387 388 // FIXME: this isn't quite right! If there's a final unelided call 389 // to a copy constructor, then according to [except.terminate]p1 we 390 // must call std::terminate() if that constructor throws, because 391 // technically that copy occurs after the exception expression is 392 // evaluated but before the exception is caught. But the best way 393 // to handle that is to teach EmitAggExpr to do the final copy 394 // differently if it can't be elided. 395 CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), 396 /*IsInit*/ true); 397 398 // Deactivate the cleanup block. 399 CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); 400 } 401 402 llvm::Value *CodeGenFunction::getExceptionSlot() { 403 if (!ExceptionSlot) 404 ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); 405 return ExceptionSlot; 406 } 407 408 llvm::Value *CodeGenFunction::getEHSelectorSlot() { 409 if (!EHSelectorSlot) 410 EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); 411 return EHSelectorSlot; 412 } 413 414 llvm::Value *CodeGenFunction::getExceptionFromSlot() { 415 return Builder.CreateLoad(getExceptionSlot(), "exn"); 416 } 417 418 llvm::Value *CodeGenFunction::getSelectorFromSlot() { 419 return Builder.CreateLoad(getEHSelectorSlot(), "sel"); 420 } 421 422 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E, 423 bool KeepInsertionPoint) { 424 if (CGM.getTarget().getTriple().isWindowsMSVCEnvironment()) { 425 ErrorUnsupported(E, "throw expression"); 426 return; 427 } 428 429 if (!E->getSubExpr()) { 430 EmitNoreturnRuntimeCallOrInvoke(getReThrowFn(CGM), 431 ArrayRef<llvm::Value*>()); 432 433 // throw is an expression, and the expression emitters expect us 434 // to leave ourselves at a valid insertion point. 435 if (KeepInsertionPoint) 436 EmitBlock(createBasicBlock("throw.cont")); 437 438 return; 439 } 440 441 QualType ThrowType = E->getSubExpr()->getType(); 442 443 if (ThrowType->isObjCObjectPointerType()) { 444 const Stmt *ThrowStmt = E->getSubExpr(); 445 const ObjCAtThrowStmt S(E->getExprLoc(), 446 const_cast<Stmt *>(ThrowStmt)); 447 CGM.getObjCRuntime().EmitThrowStmt(*this, S, false); 448 // This will clear insertion point which was not cleared in 449 // call to EmitThrowStmt. 450 if (KeepInsertionPoint) 451 EmitBlock(createBasicBlock("throw.cont")); 452 return; 453 } 454 455 // Now allocate the exception object. 456 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 457 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 458 459 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM); 460 llvm::CallInst *ExceptionPtr = 461 EmitNounwindRuntimeCall(AllocExceptionFn, 462 llvm::ConstantInt::get(SizeTy, TypeSize), 463 "exception"); 464 465 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 466 467 // Now throw the exception. 468 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 469 /*ForEH=*/true); 470 471 // The address of the destructor. If the exception type has a 472 // trivial destructor (or isn't a record), we just pass null. 473 llvm::Constant *Dtor = nullptr; 474 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 475 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 476 if (!Record->hasTrivialDestructor()) { 477 CXXDestructorDecl *DtorD = Record->getDestructor(); 478 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 479 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 480 } 481 } 482 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 483 484 llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; 485 EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); 486 487 // throw is an expression, and the expression emitters expect us 488 // to leave ourselves at a valid insertion point. 489 if (KeepInsertionPoint) 490 EmitBlock(createBasicBlock("throw.cont")); 491 } 492 493 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 494 if (!CGM.getLangOpts().CXXExceptions) 495 return; 496 497 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 498 if (!FD) { 499 // Check if CapturedDecl is nothrow and create terminate scope for it. 500 if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) { 501 if (CD->isNothrow()) 502 EHStack.pushTerminate(); 503 } 504 return; 505 } 506 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 507 if (!Proto) 508 return; 509 510 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 511 if (isNoexceptExceptionSpec(EST)) { 512 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 513 // noexcept functions are simple terminate scopes. 514 EHStack.pushTerminate(); 515 } 516 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 517 unsigned NumExceptions = Proto->getNumExceptions(); 518 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 519 520 for (unsigned I = 0; I != NumExceptions; ++I) { 521 QualType Ty = Proto->getExceptionType(I); 522 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 523 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 524 /*ForEH=*/true); 525 Filter->setFilter(I, EHType); 526 } 527 } 528 } 529 530 /// Emit the dispatch block for a filter scope if necessary. 531 static void emitFilterDispatchBlock(CodeGenFunction &CGF, 532 EHFilterScope &filterScope) { 533 llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); 534 if (!dispatchBlock) return; 535 if (dispatchBlock->use_empty()) { 536 delete dispatchBlock; 537 return; 538 } 539 540 CGF.EmitBlockAfterUses(dispatchBlock); 541 542 // If this isn't a catch-all filter, we need to check whether we got 543 // here because the filter triggered. 544 if (filterScope.getNumFilters()) { 545 // Load the selector value. 546 llvm::Value *selector = CGF.getSelectorFromSlot(); 547 llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); 548 549 llvm::Value *zero = CGF.Builder.getInt32(0); 550 llvm::Value *failsFilter = 551 CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); 552 CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock(false)); 553 554 CGF.EmitBlock(unexpectedBB); 555 } 556 557 // Call __cxa_call_unexpected. This doesn't need to be an invoke 558 // because __cxa_call_unexpected magically filters exceptions 559 // according to the last landing pad the exception was thrown 560 // into. Seriously. 561 llvm::Value *exn = CGF.getExceptionFromSlot(); 562 CGF.EmitRuntimeCall(getUnexpectedFn(CGF.CGM), exn) 563 ->setDoesNotReturn(); 564 CGF.Builder.CreateUnreachable(); 565 } 566 567 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 568 if (!CGM.getLangOpts().CXXExceptions) 569 return; 570 571 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 572 if (!FD) { 573 // Check if CapturedDecl is nothrow and pop terminate scope for it. 574 if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) { 575 if (CD->isNothrow()) 576 EHStack.popTerminate(); 577 } 578 return; 579 } 580 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 581 if (!Proto) 582 return; 583 584 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 585 if (isNoexceptExceptionSpec(EST)) { 586 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 587 EHStack.popTerminate(); 588 } 589 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 590 EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); 591 emitFilterDispatchBlock(*this, filterScope); 592 EHStack.popFilter(); 593 } 594 } 595 596 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 597 if (CGM.getTarget().getTriple().isWindowsMSVCEnvironment()) { 598 ErrorUnsupported(&S, "try statement"); 599 return; 600 } 601 602 EnterCXXTryStmt(S); 603 EmitStmt(S.getTryBlock()); 604 ExitCXXTryStmt(S); 605 } 606 607 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 608 unsigned NumHandlers = S.getNumHandlers(); 609 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 610 611 for (unsigned I = 0; I != NumHandlers; ++I) { 612 const CXXCatchStmt *C = S.getHandler(I); 613 614 llvm::BasicBlock *Handler = createBasicBlock("catch"); 615 if (C->getExceptionDecl()) { 616 // FIXME: Dropping the reference type on the type into makes it 617 // impossible to correctly implement catch-by-reference 618 // semantics for pointers. Unfortunately, this is what all 619 // existing compilers do, and it's not clear that the standard 620 // personality routine is capable of doing this right. See C++ DR 388: 621 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 622 QualType CaughtType = C->getCaughtType(); 623 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 624 625 llvm::Value *TypeInfo = nullptr; 626 if (CaughtType->isObjCObjectPointerType()) 627 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 628 else 629 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 630 CatchScope->setHandler(I, TypeInfo, Handler); 631 } else { 632 // No exception decl indicates '...', a catch-all. 633 CatchScope->setCatchAllHandler(I, Handler); 634 } 635 } 636 } 637 638 llvm::BasicBlock * 639 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { 640 // The dispatch block for the end of the scope chain is a block that 641 // just resumes unwinding. 642 if (si == EHStack.stable_end()) 643 return getEHResumeBlock(true); 644 645 // Otherwise, we should look at the actual scope. 646 EHScope &scope = *EHStack.find(si); 647 648 llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); 649 if (!dispatchBlock) { 650 switch (scope.getKind()) { 651 case EHScope::Catch: { 652 // Apply a special case to a single catch-all. 653 EHCatchScope &catchScope = cast<EHCatchScope>(scope); 654 if (catchScope.getNumHandlers() == 1 && 655 catchScope.getHandler(0).isCatchAll()) { 656 dispatchBlock = catchScope.getHandler(0).Block; 657 658 // Otherwise, make a dispatch block. 659 } else { 660 dispatchBlock = createBasicBlock("catch.dispatch"); 661 } 662 break; 663 } 664 665 case EHScope::Cleanup: 666 dispatchBlock = createBasicBlock("ehcleanup"); 667 break; 668 669 case EHScope::Filter: 670 dispatchBlock = createBasicBlock("filter.dispatch"); 671 break; 672 673 case EHScope::Terminate: 674 dispatchBlock = getTerminateHandler(); 675 break; 676 } 677 scope.setCachedEHDispatchBlock(dispatchBlock); 678 } 679 return dispatchBlock; 680 } 681 682 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 683 /// affect exception handling. Currently, the only non-EH scopes are 684 /// normal-only cleanup scopes. 685 static bool isNonEHScope(const EHScope &S) { 686 switch (S.getKind()) { 687 case EHScope::Cleanup: 688 return !cast<EHCleanupScope>(S).isEHCleanup(); 689 case EHScope::Filter: 690 case EHScope::Catch: 691 case EHScope::Terminate: 692 return false; 693 } 694 695 llvm_unreachable("Invalid EHScope Kind!"); 696 } 697 698 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 699 assert(EHStack.requiresLandingPad()); 700 assert(!EHStack.empty()); 701 702 if (!CGM.getLangOpts().Exceptions) 703 return nullptr; 704 705 // Check the innermost scope for a cached landing pad. If this is 706 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 707 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 708 if (LP) return LP; 709 710 // Build the landing pad for this scope. 711 LP = EmitLandingPad(); 712 assert(LP); 713 714 // Cache the landing pad on the innermost scope. If this is a 715 // non-EH scope, cache the landing pad on the enclosing scope, too. 716 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 717 ir->setCachedLandingPad(LP); 718 if (!isNonEHScope(*ir)) break; 719 } 720 721 return LP; 722 } 723 724 // This code contains a hack to work around a design flaw in 725 // LLVM's EH IR which breaks semantics after inlining. This same 726 // hack is implemented in llvm-gcc. 727 // 728 // The LLVM EH abstraction is basically a thin veneer over the 729 // traditional GCC zero-cost design: for each range of instructions 730 // in the function, there is (at most) one "landing pad" with an 731 // associated chain of EH actions. A language-specific personality 732 // function interprets this chain of actions and (1) decides whether 733 // or not to resume execution at the landing pad and (2) if so, 734 // provides an integer indicating why it's stopping. In LLVM IR, 735 // the association of a landing pad with a range of instructions is 736 // achieved via an invoke instruction, the chain of actions becomes 737 // the arguments to the @llvm.eh.selector call, and the selector 738 // call returns the integer indicator. Other than the required 739 // presence of two intrinsic function calls in the landing pad, 740 // the IR exactly describes the layout of the output code. 741 // 742 // A principal advantage of this design is that it is completely 743 // language-agnostic; in theory, the LLVM optimizers can treat 744 // landing pads neutrally, and targets need only know how to lower 745 // the intrinsics to have a functioning exceptions system (assuming 746 // that platform exceptions follow something approximately like the 747 // GCC design). Unfortunately, landing pads cannot be combined in a 748 // language-agnostic way: given selectors A and B, there is no way 749 // to make a single landing pad which faithfully represents the 750 // semantics of propagating an exception first through A, then 751 // through B, without knowing how the personality will interpret the 752 // (lowered form of the) selectors. This means that inlining has no 753 // choice but to crudely chain invokes (i.e., to ignore invokes in 754 // the inlined function, but to turn all unwindable calls into 755 // invokes), which is only semantically valid if every unwind stops 756 // at every landing pad. 757 // 758 // Therefore, the invoke-inline hack is to guarantee that every 759 // landing pad has a catch-all. 760 enum CleanupHackLevel_t { 761 /// A level of hack that requires that all landing pads have 762 /// catch-alls. 763 CHL_MandatoryCatchall, 764 765 /// A level of hack that requires that all landing pads handle 766 /// cleanups. 767 CHL_MandatoryCleanup, 768 769 /// No hacks at all; ideal IR generation. 770 CHL_Ideal 771 }; 772 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; 773 774 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 775 assert(EHStack.requiresLandingPad()); 776 777 EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); 778 switch (innermostEHScope.getKind()) { 779 case EHScope::Terminate: 780 return getTerminateLandingPad(); 781 782 case EHScope::Catch: 783 case EHScope::Cleanup: 784 case EHScope::Filter: 785 if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) 786 return lpad; 787 } 788 789 // Save the current IR generation state. 790 CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); 791 SaveAndRestoreLocation AutoRestoreLocation(*this, Builder); 792 if (CGDebugInfo *DI = getDebugInfo()) 793 DI->EmitLocation(Builder, CurEHLocation); 794 795 const EHPersonality &personality = EHPersonality::get(getLangOpts()); 796 797 // Create and configure the landing pad. 798 llvm::BasicBlock *lpad = createBasicBlock("lpad"); 799 EmitBlock(lpad); 800 801 llvm::LandingPadInst *LPadInst = 802 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 803 getOpaquePersonalityFn(CGM, personality), 0); 804 805 llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); 806 Builder.CreateStore(LPadExn, getExceptionSlot()); 807 llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); 808 Builder.CreateStore(LPadSel, getEHSelectorSlot()); 809 810 // Save the exception pointer. It's safe to use a single exception 811 // pointer per function because EH cleanups can never have nested 812 // try/catches. 813 // Build the landingpad instruction. 814 815 // Accumulate all the handlers in scope. 816 bool hasCatchAll = false; 817 bool hasCleanup = false; 818 bool hasFilter = false; 819 SmallVector<llvm::Value*, 4> filterTypes; 820 llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; 821 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 822 I != E; ++I) { 823 824 switch (I->getKind()) { 825 case EHScope::Cleanup: 826 // If we have a cleanup, remember that. 827 hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); 828 continue; 829 830 case EHScope::Filter: { 831 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 832 assert(!hasCatchAll && "EH filter reached after catch-all"); 833 834 // Filter scopes get added to the landingpad in weird ways. 835 EHFilterScope &filter = cast<EHFilterScope>(*I); 836 hasFilter = true; 837 838 // Add all the filter values. 839 for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) 840 filterTypes.push_back(filter.getFilter(i)); 841 goto done; 842 } 843 844 case EHScope::Terminate: 845 // Terminate scopes are basically catch-alls. 846 assert(!hasCatchAll); 847 hasCatchAll = true; 848 goto done; 849 850 case EHScope::Catch: 851 break; 852 } 853 854 EHCatchScope &catchScope = cast<EHCatchScope>(*I); 855 for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { 856 EHCatchScope::Handler handler = catchScope.getHandler(hi); 857 858 // If this is a catch-all, register that and abort. 859 if (!handler.Type) { 860 assert(!hasCatchAll); 861 hasCatchAll = true; 862 goto done; 863 } 864 865 // Check whether we already have a handler for this type. 866 if (catchTypes.insert(handler.Type)) 867 // If not, add it directly to the landingpad. 868 LPadInst->addClause(handler.Type); 869 } 870 } 871 872 done: 873 // If we have a catch-all, add null to the landingpad. 874 assert(!(hasCatchAll && hasFilter)); 875 if (hasCatchAll) { 876 LPadInst->addClause(getCatchAllValue(*this)); 877 878 // If we have an EH filter, we need to add those handlers in the 879 // right place in the landingpad, which is to say, at the end. 880 } else if (hasFilter) { 881 // Create a filter expression: a constant array indicating which filter 882 // types there are. The personality routine only lands here if the filter 883 // doesn't match. 884 SmallVector<llvm::Constant*, 8> Filters; 885 llvm::ArrayType *AType = 886 llvm::ArrayType::get(!filterTypes.empty() ? 887 filterTypes[0]->getType() : Int8PtrTy, 888 filterTypes.size()); 889 890 for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) 891 Filters.push_back(cast<llvm::Constant>(filterTypes[i])); 892 llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); 893 LPadInst->addClause(FilterArray); 894 895 // Also check whether we need a cleanup. 896 if (hasCleanup) 897 LPadInst->setCleanup(true); 898 899 // Otherwise, signal that we at least have cleanups. 900 } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) { 901 if (CleanupHackLevel == CHL_MandatoryCatchall) 902 LPadInst->addClause(getCatchAllValue(*this)); 903 else 904 LPadInst->setCleanup(true); 905 } 906 907 assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && 908 "landingpad instruction has no clauses!"); 909 910 // Tell the backend how to generate the landing pad. 911 Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); 912 913 // Restore the old IR generation state. 914 Builder.restoreIP(savedIP); 915 916 return lpad; 917 } 918 919 namespace { 920 /// A cleanup to call __cxa_end_catch. In many cases, the caught 921 /// exception type lets us state definitively that the thrown exception 922 /// type does not have a destructor. In particular: 923 /// - Catch-alls tell us nothing, so we have to conservatively 924 /// assume that the thrown exception might have a destructor. 925 /// - Catches by reference behave according to their base types. 926 /// - Catches of non-record types will only trigger for exceptions 927 /// of non-record types, which never have destructors. 928 /// - Catches of record types can trigger for arbitrary subclasses 929 /// of the caught type, so we have to assume the actual thrown 930 /// exception type might have a throwing destructor, even if the 931 /// caught type's destructor is trivial or nothrow. 932 struct CallEndCatch : EHScopeStack::Cleanup { 933 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 934 bool MightThrow; 935 936 void Emit(CodeGenFunction &CGF, Flags flags) override { 937 if (!MightThrow) { 938 CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); 939 return; 940 } 941 942 CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); 943 } 944 }; 945 } 946 947 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 948 /// __cxa_end_catch. 949 /// 950 /// \param EndMightThrow - true if __cxa_end_catch might throw 951 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 952 llvm::Value *Exn, 953 bool EndMightThrow) { 954 llvm::CallInst *call = 955 CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); 956 957 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 958 959 return call; 960 } 961 962 /// A "special initializer" callback for initializing a catch 963 /// parameter during catch initialization. 964 static void InitCatchParam(CodeGenFunction &CGF, 965 const VarDecl &CatchParam, 966 llvm::Value *ParamAddr, 967 SourceLocation Loc) { 968 // Load the exception from where the landing pad saved it. 969 llvm::Value *Exn = CGF.getExceptionFromSlot(); 970 971 CanQualType CatchType = 972 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 973 llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 974 975 // If we're catching by reference, we can just cast the object 976 // pointer to the appropriate pointer. 977 if (isa<ReferenceType>(CatchType)) { 978 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 979 bool EndCatchMightThrow = CaughtType->isRecordType(); 980 981 // __cxa_begin_catch returns the adjusted object pointer. 982 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 983 984 // We have no way to tell the personality function that we're 985 // catching by reference, so if we're catching a pointer, 986 // __cxa_begin_catch will actually return that pointer by value. 987 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 988 QualType PointeeType = PT->getPointeeType(); 989 990 // When catching by reference, generally we should just ignore 991 // this by-value pointer and use the exception object instead. 992 if (!PointeeType->isRecordType()) { 993 994 // Exn points to the struct _Unwind_Exception header, which 995 // we have to skip past in order to reach the exception data. 996 unsigned HeaderSize = 997 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 998 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 999 1000 // However, if we're catching a pointer-to-record type that won't 1001 // work, because the personality function might have adjusted 1002 // the pointer. There's actually no way for us to fully satisfy 1003 // the language/ABI contract here: we can't use Exn because it 1004 // might have the wrong adjustment, but we can't use the by-value 1005 // pointer because it's off by a level of abstraction. 1006 // 1007 // The current solution is to dump the adjusted pointer into an 1008 // alloca, which breaks language semantics (because changing the 1009 // pointer doesn't change the exception) but at least works. 1010 // The better solution would be to filter out non-exact matches 1011 // and rethrow them, but this is tricky because the rethrow 1012 // really needs to be catchable by other sites at this landing 1013 // pad. The best solution is to fix the personality function. 1014 } else { 1015 // Pull the pointer for the reference type off. 1016 llvm::Type *PtrTy = 1017 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 1018 1019 // Create the temporary and write the adjusted pointer into it. 1020 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 1021 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1022 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 1023 1024 // Bind the reference to the temporary. 1025 AdjustedExn = ExnPtrTmp; 1026 } 1027 } 1028 1029 llvm::Value *ExnCast = 1030 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 1031 CGF.Builder.CreateStore(ExnCast, ParamAddr); 1032 return; 1033 } 1034 1035 // Scalars and complexes. 1036 TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); 1037 if (TEK != TEK_Aggregate) { 1038 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 1039 1040 // If the catch type is a pointer type, __cxa_begin_catch returns 1041 // the pointer by value. 1042 if (CatchType->hasPointerRepresentation()) { 1043 llvm::Value *CastExn = 1044 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1045 1046 switch (CatchType.getQualifiers().getObjCLifetime()) { 1047 case Qualifiers::OCL_Strong: 1048 CastExn = CGF.EmitARCRetainNonBlock(CastExn); 1049 // fallthrough 1050 1051 case Qualifiers::OCL_None: 1052 case Qualifiers::OCL_ExplicitNone: 1053 case Qualifiers::OCL_Autoreleasing: 1054 CGF.Builder.CreateStore(CastExn, ParamAddr); 1055 return; 1056 1057 case Qualifiers::OCL_Weak: 1058 CGF.EmitARCInitWeak(ParamAddr, CastExn); 1059 return; 1060 } 1061 llvm_unreachable("bad ownership qualifier!"); 1062 } 1063 1064 // Otherwise, it returns a pointer into the exception object. 1065 1066 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1067 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1068 1069 LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType); 1070 LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType, 1071 CGF.getContext().getDeclAlign(&CatchParam)); 1072 switch (TEK) { 1073 case TEK_Complex: 1074 CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV, 1075 /*init*/ true); 1076 return; 1077 case TEK_Scalar: { 1078 llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc); 1079 CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); 1080 return; 1081 } 1082 case TEK_Aggregate: 1083 llvm_unreachable("evaluation kind filtered out!"); 1084 } 1085 llvm_unreachable("bad evaluation kind"); 1086 } 1087 1088 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1089 1090 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1091 1092 // Check for a copy expression. If we don't have a copy expression, 1093 // that means a trivial copy is okay. 1094 const Expr *copyExpr = CatchParam.getInit(); 1095 if (!copyExpr) { 1096 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1097 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1098 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); 1099 return; 1100 } 1101 1102 // We have to call __cxa_get_exception_ptr to get the adjusted 1103 // pointer before copying. 1104 llvm::CallInst *rawAdjustedExn = 1105 CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); 1106 1107 // Cast that to the appropriate type. 1108 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1109 1110 // The copy expression is defined in terms of an OpaqueValueExpr. 1111 // Find it and map it to the adjusted expression. 1112 CodeGenFunction::OpaqueValueMapping 1113 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1114 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1115 1116 // Call the copy ctor in a terminate scope. 1117 CGF.EHStack.pushTerminate(); 1118 1119 // Perform the copy construction. 1120 CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam); 1121 CGF.EmitAggExpr(copyExpr, 1122 AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(), 1123 AggValueSlot::IsNotDestructed, 1124 AggValueSlot::DoesNotNeedGCBarriers, 1125 AggValueSlot::IsNotAliased)); 1126 1127 // Leave the terminate scope. 1128 CGF.EHStack.popTerminate(); 1129 1130 // Undo the opaque value mapping. 1131 opaque.pop(); 1132 1133 // Finally we can call __cxa_begin_catch. 1134 CallBeginCatch(CGF, Exn, true); 1135 } 1136 1137 /// Begins a catch statement by initializing the catch variable and 1138 /// calling __cxa_begin_catch. 1139 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1140 // We have to be very careful with the ordering of cleanups here: 1141 // C++ [except.throw]p4: 1142 // The destruction [of the exception temporary] occurs 1143 // immediately after the destruction of the object declared in 1144 // the exception-declaration in the handler. 1145 // 1146 // So the precise ordering is: 1147 // 1. Construct catch variable. 1148 // 2. __cxa_begin_catch 1149 // 3. Enter __cxa_end_catch cleanup 1150 // 4. Enter dtor cleanup 1151 // 1152 // We do this by using a slightly abnormal initialization process. 1153 // Delegation sequence: 1154 // - ExitCXXTryStmt opens a RunCleanupsScope 1155 // - EmitAutoVarAlloca creates the variable and debug info 1156 // - InitCatchParam initializes the variable from the exception 1157 // - CallBeginCatch calls __cxa_begin_catch 1158 // - CallBeginCatch enters the __cxa_end_catch cleanup 1159 // - EmitAutoVarCleanups enters the variable destructor cleanup 1160 // - EmitCXXTryStmt emits the code for the catch body 1161 // - EmitCXXTryStmt close the RunCleanupsScope 1162 1163 VarDecl *CatchParam = S->getExceptionDecl(); 1164 if (!CatchParam) { 1165 llvm::Value *Exn = CGF.getExceptionFromSlot(); 1166 CallBeginCatch(CGF, Exn, true); 1167 return; 1168 } 1169 1170 // Emit the local. 1171 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1172 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getLocStart()); 1173 CGF.EmitAutoVarCleanups(var); 1174 } 1175 1176 /// Emit the structure of the dispatch block for the given catch scope. 1177 /// It is an invariant that the dispatch block already exists. 1178 static void emitCatchDispatchBlock(CodeGenFunction &CGF, 1179 EHCatchScope &catchScope) { 1180 llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); 1181 assert(dispatchBlock); 1182 1183 // If there's only a single catch-all, getEHDispatchBlock returned 1184 // that catch-all as the dispatch block. 1185 if (catchScope.getNumHandlers() == 1 && 1186 catchScope.getHandler(0).isCatchAll()) { 1187 assert(dispatchBlock == catchScope.getHandler(0).Block); 1188 return; 1189 } 1190 1191 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); 1192 CGF.EmitBlockAfterUses(dispatchBlock); 1193 1194 // Select the right handler. 1195 llvm::Value *llvm_eh_typeid_for = 1196 CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 1197 1198 // Load the selector value. 1199 llvm::Value *selector = CGF.getSelectorFromSlot(); 1200 1201 // Test against each of the exception types we claim to catch. 1202 for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { 1203 assert(i < e && "ran off end of handlers!"); 1204 const EHCatchScope::Handler &handler = catchScope.getHandler(i); 1205 1206 llvm::Value *typeValue = handler.Type; 1207 assert(typeValue && "fell into catch-all case!"); 1208 typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); 1209 1210 // Figure out the next block. 1211 bool nextIsEnd; 1212 llvm::BasicBlock *nextBlock; 1213 1214 // If this is the last handler, we're at the end, and the next 1215 // block is the block for the enclosing EH scope. 1216 if (i + 1 == e) { 1217 nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); 1218 nextIsEnd = true; 1219 1220 // If the next handler is a catch-all, we're at the end, and the 1221 // next block is that handler. 1222 } else if (catchScope.getHandler(i+1).isCatchAll()) { 1223 nextBlock = catchScope.getHandler(i+1).Block; 1224 nextIsEnd = true; 1225 1226 // Otherwise, we're not at the end and we need a new block. 1227 } else { 1228 nextBlock = CGF.createBasicBlock("catch.fallthrough"); 1229 nextIsEnd = false; 1230 } 1231 1232 // Figure out the catch type's index in the LSDA's type table. 1233 llvm::CallInst *typeIndex = 1234 CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); 1235 typeIndex->setDoesNotThrow(); 1236 1237 llvm::Value *matchesTypeIndex = 1238 CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); 1239 CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); 1240 1241 // If the next handler is a catch-all, we're completely done. 1242 if (nextIsEnd) { 1243 CGF.Builder.restoreIP(savedIP); 1244 return; 1245 } 1246 // Otherwise we need to emit and continue at that block. 1247 CGF.EmitBlock(nextBlock); 1248 } 1249 } 1250 1251 void CodeGenFunction::popCatchScope() { 1252 EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); 1253 if (catchScope.hasEHBranches()) 1254 emitCatchDispatchBlock(*this, catchScope); 1255 EHStack.popCatch(); 1256 } 1257 1258 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1259 unsigned NumHandlers = S.getNumHandlers(); 1260 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1261 assert(CatchScope.getNumHandlers() == NumHandlers); 1262 1263 // If the catch was not required, bail out now. 1264 if (!CatchScope.hasEHBranches()) { 1265 CatchScope.clearHandlerBlocks(); 1266 EHStack.popCatch(); 1267 return; 1268 } 1269 1270 // Emit the structure of the EH dispatch for this catch. 1271 emitCatchDispatchBlock(*this, CatchScope); 1272 1273 // Copy the handler blocks off before we pop the EH stack. Emitting 1274 // the handlers might scribble on this memory. 1275 SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1276 memcpy(Handlers.data(), CatchScope.begin(), 1277 NumHandlers * sizeof(EHCatchScope::Handler)); 1278 1279 EHStack.popCatch(); 1280 1281 // The fall-through block. 1282 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1283 1284 // We just emitted the body of the try; jump to the continue block. 1285 if (HaveInsertPoint()) 1286 Builder.CreateBr(ContBB); 1287 1288 // Determine if we need an implicit rethrow for all these catch handlers; 1289 // see the comment below. 1290 bool doImplicitRethrow = false; 1291 if (IsFnTryBlock) 1292 doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1293 isa<CXXConstructorDecl>(CurCodeDecl); 1294 1295 // Perversely, we emit the handlers backwards precisely because we 1296 // want them to appear in source order. In all of these cases, the 1297 // catch block will have exactly one predecessor, which will be a 1298 // particular block in the catch dispatch. However, in the case of 1299 // a catch-all, one of the dispatch blocks will branch to two 1300 // different handlers, and EmitBlockAfterUses will cause the second 1301 // handler to be moved before the first. 1302 for (unsigned I = NumHandlers; I != 0; --I) { 1303 llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; 1304 EmitBlockAfterUses(CatchBlock); 1305 1306 // Catch the exception if this isn't a catch-all. 1307 const CXXCatchStmt *C = S.getHandler(I-1); 1308 1309 // Enter a cleanup scope, including the catch variable and the 1310 // end-catch. 1311 RunCleanupsScope CatchScope(*this); 1312 1313 // Initialize the catch variable and set up the cleanups. 1314 BeginCatch(*this, C); 1315 1316 // Emit the PGO counter increment. 1317 RegionCounter CatchCnt = getPGORegionCounter(C); 1318 CatchCnt.beginRegion(Builder); 1319 1320 // Perform the body of the catch. 1321 EmitStmt(C->getHandlerBlock()); 1322 1323 // [except.handle]p11: 1324 // The currently handled exception is rethrown if control 1325 // reaches the end of a handler of the function-try-block of a 1326 // constructor or destructor. 1327 1328 // It is important that we only do this on fallthrough and not on 1329 // return. Note that it's illegal to put a return in a 1330 // constructor function-try-block's catch handler (p14), so this 1331 // really only applies to destructors. 1332 if (doImplicitRethrow && HaveInsertPoint()) { 1333 EmitRuntimeCallOrInvoke(getReThrowFn(CGM)); 1334 Builder.CreateUnreachable(); 1335 Builder.ClearInsertionPoint(); 1336 } 1337 1338 // Fall out through the catch cleanups. 1339 CatchScope.ForceCleanup(); 1340 1341 // Branch out of the try. 1342 if (HaveInsertPoint()) 1343 Builder.CreateBr(ContBB); 1344 } 1345 1346 RegionCounter ContCnt = getPGORegionCounter(&S); 1347 EmitBlock(ContBB); 1348 ContCnt.beginRegion(Builder); 1349 } 1350 1351 namespace { 1352 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1353 llvm::Value *ForEHVar; 1354 llvm::Value *EndCatchFn; 1355 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1356 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1357 1358 void Emit(CodeGenFunction &CGF, Flags flags) override { 1359 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1360 llvm::BasicBlock *CleanupContBB = 1361 CGF.createBasicBlock("finally.cleanup.cont"); 1362 1363 llvm::Value *ShouldEndCatch = 1364 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1365 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1366 CGF.EmitBlock(EndCatchBB); 1367 CGF.EmitRuntimeCallOrInvoke(EndCatchFn); // catch-all, so might throw 1368 CGF.EmitBlock(CleanupContBB); 1369 } 1370 }; 1371 1372 struct PerformFinally : EHScopeStack::Cleanup { 1373 const Stmt *Body; 1374 llvm::Value *ForEHVar; 1375 llvm::Value *EndCatchFn; 1376 llvm::Value *RethrowFn; 1377 llvm::Value *SavedExnVar; 1378 1379 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1380 llvm::Value *EndCatchFn, 1381 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1382 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1383 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1384 1385 void Emit(CodeGenFunction &CGF, Flags flags) override { 1386 // Enter a cleanup to call the end-catch function if one was provided. 1387 if (EndCatchFn) 1388 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1389 ForEHVar, EndCatchFn); 1390 1391 // Save the current cleanup destination in case there are 1392 // cleanups in the finally block. 1393 llvm::Value *SavedCleanupDest = 1394 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1395 "cleanup.dest.saved"); 1396 1397 // Emit the finally block. 1398 CGF.EmitStmt(Body); 1399 1400 // If the end of the finally is reachable, check whether this was 1401 // for EH. If so, rethrow. 1402 if (CGF.HaveInsertPoint()) { 1403 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1404 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1405 1406 llvm::Value *ShouldRethrow = 1407 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1408 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1409 1410 CGF.EmitBlock(RethrowBB); 1411 if (SavedExnVar) { 1412 CGF.EmitRuntimeCallOrInvoke(RethrowFn, 1413 CGF.Builder.CreateLoad(SavedExnVar)); 1414 } else { 1415 CGF.EmitRuntimeCallOrInvoke(RethrowFn); 1416 } 1417 CGF.Builder.CreateUnreachable(); 1418 1419 CGF.EmitBlock(ContBB); 1420 1421 // Restore the cleanup destination. 1422 CGF.Builder.CreateStore(SavedCleanupDest, 1423 CGF.getNormalCleanupDestSlot()); 1424 } 1425 1426 // Leave the end-catch cleanup. As an optimization, pretend that 1427 // the fallthrough path was inaccessible; we've dynamically proven 1428 // that we're not in the EH case along that path. 1429 if (EndCatchFn) { 1430 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1431 CGF.PopCleanupBlock(); 1432 CGF.Builder.restoreIP(SavedIP); 1433 } 1434 1435 // Now make sure we actually have an insertion point or the 1436 // cleanup gods will hate us. 1437 CGF.EnsureInsertPoint(); 1438 } 1439 }; 1440 } 1441 1442 /// Enters a finally block for an implementation using zero-cost 1443 /// exceptions. This is mostly general, but hard-codes some 1444 /// language/ABI-specific behavior in the catch-all sections. 1445 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, 1446 const Stmt *body, 1447 llvm::Constant *beginCatchFn, 1448 llvm::Constant *endCatchFn, 1449 llvm::Constant *rethrowFn) { 1450 assert((beginCatchFn != nullptr) == (endCatchFn != nullptr) && 1451 "begin/end catch functions not paired"); 1452 assert(rethrowFn && "rethrow function is required"); 1453 1454 BeginCatchFn = beginCatchFn; 1455 1456 // The rethrow function has one of the following two types: 1457 // void (*)() 1458 // void (*)(void*) 1459 // In the latter case we need to pass it the exception object. 1460 // But we can't use the exception slot because the @finally might 1461 // have a landing pad (which would overwrite the exception slot). 1462 llvm::FunctionType *rethrowFnTy = 1463 cast<llvm::FunctionType>( 1464 cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); 1465 SavedExnVar = nullptr; 1466 if (rethrowFnTy->getNumParams()) 1467 SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); 1468 1469 // A finally block is a statement which must be executed on any edge 1470 // out of a given scope. Unlike a cleanup, the finally block may 1471 // contain arbitrary control flow leading out of itself. In 1472 // addition, finally blocks should always be executed, even if there 1473 // are no catch handlers higher on the stack. Therefore, we 1474 // surround the protected scope with a combination of a normal 1475 // cleanup (to catch attempts to break out of the block via normal 1476 // control flow) and an EH catch-all (semantically "outside" any try 1477 // statement to which the finally block might have been attached). 1478 // The finally block itself is generated in the context of a cleanup 1479 // which conditionally leaves the catch-all. 1480 1481 // Jump destination for performing the finally block on an exception 1482 // edge. We'll never actually reach this block, so unreachable is 1483 // fine. 1484 RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); 1485 1486 // Whether the finally block is being executed for EH purposes. 1487 ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); 1488 CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); 1489 1490 // Enter a normal cleanup which will perform the @finally block. 1491 CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, 1492 ForEHVar, endCatchFn, 1493 rethrowFn, SavedExnVar); 1494 1495 // Enter a catch-all scope. 1496 llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); 1497 EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); 1498 catchScope->setCatchAllHandler(0, catchBB); 1499 } 1500 1501 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { 1502 // Leave the finally catch-all. 1503 EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); 1504 llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; 1505 1506 CGF.popCatchScope(); 1507 1508 // If there are any references to the catch-all block, emit it. 1509 if (catchBB->use_empty()) { 1510 delete catchBB; 1511 } else { 1512 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); 1513 CGF.EmitBlock(catchBB); 1514 1515 llvm::Value *exn = nullptr; 1516 1517 // If there's a begin-catch function, call it. 1518 if (BeginCatchFn) { 1519 exn = CGF.getExceptionFromSlot(); 1520 CGF.EmitNounwindRuntimeCall(BeginCatchFn, exn); 1521 } 1522 1523 // If we need to remember the exception pointer to rethrow later, do so. 1524 if (SavedExnVar) { 1525 if (!exn) exn = CGF.getExceptionFromSlot(); 1526 CGF.Builder.CreateStore(exn, SavedExnVar); 1527 } 1528 1529 // Tell the cleanups in the finally block that we're do this for EH. 1530 CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); 1531 1532 // Thread a jump through the finally cleanup. 1533 CGF.EmitBranchThroughCleanup(RethrowDest); 1534 1535 CGF.Builder.restoreIP(savedIP); 1536 } 1537 1538 // Finally, leave the @finally cleanup. 1539 CGF.PopCleanupBlock(); 1540 } 1541 1542 /// In a terminate landing pad, should we use __clang__call_terminate 1543 /// or just a naked call to std::terminate? 1544 /// 1545 /// __clang_call_terminate calls __cxa_begin_catch, which then allows 1546 /// std::terminate to usefully report something about the 1547 /// violating exception. 1548 static bool useClangCallTerminate(CodeGenModule &CGM) { 1549 // Only do this for Itanium-family ABIs in C++ mode. 1550 return (CGM.getLangOpts().CPlusPlus && 1551 CGM.getTarget().getCXXABI().isItaniumFamily()); 1552 } 1553 1554 /// Get or define the following function: 1555 /// void @__clang_call_terminate(i8* %exn) nounwind noreturn 1556 /// This code is used only in C++. 1557 static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) { 1558 llvm::FunctionType *fnTy = 1559 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 1560 llvm::Constant *fnRef = 1561 CGM.CreateRuntimeFunction(fnTy, "__clang_call_terminate"); 1562 1563 llvm::Function *fn = dyn_cast<llvm::Function>(fnRef); 1564 if (fn && fn->empty()) { 1565 fn->setDoesNotThrow(); 1566 fn->setDoesNotReturn(); 1567 1568 // What we really want is to massively penalize inlining without 1569 // forbidding it completely. The difference between that and 1570 // 'noinline' is negligible. 1571 fn->addFnAttr(llvm::Attribute::NoInline); 1572 1573 // Allow this function to be shared across translation units, but 1574 // we don't want it to turn into an exported symbol. 1575 fn->setLinkage(llvm::Function::LinkOnceODRLinkage); 1576 fn->setVisibility(llvm::Function::HiddenVisibility); 1577 1578 // Set up the function. 1579 llvm::BasicBlock *entry = 1580 llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); 1581 CGBuilderTy builder(entry); 1582 1583 // Pull the exception pointer out of the parameter list. 1584 llvm::Value *exn = &*fn->arg_begin(); 1585 1586 // Call __cxa_begin_catch(exn). 1587 llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); 1588 catchCall->setDoesNotThrow(); 1589 catchCall->setCallingConv(CGM.getRuntimeCC()); 1590 1591 // Call std::terminate(). 1592 llvm::CallInst *termCall = builder.CreateCall(getTerminateFn(CGM)); 1593 termCall->setDoesNotThrow(); 1594 termCall->setDoesNotReturn(); 1595 termCall->setCallingConv(CGM.getRuntimeCC()); 1596 1597 // std::terminate cannot return. 1598 builder.CreateUnreachable(); 1599 } 1600 1601 return fnRef; 1602 } 1603 1604 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1605 if (TerminateLandingPad) 1606 return TerminateLandingPad; 1607 1608 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1609 1610 // This will get inserted at the end of the function. 1611 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1612 Builder.SetInsertPoint(TerminateLandingPad); 1613 1614 // Tell the backend that this is a landing pad. 1615 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1616 llvm::LandingPadInst *LPadInst = 1617 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 1618 getOpaquePersonalityFn(CGM, Personality), 0); 1619 LPadInst->addClause(getCatchAllValue(*this)); 1620 1621 llvm::CallInst *terminateCall; 1622 if (useClangCallTerminate(CGM)) { 1623 // Extract out the exception pointer. 1624 llvm::Value *exn = Builder.CreateExtractValue(LPadInst, 0); 1625 terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn); 1626 } else { 1627 terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM)); 1628 } 1629 terminateCall->setDoesNotReturn(); 1630 Builder.CreateUnreachable(); 1631 1632 // Restore the saved insertion state. 1633 Builder.restoreIP(SavedIP); 1634 1635 return TerminateLandingPad; 1636 } 1637 1638 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1639 if (TerminateHandler) 1640 return TerminateHandler; 1641 1642 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1643 1644 // Set up the terminate handler. This block is inserted at the very 1645 // end of the function by FinishFunction. 1646 TerminateHandler = createBasicBlock("terminate.handler"); 1647 Builder.SetInsertPoint(TerminateHandler); 1648 llvm::CallInst *terminateCall; 1649 if (useClangCallTerminate(CGM)) { 1650 // Load the exception pointer. 1651 llvm::Value *exn = getExceptionFromSlot(); 1652 terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn); 1653 } else { 1654 terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM)); 1655 } 1656 terminateCall->setDoesNotReturn(); 1657 Builder.CreateUnreachable(); 1658 1659 // Restore the saved insertion state. 1660 Builder.restoreIP(SavedIP); 1661 1662 return TerminateHandler; 1663 } 1664 1665 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) { 1666 if (EHResumeBlock) return EHResumeBlock; 1667 1668 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1669 1670 // We emit a jump to a notional label at the outermost unwind state. 1671 EHResumeBlock = createBasicBlock("eh.resume"); 1672 Builder.SetInsertPoint(EHResumeBlock); 1673 1674 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1675 1676 // This can always be a call because we necessarily didn't find 1677 // anything on the EH stack which needs our help. 1678 const char *RethrowName = Personality.CatchallRethrowFn; 1679 if (RethrowName != nullptr && !isCleanup) { 1680 EmitRuntimeCall(getCatchallRethrowFn(CGM, RethrowName), 1681 getExceptionFromSlot()) 1682 ->setDoesNotReturn(); 1683 } else { 1684 switch (CleanupHackLevel) { 1685 case CHL_MandatoryCatchall: 1686 // In mandatory-catchall mode, we need to use 1687 // _Unwind_Resume_or_Rethrow, or whatever the personality's 1688 // equivalent is. 1689 EmitRuntimeCall(getUnwindResumeOrRethrowFn(), 1690 getExceptionFromSlot()) 1691 ->setDoesNotReturn(); 1692 break; 1693 case CHL_MandatoryCleanup: { 1694 // In mandatory-cleanup mode, we should use 'resume'. 1695 1696 // Recreate the landingpad's return value for the 'resume' instruction. 1697 llvm::Value *Exn = getExceptionFromSlot(); 1698 llvm::Value *Sel = getSelectorFromSlot(); 1699 1700 llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), 1701 Sel->getType(), NULL); 1702 llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); 1703 LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); 1704 LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); 1705 1706 Builder.CreateResume(LPadVal); 1707 Builder.restoreIP(SavedIP); 1708 return EHResumeBlock; 1709 } 1710 case CHL_Ideal: 1711 // In an idealized mode where we don't have to worry about the 1712 // optimizer combining landing pads, we should just use 1713 // _Unwind_Resume (or the personality's equivalent). 1714 EmitRuntimeCall(getUnwindResumeFn(), getExceptionFromSlot()) 1715 ->setDoesNotReturn(); 1716 break; 1717 } 1718 } 1719 1720 Builder.CreateUnreachable(); 1721 1722 Builder.restoreIP(SavedIP); 1723 1724 return EHResumeBlock; 1725 } 1726 1727 void CodeGenFunction::EmitSEHTryStmt(const SEHTryStmt &S) { 1728 CGM.ErrorUnsupported(&S, "SEH __try"); 1729 } 1730