1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ exception related code generation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGObjCRuntime.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtCXX.h"
19 #include "llvm/Intrinsics.h"
20 #include "llvm/Support/CallSite.h"
21 
22 using namespace clang;
23 using namespace CodeGen;
24 
25 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) {
26   // void *__cxa_allocate_exception(size_t thrown_size);
27 
28   llvm::FunctionType *FTy =
29     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.SizeTy, /*IsVarArgs=*/false);
30 
31   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
32 }
33 
34 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) {
35   // void __cxa_free_exception(void *thrown_exception);
36 
37   llvm::FunctionType *FTy =
38     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
39 
40   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
41 }
42 
43 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) {
44   // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
45   //                  void (*dest) (void *));
46 
47   llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
48   llvm::FunctionType *FTy =
49     llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false);
50 
51   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
52 }
53 
54 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) {
55   // void __cxa_rethrow();
56 
57   llvm::FunctionType *FTy =
58     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
59 
60   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
61 }
62 
63 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) {
64   // void *__cxa_get_exception_ptr(void*);
65 
66   llvm::FunctionType *FTy =
67     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
68 
69   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
70 }
71 
72 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) {
73   // void *__cxa_begin_catch(void*);
74 
75   llvm::FunctionType *FTy =
76     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
77 
78   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
79 }
80 
81 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) {
82   // void __cxa_end_catch();
83 
84   llvm::FunctionType *FTy =
85     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
86 
87   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
88 }
89 
90 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
91   // void __cxa_call_unexepcted(void *thrown_exception);
92 
93   llvm::FunctionType *FTy =
94     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
95 
96   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
97 }
98 
99 llvm::Constant *CodeGenFunction::getUnwindResumeFn() {
100   llvm::FunctionType *FTy =
101     llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
102 
103   if (CGM.getLangOpts().SjLjExceptions)
104     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
105   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume");
106 }
107 
108 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
109   llvm::FunctionType *FTy =
110     llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
111 
112   if (CGM.getLangOpts().SjLjExceptions)
113     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
114   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
115 }
116 
117 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) {
118   // void __terminate();
119 
120   llvm::FunctionType *FTy =
121     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
122 
123   StringRef name;
124 
125   // In C++, use std::terminate().
126   if (CGF.getLangOpts().CPlusPlus)
127     name = "_ZSt9terminatev"; // FIXME: mangling!
128   else if (CGF.getLangOpts().ObjC1 &&
129            CGF.CGM.getCodeGenOpts().ObjCRuntimeHasTerminate)
130     name = "objc_terminate";
131   else
132     name = "abort";
133   return CGF.CGM.CreateRuntimeFunction(FTy, name);
134 }
135 
136 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF,
137                                             StringRef Name) {
138   llvm::FunctionType *FTy =
139     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
140 
141   return CGF.CGM.CreateRuntimeFunction(FTy, Name);
142 }
143 
144 namespace {
145   /// The exceptions personality for a function.
146   struct EHPersonality {
147     const char *PersonalityFn;
148 
149     // If this is non-null, this personality requires a non-standard
150     // function for rethrowing an exception after a catchall cleanup.
151     // This function must have prototype void(void*).
152     const char *CatchallRethrowFn;
153 
154     static const EHPersonality &get(const LangOptions &Lang);
155     static const EHPersonality GNU_C;
156     static const EHPersonality GNU_C_SJLJ;
157     static const EHPersonality GNU_ObjC;
158     static const EHPersonality GNU_ObjCXX;
159     static const EHPersonality NeXT_ObjC;
160     static const EHPersonality GNU_CPlusPlus;
161     static const EHPersonality GNU_CPlusPlus_SJLJ;
162   };
163 }
164 
165 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 };
166 const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 };
167 const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 };
168 const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0};
169 const EHPersonality
170 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 };
171 const EHPersonality
172 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"};
173 const EHPersonality
174 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 };
175 
176 static const EHPersonality &getCPersonality(const LangOptions &L) {
177   if (L.SjLjExceptions)
178     return EHPersonality::GNU_C_SJLJ;
179   return EHPersonality::GNU_C;
180 }
181 
182 static const EHPersonality &getObjCPersonality(const LangOptions &L) {
183   if (L.NeXTRuntime) {
184     if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC;
185     else return getCPersonality(L);
186   } else {
187     return EHPersonality::GNU_ObjC;
188   }
189 }
190 
191 static const EHPersonality &getCXXPersonality(const LangOptions &L) {
192   if (L.SjLjExceptions)
193     return EHPersonality::GNU_CPlusPlus_SJLJ;
194   else
195     return EHPersonality::GNU_CPlusPlus;
196 }
197 
198 /// Determines the personality function to use when both C++
199 /// and Objective-C exceptions are being caught.
200 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) {
201   // The ObjC personality defers to the C++ personality for non-ObjC
202   // handlers.  Unlike the C++ case, we use the same personality
203   // function on targets using (backend-driven) SJLJ EH.
204   if (L.NeXTRuntime) {
205     if (L.ObjCNonFragileABI)
206       return EHPersonality::NeXT_ObjC;
207 
208     // In the fragile ABI, just use C++ exception handling and hope
209     // they're not doing crazy exception mixing.
210     else
211       return getCXXPersonality(L);
212   }
213 
214   // The GNU runtime's personality function inherently doesn't support
215   // mixed EH.  Use the C++ personality just to avoid returning null.
216   return EHPersonality::GNU_ObjCXX;
217 }
218 
219 const EHPersonality &EHPersonality::get(const LangOptions &L) {
220   if (L.CPlusPlus && L.ObjC1)
221     return getObjCXXPersonality(L);
222   else if (L.CPlusPlus)
223     return getCXXPersonality(L);
224   else if (L.ObjC1)
225     return getObjCPersonality(L);
226   else
227     return getCPersonality(L);
228 }
229 
230 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
231                                         const EHPersonality &Personality) {
232   llvm::Constant *Fn =
233     CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true),
234                               Personality.PersonalityFn);
235   return Fn;
236 }
237 
238 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
239                                         const EHPersonality &Personality) {
240   llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
241   return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
242 }
243 
244 /// Check whether a personality function could reasonably be swapped
245 /// for a C++ personality function.
246 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
247   for (llvm::Constant::use_iterator
248          I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) {
249     llvm::User *User = *I;
250 
251     // Conditionally white-list bitcasts.
252     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) {
253       if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
254       if (!PersonalityHasOnlyCXXUses(CE))
255         return false;
256       continue;
257     }
258 
259     // Otherwise, it has to be a landingpad instruction.
260     llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User);
261     if (!LPI) return false;
262 
263     for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) {
264       // Look for something that would've been returned by the ObjC
265       // runtime's GetEHType() method.
266       llvm::Value *Val = LPI->getClause(I)->stripPointerCasts();
267       if (LPI->isCatch(I)) {
268         // Check if the catch value has the ObjC prefix.
269         if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val))
270           // ObjC EH selector entries are always global variables with
271           // names starting like this.
272           if (GV->getName().startswith("OBJC_EHTYPE"))
273             return false;
274       } else {
275         // Check if any of the filter values have the ObjC prefix.
276         llvm::Constant *CVal = cast<llvm::Constant>(Val);
277         for (llvm::User::op_iterator
278                II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) {
279           if (llvm::GlobalVariable *GV =
280               cast<llvm::GlobalVariable>((*II)->stripPointerCasts()))
281             // ObjC EH selector entries are always global variables with
282             // names starting like this.
283             if (GV->getName().startswith("OBJC_EHTYPE"))
284               return false;
285         }
286       }
287     }
288   }
289 
290   return true;
291 }
292 
293 /// Try to use the C++ personality function in ObjC++.  Not doing this
294 /// can cause some incompatibilities with gcc, which is more
295 /// aggressive about only using the ObjC++ personality in a function
296 /// when it really needs it.
297 void CodeGenModule::SimplifyPersonality() {
298   // For now, this is really a Darwin-specific operation.
299   if (!Context.getTargetInfo().getTriple().isOSDarwin())
300     return;
301 
302   // If we're not in ObjC++ -fexceptions, there's nothing to do.
303   if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions)
304     return;
305 
306   const EHPersonality &ObjCXX = EHPersonality::get(LangOpts);
307   const EHPersonality &CXX = getCXXPersonality(LangOpts);
308   if (&ObjCXX == &CXX)
309     return;
310 
311   assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 &&
312          "Different EHPersonalities using the same personality function.");
313 
314   llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn);
315 
316   // Nothing to do if it's unused.
317   if (!Fn || Fn->use_empty()) return;
318 
319   // Can't do the optimization if it has non-C++ uses.
320   if (!PersonalityHasOnlyCXXUses(Fn)) return;
321 
322   // Create the C++ personality function and kill off the old
323   // function.
324   llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
325 
326   // This can happen if the user is screwing with us.
327   if (Fn->getType() != CXXFn->getType()) return;
328 
329   Fn->replaceAllUsesWith(CXXFn);
330   Fn->eraseFromParent();
331 }
332 
333 /// Returns the value to inject into a selector to indicate the
334 /// presence of a catch-all.
335 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
336   // Possibly we should use @llvm.eh.catch.all.value here.
337   return llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
338 }
339 
340 namespace {
341   /// A cleanup to free the exception object if its initialization
342   /// throws.
343   struct FreeException : EHScopeStack::Cleanup {
344     llvm::Value *exn;
345     FreeException(llvm::Value *exn) : exn(exn) {}
346     void Emit(CodeGenFunction &CGF, Flags flags) {
347       CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn)
348         ->setDoesNotThrow();
349     }
350   };
351 }
352 
353 // Emits an exception expression into the given location.  This
354 // differs from EmitAnyExprToMem only in that, if a final copy-ctor
355 // call is required, an exception within that copy ctor causes
356 // std::terminate to be invoked.
357 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e,
358                              llvm::Value *addr) {
359   // Make sure the exception object is cleaned up if there's an
360   // exception during initialization.
361   CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr);
362   EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin();
363 
364   // __cxa_allocate_exception returns a void*;  we need to cast this
365   // to the appropriate type for the object.
366   llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo();
367   llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty);
368 
369   // FIXME: this isn't quite right!  If there's a final unelided call
370   // to a copy constructor, then according to [except.terminate]p1 we
371   // must call std::terminate() if that constructor throws, because
372   // technically that copy occurs after the exception expression is
373   // evaluated but before the exception is caught.  But the best way
374   // to handle that is to teach EmitAggExpr to do the final copy
375   // differently if it can't be elided.
376   CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(),
377                        /*IsInit*/ true);
378 
379   // Deactivate the cleanup block.
380   CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr));
381 }
382 
383 llvm::Value *CodeGenFunction::getExceptionSlot() {
384   if (!ExceptionSlot)
385     ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot");
386   return ExceptionSlot;
387 }
388 
389 llvm::Value *CodeGenFunction::getEHSelectorSlot() {
390   if (!EHSelectorSlot)
391     EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot");
392   return EHSelectorSlot;
393 }
394 
395 llvm::Value *CodeGenFunction::getExceptionFromSlot() {
396   return Builder.CreateLoad(getExceptionSlot(), "exn");
397 }
398 
399 llvm::Value *CodeGenFunction::getSelectorFromSlot() {
400   return Builder.CreateLoad(getEHSelectorSlot(), "sel");
401 }
402 
403 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
404   if (!E->getSubExpr()) {
405     if (getInvokeDest()) {
406       Builder.CreateInvoke(getReThrowFn(*this),
407                            getUnreachableBlock(),
408                            getInvokeDest())
409         ->setDoesNotReturn();
410     } else {
411       Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn();
412       Builder.CreateUnreachable();
413     }
414 
415     // throw is an expression, and the expression emitters expect us
416     // to leave ourselves at a valid insertion point.
417     EmitBlock(createBasicBlock("throw.cont"));
418 
419     return;
420   }
421 
422   QualType ThrowType = E->getSubExpr()->getType();
423 
424   // Now allocate the exception object.
425   llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
426   uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
427 
428   llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this);
429   llvm::CallInst *ExceptionPtr =
430     Builder.CreateCall(AllocExceptionFn,
431                        llvm::ConstantInt::get(SizeTy, TypeSize),
432                        "exception");
433   ExceptionPtr->setDoesNotThrow();
434 
435   EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
436 
437   // Now throw the exception.
438   llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
439                                                          /*ForEH=*/true);
440 
441   // The address of the destructor.  If the exception type has a
442   // trivial destructor (or isn't a record), we just pass null.
443   llvm::Constant *Dtor = 0;
444   if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
445     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
446     if (!Record->hasTrivialDestructor()) {
447       CXXDestructorDecl *DtorD = Record->getDestructor();
448       Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
449       Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
450     }
451   }
452   if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
453 
454   if (getInvokeDest()) {
455     llvm::InvokeInst *ThrowCall =
456       Builder.CreateInvoke3(getThrowFn(*this),
457                             getUnreachableBlock(), getInvokeDest(),
458                             ExceptionPtr, TypeInfo, Dtor);
459     ThrowCall->setDoesNotReturn();
460   } else {
461     llvm::CallInst *ThrowCall =
462       Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor);
463     ThrowCall->setDoesNotReturn();
464     Builder.CreateUnreachable();
465   }
466 
467   // throw is an expression, and the expression emitters expect us
468   // to leave ourselves at a valid insertion point.
469   EmitBlock(createBasicBlock("throw.cont"));
470 }
471 
472 void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
473   if (!CGM.getLangOpts().CXXExceptions)
474     return;
475 
476   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
477   if (FD == 0)
478     return;
479   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
480   if (Proto == 0)
481     return;
482 
483   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
484   if (isNoexceptExceptionSpec(EST)) {
485     if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
486       // noexcept functions are simple terminate scopes.
487       EHStack.pushTerminate();
488     }
489   } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
490     unsigned NumExceptions = Proto->getNumExceptions();
491     EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
492 
493     for (unsigned I = 0; I != NumExceptions; ++I) {
494       QualType Ty = Proto->getExceptionType(I);
495       QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
496       llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType,
497                                                         /*ForEH=*/true);
498       Filter->setFilter(I, EHType);
499     }
500   }
501 }
502 
503 /// Emit the dispatch block for a filter scope if necessary.
504 static void emitFilterDispatchBlock(CodeGenFunction &CGF,
505                                     EHFilterScope &filterScope) {
506   llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock();
507   if (!dispatchBlock) return;
508   if (dispatchBlock->use_empty()) {
509     delete dispatchBlock;
510     return;
511   }
512 
513   CGF.EmitBlockAfterUses(dispatchBlock);
514 
515   // If this isn't a catch-all filter, we need to check whether we got
516   // here because the filter triggered.
517   if (filterScope.getNumFilters()) {
518     // Load the selector value.
519     llvm::Value *selector = CGF.getSelectorFromSlot();
520     llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected");
521 
522     llvm::Value *zero = CGF.Builder.getInt32(0);
523     llvm::Value *failsFilter =
524       CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails");
525     CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock());
526 
527     CGF.EmitBlock(unexpectedBB);
528   }
529 
530   // Call __cxa_call_unexpected.  This doesn't need to be an invoke
531   // because __cxa_call_unexpected magically filters exceptions
532   // according to the last landing pad the exception was thrown
533   // into.  Seriously.
534   llvm::Value *exn = CGF.getExceptionFromSlot();
535   CGF.Builder.CreateCall(getUnexpectedFn(CGF), exn)
536     ->setDoesNotReturn();
537   CGF.Builder.CreateUnreachable();
538 }
539 
540 void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
541   if (!CGM.getLangOpts().CXXExceptions)
542     return;
543 
544   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
545   if (FD == 0)
546     return;
547   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
548   if (Proto == 0)
549     return;
550 
551   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
552   if (isNoexceptExceptionSpec(EST)) {
553     if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
554       EHStack.popTerminate();
555     }
556   } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
557     EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin());
558     emitFilterDispatchBlock(*this, filterScope);
559     EHStack.popFilter();
560   }
561 }
562 
563 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
564   EnterCXXTryStmt(S);
565   EmitStmt(S.getTryBlock());
566   ExitCXXTryStmt(S);
567 }
568 
569 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
570   unsigned NumHandlers = S.getNumHandlers();
571   EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
572 
573   for (unsigned I = 0; I != NumHandlers; ++I) {
574     const CXXCatchStmt *C = S.getHandler(I);
575 
576     llvm::BasicBlock *Handler = createBasicBlock("catch");
577     if (C->getExceptionDecl()) {
578       // FIXME: Dropping the reference type on the type into makes it
579       // impossible to correctly implement catch-by-reference
580       // semantics for pointers.  Unfortunately, this is what all
581       // existing compilers do, and it's not clear that the standard
582       // personality routine is capable of doing this right.  See C++ DR 388:
583       //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
584       QualType CaughtType = C->getCaughtType();
585       CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
586 
587       llvm::Value *TypeInfo = 0;
588       if (CaughtType->isObjCObjectPointerType())
589         TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
590       else
591         TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true);
592       CatchScope->setHandler(I, TypeInfo, Handler);
593     } else {
594       // No exception decl indicates '...', a catch-all.
595       CatchScope->setCatchAllHandler(I, Handler);
596     }
597   }
598 }
599 
600 llvm::BasicBlock *
601 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) {
602   // The dispatch block for the end of the scope chain is a block that
603   // just resumes unwinding.
604   if (si == EHStack.stable_end())
605     return getEHResumeBlock();
606 
607   // Otherwise, we should look at the actual scope.
608   EHScope &scope = *EHStack.find(si);
609 
610   llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock();
611   if (!dispatchBlock) {
612     switch (scope.getKind()) {
613     case EHScope::Catch: {
614       // Apply a special case to a single catch-all.
615       EHCatchScope &catchScope = cast<EHCatchScope>(scope);
616       if (catchScope.getNumHandlers() == 1 &&
617           catchScope.getHandler(0).isCatchAll()) {
618         dispatchBlock = catchScope.getHandler(0).Block;
619 
620       // Otherwise, make a dispatch block.
621       } else {
622         dispatchBlock = createBasicBlock("catch.dispatch");
623       }
624       break;
625     }
626 
627     case EHScope::Cleanup:
628       dispatchBlock = createBasicBlock("ehcleanup");
629       break;
630 
631     case EHScope::Filter:
632       dispatchBlock = createBasicBlock("filter.dispatch");
633       break;
634 
635     case EHScope::Terminate:
636       dispatchBlock = getTerminateHandler();
637       break;
638     }
639     scope.setCachedEHDispatchBlock(dispatchBlock);
640   }
641   return dispatchBlock;
642 }
643 
644 /// Check whether this is a non-EH scope, i.e. a scope which doesn't
645 /// affect exception handling.  Currently, the only non-EH scopes are
646 /// normal-only cleanup scopes.
647 static bool isNonEHScope(const EHScope &S) {
648   switch (S.getKind()) {
649   case EHScope::Cleanup:
650     return !cast<EHCleanupScope>(S).isEHCleanup();
651   case EHScope::Filter:
652   case EHScope::Catch:
653   case EHScope::Terminate:
654     return false;
655   }
656 
657   llvm_unreachable("Invalid EHScope Kind!");
658 }
659 
660 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
661   assert(EHStack.requiresLandingPad());
662   assert(!EHStack.empty());
663 
664   if (!CGM.getLangOpts().Exceptions)
665     return 0;
666 
667   // Check the innermost scope for a cached landing pad.  If this is
668   // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
669   llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
670   if (LP) return LP;
671 
672   // Build the landing pad for this scope.
673   LP = EmitLandingPad();
674   assert(LP);
675 
676   // Cache the landing pad on the innermost scope.  If this is a
677   // non-EH scope, cache the landing pad on the enclosing scope, too.
678   for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
679     ir->setCachedLandingPad(LP);
680     if (!isNonEHScope(*ir)) break;
681   }
682 
683   return LP;
684 }
685 
686 // This code contains a hack to work around a design flaw in
687 // LLVM's EH IR which breaks semantics after inlining.  This same
688 // hack is implemented in llvm-gcc.
689 //
690 // The LLVM EH abstraction is basically a thin veneer over the
691 // traditional GCC zero-cost design: for each range of instructions
692 // in the function, there is (at most) one "landing pad" with an
693 // associated chain of EH actions.  A language-specific personality
694 // function interprets this chain of actions and (1) decides whether
695 // or not to resume execution at the landing pad and (2) if so,
696 // provides an integer indicating why it's stopping.  In LLVM IR,
697 // the association of a landing pad with a range of instructions is
698 // achieved via an invoke instruction, the chain of actions becomes
699 // the arguments to the @llvm.eh.selector call, and the selector
700 // call returns the integer indicator.  Other than the required
701 // presence of two intrinsic function calls in the landing pad,
702 // the IR exactly describes the layout of the output code.
703 //
704 // A principal advantage of this design is that it is completely
705 // language-agnostic; in theory, the LLVM optimizers can treat
706 // landing pads neutrally, and targets need only know how to lower
707 // the intrinsics to have a functioning exceptions system (assuming
708 // that platform exceptions follow something approximately like the
709 // GCC design).  Unfortunately, landing pads cannot be combined in a
710 // language-agnostic way: given selectors A and B, there is no way
711 // to make a single landing pad which faithfully represents the
712 // semantics of propagating an exception first through A, then
713 // through B, without knowing how the personality will interpret the
714 // (lowered form of the) selectors.  This means that inlining has no
715 // choice but to crudely chain invokes (i.e., to ignore invokes in
716 // the inlined function, but to turn all unwindable calls into
717 // invokes), which is only semantically valid if every unwind stops
718 // at every landing pad.
719 //
720 // Therefore, the invoke-inline hack is to guarantee that every
721 // landing pad has a catch-all.
722 enum CleanupHackLevel_t {
723   /// A level of hack that requires that all landing pads have
724   /// catch-alls.
725   CHL_MandatoryCatchall,
726 
727   /// A level of hack that requires that all landing pads handle
728   /// cleanups.
729   CHL_MandatoryCleanup,
730 
731   /// No hacks at all;  ideal IR generation.
732   CHL_Ideal
733 };
734 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup;
735 
736 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
737   assert(EHStack.requiresLandingPad());
738 
739   EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope());
740   switch (innermostEHScope.getKind()) {
741   case EHScope::Terminate:
742     return getTerminateLandingPad();
743 
744   case EHScope::Catch:
745   case EHScope::Cleanup:
746   case EHScope::Filter:
747     if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad())
748       return lpad;
749   }
750 
751   // Save the current IR generation state.
752   CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP();
753 
754   const EHPersonality &personality = EHPersonality::get(getLangOpts());
755 
756   // Create and configure the landing pad.
757   llvm::BasicBlock *lpad = createBasicBlock("lpad");
758   EmitBlock(lpad);
759 
760   llvm::LandingPadInst *LPadInst =
761     Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
762                              getOpaquePersonalityFn(CGM, personality), 0);
763 
764   llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0);
765   Builder.CreateStore(LPadExn, getExceptionSlot());
766   llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1);
767   Builder.CreateStore(LPadSel, getEHSelectorSlot());
768 
769   // Save the exception pointer.  It's safe to use a single exception
770   // pointer per function because EH cleanups can never have nested
771   // try/catches.
772   // Build the landingpad instruction.
773 
774   // Accumulate all the handlers in scope.
775   bool hasCatchAll = false;
776   bool hasCleanup = false;
777   bool hasFilter = false;
778   SmallVector<llvm::Value*, 4> filterTypes;
779   llvm::SmallPtrSet<llvm::Value*, 4> catchTypes;
780   for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
781          I != E; ++I) {
782 
783     switch (I->getKind()) {
784     case EHScope::Cleanup:
785       // If we have a cleanup, remember that.
786       hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup());
787       continue;
788 
789     case EHScope::Filter: {
790       assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
791       assert(!hasCatchAll && "EH filter reached after catch-all");
792 
793       // Filter scopes get added to the landingpad in weird ways.
794       EHFilterScope &filter = cast<EHFilterScope>(*I);
795       hasFilter = true;
796 
797       // Add all the filter values.
798       for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i)
799         filterTypes.push_back(filter.getFilter(i));
800       goto done;
801     }
802 
803     case EHScope::Terminate:
804       // Terminate scopes are basically catch-alls.
805       assert(!hasCatchAll);
806       hasCatchAll = true;
807       goto done;
808 
809     case EHScope::Catch:
810       break;
811     }
812 
813     EHCatchScope &catchScope = cast<EHCatchScope>(*I);
814     for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) {
815       EHCatchScope::Handler handler = catchScope.getHandler(hi);
816 
817       // If this is a catch-all, register that and abort.
818       if (!handler.Type) {
819         assert(!hasCatchAll);
820         hasCatchAll = true;
821         goto done;
822       }
823 
824       // Check whether we already have a handler for this type.
825       if (catchTypes.insert(handler.Type))
826         // If not, add it directly to the landingpad.
827         LPadInst->addClause(handler.Type);
828     }
829   }
830 
831  done:
832   // If we have a catch-all, add null to the landingpad.
833   assert(!(hasCatchAll && hasFilter));
834   if (hasCatchAll) {
835     LPadInst->addClause(getCatchAllValue(*this));
836 
837   // If we have an EH filter, we need to add those handlers in the
838   // right place in the landingpad, which is to say, at the end.
839   } else if (hasFilter) {
840     // Create a filter expression: a constant array indicating which filter
841     // types there are. The personality routine only lands here if the filter
842     // doesn't match.
843     llvm::SmallVector<llvm::Constant*, 8> Filters;
844     llvm::ArrayType *AType =
845       llvm::ArrayType::get(!filterTypes.empty() ?
846                              filterTypes[0]->getType() : Int8PtrTy,
847                            filterTypes.size());
848 
849     for (unsigned i = 0, e = filterTypes.size(); i != e; ++i)
850       Filters.push_back(cast<llvm::Constant>(filterTypes[i]));
851     llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters);
852     LPadInst->addClause(FilterArray);
853 
854     // Also check whether we need a cleanup.
855     if (hasCleanup)
856       LPadInst->setCleanup(true);
857 
858   // Otherwise, signal that we at least have cleanups.
859   } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) {
860     if (CleanupHackLevel == CHL_MandatoryCatchall)
861       LPadInst->addClause(getCatchAllValue(*this));
862     else
863       LPadInst->setCleanup(true);
864   }
865 
866   assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) &&
867          "landingpad instruction has no clauses!");
868 
869   // Tell the backend how to generate the landing pad.
870   Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope()));
871 
872   // Restore the old IR generation state.
873   Builder.restoreIP(savedIP);
874 
875   return lpad;
876 }
877 
878 namespace {
879   /// A cleanup to call __cxa_end_catch.  In many cases, the caught
880   /// exception type lets us state definitively that the thrown exception
881   /// type does not have a destructor.  In particular:
882   ///   - Catch-alls tell us nothing, so we have to conservatively
883   ///     assume that the thrown exception might have a destructor.
884   ///   - Catches by reference behave according to their base types.
885   ///   - Catches of non-record types will only trigger for exceptions
886   ///     of non-record types, which never have destructors.
887   ///   - Catches of record types can trigger for arbitrary subclasses
888   ///     of the caught type, so we have to assume the actual thrown
889   ///     exception type might have a throwing destructor, even if the
890   ///     caught type's destructor is trivial or nothrow.
891   struct CallEndCatch : EHScopeStack::Cleanup {
892     CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
893     bool MightThrow;
894 
895     void Emit(CodeGenFunction &CGF, Flags flags) {
896       if (!MightThrow) {
897         CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow();
898         return;
899       }
900 
901       CGF.EmitCallOrInvoke(getEndCatchFn(CGF));
902     }
903   };
904 }
905 
906 /// Emits a call to __cxa_begin_catch and enters a cleanup to call
907 /// __cxa_end_catch.
908 ///
909 /// \param EndMightThrow - true if __cxa_end_catch might throw
910 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
911                                    llvm::Value *Exn,
912                                    bool EndMightThrow) {
913   llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn);
914   Call->setDoesNotThrow();
915 
916   CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
917 
918   return Call;
919 }
920 
921 /// A "special initializer" callback for initializing a catch
922 /// parameter during catch initialization.
923 static void InitCatchParam(CodeGenFunction &CGF,
924                            const VarDecl &CatchParam,
925                            llvm::Value *ParamAddr) {
926   // Load the exception from where the landing pad saved it.
927   llvm::Value *Exn = CGF.getExceptionFromSlot();
928 
929   CanQualType CatchType =
930     CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
931   llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
932 
933   // If we're catching by reference, we can just cast the object
934   // pointer to the appropriate pointer.
935   if (isa<ReferenceType>(CatchType)) {
936     QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
937     bool EndCatchMightThrow = CaughtType->isRecordType();
938 
939     // __cxa_begin_catch returns the adjusted object pointer.
940     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
941 
942     // We have no way to tell the personality function that we're
943     // catching by reference, so if we're catching a pointer,
944     // __cxa_begin_catch will actually return that pointer by value.
945     if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
946       QualType PointeeType = PT->getPointeeType();
947 
948       // When catching by reference, generally we should just ignore
949       // this by-value pointer and use the exception object instead.
950       if (!PointeeType->isRecordType()) {
951 
952         // Exn points to the struct _Unwind_Exception header, which
953         // we have to skip past in order to reach the exception data.
954         unsigned HeaderSize =
955           CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
956         AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
957 
958       // However, if we're catching a pointer-to-record type that won't
959       // work, because the personality function might have adjusted
960       // the pointer.  There's actually no way for us to fully satisfy
961       // the language/ABI contract here:  we can't use Exn because it
962       // might have the wrong adjustment, but we can't use the by-value
963       // pointer because it's off by a level of abstraction.
964       //
965       // The current solution is to dump the adjusted pointer into an
966       // alloca, which breaks language semantics (because changing the
967       // pointer doesn't change the exception) but at least works.
968       // The better solution would be to filter out non-exact matches
969       // and rethrow them, but this is tricky because the rethrow
970       // really needs to be catchable by other sites at this landing
971       // pad.  The best solution is to fix the personality function.
972       } else {
973         // Pull the pointer for the reference type off.
974         llvm::Type *PtrTy =
975           cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
976 
977         // Create the temporary and write the adjusted pointer into it.
978         llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
979         llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
980         CGF.Builder.CreateStore(Casted, ExnPtrTmp);
981 
982         // Bind the reference to the temporary.
983         AdjustedExn = ExnPtrTmp;
984       }
985     }
986 
987     llvm::Value *ExnCast =
988       CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
989     CGF.Builder.CreateStore(ExnCast, ParamAddr);
990     return;
991   }
992 
993   // Non-aggregates (plus complexes).
994   bool IsComplex = false;
995   if (!CGF.hasAggregateLLVMType(CatchType) ||
996       (IsComplex = CatchType->isAnyComplexType())) {
997     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
998 
999     // If the catch type is a pointer type, __cxa_begin_catch returns
1000     // the pointer by value.
1001     if (CatchType->hasPointerRepresentation()) {
1002       llvm::Value *CastExn =
1003         CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
1004 
1005       switch (CatchType.getQualifiers().getObjCLifetime()) {
1006       case Qualifiers::OCL_Strong:
1007         CastExn = CGF.EmitARCRetainNonBlock(CastExn);
1008         // fallthrough
1009 
1010       case Qualifiers::OCL_None:
1011       case Qualifiers::OCL_ExplicitNone:
1012       case Qualifiers::OCL_Autoreleasing:
1013         CGF.Builder.CreateStore(CastExn, ParamAddr);
1014         return;
1015 
1016       case Qualifiers::OCL_Weak:
1017         CGF.EmitARCInitWeak(ParamAddr, CastExn);
1018         return;
1019       }
1020       llvm_unreachable("bad ownership qualifier!");
1021     }
1022 
1023     // Otherwise, it returns a pointer into the exception object.
1024 
1025     llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1026     llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1027 
1028     if (IsComplex) {
1029       CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false),
1030                              ParamAddr, /*volatile*/ false);
1031     } else {
1032       unsigned Alignment =
1033         CGF.getContext().getDeclAlign(&CatchParam).getQuantity();
1034       llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar");
1035       CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment,
1036                             CatchType);
1037     }
1038     return;
1039   }
1040 
1041   assert(isa<RecordType>(CatchType) && "unexpected catch type!");
1042 
1043   llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1044 
1045   // Check for a copy expression.  If we don't have a copy expression,
1046   // that means a trivial copy is okay.
1047   const Expr *copyExpr = CatchParam.getInit();
1048   if (!copyExpr) {
1049     llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
1050     llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1051     CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
1052     return;
1053   }
1054 
1055   // We have to call __cxa_get_exception_ptr to get the adjusted
1056   // pointer before copying.
1057   llvm::CallInst *rawAdjustedExn =
1058     CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn);
1059   rawAdjustedExn->setDoesNotThrow();
1060 
1061   // Cast that to the appropriate type.
1062   llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1063 
1064   // The copy expression is defined in terms of an OpaqueValueExpr.
1065   // Find it and map it to the adjusted expression.
1066   CodeGenFunction::OpaqueValueMapping
1067     opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
1068            CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
1069 
1070   // Call the copy ctor in a terminate scope.
1071   CGF.EHStack.pushTerminate();
1072 
1073   // Perform the copy construction.
1074   CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam);
1075   CGF.EmitAggExpr(copyExpr,
1076                   AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(),
1077                                         AggValueSlot::IsNotDestructed,
1078                                         AggValueSlot::DoesNotNeedGCBarriers,
1079                                         AggValueSlot::IsNotAliased));
1080 
1081   // Leave the terminate scope.
1082   CGF.EHStack.popTerminate();
1083 
1084   // Undo the opaque value mapping.
1085   opaque.pop();
1086 
1087   // Finally we can call __cxa_begin_catch.
1088   CallBeginCatch(CGF, Exn, true);
1089 }
1090 
1091 /// Begins a catch statement by initializing the catch variable and
1092 /// calling __cxa_begin_catch.
1093 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) {
1094   // We have to be very careful with the ordering of cleanups here:
1095   //   C++ [except.throw]p4:
1096   //     The destruction [of the exception temporary] occurs
1097   //     immediately after the destruction of the object declared in
1098   //     the exception-declaration in the handler.
1099   //
1100   // So the precise ordering is:
1101   //   1.  Construct catch variable.
1102   //   2.  __cxa_begin_catch
1103   //   3.  Enter __cxa_end_catch cleanup
1104   //   4.  Enter dtor cleanup
1105   //
1106   // We do this by using a slightly abnormal initialization process.
1107   // Delegation sequence:
1108   //   - ExitCXXTryStmt opens a RunCleanupsScope
1109   //     - EmitAutoVarAlloca creates the variable and debug info
1110   //       - InitCatchParam initializes the variable from the exception
1111   //       - CallBeginCatch calls __cxa_begin_catch
1112   //       - CallBeginCatch enters the __cxa_end_catch cleanup
1113   //     - EmitAutoVarCleanups enters the variable destructor cleanup
1114   //   - EmitCXXTryStmt emits the code for the catch body
1115   //   - EmitCXXTryStmt close the RunCleanupsScope
1116 
1117   VarDecl *CatchParam = S->getExceptionDecl();
1118   if (!CatchParam) {
1119     llvm::Value *Exn = CGF.getExceptionFromSlot();
1120     CallBeginCatch(CGF, Exn, true);
1121     return;
1122   }
1123 
1124   // Emit the local.
1125   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
1126   InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF));
1127   CGF.EmitAutoVarCleanups(var);
1128 }
1129 
1130 namespace {
1131   struct CallRethrow : EHScopeStack::Cleanup {
1132     void Emit(CodeGenFunction &CGF, Flags flags) {
1133       CGF.EmitCallOrInvoke(getReThrowFn(CGF));
1134     }
1135   };
1136 }
1137 
1138 /// Emit the structure of the dispatch block for the given catch scope.
1139 /// It is an invariant that the dispatch block already exists.
1140 static void emitCatchDispatchBlock(CodeGenFunction &CGF,
1141                                    EHCatchScope &catchScope) {
1142   llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock();
1143   assert(dispatchBlock);
1144 
1145   // If there's only a single catch-all, getEHDispatchBlock returned
1146   // that catch-all as the dispatch block.
1147   if (catchScope.getNumHandlers() == 1 &&
1148       catchScope.getHandler(0).isCatchAll()) {
1149     assert(dispatchBlock == catchScope.getHandler(0).Block);
1150     return;
1151   }
1152 
1153   CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP();
1154   CGF.EmitBlockAfterUses(dispatchBlock);
1155 
1156   // Select the right handler.
1157   llvm::Value *llvm_eh_typeid_for =
1158     CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
1159 
1160   // Load the selector value.
1161   llvm::Value *selector = CGF.getSelectorFromSlot();
1162 
1163   // Test against each of the exception types we claim to catch.
1164   for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) {
1165     assert(i < e && "ran off end of handlers!");
1166     const EHCatchScope::Handler &handler = catchScope.getHandler(i);
1167 
1168     llvm::Value *typeValue = handler.Type;
1169     assert(typeValue && "fell into catch-all case!");
1170     typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy);
1171 
1172     // Figure out the next block.
1173     bool nextIsEnd;
1174     llvm::BasicBlock *nextBlock;
1175 
1176     // If this is the last handler, we're at the end, and the next
1177     // block is the block for the enclosing EH scope.
1178     if (i + 1 == e) {
1179       nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope());
1180       nextIsEnd = true;
1181 
1182     // If the next handler is a catch-all, we're at the end, and the
1183     // next block is that handler.
1184     } else if (catchScope.getHandler(i+1).isCatchAll()) {
1185       nextBlock = catchScope.getHandler(i+1).Block;
1186       nextIsEnd = true;
1187 
1188     // Otherwise, we're not at the end and we need a new block.
1189     } else {
1190       nextBlock = CGF.createBasicBlock("catch.fallthrough");
1191       nextIsEnd = false;
1192     }
1193 
1194     // Figure out the catch type's index in the LSDA's type table.
1195     llvm::CallInst *typeIndex =
1196       CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue);
1197     typeIndex->setDoesNotThrow();
1198 
1199     llvm::Value *matchesTypeIndex =
1200       CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches");
1201     CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock);
1202 
1203     // If the next handler is a catch-all, we're completely done.
1204     if (nextIsEnd) {
1205       CGF.Builder.restoreIP(savedIP);
1206       return;
1207     }
1208     // Otherwise we need to emit and continue at that block.
1209     CGF.EmitBlock(nextBlock);
1210   }
1211 }
1212 
1213 void CodeGenFunction::popCatchScope() {
1214   EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin());
1215   if (catchScope.hasEHBranches())
1216     emitCatchDispatchBlock(*this, catchScope);
1217   EHStack.popCatch();
1218 }
1219 
1220 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
1221   unsigned NumHandlers = S.getNumHandlers();
1222   EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
1223   assert(CatchScope.getNumHandlers() == NumHandlers);
1224 
1225   // If the catch was not required, bail out now.
1226   if (!CatchScope.hasEHBranches()) {
1227     EHStack.popCatch();
1228     return;
1229   }
1230 
1231   // Emit the structure of the EH dispatch for this catch.
1232   emitCatchDispatchBlock(*this, CatchScope);
1233 
1234   // Copy the handler blocks off before we pop the EH stack.  Emitting
1235   // the handlers might scribble on this memory.
1236   SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
1237   memcpy(Handlers.data(), CatchScope.begin(),
1238          NumHandlers * sizeof(EHCatchScope::Handler));
1239 
1240   EHStack.popCatch();
1241 
1242   // The fall-through block.
1243   llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
1244 
1245   // We just emitted the body of the try; jump to the continue block.
1246   if (HaveInsertPoint())
1247     Builder.CreateBr(ContBB);
1248 
1249   // Determine if we need an implicit rethrow for all these catch handlers.
1250   bool ImplicitRethrow = false;
1251   if (IsFnTryBlock)
1252     ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
1253                       isa<CXXConstructorDecl>(CurCodeDecl);
1254 
1255   // Perversely, we emit the handlers backwards precisely because we
1256   // want them to appear in source order.  In all of these cases, the
1257   // catch block will have exactly one predecessor, which will be a
1258   // particular block in the catch dispatch.  However, in the case of
1259   // a catch-all, one of the dispatch blocks will branch to two
1260   // different handlers, and EmitBlockAfterUses will cause the second
1261   // handler to be moved before the first.
1262   for (unsigned I = NumHandlers; I != 0; --I) {
1263     llvm::BasicBlock *CatchBlock = Handlers[I-1].Block;
1264     EmitBlockAfterUses(CatchBlock);
1265 
1266     // Catch the exception if this isn't a catch-all.
1267     const CXXCatchStmt *C = S.getHandler(I-1);
1268 
1269     // Enter a cleanup scope, including the catch variable and the
1270     // end-catch.
1271     RunCleanupsScope CatchScope(*this);
1272 
1273     // Initialize the catch variable and set up the cleanups.
1274     BeginCatch(*this, C);
1275 
1276     // If there's an implicit rethrow, push a normal "cleanup" to call
1277     // _cxa_rethrow.  This needs to happen before __cxa_end_catch is
1278     // called, and so it is pushed after BeginCatch.
1279     if (ImplicitRethrow)
1280       EHStack.pushCleanup<CallRethrow>(NormalCleanup);
1281 
1282     // Perform the body of the catch.
1283     EmitStmt(C->getHandlerBlock());
1284 
1285     // Fall out through the catch cleanups.
1286     CatchScope.ForceCleanup();
1287 
1288     // Branch out of the try.
1289     if (HaveInsertPoint())
1290       Builder.CreateBr(ContBB);
1291   }
1292 
1293   EmitBlock(ContBB);
1294 }
1295 
1296 namespace {
1297   struct CallEndCatchForFinally : EHScopeStack::Cleanup {
1298     llvm::Value *ForEHVar;
1299     llvm::Value *EndCatchFn;
1300     CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
1301       : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
1302 
1303     void Emit(CodeGenFunction &CGF, Flags flags) {
1304       llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
1305       llvm::BasicBlock *CleanupContBB =
1306         CGF.createBasicBlock("finally.cleanup.cont");
1307 
1308       llvm::Value *ShouldEndCatch =
1309         CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
1310       CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
1311       CGF.EmitBlock(EndCatchBB);
1312       CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw
1313       CGF.EmitBlock(CleanupContBB);
1314     }
1315   };
1316 
1317   struct PerformFinally : EHScopeStack::Cleanup {
1318     const Stmt *Body;
1319     llvm::Value *ForEHVar;
1320     llvm::Value *EndCatchFn;
1321     llvm::Value *RethrowFn;
1322     llvm::Value *SavedExnVar;
1323 
1324     PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
1325                    llvm::Value *EndCatchFn,
1326                    llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
1327       : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
1328         RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
1329 
1330     void Emit(CodeGenFunction &CGF, Flags flags) {
1331       // Enter a cleanup to call the end-catch function if one was provided.
1332       if (EndCatchFn)
1333         CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
1334                                                         ForEHVar, EndCatchFn);
1335 
1336       // Save the current cleanup destination in case there are
1337       // cleanups in the finally block.
1338       llvm::Value *SavedCleanupDest =
1339         CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
1340                                "cleanup.dest.saved");
1341 
1342       // Emit the finally block.
1343       CGF.EmitStmt(Body);
1344 
1345       // If the end of the finally is reachable, check whether this was
1346       // for EH.  If so, rethrow.
1347       if (CGF.HaveInsertPoint()) {
1348         llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
1349         llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
1350 
1351         llvm::Value *ShouldRethrow =
1352           CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
1353         CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
1354 
1355         CGF.EmitBlock(RethrowBB);
1356         if (SavedExnVar) {
1357           CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar));
1358         } else {
1359           CGF.EmitCallOrInvoke(RethrowFn);
1360         }
1361         CGF.Builder.CreateUnreachable();
1362 
1363         CGF.EmitBlock(ContBB);
1364 
1365         // Restore the cleanup destination.
1366         CGF.Builder.CreateStore(SavedCleanupDest,
1367                                 CGF.getNormalCleanupDestSlot());
1368       }
1369 
1370       // Leave the end-catch cleanup.  As an optimization, pretend that
1371       // the fallthrough path was inaccessible; we've dynamically proven
1372       // that we're not in the EH case along that path.
1373       if (EndCatchFn) {
1374         CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
1375         CGF.PopCleanupBlock();
1376         CGF.Builder.restoreIP(SavedIP);
1377       }
1378 
1379       // Now make sure we actually have an insertion point or the
1380       // cleanup gods will hate us.
1381       CGF.EnsureInsertPoint();
1382     }
1383   };
1384 }
1385 
1386 /// Enters a finally block for an implementation using zero-cost
1387 /// exceptions.  This is mostly general, but hard-codes some
1388 /// language/ABI-specific behavior in the catch-all sections.
1389 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF,
1390                                          const Stmt *body,
1391                                          llvm::Constant *beginCatchFn,
1392                                          llvm::Constant *endCatchFn,
1393                                          llvm::Constant *rethrowFn) {
1394   assert((beginCatchFn != 0) == (endCatchFn != 0) &&
1395          "begin/end catch functions not paired");
1396   assert(rethrowFn && "rethrow function is required");
1397 
1398   BeginCatchFn = beginCatchFn;
1399 
1400   // The rethrow function has one of the following two types:
1401   //   void (*)()
1402   //   void (*)(void*)
1403   // In the latter case we need to pass it the exception object.
1404   // But we can't use the exception slot because the @finally might
1405   // have a landing pad (which would overwrite the exception slot).
1406   llvm::FunctionType *rethrowFnTy =
1407     cast<llvm::FunctionType>(
1408       cast<llvm::PointerType>(rethrowFn->getType())->getElementType());
1409   SavedExnVar = 0;
1410   if (rethrowFnTy->getNumParams())
1411     SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn");
1412 
1413   // A finally block is a statement which must be executed on any edge
1414   // out of a given scope.  Unlike a cleanup, the finally block may
1415   // contain arbitrary control flow leading out of itself.  In
1416   // addition, finally blocks should always be executed, even if there
1417   // are no catch handlers higher on the stack.  Therefore, we
1418   // surround the protected scope with a combination of a normal
1419   // cleanup (to catch attempts to break out of the block via normal
1420   // control flow) and an EH catch-all (semantically "outside" any try
1421   // statement to which the finally block might have been attached).
1422   // The finally block itself is generated in the context of a cleanup
1423   // which conditionally leaves the catch-all.
1424 
1425   // Jump destination for performing the finally block on an exception
1426   // edge.  We'll never actually reach this block, so unreachable is
1427   // fine.
1428   RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock());
1429 
1430   // Whether the finally block is being executed for EH purposes.
1431   ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh");
1432   CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar);
1433 
1434   // Enter a normal cleanup which will perform the @finally block.
1435   CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body,
1436                                           ForEHVar, endCatchFn,
1437                                           rethrowFn, SavedExnVar);
1438 
1439   // Enter a catch-all scope.
1440   llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall");
1441   EHCatchScope *catchScope = CGF.EHStack.pushCatch(1);
1442   catchScope->setCatchAllHandler(0, catchBB);
1443 }
1444 
1445 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) {
1446   // Leave the finally catch-all.
1447   EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin());
1448   llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block;
1449 
1450   CGF.popCatchScope();
1451 
1452   // If there are any references to the catch-all block, emit it.
1453   if (catchBB->use_empty()) {
1454     delete catchBB;
1455   } else {
1456     CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP();
1457     CGF.EmitBlock(catchBB);
1458 
1459     llvm::Value *exn = 0;
1460 
1461     // If there's a begin-catch function, call it.
1462     if (BeginCatchFn) {
1463       exn = CGF.getExceptionFromSlot();
1464       CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow();
1465     }
1466 
1467     // If we need to remember the exception pointer to rethrow later, do so.
1468     if (SavedExnVar) {
1469       if (!exn) exn = CGF.getExceptionFromSlot();
1470       CGF.Builder.CreateStore(exn, SavedExnVar);
1471     }
1472 
1473     // Tell the cleanups in the finally block that we're do this for EH.
1474     CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar);
1475 
1476     // Thread a jump through the finally cleanup.
1477     CGF.EmitBranchThroughCleanup(RethrowDest);
1478 
1479     CGF.Builder.restoreIP(savedIP);
1480   }
1481 
1482   // Finally, leave the @finally cleanup.
1483   CGF.PopCleanupBlock();
1484 }
1485 
1486 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
1487   if (TerminateLandingPad)
1488     return TerminateLandingPad;
1489 
1490   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1491 
1492   // This will get inserted at the end of the function.
1493   TerminateLandingPad = createBasicBlock("terminate.lpad");
1494   Builder.SetInsertPoint(TerminateLandingPad);
1495 
1496   // Tell the backend that this is a landing pad.
1497   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts());
1498   llvm::LandingPadInst *LPadInst =
1499     Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
1500                              getOpaquePersonalityFn(CGM, Personality), 0);
1501   LPadInst->addClause(getCatchAllValue(*this));
1502 
1503   llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1504   TerminateCall->setDoesNotReturn();
1505   TerminateCall->setDoesNotThrow();
1506   Builder.CreateUnreachable();
1507 
1508   // Restore the saved insertion state.
1509   Builder.restoreIP(SavedIP);
1510 
1511   return TerminateLandingPad;
1512 }
1513 
1514 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
1515   if (TerminateHandler)
1516     return TerminateHandler;
1517 
1518   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1519 
1520   // Set up the terminate handler.  This block is inserted at the very
1521   // end of the function by FinishFunction.
1522   TerminateHandler = createBasicBlock("terminate.handler");
1523   Builder.SetInsertPoint(TerminateHandler);
1524   llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1525   TerminateCall->setDoesNotReturn();
1526   TerminateCall->setDoesNotThrow();
1527   Builder.CreateUnreachable();
1528 
1529   // Restore the saved insertion state.
1530   Builder.restoreIP(SavedIP);
1531 
1532   return TerminateHandler;
1533 }
1534 
1535 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock() {
1536   if (EHResumeBlock) return EHResumeBlock;
1537 
1538   CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
1539 
1540   // We emit a jump to a notional label at the outermost unwind state.
1541   EHResumeBlock = createBasicBlock("eh.resume");
1542   Builder.SetInsertPoint(EHResumeBlock);
1543 
1544   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts());
1545 
1546   // This can always be a call because we necessarily didn't find
1547   // anything on the EH stack which needs our help.
1548   const char *RethrowName = Personality.CatchallRethrowFn;
1549   if (RethrowName != 0) {
1550     Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName),
1551                        getExceptionFromSlot())
1552       ->setDoesNotReturn();
1553   } else {
1554     switch (CleanupHackLevel) {
1555     case CHL_MandatoryCatchall:
1556       // In mandatory-catchall mode, we need to use
1557       // _Unwind_Resume_or_Rethrow, or whatever the personality's
1558       // equivalent is.
1559       Builder.CreateCall(getUnwindResumeOrRethrowFn(),
1560                          getExceptionFromSlot())
1561         ->setDoesNotReturn();
1562       break;
1563     case CHL_MandatoryCleanup: {
1564       // In mandatory-cleanup mode, we should use 'resume'.
1565 
1566       // Recreate the landingpad's return value for the 'resume' instruction.
1567       llvm::Value *Exn = getExceptionFromSlot();
1568       llvm::Value *Sel = getSelectorFromSlot();
1569 
1570       llvm::Type *LPadType = llvm::StructType::get(Exn->getType(),
1571                                                    Sel->getType(), NULL);
1572       llvm::Value *LPadVal = llvm::UndefValue::get(LPadType);
1573       LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val");
1574       LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val");
1575 
1576       Builder.CreateResume(LPadVal);
1577       Builder.restoreIP(SavedIP);
1578       return EHResumeBlock;
1579     }
1580     case CHL_Ideal:
1581       // In an idealized mode where we don't have to worry about the
1582       // optimizer combining landing pads, we should just use
1583       // _Unwind_Resume (or the personality's equivalent).
1584       Builder.CreateCall(getUnwindResumeFn(), getExceptionFromSlot())
1585         ->setDoesNotReturn();
1586       break;
1587     }
1588   }
1589 
1590   Builder.CreateUnreachable();
1591 
1592   Builder.restoreIP(SavedIP);
1593 
1594   return EHResumeBlock;
1595 }
1596