1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtCXX.h" 19 #include "llvm/Intrinsics.h" 20 #include "llvm/Support/CallSite.h" 21 22 using namespace clang; 23 using namespace CodeGen; 24 25 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) { 26 // void *__cxa_allocate_exception(size_t thrown_size); 27 28 llvm::FunctionType *FTy = 29 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.SizeTy, /*IsVarArgs=*/false); 30 31 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 32 } 33 34 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) { 35 // void __cxa_free_exception(void *thrown_exception); 36 37 llvm::FunctionType *FTy = 38 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 39 40 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 41 } 42 43 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) { 44 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 45 // void (*dest) (void *)); 46 47 llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; 48 llvm::FunctionType *FTy = 49 llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false); 50 51 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 52 } 53 54 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) { 55 // void __cxa_rethrow(); 56 57 llvm::FunctionType *FTy = 58 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 59 60 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 61 } 62 63 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) { 64 // void *__cxa_get_exception_ptr(void*); 65 66 llvm::FunctionType *FTy = 67 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 68 69 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 70 } 71 72 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) { 73 // void *__cxa_begin_catch(void*); 74 75 llvm::FunctionType *FTy = 76 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 77 78 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 79 } 80 81 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) { 82 // void __cxa_end_catch(); 83 84 llvm::FunctionType *FTy = 85 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 86 87 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 88 } 89 90 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) { 91 // void __cxa_call_unexepcted(void *thrown_exception); 92 93 llvm::FunctionType *FTy = 94 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 95 96 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 97 } 98 99 llvm::Constant *CodeGenFunction::getUnwindResumeFn() { 100 llvm::FunctionType *FTy = 101 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 102 103 if (CGM.getLangOpts().SjLjExceptions) 104 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); 105 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); 106 } 107 108 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 109 llvm::FunctionType *FTy = 110 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 111 112 if (CGM.getLangOpts().SjLjExceptions) 113 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 114 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 115 } 116 117 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) { 118 // void __terminate(); 119 120 llvm::FunctionType *FTy = 121 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 122 123 StringRef name; 124 125 // In C++, use std::terminate(). 126 if (CGF.getLangOpts().CPlusPlus) 127 name = "_ZSt9terminatev"; // FIXME: mangling! 128 else if (CGF.getLangOpts().ObjC1 && 129 CGF.CGM.getCodeGenOpts().ObjCRuntimeHasTerminate) 130 name = "objc_terminate"; 131 else 132 name = "abort"; 133 return CGF.CGM.CreateRuntimeFunction(FTy, name); 134 } 135 136 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF, 137 StringRef Name) { 138 llvm::FunctionType *FTy = 139 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); 140 141 return CGF.CGM.CreateRuntimeFunction(FTy, Name); 142 } 143 144 namespace { 145 /// The exceptions personality for a function. 146 struct EHPersonality { 147 const char *PersonalityFn; 148 149 // If this is non-null, this personality requires a non-standard 150 // function for rethrowing an exception after a catchall cleanup. 151 // This function must have prototype void(void*). 152 const char *CatchallRethrowFn; 153 154 static const EHPersonality &get(const LangOptions &Lang); 155 static const EHPersonality GNU_C; 156 static const EHPersonality GNU_C_SJLJ; 157 static const EHPersonality GNU_ObjC; 158 static const EHPersonality GNU_ObjCXX; 159 static const EHPersonality NeXT_ObjC; 160 static const EHPersonality GNU_CPlusPlus; 161 static const EHPersonality GNU_CPlusPlus_SJLJ; 162 }; 163 } 164 165 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 }; 166 const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 }; 167 const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 }; 168 const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0}; 169 const EHPersonality 170 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 }; 171 const EHPersonality 172 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; 173 const EHPersonality 174 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 }; 175 176 static const EHPersonality &getCPersonality(const LangOptions &L) { 177 if (L.SjLjExceptions) 178 return EHPersonality::GNU_C_SJLJ; 179 return EHPersonality::GNU_C; 180 } 181 182 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 183 if (L.NeXTRuntime) { 184 if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; 185 else return getCPersonality(L); 186 } else { 187 return EHPersonality::GNU_ObjC; 188 } 189 } 190 191 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 192 if (L.SjLjExceptions) 193 return EHPersonality::GNU_CPlusPlus_SJLJ; 194 else 195 return EHPersonality::GNU_CPlusPlus; 196 } 197 198 /// Determines the personality function to use when both C++ 199 /// and Objective-C exceptions are being caught. 200 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 201 // The ObjC personality defers to the C++ personality for non-ObjC 202 // handlers. Unlike the C++ case, we use the same personality 203 // function on targets using (backend-driven) SJLJ EH. 204 if (L.NeXTRuntime) { 205 if (L.ObjCNonFragileABI) 206 return EHPersonality::NeXT_ObjC; 207 208 // In the fragile ABI, just use C++ exception handling and hope 209 // they're not doing crazy exception mixing. 210 else 211 return getCXXPersonality(L); 212 } 213 214 // The GNU runtime's personality function inherently doesn't support 215 // mixed EH. Use the C++ personality just to avoid returning null. 216 return EHPersonality::GNU_ObjCXX; 217 } 218 219 const EHPersonality &EHPersonality::get(const LangOptions &L) { 220 if (L.CPlusPlus && L.ObjC1) 221 return getObjCXXPersonality(L); 222 else if (L.CPlusPlus) 223 return getCXXPersonality(L); 224 else if (L.ObjC1) 225 return getObjCPersonality(L); 226 else 227 return getCPersonality(L); 228 } 229 230 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 231 const EHPersonality &Personality) { 232 llvm::Constant *Fn = 233 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), 234 Personality.PersonalityFn); 235 return Fn; 236 } 237 238 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 239 const EHPersonality &Personality) { 240 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 241 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 242 } 243 244 /// Check whether a personality function could reasonably be swapped 245 /// for a C++ personality function. 246 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 247 for (llvm::Constant::use_iterator 248 I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { 249 llvm::User *User = *I; 250 251 // Conditionally white-list bitcasts. 252 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) { 253 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 254 if (!PersonalityHasOnlyCXXUses(CE)) 255 return false; 256 continue; 257 } 258 259 // Otherwise, it has to be a landingpad instruction. 260 llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User); 261 if (!LPI) return false; 262 263 for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { 264 // Look for something that would've been returned by the ObjC 265 // runtime's GetEHType() method. 266 llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); 267 if (LPI->isCatch(I)) { 268 // Check if the catch value has the ObjC prefix. 269 if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) 270 // ObjC EH selector entries are always global variables with 271 // names starting like this. 272 if (GV->getName().startswith("OBJC_EHTYPE")) 273 return false; 274 } else { 275 // Check if any of the filter values have the ObjC prefix. 276 llvm::Constant *CVal = cast<llvm::Constant>(Val); 277 for (llvm::User::op_iterator 278 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { 279 if (llvm::GlobalVariable *GV = 280 cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) 281 // ObjC EH selector entries are always global variables with 282 // names starting like this. 283 if (GV->getName().startswith("OBJC_EHTYPE")) 284 return false; 285 } 286 } 287 } 288 } 289 290 return true; 291 } 292 293 /// Try to use the C++ personality function in ObjC++. Not doing this 294 /// can cause some incompatibilities with gcc, which is more 295 /// aggressive about only using the ObjC++ personality in a function 296 /// when it really needs it. 297 void CodeGenModule::SimplifyPersonality() { 298 // For now, this is really a Darwin-specific operation. 299 if (!Context.getTargetInfo().getTriple().isOSDarwin()) 300 return; 301 302 // If we're not in ObjC++ -fexceptions, there's nothing to do. 303 if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) 304 return; 305 306 const EHPersonality &ObjCXX = EHPersonality::get(LangOpts); 307 const EHPersonality &CXX = getCXXPersonality(LangOpts); 308 if (&ObjCXX == &CXX) 309 return; 310 311 assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && 312 "Different EHPersonalities using the same personality function."); 313 314 llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); 315 316 // Nothing to do if it's unused. 317 if (!Fn || Fn->use_empty()) return; 318 319 // Can't do the optimization if it has non-C++ uses. 320 if (!PersonalityHasOnlyCXXUses(Fn)) return; 321 322 // Create the C++ personality function and kill off the old 323 // function. 324 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 325 326 // This can happen if the user is screwing with us. 327 if (Fn->getType() != CXXFn->getType()) return; 328 329 Fn->replaceAllUsesWith(CXXFn); 330 Fn->eraseFromParent(); 331 } 332 333 /// Returns the value to inject into a selector to indicate the 334 /// presence of a catch-all. 335 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 336 // Possibly we should use @llvm.eh.catch.all.value here. 337 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 338 } 339 340 namespace { 341 /// A cleanup to free the exception object if its initialization 342 /// throws. 343 struct FreeException : EHScopeStack::Cleanup { 344 llvm::Value *exn; 345 FreeException(llvm::Value *exn) : exn(exn) {} 346 void Emit(CodeGenFunction &CGF, Flags flags) { 347 CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn) 348 ->setDoesNotThrow(); 349 } 350 }; 351 } 352 353 // Emits an exception expression into the given location. This 354 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 355 // call is required, an exception within that copy ctor causes 356 // std::terminate to be invoked. 357 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 358 llvm::Value *addr) { 359 // Make sure the exception object is cleaned up if there's an 360 // exception during initialization. 361 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 362 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 363 364 // __cxa_allocate_exception returns a void*; we need to cast this 365 // to the appropriate type for the object. 366 llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 367 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 368 369 // FIXME: this isn't quite right! If there's a final unelided call 370 // to a copy constructor, then according to [except.terminate]p1 we 371 // must call std::terminate() if that constructor throws, because 372 // technically that copy occurs after the exception expression is 373 // evaluated but before the exception is caught. But the best way 374 // to handle that is to teach EmitAggExpr to do the final copy 375 // differently if it can't be elided. 376 CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers()); 377 378 // Deactivate the cleanup block. 379 CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); 380 } 381 382 llvm::Value *CodeGenFunction::getExceptionSlot() { 383 if (!ExceptionSlot) 384 ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); 385 return ExceptionSlot; 386 } 387 388 llvm::Value *CodeGenFunction::getEHSelectorSlot() { 389 if (!EHSelectorSlot) 390 EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); 391 return EHSelectorSlot; 392 } 393 394 llvm::Value *CodeGenFunction::getExceptionFromSlot() { 395 return Builder.CreateLoad(getExceptionSlot(), "exn"); 396 } 397 398 llvm::Value *CodeGenFunction::getSelectorFromSlot() { 399 return Builder.CreateLoad(getEHSelectorSlot(), "sel"); 400 } 401 402 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) { 403 if (!E->getSubExpr()) { 404 if (getInvokeDest()) { 405 Builder.CreateInvoke(getReThrowFn(*this), 406 getUnreachableBlock(), 407 getInvokeDest()) 408 ->setDoesNotReturn(); 409 } else { 410 Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn(); 411 Builder.CreateUnreachable(); 412 } 413 414 // throw is an expression, and the expression emitters expect us 415 // to leave ourselves at a valid insertion point. 416 EmitBlock(createBasicBlock("throw.cont")); 417 418 return; 419 } 420 421 QualType ThrowType = E->getSubExpr()->getType(); 422 423 // Now allocate the exception object. 424 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 425 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 426 427 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this); 428 llvm::CallInst *ExceptionPtr = 429 Builder.CreateCall(AllocExceptionFn, 430 llvm::ConstantInt::get(SizeTy, TypeSize), 431 "exception"); 432 ExceptionPtr->setDoesNotThrow(); 433 434 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 435 436 // Now throw the exception. 437 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 438 /*ForEH=*/true); 439 440 // The address of the destructor. If the exception type has a 441 // trivial destructor (or isn't a record), we just pass null. 442 llvm::Constant *Dtor = 0; 443 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 444 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 445 if (!Record->hasTrivialDestructor()) { 446 CXXDestructorDecl *DtorD = Record->getDestructor(); 447 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 448 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 449 } 450 } 451 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 452 453 if (getInvokeDest()) { 454 llvm::InvokeInst *ThrowCall = 455 Builder.CreateInvoke3(getThrowFn(*this), 456 getUnreachableBlock(), getInvokeDest(), 457 ExceptionPtr, TypeInfo, Dtor); 458 ThrowCall->setDoesNotReturn(); 459 } else { 460 llvm::CallInst *ThrowCall = 461 Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor); 462 ThrowCall->setDoesNotReturn(); 463 Builder.CreateUnreachable(); 464 } 465 466 // throw is an expression, and the expression emitters expect us 467 // to leave ourselves at a valid insertion point. 468 EmitBlock(createBasicBlock("throw.cont")); 469 } 470 471 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 472 if (!CGM.getLangOpts().CXXExceptions) 473 return; 474 475 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 476 if (FD == 0) 477 return; 478 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 479 if (Proto == 0) 480 return; 481 482 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 483 if (isNoexceptExceptionSpec(EST)) { 484 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 485 // noexcept functions are simple terminate scopes. 486 EHStack.pushTerminate(); 487 } 488 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 489 unsigned NumExceptions = Proto->getNumExceptions(); 490 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 491 492 for (unsigned I = 0; I != NumExceptions; ++I) { 493 QualType Ty = Proto->getExceptionType(I); 494 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 495 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 496 /*ForEH=*/true); 497 Filter->setFilter(I, EHType); 498 } 499 } 500 } 501 502 /// Emit the dispatch block for a filter scope if necessary. 503 static void emitFilterDispatchBlock(CodeGenFunction &CGF, 504 EHFilterScope &filterScope) { 505 llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); 506 if (!dispatchBlock) return; 507 if (dispatchBlock->use_empty()) { 508 delete dispatchBlock; 509 return; 510 } 511 512 CGF.EmitBlockAfterUses(dispatchBlock); 513 514 // If this isn't a catch-all filter, we need to check whether we got 515 // here because the filter triggered. 516 if (filterScope.getNumFilters()) { 517 // Load the selector value. 518 llvm::Value *selector = CGF.getSelectorFromSlot(); 519 llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); 520 521 llvm::Value *zero = CGF.Builder.getInt32(0); 522 llvm::Value *failsFilter = 523 CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); 524 CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock()); 525 526 CGF.EmitBlock(unexpectedBB); 527 } 528 529 // Call __cxa_call_unexpected. This doesn't need to be an invoke 530 // because __cxa_call_unexpected magically filters exceptions 531 // according to the last landing pad the exception was thrown 532 // into. Seriously. 533 llvm::Value *exn = CGF.getExceptionFromSlot(); 534 CGF.Builder.CreateCall(getUnexpectedFn(CGF), exn) 535 ->setDoesNotReturn(); 536 CGF.Builder.CreateUnreachable(); 537 } 538 539 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 540 if (!CGM.getLangOpts().CXXExceptions) 541 return; 542 543 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 544 if (FD == 0) 545 return; 546 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 547 if (Proto == 0) 548 return; 549 550 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 551 if (isNoexceptExceptionSpec(EST)) { 552 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 553 EHStack.popTerminate(); 554 } 555 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 556 EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); 557 emitFilterDispatchBlock(*this, filterScope); 558 EHStack.popFilter(); 559 } 560 } 561 562 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 563 EnterCXXTryStmt(S); 564 EmitStmt(S.getTryBlock()); 565 ExitCXXTryStmt(S); 566 } 567 568 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 569 unsigned NumHandlers = S.getNumHandlers(); 570 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 571 572 for (unsigned I = 0; I != NumHandlers; ++I) { 573 const CXXCatchStmt *C = S.getHandler(I); 574 575 llvm::BasicBlock *Handler = createBasicBlock("catch"); 576 if (C->getExceptionDecl()) { 577 // FIXME: Dropping the reference type on the type into makes it 578 // impossible to correctly implement catch-by-reference 579 // semantics for pointers. Unfortunately, this is what all 580 // existing compilers do, and it's not clear that the standard 581 // personality routine is capable of doing this right. See C++ DR 388: 582 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 583 QualType CaughtType = C->getCaughtType(); 584 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 585 586 llvm::Value *TypeInfo = 0; 587 if (CaughtType->isObjCObjectPointerType()) 588 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 589 else 590 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 591 CatchScope->setHandler(I, TypeInfo, Handler); 592 } else { 593 // No exception decl indicates '...', a catch-all. 594 CatchScope->setCatchAllHandler(I, Handler); 595 } 596 } 597 } 598 599 llvm::BasicBlock * 600 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { 601 // The dispatch block for the end of the scope chain is a block that 602 // just resumes unwinding. 603 if (si == EHStack.stable_end()) 604 return getEHResumeBlock(); 605 606 // Otherwise, we should look at the actual scope. 607 EHScope &scope = *EHStack.find(si); 608 609 llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); 610 if (!dispatchBlock) { 611 switch (scope.getKind()) { 612 case EHScope::Catch: { 613 // Apply a special case to a single catch-all. 614 EHCatchScope &catchScope = cast<EHCatchScope>(scope); 615 if (catchScope.getNumHandlers() == 1 && 616 catchScope.getHandler(0).isCatchAll()) { 617 dispatchBlock = catchScope.getHandler(0).Block; 618 619 // Otherwise, make a dispatch block. 620 } else { 621 dispatchBlock = createBasicBlock("catch.dispatch"); 622 } 623 break; 624 } 625 626 case EHScope::Cleanup: 627 dispatchBlock = createBasicBlock("ehcleanup"); 628 break; 629 630 case EHScope::Filter: 631 dispatchBlock = createBasicBlock("filter.dispatch"); 632 break; 633 634 case EHScope::Terminate: 635 dispatchBlock = getTerminateHandler(); 636 break; 637 } 638 scope.setCachedEHDispatchBlock(dispatchBlock); 639 } 640 return dispatchBlock; 641 } 642 643 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 644 /// affect exception handling. Currently, the only non-EH scopes are 645 /// normal-only cleanup scopes. 646 static bool isNonEHScope(const EHScope &S) { 647 switch (S.getKind()) { 648 case EHScope::Cleanup: 649 return !cast<EHCleanupScope>(S).isEHCleanup(); 650 case EHScope::Filter: 651 case EHScope::Catch: 652 case EHScope::Terminate: 653 return false; 654 } 655 656 llvm_unreachable("Invalid EHScope Kind!"); 657 } 658 659 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 660 assert(EHStack.requiresLandingPad()); 661 assert(!EHStack.empty()); 662 663 if (!CGM.getLangOpts().Exceptions) 664 return 0; 665 666 // Check the innermost scope for a cached landing pad. If this is 667 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 668 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 669 if (LP) return LP; 670 671 // Build the landing pad for this scope. 672 LP = EmitLandingPad(); 673 assert(LP); 674 675 // Cache the landing pad on the innermost scope. If this is a 676 // non-EH scope, cache the landing pad on the enclosing scope, too. 677 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 678 ir->setCachedLandingPad(LP); 679 if (!isNonEHScope(*ir)) break; 680 } 681 682 return LP; 683 } 684 685 // This code contains a hack to work around a design flaw in 686 // LLVM's EH IR which breaks semantics after inlining. This same 687 // hack is implemented in llvm-gcc. 688 // 689 // The LLVM EH abstraction is basically a thin veneer over the 690 // traditional GCC zero-cost design: for each range of instructions 691 // in the function, there is (at most) one "landing pad" with an 692 // associated chain of EH actions. A language-specific personality 693 // function interprets this chain of actions and (1) decides whether 694 // or not to resume execution at the landing pad and (2) if so, 695 // provides an integer indicating why it's stopping. In LLVM IR, 696 // the association of a landing pad with a range of instructions is 697 // achieved via an invoke instruction, the chain of actions becomes 698 // the arguments to the @llvm.eh.selector call, and the selector 699 // call returns the integer indicator. Other than the required 700 // presence of two intrinsic function calls in the landing pad, 701 // the IR exactly describes the layout of the output code. 702 // 703 // A principal advantage of this design is that it is completely 704 // language-agnostic; in theory, the LLVM optimizers can treat 705 // landing pads neutrally, and targets need only know how to lower 706 // the intrinsics to have a functioning exceptions system (assuming 707 // that platform exceptions follow something approximately like the 708 // GCC design). Unfortunately, landing pads cannot be combined in a 709 // language-agnostic way: given selectors A and B, there is no way 710 // to make a single landing pad which faithfully represents the 711 // semantics of propagating an exception first through A, then 712 // through B, without knowing how the personality will interpret the 713 // (lowered form of the) selectors. This means that inlining has no 714 // choice but to crudely chain invokes (i.e., to ignore invokes in 715 // the inlined function, but to turn all unwindable calls into 716 // invokes), which is only semantically valid if every unwind stops 717 // at every landing pad. 718 // 719 // Therefore, the invoke-inline hack is to guarantee that every 720 // landing pad has a catch-all. 721 enum CleanupHackLevel_t { 722 /// A level of hack that requires that all landing pads have 723 /// catch-alls. 724 CHL_MandatoryCatchall, 725 726 /// A level of hack that requires that all landing pads handle 727 /// cleanups. 728 CHL_MandatoryCleanup, 729 730 /// No hacks at all; ideal IR generation. 731 CHL_Ideal 732 }; 733 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; 734 735 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 736 assert(EHStack.requiresLandingPad()); 737 738 EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); 739 switch (innermostEHScope.getKind()) { 740 case EHScope::Terminate: 741 return getTerminateLandingPad(); 742 743 case EHScope::Catch: 744 case EHScope::Cleanup: 745 case EHScope::Filter: 746 if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) 747 return lpad; 748 } 749 750 // Save the current IR generation state. 751 CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); 752 753 const EHPersonality &personality = EHPersonality::get(getLangOpts()); 754 755 // Create and configure the landing pad. 756 llvm::BasicBlock *lpad = createBasicBlock("lpad"); 757 EmitBlock(lpad); 758 759 llvm::LandingPadInst *LPadInst = 760 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 761 getOpaquePersonalityFn(CGM, personality), 0); 762 763 llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); 764 Builder.CreateStore(LPadExn, getExceptionSlot()); 765 llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); 766 Builder.CreateStore(LPadSel, getEHSelectorSlot()); 767 768 // Save the exception pointer. It's safe to use a single exception 769 // pointer per function because EH cleanups can never have nested 770 // try/catches. 771 // Build the landingpad instruction. 772 773 // Accumulate all the handlers in scope. 774 bool hasCatchAll = false; 775 bool hasCleanup = false; 776 bool hasFilter = false; 777 SmallVector<llvm::Value*, 4> filterTypes; 778 llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; 779 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 780 I != E; ++I) { 781 782 switch (I->getKind()) { 783 case EHScope::Cleanup: 784 // If we have a cleanup, remember that. 785 hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); 786 continue; 787 788 case EHScope::Filter: { 789 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 790 assert(!hasCatchAll && "EH filter reached after catch-all"); 791 792 // Filter scopes get added to the landingpad in weird ways. 793 EHFilterScope &filter = cast<EHFilterScope>(*I); 794 hasFilter = true; 795 796 // Add all the filter values. 797 for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) 798 filterTypes.push_back(filter.getFilter(i)); 799 goto done; 800 } 801 802 case EHScope::Terminate: 803 // Terminate scopes are basically catch-alls. 804 assert(!hasCatchAll); 805 hasCatchAll = true; 806 goto done; 807 808 case EHScope::Catch: 809 break; 810 } 811 812 EHCatchScope &catchScope = cast<EHCatchScope>(*I); 813 for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { 814 EHCatchScope::Handler handler = catchScope.getHandler(hi); 815 816 // If this is a catch-all, register that and abort. 817 if (!handler.Type) { 818 assert(!hasCatchAll); 819 hasCatchAll = true; 820 goto done; 821 } 822 823 // Check whether we already have a handler for this type. 824 if (catchTypes.insert(handler.Type)) 825 // If not, add it directly to the landingpad. 826 LPadInst->addClause(handler.Type); 827 } 828 } 829 830 done: 831 // If we have a catch-all, add null to the landingpad. 832 assert(!(hasCatchAll && hasFilter)); 833 if (hasCatchAll) { 834 LPadInst->addClause(getCatchAllValue(*this)); 835 836 // If we have an EH filter, we need to add those handlers in the 837 // right place in the landingpad, which is to say, at the end. 838 } else if (hasFilter) { 839 // Create a filter expression: a constant array indicating which filter 840 // types there are. The personality routine only lands here if the filter 841 // doesn't match. 842 llvm::SmallVector<llvm::Constant*, 8> Filters; 843 llvm::ArrayType *AType = 844 llvm::ArrayType::get(!filterTypes.empty() ? 845 filterTypes[0]->getType() : Int8PtrTy, 846 filterTypes.size()); 847 848 for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) 849 Filters.push_back(cast<llvm::Constant>(filterTypes[i])); 850 llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); 851 LPadInst->addClause(FilterArray); 852 853 // Also check whether we need a cleanup. 854 if (hasCleanup) 855 LPadInst->setCleanup(true); 856 857 // Otherwise, signal that we at least have cleanups. 858 } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) { 859 if (CleanupHackLevel == CHL_MandatoryCatchall) 860 LPadInst->addClause(getCatchAllValue(*this)); 861 else 862 LPadInst->setCleanup(true); 863 } 864 865 assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && 866 "landingpad instruction has no clauses!"); 867 868 // Tell the backend how to generate the landing pad. 869 Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); 870 871 // Restore the old IR generation state. 872 Builder.restoreIP(savedIP); 873 874 return lpad; 875 } 876 877 namespace { 878 /// A cleanup to call __cxa_end_catch. In many cases, the caught 879 /// exception type lets us state definitively that the thrown exception 880 /// type does not have a destructor. In particular: 881 /// - Catch-alls tell us nothing, so we have to conservatively 882 /// assume that the thrown exception might have a destructor. 883 /// - Catches by reference behave according to their base types. 884 /// - Catches of non-record types will only trigger for exceptions 885 /// of non-record types, which never have destructors. 886 /// - Catches of record types can trigger for arbitrary subclasses 887 /// of the caught type, so we have to assume the actual thrown 888 /// exception type might have a throwing destructor, even if the 889 /// caught type's destructor is trivial or nothrow. 890 struct CallEndCatch : EHScopeStack::Cleanup { 891 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 892 bool MightThrow; 893 894 void Emit(CodeGenFunction &CGF, Flags flags) { 895 if (!MightThrow) { 896 CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow(); 897 return; 898 } 899 900 CGF.EmitCallOrInvoke(getEndCatchFn(CGF)); 901 } 902 }; 903 } 904 905 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 906 /// __cxa_end_catch. 907 /// 908 /// \param EndMightThrow - true if __cxa_end_catch might throw 909 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 910 llvm::Value *Exn, 911 bool EndMightThrow) { 912 llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn); 913 Call->setDoesNotThrow(); 914 915 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 916 917 return Call; 918 } 919 920 /// A "special initializer" callback for initializing a catch 921 /// parameter during catch initialization. 922 static void InitCatchParam(CodeGenFunction &CGF, 923 const VarDecl &CatchParam, 924 llvm::Value *ParamAddr) { 925 // Load the exception from where the landing pad saved it. 926 llvm::Value *Exn = CGF.getExceptionFromSlot(); 927 928 CanQualType CatchType = 929 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 930 llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 931 932 // If we're catching by reference, we can just cast the object 933 // pointer to the appropriate pointer. 934 if (isa<ReferenceType>(CatchType)) { 935 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 936 bool EndCatchMightThrow = CaughtType->isRecordType(); 937 938 // __cxa_begin_catch returns the adjusted object pointer. 939 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 940 941 // We have no way to tell the personality function that we're 942 // catching by reference, so if we're catching a pointer, 943 // __cxa_begin_catch will actually return that pointer by value. 944 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 945 QualType PointeeType = PT->getPointeeType(); 946 947 // When catching by reference, generally we should just ignore 948 // this by-value pointer and use the exception object instead. 949 if (!PointeeType->isRecordType()) { 950 951 // Exn points to the struct _Unwind_Exception header, which 952 // we have to skip past in order to reach the exception data. 953 unsigned HeaderSize = 954 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 955 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 956 957 // However, if we're catching a pointer-to-record type that won't 958 // work, because the personality function might have adjusted 959 // the pointer. There's actually no way for us to fully satisfy 960 // the language/ABI contract here: we can't use Exn because it 961 // might have the wrong adjustment, but we can't use the by-value 962 // pointer because it's off by a level of abstraction. 963 // 964 // The current solution is to dump the adjusted pointer into an 965 // alloca, which breaks language semantics (because changing the 966 // pointer doesn't change the exception) but at least works. 967 // The better solution would be to filter out non-exact matches 968 // and rethrow them, but this is tricky because the rethrow 969 // really needs to be catchable by other sites at this landing 970 // pad. The best solution is to fix the personality function. 971 } else { 972 // Pull the pointer for the reference type off. 973 llvm::Type *PtrTy = 974 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 975 976 // Create the temporary and write the adjusted pointer into it. 977 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 978 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 979 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 980 981 // Bind the reference to the temporary. 982 AdjustedExn = ExnPtrTmp; 983 } 984 } 985 986 llvm::Value *ExnCast = 987 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 988 CGF.Builder.CreateStore(ExnCast, ParamAddr); 989 return; 990 } 991 992 // Non-aggregates (plus complexes). 993 bool IsComplex = false; 994 if (!CGF.hasAggregateLLVMType(CatchType) || 995 (IsComplex = CatchType->isAnyComplexType())) { 996 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 997 998 // If the catch type is a pointer type, __cxa_begin_catch returns 999 // the pointer by value. 1000 if (CatchType->hasPointerRepresentation()) { 1001 llvm::Value *CastExn = 1002 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1003 1004 switch (CatchType.getQualifiers().getObjCLifetime()) { 1005 case Qualifiers::OCL_Strong: 1006 CastExn = CGF.EmitARCRetainNonBlock(CastExn); 1007 // fallthrough 1008 1009 case Qualifiers::OCL_None: 1010 case Qualifiers::OCL_ExplicitNone: 1011 case Qualifiers::OCL_Autoreleasing: 1012 CGF.Builder.CreateStore(CastExn, ParamAddr); 1013 return; 1014 1015 case Qualifiers::OCL_Weak: 1016 CGF.EmitARCInitWeak(ParamAddr, CastExn); 1017 return; 1018 } 1019 llvm_unreachable("bad ownership qualifier!"); 1020 } 1021 1022 // Otherwise, it returns a pointer into the exception object. 1023 1024 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1025 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1026 1027 if (IsComplex) { 1028 CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false), 1029 ParamAddr, /*volatile*/ false); 1030 } else { 1031 unsigned Alignment = 1032 CGF.getContext().getDeclAlign(&CatchParam).getQuantity(); 1033 llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar"); 1034 CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment, 1035 CatchType); 1036 } 1037 return; 1038 } 1039 1040 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1041 1042 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1043 1044 // Check for a copy expression. If we don't have a copy expression, 1045 // that means a trivial copy is okay. 1046 const Expr *copyExpr = CatchParam.getInit(); 1047 if (!copyExpr) { 1048 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1049 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1050 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType, 1051 /*volatile*/ false, 0, /*destIsCompleteObject*/ true); 1052 return; 1053 } 1054 1055 // We have to call __cxa_get_exception_ptr to get the adjusted 1056 // pointer before copying. 1057 llvm::CallInst *rawAdjustedExn = 1058 CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn); 1059 rawAdjustedExn->setDoesNotThrow(); 1060 1061 // Cast that to the appropriate type. 1062 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1063 1064 // The copy expression is defined in terms of an OpaqueValueExpr. 1065 // Find it and map it to the adjusted expression. 1066 CodeGenFunction::OpaqueValueMapping 1067 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1068 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1069 1070 // Call the copy ctor in a terminate scope. 1071 CGF.EHStack.pushTerminate(); 1072 1073 // Perform the copy construction. 1074 CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam); 1075 CGF.EmitAggExpr(copyExpr, 1076 AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(), 1077 AggValueSlot::IsNotDestructed, 1078 AggValueSlot::DoesNotNeedGCBarriers, 1079 AggValueSlot::IsNotAliased, 1080 AggValueSlot::IsCompleteObject)); 1081 1082 // Leave the terminate scope. 1083 CGF.EHStack.popTerminate(); 1084 1085 // Undo the opaque value mapping. 1086 opaque.pop(); 1087 1088 // Finally we can call __cxa_begin_catch. 1089 CallBeginCatch(CGF, Exn, true); 1090 } 1091 1092 /// Begins a catch statement by initializing the catch variable and 1093 /// calling __cxa_begin_catch. 1094 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1095 // We have to be very careful with the ordering of cleanups here: 1096 // C++ [except.throw]p4: 1097 // The destruction [of the exception temporary] occurs 1098 // immediately after the destruction of the object declared in 1099 // the exception-declaration in the handler. 1100 // 1101 // So the precise ordering is: 1102 // 1. Construct catch variable. 1103 // 2. __cxa_begin_catch 1104 // 3. Enter __cxa_end_catch cleanup 1105 // 4. Enter dtor cleanup 1106 // 1107 // We do this by using a slightly abnormal initialization process. 1108 // Delegation sequence: 1109 // - ExitCXXTryStmt opens a RunCleanupsScope 1110 // - EmitAutoVarAlloca creates the variable and debug info 1111 // - InitCatchParam initializes the variable from the exception 1112 // - CallBeginCatch calls __cxa_begin_catch 1113 // - CallBeginCatch enters the __cxa_end_catch cleanup 1114 // - EmitAutoVarCleanups enters the variable destructor cleanup 1115 // - EmitCXXTryStmt emits the code for the catch body 1116 // - EmitCXXTryStmt close the RunCleanupsScope 1117 1118 VarDecl *CatchParam = S->getExceptionDecl(); 1119 if (!CatchParam) { 1120 llvm::Value *Exn = CGF.getExceptionFromSlot(); 1121 CallBeginCatch(CGF, Exn, true); 1122 return; 1123 } 1124 1125 // Emit the local. 1126 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1127 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); 1128 CGF.EmitAutoVarCleanups(var); 1129 } 1130 1131 namespace { 1132 struct CallRethrow : EHScopeStack::Cleanup { 1133 void Emit(CodeGenFunction &CGF, Flags flags) { 1134 CGF.EmitCallOrInvoke(getReThrowFn(CGF)); 1135 } 1136 }; 1137 } 1138 1139 /// Emit the structure of the dispatch block for the given catch scope. 1140 /// It is an invariant that the dispatch block already exists. 1141 static void emitCatchDispatchBlock(CodeGenFunction &CGF, 1142 EHCatchScope &catchScope) { 1143 llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); 1144 assert(dispatchBlock); 1145 1146 // If there's only a single catch-all, getEHDispatchBlock returned 1147 // that catch-all as the dispatch block. 1148 if (catchScope.getNumHandlers() == 1 && 1149 catchScope.getHandler(0).isCatchAll()) { 1150 assert(dispatchBlock == catchScope.getHandler(0).Block); 1151 return; 1152 } 1153 1154 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); 1155 CGF.EmitBlockAfterUses(dispatchBlock); 1156 1157 // Select the right handler. 1158 llvm::Value *llvm_eh_typeid_for = 1159 CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 1160 1161 // Load the selector value. 1162 llvm::Value *selector = CGF.getSelectorFromSlot(); 1163 1164 // Test against each of the exception types we claim to catch. 1165 for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { 1166 assert(i < e && "ran off end of handlers!"); 1167 const EHCatchScope::Handler &handler = catchScope.getHandler(i); 1168 1169 llvm::Value *typeValue = handler.Type; 1170 assert(typeValue && "fell into catch-all case!"); 1171 typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); 1172 1173 // Figure out the next block. 1174 bool nextIsEnd; 1175 llvm::BasicBlock *nextBlock; 1176 1177 // If this is the last handler, we're at the end, and the next 1178 // block is the block for the enclosing EH scope. 1179 if (i + 1 == e) { 1180 nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); 1181 nextIsEnd = true; 1182 1183 // If the next handler is a catch-all, we're at the end, and the 1184 // next block is that handler. 1185 } else if (catchScope.getHandler(i+1).isCatchAll()) { 1186 nextBlock = catchScope.getHandler(i+1).Block; 1187 nextIsEnd = true; 1188 1189 // Otherwise, we're not at the end and we need a new block. 1190 } else { 1191 nextBlock = CGF.createBasicBlock("catch.fallthrough"); 1192 nextIsEnd = false; 1193 } 1194 1195 // Figure out the catch type's index in the LSDA's type table. 1196 llvm::CallInst *typeIndex = 1197 CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); 1198 typeIndex->setDoesNotThrow(); 1199 1200 llvm::Value *matchesTypeIndex = 1201 CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); 1202 CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); 1203 1204 // If the next handler is a catch-all, we're completely done. 1205 if (nextIsEnd) { 1206 CGF.Builder.restoreIP(savedIP); 1207 return; 1208 } 1209 // Otherwise we need to emit and continue at that block. 1210 CGF.EmitBlock(nextBlock); 1211 } 1212 } 1213 1214 void CodeGenFunction::popCatchScope() { 1215 EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); 1216 if (catchScope.hasEHBranches()) 1217 emitCatchDispatchBlock(*this, catchScope); 1218 EHStack.popCatch(); 1219 } 1220 1221 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1222 unsigned NumHandlers = S.getNumHandlers(); 1223 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1224 assert(CatchScope.getNumHandlers() == NumHandlers); 1225 1226 // If the catch was not required, bail out now. 1227 if (!CatchScope.hasEHBranches()) { 1228 EHStack.popCatch(); 1229 return; 1230 } 1231 1232 // Emit the structure of the EH dispatch for this catch. 1233 emitCatchDispatchBlock(*this, CatchScope); 1234 1235 // Copy the handler blocks off before we pop the EH stack. Emitting 1236 // the handlers might scribble on this memory. 1237 SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1238 memcpy(Handlers.data(), CatchScope.begin(), 1239 NumHandlers * sizeof(EHCatchScope::Handler)); 1240 1241 EHStack.popCatch(); 1242 1243 // The fall-through block. 1244 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1245 1246 // We just emitted the body of the try; jump to the continue block. 1247 if (HaveInsertPoint()) 1248 Builder.CreateBr(ContBB); 1249 1250 // Determine if we need an implicit rethrow for all these catch handlers. 1251 bool ImplicitRethrow = false; 1252 if (IsFnTryBlock) 1253 ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1254 isa<CXXConstructorDecl>(CurCodeDecl); 1255 1256 // Perversely, we emit the handlers backwards precisely because we 1257 // want them to appear in source order. In all of these cases, the 1258 // catch block will have exactly one predecessor, which will be a 1259 // particular block in the catch dispatch. However, in the case of 1260 // a catch-all, one of the dispatch blocks will branch to two 1261 // different handlers, and EmitBlockAfterUses will cause the second 1262 // handler to be moved before the first. 1263 for (unsigned I = NumHandlers; I != 0; --I) { 1264 llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; 1265 EmitBlockAfterUses(CatchBlock); 1266 1267 // Catch the exception if this isn't a catch-all. 1268 const CXXCatchStmt *C = S.getHandler(I-1); 1269 1270 // Enter a cleanup scope, including the catch variable and the 1271 // end-catch. 1272 RunCleanupsScope CatchScope(*this); 1273 1274 // Initialize the catch variable and set up the cleanups. 1275 BeginCatch(*this, C); 1276 1277 // If there's an implicit rethrow, push a normal "cleanup" to call 1278 // _cxa_rethrow. This needs to happen before __cxa_end_catch is 1279 // called, and so it is pushed after BeginCatch. 1280 if (ImplicitRethrow) 1281 EHStack.pushCleanup<CallRethrow>(NormalCleanup); 1282 1283 // Perform the body of the catch. 1284 EmitStmt(C->getHandlerBlock()); 1285 1286 // Fall out through the catch cleanups. 1287 CatchScope.ForceCleanup(); 1288 1289 // Branch out of the try. 1290 if (HaveInsertPoint()) 1291 Builder.CreateBr(ContBB); 1292 } 1293 1294 EmitBlock(ContBB); 1295 } 1296 1297 namespace { 1298 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1299 llvm::Value *ForEHVar; 1300 llvm::Value *EndCatchFn; 1301 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1302 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1303 1304 void Emit(CodeGenFunction &CGF, Flags flags) { 1305 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1306 llvm::BasicBlock *CleanupContBB = 1307 CGF.createBasicBlock("finally.cleanup.cont"); 1308 1309 llvm::Value *ShouldEndCatch = 1310 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1311 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1312 CGF.EmitBlock(EndCatchBB); 1313 CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw 1314 CGF.EmitBlock(CleanupContBB); 1315 } 1316 }; 1317 1318 struct PerformFinally : EHScopeStack::Cleanup { 1319 const Stmt *Body; 1320 llvm::Value *ForEHVar; 1321 llvm::Value *EndCatchFn; 1322 llvm::Value *RethrowFn; 1323 llvm::Value *SavedExnVar; 1324 1325 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1326 llvm::Value *EndCatchFn, 1327 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1328 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1329 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1330 1331 void Emit(CodeGenFunction &CGF, Flags flags) { 1332 // Enter a cleanup to call the end-catch function if one was provided. 1333 if (EndCatchFn) 1334 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1335 ForEHVar, EndCatchFn); 1336 1337 // Save the current cleanup destination in case there are 1338 // cleanups in the finally block. 1339 llvm::Value *SavedCleanupDest = 1340 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1341 "cleanup.dest.saved"); 1342 1343 // Emit the finally block. 1344 CGF.EmitStmt(Body); 1345 1346 // If the end of the finally is reachable, check whether this was 1347 // for EH. If so, rethrow. 1348 if (CGF.HaveInsertPoint()) { 1349 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1350 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1351 1352 llvm::Value *ShouldRethrow = 1353 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1354 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1355 1356 CGF.EmitBlock(RethrowBB); 1357 if (SavedExnVar) { 1358 CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar)); 1359 } else { 1360 CGF.EmitCallOrInvoke(RethrowFn); 1361 } 1362 CGF.Builder.CreateUnreachable(); 1363 1364 CGF.EmitBlock(ContBB); 1365 1366 // Restore the cleanup destination. 1367 CGF.Builder.CreateStore(SavedCleanupDest, 1368 CGF.getNormalCleanupDestSlot()); 1369 } 1370 1371 // Leave the end-catch cleanup. As an optimization, pretend that 1372 // the fallthrough path was inaccessible; we've dynamically proven 1373 // that we're not in the EH case along that path. 1374 if (EndCatchFn) { 1375 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1376 CGF.PopCleanupBlock(); 1377 CGF.Builder.restoreIP(SavedIP); 1378 } 1379 1380 // Now make sure we actually have an insertion point or the 1381 // cleanup gods will hate us. 1382 CGF.EnsureInsertPoint(); 1383 } 1384 }; 1385 } 1386 1387 /// Enters a finally block for an implementation using zero-cost 1388 /// exceptions. This is mostly general, but hard-codes some 1389 /// language/ABI-specific behavior in the catch-all sections. 1390 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, 1391 const Stmt *body, 1392 llvm::Constant *beginCatchFn, 1393 llvm::Constant *endCatchFn, 1394 llvm::Constant *rethrowFn) { 1395 assert((beginCatchFn != 0) == (endCatchFn != 0) && 1396 "begin/end catch functions not paired"); 1397 assert(rethrowFn && "rethrow function is required"); 1398 1399 BeginCatchFn = beginCatchFn; 1400 1401 // The rethrow function has one of the following two types: 1402 // void (*)() 1403 // void (*)(void*) 1404 // In the latter case we need to pass it the exception object. 1405 // But we can't use the exception slot because the @finally might 1406 // have a landing pad (which would overwrite the exception slot). 1407 llvm::FunctionType *rethrowFnTy = 1408 cast<llvm::FunctionType>( 1409 cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); 1410 SavedExnVar = 0; 1411 if (rethrowFnTy->getNumParams()) 1412 SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); 1413 1414 // A finally block is a statement which must be executed on any edge 1415 // out of a given scope. Unlike a cleanup, the finally block may 1416 // contain arbitrary control flow leading out of itself. In 1417 // addition, finally blocks should always be executed, even if there 1418 // are no catch handlers higher on the stack. Therefore, we 1419 // surround the protected scope with a combination of a normal 1420 // cleanup (to catch attempts to break out of the block via normal 1421 // control flow) and an EH catch-all (semantically "outside" any try 1422 // statement to which the finally block might have been attached). 1423 // The finally block itself is generated in the context of a cleanup 1424 // which conditionally leaves the catch-all. 1425 1426 // Jump destination for performing the finally block on an exception 1427 // edge. We'll never actually reach this block, so unreachable is 1428 // fine. 1429 RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); 1430 1431 // Whether the finally block is being executed for EH purposes. 1432 ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); 1433 CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); 1434 1435 // Enter a normal cleanup which will perform the @finally block. 1436 CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, 1437 ForEHVar, endCatchFn, 1438 rethrowFn, SavedExnVar); 1439 1440 // Enter a catch-all scope. 1441 llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); 1442 EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); 1443 catchScope->setCatchAllHandler(0, catchBB); 1444 } 1445 1446 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { 1447 // Leave the finally catch-all. 1448 EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); 1449 llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; 1450 1451 CGF.popCatchScope(); 1452 1453 // If there are any references to the catch-all block, emit it. 1454 if (catchBB->use_empty()) { 1455 delete catchBB; 1456 } else { 1457 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); 1458 CGF.EmitBlock(catchBB); 1459 1460 llvm::Value *exn = 0; 1461 1462 // If there's a begin-catch function, call it. 1463 if (BeginCatchFn) { 1464 exn = CGF.getExceptionFromSlot(); 1465 CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow(); 1466 } 1467 1468 // If we need to remember the exception pointer to rethrow later, do so. 1469 if (SavedExnVar) { 1470 if (!exn) exn = CGF.getExceptionFromSlot(); 1471 CGF.Builder.CreateStore(exn, SavedExnVar); 1472 } 1473 1474 // Tell the cleanups in the finally block that we're do this for EH. 1475 CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); 1476 1477 // Thread a jump through the finally cleanup. 1478 CGF.EmitBranchThroughCleanup(RethrowDest); 1479 1480 CGF.Builder.restoreIP(savedIP); 1481 } 1482 1483 // Finally, leave the @finally cleanup. 1484 CGF.PopCleanupBlock(); 1485 } 1486 1487 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1488 if (TerminateLandingPad) 1489 return TerminateLandingPad; 1490 1491 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1492 1493 // This will get inserted at the end of the function. 1494 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1495 Builder.SetInsertPoint(TerminateLandingPad); 1496 1497 // Tell the backend that this is a landing pad. 1498 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1499 llvm::LandingPadInst *LPadInst = 1500 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 1501 getOpaquePersonalityFn(CGM, Personality), 0); 1502 LPadInst->addClause(getCatchAllValue(*this)); 1503 1504 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1505 TerminateCall->setDoesNotReturn(); 1506 TerminateCall->setDoesNotThrow(); 1507 Builder.CreateUnreachable(); 1508 1509 // Restore the saved insertion state. 1510 Builder.restoreIP(SavedIP); 1511 1512 return TerminateLandingPad; 1513 } 1514 1515 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1516 if (TerminateHandler) 1517 return TerminateHandler; 1518 1519 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1520 1521 // Set up the terminate handler. This block is inserted at the very 1522 // end of the function by FinishFunction. 1523 TerminateHandler = createBasicBlock("terminate.handler"); 1524 Builder.SetInsertPoint(TerminateHandler); 1525 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1526 TerminateCall->setDoesNotReturn(); 1527 TerminateCall->setDoesNotThrow(); 1528 Builder.CreateUnreachable(); 1529 1530 // Restore the saved insertion state. 1531 Builder.restoreIP(SavedIP); 1532 1533 return TerminateHandler; 1534 } 1535 1536 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock() { 1537 if (EHResumeBlock) return EHResumeBlock; 1538 1539 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1540 1541 // We emit a jump to a notional label at the outermost unwind state. 1542 EHResumeBlock = createBasicBlock("eh.resume"); 1543 Builder.SetInsertPoint(EHResumeBlock); 1544 1545 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1546 1547 // This can always be a call because we necessarily didn't find 1548 // anything on the EH stack which needs our help. 1549 const char *RethrowName = Personality.CatchallRethrowFn; 1550 if (RethrowName != 0) { 1551 Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName), 1552 getExceptionFromSlot()) 1553 ->setDoesNotReturn(); 1554 } else { 1555 switch (CleanupHackLevel) { 1556 case CHL_MandatoryCatchall: 1557 // In mandatory-catchall mode, we need to use 1558 // _Unwind_Resume_or_Rethrow, or whatever the personality's 1559 // equivalent is. 1560 Builder.CreateCall(getUnwindResumeOrRethrowFn(), 1561 getExceptionFromSlot()) 1562 ->setDoesNotReturn(); 1563 break; 1564 case CHL_MandatoryCleanup: { 1565 // In mandatory-cleanup mode, we should use 'resume'. 1566 1567 // Recreate the landingpad's return value for the 'resume' instruction. 1568 llvm::Value *Exn = getExceptionFromSlot(); 1569 llvm::Value *Sel = getSelectorFromSlot(); 1570 1571 llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), 1572 Sel->getType(), NULL); 1573 llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); 1574 LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); 1575 LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); 1576 1577 Builder.CreateResume(LPadVal); 1578 Builder.restoreIP(SavedIP); 1579 return EHResumeBlock; 1580 } 1581 case CHL_Ideal: 1582 // In an idealized mode where we don't have to worry about the 1583 // optimizer combining landing pads, we should just use 1584 // _Unwind_Resume (or the personality's equivalent). 1585 Builder.CreateCall(getUnwindResumeFn(), getExceptionFromSlot()) 1586 ->setDoesNotReturn(); 1587 break; 1588 } 1589 } 1590 1591 Builder.CreateUnreachable(); 1592 1593 Builder.restoreIP(SavedIP); 1594 1595 return EHResumeBlock; 1596 } 1597