1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ exception related code generation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/StmtCXX.h"
15 
16 #include "llvm/Intrinsics.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Support/CallSite.h"
19 
20 #include "CGObjCRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CGException.h"
23 #include "CGCleanup.h"
24 #include "TargetInfo.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 
29 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) {
30   // void *__cxa_allocate_exception(size_t thrown_size);
31 
32   llvm::FunctionType *FTy =
33     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.SizeTy, /*IsVarArgs=*/false);
34 
35   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
36 }
37 
38 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) {
39   // void __cxa_free_exception(void *thrown_exception);
40 
41   llvm::FunctionType *FTy =
42     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
43 
44   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
45 }
46 
47 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) {
48   // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
49   //                  void (*dest) (void *));
50 
51   llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
52   llvm::FunctionType *FTy =
53     llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false);
54 
55   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
56 }
57 
58 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) {
59   // void __cxa_rethrow();
60 
61   llvm::FunctionType *FTy =
62     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
63 
64   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
65 }
66 
67 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) {
68   // void *__cxa_get_exception_ptr(void*);
69 
70   llvm::FunctionType *FTy =
71     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
72 
73   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
74 }
75 
76 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) {
77   // void *__cxa_begin_catch(void*);
78 
79   llvm::FunctionType *FTy =
80     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
81 
82   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
83 }
84 
85 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) {
86   // void __cxa_end_catch();
87 
88   llvm::FunctionType *FTy =
89     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
90 
91   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
92 }
93 
94 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
95   // void __cxa_call_unexepcted(void *thrown_exception);
96 
97   llvm::FunctionType *FTy =
98     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
99 
100   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
101 }
102 
103 llvm::Constant *CodeGenFunction::getUnwindResumeFn() {
104   llvm::FunctionType *FTy =
105     llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
106 
107   if (CGM.getLangOptions().SjLjExceptions)
108     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
109   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume");
110 }
111 
112 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
113   llvm::FunctionType *FTy =
114     llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
115 
116   if (CGM.getLangOptions().SjLjExceptions)
117     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
118   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
119 }
120 
121 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) {
122   // void __terminate();
123 
124   llvm::FunctionType *FTy =
125     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
126 
127   StringRef name;
128 
129   // In C++, use std::terminate().
130   if (CGF.getLangOptions().CPlusPlus)
131     name = "_ZSt9terminatev"; // FIXME: mangling!
132   else if (CGF.getLangOptions().ObjC1 &&
133            CGF.CGM.getCodeGenOpts().ObjCRuntimeHasTerminate)
134     name = "objc_terminate";
135   else
136     name = "abort";
137   return CGF.CGM.CreateRuntimeFunction(FTy, name);
138 }
139 
140 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF,
141                                             StringRef Name) {
142   llvm::FunctionType *FTy =
143     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
144 
145   return CGF.CGM.CreateRuntimeFunction(FTy, Name);
146 }
147 
148 const EHPersonality EHPersonality::GNU_C("__gcc_personality_v0");
149 const EHPersonality EHPersonality::GNU_C_SJLJ("__gcc_personality_sj0");
150 const EHPersonality EHPersonality::NeXT_ObjC("__objc_personality_v0");
151 const EHPersonality EHPersonality::GNU_CPlusPlus("__gxx_personality_v0");
152 const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ("__gxx_personality_sj0");
153 const EHPersonality EHPersonality::GNU_ObjC("__gnu_objc_personality_v0",
154                                             "objc_exception_throw");
155 const EHPersonality EHPersonality::GNU_ObjCXX("__gnustep_objcxx_personality_v0");
156 
157 static const EHPersonality &getCPersonality(const LangOptions &L) {
158   if (L.SjLjExceptions)
159     return EHPersonality::GNU_C_SJLJ;
160   return EHPersonality::GNU_C;
161 }
162 
163 static const EHPersonality &getObjCPersonality(const LangOptions &L) {
164   if (L.NeXTRuntime) {
165     if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC;
166     else return getCPersonality(L);
167   } else {
168     return EHPersonality::GNU_ObjC;
169   }
170 }
171 
172 static const EHPersonality &getCXXPersonality(const LangOptions &L) {
173   if (L.SjLjExceptions)
174     return EHPersonality::GNU_CPlusPlus_SJLJ;
175   else
176     return EHPersonality::GNU_CPlusPlus;
177 }
178 
179 /// Determines the personality function to use when both C++
180 /// and Objective-C exceptions are being caught.
181 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) {
182   // The ObjC personality defers to the C++ personality for non-ObjC
183   // handlers.  Unlike the C++ case, we use the same personality
184   // function on targets using (backend-driven) SJLJ EH.
185   if (L.NeXTRuntime) {
186     if (L.ObjCNonFragileABI)
187       return EHPersonality::NeXT_ObjC;
188 
189     // In the fragile ABI, just use C++ exception handling and hope
190     // they're not doing crazy exception mixing.
191     else
192       return getCXXPersonality(L);
193   }
194 
195   // The GNU runtime's personality function inherently doesn't support
196   // mixed EH.  Use the C++ personality just to avoid returning null.
197   return EHPersonality::GNU_ObjCXX;
198 }
199 
200 const EHPersonality &EHPersonality::get(const LangOptions &L) {
201   if (L.CPlusPlus && L.ObjC1)
202     return getObjCXXPersonality(L);
203   else if (L.CPlusPlus)
204     return getCXXPersonality(L);
205   else if (L.ObjC1)
206     return getObjCPersonality(L);
207   else
208     return getCPersonality(L);
209 }
210 
211 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
212                                         const EHPersonality &Personality) {
213   llvm::Constant *Fn =
214     CGM.CreateRuntimeFunction(llvm::FunctionType::get(
215                                 llvm::Type::getInt32Ty(CGM.getLLVMContext()),
216                                 true),
217                               Personality.getPersonalityFnName());
218   return Fn;
219 }
220 
221 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
222                                         const EHPersonality &Personality) {
223   llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
224   return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
225 }
226 
227 /// Check whether a personality function could reasonably be swapped
228 /// for a C++ personality function.
229 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
230   for (llvm::Constant::use_iterator
231          I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) {
232     llvm::User *User = *I;
233 
234     // Conditionally white-list bitcasts.
235     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) {
236       if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
237       if (!PersonalityHasOnlyCXXUses(CE))
238         return false;
239       continue;
240     }
241 
242     // Otherwise, it has to be a landingpad instruction.
243     llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User);
244     if (!LPI) return false;
245 
246     for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) {
247       // Look for something that would've been returned by the ObjC
248       // runtime's GetEHType() method.
249       llvm::Value *Val = LPI->getClause(I)->stripPointerCasts();
250       if (LPI->isCatch(I)) {
251         // Check if the catch value has the ObjC prefix.
252         if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val))
253           // ObjC EH selector entries are always global variables with
254           // names starting like this.
255           if (GV->getName().startswith("OBJC_EHTYPE"))
256             return false;
257       } else {
258         // Check if any of the filter values have the ObjC prefix.
259         llvm::Constant *CVal = cast<llvm::Constant>(Val);
260         for (llvm::User::op_iterator
261                II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) {
262           if (llvm::GlobalVariable *GV =
263               cast<llvm::GlobalVariable>((*II)->stripPointerCasts()))
264             // ObjC EH selector entries are always global variables with
265             // names starting like this.
266             if (GV->getName().startswith("OBJC_EHTYPE"))
267               return false;
268         }
269       }
270     }
271   }
272 
273   return true;
274 }
275 
276 /// Try to use the C++ personality function in ObjC++.  Not doing this
277 /// can cause some incompatibilities with gcc, which is more
278 /// aggressive about only using the ObjC++ personality in a function
279 /// when it really needs it.
280 void CodeGenModule::SimplifyPersonality() {
281   // For now, this is really a Darwin-specific operation.
282   if (!Context.getTargetInfo().getTriple().isOSDarwin())
283     return;
284 
285   // If we're not in ObjC++ -fexceptions, there's nothing to do.
286   if (!Features.CPlusPlus || !Features.ObjC1 || !Features.Exceptions)
287     return;
288 
289   const EHPersonality &ObjCXX = EHPersonality::get(Features);
290   const EHPersonality &CXX = getCXXPersonality(Features);
291   if (&ObjCXX == &CXX ||
292       ObjCXX.getPersonalityFnName() == CXX.getPersonalityFnName())
293     return;
294 
295   llvm::Function *Fn =
296     getModule().getFunction(ObjCXX.getPersonalityFnName());
297 
298   // Nothing to do if it's unused.
299   if (!Fn || Fn->use_empty()) return;
300 
301   // Can't do the optimization if it has non-C++ uses.
302   if (!PersonalityHasOnlyCXXUses(Fn)) return;
303 
304   // Create the C++ personality function and kill off the old
305   // function.
306   llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
307 
308   // This can happen if the user is screwing with us.
309   if (Fn->getType() != CXXFn->getType()) return;
310 
311   Fn->replaceAllUsesWith(CXXFn);
312   Fn->eraseFromParent();
313 }
314 
315 /// Returns the value to inject into a selector to indicate the
316 /// presence of a catch-all.
317 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
318   // Possibly we should use @llvm.eh.catch.all.value here.
319   return llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
320 }
321 
322 namespace {
323   /// A cleanup to free the exception object if its initialization
324   /// throws.
325   struct FreeException : EHScopeStack::Cleanup {
326     llvm::Value *exn;
327     FreeException(llvm::Value *exn) : exn(exn) {}
328     void Emit(CodeGenFunction &CGF, Flags flags) {
329       CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn)
330         ->setDoesNotThrow();
331     }
332   };
333 }
334 
335 // Emits an exception expression into the given location.  This
336 // differs from EmitAnyExprToMem only in that, if a final copy-ctor
337 // call is required, an exception within that copy ctor causes
338 // std::terminate to be invoked.
339 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e,
340                              llvm::Value *addr) {
341   // Make sure the exception object is cleaned up if there's an
342   // exception during initialization.
343   CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr);
344   EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin();
345 
346   // __cxa_allocate_exception returns a void*;  we need to cast this
347   // to the appropriate type for the object.
348   llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo();
349   llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty);
350 
351   // FIXME: this isn't quite right!  If there's a final unelided call
352   // to a copy constructor, then according to [except.terminate]p1 we
353   // must call std::terminate() if that constructor throws, because
354   // technically that copy occurs after the exception expression is
355   // evaluated but before the exception is caught.  But the best way
356   // to handle that is to teach EmitAggExpr to do the final copy
357   // differently if it can't be elided.
358   CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(),
359                        /*IsInit*/ true);
360 
361   // Deactivate the cleanup block.
362   CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr));
363 }
364 
365 llvm::Value *CodeGenFunction::getExceptionSlot() {
366   if (!ExceptionSlot)
367     ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot");
368   return ExceptionSlot;
369 }
370 
371 llvm::Value *CodeGenFunction::getEHSelectorSlot() {
372   if (!EHSelectorSlot)
373     EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot");
374   return EHSelectorSlot;
375 }
376 
377 llvm::Value *CodeGenFunction::getExceptionFromSlot() {
378   return Builder.CreateLoad(getExceptionSlot(), "exn");
379 }
380 
381 llvm::Value *CodeGenFunction::getSelectorFromSlot() {
382   return Builder.CreateLoad(getEHSelectorSlot(), "sel");
383 }
384 
385 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
386   if (!E->getSubExpr()) {
387     if (getInvokeDest()) {
388       Builder.CreateInvoke(getReThrowFn(*this),
389                            getUnreachableBlock(),
390                            getInvokeDest())
391         ->setDoesNotReturn();
392     } else {
393       Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn();
394       Builder.CreateUnreachable();
395     }
396 
397     // throw is an expression, and the expression emitters expect us
398     // to leave ourselves at a valid insertion point.
399     EmitBlock(createBasicBlock("throw.cont"));
400 
401     return;
402   }
403 
404   QualType ThrowType = E->getSubExpr()->getType();
405 
406   // Now allocate the exception object.
407   llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
408   uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
409 
410   llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this);
411   llvm::CallInst *ExceptionPtr =
412     Builder.CreateCall(AllocExceptionFn,
413                        llvm::ConstantInt::get(SizeTy, TypeSize),
414                        "exception");
415   ExceptionPtr->setDoesNotThrow();
416 
417   EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
418 
419   // Now throw the exception.
420   llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
421                                                          /*ForEH=*/true);
422 
423   // The address of the destructor.  If the exception type has a
424   // trivial destructor (or isn't a record), we just pass null.
425   llvm::Constant *Dtor = 0;
426   if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
427     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
428     if (!Record->hasTrivialDestructor()) {
429       CXXDestructorDecl *DtorD = Record->getDestructor();
430       Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
431       Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
432     }
433   }
434   if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
435 
436   if (getInvokeDest()) {
437     llvm::InvokeInst *ThrowCall =
438       Builder.CreateInvoke3(getThrowFn(*this),
439                             getUnreachableBlock(), getInvokeDest(),
440                             ExceptionPtr, TypeInfo, Dtor);
441     ThrowCall->setDoesNotReturn();
442   } else {
443     llvm::CallInst *ThrowCall =
444       Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor);
445     ThrowCall->setDoesNotReturn();
446     Builder.CreateUnreachable();
447   }
448 
449   // throw is an expression, and the expression emitters expect us
450   // to leave ourselves at a valid insertion point.
451   EmitBlock(createBasicBlock("throw.cont"));
452 }
453 
454 void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
455   if (!CGM.getLangOptions().CXXExceptions)
456     return;
457 
458   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
459   if (FD == 0)
460     return;
461   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
462   if (Proto == 0)
463     return;
464 
465   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
466   if (isNoexceptExceptionSpec(EST)) {
467     if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
468       // noexcept functions are simple terminate scopes.
469       EHStack.pushTerminate();
470     }
471   } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
472     unsigned NumExceptions = Proto->getNumExceptions();
473     EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
474 
475     for (unsigned I = 0; I != NumExceptions; ++I) {
476       QualType Ty = Proto->getExceptionType(I);
477       QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
478       llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType,
479                                                         /*ForEH=*/true);
480       Filter->setFilter(I, EHType);
481     }
482   }
483 }
484 
485 /// Emit the dispatch block for a filter scope if necessary.
486 static void emitFilterDispatchBlock(CodeGenFunction &CGF,
487                                     EHFilterScope &filterScope) {
488   llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock();
489   if (!dispatchBlock) return;
490   if (dispatchBlock->use_empty()) {
491     delete dispatchBlock;
492     return;
493   }
494 
495   CGF.EmitBlockAfterUses(dispatchBlock);
496 
497   // If this isn't a catch-all filter, we need to check whether we got
498   // here because the filter triggered.
499   if (filterScope.getNumFilters()) {
500     // Load the selector value.
501     llvm::Value *selector = CGF.getSelectorFromSlot();
502     llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected");
503 
504     llvm::Value *zero = CGF.Builder.getInt32(0);
505     llvm::Value *failsFilter =
506       CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails");
507     CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock());
508 
509     CGF.EmitBlock(unexpectedBB);
510   }
511 
512   // Call __cxa_call_unexpected.  This doesn't need to be an invoke
513   // because __cxa_call_unexpected magically filters exceptions
514   // according to the last landing pad the exception was thrown
515   // into.  Seriously.
516   llvm::Value *exn = CGF.getExceptionFromSlot();
517   CGF.Builder.CreateCall(getUnexpectedFn(CGF), exn)
518     ->setDoesNotReturn();
519   CGF.Builder.CreateUnreachable();
520 }
521 
522 void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
523   if (!CGM.getLangOptions().CXXExceptions)
524     return;
525 
526   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
527   if (FD == 0)
528     return;
529   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
530   if (Proto == 0)
531     return;
532 
533   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
534   if (isNoexceptExceptionSpec(EST)) {
535     if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
536       EHStack.popTerminate();
537     }
538   } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
539     EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin());
540     emitFilterDispatchBlock(*this, filterScope);
541     EHStack.popFilter();
542   }
543 }
544 
545 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
546   EnterCXXTryStmt(S);
547   EmitStmt(S.getTryBlock());
548   ExitCXXTryStmt(S);
549 }
550 
551 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
552   unsigned NumHandlers = S.getNumHandlers();
553   EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
554 
555   for (unsigned I = 0; I != NumHandlers; ++I) {
556     const CXXCatchStmt *C = S.getHandler(I);
557 
558     llvm::BasicBlock *Handler = createBasicBlock("catch");
559     if (C->getExceptionDecl()) {
560       // FIXME: Dropping the reference type on the type into makes it
561       // impossible to correctly implement catch-by-reference
562       // semantics for pointers.  Unfortunately, this is what all
563       // existing compilers do, and it's not clear that the standard
564       // personality routine is capable of doing this right.  See C++ DR 388:
565       //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
566       QualType CaughtType = C->getCaughtType();
567       CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
568 
569       llvm::Value *TypeInfo = 0;
570       if (CaughtType->isObjCObjectPointerType())
571         TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
572       else
573         TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true);
574       CatchScope->setHandler(I, TypeInfo, Handler);
575     } else {
576       // No exception decl indicates '...', a catch-all.
577       CatchScope->setCatchAllHandler(I, Handler);
578     }
579   }
580 }
581 
582 llvm::BasicBlock *
583 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) {
584   // The dispatch block for the end of the scope chain is a block that
585   // just resumes unwinding.
586   if (si == EHStack.stable_end())
587     return getEHResumeBlock();
588 
589   // Otherwise, we should look at the actual scope.
590   EHScope &scope = *EHStack.find(si);
591 
592   llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock();
593   if (!dispatchBlock) {
594     switch (scope.getKind()) {
595     case EHScope::Catch: {
596       // Apply a special case to a single catch-all.
597       EHCatchScope &catchScope = cast<EHCatchScope>(scope);
598       if (catchScope.getNumHandlers() == 1 &&
599           catchScope.getHandler(0).isCatchAll()) {
600         dispatchBlock = catchScope.getHandler(0).Block;
601 
602       // Otherwise, make a dispatch block.
603       } else {
604         dispatchBlock = createBasicBlock("catch.dispatch");
605       }
606       break;
607     }
608 
609     case EHScope::Cleanup:
610       dispatchBlock = createBasicBlock("ehcleanup");
611       break;
612 
613     case EHScope::Filter:
614       dispatchBlock = createBasicBlock("filter.dispatch");
615       break;
616 
617     case EHScope::Terminate:
618       dispatchBlock = getTerminateHandler();
619       break;
620     }
621     scope.setCachedEHDispatchBlock(dispatchBlock);
622   }
623   return dispatchBlock;
624 }
625 
626 /// Check whether this is a non-EH scope, i.e. a scope which doesn't
627 /// affect exception handling.  Currently, the only non-EH scopes are
628 /// normal-only cleanup scopes.
629 static bool isNonEHScope(const EHScope &S) {
630   switch (S.getKind()) {
631   case EHScope::Cleanup:
632     return !cast<EHCleanupScope>(S).isEHCleanup();
633   case EHScope::Filter:
634   case EHScope::Catch:
635   case EHScope::Terminate:
636     return false;
637   }
638 
639   llvm_unreachable("Invalid EHScope Kind!");
640 }
641 
642 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
643   assert(EHStack.requiresLandingPad());
644   assert(!EHStack.empty());
645 
646   if (!CGM.getLangOptions().Exceptions)
647     return 0;
648 
649   // Check the innermost scope for a cached landing pad.  If this is
650   // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
651   llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
652   if (LP) return LP;
653 
654   // Build the landing pad for this scope.
655   LP = EmitLandingPad();
656   assert(LP);
657 
658   // Cache the landing pad on the innermost scope.  If this is a
659   // non-EH scope, cache the landing pad on the enclosing scope, too.
660   for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
661     ir->setCachedLandingPad(LP);
662     if (!isNonEHScope(*ir)) break;
663   }
664 
665   return LP;
666 }
667 
668 // This code contains a hack to work around a design flaw in
669 // LLVM's EH IR which breaks semantics after inlining.  This same
670 // hack is implemented in llvm-gcc.
671 //
672 // The LLVM EH abstraction is basically a thin veneer over the
673 // traditional GCC zero-cost design: for each range of instructions
674 // in the function, there is (at most) one "landing pad" with an
675 // associated chain of EH actions.  A language-specific personality
676 // function interprets this chain of actions and (1) decides whether
677 // or not to resume execution at the landing pad and (2) if so,
678 // provides an integer indicating why it's stopping.  In LLVM IR,
679 // the association of a landing pad with a range of instructions is
680 // achieved via an invoke instruction, the chain of actions becomes
681 // the arguments to the @llvm.eh.selector call, and the selector
682 // call returns the integer indicator.  Other than the required
683 // presence of two intrinsic function calls in the landing pad,
684 // the IR exactly describes the layout of the output code.
685 //
686 // A principal advantage of this design is that it is completely
687 // language-agnostic; in theory, the LLVM optimizers can treat
688 // landing pads neutrally, and targets need only know how to lower
689 // the intrinsics to have a functioning exceptions system (assuming
690 // that platform exceptions follow something approximately like the
691 // GCC design).  Unfortunately, landing pads cannot be combined in a
692 // language-agnostic way: given selectors A and B, there is no way
693 // to make a single landing pad which faithfully represents the
694 // semantics of propagating an exception first through A, then
695 // through B, without knowing how the personality will interpret the
696 // (lowered form of the) selectors.  This means that inlining has no
697 // choice but to crudely chain invokes (i.e., to ignore invokes in
698 // the inlined function, but to turn all unwindable calls into
699 // invokes), which is only semantically valid if every unwind stops
700 // at every landing pad.
701 //
702 // Therefore, the invoke-inline hack is to guarantee that every
703 // landing pad has a catch-all.
704 enum CleanupHackLevel_t {
705   /// A level of hack that requires that all landing pads have
706   /// catch-alls.
707   CHL_MandatoryCatchall,
708 
709   /// A level of hack that requires that all landing pads handle
710   /// cleanups.
711   CHL_MandatoryCleanup,
712 
713   /// No hacks at all;  ideal IR generation.
714   CHL_Ideal
715 };
716 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup;
717 
718 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
719   assert(EHStack.requiresLandingPad());
720 
721   EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope());
722   switch (innermostEHScope.getKind()) {
723   case EHScope::Terminate:
724     return getTerminateLandingPad();
725 
726   case EHScope::Catch:
727   case EHScope::Cleanup:
728   case EHScope::Filter:
729     if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad())
730       return lpad;
731   }
732 
733   // Save the current IR generation state.
734   CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP();
735 
736   const EHPersonality &personality = EHPersonality::get(getLangOptions());
737 
738   // Create and configure the landing pad.
739   llvm::BasicBlock *lpad = createBasicBlock("lpad");
740   EmitBlock(lpad);
741 
742   llvm::LandingPadInst *LPadInst =
743     Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
744                              getOpaquePersonalityFn(CGM, personality), 0);
745 
746   llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0);
747   Builder.CreateStore(LPadExn, getExceptionSlot());
748   llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1);
749   Builder.CreateStore(LPadSel, getEHSelectorSlot());
750 
751   // Save the exception pointer.  It's safe to use a single exception
752   // pointer per function because EH cleanups can never have nested
753   // try/catches.
754   // Build the landingpad instruction.
755 
756   // Accumulate all the handlers in scope.
757   bool hasCatchAll = false;
758   bool hasCleanup = false;
759   bool hasFilter = false;
760   SmallVector<llvm::Value*, 4> filterTypes;
761   llvm::SmallPtrSet<llvm::Value*, 4> catchTypes;
762   for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
763          I != E; ++I) {
764 
765     switch (I->getKind()) {
766     case EHScope::Cleanup:
767       // If we have a cleanup, remember that.
768       hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup());
769       continue;
770 
771     case EHScope::Filter: {
772       assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
773       assert(!hasCatchAll && "EH filter reached after catch-all");
774 
775       // Filter scopes get added to the landingpad in weird ways.
776       EHFilterScope &filter = cast<EHFilterScope>(*I);
777       hasFilter = true;
778 
779       // Add all the filter values.
780       for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i)
781         filterTypes.push_back(filter.getFilter(i));
782       goto done;
783     }
784 
785     case EHScope::Terminate:
786       // Terminate scopes are basically catch-alls.
787       assert(!hasCatchAll);
788       hasCatchAll = true;
789       goto done;
790 
791     case EHScope::Catch:
792       break;
793     }
794 
795     EHCatchScope &catchScope = cast<EHCatchScope>(*I);
796     for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) {
797       EHCatchScope::Handler handler = catchScope.getHandler(hi);
798 
799       // If this is a catch-all, register that and abort.
800       if (!handler.Type) {
801         assert(!hasCatchAll);
802         hasCatchAll = true;
803         goto done;
804       }
805 
806       // Check whether we already have a handler for this type.
807       if (catchTypes.insert(handler.Type))
808         // If not, add it directly to the landingpad.
809         LPadInst->addClause(handler.Type);
810     }
811   }
812 
813  done:
814   // If we have a catch-all, add null to the landingpad.
815   assert(!(hasCatchAll && hasFilter));
816   if (hasCatchAll) {
817     LPadInst->addClause(getCatchAllValue(*this));
818 
819   // If we have an EH filter, we need to add those handlers in the
820   // right place in the landingpad, which is to say, at the end.
821   } else if (hasFilter) {
822     // Create a filter expression: a constant array indicating which filter
823     // types there are. The personality routine only lands here if the filter
824     // doesn't match.
825     llvm::SmallVector<llvm::Constant*, 8> Filters;
826     llvm::ArrayType *AType =
827       llvm::ArrayType::get(!filterTypes.empty() ?
828                              filterTypes[0]->getType() : Int8PtrTy,
829                            filterTypes.size());
830 
831     for (unsigned i = 0, e = filterTypes.size(); i != e; ++i)
832       Filters.push_back(cast<llvm::Constant>(filterTypes[i]));
833     llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters);
834     LPadInst->addClause(FilterArray);
835 
836     // Also check whether we need a cleanup.
837     if (hasCleanup)
838       LPadInst->setCleanup(true);
839 
840   // Otherwise, signal that we at least have cleanups.
841   } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) {
842     if (CleanupHackLevel == CHL_MandatoryCatchall)
843       LPadInst->addClause(getCatchAllValue(*this));
844     else
845       LPadInst->setCleanup(true);
846   }
847 
848   assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) &&
849          "landingpad instruction has no clauses!");
850 
851   // Tell the backend how to generate the landing pad.
852   Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope()));
853 
854   // Restore the old IR generation state.
855   Builder.restoreIP(savedIP);
856 
857   return lpad;
858 }
859 
860 namespace {
861   /// A cleanup to call __cxa_end_catch.  In many cases, the caught
862   /// exception type lets us state definitively that the thrown exception
863   /// type does not have a destructor.  In particular:
864   ///   - Catch-alls tell us nothing, so we have to conservatively
865   ///     assume that the thrown exception might have a destructor.
866   ///   - Catches by reference behave according to their base types.
867   ///   - Catches of non-record types will only trigger for exceptions
868   ///     of non-record types, which never have destructors.
869   ///   - Catches of record types can trigger for arbitrary subclasses
870   ///     of the caught type, so we have to assume the actual thrown
871   ///     exception type might have a throwing destructor, even if the
872   ///     caught type's destructor is trivial or nothrow.
873   struct CallEndCatch : EHScopeStack::Cleanup {
874     CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
875     bool MightThrow;
876 
877     void Emit(CodeGenFunction &CGF, Flags flags) {
878       if (!MightThrow) {
879         CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow();
880         return;
881       }
882 
883       CGF.EmitCallOrInvoke(getEndCatchFn(CGF));
884     }
885   };
886 }
887 
888 /// Emits a call to __cxa_begin_catch and enters a cleanup to call
889 /// __cxa_end_catch.
890 ///
891 /// \param EndMightThrow - true if __cxa_end_catch might throw
892 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
893                                    llvm::Value *Exn,
894                                    bool EndMightThrow) {
895   llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn);
896   Call->setDoesNotThrow();
897 
898   CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
899 
900   return Call;
901 }
902 
903 /// A "special initializer" callback for initializing a catch
904 /// parameter during catch initialization.
905 static void InitCatchParam(CodeGenFunction &CGF,
906                            const VarDecl &CatchParam,
907                            llvm::Value *ParamAddr) {
908   // Load the exception from where the landing pad saved it.
909   llvm::Value *Exn = CGF.getExceptionFromSlot();
910 
911   CanQualType CatchType =
912     CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
913   llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
914 
915   // If we're catching by reference, we can just cast the object
916   // pointer to the appropriate pointer.
917   if (isa<ReferenceType>(CatchType)) {
918     QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
919     bool EndCatchMightThrow = CaughtType->isRecordType();
920 
921     // __cxa_begin_catch returns the adjusted object pointer.
922     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
923 
924     // We have no way to tell the personality function that we're
925     // catching by reference, so if we're catching a pointer,
926     // __cxa_begin_catch will actually return that pointer by value.
927     if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
928       QualType PointeeType = PT->getPointeeType();
929 
930       // When catching by reference, generally we should just ignore
931       // this by-value pointer and use the exception object instead.
932       if (!PointeeType->isRecordType()) {
933 
934         // Exn points to the struct _Unwind_Exception header, which
935         // we have to skip past in order to reach the exception data.
936         unsigned HeaderSize =
937           CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
938         AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
939 
940       // However, if we're catching a pointer-to-record type that won't
941       // work, because the personality function might have adjusted
942       // the pointer.  There's actually no way for us to fully satisfy
943       // the language/ABI contract here:  we can't use Exn because it
944       // might have the wrong adjustment, but we can't use the by-value
945       // pointer because it's off by a level of abstraction.
946       //
947       // The current solution is to dump the adjusted pointer into an
948       // alloca, which breaks language semantics (because changing the
949       // pointer doesn't change the exception) but at least works.
950       // The better solution would be to filter out non-exact matches
951       // and rethrow them, but this is tricky because the rethrow
952       // really needs to be catchable by other sites at this landing
953       // pad.  The best solution is to fix the personality function.
954       } else {
955         // Pull the pointer for the reference type off.
956         llvm::Type *PtrTy =
957           cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
958 
959         // Create the temporary and write the adjusted pointer into it.
960         llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
961         llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
962         CGF.Builder.CreateStore(Casted, ExnPtrTmp);
963 
964         // Bind the reference to the temporary.
965         AdjustedExn = ExnPtrTmp;
966       }
967     }
968 
969     llvm::Value *ExnCast =
970       CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
971     CGF.Builder.CreateStore(ExnCast, ParamAddr);
972     return;
973   }
974 
975   // Non-aggregates (plus complexes).
976   bool IsComplex = false;
977   if (!CGF.hasAggregateLLVMType(CatchType) ||
978       (IsComplex = CatchType->isAnyComplexType())) {
979     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
980 
981     // If the catch type is a pointer type, __cxa_begin_catch returns
982     // the pointer by value.
983     if (CatchType->hasPointerRepresentation()) {
984       llvm::Value *CastExn =
985         CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
986 
987       switch (CatchType.getQualifiers().getObjCLifetime()) {
988       case Qualifiers::OCL_Strong:
989         CastExn = CGF.EmitARCRetainNonBlock(CastExn);
990         // fallthrough
991 
992       case Qualifiers::OCL_None:
993       case Qualifiers::OCL_ExplicitNone:
994       case Qualifiers::OCL_Autoreleasing:
995         CGF.Builder.CreateStore(CastExn, ParamAddr);
996         return;
997 
998       case Qualifiers::OCL_Weak:
999         CGF.EmitARCInitWeak(ParamAddr, CastExn);
1000         return;
1001       }
1002       llvm_unreachable("bad ownership qualifier!");
1003     }
1004 
1005     // Otherwise, it returns a pointer into the exception object.
1006 
1007     llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1008     llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1009 
1010     if (IsComplex) {
1011       CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false),
1012                              ParamAddr, /*volatile*/ false);
1013     } else {
1014       unsigned Alignment =
1015         CGF.getContext().getDeclAlign(&CatchParam).getQuantity();
1016       llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar");
1017       CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment,
1018                             CatchType);
1019     }
1020     return;
1021   }
1022 
1023   assert(isa<RecordType>(CatchType) && "unexpected catch type!");
1024 
1025   llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1026 
1027   // Check for a copy expression.  If we don't have a copy expression,
1028   // that means a trivial copy is okay.
1029   const Expr *copyExpr = CatchParam.getInit();
1030   if (!copyExpr) {
1031     llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
1032     llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1033     CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
1034     return;
1035   }
1036 
1037   // We have to call __cxa_get_exception_ptr to get the adjusted
1038   // pointer before copying.
1039   llvm::CallInst *rawAdjustedExn =
1040     CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn);
1041   rawAdjustedExn->setDoesNotThrow();
1042 
1043   // Cast that to the appropriate type.
1044   llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1045 
1046   // The copy expression is defined in terms of an OpaqueValueExpr.
1047   // Find it and map it to the adjusted expression.
1048   CodeGenFunction::OpaqueValueMapping
1049     opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
1050            CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
1051 
1052   // Call the copy ctor in a terminate scope.
1053   CGF.EHStack.pushTerminate();
1054 
1055   // Perform the copy construction.
1056   CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam);
1057   CGF.EmitAggExpr(copyExpr,
1058                   AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(),
1059                                         AggValueSlot::IsNotDestructed,
1060                                         AggValueSlot::DoesNotNeedGCBarriers,
1061                                         AggValueSlot::IsNotAliased));
1062 
1063   // Leave the terminate scope.
1064   CGF.EHStack.popTerminate();
1065 
1066   // Undo the opaque value mapping.
1067   opaque.pop();
1068 
1069   // Finally we can call __cxa_begin_catch.
1070   CallBeginCatch(CGF, Exn, true);
1071 }
1072 
1073 /// Begins a catch statement by initializing the catch variable and
1074 /// calling __cxa_begin_catch.
1075 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) {
1076   // We have to be very careful with the ordering of cleanups here:
1077   //   C++ [except.throw]p4:
1078   //     The destruction [of the exception temporary] occurs
1079   //     immediately after the destruction of the object declared in
1080   //     the exception-declaration in the handler.
1081   //
1082   // So the precise ordering is:
1083   //   1.  Construct catch variable.
1084   //   2.  __cxa_begin_catch
1085   //   3.  Enter __cxa_end_catch cleanup
1086   //   4.  Enter dtor cleanup
1087   //
1088   // We do this by using a slightly abnormal initialization process.
1089   // Delegation sequence:
1090   //   - ExitCXXTryStmt opens a RunCleanupsScope
1091   //     - EmitAutoVarAlloca creates the variable and debug info
1092   //       - InitCatchParam initializes the variable from the exception
1093   //       - CallBeginCatch calls __cxa_begin_catch
1094   //       - CallBeginCatch enters the __cxa_end_catch cleanup
1095   //     - EmitAutoVarCleanups enters the variable destructor cleanup
1096   //   - EmitCXXTryStmt emits the code for the catch body
1097   //   - EmitCXXTryStmt close the RunCleanupsScope
1098 
1099   VarDecl *CatchParam = S->getExceptionDecl();
1100   if (!CatchParam) {
1101     llvm::Value *Exn = CGF.getExceptionFromSlot();
1102     CallBeginCatch(CGF, Exn, true);
1103     return;
1104   }
1105 
1106   // Emit the local.
1107   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
1108   InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF));
1109   CGF.EmitAutoVarCleanups(var);
1110 }
1111 
1112 namespace {
1113   struct CallRethrow : EHScopeStack::Cleanup {
1114     void Emit(CodeGenFunction &CGF, Flags flags) {
1115       CGF.EmitCallOrInvoke(getReThrowFn(CGF));
1116     }
1117   };
1118 }
1119 
1120 /// Emit the structure of the dispatch block for the given catch scope.
1121 /// It is an invariant that the dispatch block already exists.
1122 static void emitCatchDispatchBlock(CodeGenFunction &CGF,
1123                                    EHCatchScope &catchScope) {
1124   llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock();
1125   assert(dispatchBlock);
1126 
1127   // If there's only a single catch-all, getEHDispatchBlock returned
1128   // that catch-all as the dispatch block.
1129   if (catchScope.getNumHandlers() == 1 &&
1130       catchScope.getHandler(0).isCatchAll()) {
1131     assert(dispatchBlock == catchScope.getHandler(0).Block);
1132     return;
1133   }
1134 
1135   CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP();
1136   CGF.EmitBlockAfterUses(dispatchBlock);
1137 
1138   // Select the right handler.
1139   llvm::Value *llvm_eh_typeid_for =
1140     CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
1141 
1142   // Load the selector value.
1143   llvm::Value *selector = CGF.getSelectorFromSlot();
1144 
1145   // Test against each of the exception types we claim to catch.
1146   for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) {
1147     assert(i < e && "ran off end of handlers!");
1148     const EHCatchScope::Handler &handler = catchScope.getHandler(i);
1149 
1150     llvm::Value *typeValue = handler.Type;
1151     assert(typeValue && "fell into catch-all case!");
1152     typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy);
1153 
1154     // Figure out the next block.
1155     bool nextIsEnd;
1156     llvm::BasicBlock *nextBlock;
1157 
1158     // If this is the last handler, we're at the end, and the next
1159     // block is the block for the enclosing EH scope.
1160     if (i + 1 == e) {
1161       nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope());
1162       nextIsEnd = true;
1163 
1164     // If the next handler is a catch-all, we're at the end, and the
1165     // next block is that handler.
1166     } else if (catchScope.getHandler(i+1).isCatchAll()) {
1167       nextBlock = catchScope.getHandler(i+1).Block;
1168       nextIsEnd = true;
1169 
1170     // Otherwise, we're not at the end and we need a new block.
1171     } else {
1172       nextBlock = CGF.createBasicBlock("catch.fallthrough");
1173       nextIsEnd = false;
1174     }
1175 
1176     // Figure out the catch type's index in the LSDA's type table.
1177     llvm::CallInst *typeIndex =
1178       CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue);
1179     typeIndex->setDoesNotThrow();
1180 
1181     llvm::Value *matchesTypeIndex =
1182       CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches");
1183     CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock);
1184 
1185     // If the next handler is a catch-all, we're completely done.
1186     if (nextIsEnd) {
1187       CGF.Builder.restoreIP(savedIP);
1188       return;
1189 
1190     // Otherwise we need to emit and continue at that block.
1191     } else {
1192       CGF.EmitBlock(nextBlock);
1193     }
1194   }
1195 
1196   llvm_unreachable("fell out of loop!");
1197 }
1198 
1199 void CodeGenFunction::popCatchScope() {
1200   EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin());
1201   if (catchScope.hasEHBranches())
1202     emitCatchDispatchBlock(*this, catchScope);
1203   EHStack.popCatch();
1204 }
1205 
1206 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
1207   unsigned NumHandlers = S.getNumHandlers();
1208   EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
1209   assert(CatchScope.getNumHandlers() == NumHandlers);
1210 
1211   // If the catch was not required, bail out now.
1212   if (!CatchScope.hasEHBranches()) {
1213     EHStack.popCatch();
1214     return;
1215   }
1216 
1217   // Emit the structure of the EH dispatch for this catch.
1218   emitCatchDispatchBlock(*this, CatchScope);
1219 
1220   // Copy the handler blocks off before we pop the EH stack.  Emitting
1221   // the handlers might scribble on this memory.
1222   SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
1223   memcpy(Handlers.data(), CatchScope.begin(),
1224          NumHandlers * sizeof(EHCatchScope::Handler));
1225 
1226   EHStack.popCatch();
1227 
1228   // The fall-through block.
1229   llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
1230 
1231   // We just emitted the body of the try; jump to the continue block.
1232   if (HaveInsertPoint())
1233     Builder.CreateBr(ContBB);
1234 
1235   // Determine if we need an implicit rethrow for all these catch handlers.
1236   bool ImplicitRethrow = false;
1237   if (IsFnTryBlock)
1238     ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
1239                       isa<CXXConstructorDecl>(CurCodeDecl);
1240 
1241   // Perversely, we emit the handlers backwards precisely because we
1242   // want them to appear in source order.  In all of these cases, the
1243   // catch block will have exactly one predecessor, which will be a
1244   // particular block in the catch dispatch.  However, in the case of
1245   // a catch-all, one of the dispatch blocks will branch to two
1246   // different handlers, and EmitBlockAfterUses will cause the second
1247   // handler to be moved before the first.
1248   for (unsigned I = NumHandlers; I != 0; --I) {
1249     llvm::BasicBlock *CatchBlock = Handlers[I-1].Block;
1250     EmitBlockAfterUses(CatchBlock);
1251 
1252     // Catch the exception if this isn't a catch-all.
1253     const CXXCatchStmt *C = S.getHandler(I-1);
1254 
1255     // Enter a cleanup scope, including the catch variable and the
1256     // end-catch.
1257     RunCleanupsScope CatchScope(*this);
1258 
1259     // Initialize the catch variable and set up the cleanups.
1260     BeginCatch(*this, C);
1261 
1262     // If there's an implicit rethrow, push a normal "cleanup" to call
1263     // _cxa_rethrow.  This needs to happen before __cxa_end_catch is
1264     // called, and so it is pushed after BeginCatch.
1265     if (ImplicitRethrow)
1266       EHStack.pushCleanup<CallRethrow>(NormalCleanup);
1267 
1268     // Perform the body of the catch.
1269     EmitStmt(C->getHandlerBlock());
1270 
1271     // Fall out through the catch cleanups.
1272     CatchScope.ForceCleanup();
1273 
1274     // Branch out of the try.
1275     if (HaveInsertPoint())
1276       Builder.CreateBr(ContBB);
1277   }
1278 
1279   EmitBlock(ContBB);
1280 }
1281 
1282 namespace {
1283   struct CallEndCatchForFinally : EHScopeStack::Cleanup {
1284     llvm::Value *ForEHVar;
1285     llvm::Value *EndCatchFn;
1286     CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
1287       : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
1288 
1289     void Emit(CodeGenFunction &CGF, Flags flags) {
1290       llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
1291       llvm::BasicBlock *CleanupContBB =
1292         CGF.createBasicBlock("finally.cleanup.cont");
1293 
1294       llvm::Value *ShouldEndCatch =
1295         CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
1296       CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
1297       CGF.EmitBlock(EndCatchBB);
1298       CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw
1299       CGF.EmitBlock(CleanupContBB);
1300     }
1301   };
1302 
1303   struct PerformFinally : EHScopeStack::Cleanup {
1304     const Stmt *Body;
1305     llvm::Value *ForEHVar;
1306     llvm::Value *EndCatchFn;
1307     llvm::Value *RethrowFn;
1308     llvm::Value *SavedExnVar;
1309 
1310     PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
1311                    llvm::Value *EndCatchFn,
1312                    llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
1313       : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
1314         RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
1315 
1316     void Emit(CodeGenFunction &CGF, Flags flags) {
1317       // Enter a cleanup to call the end-catch function if one was provided.
1318       if (EndCatchFn)
1319         CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
1320                                                         ForEHVar, EndCatchFn);
1321 
1322       // Save the current cleanup destination in case there are
1323       // cleanups in the finally block.
1324       llvm::Value *SavedCleanupDest =
1325         CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
1326                                "cleanup.dest.saved");
1327 
1328       // Emit the finally block.
1329       CGF.EmitStmt(Body);
1330 
1331       // If the end of the finally is reachable, check whether this was
1332       // for EH.  If so, rethrow.
1333       if (CGF.HaveInsertPoint()) {
1334         llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
1335         llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
1336 
1337         llvm::Value *ShouldRethrow =
1338           CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
1339         CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
1340 
1341         CGF.EmitBlock(RethrowBB);
1342         if (SavedExnVar) {
1343           CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar));
1344         } else {
1345           CGF.EmitCallOrInvoke(RethrowFn);
1346         }
1347         CGF.Builder.CreateUnreachable();
1348 
1349         CGF.EmitBlock(ContBB);
1350 
1351         // Restore the cleanup destination.
1352         CGF.Builder.CreateStore(SavedCleanupDest,
1353                                 CGF.getNormalCleanupDestSlot());
1354       }
1355 
1356       // Leave the end-catch cleanup.  As an optimization, pretend that
1357       // the fallthrough path was inaccessible; we've dynamically proven
1358       // that we're not in the EH case along that path.
1359       if (EndCatchFn) {
1360         CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
1361         CGF.PopCleanupBlock();
1362         CGF.Builder.restoreIP(SavedIP);
1363       }
1364 
1365       // Now make sure we actually have an insertion point or the
1366       // cleanup gods will hate us.
1367       CGF.EnsureInsertPoint();
1368     }
1369   };
1370 }
1371 
1372 /// Enters a finally block for an implementation using zero-cost
1373 /// exceptions.  This is mostly general, but hard-codes some
1374 /// language/ABI-specific behavior in the catch-all sections.
1375 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF,
1376                                          const Stmt *body,
1377                                          llvm::Constant *beginCatchFn,
1378                                          llvm::Constant *endCatchFn,
1379                                          llvm::Constant *rethrowFn) {
1380   assert((beginCatchFn != 0) == (endCatchFn != 0) &&
1381          "begin/end catch functions not paired");
1382   assert(rethrowFn && "rethrow function is required");
1383 
1384   BeginCatchFn = beginCatchFn;
1385 
1386   // The rethrow function has one of the following two types:
1387   //   void (*)()
1388   //   void (*)(void*)
1389   // In the latter case we need to pass it the exception object.
1390   // But we can't use the exception slot because the @finally might
1391   // have a landing pad (which would overwrite the exception slot).
1392   llvm::FunctionType *rethrowFnTy =
1393     cast<llvm::FunctionType>(
1394       cast<llvm::PointerType>(rethrowFn->getType())->getElementType());
1395   SavedExnVar = 0;
1396   if (rethrowFnTy->getNumParams())
1397     SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn");
1398 
1399   // A finally block is a statement which must be executed on any edge
1400   // out of a given scope.  Unlike a cleanup, the finally block may
1401   // contain arbitrary control flow leading out of itself.  In
1402   // addition, finally blocks should always be executed, even if there
1403   // are no catch handlers higher on the stack.  Therefore, we
1404   // surround the protected scope with a combination of a normal
1405   // cleanup (to catch attempts to break out of the block via normal
1406   // control flow) and an EH catch-all (semantically "outside" any try
1407   // statement to which the finally block might have been attached).
1408   // The finally block itself is generated in the context of a cleanup
1409   // which conditionally leaves the catch-all.
1410 
1411   // Jump destination for performing the finally block on an exception
1412   // edge.  We'll never actually reach this block, so unreachable is
1413   // fine.
1414   RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock());
1415 
1416   // Whether the finally block is being executed for EH purposes.
1417   ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh");
1418   CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar);
1419 
1420   // Enter a normal cleanup which will perform the @finally block.
1421   CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body,
1422                                           ForEHVar, endCatchFn,
1423                                           rethrowFn, SavedExnVar);
1424 
1425   // Enter a catch-all scope.
1426   llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall");
1427   EHCatchScope *catchScope = CGF.EHStack.pushCatch(1);
1428   catchScope->setCatchAllHandler(0, catchBB);
1429 }
1430 
1431 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) {
1432   // Leave the finally catch-all.
1433   EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin());
1434   llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block;
1435 
1436   CGF.popCatchScope();
1437 
1438   // If there are any references to the catch-all block, emit it.
1439   if (catchBB->use_empty()) {
1440     delete catchBB;
1441   } else {
1442     CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP();
1443     CGF.EmitBlock(catchBB);
1444 
1445     llvm::Value *exn = 0;
1446 
1447     // If there's a begin-catch function, call it.
1448     if (BeginCatchFn) {
1449       exn = CGF.getExceptionFromSlot();
1450       CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow();
1451     }
1452 
1453     // If we need to remember the exception pointer to rethrow later, do so.
1454     if (SavedExnVar) {
1455       if (!exn) exn = CGF.getExceptionFromSlot();
1456       CGF.Builder.CreateStore(exn, SavedExnVar);
1457     }
1458 
1459     // Tell the cleanups in the finally block that we're do this for EH.
1460     CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar);
1461 
1462     // Thread a jump through the finally cleanup.
1463     CGF.EmitBranchThroughCleanup(RethrowDest);
1464 
1465     CGF.Builder.restoreIP(savedIP);
1466   }
1467 
1468   // Finally, leave the @finally cleanup.
1469   CGF.PopCleanupBlock();
1470 }
1471 
1472 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
1473   if (TerminateLandingPad)
1474     return TerminateLandingPad;
1475 
1476   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1477 
1478   // This will get inserted at the end of the function.
1479   TerminateLandingPad = createBasicBlock("terminate.lpad");
1480   Builder.SetInsertPoint(TerminateLandingPad);
1481 
1482   // Tell the backend that this is a landing pad.
1483   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions());
1484   llvm::LandingPadInst *LPadInst =
1485     Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
1486                              getOpaquePersonalityFn(CGM, Personality), 0);
1487   LPadInst->addClause(getCatchAllValue(*this));
1488 
1489   llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1490   TerminateCall->setDoesNotReturn();
1491   TerminateCall->setDoesNotThrow();
1492   Builder.CreateUnreachable();
1493 
1494   // Restore the saved insertion state.
1495   Builder.restoreIP(SavedIP);
1496 
1497   return TerminateLandingPad;
1498 }
1499 
1500 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
1501   if (TerminateHandler)
1502     return TerminateHandler;
1503 
1504   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1505 
1506   // Set up the terminate handler.  This block is inserted at the very
1507   // end of the function by FinishFunction.
1508   TerminateHandler = createBasicBlock("terminate.handler");
1509   Builder.SetInsertPoint(TerminateHandler);
1510   llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1511   TerminateCall->setDoesNotReturn();
1512   TerminateCall->setDoesNotThrow();
1513   Builder.CreateUnreachable();
1514 
1515   // Restore the saved insertion state.
1516   Builder.restoreIP(SavedIP);
1517 
1518   return TerminateHandler;
1519 }
1520 
1521 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock() {
1522   if (EHResumeBlock) return EHResumeBlock;
1523 
1524   CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
1525 
1526   // We emit a jump to a notional label at the outermost unwind state.
1527   EHResumeBlock = createBasicBlock("eh.resume");
1528   Builder.SetInsertPoint(EHResumeBlock);
1529 
1530   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions());
1531 
1532   // This can always be a call because we necessarily didn't find
1533   // anything on the EH stack which needs our help.
1534   StringRef RethrowName = Personality.getCatchallRethrowFnName();
1535   if (!RethrowName.empty()) {
1536     Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName),
1537                        getExceptionFromSlot())
1538       ->setDoesNotReturn();
1539   } else {
1540     switch (CleanupHackLevel) {
1541     case CHL_MandatoryCatchall:
1542       // In mandatory-catchall mode, we need to use
1543       // _Unwind_Resume_or_Rethrow, or whatever the personality's
1544       // equivalent is.
1545       Builder.CreateCall(getUnwindResumeOrRethrowFn(),
1546                          getExceptionFromSlot())
1547         ->setDoesNotReturn();
1548       break;
1549     case CHL_MandatoryCleanup: {
1550       // In mandatory-cleanup mode, we should use 'resume'.
1551 
1552       // Recreate the landingpad's return value for the 'resume' instruction.
1553       llvm::Value *Exn = getExceptionFromSlot();
1554       llvm::Value *Sel = getSelectorFromSlot();
1555 
1556       llvm::Type *LPadType = llvm::StructType::get(Exn->getType(),
1557                                                    Sel->getType(), NULL);
1558       llvm::Value *LPadVal = llvm::UndefValue::get(LPadType);
1559       LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val");
1560       LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val");
1561 
1562       Builder.CreateResume(LPadVal);
1563       Builder.restoreIP(SavedIP);
1564       return EHResumeBlock;
1565     }
1566     case CHL_Ideal:
1567       // In an idealized mode where we don't have to worry about the
1568       // optimizer combining landing pads, we should just use
1569       // _Unwind_Resume (or the personality's equivalent).
1570       Builder.CreateCall(getUnwindResumeFn(), getExceptionFromSlot())
1571         ->setDoesNotReturn();
1572       break;
1573     }
1574   }
1575 
1576   Builder.CreateUnreachable();
1577 
1578   Builder.restoreIP(SavedIP);
1579 
1580   return EHResumeBlock;
1581 }
1582