1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/StmtCXX.h" 15 16 #include "llvm/Intrinsics.h" 17 #include "llvm/IntrinsicInst.h" 18 #include "llvm/Support/CallSite.h" 19 20 #include "CGObjCRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CGException.h" 23 #include "CGCleanup.h" 24 #include "TargetInfo.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 29 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) { 30 // void *__cxa_allocate_exception(size_t thrown_size); 31 32 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 33 const llvm::FunctionType *FTy = 34 llvm::FunctionType::get(llvm::Type::getInt8PtrTy(CGF.getLLVMContext()), 35 SizeTy, /*IsVarArgs=*/false); 36 37 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 38 } 39 40 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) { 41 // void __cxa_free_exception(void *thrown_exception); 42 43 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 44 const llvm::FunctionType *FTy = 45 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 46 Int8PtrTy, /*IsVarArgs=*/false); 47 48 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 49 } 50 51 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) { 52 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 53 // void (*dest) (void *)); 54 55 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 56 const llvm::Type *Args[3] = { Int8PtrTy, Int8PtrTy, Int8PtrTy }; 57 const llvm::FunctionType *FTy = 58 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 59 Args, /*IsVarArgs=*/false); 60 61 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 62 } 63 64 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) { 65 // void __cxa_rethrow(); 66 67 const llvm::FunctionType *FTy = 68 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 69 /*IsVarArgs=*/false); 70 71 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 72 } 73 74 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) { 75 // void *__cxa_get_exception_ptr(void*); 76 77 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 78 const llvm::FunctionType *FTy = 79 llvm::FunctionType::get(Int8PtrTy, Int8PtrTy, /*IsVarArgs=*/false); 80 81 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 82 } 83 84 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) { 85 // void *__cxa_begin_catch(void*); 86 87 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 88 const llvm::FunctionType *FTy = 89 llvm::FunctionType::get(Int8PtrTy, Int8PtrTy, /*IsVarArgs=*/false); 90 91 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 92 } 93 94 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) { 95 // void __cxa_end_catch(); 96 97 const llvm::FunctionType *FTy = 98 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 99 /*IsVarArgs=*/false); 100 101 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 102 } 103 104 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) { 105 // void __cxa_call_unexepcted(void *thrown_exception); 106 107 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 108 const llvm::FunctionType *FTy = 109 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 110 Int8PtrTy, /*IsVarArgs=*/false); 111 112 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 113 } 114 115 llvm::Constant *CodeGenFunction::getUnwindResumeFn() { 116 const llvm::FunctionType *FTy = 117 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 118 119 if (CGM.getLangOptions().SjLjExceptions) 120 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); 121 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); 122 } 123 124 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 125 const llvm::FunctionType *FTy = 126 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 127 128 if (CGM.getLangOptions().SjLjExceptions) 129 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 130 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 131 } 132 133 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) { 134 // void __terminate(); 135 136 const llvm::FunctionType *FTy = 137 llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), 138 /*IsVarArgs=*/false); 139 140 return CGF.CGM.CreateRuntimeFunction(FTy, 141 CGF.CGM.getLangOptions().CPlusPlus ? "_ZSt9terminatev" : "abort"); 142 } 143 144 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF, 145 llvm::StringRef Name) { 146 const llvm::Type *Int8PtrTy = 147 llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 148 const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); 149 const llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, Int8PtrTy, 150 /*IsVarArgs=*/false); 151 152 return CGF.CGM.CreateRuntimeFunction(FTy, Name); 153 } 154 155 const EHPersonality EHPersonality::GNU_C("__gcc_personality_v0"); 156 const EHPersonality EHPersonality::GNU_C_SJLJ("__gcc_personality_sj0"); 157 const EHPersonality EHPersonality::NeXT_ObjC("__objc_personality_v0"); 158 const EHPersonality EHPersonality::GNU_CPlusPlus("__gxx_personality_v0"); 159 const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ("__gxx_personality_sj0"); 160 const EHPersonality EHPersonality::GNU_ObjC("__gnu_objc_personality_v0", 161 "objc_exception_throw"); 162 const EHPersonality EHPersonality::GNU_ObjCXX("__gnustep_objcxx_personality_v0"); 163 164 static const EHPersonality &getCPersonality(const LangOptions &L) { 165 if (L.SjLjExceptions) 166 return EHPersonality::GNU_C_SJLJ; 167 return EHPersonality::GNU_C; 168 } 169 170 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 171 if (L.NeXTRuntime) { 172 if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; 173 else return getCPersonality(L); 174 } else { 175 return EHPersonality::GNU_ObjC; 176 } 177 } 178 179 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 180 if (L.SjLjExceptions) 181 return EHPersonality::GNU_CPlusPlus_SJLJ; 182 else 183 return EHPersonality::GNU_CPlusPlus; 184 } 185 186 /// Determines the personality function to use when both C++ 187 /// and Objective-C exceptions are being caught. 188 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 189 // The ObjC personality defers to the C++ personality for non-ObjC 190 // handlers. Unlike the C++ case, we use the same personality 191 // function on targets using (backend-driven) SJLJ EH. 192 if (L.NeXTRuntime) { 193 if (L.ObjCNonFragileABI) 194 return EHPersonality::NeXT_ObjC; 195 196 // In the fragile ABI, just use C++ exception handling and hope 197 // they're not doing crazy exception mixing. 198 else 199 return getCXXPersonality(L); 200 } 201 202 // The GNU runtime's personality function inherently doesn't support 203 // mixed EH. Use the C++ personality just to avoid returning null. 204 return EHPersonality::GNU_ObjCXX; 205 } 206 207 const EHPersonality &EHPersonality::get(const LangOptions &L) { 208 if (L.CPlusPlus && L.ObjC1) 209 return getObjCXXPersonality(L); 210 else if (L.CPlusPlus) 211 return getCXXPersonality(L); 212 else if (L.ObjC1) 213 return getObjCPersonality(L); 214 else 215 return getCPersonality(L); 216 } 217 218 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 219 const EHPersonality &Personality) { 220 llvm::Constant *Fn = 221 CGM.CreateRuntimeFunction(llvm::FunctionType::get( 222 llvm::Type::getInt32Ty(CGM.getLLVMContext()), 223 true), 224 Personality.getPersonalityFnName()); 225 return Fn; 226 } 227 228 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 229 const EHPersonality &Personality) { 230 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 231 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 232 } 233 234 /// Check whether a personality function could reasonably be swapped 235 /// for a C++ personality function. 236 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 237 for (llvm::Constant::use_iterator 238 I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { 239 llvm::User *User = *I; 240 241 // Conditionally white-list bitcasts. 242 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) { 243 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 244 if (!PersonalityHasOnlyCXXUses(CE)) 245 return false; 246 continue; 247 } 248 249 // Otherwise, it has to be a selector call. 250 if (!isa<llvm::EHSelectorInst>(User)) return false; 251 252 llvm::EHSelectorInst *Selector = cast<llvm::EHSelectorInst>(User); 253 for (unsigned I = 2, E = Selector->getNumArgOperands(); I != E; ++I) { 254 // Look for something that would've been returned by the ObjC 255 // runtime's GetEHType() method. 256 llvm::GlobalVariable *GV 257 = dyn_cast<llvm::GlobalVariable>(Selector->getArgOperand(I)); 258 if (!GV) continue; 259 260 // ObjC EH selector entries are always global variables with 261 // names starting like this. 262 if (GV->getName().startswith("OBJC_EHTYPE")) 263 return false; 264 } 265 } 266 267 return true; 268 } 269 270 /// Try to use the C++ personality function in ObjC++. Not doing this 271 /// can cause some incompatibilities with gcc, which is more 272 /// aggressive about only using the ObjC++ personality in a function 273 /// when it really needs it. 274 void CodeGenModule::SimplifyPersonality() { 275 // For now, this is really a Darwin-specific operation. 276 if (!Context.Target.getTriple().isOSDarwin()) 277 return; 278 279 // If we're not in ObjC++ -fexceptions, there's nothing to do. 280 if (!Features.CPlusPlus || !Features.ObjC1 || !Features.Exceptions) 281 return; 282 283 const EHPersonality &ObjCXX = EHPersonality::get(Features); 284 const EHPersonality &CXX = getCXXPersonality(Features); 285 if (&ObjCXX == &CXX || 286 ObjCXX.getPersonalityFnName() == CXX.getPersonalityFnName()) 287 return; 288 289 llvm::Function *Fn = 290 getModule().getFunction(ObjCXX.getPersonalityFnName()); 291 292 // Nothing to do if it's unused. 293 if (!Fn || Fn->use_empty()) return; 294 295 // Can't do the optimization if it has non-C++ uses. 296 if (!PersonalityHasOnlyCXXUses(Fn)) return; 297 298 // Create the C++ personality function and kill off the old 299 // function. 300 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 301 302 // This can happen if the user is screwing with us. 303 if (Fn->getType() != CXXFn->getType()) return; 304 305 Fn->replaceAllUsesWith(CXXFn); 306 Fn->eraseFromParent(); 307 } 308 309 /// Returns the value to inject into a selector to indicate the 310 /// presence of a catch-all. 311 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 312 // Possibly we should use @llvm.eh.catch.all.value here. 313 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 314 } 315 316 /// Returns the value to inject into a selector to indicate the 317 /// presence of a cleanup. 318 static llvm::Constant *getCleanupValue(CodeGenFunction &CGF) { 319 return llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 320 } 321 322 namespace { 323 /// A cleanup to free the exception object if its initialization 324 /// throws. 325 struct FreeException { 326 static void Emit(CodeGenFunction &CGF, bool forEH, 327 llvm::Value *exn) { 328 CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn) 329 ->setDoesNotThrow(); 330 } 331 }; 332 } 333 334 // Emits an exception expression into the given location. This 335 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 336 // call is required, an exception within that copy ctor causes 337 // std::terminate to be invoked. 338 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 339 llvm::Value *addr) { 340 // Make sure the exception object is cleaned up if there's an 341 // exception during initialization. 342 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 343 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 344 345 // __cxa_allocate_exception returns a void*; we need to cast this 346 // to the appropriate type for the object. 347 const llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 348 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 349 350 // FIXME: this isn't quite right! If there's a final unelided call 351 // to a copy constructor, then according to [except.terminate]p1 we 352 // must call std::terminate() if that constructor throws, because 353 // technically that copy occurs after the exception expression is 354 // evaluated but before the exception is caught. But the best way 355 // to handle that is to teach EmitAggExpr to do the final copy 356 // differently if it can't be elided. 357 CGF.EmitAnyExprToMem(e, typedAddr, /*Volatile*/ false, /*IsInit*/ true); 358 359 // Deactivate the cleanup block. 360 CGF.DeactivateCleanupBlock(cleanup); 361 } 362 363 llvm::Value *CodeGenFunction::getExceptionSlot() { 364 if (!ExceptionSlot) 365 ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); 366 return ExceptionSlot; 367 } 368 369 llvm::Value *CodeGenFunction::getEHSelectorSlot() { 370 if (!EHSelectorSlot) 371 EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); 372 return EHSelectorSlot; 373 } 374 375 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) { 376 if (!E->getSubExpr()) { 377 if (getInvokeDest()) { 378 Builder.CreateInvoke(getReThrowFn(*this), 379 getUnreachableBlock(), 380 getInvokeDest()) 381 ->setDoesNotReturn(); 382 } else { 383 Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn(); 384 Builder.CreateUnreachable(); 385 } 386 387 // throw is an expression, and the expression emitters expect us 388 // to leave ourselves at a valid insertion point. 389 EmitBlock(createBasicBlock("throw.cont")); 390 391 return; 392 } 393 394 QualType ThrowType = E->getSubExpr()->getType(); 395 396 // Now allocate the exception object. 397 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 398 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 399 400 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this); 401 llvm::CallInst *ExceptionPtr = 402 Builder.CreateCall(AllocExceptionFn, 403 llvm::ConstantInt::get(SizeTy, TypeSize), 404 "exception"); 405 ExceptionPtr->setDoesNotThrow(); 406 407 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 408 409 // Now throw the exception. 410 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext()); 411 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 412 /*ForEH=*/true); 413 414 // The address of the destructor. If the exception type has a 415 // trivial destructor (or isn't a record), we just pass null. 416 llvm::Constant *Dtor = 0; 417 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 418 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 419 if (!Record->hasTrivialDestructor()) { 420 CXXDestructorDecl *DtorD = Record->getDestructor(); 421 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 422 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 423 } 424 } 425 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 426 427 if (getInvokeDest()) { 428 llvm::InvokeInst *ThrowCall = 429 Builder.CreateInvoke3(getThrowFn(*this), 430 getUnreachableBlock(), getInvokeDest(), 431 ExceptionPtr, TypeInfo, Dtor); 432 ThrowCall->setDoesNotReturn(); 433 } else { 434 llvm::CallInst *ThrowCall = 435 Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor); 436 ThrowCall->setDoesNotReturn(); 437 Builder.CreateUnreachable(); 438 } 439 440 // throw is an expression, and the expression emitters expect us 441 // to leave ourselves at a valid insertion point. 442 EmitBlock(createBasicBlock("throw.cont")); 443 } 444 445 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 446 if (!CGM.getLangOptions().CXXExceptions) 447 return; 448 449 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 450 if (FD == 0) 451 return; 452 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 453 if (Proto == 0) 454 return; 455 456 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 457 if (isNoexceptExceptionSpec(EST)) { 458 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 459 // noexcept functions are simple terminate scopes. 460 EHStack.pushTerminate(); 461 } 462 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 463 unsigned NumExceptions = Proto->getNumExceptions(); 464 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 465 466 for (unsigned I = 0; I != NumExceptions; ++I) { 467 QualType Ty = Proto->getExceptionType(I); 468 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 469 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 470 /*ForEH=*/true); 471 Filter->setFilter(I, EHType); 472 } 473 } 474 } 475 476 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 477 if (!CGM.getLangOptions().CXXExceptions) 478 return; 479 480 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 481 if (FD == 0) 482 return; 483 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 484 if (Proto == 0) 485 return; 486 487 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 488 if (isNoexceptExceptionSpec(EST)) { 489 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 490 EHStack.popTerminate(); 491 } 492 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 493 EHStack.popFilter(); 494 } 495 } 496 497 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 498 EnterCXXTryStmt(S); 499 EmitStmt(S.getTryBlock()); 500 ExitCXXTryStmt(S); 501 } 502 503 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 504 unsigned NumHandlers = S.getNumHandlers(); 505 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 506 507 for (unsigned I = 0; I != NumHandlers; ++I) { 508 const CXXCatchStmt *C = S.getHandler(I); 509 510 llvm::BasicBlock *Handler = createBasicBlock("catch"); 511 if (C->getExceptionDecl()) { 512 // FIXME: Dropping the reference type on the type into makes it 513 // impossible to correctly implement catch-by-reference 514 // semantics for pointers. Unfortunately, this is what all 515 // existing compilers do, and it's not clear that the standard 516 // personality routine is capable of doing this right. See C++ DR 388: 517 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 518 QualType CaughtType = C->getCaughtType(); 519 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 520 521 llvm::Value *TypeInfo = 0; 522 if (CaughtType->isObjCObjectPointerType()) 523 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 524 else 525 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 526 CatchScope->setHandler(I, TypeInfo, Handler); 527 } else { 528 // No exception decl indicates '...', a catch-all. 529 CatchScope->setCatchAllHandler(I, Handler); 530 } 531 } 532 } 533 534 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 535 /// affect exception handling. Currently, the only non-EH scopes are 536 /// normal-only cleanup scopes. 537 static bool isNonEHScope(const EHScope &S) { 538 switch (S.getKind()) { 539 case EHScope::Cleanup: 540 return !cast<EHCleanupScope>(S).isEHCleanup(); 541 case EHScope::Filter: 542 case EHScope::Catch: 543 case EHScope::Terminate: 544 return false; 545 } 546 547 // Suppress warning. 548 return false; 549 } 550 551 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 552 assert(EHStack.requiresLandingPad()); 553 assert(!EHStack.empty()); 554 555 if (!CGM.getLangOptions().Exceptions) 556 return 0; 557 558 // Check the innermost scope for a cached landing pad. If this is 559 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 560 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 561 if (LP) return LP; 562 563 // Build the landing pad for this scope. 564 LP = EmitLandingPad(); 565 assert(LP); 566 567 // Cache the landing pad on the innermost scope. If this is a 568 // non-EH scope, cache the landing pad on the enclosing scope, too. 569 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 570 ir->setCachedLandingPad(LP); 571 if (!isNonEHScope(*ir)) break; 572 } 573 574 return LP; 575 } 576 577 // This code contains a hack to work around a design flaw in 578 // LLVM's EH IR which breaks semantics after inlining. This same 579 // hack is implemented in llvm-gcc. 580 // 581 // The LLVM EH abstraction is basically a thin veneer over the 582 // traditional GCC zero-cost design: for each range of instructions 583 // in the function, there is (at most) one "landing pad" with an 584 // associated chain of EH actions. A language-specific personality 585 // function interprets this chain of actions and (1) decides whether 586 // or not to resume execution at the landing pad and (2) if so, 587 // provides an integer indicating why it's stopping. In LLVM IR, 588 // the association of a landing pad with a range of instructions is 589 // achieved via an invoke instruction, the chain of actions becomes 590 // the arguments to the @llvm.eh.selector call, and the selector 591 // call returns the integer indicator. Other than the required 592 // presence of two intrinsic function calls in the landing pad, 593 // the IR exactly describes the layout of the output code. 594 // 595 // A principal advantage of this design is that it is completely 596 // language-agnostic; in theory, the LLVM optimizers can treat 597 // landing pads neutrally, and targets need only know how to lower 598 // the intrinsics to have a functioning exceptions system (assuming 599 // that platform exceptions follow something approximately like the 600 // GCC design). Unfortunately, landing pads cannot be combined in a 601 // language-agnostic way: given selectors A and B, there is no way 602 // to make a single landing pad which faithfully represents the 603 // semantics of propagating an exception first through A, then 604 // through B, without knowing how the personality will interpret the 605 // (lowered form of the) selectors. This means that inlining has no 606 // choice but to crudely chain invokes (i.e., to ignore invokes in 607 // the inlined function, but to turn all unwindable calls into 608 // invokes), which is only semantically valid if every unwind stops 609 // at every landing pad. 610 // 611 // Therefore, the invoke-inline hack is to guarantee that every 612 // landing pad has a catch-all. 613 enum CleanupHackLevel_t { 614 /// A level of hack that requires that all landing pads have 615 /// catch-alls. 616 CHL_MandatoryCatchall, 617 618 /// A level of hack that requires that all landing pads handle 619 /// cleanups. 620 CHL_MandatoryCleanup, 621 622 /// No hacks at all; ideal IR generation. 623 CHL_Ideal 624 }; 625 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; 626 627 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 628 assert(EHStack.requiresLandingPad()); 629 630 for (EHScopeStack::iterator ir = EHStack.begin(); ; ) { 631 assert(ir != EHStack.end() && 632 "stack requiring landing pad is nothing but non-EH scopes?"); 633 634 // If this is a terminate scope, just use the singleton terminate 635 // landing pad. 636 if (isa<EHTerminateScope>(*ir)) 637 return getTerminateLandingPad(); 638 639 // If this isn't an EH scope, iterate; otherwise break out. 640 if (!isNonEHScope(*ir)) break; 641 ++ir; 642 643 // We haven't checked this scope for a cached landing pad yet. 644 if (llvm::BasicBlock *LP = ir->getCachedLandingPad()) 645 return LP; 646 } 647 648 // Save the current IR generation state. 649 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 650 651 const EHPersonality &Personality = EHPersonality::get(getLangOptions()); 652 653 // Create and configure the landing pad. 654 llvm::BasicBlock *LP = createBasicBlock("lpad"); 655 EmitBlock(LP); 656 657 // Save the exception pointer. It's safe to use a single exception 658 // pointer per function because EH cleanups can never have nested 659 // try/catches. 660 llvm::CallInst *Exn = 661 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn"); 662 Exn->setDoesNotThrow(); 663 Builder.CreateStore(Exn, getExceptionSlot()); 664 665 // Build the selector arguments. 666 llvm::SmallVector<llvm::Value*, 8> EHSelector; 667 EHSelector.push_back(Exn); 668 EHSelector.push_back(getOpaquePersonalityFn(CGM, Personality)); 669 670 // Accumulate all the handlers in scope. 671 llvm::DenseMap<llvm::Value*, UnwindDest> EHHandlers; 672 UnwindDest CatchAll; 673 bool HasEHCleanup = false; 674 bool HasEHFilter = false; 675 llvm::SmallVector<llvm::Value*, 8> EHFilters; 676 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 677 I != E; ++I) { 678 679 switch (I->getKind()) { 680 case EHScope::Cleanup: 681 if (!HasEHCleanup) 682 HasEHCleanup = cast<EHCleanupScope>(*I).isEHCleanup(); 683 // We otherwise don't care about cleanups. 684 continue; 685 686 case EHScope::Filter: { 687 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 688 assert(!CatchAll.isValid() && "EH filter reached after catch-all"); 689 690 // Filter scopes get added to the selector in weird ways. 691 EHFilterScope &Filter = cast<EHFilterScope>(*I); 692 HasEHFilter = true; 693 694 // Add all the filter values which we aren't already explicitly 695 // catching. 696 for (unsigned I = 0, E = Filter.getNumFilters(); I != E; ++I) { 697 llvm::Value *FV = Filter.getFilter(I); 698 if (!EHHandlers.count(FV)) 699 EHFilters.push_back(FV); 700 } 701 goto done; 702 } 703 704 case EHScope::Terminate: 705 // Terminate scopes are basically catch-alls. 706 assert(!CatchAll.isValid()); 707 CatchAll = UnwindDest(getTerminateHandler(), 708 EHStack.getEnclosingEHCleanup(I), 709 cast<EHTerminateScope>(*I).getDestIndex()); 710 goto done; 711 712 case EHScope::Catch: 713 break; 714 } 715 716 EHCatchScope &Catch = cast<EHCatchScope>(*I); 717 for (unsigned HI = 0, HE = Catch.getNumHandlers(); HI != HE; ++HI) { 718 EHCatchScope::Handler Handler = Catch.getHandler(HI); 719 720 // Catch-all. We should only have one of these per catch. 721 if (!Handler.Type) { 722 assert(!CatchAll.isValid()); 723 CatchAll = UnwindDest(Handler.Block, 724 EHStack.getEnclosingEHCleanup(I), 725 Handler.Index); 726 continue; 727 } 728 729 // Check whether we already have a handler for this type. 730 UnwindDest &Dest = EHHandlers[Handler.Type]; 731 if (Dest.isValid()) continue; 732 733 EHSelector.push_back(Handler.Type); 734 Dest = UnwindDest(Handler.Block, 735 EHStack.getEnclosingEHCleanup(I), 736 Handler.Index); 737 } 738 739 // Stop if we found a catch-all. 740 if (CatchAll.isValid()) break; 741 } 742 743 done: 744 unsigned LastToEmitInLoop = EHSelector.size(); 745 746 // If we have a catch-all, add null to the selector. 747 if (CatchAll.isValid()) { 748 EHSelector.push_back(getCatchAllValue(*this)); 749 750 // If we have an EH filter, we need to add those handlers in the 751 // right place in the selector, which is to say, at the end. 752 } else if (HasEHFilter) { 753 // Create a filter expression: an integer constant saying how many 754 // filters there are (+1 to avoid ambiguity with 0 for cleanup), 755 // followed by the filter types. The personality routine only 756 // lands here if the filter doesn't match. 757 EHSelector.push_back(llvm::ConstantInt::get(Builder.getInt32Ty(), 758 EHFilters.size() + 1)); 759 EHSelector.append(EHFilters.begin(), EHFilters.end()); 760 761 // Also check whether we need a cleanup. 762 if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup) 763 EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall 764 ? getCatchAllValue(*this) 765 : getCleanupValue(*this)); 766 767 // Otherwise, signal that we at least have cleanups. 768 } else if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup) { 769 EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall 770 ? getCatchAllValue(*this) 771 : getCleanupValue(*this)); 772 773 // At the MandatoryCleanup hack level, we don't need to actually 774 // spuriously tell the unwinder that we have cleanups, but we do 775 // need to always be prepared to handle cleanups. 776 } else if (CleanupHackLevel == CHL_MandatoryCleanup) { 777 // Just don't decrement LastToEmitInLoop. 778 779 } else { 780 assert(LastToEmitInLoop > 2); 781 LastToEmitInLoop--; 782 } 783 784 assert(EHSelector.size() >= 3 && "selector call has only two arguments!"); 785 786 // Tell the backend how to generate the landing pad. 787 llvm::CallInst *Selection = 788 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector), 789 EHSelector.begin(), EHSelector.end(), "eh.selector"); 790 Selection->setDoesNotThrow(); 791 792 // Save the selector value in mandatory-cleanup mode. 793 if (CleanupHackLevel == CHL_MandatoryCleanup) 794 Builder.CreateStore(Selection, getEHSelectorSlot()); 795 796 // Select the right handler. 797 llvm::Value *llvm_eh_typeid_for = 798 CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 799 800 // The results of llvm_eh_typeid_for aren't reliable --- at least 801 // not locally --- so we basically have to do this as an 'if' chain. 802 // We walk through the first N-1 catch clauses, testing and chaining, 803 // and then fall into the final clause (which is either a cleanup, a 804 // filter (possibly with a cleanup), a catch-all, or another catch). 805 for (unsigned I = 2; I != LastToEmitInLoop; ++I) { 806 llvm::Value *Type = EHSelector[I]; 807 UnwindDest Dest = EHHandlers[Type]; 808 assert(Dest.isValid() && "no handler entry for value in selector?"); 809 810 // Figure out where to branch on a match. As a debug code-size 811 // optimization, if the scope depth matches the innermost cleanup, 812 // we branch directly to the catch handler. 813 llvm::BasicBlock *Match = Dest.getBlock(); 814 bool MatchNeedsCleanup = 815 Dest.getScopeDepth() != EHStack.getInnermostEHCleanup(); 816 if (MatchNeedsCleanup) 817 Match = createBasicBlock("eh.match"); 818 819 llvm::BasicBlock *Next = createBasicBlock("eh.next"); 820 821 // Check whether the exception matches. 822 llvm::CallInst *Id 823 = Builder.CreateCall(llvm_eh_typeid_for, 824 Builder.CreateBitCast(Type, Int8PtrTy)); 825 Id->setDoesNotThrow(); 826 Builder.CreateCondBr(Builder.CreateICmpEQ(Selection, Id), 827 Match, Next); 828 829 // Emit match code if necessary. 830 if (MatchNeedsCleanup) { 831 EmitBlock(Match); 832 EmitBranchThroughEHCleanup(Dest); 833 } 834 835 // Continue to the next match. 836 EmitBlock(Next); 837 } 838 839 // Emit the final case in the selector. 840 // This might be a catch-all.... 841 if (CatchAll.isValid()) { 842 assert(isa<llvm::ConstantPointerNull>(EHSelector.back())); 843 EmitBranchThroughEHCleanup(CatchAll); 844 845 // ...or an EH filter... 846 } else if (HasEHFilter) { 847 llvm::Value *SavedSelection = Selection; 848 849 // First, unwind out to the outermost scope if necessary. 850 if (EHStack.hasEHCleanups()) { 851 // The end here might not dominate the beginning, so we might need to 852 // save the selector if we need it. 853 llvm::AllocaInst *SelectorVar = 0; 854 if (HasEHCleanup) { 855 SelectorVar = CreateTempAlloca(Builder.getInt32Ty(), "selector.var"); 856 Builder.CreateStore(Selection, SelectorVar); 857 } 858 859 llvm::BasicBlock *CleanupContBB = createBasicBlock("ehspec.cleanup.cont"); 860 EmitBranchThroughEHCleanup(UnwindDest(CleanupContBB, EHStack.stable_end(), 861 EHStack.getNextEHDestIndex())); 862 EmitBlock(CleanupContBB); 863 864 if (HasEHCleanup) 865 SavedSelection = Builder.CreateLoad(SelectorVar, "ehspec.saved-selector"); 866 } 867 868 // If there was a cleanup, we'll need to actually check whether we 869 // landed here because the filter triggered. 870 if (CleanupHackLevel != CHL_Ideal || HasEHCleanup) { 871 llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected"); 872 873 llvm::Constant *Zero = llvm::ConstantInt::get(Int32Ty, 0); 874 llvm::Value *FailsFilter = 875 Builder.CreateICmpSLT(SavedSelection, Zero, "ehspec.fails"); 876 Builder.CreateCondBr(FailsFilter, UnexpectedBB, getRethrowDest().getBlock()); 877 878 EmitBlock(UnexpectedBB); 879 } 880 881 // Call __cxa_call_unexpected. This doesn't need to be an invoke 882 // because __cxa_call_unexpected magically filters exceptions 883 // according to the last landing pad the exception was thrown 884 // into. Seriously. 885 Builder.CreateCall(getUnexpectedFn(*this), 886 Builder.CreateLoad(getExceptionSlot())) 887 ->setDoesNotReturn(); 888 Builder.CreateUnreachable(); 889 890 // ...or a normal catch handler... 891 } else if (CleanupHackLevel == CHL_Ideal && !HasEHCleanup) { 892 llvm::Value *Type = EHSelector.back(); 893 EmitBranchThroughEHCleanup(EHHandlers[Type]); 894 895 // ...or a cleanup. 896 } else { 897 EmitBranchThroughEHCleanup(getRethrowDest()); 898 } 899 900 // Restore the old IR generation state. 901 Builder.restoreIP(SavedIP); 902 903 return LP; 904 } 905 906 namespace { 907 /// A cleanup to call __cxa_end_catch. In many cases, the caught 908 /// exception type lets us state definitively that the thrown exception 909 /// type does not have a destructor. In particular: 910 /// - Catch-alls tell us nothing, so we have to conservatively 911 /// assume that the thrown exception might have a destructor. 912 /// - Catches by reference behave according to their base types. 913 /// - Catches of non-record types will only trigger for exceptions 914 /// of non-record types, which never have destructors. 915 /// - Catches of record types can trigger for arbitrary subclasses 916 /// of the caught type, so we have to assume the actual thrown 917 /// exception type might have a throwing destructor, even if the 918 /// caught type's destructor is trivial or nothrow. 919 struct CallEndCatch : EHScopeStack::Cleanup { 920 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 921 bool MightThrow; 922 923 void Emit(CodeGenFunction &CGF, bool IsForEH) { 924 if (!MightThrow) { 925 CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow(); 926 return; 927 } 928 929 CGF.EmitCallOrInvoke(getEndCatchFn(CGF), 0, 0); 930 } 931 }; 932 } 933 934 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 935 /// __cxa_end_catch. 936 /// 937 /// \param EndMightThrow - true if __cxa_end_catch might throw 938 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 939 llvm::Value *Exn, 940 bool EndMightThrow) { 941 llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn); 942 Call->setDoesNotThrow(); 943 944 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 945 946 return Call; 947 } 948 949 /// A "special initializer" callback for initializing a catch 950 /// parameter during catch initialization. 951 static void InitCatchParam(CodeGenFunction &CGF, 952 const VarDecl &CatchParam, 953 llvm::Value *ParamAddr) { 954 // Load the exception from where the landing pad saved it. 955 llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn"); 956 957 CanQualType CatchType = 958 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 959 const llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 960 961 // If we're catching by reference, we can just cast the object 962 // pointer to the appropriate pointer. 963 if (isa<ReferenceType>(CatchType)) { 964 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 965 bool EndCatchMightThrow = CaughtType->isRecordType(); 966 967 // __cxa_begin_catch returns the adjusted object pointer. 968 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 969 970 // We have no way to tell the personality function that we're 971 // catching by reference, so if we're catching a pointer, 972 // __cxa_begin_catch will actually return that pointer by value. 973 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 974 QualType PointeeType = PT->getPointeeType(); 975 976 // When catching by reference, generally we should just ignore 977 // this by-value pointer and use the exception object instead. 978 if (!PointeeType->isRecordType()) { 979 980 // Exn points to the struct _Unwind_Exception header, which 981 // we have to skip past in order to reach the exception data. 982 unsigned HeaderSize = 983 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 984 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 985 986 // However, if we're catching a pointer-to-record type that won't 987 // work, because the personality function might have adjusted 988 // the pointer. There's actually no way for us to fully satisfy 989 // the language/ABI contract here: we can't use Exn because it 990 // might have the wrong adjustment, but we can't use the by-value 991 // pointer because it's off by a level of abstraction. 992 // 993 // The current solution is to dump the adjusted pointer into an 994 // alloca, which breaks language semantics (because changing the 995 // pointer doesn't change the exception) but at least works. 996 // The better solution would be to filter out non-exact matches 997 // and rethrow them, but this is tricky because the rethrow 998 // really needs to be catchable by other sites at this landing 999 // pad. The best solution is to fix the personality function. 1000 } else { 1001 // Pull the pointer for the reference type off. 1002 const llvm::Type *PtrTy = 1003 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 1004 1005 // Create the temporary and write the adjusted pointer into it. 1006 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 1007 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1008 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 1009 1010 // Bind the reference to the temporary. 1011 AdjustedExn = ExnPtrTmp; 1012 } 1013 } 1014 1015 llvm::Value *ExnCast = 1016 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 1017 CGF.Builder.CreateStore(ExnCast, ParamAddr); 1018 return; 1019 } 1020 1021 // Non-aggregates (plus complexes). 1022 bool IsComplex = false; 1023 if (!CGF.hasAggregateLLVMType(CatchType) || 1024 (IsComplex = CatchType->isAnyComplexType())) { 1025 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 1026 1027 // If the catch type is a pointer type, __cxa_begin_catch returns 1028 // the pointer by value. 1029 if (CatchType->hasPointerRepresentation()) { 1030 llvm::Value *CastExn = 1031 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1032 CGF.Builder.CreateStore(CastExn, ParamAddr); 1033 return; 1034 } 1035 1036 // Otherwise, it returns a pointer into the exception object. 1037 1038 const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1039 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1040 1041 if (IsComplex) { 1042 CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false), 1043 ParamAddr, /*volatile*/ false); 1044 } else { 1045 unsigned Alignment = 1046 CGF.getContext().getDeclAlign(&CatchParam).getQuantity(); 1047 llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar"); 1048 CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment, 1049 CatchType); 1050 } 1051 return; 1052 } 1053 1054 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1055 1056 const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1057 1058 // Check for a copy expression. If we don't have a copy expression, 1059 // that means a trivial copy is okay. 1060 const Expr *copyExpr = CatchParam.getInit(); 1061 if (!copyExpr) { 1062 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1063 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1064 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); 1065 return; 1066 } 1067 1068 // We have to call __cxa_get_exception_ptr to get the adjusted 1069 // pointer before copying. 1070 llvm::CallInst *rawAdjustedExn = 1071 CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn); 1072 rawAdjustedExn->setDoesNotThrow(); 1073 1074 // Cast that to the appropriate type. 1075 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1076 1077 // The copy expression is defined in terms of an OpaqueValueExpr. 1078 // Find it and map it to the adjusted expression. 1079 CodeGenFunction::OpaqueValueMapping 1080 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1081 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1082 1083 // Call the copy ctor in a terminate scope. 1084 CGF.EHStack.pushTerminate(); 1085 1086 // Perform the copy construction. 1087 CGF.EmitAggExpr(copyExpr, AggValueSlot::forAddr(ParamAddr, false, false)); 1088 1089 // Leave the terminate scope. 1090 CGF.EHStack.popTerminate(); 1091 1092 // Undo the opaque value mapping. 1093 opaque.pop(); 1094 1095 // Finally we can call __cxa_begin_catch. 1096 CallBeginCatch(CGF, Exn, true); 1097 } 1098 1099 /// Begins a catch statement by initializing the catch variable and 1100 /// calling __cxa_begin_catch. 1101 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1102 // We have to be very careful with the ordering of cleanups here: 1103 // C++ [except.throw]p4: 1104 // The destruction [of the exception temporary] occurs 1105 // immediately after the destruction of the object declared in 1106 // the exception-declaration in the handler. 1107 // 1108 // So the precise ordering is: 1109 // 1. Construct catch variable. 1110 // 2. __cxa_begin_catch 1111 // 3. Enter __cxa_end_catch cleanup 1112 // 4. Enter dtor cleanup 1113 // 1114 // We do this by using a slightly abnormal initialization process. 1115 // Delegation sequence: 1116 // - ExitCXXTryStmt opens a RunCleanupsScope 1117 // - EmitAutoVarAlloca creates the variable and debug info 1118 // - InitCatchParam initializes the variable from the exception 1119 // - CallBeginCatch calls __cxa_begin_catch 1120 // - CallBeginCatch enters the __cxa_end_catch cleanup 1121 // - EmitAutoVarCleanups enters the variable destructor cleanup 1122 // - EmitCXXTryStmt emits the code for the catch body 1123 // - EmitCXXTryStmt close the RunCleanupsScope 1124 1125 VarDecl *CatchParam = S->getExceptionDecl(); 1126 if (!CatchParam) { 1127 llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn"); 1128 CallBeginCatch(CGF, Exn, true); 1129 return; 1130 } 1131 1132 // Emit the local. 1133 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1134 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); 1135 CGF.EmitAutoVarCleanups(var); 1136 } 1137 1138 namespace { 1139 struct CallRethrow : EHScopeStack::Cleanup { 1140 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1141 CGF.EmitCallOrInvoke(getReThrowFn(CGF), 0, 0); 1142 } 1143 }; 1144 } 1145 1146 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1147 unsigned NumHandlers = S.getNumHandlers(); 1148 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1149 assert(CatchScope.getNumHandlers() == NumHandlers); 1150 1151 // Copy the handler blocks off before we pop the EH stack. Emitting 1152 // the handlers might scribble on this memory. 1153 llvm::SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1154 memcpy(Handlers.data(), CatchScope.begin(), 1155 NumHandlers * sizeof(EHCatchScope::Handler)); 1156 EHStack.popCatch(); 1157 1158 // The fall-through block. 1159 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1160 1161 // We just emitted the body of the try; jump to the continue block. 1162 if (HaveInsertPoint()) 1163 Builder.CreateBr(ContBB); 1164 1165 // Determine if we need an implicit rethrow for all these catch handlers. 1166 bool ImplicitRethrow = false; 1167 if (IsFnTryBlock) 1168 ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1169 isa<CXXConstructorDecl>(CurCodeDecl); 1170 1171 for (unsigned I = 0; I != NumHandlers; ++I) { 1172 llvm::BasicBlock *CatchBlock = Handlers[I].Block; 1173 EmitBlock(CatchBlock); 1174 1175 // Catch the exception if this isn't a catch-all. 1176 const CXXCatchStmt *C = S.getHandler(I); 1177 1178 // Enter a cleanup scope, including the catch variable and the 1179 // end-catch. 1180 RunCleanupsScope CatchScope(*this); 1181 1182 // Initialize the catch variable and set up the cleanups. 1183 BeginCatch(*this, C); 1184 1185 // If there's an implicit rethrow, push a normal "cleanup" to call 1186 // _cxa_rethrow. This needs to happen before __cxa_end_catch is 1187 // called, and so it is pushed after BeginCatch. 1188 if (ImplicitRethrow) 1189 EHStack.pushCleanup<CallRethrow>(NormalCleanup); 1190 1191 // Perform the body of the catch. 1192 EmitStmt(C->getHandlerBlock()); 1193 1194 // Fall out through the catch cleanups. 1195 CatchScope.ForceCleanup(); 1196 1197 // Branch out of the try. 1198 if (HaveInsertPoint()) 1199 Builder.CreateBr(ContBB); 1200 } 1201 1202 EmitBlock(ContBB); 1203 } 1204 1205 namespace { 1206 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1207 llvm::Value *ForEHVar; 1208 llvm::Value *EndCatchFn; 1209 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1210 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1211 1212 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1213 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1214 llvm::BasicBlock *CleanupContBB = 1215 CGF.createBasicBlock("finally.cleanup.cont"); 1216 1217 llvm::Value *ShouldEndCatch = 1218 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1219 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1220 CGF.EmitBlock(EndCatchBB); 1221 CGF.EmitCallOrInvoke(EndCatchFn, 0, 0); // catch-all, so might throw 1222 CGF.EmitBlock(CleanupContBB); 1223 } 1224 }; 1225 1226 struct PerformFinally : EHScopeStack::Cleanup { 1227 const Stmt *Body; 1228 llvm::Value *ForEHVar; 1229 llvm::Value *EndCatchFn; 1230 llvm::Value *RethrowFn; 1231 llvm::Value *SavedExnVar; 1232 1233 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1234 llvm::Value *EndCatchFn, 1235 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1236 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1237 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1238 1239 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1240 // Enter a cleanup to call the end-catch function if one was provided. 1241 if (EndCatchFn) 1242 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1243 ForEHVar, EndCatchFn); 1244 1245 // Save the current cleanup destination in case there are 1246 // cleanups in the finally block. 1247 llvm::Value *SavedCleanupDest = 1248 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1249 "cleanup.dest.saved"); 1250 1251 // Emit the finally block. 1252 CGF.EmitStmt(Body); 1253 1254 // If the end of the finally is reachable, check whether this was 1255 // for EH. If so, rethrow. 1256 if (CGF.HaveInsertPoint()) { 1257 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1258 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1259 1260 llvm::Value *ShouldRethrow = 1261 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1262 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1263 1264 CGF.EmitBlock(RethrowBB); 1265 if (SavedExnVar) { 1266 llvm::Value *Args[] = { CGF.Builder.CreateLoad(SavedExnVar) }; 1267 CGF.EmitCallOrInvoke(RethrowFn, Args, Args+1); 1268 } else { 1269 CGF.EmitCallOrInvoke(RethrowFn, 0, 0); 1270 } 1271 CGF.Builder.CreateUnreachable(); 1272 1273 CGF.EmitBlock(ContBB); 1274 1275 // Restore the cleanup destination. 1276 CGF.Builder.CreateStore(SavedCleanupDest, 1277 CGF.getNormalCleanupDestSlot()); 1278 } 1279 1280 // Leave the end-catch cleanup. As an optimization, pretend that 1281 // the fallthrough path was inaccessible; we've dynamically proven 1282 // that we're not in the EH case along that path. 1283 if (EndCatchFn) { 1284 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1285 CGF.PopCleanupBlock(); 1286 CGF.Builder.restoreIP(SavedIP); 1287 } 1288 1289 // Now make sure we actually have an insertion point or the 1290 // cleanup gods will hate us. 1291 CGF.EnsureInsertPoint(); 1292 } 1293 }; 1294 } 1295 1296 /// Enters a finally block for an implementation using zero-cost 1297 /// exceptions. This is mostly general, but hard-codes some 1298 /// language/ABI-specific behavior in the catch-all sections. 1299 CodeGenFunction::FinallyInfo 1300 CodeGenFunction::EnterFinallyBlock(const Stmt *Body, 1301 llvm::Constant *BeginCatchFn, 1302 llvm::Constant *EndCatchFn, 1303 llvm::Constant *RethrowFn) { 1304 assert((BeginCatchFn != 0) == (EndCatchFn != 0) && 1305 "begin/end catch functions not paired"); 1306 assert(RethrowFn && "rethrow function is required"); 1307 1308 // The rethrow function has one of the following two types: 1309 // void (*)() 1310 // void (*)(void*) 1311 // In the latter case we need to pass it the exception object. 1312 // But we can't use the exception slot because the @finally might 1313 // have a landing pad (which would overwrite the exception slot). 1314 const llvm::FunctionType *RethrowFnTy = 1315 cast<llvm::FunctionType>( 1316 cast<llvm::PointerType>(RethrowFn->getType()) 1317 ->getElementType()); 1318 llvm::Value *SavedExnVar = 0; 1319 if (RethrowFnTy->getNumParams()) 1320 SavedExnVar = CreateTempAlloca(Builder.getInt8PtrTy(), "finally.exn"); 1321 1322 // A finally block is a statement which must be executed on any edge 1323 // out of a given scope. Unlike a cleanup, the finally block may 1324 // contain arbitrary control flow leading out of itself. In 1325 // addition, finally blocks should always be executed, even if there 1326 // are no catch handlers higher on the stack. Therefore, we 1327 // surround the protected scope with a combination of a normal 1328 // cleanup (to catch attempts to break out of the block via normal 1329 // control flow) and an EH catch-all (semantically "outside" any try 1330 // statement to which the finally block might have been attached). 1331 // The finally block itself is generated in the context of a cleanup 1332 // which conditionally leaves the catch-all. 1333 1334 FinallyInfo Info; 1335 1336 // Jump destination for performing the finally block on an exception 1337 // edge. We'll never actually reach this block, so unreachable is 1338 // fine. 1339 JumpDest RethrowDest = getJumpDestInCurrentScope(getUnreachableBlock()); 1340 1341 // Whether the finally block is being executed for EH purposes. 1342 llvm::AllocaInst *ForEHVar = CreateTempAlloca(Builder.getInt1Ty(), 1343 "finally.for-eh"); 1344 InitTempAlloca(ForEHVar, llvm::ConstantInt::getFalse(getLLVMContext())); 1345 1346 // Enter a normal cleanup which will perform the @finally block. 1347 EHStack.pushCleanup<PerformFinally>(NormalCleanup, Body, 1348 ForEHVar, EndCatchFn, 1349 RethrowFn, SavedExnVar); 1350 1351 // Enter a catch-all scope. 1352 llvm::BasicBlock *CatchAllBB = createBasicBlock("finally.catchall"); 1353 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1354 Builder.SetInsertPoint(CatchAllBB); 1355 1356 // If there's a begin-catch function, call it. 1357 if (BeginCatchFn) { 1358 Builder.CreateCall(BeginCatchFn, Builder.CreateLoad(getExceptionSlot())) 1359 ->setDoesNotThrow(); 1360 } 1361 1362 // If we need to remember the exception pointer to rethrow later, do so. 1363 if (SavedExnVar) { 1364 llvm::Value *SavedExn = Builder.CreateLoad(getExceptionSlot()); 1365 Builder.CreateStore(SavedExn, SavedExnVar); 1366 } 1367 1368 // Tell the finally block that we're in EH. 1369 Builder.CreateStore(llvm::ConstantInt::getTrue(getLLVMContext()), ForEHVar); 1370 1371 // Thread a jump through the finally cleanup. 1372 EmitBranchThroughCleanup(RethrowDest); 1373 1374 Builder.restoreIP(SavedIP); 1375 1376 EHCatchScope *CatchScope = EHStack.pushCatch(1); 1377 CatchScope->setCatchAllHandler(0, CatchAllBB); 1378 1379 return Info; 1380 } 1381 1382 void CodeGenFunction::ExitFinallyBlock(FinallyInfo &Info) { 1383 // Leave the finally catch-all. 1384 EHCatchScope &Catch = cast<EHCatchScope>(*EHStack.begin()); 1385 llvm::BasicBlock *CatchAllBB = Catch.getHandler(0).Block; 1386 EHStack.popCatch(); 1387 1388 // And leave the normal cleanup. 1389 PopCleanupBlock(); 1390 1391 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1392 EmitBlock(CatchAllBB, true); 1393 1394 Builder.restoreIP(SavedIP); 1395 } 1396 1397 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1398 if (TerminateLandingPad) 1399 return TerminateLandingPad; 1400 1401 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1402 1403 // This will get inserted at the end of the function. 1404 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1405 Builder.SetInsertPoint(TerminateLandingPad); 1406 1407 // Tell the backend that this is a landing pad. 1408 llvm::CallInst *Exn = 1409 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn"); 1410 Exn->setDoesNotThrow(); 1411 1412 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions()); 1413 1414 // Tell the backend what the exception table should be: 1415 // nothing but a catch-all. 1416 llvm::Value *Args[3] = { Exn, getOpaquePersonalityFn(CGM, Personality), 1417 getCatchAllValue(*this) }; 1418 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector), 1419 Args, Args+3, "eh.selector") 1420 ->setDoesNotThrow(); 1421 1422 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1423 TerminateCall->setDoesNotReturn(); 1424 TerminateCall->setDoesNotThrow(); 1425 Builder.CreateUnreachable(); 1426 1427 // Restore the saved insertion state. 1428 Builder.restoreIP(SavedIP); 1429 1430 return TerminateLandingPad; 1431 } 1432 1433 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1434 if (TerminateHandler) 1435 return TerminateHandler; 1436 1437 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1438 1439 // Set up the terminate handler. This block is inserted at the very 1440 // end of the function by FinishFunction. 1441 TerminateHandler = createBasicBlock("terminate.handler"); 1442 Builder.SetInsertPoint(TerminateHandler); 1443 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1444 TerminateCall->setDoesNotReturn(); 1445 TerminateCall->setDoesNotThrow(); 1446 Builder.CreateUnreachable(); 1447 1448 // Restore the saved insertion state. 1449 Builder.restoreIP(SavedIP); 1450 1451 return TerminateHandler; 1452 } 1453 1454 CodeGenFunction::UnwindDest CodeGenFunction::getRethrowDest() { 1455 if (RethrowBlock.isValid()) return RethrowBlock; 1456 1457 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1458 1459 // We emit a jump to a notional label at the outermost unwind state. 1460 llvm::BasicBlock *Unwind = createBasicBlock("eh.resume"); 1461 Builder.SetInsertPoint(Unwind); 1462 1463 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions()); 1464 1465 // This can always be a call because we necessarily didn't find 1466 // anything on the EH stack which needs our help. 1467 llvm::StringRef RethrowName = Personality.getCatchallRethrowFnName(); 1468 if (!RethrowName.empty()) { 1469 Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName), 1470 Builder.CreateLoad(getExceptionSlot())) 1471 ->setDoesNotReturn(); 1472 } else { 1473 llvm::Value *Exn = Builder.CreateLoad(getExceptionSlot()); 1474 1475 switch (CleanupHackLevel) { 1476 case CHL_MandatoryCatchall: 1477 // In mandatory-catchall mode, we need to use 1478 // _Unwind_Resume_or_Rethrow, or whatever the personality's 1479 // equivalent is. 1480 Builder.CreateCall(getUnwindResumeOrRethrowFn(), Exn) 1481 ->setDoesNotReturn(); 1482 break; 1483 case CHL_MandatoryCleanup: { 1484 // In mandatory-cleanup mode, we should use llvm.eh.resume. 1485 llvm::Value *Selector = Builder.CreateLoad(getEHSelectorSlot()); 1486 Builder.CreateCall2(CGM.getIntrinsic(llvm::Intrinsic::eh_resume), 1487 Exn, Selector) 1488 ->setDoesNotReturn(); 1489 break; 1490 } 1491 case CHL_Ideal: 1492 // In an idealized mode where we don't have to worry about the 1493 // optimizer combining landing pads, we should just use 1494 // _Unwind_Resume (or the personality's equivalent). 1495 Builder.CreateCall(getUnwindResumeFn(), Exn) 1496 ->setDoesNotReturn(); 1497 break; 1498 } 1499 } 1500 1501 Builder.CreateUnreachable(); 1502 1503 Builder.restoreIP(SavedIP); 1504 1505 RethrowBlock = UnwindDest(Unwind, EHStack.stable_end(), 0); 1506 return RethrowBlock; 1507 } 1508 1509