1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtCXX.h" 19 #include "clang/AST/StmtObjC.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Intrinsics.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) { 27 // void *__cxa_allocate_exception(size_t thrown_size); 28 29 llvm::FunctionType *FTy = 30 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false); 31 32 return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 33 } 34 35 static llvm::Constant *getFreeExceptionFn(CodeGenModule &CGM) { 36 // void __cxa_free_exception(void *thrown_exception); 37 38 llvm::FunctionType *FTy = 39 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 40 41 return CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 42 } 43 44 static llvm::Constant *getThrowFn(CodeGenModule &CGM) { 45 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 46 // void (*dest) (void *)); 47 48 llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy }; 49 llvm::FunctionType *FTy = 50 llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false); 51 52 return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 53 } 54 55 static llvm::Constant *getReThrowFn(CodeGenModule &CGM) { 56 // void __cxa_rethrow(); 57 58 llvm::FunctionType *FTy = 59 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 60 61 return CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 62 } 63 64 static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) { 65 // void *__cxa_get_exception_ptr(void*); 66 67 llvm::FunctionType *FTy = 68 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 69 70 return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 71 } 72 73 static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) { 74 // void *__cxa_begin_catch(void*); 75 76 llvm::FunctionType *FTy = 77 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 78 79 return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 80 } 81 82 static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) { 83 // void __cxa_end_catch(); 84 85 llvm::FunctionType *FTy = 86 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 87 88 return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 89 } 90 91 static llvm::Constant *getUnexpectedFn(CodeGenModule &CGM) { 92 // void __cxa_call_unexpected(void *thrown_exception); 93 94 llvm::FunctionType *FTy = 95 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 96 97 return CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 98 } 99 100 llvm::Constant *CodeGenFunction::getUnwindResumeFn() { 101 llvm::FunctionType *FTy = 102 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 103 104 if (CGM.getLangOpts().SjLjExceptions) 105 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); 106 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); 107 } 108 109 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 110 llvm::FunctionType *FTy = 111 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 112 113 if (CGM.getLangOpts().SjLjExceptions) 114 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 115 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 116 } 117 118 static llvm::Constant *getTerminateFn(CodeGenModule &CGM) { 119 // void __terminate(); 120 121 llvm::FunctionType *FTy = 122 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 123 124 StringRef name; 125 126 // In C++, use std::terminate(). 127 if (CGM.getLangOpts().CPlusPlus) 128 name = "_ZSt9terminatev"; // FIXME: mangling! 129 else if (CGM.getLangOpts().ObjC1 && 130 CGM.getLangOpts().ObjCRuntime.hasTerminate()) 131 name = "objc_terminate"; 132 else 133 name = "abort"; 134 return CGM.CreateRuntimeFunction(FTy, name); 135 } 136 137 static llvm::Constant *getCatchallRethrowFn(CodeGenModule &CGM, 138 StringRef Name) { 139 llvm::FunctionType *FTy = 140 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 141 142 return CGM.CreateRuntimeFunction(FTy, Name); 143 } 144 145 namespace { 146 /// The exceptions personality for a function. 147 struct EHPersonality { 148 const char *PersonalityFn; 149 150 // If this is non-null, this personality requires a non-standard 151 // function for rethrowing an exception after a catchall cleanup. 152 // This function must have prototype void(void*). 153 const char *CatchallRethrowFn; 154 155 static const EHPersonality &get(const LangOptions &Lang); 156 static const EHPersonality GNU_C; 157 static const EHPersonality GNU_C_SJLJ; 158 static const EHPersonality GNU_ObjC; 159 static const EHPersonality GNUstep_ObjC; 160 static const EHPersonality GNU_ObjCXX; 161 static const EHPersonality NeXT_ObjC; 162 static const EHPersonality GNU_CPlusPlus; 163 static const EHPersonality GNU_CPlusPlus_SJLJ; 164 }; 165 } 166 167 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 }; 168 const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 }; 169 const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 }; 170 const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0}; 171 const EHPersonality 172 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 }; 173 const EHPersonality 174 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; 175 const EHPersonality 176 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 }; 177 const EHPersonality 178 EHPersonality::GNUstep_ObjC = { "__gnustep_objc_personality_v0", 0 }; 179 180 static const EHPersonality &getCPersonality(const LangOptions &L) { 181 if (L.SjLjExceptions) 182 return EHPersonality::GNU_C_SJLJ; 183 return EHPersonality::GNU_C; 184 } 185 186 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 187 switch (L.ObjCRuntime.getKind()) { 188 case ObjCRuntime::FragileMacOSX: 189 return getCPersonality(L); 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 return EHPersonality::NeXT_ObjC; 193 case ObjCRuntime::GNUstep: 194 if (L.ObjCRuntime.getVersion() >= VersionTuple(1, 7)) 195 return EHPersonality::GNUstep_ObjC; 196 // fallthrough 197 case ObjCRuntime::GCC: 198 case ObjCRuntime::ObjFW: 199 return EHPersonality::GNU_ObjC; 200 } 201 llvm_unreachable("bad runtime kind"); 202 } 203 204 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 205 if (L.SjLjExceptions) 206 return EHPersonality::GNU_CPlusPlus_SJLJ; 207 else 208 return EHPersonality::GNU_CPlusPlus; 209 } 210 211 /// Determines the personality function to use when both C++ 212 /// and Objective-C exceptions are being caught. 213 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 214 switch (L.ObjCRuntime.getKind()) { 215 // The ObjC personality defers to the C++ personality for non-ObjC 216 // handlers. Unlike the C++ case, we use the same personality 217 // function on targets using (backend-driven) SJLJ EH. 218 case ObjCRuntime::MacOSX: 219 case ObjCRuntime::iOS: 220 return EHPersonality::NeXT_ObjC; 221 222 // In the fragile ABI, just use C++ exception handling and hope 223 // they're not doing crazy exception mixing. 224 case ObjCRuntime::FragileMacOSX: 225 return getCXXPersonality(L); 226 227 // The GCC runtime's personality function inherently doesn't support 228 // mixed EH. Use the C++ personality just to avoid returning null. 229 case ObjCRuntime::GCC: 230 case ObjCRuntime::ObjFW: // XXX: this will change soon 231 return EHPersonality::GNU_ObjC; 232 case ObjCRuntime::GNUstep: 233 return EHPersonality::GNU_ObjCXX; 234 } 235 llvm_unreachable("bad runtime kind"); 236 } 237 238 const EHPersonality &EHPersonality::get(const LangOptions &L) { 239 if (L.CPlusPlus && L.ObjC1) 240 return getObjCXXPersonality(L); 241 else if (L.CPlusPlus) 242 return getCXXPersonality(L); 243 else if (L.ObjC1) 244 return getObjCPersonality(L); 245 else 246 return getCPersonality(L); 247 } 248 249 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 250 const EHPersonality &Personality) { 251 llvm::Constant *Fn = 252 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), 253 Personality.PersonalityFn); 254 return Fn; 255 } 256 257 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 258 const EHPersonality &Personality) { 259 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 260 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 261 } 262 263 /// Check whether a personality function could reasonably be swapped 264 /// for a C++ personality function. 265 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 266 for (llvm::User *U : Fn->users()) { 267 // Conditionally white-list bitcasts. 268 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(U)) { 269 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 270 if (!PersonalityHasOnlyCXXUses(CE)) 271 return false; 272 continue; 273 } 274 275 // Otherwise, it has to be a landingpad instruction. 276 llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(U); 277 if (!LPI) return false; 278 279 for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { 280 // Look for something that would've been returned by the ObjC 281 // runtime's GetEHType() method. 282 llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); 283 if (LPI->isCatch(I)) { 284 // Check if the catch value has the ObjC prefix. 285 if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) 286 // ObjC EH selector entries are always global variables with 287 // names starting like this. 288 if (GV->getName().startswith("OBJC_EHTYPE")) 289 return false; 290 } else { 291 // Check if any of the filter values have the ObjC prefix. 292 llvm::Constant *CVal = cast<llvm::Constant>(Val); 293 for (llvm::User::op_iterator 294 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { 295 if (llvm::GlobalVariable *GV = 296 cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) 297 // ObjC EH selector entries are always global variables with 298 // names starting like this. 299 if (GV->getName().startswith("OBJC_EHTYPE")) 300 return false; 301 } 302 } 303 } 304 } 305 306 return true; 307 } 308 309 /// Try to use the C++ personality function in ObjC++. Not doing this 310 /// can cause some incompatibilities with gcc, which is more 311 /// aggressive about only using the ObjC++ personality in a function 312 /// when it really needs it. 313 void CodeGenModule::SimplifyPersonality() { 314 // If we're not in ObjC++ -fexceptions, there's nothing to do. 315 if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) 316 return; 317 318 // Both the problem this endeavors to fix and the way the logic 319 // above works is specific to the NeXT runtime. 320 if (!LangOpts.ObjCRuntime.isNeXTFamily()) 321 return; 322 323 const EHPersonality &ObjCXX = EHPersonality::get(LangOpts); 324 const EHPersonality &CXX = getCXXPersonality(LangOpts); 325 if (&ObjCXX == &CXX) 326 return; 327 328 assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && 329 "Different EHPersonalities using the same personality function."); 330 331 llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); 332 333 // Nothing to do if it's unused. 334 if (!Fn || Fn->use_empty()) return; 335 336 // Can't do the optimization if it has non-C++ uses. 337 if (!PersonalityHasOnlyCXXUses(Fn)) return; 338 339 // Create the C++ personality function and kill off the old 340 // function. 341 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 342 343 // This can happen if the user is screwing with us. 344 if (Fn->getType() != CXXFn->getType()) return; 345 346 Fn->replaceAllUsesWith(CXXFn); 347 Fn->eraseFromParent(); 348 } 349 350 /// Returns the value to inject into a selector to indicate the 351 /// presence of a catch-all. 352 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 353 // Possibly we should use @llvm.eh.catch.all.value here. 354 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 355 } 356 357 namespace { 358 /// A cleanup to free the exception object if its initialization 359 /// throws. 360 struct FreeException : EHScopeStack::Cleanup { 361 llvm::Value *exn; 362 FreeException(llvm::Value *exn) : exn(exn) {} 363 void Emit(CodeGenFunction &CGF, Flags flags) override { 364 CGF.EmitNounwindRuntimeCall(getFreeExceptionFn(CGF.CGM), exn); 365 } 366 }; 367 } 368 369 // Emits an exception expression into the given location. This 370 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 371 // call is required, an exception within that copy ctor causes 372 // std::terminate to be invoked. 373 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 374 llvm::Value *addr) { 375 // Make sure the exception object is cleaned up if there's an 376 // exception during initialization. 377 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 378 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 379 380 // __cxa_allocate_exception returns a void*; we need to cast this 381 // to the appropriate type for the object. 382 llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 383 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 384 385 // FIXME: this isn't quite right! If there's a final unelided call 386 // to a copy constructor, then according to [except.terminate]p1 we 387 // must call std::terminate() if that constructor throws, because 388 // technically that copy occurs after the exception expression is 389 // evaluated but before the exception is caught. But the best way 390 // to handle that is to teach EmitAggExpr to do the final copy 391 // differently if it can't be elided. 392 CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), 393 /*IsInit*/ true); 394 395 // Deactivate the cleanup block. 396 CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); 397 } 398 399 llvm::Value *CodeGenFunction::getExceptionSlot() { 400 if (!ExceptionSlot) 401 ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); 402 return ExceptionSlot; 403 } 404 405 llvm::Value *CodeGenFunction::getEHSelectorSlot() { 406 if (!EHSelectorSlot) 407 EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); 408 return EHSelectorSlot; 409 } 410 411 llvm::Value *CodeGenFunction::getExceptionFromSlot() { 412 return Builder.CreateLoad(getExceptionSlot(), "exn"); 413 } 414 415 llvm::Value *CodeGenFunction::getSelectorFromSlot() { 416 return Builder.CreateLoad(getEHSelectorSlot(), "sel"); 417 } 418 419 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E, 420 bool KeepInsertionPoint) { 421 if (CGM.getTarget().getTriple().isWindowsMSVCEnvironment()) { 422 ErrorUnsupported(E, "throw expression"); 423 return; 424 } 425 426 if (!E->getSubExpr()) { 427 EmitNoreturnRuntimeCallOrInvoke(getReThrowFn(CGM), 428 ArrayRef<llvm::Value*>()); 429 430 // throw is an expression, and the expression emitters expect us 431 // to leave ourselves at a valid insertion point. 432 if (KeepInsertionPoint) 433 EmitBlock(createBasicBlock("throw.cont")); 434 435 return; 436 } 437 438 QualType ThrowType = E->getSubExpr()->getType(); 439 440 if (ThrowType->isObjCObjectPointerType()) { 441 const Stmt *ThrowStmt = E->getSubExpr(); 442 const ObjCAtThrowStmt S(E->getExprLoc(), 443 const_cast<Stmt *>(ThrowStmt)); 444 CGM.getObjCRuntime().EmitThrowStmt(*this, S, false); 445 // This will clear insertion point which was not cleared in 446 // call to EmitThrowStmt. 447 if (KeepInsertionPoint) 448 EmitBlock(createBasicBlock("throw.cont")); 449 return; 450 } 451 452 // Now allocate the exception object. 453 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 454 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 455 456 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM); 457 llvm::CallInst *ExceptionPtr = 458 EmitNounwindRuntimeCall(AllocExceptionFn, 459 llvm::ConstantInt::get(SizeTy, TypeSize), 460 "exception"); 461 462 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 463 464 // Now throw the exception. 465 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 466 /*ForEH=*/true); 467 468 // The address of the destructor. If the exception type has a 469 // trivial destructor (or isn't a record), we just pass null. 470 llvm::Constant *Dtor = 0; 471 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 472 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 473 if (!Record->hasTrivialDestructor()) { 474 CXXDestructorDecl *DtorD = Record->getDestructor(); 475 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 476 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 477 } 478 } 479 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 480 481 llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; 482 EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); 483 484 // throw is an expression, and the expression emitters expect us 485 // to leave ourselves at a valid insertion point. 486 if (KeepInsertionPoint) 487 EmitBlock(createBasicBlock("throw.cont")); 488 } 489 490 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 491 if (!CGM.getLangOpts().CXXExceptions) 492 return; 493 494 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 495 if (FD == 0) 496 return; 497 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 498 if (Proto == 0) 499 return; 500 501 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 502 if (isNoexceptExceptionSpec(EST)) { 503 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 504 // noexcept functions are simple terminate scopes. 505 EHStack.pushTerminate(); 506 } 507 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 508 unsigned NumExceptions = Proto->getNumExceptions(); 509 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 510 511 for (unsigned I = 0; I != NumExceptions; ++I) { 512 QualType Ty = Proto->getExceptionType(I); 513 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 514 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 515 /*ForEH=*/true); 516 Filter->setFilter(I, EHType); 517 } 518 } 519 } 520 521 /// Emit the dispatch block for a filter scope if necessary. 522 static void emitFilterDispatchBlock(CodeGenFunction &CGF, 523 EHFilterScope &filterScope) { 524 llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); 525 if (!dispatchBlock) return; 526 if (dispatchBlock->use_empty()) { 527 delete dispatchBlock; 528 return; 529 } 530 531 CGF.EmitBlockAfterUses(dispatchBlock); 532 533 // If this isn't a catch-all filter, we need to check whether we got 534 // here because the filter triggered. 535 if (filterScope.getNumFilters()) { 536 // Load the selector value. 537 llvm::Value *selector = CGF.getSelectorFromSlot(); 538 llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); 539 540 llvm::Value *zero = CGF.Builder.getInt32(0); 541 llvm::Value *failsFilter = 542 CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); 543 CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock(false)); 544 545 CGF.EmitBlock(unexpectedBB); 546 } 547 548 // Call __cxa_call_unexpected. This doesn't need to be an invoke 549 // because __cxa_call_unexpected magically filters exceptions 550 // according to the last landing pad the exception was thrown 551 // into. Seriously. 552 llvm::Value *exn = CGF.getExceptionFromSlot(); 553 CGF.EmitRuntimeCall(getUnexpectedFn(CGF.CGM), exn) 554 ->setDoesNotReturn(); 555 CGF.Builder.CreateUnreachable(); 556 } 557 558 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 559 if (!CGM.getLangOpts().CXXExceptions) 560 return; 561 562 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 563 if (FD == 0) 564 return; 565 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 566 if (Proto == 0) 567 return; 568 569 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 570 if (isNoexceptExceptionSpec(EST)) { 571 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 572 EHStack.popTerminate(); 573 } 574 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 575 EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); 576 emitFilterDispatchBlock(*this, filterScope); 577 EHStack.popFilter(); 578 } 579 } 580 581 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 582 if (CGM.getTarget().getTriple().isWindowsMSVCEnvironment()) { 583 ErrorUnsupported(&S, "try statement"); 584 return; 585 } 586 587 EnterCXXTryStmt(S); 588 EmitStmt(S.getTryBlock()); 589 ExitCXXTryStmt(S); 590 } 591 592 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 593 unsigned NumHandlers = S.getNumHandlers(); 594 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 595 596 for (unsigned I = 0; I != NumHandlers; ++I) { 597 const CXXCatchStmt *C = S.getHandler(I); 598 599 llvm::BasicBlock *Handler = createBasicBlock("catch"); 600 if (C->getExceptionDecl()) { 601 // FIXME: Dropping the reference type on the type into makes it 602 // impossible to correctly implement catch-by-reference 603 // semantics for pointers. Unfortunately, this is what all 604 // existing compilers do, and it's not clear that the standard 605 // personality routine is capable of doing this right. See C++ DR 388: 606 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 607 QualType CaughtType = C->getCaughtType(); 608 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 609 610 llvm::Value *TypeInfo = 0; 611 if (CaughtType->isObjCObjectPointerType()) 612 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 613 else 614 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 615 CatchScope->setHandler(I, TypeInfo, Handler); 616 } else { 617 // No exception decl indicates '...', a catch-all. 618 CatchScope->setCatchAllHandler(I, Handler); 619 } 620 } 621 } 622 623 llvm::BasicBlock * 624 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { 625 // The dispatch block for the end of the scope chain is a block that 626 // just resumes unwinding. 627 if (si == EHStack.stable_end()) 628 return getEHResumeBlock(true); 629 630 // Otherwise, we should look at the actual scope. 631 EHScope &scope = *EHStack.find(si); 632 633 llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); 634 if (!dispatchBlock) { 635 switch (scope.getKind()) { 636 case EHScope::Catch: { 637 // Apply a special case to a single catch-all. 638 EHCatchScope &catchScope = cast<EHCatchScope>(scope); 639 if (catchScope.getNumHandlers() == 1 && 640 catchScope.getHandler(0).isCatchAll()) { 641 dispatchBlock = catchScope.getHandler(0).Block; 642 643 // Otherwise, make a dispatch block. 644 } else { 645 dispatchBlock = createBasicBlock("catch.dispatch"); 646 } 647 break; 648 } 649 650 case EHScope::Cleanup: 651 dispatchBlock = createBasicBlock("ehcleanup"); 652 break; 653 654 case EHScope::Filter: 655 dispatchBlock = createBasicBlock("filter.dispatch"); 656 break; 657 658 case EHScope::Terminate: 659 dispatchBlock = getTerminateHandler(); 660 break; 661 } 662 scope.setCachedEHDispatchBlock(dispatchBlock); 663 } 664 return dispatchBlock; 665 } 666 667 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 668 /// affect exception handling. Currently, the only non-EH scopes are 669 /// normal-only cleanup scopes. 670 static bool isNonEHScope(const EHScope &S) { 671 switch (S.getKind()) { 672 case EHScope::Cleanup: 673 return !cast<EHCleanupScope>(S).isEHCleanup(); 674 case EHScope::Filter: 675 case EHScope::Catch: 676 case EHScope::Terminate: 677 return false; 678 } 679 680 llvm_unreachable("Invalid EHScope Kind!"); 681 } 682 683 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 684 assert(EHStack.requiresLandingPad()); 685 assert(!EHStack.empty()); 686 687 if (!CGM.getLangOpts().Exceptions) 688 return 0; 689 690 // Check the innermost scope for a cached landing pad. If this is 691 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 692 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 693 if (LP) return LP; 694 695 // Build the landing pad for this scope. 696 LP = EmitLandingPad(); 697 assert(LP); 698 699 // Cache the landing pad on the innermost scope. If this is a 700 // non-EH scope, cache the landing pad on the enclosing scope, too. 701 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 702 ir->setCachedLandingPad(LP); 703 if (!isNonEHScope(*ir)) break; 704 } 705 706 return LP; 707 } 708 709 // This code contains a hack to work around a design flaw in 710 // LLVM's EH IR which breaks semantics after inlining. This same 711 // hack is implemented in llvm-gcc. 712 // 713 // The LLVM EH abstraction is basically a thin veneer over the 714 // traditional GCC zero-cost design: for each range of instructions 715 // in the function, there is (at most) one "landing pad" with an 716 // associated chain of EH actions. A language-specific personality 717 // function interprets this chain of actions and (1) decides whether 718 // or not to resume execution at the landing pad and (2) if so, 719 // provides an integer indicating why it's stopping. In LLVM IR, 720 // the association of a landing pad with a range of instructions is 721 // achieved via an invoke instruction, the chain of actions becomes 722 // the arguments to the @llvm.eh.selector call, and the selector 723 // call returns the integer indicator. Other than the required 724 // presence of two intrinsic function calls in the landing pad, 725 // the IR exactly describes the layout of the output code. 726 // 727 // A principal advantage of this design is that it is completely 728 // language-agnostic; in theory, the LLVM optimizers can treat 729 // landing pads neutrally, and targets need only know how to lower 730 // the intrinsics to have a functioning exceptions system (assuming 731 // that platform exceptions follow something approximately like the 732 // GCC design). Unfortunately, landing pads cannot be combined in a 733 // language-agnostic way: given selectors A and B, there is no way 734 // to make a single landing pad which faithfully represents the 735 // semantics of propagating an exception first through A, then 736 // through B, without knowing how the personality will interpret the 737 // (lowered form of the) selectors. This means that inlining has no 738 // choice but to crudely chain invokes (i.e., to ignore invokes in 739 // the inlined function, but to turn all unwindable calls into 740 // invokes), which is only semantically valid if every unwind stops 741 // at every landing pad. 742 // 743 // Therefore, the invoke-inline hack is to guarantee that every 744 // landing pad has a catch-all. 745 enum CleanupHackLevel_t { 746 /// A level of hack that requires that all landing pads have 747 /// catch-alls. 748 CHL_MandatoryCatchall, 749 750 /// A level of hack that requires that all landing pads handle 751 /// cleanups. 752 CHL_MandatoryCleanup, 753 754 /// No hacks at all; ideal IR generation. 755 CHL_Ideal 756 }; 757 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; 758 759 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 760 assert(EHStack.requiresLandingPad()); 761 762 EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); 763 switch (innermostEHScope.getKind()) { 764 case EHScope::Terminate: 765 return getTerminateLandingPad(); 766 767 case EHScope::Catch: 768 case EHScope::Cleanup: 769 case EHScope::Filter: 770 if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) 771 return lpad; 772 } 773 774 // Save the current IR generation state. 775 CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); 776 SaveAndRestoreLocation AutoRestoreLocation(*this, Builder); 777 if (CGDebugInfo *DI = getDebugInfo()) 778 DI->EmitLocation(Builder, CurEHLocation); 779 780 const EHPersonality &personality = EHPersonality::get(getLangOpts()); 781 782 // Create and configure the landing pad. 783 llvm::BasicBlock *lpad = createBasicBlock("lpad"); 784 EmitBlock(lpad); 785 786 llvm::LandingPadInst *LPadInst = 787 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 788 getOpaquePersonalityFn(CGM, personality), 0); 789 790 llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); 791 Builder.CreateStore(LPadExn, getExceptionSlot()); 792 llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); 793 Builder.CreateStore(LPadSel, getEHSelectorSlot()); 794 795 // Save the exception pointer. It's safe to use a single exception 796 // pointer per function because EH cleanups can never have nested 797 // try/catches. 798 // Build the landingpad instruction. 799 800 // Accumulate all the handlers in scope. 801 bool hasCatchAll = false; 802 bool hasCleanup = false; 803 bool hasFilter = false; 804 SmallVector<llvm::Value*, 4> filterTypes; 805 llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; 806 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 807 I != E; ++I) { 808 809 switch (I->getKind()) { 810 case EHScope::Cleanup: 811 // If we have a cleanup, remember that. 812 hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); 813 continue; 814 815 case EHScope::Filter: { 816 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 817 assert(!hasCatchAll && "EH filter reached after catch-all"); 818 819 // Filter scopes get added to the landingpad in weird ways. 820 EHFilterScope &filter = cast<EHFilterScope>(*I); 821 hasFilter = true; 822 823 // Add all the filter values. 824 for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) 825 filterTypes.push_back(filter.getFilter(i)); 826 goto done; 827 } 828 829 case EHScope::Terminate: 830 // Terminate scopes are basically catch-alls. 831 assert(!hasCatchAll); 832 hasCatchAll = true; 833 goto done; 834 835 case EHScope::Catch: 836 break; 837 } 838 839 EHCatchScope &catchScope = cast<EHCatchScope>(*I); 840 for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { 841 EHCatchScope::Handler handler = catchScope.getHandler(hi); 842 843 // If this is a catch-all, register that and abort. 844 if (!handler.Type) { 845 assert(!hasCatchAll); 846 hasCatchAll = true; 847 goto done; 848 } 849 850 // Check whether we already have a handler for this type. 851 if (catchTypes.insert(handler.Type)) 852 // If not, add it directly to the landingpad. 853 LPadInst->addClause(handler.Type); 854 } 855 } 856 857 done: 858 // If we have a catch-all, add null to the landingpad. 859 assert(!(hasCatchAll && hasFilter)); 860 if (hasCatchAll) { 861 LPadInst->addClause(getCatchAllValue(*this)); 862 863 // If we have an EH filter, we need to add those handlers in the 864 // right place in the landingpad, which is to say, at the end. 865 } else if (hasFilter) { 866 // Create a filter expression: a constant array indicating which filter 867 // types there are. The personality routine only lands here if the filter 868 // doesn't match. 869 SmallVector<llvm::Constant*, 8> Filters; 870 llvm::ArrayType *AType = 871 llvm::ArrayType::get(!filterTypes.empty() ? 872 filterTypes[0]->getType() : Int8PtrTy, 873 filterTypes.size()); 874 875 for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) 876 Filters.push_back(cast<llvm::Constant>(filterTypes[i])); 877 llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); 878 LPadInst->addClause(FilterArray); 879 880 // Also check whether we need a cleanup. 881 if (hasCleanup) 882 LPadInst->setCleanup(true); 883 884 // Otherwise, signal that we at least have cleanups. 885 } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) { 886 if (CleanupHackLevel == CHL_MandatoryCatchall) 887 LPadInst->addClause(getCatchAllValue(*this)); 888 else 889 LPadInst->setCleanup(true); 890 } 891 892 assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && 893 "landingpad instruction has no clauses!"); 894 895 // Tell the backend how to generate the landing pad. 896 Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); 897 898 // Restore the old IR generation state. 899 Builder.restoreIP(savedIP); 900 901 return lpad; 902 } 903 904 namespace { 905 /// A cleanup to call __cxa_end_catch. In many cases, the caught 906 /// exception type lets us state definitively that the thrown exception 907 /// type does not have a destructor. In particular: 908 /// - Catch-alls tell us nothing, so we have to conservatively 909 /// assume that the thrown exception might have a destructor. 910 /// - Catches by reference behave according to their base types. 911 /// - Catches of non-record types will only trigger for exceptions 912 /// of non-record types, which never have destructors. 913 /// - Catches of record types can trigger for arbitrary subclasses 914 /// of the caught type, so we have to assume the actual thrown 915 /// exception type might have a throwing destructor, even if the 916 /// caught type's destructor is trivial or nothrow. 917 struct CallEndCatch : EHScopeStack::Cleanup { 918 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 919 bool MightThrow; 920 921 void Emit(CodeGenFunction &CGF, Flags flags) override { 922 if (!MightThrow) { 923 CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); 924 return; 925 } 926 927 CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); 928 } 929 }; 930 } 931 932 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 933 /// __cxa_end_catch. 934 /// 935 /// \param EndMightThrow - true if __cxa_end_catch might throw 936 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 937 llvm::Value *Exn, 938 bool EndMightThrow) { 939 llvm::CallInst *call = 940 CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); 941 942 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 943 944 return call; 945 } 946 947 /// A "special initializer" callback for initializing a catch 948 /// parameter during catch initialization. 949 static void InitCatchParam(CodeGenFunction &CGF, 950 const VarDecl &CatchParam, 951 llvm::Value *ParamAddr, 952 SourceLocation Loc) { 953 // Load the exception from where the landing pad saved it. 954 llvm::Value *Exn = CGF.getExceptionFromSlot(); 955 956 CanQualType CatchType = 957 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 958 llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 959 960 // If we're catching by reference, we can just cast the object 961 // pointer to the appropriate pointer. 962 if (isa<ReferenceType>(CatchType)) { 963 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 964 bool EndCatchMightThrow = CaughtType->isRecordType(); 965 966 // __cxa_begin_catch returns the adjusted object pointer. 967 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 968 969 // We have no way to tell the personality function that we're 970 // catching by reference, so if we're catching a pointer, 971 // __cxa_begin_catch will actually return that pointer by value. 972 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 973 QualType PointeeType = PT->getPointeeType(); 974 975 // When catching by reference, generally we should just ignore 976 // this by-value pointer and use the exception object instead. 977 if (!PointeeType->isRecordType()) { 978 979 // Exn points to the struct _Unwind_Exception header, which 980 // we have to skip past in order to reach the exception data. 981 unsigned HeaderSize = 982 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 983 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 984 985 // However, if we're catching a pointer-to-record type that won't 986 // work, because the personality function might have adjusted 987 // the pointer. There's actually no way for us to fully satisfy 988 // the language/ABI contract here: we can't use Exn because it 989 // might have the wrong adjustment, but we can't use the by-value 990 // pointer because it's off by a level of abstraction. 991 // 992 // The current solution is to dump the adjusted pointer into an 993 // alloca, which breaks language semantics (because changing the 994 // pointer doesn't change the exception) but at least works. 995 // The better solution would be to filter out non-exact matches 996 // and rethrow them, but this is tricky because the rethrow 997 // really needs to be catchable by other sites at this landing 998 // pad. The best solution is to fix the personality function. 999 } else { 1000 // Pull the pointer for the reference type off. 1001 llvm::Type *PtrTy = 1002 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 1003 1004 // Create the temporary and write the adjusted pointer into it. 1005 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 1006 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1007 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 1008 1009 // Bind the reference to the temporary. 1010 AdjustedExn = ExnPtrTmp; 1011 } 1012 } 1013 1014 llvm::Value *ExnCast = 1015 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 1016 CGF.Builder.CreateStore(ExnCast, ParamAddr); 1017 return; 1018 } 1019 1020 // Scalars and complexes. 1021 TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); 1022 if (TEK != TEK_Aggregate) { 1023 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 1024 1025 // If the catch type is a pointer type, __cxa_begin_catch returns 1026 // the pointer by value. 1027 if (CatchType->hasPointerRepresentation()) { 1028 llvm::Value *CastExn = 1029 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1030 1031 switch (CatchType.getQualifiers().getObjCLifetime()) { 1032 case Qualifiers::OCL_Strong: 1033 CastExn = CGF.EmitARCRetainNonBlock(CastExn); 1034 // fallthrough 1035 1036 case Qualifiers::OCL_None: 1037 case Qualifiers::OCL_ExplicitNone: 1038 case Qualifiers::OCL_Autoreleasing: 1039 CGF.Builder.CreateStore(CastExn, ParamAddr); 1040 return; 1041 1042 case Qualifiers::OCL_Weak: 1043 CGF.EmitARCInitWeak(ParamAddr, CastExn); 1044 return; 1045 } 1046 llvm_unreachable("bad ownership qualifier!"); 1047 } 1048 1049 // Otherwise, it returns a pointer into the exception object. 1050 1051 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1052 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1053 1054 LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType); 1055 LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType, 1056 CGF.getContext().getDeclAlign(&CatchParam)); 1057 switch (TEK) { 1058 case TEK_Complex: 1059 CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV, 1060 /*init*/ true); 1061 return; 1062 case TEK_Scalar: { 1063 llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc); 1064 CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); 1065 return; 1066 } 1067 case TEK_Aggregate: 1068 llvm_unreachable("evaluation kind filtered out!"); 1069 } 1070 llvm_unreachable("bad evaluation kind"); 1071 } 1072 1073 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1074 1075 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1076 1077 // Check for a copy expression. If we don't have a copy expression, 1078 // that means a trivial copy is okay. 1079 const Expr *copyExpr = CatchParam.getInit(); 1080 if (!copyExpr) { 1081 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1082 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1083 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); 1084 return; 1085 } 1086 1087 // We have to call __cxa_get_exception_ptr to get the adjusted 1088 // pointer before copying. 1089 llvm::CallInst *rawAdjustedExn = 1090 CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); 1091 1092 // Cast that to the appropriate type. 1093 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1094 1095 // The copy expression is defined in terms of an OpaqueValueExpr. 1096 // Find it and map it to the adjusted expression. 1097 CodeGenFunction::OpaqueValueMapping 1098 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1099 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1100 1101 // Call the copy ctor in a terminate scope. 1102 CGF.EHStack.pushTerminate(); 1103 1104 // Perform the copy construction. 1105 CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam); 1106 CGF.EmitAggExpr(copyExpr, 1107 AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(), 1108 AggValueSlot::IsNotDestructed, 1109 AggValueSlot::DoesNotNeedGCBarriers, 1110 AggValueSlot::IsNotAliased)); 1111 1112 // Leave the terminate scope. 1113 CGF.EHStack.popTerminate(); 1114 1115 // Undo the opaque value mapping. 1116 opaque.pop(); 1117 1118 // Finally we can call __cxa_begin_catch. 1119 CallBeginCatch(CGF, Exn, true); 1120 } 1121 1122 /// Begins a catch statement by initializing the catch variable and 1123 /// calling __cxa_begin_catch. 1124 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1125 // We have to be very careful with the ordering of cleanups here: 1126 // C++ [except.throw]p4: 1127 // The destruction [of the exception temporary] occurs 1128 // immediately after the destruction of the object declared in 1129 // the exception-declaration in the handler. 1130 // 1131 // So the precise ordering is: 1132 // 1. Construct catch variable. 1133 // 2. __cxa_begin_catch 1134 // 3. Enter __cxa_end_catch cleanup 1135 // 4. Enter dtor cleanup 1136 // 1137 // We do this by using a slightly abnormal initialization process. 1138 // Delegation sequence: 1139 // - ExitCXXTryStmt opens a RunCleanupsScope 1140 // - EmitAutoVarAlloca creates the variable and debug info 1141 // - InitCatchParam initializes the variable from the exception 1142 // - CallBeginCatch calls __cxa_begin_catch 1143 // - CallBeginCatch enters the __cxa_end_catch cleanup 1144 // - EmitAutoVarCleanups enters the variable destructor cleanup 1145 // - EmitCXXTryStmt emits the code for the catch body 1146 // - EmitCXXTryStmt close the RunCleanupsScope 1147 1148 VarDecl *CatchParam = S->getExceptionDecl(); 1149 if (!CatchParam) { 1150 llvm::Value *Exn = CGF.getExceptionFromSlot(); 1151 CallBeginCatch(CGF, Exn, true); 1152 return; 1153 } 1154 1155 // Emit the local. 1156 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1157 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getLocStart()); 1158 CGF.EmitAutoVarCleanups(var); 1159 } 1160 1161 /// Emit the structure of the dispatch block for the given catch scope. 1162 /// It is an invariant that the dispatch block already exists. 1163 static void emitCatchDispatchBlock(CodeGenFunction &CGF, 1164 EHCatchScope &catchScope) { 1165 llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); 1166 assert(dispatchBlock); 1167 1168 // If there's only a single catch-all, getEHDispatchBlock returned 1169 // that catch-all as the dispatch block. 1170 if (catchScope.getNumHandlers() == 1 && 1171 catchScope.getHandler(0).isCatchAll()) { 1172 assert(dispatchBlock == catchScope.getHandler(0).Block); 1173 return; 1174 } 1175 1176 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); 1177 CGF.EmitBlockAfterUses(dispatchBlock); 1178 1179 // Select the right handler. 1180 llvm::Value *llvm_eh_typeid_for = 1181 CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 1182 1183 // Load the selector value. 1184 llvm::Value *selector = CGF.getSelectorFromSlot(); 1185 1186 // Test against each of the exception types we claim to catch. 1187 for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { 1188 assert(i < e && "ran off end of handlers!"); 1189 const EHCatchScope::Handler &handler = catchScope.getHandler(i); 1190 1191 llvm::Value *typeValue = handler.Type; 1192 assert(typeValue && "fell into catch-all case!"); 1193 typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); 1194 1195 // Figure out the next block. 1196 bool nextIsEnd; 1197 llvm::BasicBlock *nextBlock; 1198 1199 // If this is the last handler, we're at the end, and the next 1200 // block is the block for the enclosing EH scope. 1201 if (i + 1 == e) { 1202 nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); 1203 nextIsEnd = true; 1204 1205 // If the next handler is a catch-all, we're at the end, and the 1206 // next block is that handler. 1207 } else if (catchScope.getHandler(i+1).isCatchAll()) { 1208 nextBlock = catchScope.getHandler(i+1).Block; 1209 nextIsEnd = true; 1210 1211 // Otherwise, we're not at the end and we need a new block. 1212 } else { 1213 nextBlock = CGF.createBasicBlock("catch.fallthrough"); 1214 nextIsEnd = false; 1215 } 1216 1217 // Figure out the catch type's index in the LSDA's type table. 1218 llvm::CallInst *typeIndex = 1219 CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); 1220 typeIndex->setDoesNotThrow(); 1221 1222 llvm::Value *matchesTypeIndex = 1223 CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); 1224 CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); 1225 1226 // If the next handler is a catch-all, we're completely done. 1227 if (nextIsEnd) { 1228 CGF.Builder.restoreIP(savedIP); 1229 return; 1230 } 1231 // Otherwise we need to emit and continue at that block. 1232 CGF.EmitBlock(nextBlock); 1233 } 1234 } 1235 1236 void CodeGenFunction::popCatchScope() { 1237 EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); 1238 if (catchScope.hasEHBranches()) 1239 emitCatchDispatchBlock(*this, catchScope); 1240 EHStack.popCatch(); 1241 } 1242 1243 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1244 unsigned NumHandlers = S.getNumHandlers(); 1245 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1246 assert(CatchScope.getNumHandlers() == NumHandlers); 1247 1248 // If the catch was not required, bail out now. 1249 if (!CatchScope.hasEHBranches()) { 1250 CatchScope.clearHandlerBlocks(); 1251 EHStack.popCatch(); 1252 return; 1253 } 1254 1255 // Emit the structure of the EH dispatch for this catch. 1256 emitCatchDispatchBlock(*this, CatchScope); 1257 1258 // Copy the handler blocks off before we pop the EH stack. Emitting 1259 // the handlers might scribble on this memory. 1260 SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1261 memcpy(Handlers.data(), CatchScope.begin(), 1262 NumHandlers * sizeof(EHCatchScope::Handler)); 1263 1264 EHStack.popCatch(); 1265 1266 // The fall-through block. 1267 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1268 1269 // We just emitted the body of the try; jump to the continue block. 1270 if (HaveInsertPoint()) 1271 Builder.CreateBr(ContBB); 1272 1273 // Determine if we need an implicit rethrow for all these catch handlers; 1274 // see the comment below. 1275 bool doImplicitRethrow = false; 1276 if (IsFnTryBlock) 1277 doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1278 isa<CXXConstructorDecl>(CurCodeDecl); 1279 1280 // Perversely, we emit the handlers backwards precisely because we 1281 // want them to appear in source order. In all of these cases, the 1282 // catch block will have exactly one predecessor, which will be a 1283 // particular block in the catch dispatch. However, in the case of 1284 // a catch-all, one of the dispatch blocks will branch to two 1285 // different handlers, and EmitBlockAfterUses will cause the second 1286 // handler to be moved before the first. 1287 for (unsigned I = NumHandlers; I != 0; --I) { 1288 llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; 1289 EmitBlockAfterUses(CatchBlock); 1290 1291 // Catch the exception if this isn't a catch-all. 1292 const CXXCatchStmt *C = S.getHandler(I-1); 1293 1294 // Enter a cleanup scope, including the catch variable and the 1295 // end-catch. 1296 RunCleanupsScope CatchScope(*this); 1297 1298 // Initialize the catch variable and set up the cleanups. 1299 BeginCatch(*this, C); 1300 1301 // Emit the PGO counter increment. 1302 RegionCounter CatchCnt = getPGORegionCounter(C); 1303 CatchCnt.beginRegion(Builder); 1304 1305 // Perform the body of the catch. 1306 EmitStmt(C->getHandlerBlock()); 1307 1308 // [except.handle]p11: 1309 // The currently handled exception is rethrown if control 1310 // reaches the end of a handler of the function-try-block of a 1311 // constructor or destructor. 1312 1313 // It is important that we only do this on fallthrough and not on 1314 // return. Note that it's illegal to put a return in a 1315 // constructor function-try-block's catch handler (p14), so this 1316 // really only applies to destructors. 1317 if (doImplicitRethrow && HaveInsertPoint()) { 1318 EmitRuntimeCallOrInvoke(getReThrowFn(CGM)); 1319 Builder.CreateUnreachable(); 1320 Builder.ClearInsertionPoint(); 1321 } 1322 1323 // Fall out through the catch cleanups. 1324 CatchScope.ForceCleanup(); 1325 1326 // Branch out of the try. 1327 if (HaveInsertPoint()) 1328 Builder.CreateBr(ContBB); 1329 } 1330 1331 RegionCounter ContCnt = getPGORegionCounter(&S); 1332 EmitBlock(ContBB); 1333 ContCnt.beginRegion(Builder); 1334 } 1335 1336 namespace { 1337 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1338 llvm::Value *ForEHVar; 1339 llvm::Value *EndCatchFn; 1340 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1341 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1342 1343 void Emit(CodeGenFunction &CGF, Flags flags) override { 1344 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1345 llvm::BasicBlock *CleanupContBB = 1346 CGF.createBasicBlock("finally.cleanup.cont"); 1347 1348 llvm::Value *ShouldEndCatch = 1349 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1350 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1351 CGF.EmitBlock(EndCatchBB); 1352 CGF.EmitRuntimeCallOrInvoke(EndCatchFn); // catch-all, so might throw 1353 CGF.EmitBlock(CleanupContBB); 1354 } 1355 }; 1356 1357 struct PerformFinally : EHScopeStack::Cleanup { 1358 const Stmt *Body; 1359 llvm::Value *ForEHVar; 1360 llvm::Value *EndCatchFn; 1361 llvm::Value *RethrowFn; 1362 llvm::Value *SavedExnVar; 1363 1364 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1365 llvm::Value *EndCatchFn, 1366 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1367 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1368 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1369 1370 void Emit(CodeGenFunction &CGF, Flags flags) override { 1371 // Enter a cleanup to call the end-catch function if one was provided. 1372 if (EndCatchFn) 1373 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1374 ForEHVar, EndCatchFn); 1375 1376 // Save the current cleanup destination in case there are 1377 // cleanups in the finally block. 1378 llvm::Value *SavedCleanupDest = 1379 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1380 "cleanup.dest.saved"); 1381 1382 // Emit the finally block. 1383 CGF.EmitStmt(Body); 1384 1385 // If the end of the finally is reachable, check whether this was 1386 // for EH. If so, rethrow. 1387 if (CGF.HaveInsertPoint()) { 1388 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1389 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1390 1391 llvm::Value *ShouldRethrow = 1392 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1393 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1394 1395 CGF.EmitBlock(RethrowBB); 1396 if (SavedExnVar) { 1397 CGF.EmitRuntimeCallOrInvoke(RethrowFn, 1398 CGF.Builder.CreateLoad(SavedExnVar)); 1399 } else { 1400 CGF.EmitRuntimeCallOrInvoke(RethrowFn); 1401 } 1402 CGF.Builder.CreateUnreachable(); 1403 1404 CGF.EmitBlock(ContBB); 1405 1406 // Restore the cleanup destination. 1407 CGF.Builder.CreateStore(SavedCleanupDest, 1408 CGF.getNormalCleanupDestSlot()); 1409 } 1410 1411 // Leave the end-catch cleanup. As an optimization, pretend that 1412 // the fallthrough path was inaccessible; we've dynamically proven 1413 // that we're not in the EH case along that path. 1414 if (EndCatchFn) { 1415 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1416 CGF.PopCleanupBlock(); 1417 CGF.Builder.restoreIP(SavedIP); 1418 } 1419 1420 // Now make sure we actually have an insertion point or the 1421 // cleanup gods will hate us. 1422 CGF.EnsureInsertPoint(); 1423 } 1424 }; 1425 } 1426 1427 /// Enters a finally block for an implementation using zero-cost 1428 /// exceptions. This is mostly general, but hard-codes some 1429 /// language/ABI-specific behavior in the catch-all sections. 1430 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, 1431 const Stmt *body, 1432 llvm::Constant *beginCatchFn, 1433 llvm::Constant *endCatchFn, 1434 llvm::Constant *rethrowFn) { 1435 assert((beginCatchFn != 0) == (endCatchFn != 0) && 1436 "begin/end catch functions not paired"); 1437 assert(rethrowFn && "rethrow function is required"); 1438 1439 BeginCatchFn = beginCatchFn; 1440 1441 // The rethrow function has one of the following two types: 1442 // void (*)() 1443 // void (*)(void*) 1444 // In the latter case we need to pass it the exception object. 1445 // But we can't use the exception slot because the @finally might 1446 // have a landing pad (which would overwrite the exception slot). 1447 llvm::FunctionType *rethrowFnTy = 1448 cast<llvm::FunctionType>( 1449 cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); 1450 SavedExnVar = 0; 1451 if (rethrowFnTy->getNumParams()) 1452 SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); 1453 1454 // A finally block is a statement which must be executed on any edge 1455 // out of a given scope. Unlike a cleanup, the finally block may 1456 // contain arbitrary control flow leading out of itself. In 1457 // addition, finally blocks should always be executed, even if there 1458 // are no catch handlers higher on the stack. Therefore, we 1459 // surround the protected scope with a combination of a normal 1460 // cleanup (to catch attempts to break out of the block via normal 1461 // control flow) and an EH catch-all (semantically "outside" any try 1462 // statement to which the finally block might have been attached). 1463 // The finally block itself is generated in the context of a cleanup 1464 // which conditionally leaves the catch-all. 1465 1466 // Jump destination for performing the finally block on an exception 1467 // edge. We'll never actually reach this block, so unreachable is 1468 // fine. 1469 RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); 1470 1471 // Whether the finally block is being executed for EH purposes. 1472 ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); 1473 CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); 1474 1475 // Enter a normal cleanup which will perform the @finally block. 1476 CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, 1477 ForEHVar, endCatchFn, 1478 rethrowFn, SavedExnVar); 1479 1480 // Enter a catch-all scope. 1481 llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); 1482 EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); 1483 catchScope->setCatchAllHandler(0, catchBB); 1484 } 1485 1486 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { 1487 // Leave the finally catch-all. 1488 EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); 1489 llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; 1490 1491 CGF.popCatchScope(); 1492 1493 // If there are any references to the catch-all block, emit it. 1494 if (catchBB->use_empty()) { 1495 delete catchBB; 1496 } else { 1497 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); 1498 CGF.EmitBlock(catchBB); 1499 1500 llvm::Value *exn = 0; 1501 1502 // If there's a begin-catch function, call it. 1503 if (BeginCatchFn) { 1504 exn = CGF.getExceptionFromSlot(); 1505 CGF.EmitNounwindRuntimeCall(BeginCatchFn, exn); 1506 } 1507 1508 // If we need to remember the exception pointer to rethrow later, do so. 1509 if (SavedExnVar) { 1510 if (!exn) exn = CGF.getExceptionFromSlot(); 1511 CGF.Builder.CreateStore(exn, SavedExnVar); 1512 } 1513 1514 // Tell the cleanups in the finally block that we're do this for EH. 1515 CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); 1516 1517 // Thread a jump through the finally cleanup. 1518 CGF.EmitBranchThroughCleanup(RethrowDest); 1519 1520 CGF.Builder.restoreIP(savedIP); 1521 } 1522 1523 // Finally, leave the @finally cleanup. 1524 CGF.PopCleanupBlock(); 1525 } 1526 1527 /// In a terminate landing pad, should we use __clang__call_terminate 1528 /// or just a naked call to std::terminate? 1529 /// 1530 /// __clang_call_terminate calls __cxa_begin_catch, which then allows 1531 /// std::terminate to usefully report something about the 1532 /// violating exception. 1533 static bool useClangCallTerminate(CodeGenModule &CGM) { 1534 // Only do this for Itanium-family ABIs in C++ mode. 1535 return (CGM.getLangOpts().CPlusPlus && 1536 CGM.getTarget().getCXXABI().isItaniumFamily()); 1537 } 1538 1539 /// Get or define the following function: 1540 /// void @__clang_call_terminate(i8* %exn) nounwind noreturn 1541 /// This code is used only in C++. 1542 static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) { 1543 llvm::FunctionType *fnTy = 1544 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 1545 llvm::Constant *fnRef = 1546 CGM.CreateRuntimeFunction(fnTy, "__clang_call_terminate"); 1547 1548 llvm::Function *fn = dyn_cast<llvm::Function>(fnRef); 1549 if (fn && fn->empty()) { 1550 fn->setDoesNotThrow(); 1551 fn->setDoesNotReturn(); 1552 1553 // What we really want is to massively penalize inlining without 1554 // forbidding it completely. The difference between that and 1555 // 'noinline' is negligible. 1556 fn->addFnAttr(llvm::Attribute::NoInline); 1557 1558 // Allow this function to be shared across translation units, but 1559 // we don't want it to turn into an exported symbol. 1560 fn->setLinkage(llvm::Function::LinkOnceODRLinkage); 1561 fn->setVisibility(llvm::Function::HiddenVisibility); 1562 1563 // Set up the function. 1564 llvm::BasicBlock *entry = 1565 llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); 1566 CGBuilderTy builder(entry); 1567 1568 // Pull the exception pointer out of the parameter list. 1569 llvm::Value *exn = &*fn->arg_begin(); 1570 1571 // Call __cxa_begin_catch(exn). 1572 llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); 1573 catchCall->setDoesNotThrow(); 1574 catchCall->setCallingConv(CGM.getRuntimeCC()); 1575 1576 // Call std::terminate(). 1577 llvm::CallInst *termCall = builder.CreateCall(getTerminateFn(CGM)); 1578 termCall->setDoesNotThrow(); 1579 termCall->setDoesNotReturn(); 1580 termCall->setCallingConv(CGM.getRuntimeCC()); 1581 1582 // std::terminate cannot return. 1583 builder.CreateUnreachable(); 1584 } 1585 1586 return fnRef; 1587 } 1588 1589 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1590 if (TerminateLandingPad) 1591 return TerminateLandingPad; 1592 1593 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1594 1595 // This will get inserted at the end of the function. 1596 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1597 Builder.SetInsertPoint(TerminateLandingPad); 1598 1599 // Tell the backend that this is a landing pad. 1600 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1601 llvm::LandingPadInst *LPadInst = 1602 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 1603 getOpaquePersonalityFn(CGM, Personality), 0); 1604 LPadInst->addClause(getCatchAllValue(*this)); 1605 1606 llvm::CallInst *terminateCall; 1607 if (useClangCallTerminate(CGM)) { 1608 // Extract out the exception pointer. 1609 llvm::Value *exn = Builder.CreateExtractValue(LPadInst, 0); 1610 terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn); 1611 } else { 1612 terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM)); 1613 } 1614 terminateCall->setDoesNotReturn(); 1615 Builder.CreateUnreachable(); 1616 1617 // Restore the saved insertion state. 1618 Builder.restoreIP(SavedIP); 1619 1620 return TerminateLandingPad; 1621 } 1622 1623 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1624 if (TerminateHandler) 1625 return TerminateHandler; 1626 1627 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1628 1629 // Set up the terminate handler. This block is inserted at the very 1630 // end of the function by FinishFunction. 1631 TerminateHandler = createBasicBlock("terminate.handler"); 1632 Builder.SetInsertPoint(TerminateHandler); 1633 llvm::CallInst *terminateCall; 1634 if (useClangCallTerminate(CGM)) { 1635 // Load the exception pointer. 1636 llvm::Value *exn = getExceptionFromSlot(); 1637 terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn); 1638 } else { 1639 terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM)); 1640 } 1641 terminateCall->setDoesNotReturn(); 1642 Builder.CreateUnreachable(); 1643 1644 // Restore the saved insertion state. 1645 Builder.restoreIP(SavedIP); 1646 1647 return TerminateHandler; 1648 } 1649 1650 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) { 1651 if (EHResumeBlock) return EHResumeBlock; 1652 1653 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1654 1655 // We emit a jump to a notional label at the outermost unwind state. 1656 EHResumeBlock = createBasicBlock("eh.resume"); 1657 Builder.SetInsertPoint(EHResumeBlock); 1658 1659 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1660 1661 // This can always be a call because we necessarily didn't find 1662 // anything on the EH stack which needs our help. 1663 const char *RethrowName = Personality.CatchallRethrowFn; 1664 if (RethrowName != 0 && !isCleanup) { 1665 EmitRuntimeCall(getCatchallRethrowFn(CGM, RethrowName), 1666 getExceptionFromSlot()) 1667 ->setDoesNotReturn(); 1668 } else { 1669 switch (CleanupHackLevel) { 1670 case CHL_MandatoryCatchall: 1671 // In mandatory-catchall mode, we need to use 1672 // _Unwind_Resume_or_Rethrow, or whatever the personality's 1673 // equivalent is. 1674 EmitRuntimeCall(getUnwindResumeOrRethrowFn(), 1675 getExceptionFromSlot()) 1676 ->setDoesNotReturn(); 1677 break; 1678 case CHL_MandatoryCleanup: { 1679 // In mandatory-cleanup mode, we should use 'resume'. 1680 1681 // Recreate the landingpad's return value for the 'resume' instruction. 1682 llvm::Value *Exn = getExceptionFromSlot(); 1683 llvm::Value *Sel = getSelectorFromSlot(); 1684 1685 llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), 1686 Sel->getType(), NULL); 1687 llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); 1688 LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); 1689 LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); 1690 1691 Builder.CreateResume(LPadVal); 1692 Builder.restoreIP(SavedIP); 1693 return EHResumeBlock; 1694 } 1695 case CHL_Ideal: 1696 // In an idealized mode where we don't have to worry about the 1697 // optimizer combining landing pads, we should just use 1698 // _Unwind_Resume (or the personality's equivalent). 1699 EmitRuntimeCall(getUnwindResumeFn(), getExceptionFromSlot()) 1700 ->setDoesNotReturn(); 1701 break; 1702 } 1703 } 1704 1705 Builder.CreateUnreachable(); 1706 1707 Builder.restoreIP(SavedIP); 1708 1709 return EHResumeBlock; 1710 } 1711 1712 void CodeGenFunction::EmitSEHTryStmt(const SEHTryStmt &S) { 1713 CGM.ErrorUnsupported(&S, "SEH __try"); 1714 } 1715