1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 45 "Clang max alignment greater than what LLVM supports?"); 46 47 void CodeGenFunction::EmitDecl(const Decl &D) { 48 switch (D.getKind()) { 49 case Decl::BuiltinTemplate: 50 case Decl::TranslationUnit: 51 case Decl::ExternCContext: 52 case Decl::Namespace: 53 case Decl::UnresolvedUsingTypename: 54 case Decl::ClassTemplateSpecialization: 55 case Decl::ClassTemplatePartialSpecialization: 56 case Decl::VarTemplateSpecialization: 57 case Decl::VarTemplatePartialSpecialization: 58 case Decl::TemplateTypeParm: 59 case Decl::UnresolvedUsingValue: 60 case Decl::NonTypeTemplateParm: 61 case Decl::CXXDeductionGuide: 62 case Decl::CXXMethod: 63 case Decl::CXXConstructor: 64 case Decl::CXXDestructor: 65 case Decl::CXXConversion: 66 case Decl::Field: 67 case Decl::MSProperty: 68 case Decl::IndirectField: 69 case Decl::ObjCIvar: 70 case Decl::ObjCAtDefsField: 71 case Decl::ParmVar: 72 case Decl::ImplicitParam: 73 case Decl::ClassTemplate: 74 case Decl::VarTemplate: 75 case Decl::FunctionTemplate: 76 case Decl::TypeAliasTemplate: 77 case Decl::TemplateTemplateParm: 78 case Decl::ObjCMethod: 79 case Decl::ObjCCategory: 80 case Decl::ObjCProtocol: 81 case Decl::ObjCInterface: 82 case Decl::ObjCCategoryImpl: 83 case Decl::ObjCImplementation: 84 case Decl::ObjCProperty: 85 case Decl::ObjCCompatibleAlias: 86 case Decl::PragmaComment: 87 case Decl::PragmaDetectMismatch: 88 case Decl::AccessSpec: 89 case Decl::LinkageSpec: 90 case Decl::Export: 91 case Decl::ObjCPropertyImpl: 92 case Decl::FileScopeAsm: 93 case Decl::Friend: 94 case Decl::FriendTemplate: 95 case Decl::Block: 96 case Decl::Captured: 97 case Decl::ClassScopeFunctionSpecialization: 98 case Decl::UsingShadow: 99 case Decl::ConstructorUsingShadow: 100 case Decl::ObjCTypeParam: 101 case Decl::Binding: 102 llvm_unreachable("Declaration should not be in declstmts!"); 103 case Decl::Function: // void X(); 104 case Decl::Record: // struct/union/class X; 105 case Decl::Enum: // enum X; 106 case Decl::EnumConstant: // enum ? { X = ? } 107 case Decl::CXXRecord: // struct/union/class X; [C++] 108 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 109 case Decl::Label: // __label__ x; 110 case Decl::Import: 111 case Decl::OMPThreadPrivate: 112 case Decl::OMPAllocate: 113 case Decl::OMPCapturedExpr: 114 case Decl::OMPRequires: 115 case Decl::Empty: 116 case Decl::Concept: 117 case Decl::LifetimeExtendedTemporary: 118 case Decl::RequiresExprBody: 119 // None of these decls require codegen support. 120 return; 121 122 case Decl::NamespaceAlias: 123 if (CGDebugInfo *DI = getDebugInfo()) 124 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 125 return; 126 case Decl::Using: // using X; [C++] 127 if (CGDebugInfo *DI = getDebugInfo()) 128 DI->EmitUsingDecl(cast<UsingDecl>(D)); 129 return; 130 case Decl::UsingPack: 131 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 132 EmitDecl(*Using); 133 return; 134 case Decl::UsingDirective: // using namespace X; [C++] 135 if (CGDebugInfo *DI = getDebugInfo()) 136 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 137 return; 138 case Decl::Var: 139 case Decl::Decomposition: { 140 const VarDecl &VD = cast<VarDecl>(D); 141 assert(VD.isLocalVarDecl() && 142 "Should not see file-scope variables inside a function!"); 143 EmitVarDecl(VD); 144 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 145 for (auto *B : DD->bindings()) 146 if (auto *HD = B->getHoldingVar()) 147 EmitVarDecl(*HD); 148 return; 149 } 150 151 case Decl::OMPDeclareReduction: 152 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 153 154 case Decl::OMPDeclareMapper: 155 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 156 157 case Decl::Typedef: // typedef int X; 158 case Decl::TypeAlias: { // using X = int; [C++0x] 159 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 160 QualType Ty = TD.getUnderlyingType(); 161 162 if (Ty->isVariablyModifiedType()) 163 EmitVariablyModifiedType(Ty); 164 165 return; 166 } 167 } 168 } 169 170 /// EmitVarDecl - This method handles emission of any variable declaration 171 /// inside a function, including static vars etc. 172 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 173 if (D.hasExternalStorage()) 174 // Don't emit it now, allow it to be emitted lazily on its first use. 175 return; 176 177 // Some function-scope variable does not have static storage but still 178 // needs to be emitted like a static variable, e.g. a function-scope 179 // variable in constant address space in OpenCL. 180 if (D.getStorageDuration() != SD_Automatic) { 181 // Static sampler variables translated to function calls. 182 if (D.getType()->isSamplerT()) 183 return; 184 185 llvm::GlobalValue::LinkageTypes Linkage = 186 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 187 188 // FIXME: We need to force the emission/use of a guard variable for 189 // some variables even if we can constant-evaluate them because 190 // we can't guarantee every translation unit will constant-evaluate them. 191 192 return EmitStaticVarDecl(D, Linkage); 193 } 194 195 if (D.getType().getAddressSpace() == LangAS::opencl_local) 196 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 197 198 assert(D.hasLocalStorage()); 199 return EmitAutoVarDecl(D); 200 } 201 202 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 203 if (CGM.getLangOpts().CPlusPlus) 204 return CGM.getMangledName(&D).str(); 205 206 // If this isn't C++, we don't need a mangled name, just a pretty one. 207 assert(!D.isExternallyVisible() && "name shouldn't matter"); 208 std::string ContextName; 209 const DeclContext *DC = D.getDeclContext(); 210 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 211 DC = cast<DeclContext>(CD->getNonClosureContext()); 212 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 213 ContextName = std::string(CGM.getMangledName(FD)); 214 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 215 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 216 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 217 ContextName = OMD->getSelector().getAsString(); 218 else 219 llvm_unreachable("Unknown context for static var decl"); 220 221 ContextName += "." + D.getNameAsString(); 222 return ContextName; 223 } 224 225 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 226 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 227 // In general, we don't always emit static var decls once before we reference 228 // them. It is possible to reference them before emitting the function that 229 // contains them, and it is possible to emit the containing function multiple 230 // times. 231 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 232 return ExistingGV; 233 234 QualType Ty = D.getType(); 235 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 236 237 // Use the label if the variable is renamed with the asm-label extension. 238 std::string Name; 239 if (D.hasAttr<AsmLabelAttr>()) 240 Name = std::string(getMangledName(&D)); 241 else 242 Name = getStaticDeclName(*this, D); 243 244 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 245 LangAS AS = GetGlobalVarAddressSpace(&D); 246 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 247 248 // OpenCL variables in local address space and CUDA shared 249 // variables cannot have an initializer. 250 llvm::Constant *Init = nullptr; 251 if (Ty.getAddressSpace() == LangAS::opencl_local || 252 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 253 Init = llvm::UndefValue::get(LTy); 254 else 255 Init = EmitNullConstant(Ty); 256 257 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 258 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 259 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 260 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 261 262 if (supportsCOMDAT() && GV->isWeakForLinker()) 263 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 264 265 if (D.getTLSKind()) 266 setTLSMode(GV, D); 267 268 setGVProperties(GV, &D); 269 270 // Make sure the result is of the correct type. 271 LangAS ExpectedAS = Ty.getAddressSpace(); 272 llvm::Constant *Addr = GV; 273 if (AS != ExpectedAS) { 274 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 275 *this, GV, AS, ExpectedAS, 276 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 277 } 278 279 setStaticLocalDeclAddress(&D, Addr); 280 281 // Ensure that the static local gets initialized by making sure the parent 282 // function gets emitted eventually. 283 const Decl *DC = cast<Decl>(D.getDeclContext()); 284 285 // We can't name blocks or captured statements directly, so try to emit their 286 // parents. 287 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 288 DC = DC->getNonClosureContext(); 289 // FIXME: Ensure that global blocks get emitted. 290 if (!DC) 291 return Addr; 292 } 293 294 GlobalDecl GD; 295 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 296 GD = GlobalDecl(CD, Ctor_Base); 297 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 298 GD = GlobalDecl(DD, Dtor_Base); 299 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 300 GD = GlobalDecl(FD); 301 else { 302 // Don't do anything for Obj-C method decls or global closures. We should 303 // never defer them. 304 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 305 } 306 if (GD.getDecl()) { 307 // Disable emission of the parent function for the OpenMP device codegen. 308 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 309 (void)GetAddrOfGlobal(GD); 310 } 311 312 return Addr; 313 } 314 315 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 316 /// global variable that has already been created for it. If the initializer 317 /// has a different type than GV does, this may free GV and return a different 318 /// one. Otherwise it just returns GV. 319 llvm::GlobalVariable * 320 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 321 llvm::GlobalVariable *GV) { 322 ConstantEmitter emitter(*this); 323 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 324 325 // If constant emission failed, then this should be a C++ static 326 // initializer. 327 if (!Init) { 328 if (!getLangOpts().CPlusPlus) 329 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 330 else if (HaveInsertPoint()) { 331 // Since we have a static initializer, this global variable can't 332 // be constant. 333 GV->setConstant(false); 334 335 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 336 } 337 return GV; 338 } 339 340 // The initializer may differ in type from the global. Rewrite 341 // the global to match the initializer. (We have to do this 342 // because some types, like unions, can't be completely represented 343 // in the LLVM type system.) 344 if (GV->getValueType() != Init->getType()) { 345 llvm::GlobalVariable *OldGV = GV; 346 347 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 348 OldGV->isConstant(), 349 OldGV->getLinkage(), Init, "", 350 /*InsertBefore*/ OldGV, 351 OldGV->getThreadLocalMode(), 352 CGM.getContext().getTargetAddressSpace(D.getType())); 353 GV->setVisibility(OldGV->getVisibility()); 354 GV->setDSOLocal(OldGV->isDSOLocal()); 355 GV->setComdat(OldGV->getComdat()); 356 357 // Steal the name of the old global 358 GV->takeName(OldGV); 359 360 // Replace all uses of the old global with the new global 361 llvm::Constant *NewPtrForOldDecl = 362 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 363 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 364 365 // Erase the old global, since it is no longer used. 366 OldGV->eraseFromParent(); 367 } 368 369 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 370 GV->setInitializer(Init); 371 372 emitter.finalize(GV); 373 374 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 375 HaveInsertPoint()) { 376 // We have a constant initializer, but a nontrivial destructor. We still 377 // need to perform a guarded "initialization" in order to register the 378 // destructor. 379 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 380 } 381 382 return GV; 383 } 384 385 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 386 llvm::GlobalValue::LinkageTypes Linkage) { 387 // Check to see if we already have a global variable for this 388 // declaration. This can happen when double-emitting function 389 // bodies, e.g. with complete and base constructors. 390 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 391 CharUnits alignment = getContext().getDeclAlign(&D); 392 393 // Store into LocalDeclMap before generating initializer to handle 394 // circular references. 395 setAddrOfLocalVar(&D, Address(addr, alignment)); 396 397 // We can't have a VLA here, but we can have a pointer to a VLA, 398 // even though that doesn't really make any sense. 399 // Make sure to evaluate VLA bounds now so that we have them for later. 400 if (D.getType()->isVariablyModifiedType()) 401 EmitVariablyModifiedType(D.getType()); 402 403 // Save the type in case adding the initializer forces a type change. 404 llvm::Type *expectedType = addr->getType(); 405 406 llvm::GlobalVariable *var = 407 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 408 409 // CUDA's local and local static __shared__ variables should not 410 // have any non-empty initializers. This is ensured by Sema. 411 // Whatever initializer such variable may have when it gets here is 412 // a no-op and should not be emitted. 413 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 414 D.hasAttr<CUDASharedAttr>(); 415 // If this value has an initializer, emit it. 416 if (D.getInit() && !isCudaSharedVar) 417 var = AddInitializerToStaticVarDecl(D, var); 418 419 var->setAlignment(alignment.getAsAlign()); 420 421 if (D.hasAttr<AnnotateAttr>()) 422 CGM.AddGlobalAnnotations(&D, var); 423 424 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 425 var->addAttribute("bss-section", SA->getName()); 426 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 427 var->addAttribute("data-section", SA->getName()); 428 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 429 var->addAttribute("rodata-section", SA->getName()); 430 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 431 var->addAttribute("relro-section", SA->getName()); 432 433 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 434 var->setSection(SA->getName()); 435 436 if (D.hasAttr<UsedAttr>()) 437 CGM.addUsedGlobal(var); 438 439 // We may have to cast the constant because of the initializer 440 // mismatch above. 441 // 442 // FIXME: It is really dangerous to store this in the map; if anyone 443 // RAUW's the GV uses of this constant will be invalid. 444 llvm::Constant *castedAddr = 445 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 446 if (var != castedAddr) 447 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 448 CGM.setStaticLocalDeclAddress(&D, castedAddr); 449 450 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 451 452 // Emit global variable debug descriptor for static vars. 453 CGDebugInfo *DI = getDebugInfo(); 454 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 455 DI->setLocation(D.getLocation()); 456 DI->EmitGlobalVariable(var, &D); 457 } 458 } 459 460 namespace { 461 struct DestroyObject final : EHScopeStack::Cleanup { 462 DestroyObject(Address addr, QualType type, 463 CodeGenFunction::Destroyer *destroyer, 464 bool useEHCleanupForArray) 465 : addr(addr), type(type), destroyer(destroyer), 466 useEHCleanupForArray(useEHCleanupForArray) {} 467 468 Address addr; 469 QualType type; 470 CodeGenFunction::Destroyer *destroyer; 471 bool useEHCleanupForArray; 472 473 void Emit(CodeGenFunction &CGF, Flags flags) override { 474 // Don't use an EH cleanup recursively from an EH cleanup. 475 bool useEHCleanupForArray = 476 flags.isForNormalCleanup() && this->useEHCleanupForArray; 477 478 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 479 } 480 }; 481 482 template <class Derived> 483 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 484 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 485 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 486 487 llvm::Value *NRVOFlag; 488 Address Loc; 489 QualType Ty; 490 491 void Emit(CodeGenFunction &CGF, Flags flags) override { 492 // Along the exceptions path we always execute the dtor. 493 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 494 495 llvm::BasicBlock *SkipDtorBB = nullptr; 496 if (NRVO) { 497 // If we exited via NRVO, we skip the destructor call. 498 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 499 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 500 llvm::Value *DidNRVO = 501 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 502 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 503 CGF.EmitBlock(RunDtorBB); 504 } 505 506 static_cast<Derived *>(this)->emitDestructorCall(CGF); 507 508 if (NRVO) CGF.EmitBlock(SkipDtorBB); 509 } 510 511 virtual ~DestroyNRVOVariable() = default; 512 }; 513 514 struct DestroyNRVOVariableCXX final 515 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 516 DestroyNRVOVariableCXX(Address addr, QualType type, 517 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 518 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 519 Dtor(Dtor) {} 520 521 const CXXDestructorDecl *Dtor; 522 523 void emitDestructorCall(CodeGenFunction &CGF) { 524 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 525 /*ForVirtualBase=*/false, 526 /*Delegating=*/false, Loc, Ty); 527 } 528 }; 529 530 struct DestroyNRVOVariableC final 531 : DestroyNRVOVariable<DestroyNRVOVariableC> { 532 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 533 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 534 535 void emitDestructorCall(CodeGenFunction &CGF) { 536 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 537 } 538 }; 539 540 struct CallStackRestore final : EHScopeStack::Cleanup { 541 Address Stack; 542 CallStackRestore(Address Stack) : Stack(Stack) {} 543 void Emit(CodeGenFunction &CGF, Flags flags) override { 544 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 545 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 546 CGF.Builder.CreateCall(F, V); 547 } 548 }; 549 550 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 551 const VarDecl &Var; 552 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 553 554 void Emit(CodeGenFunction &CGF, Flags flags) override { 555 // Compute the address of the local variable, in case it's a 556 // byref or something. 557 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 558 Var.getType(), VK_LValue, SourceLocation()); 559 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 560 SourceLocation()); 561 CGF.EmitExtendGCLifetime(value); 562 } 563 }; 564 565 struct CallCleanupFunction final : EHScopeStack::Cleanup { 566 llvm::Constant *CleanupFn; 567 const CGFunctionInfo &FnInfo; 568 const VarDecl &Var; 569 570 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 571 const VarDecl *Var) 572 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 573 574 void Emit(CodeGenFunction &CGF, Flags flags) override { 575 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 576 Var.getType(), VK_LValue, SourceLocation()); 577 // Compute the address of the local variable, in case it's a byref 578 // or something. 579 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 580 581 // In some cases, the type of the function argument will be different from 582 // the type of the pointer. An example of this is 583 // void f(void* arg); 584 // __attribute__((cleanup(f))) void *g; 585 // 586 // To fix this we insert a bitcast here. 587 QualType ArgTy = FnInfo.arg_begin()->type; 588 llvm::Value *Arg = 589 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 590 591 CallArgList Args; 592 Args.add(RValue::get(Arg), 593 CGF.getContext().getPointerType(Var.getType())); 594 auto Callee = CGCallee::forDirect(CleanupFn); 595 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 596 } 597 }; 598 } // end anonymous namespace 599 600 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 601 /// variable with lifetime. 602 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 603 Address addr, 604 Qualifiers::ObjCLifetime lifetime) { 605 switch (lifetime) { 606 case Qualifiers::OCL_None: 607 llvm_unreachable("present but none"); 608 609 case Qualifiers::OCL_ExplicitNone: 610 // nothing to do 611 break; 612 613 case Qualifiers::OCL_Strong: { 614 CodeGenFunction::Destroyer *destroyer = 615 (var.hasAttr<ObjCPreciseLifetimeAttr>() 616 ? CodeGenFunction::destroyARCStrongPrecise 617 : CodeGenFunction::destroyARCStrongImprecise); 618 619 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 620 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 621 cleanupKind & EHCleanup); 622 break; 623 } 624 case Qualifiers::OCL_Autoreleasing: 625 // nothing to do 626 break; 627 628 case Qualifiers::OCL_Weak: 629 // __weak objects always get EH cleanups; otherwise, exceptions 630 // could cause really nasty crashes instead of mere leaks. 631 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 632 CodeGenFunction::destroyARCWeak, 633 /*useEHCleanup*/ true); 634 break; 635 } 636 } 637 638 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 639 if (const Expr *e = dyn_cast<Expr>(s)) { 640 // Skip the most common kinds of expressions that make 641 // hierarchy-walking expensive. 642 s = e = e->IgnoreParenCasts(); 643 644 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 645 return (ref->getDecl() == &var); 646 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 647 const BlockDecl *block = be->getBlockDecl(); 648 for (const auto &I : block->captures()) { 649 if (I.getVariable() == &var) 650 return true; 651 } 652 } 653 } 654 655 for (const Stmt *SubStmt : s->children()) 656 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 657 if (SubStmt && isAccessedBy(var, SubStmt)) 658 return true; 659 660 return false; 661 } 662 663 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 664 if (!decl) return false; 665 if (!isa<VarDecl>(decl)) return false; 666 const VarDecl *var = cast<VarDecl>(decl); 667 return isAccessedBy(*var, e); 668 } 669 670 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 671 const LValue &destLV, const Expr *init) { 672 bool needsCast = false; 673 674 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 675 switch (castExpr->getCastKind()) { 676 // Look through casts that don't require representation changes. 677 case CK_NoOp: 678 case CK_BitCast: 679 case CK_BlockPointerToObjCPointerCast: 680 needsCast = true; 681 break; 682 683 // If we find an l-value to r-value cast from a __weak variable, 684 // emit this operation as a copy or move. 685 case CK_LValueToRValue: { 686 const Expr *srcExpr = castExpr->getSubExpr(); 687 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 688 return false; 689 690 // Emit the source l-value. 691 LValue srcLV = CGF.EmitLValue(srcExpr); 692 693 // Handle a formal type change to avoid asserting. 694 auto srcAddr = srcLV.getAddress(CGF); 695 if (needsCast) { 696 srcAddr = CGF.Builder.CreateElementBitCast( 697 srcAddr, destLV.getAddress(CGF).getElementType()); 698 } 699 700 // If it was an l-value, use objc_copyWeak. 701 if (srcExpr->getValueKind() == VK_LValue) { 702 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 703 } else { 704 assert(srcExpr->getValueKind() == VK_XValue); 705 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 706 } 707 return true; 708 } 709 710 // Stop at anything else. 711 default: 712 return false; 713 } 714 715 init = castExpr->getSubExpr(); 716 } 717 return false; 718 } 719 720 static void drillIntoBlockVariable(CodeGenFunction &CGF, 721 LValue &lvalue, 722 const VarDecl *var) { 723 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 724 } 725 726 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 727 SourceLocation Loc) { 728 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 729 return; 730 731 auto Nullability = LHS.getType()->getNullability(getContext()); 732 if (!Nullability || *Nullability != NullabilityKind::NonNull) 733 return; 734 735 // Check if the right hand side of the assignment is nonnull, if the left 736 // hand side must be nonnull. 737 SanitizerScope SanScope(this); 738 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 739 llvm::Constant *StaticData[] = { 740 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 741 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 742 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 743 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 744 SanitizerHandler::TypeMismatch, StaticData, RHS); 745 } 746 747 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 748 LValue lvalue, bool capturedByInit) { 749 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 750 if (!lifetime) { 751 llvm::Value *value = EmitScalarExpr(init); 752 if (capturedByInit) 753 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 754 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 755 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 756 return; 757 } 758 759 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 760 init = DIE->getExpr(); 761 762 // If we're emitting a value with lifetime, we have to do the 763 // initialization *before* we leave the cleanup scopes. 764 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 765 enterFullExpression(fe); 766 init = fe->getSubExpr(); 767 } 768 CodeGenFunction::RunCleanupsScope Scope(*this); 769 770 // We have to maintain the illusion that the variable is 771 // zero-initialized. If the variable might be accessed in its 772 // initializer, zero-initialize before running the initializer, then 773 // actually perform the initialization with an assign. 774 bool accessedByInit = false; 775 if (lifetime != Qualifiers::OCL_ExplicitNone) 776 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 777 if (accessedByInit) { 778 LValue tempLV = lvalue; 779 // Drill down to the __block object if necessary. 780 if (capturedByInit) { 781 // We can use a simple GEP for this because it can't have been 782 // moved yet. 783 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 784 cast<VarDecl>(D), 785 /*follow*/ false)); 786 } 787 788 auto ty = 789 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 790 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 791 792 // If __weak, we want to use a barrier under certain conditions. 793 if (lifetime == Qualifiers::OCL_Weak) 794 EmitARCInitWeak(tempLV.getAddress(*this), zero); 795 796 // Otherwise just do a simple store. 797 else 798 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 799 } 800 801 // Emit the initializer. 802 llvm::Value *value = nullptr; 803 804 switch (lifetime) { 805 case Qualifiers::OCL_None: 806 llvm_unreachable("present but none"); 807 808 case Qualifiers::OCL_Strong: { 809 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 810 value = EmitARCRetainScalarExpr(init); 811 break; 812 } 813 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 814 // that we omit the retain, and causes non-autoreleased return values to be 815 // immediately released. 816 LLVM_FALLTHROUGH; 817 } 818 819 case Qualifiers::OCL_ExplicitNone: 820 value = EmitARCUnsafeUnretainedScalarExpr(init); 821 break; 822 823 case Qualifiers::OCL_Weak: { 824 // If it's not accessed by the initializer, try to emit the 825 // initialization with a copy or move. 826 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 827 return; 828 } 829 830 // No way to optimize a producing initializer into this. It's not 831 // worth optimizing for, because the value will immediately 832 // disappear in the common case. 833 value = EmitScalarExpr(init); 834 835 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 836 if (accessedByInit) 837 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 838 else 839 EmitARCInitWeak(lvalue.getAddress(*this), value); 840 return; 841 } 842 843 case Qualifiers::OCL_Autoreleasing: 844 value = EmitARCRetainAutoreleaseScalarExpr(init); 845 break; 846 } 847 848 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 849 850 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 851 852 // If the variable might have been accessed by its initializer, we 853 // might have to initialize with a barrier. We have to do this for 854 // both __weak and __strong, but __weak got filtered out above. 855 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 856 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 857 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 858 EmitARCRelease(oldValue, ARCImpreciseLifetime); 859 return; 860 } 861 862 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 863 } 864 865 /// Decide whether we can emit the non-zero parts of the specified initializer 866 /// with equal or fewer than NumStores scalar stores. 867 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 868 unsigned &NumStores) { 869 // Zero and Undef never requires any extra stores. 870 if (isa<llvm::ConstantAggregateZero>(Init) || 871 isa<llvm::ConstantPointerNull>(Init) || 872 isa<llvm::UndefValue>(Init)) 873 return true; 874 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 875 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 876 isa<llvm::ConstantExpr>(Init)) 877 return Init->isNullValue() || NumStores--; 878 879 // See if we can emit each element. 880 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 881 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 882 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 883 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 884 return false; 885 } 886 return true; 887 } 888 889 if (llvm::ConstantDataSequential *CDS = 890 dyn_cast<llvm::ConstantDataSequential>(Init)) { 891 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 892 llvm::Constant *Elt = CDS->getElementAsConstant(i); 893 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 894 return false; 895 } 896 return true; 897 } 898 899 // Anything else is hard and scary. 900 return false; 901 } 902 903 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 904 /// the scalar stores that would be required. 905 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 906 llvm::Constant *Init, Address Loc, 907 bool isVolatile, CGBuilderTy &Builder) { 908 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 909 "called emitStoresForInitAfterBZero for zero or undef value."); 910 911 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 912 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 913 isa<llvm::ConstantExpr>(Init)) { 914 Builder.CreateStore(Init, Loc, isVolatile); 915 return; 916 } 917 918 if (llvm::ConstantDataSequential *CDS = 919 dyn_cast<llvm::ConstantDataSequential>(Init)) { 920 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 921 llvm::Constant *Elt = CDS->getElementAsConstant(i); 922 923 // If necessary, get a pointer to the element and emit it. 924 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 925 emitStoresForInitAfterBZero( 926 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 927 Builder); 928 } 929 return; 930 } 931 932 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 933 "Unknown value type!"); 934 935 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 936 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 937 938 // If necessary, get a pointer to the element and emit it. 939 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 940 emitStoresForInitAfterBZero(CGM, Elt, 941 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 942 isVolatile, Builder); 943 } 944 } 945 946 /// Decide whether we should use bzero plus some stores to initialize a local 947 /// variable instead of using a memcpy from a constant global. It is beneficial 948 /// to use bzero if the global is all zeros, or mostly zeros and large. 949 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 950 uint64_t GlobalSize) { 951 // If a global is all zeros, always use a bzero. 952 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 953 954 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 955 // do it if it will require 6 or fewer scalar stores. 956 // TODO: Should budget depends on the size? Avoiding a large global warrants 957 // plopping in more stores. 958 unsigned StoreBudget = 6; 959 uint64_t SizeLimit = 32; 960 961 return GlobalSize > SizeLimit && 962 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 963 } 964 965 /// Decide whether we should use memset to initialize a local variable instead 966 /// of using a memcpy from a constant global. Assumes we've already decided to 967 /// not user bzero. 968 /// FIXME We could be more clever, as we are for bzero above, and generate 969 /// memset followed by stores. It's unclear that's worth the effort. 970 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 971 uint64_t GlobalSize, 972 const llvm::DataLayout &DL) { 973 uint64_t SizeLimit = 32; 974 if (GlobalSize <= SizeLimit) 975 return nullptr; 976 return llvm::isBytewiseValue(Init, DL); 977 } 978 979 /// Decide whether we want to split a constant structure or array store into a 980 /// sequence of its fields' stores. This may cost us code size and compilation 981 /// speed, but plays better with store optimizations. 982 static bool shouldSplitConstantStore(CodeGenModule &CGM, 983 uint64_t GlobalByteSize) { 984 // Don't break things that occupy more than one cacheline. 985 uint64_t ByteSizeLimit = 64; 986 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 987 return false; 988 if (GlobalByteSize <= ByteSizeLimit) 989 return true; 990 return false; 991 } 992 993 enum class IsPattern { No, Yes }; 994 995 /// Generate a constant filled with either a pattern or zeroes. 996 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 997 llvm::Type *Ty) { 998 if (isPattern == IsPattern::Yes) 999 return initializationPatternFor(CGM, Ty); 1000 else 1001 return llvm::Constant::getNullValue(Ty); 1002 } 1003 1004 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1005 llvm::Constant *constant); 1006 1007 /// Helper function for constWithPadding() to deal with padding in structures. 1008 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1009 IsPattern isPattern, 1010 llvm::StructType *STy, 1011 llvm::Constant *constant) { 1012 const llvm::DataLayout &DL = CGM.getDataLayout(); 1013 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1014 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1015 unsigned SizeSoFar = 0; 1016 SmallVector<llvm::Constant *, 8> Values; 1017 bool NestedIntact = true; 1018 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1019 unsigned CurOff = Layout->getElementOffset(i); 1020 if (SizeSoFar < CurOff) { 1021 assert(!STy->isPacked()); 1022 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1023 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1024 } 1025 llvm::Constant *CurOp; 1026 if (constant->isZeroValue()) 1027 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1028 else 1029 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1030 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1031 if (CurOp != NewOp) 1032 NestedIntact = false; 1033 Values.push_back(NewOp); 1034 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1035 } 1036 unsigned TotalSize = Layout->getSizeInBytes(); 1037 if (SizeSoFar < TotalSize) { 1038 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1039 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1040 } 1041 if (NestedIntact && Values.size() == STy->getNumElements()) 1042 return constant; 1043 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1044 } 1045 1046 /// Replace all padding bytes in a given constant with either a pattern byte or 1047 /// 0x00. 1048 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1049 llvm::Constant *constant) { 1050 llvm::Type *OrigTy = constant->getType(); 1051 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1052 return constStructWithPadding(CGM, isPattern, STy, constant); 1053 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1054 llvm::SmallVector<llvm::Constant *, 8> Values; 1055 uint64_t Size = ArrayTy->getNumElements(); 1056 if (!Size) 1057 return constant; 1058 llvm::Type *ElemTy = ArrayTy->getElementType(); 1059 bool ZeroInitializer = constant->isNullValue(); 1060 llvm::Constant *OpValue, *PaddedOp; 1061 if (ZeroInitializer) { 1062 OpValue = llvm::Constant::getNullValue(ElemTy); 1063 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1064 } 1065 for (unsigned Op = 0; Op != Size; ++Op) { 1066 if (!ZeroInitializer) { 1067 OpValue = constant->getAggregateElement(Op); 1068 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1069 } 1070 Values.push_back(PaddedOp); 1071 } 1072 auto *NewElemTy = Values[0]->getType(); 1073 if (NewElemTy == ElemTy) 1074 return constant; 1075 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1076 return llvm::ConstantArray::get(NewArrayTy, Values); 1077 } 1078 // FIXME: Add handling for tail padding in vectors. Vectors don't 1079 // have padding between or inside elements, but the total amount of 1080 // data can be less than the allocated size. 1081 return constant; 1082 } 1083 1084 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1085 llvm::Constant *Constant, 1086 CharUnits Align) { 1087 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1088 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1089 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1090 return CC->getNameAsString(); 1091 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1092 return CD->getNameAsString(); 1093 return std::string(getMangledName(FD)); 1094 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1095 return OM->getNameAsString(); 1096 } else if (isa<BlockDecl>(DC)) { 1097 return "<block>"; 1098 } else if (isa<CapturedDecl>(DC)) { 1099 return "<captured>"; 1100 } else { 1101 llvm_unreachable("expected a function or method"); 1102 } 1103 }; 1104 1105 // Form a simple per-variable cache of these values in case we find we 1106 // want to reuse them. 1107 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1108 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1109 auto *Ty = Constant->getType(); 1110 bool isConstant = true; 1111 llvm::GlobalVariable *InsertBefore = nullptr; 1112 unsigned AS = 1113 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1114 std::string Name; 1115 if (D.hasGlobalStorage()) 1116 Name = getMangledName(&D).str() + ".const"; 1117 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1118 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1119 else 1120 llvm_unreachable("local variable has no parent function or method"); 1121 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1122 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1123 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1124 GV->setAlignment(Align.getAsAlign()); 1125 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1126 CacheEntry = GV; 1127 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1128 CacheEntry->setAlignment(Align.getAsAlign()); 1129 } 1130 1131 return Address(CacheEntry, Align); 1132 } 1133 1134 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1135 const VarDecl &D, 1136 CGBuilderTy &Builder, 1137 llvm::Constant *Constant, 1138 CharUnits Align) { 1139 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1140 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1141 SrcPtr.getAddressSpace()); 1142 if (SrcPtr.getType() != BP) 1143 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1144 return SrcPtr; 1145 } 1146 1147 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1148 Address Loc, bool isVolatile, 1149 CGBuilderTy &Builder, 1150 llvm::Constant *constant) { 1151 auto *Ty = constant->getType(); 1152 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1153 if (!ConstantSize) 1154 return; 1155 1156 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1157 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1158 if (canDoSingleStore) { 1159 Builder.CreateStore(constant, Loc, isVolatile); 1160 return; 1161 } 1162 1163 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1164 1165 // If the initializer is all or mostly the same, codegen with bzero / memset 1166 // then do a few stores afterward. 1167 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1168 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal, 1169 isVolatile); 1170 1171 bool valueAlreadyCorrect = 1172 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1173 if (!valueAlreadyCorrect) { 1174 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1175 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1176 } 1177 return; 1178 } 1179 1180 // If the initializer is a repeated byte pattern, use memset. 1181 llvm::Value *Pattern = 1182 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1183 if (Pattern) { 1184 uint64_t Value = 0x00; 1185 if (!isa<llvm::UndefValue>(Pattern)) { 1186 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1187 assert(AP.getBitWidth() <= 8); 1188 Value = AP.getLimitedValue(); 1189 } 1190 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, 1191 isVolatile); 1192 return; 1193 } 1194 1195 // If the initializer is small, use a handful of stores. 1196 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1197 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1198 // FIXME: handle the case when STy != Loc.getElementType(). 1199 if (STy == Loc.getElementType()) { 1200 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1201 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1202 emitStoresForConstant( 1203 CGM, D, EltPtr, isVolatile, Builder, 1204 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1205 } 1206 return; 1207 } 1208 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1209 // FIXME: handle the case when ATy != Loc.getElementType(). 1210 if (ATy == Loc.getElementType()) { 1211 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1212 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1213 emitStoresForConstant( 1214 CGM, D, EltPtr, isVolatile, Builder, 1215 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1216 } 1217 return; 1218 } 1219 } 1220 } 1221 1222 // Copy from a global. 1223 Builder.CreateMemCpy(Loc, 1224 createUnnamedGlobalForMemcpyFrom( 1225 CGM, D, Builder, constant, Loc.getAlignment()), 1226 SizeVal, isVolatile); 1227 } 1228 1229 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1230 Address Loc, bool isVolatile, 1231 CGBuilderTy &Builder) { 1232 llvm::Type *ElTy = Loc.getElementType(); 1233 llvm::Constant *constant = 1234 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1235 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1236 } 1237 1238 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1239 Address Loc, bool isVolatile, 1240 CGBuilderTy &Builder) { 1241 llvm::Type *ElTy = Loc.getElementType(); 1242 llvm::Constant *constant = constWithPadding( 1243 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1244 assert(!isa<llvm::UndefValue>(constant)); 1245 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1246 } 1247 1248 static bool containsUndef(llvm::Constant *constant) { 1249 auto *Ty = constant->getType(); 1250 if (isa<llvm::UndefValue>(constant)) 1251 return true; 1252 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1253 for (llvm::Use &Op : constant->operands()) 1254 if (containsUndef(cast<llvm::Constant>(Op))) 1255 return true; 1256 return false; 1257 } 1258 1259 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1260 llvm::Constant *constant) { 1261 auto *Ty = constant->getType(); 1262 if (isa<llvm::UndefValue>(constant)) 1263 return patternOrZeroFor(CGM, isPattern, Ty); 1264 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1265 return constant; 1266 if (!containsUndef(constant)) 1267 return constant; 1268 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1269 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1270 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1271 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1272 } 1273 if (Ty->isStructTy()) 1274 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1275 if (Ty->isArrayTy()) 1276 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1277 assert(Ty->isVectorTy()); 1278 return llvm::ConstantVector::get(Values); 1279 } 1280 1281 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1282 /// variable declaration with auto, register, or no storage class specifier. 1283 /// These turn into simple stack objects, or GlobalValues depending on target. 1284 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1285 AutoVarEmission emission = EmitAutoVarAlloca(D); 1286 EmitAutoVarInit(emission); 1287 EmitAutoVarCleanups(emission); 1288 } 1289 1290 /// Emit a lifetime.begin marker if some criteria are satisfied. 1291 /// \return a pointer to the temporary size Value if a marker was emitted, null 1292 /// otherwise 1293 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1294 llvm::Value *Addr) { 1295 if (!ShouldEmitLifetimeMarkers) 1296 return nullptr; 1297 1298 assert(Addr->getType()->getPointerAddressSpace() == 1299 CGM.getDataLayout().getAllocaAddrSpace() && 1300 "Pointer should be in alloca address space"); 1301 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1302 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1303 llvm::CallInst *C = 1304 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1305 C->setDoesNotThrow(); 1306 return SizeV; 1307 } 1308 1309 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1310 assert(Addr->getType()->getPointerAddressSpace() == 1311 CGM.getDataLayout().getAllocaAddrSpace() && 1312 "Pointer should be in alloca address space"); 1313 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1314 llvm::CallInst *C = 1315 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1316 C->setDoesNotThrow(); 1317 } 1318 1319 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1320 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1321 // For each dimension stores its QualType and corresponding 1322 // size-expression Value. 1323 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1324 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1325 1326 // Break down the array into individual dimensions. 1327 QualType Type1D = D.getType(); 1328 while (getContext().getAsVariableArrayType(Type1D)) { 1329 auto VlaSize = getVLAElements1D(Type1D); 1330 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1331 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1332 else { 1333 // Generate a locally unique name for the size expression. 1334 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1335 SmallString<12> Buffer; 1336 StringRef NameRef = Name.toStringRef(Buffer); 1337 auto &Ident = getContext().Idents.getOwn(NameRef); 1338 VLAExprNames.push_back(&Ident); 1339 auto SizeExprAddr = 1340 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1341 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1342 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1343 Type1D.getUnqualifiedType()); 1344 } 1345 Type1D = VlaSize.Type; 1346 } 1347 1348 if (!EmitDebugInfo) 1349 return; 1350 1351 // Register each dimension's size-expression with a DILocalVariable, 1352 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1353 // to describe this array. 1354 unsigned NameIdx = 0; 1355 for (auto &VlaSize : Dimensions) { 1356 llvm::Metadata *MD; 1357 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1358 MD = llvm::ConstantAsMetadata::get(C); 1359 else { 1360 // Create an artificial VarDecl to generate debug info for. 1361 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1362 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1363 auto QT = getContext().getIntTypeForBitwidth( 1364 VlaExprTy->getScalarSizeInBits(), false); 1365 auto *ArtificialDecl = VarDecl::Create( 1366 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1367 D.getLocation(), D.getLocation(), NameIdent, QT, 1368 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1369 ArtificialDecl->setImplicit(); 1370 1371 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1372 Builder); 1373 } 1374 assert(MD && "No Size expression debug node created"); 1375 DI->registerVLASizeExpression(VlaSize.Type, MD); 1376 } 1377 } 1378 1379 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1380 /// local variable. Does not emit initialization or destruction. 1381 CodeGenFunction::AutoVarEmission 1382 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1383 QualType Ty = D.getType(); 1384 assert( 1385 Ty.getAddressSpace() == LangAS::Default || 1386 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1387 1388 AutoVarEmission emission(D); 1389 1390 bool isEscapingByRef = D.isEscapingByref(); 1391 emission.IsEscapingByRef = isEscapingByRef; 1392 1393 CharUnits alignment = getContext().getDeclAlign(&D); 1394 1395 // If the type is variably-modified, emit all the VLA sizes for it. 1396 if (Ty->isVariablyModifiedType()) 1397 EmitVariablyModifiedType(Ty); 1398 1399 auto *DI = getDebugInfo(); 1400 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1401 1402 Address address = Address::invalid(); 1403 Address AllocaAddr = Address::invalid(); 1404 Address OpenMPLocalAddr = 1405 getLangOpts().OpenMP 1406 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1407 : Address::invalid(); 1408 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1409 1410 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1411 address = OpenMPLocalAddr; 1412 } else if (Ty->isConstantSizeType()) { 1413 // If this value is an array or struct with a statically determinable 1414 // constant initializer, there are optimizations we can do. 1415 // 1416 // TODO: We should constant-evaluate the initializer of any variable, 1417 // as long as it is initialized by a constant expression. Currently, 1418 // isConstantInitializer produces wrong answers for structs with 1419 // reference or bitfield members, and a few other cases, and checking 1420 // for POD-ness protects us from some of these. 1421 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1422 (D.isConstexpr() || 1423 ((Ty.isPODType(getContext()) || 1424 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1425 D.getInit()->isConstantInitializer(getContext(), false)))) { 1426 1427 // If the variable's a const type, and it's neither an NRVO 1428 // candidate nor a __block variable and has no mutable members, 1429 // emit it as a global instead. 1430 // Exception is if a variable is located in non-constant address space 1431 // in OpenCL. 1432 if ((!getLangOpts().OpenCL || 1433 Ty.getAddressSpace() == LangAS::opencl_constant) && 1434 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1435 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1436 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1437 1438 // Signal this condition to later callbacks. 1439 emission.Addr = Address::invalid(); 1440 assert(emission.wasEmittedAsGlobal()); 1441 return emission; 1442 } 1443 1444 // Otherwise, tell the initialization code that we're in this case. 1445 emission.IsConstantAggregate = true; 1446 } 1447 1448 // A normal fixed sized variable becomes an alloca in the entry block, 1449 // unless: 1450 // - it's an NRVO variable. 1451 // - we are compiling OpenMP and it's an OpenMP local variable. 1452 if (NRVO) { 1453 // The named return value optimization: allocate this variable in the 1454 // return slot, so that we can elide the copy when returning this 1455 // variable (C++0x [class.copy]p34). 1456 address = ReturnValue; 1457 1458 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1459 const auto *RD = RecordTy->getDecl(); 1460 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1461 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1462 RD->isNonTrivialToPrimitiveDestroy()) { 1463 // Create a flag that is used to indicate when the NRVO was applied 1464 // to this variable. Set it to zero to indicate that NRVO was not 1465 // applied. 1466 llvm::Value *Zero = Builder.getFalse(); 1467 Address NRVOFlag = 1468 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1469 EnsureInsertPoint(); 1470 Builder.CreateStore(Zero, NRVOFlag); 1471 1472 // Record the NRVO flag for this variable. 1473 NRVOFlags[&D] = NRVOFlag.getPointer(); 1474 emission.NRVOFlag = NRVOFlag.getPointer(); 1475 } 1476 } 1477 } else { 1478 CharUnits allocaAlignment; 1479 llvm::Type *allocaTy; 1480 if (isEscapingByRef) { 1481 auto &byrefInfo = getBlockByrefInfo(&D); 1482 allocaTy = byrefInfo.Type; 1483 allocaAlignment = byrefInfo.ByrefAlignment; 1484 } else { 1485 allocaTy = ConvertTypeForMem(Ty); 1486 allocaAlignment = alignment; 1487 } 1488 1489 // Create the alloca. Note that we set the name separately from 1490 // building the instruction so that it's there even in no-asserts 1491 // builds. 1492 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1493 /*ArraySize=*/nullptr, &AllocaAddr); 1494 1495 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1496 // the catch parameter starts in the catchpad instruction, and we can't 1497 // insert code in those basic blocks. 1498 bool IsMSCatchParam = 1499 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1500 1501 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1502 // if we don't have a valid insertion point (?). 1503 if (HaveInsertPoint() && !IsMSCatchParam) { 1504 // If there's a jump into the lifetime of this variable, its lifetime 1505 // gets broken up into several regions in IR, which requires more work 1506 // to handle correctly. For now, just omit the intrinsics; this is a 1507 // rare case, and it's better to just be conservatively correct. 1508 // PR28267. 1509 // 1510 // We have to do this in all language modes if there's a jump past the 1511 // declaration. We also have to do it in C if there's a jump to an 1512 // earlier point in the current block because non-VLA lifetimes begin as 1513 // soon as the containing block is entered, not when its variables 1514 // actually come into scope; suppressing the lifetime annotations 1515 // completely in this case is unnecessarily pessimistic, but again, this 1516 // is rare. 1517 if (!Bypasses.IsBypassed(&D) && 1518 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1519 llvm::TypeSize size = 1520 CGM.getDataLayout().getTypeAllocSize(allocaTy); 1521 emission.SizeForLifetimeMarkers = 1522 size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer()) 1523 : EmitLifetimeStart(size.getFixedSize(), 1524 AllocaAddr.getPointer()); 1525 } 1526 } else { 1527 assert(!emission.useLifetimeMarkers()); 1528 } 1529 } 1530 } else { 1531 EnsureInsertPoint(); 1532 1533 if (!DidCallStackSave) { 1534 // Save the stack. 1535 Address Stack = 1536 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1537 1538 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1539 llvm::Value *V = Builder.CreateCall(F); 1540 Builder.CreateStore(V, Stack); 1541 1542 DidCallStackSave = true; 1543 1544 // Push a cleanup block and restore the stack there. 1545 // FIXME: in general circumstances, this should be an EH cleanup. 1546 pushStackRestore(NormalCleanup, Stack); 1547 } 1548 1549 auto VlaSize = getVLASize(Ty); 1550 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1551 1552 // Allocate memory for the array. 1553 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1554 &AllocaAddr); 1555 1556 // If we have debug info enabled, properly describe the VLA dimensions for 1557 // this type by registering the vla size expression for each of the 1558 // dimensions. 1559 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1560 } 1561 1562 setAddrOfLocalVar(&D, address); 1563 emission.Addr = address; 1564 emission.AllocaAddr = AllocaAddr; 1565 1566 // Emit debug info for local var declaration. 1567 if (EmitDebugInfo && HaveInsertPoint()) { 1568 Address DebugAddr = address; 1569 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1570 DI->setLocation(D.getLocation()); 1571 1572 // If NRVO, use a pointer to the return address. 1573 if (UsePointerValue) 1574 DebugAddr = ReturnValuePointer; 1575 1576 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1577 UsePointerValue); 1578 } 1579 1580 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1581 EmitVarAnnotations(&D, address.getPointer()); 1582 1583 // Make sure we call @llvm.lifetime.end. 1584 if (emission.useLifetimeMarkers()) 1585 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1586 emission.getOriginalAllocatedAddress(), 1587 emission.getSizeForLifetimeMarkers()); 1588 1589 return emission; 1590 } 1591 1592 static bool isCapturedBy(const VarDecl &, const Expr *); 1593 1594 /// Determines whether the given __block variable is potentially 1595 /// captured by the given statement. 1596 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1597 if (const Expr *E = dyn_cast<Expr>(S)) 1598 return isCapturedBy(Var, E); 1599 for (const Stmt *SubStmt : S->children()) 1600 if (isCapturedBy(Var, SubStmt)) 1601 return true; 1602 return false; 1603 } 1604 1605 /// Determines whether the given __block variable is potentially 1606 /// captured by the given expression. 1607 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1608 // Skip the most common kinds of expressions that make 1609 // hierarchy-walking expensive. 1610 E = E->IgnoreParenCasts(); 1611 1612 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1613 const BlockDecl *Block = BE->getBlockDecl(); 1614 for (const auto &I : Block->captures()) { 1615 if (I.getVariable() == &Var) 1616 return true; 1617 } 1618 1619 // No need to walk into the subexpressions. 1620 return false; 1621 } 1622 1623 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1624 const CompoundStmt *CS = SE->getSubStmt(); 1625 for (const auto *BI : CS->body()) 1626 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1627 if (isCapturedBy(Var, BIE)) 1628 return true; 1629 } 1630 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1631 // special case declarations 1632 for (const auto *I : DS->decls()) { 1633 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1634 const Expr *Init = VD->getInit(); 1635 if (Init && isCapturedBy(Var, Init)) 1636 return true; 1637 } 1638 } 1639 } 1640 else 1641 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1642 // Later, provide code to poke into statements for capture analysis. 1643 return true; 1644 return false; 1645 } 1646 1647 for (const Stmt *SubStmt : E->children()) 1648 if (isCapturedBy(Var, SubStmt)) 1649 return true; 1650 1651 return false; 1652 } 1653 1654 /// Determine whether the given initializer is trivial in the sense 1655 /// that it requires no code to be generated. 1656 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1657 if (!Init) 1658 return true; 1659 1660 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1661 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1662 if (Constructor->isTrivial() && 1663 Constructor->isDefaultConstructor() && 1664 !Construct->requiresZeroInitialization()) 1665 return true; 1666 1667 return false; 1668 } 1669 1670 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1671 const VarDecl &D, 1672 Address Loc) { 1673 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1674 CharUnits Size = getContext().getTypeSizeInChars(type); 1675 bool isVolatile = type.isVolatileQualified(); 1676 if (!Size.isZero()) { 1677 switch (trivialAutoVarInit) { 1678 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1679 llvm_unreachable("Uninitialized handled by caller"); 1680 case LangOptions::TrivialAutoVarInitKind::Zero: 1681 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1682 break; 1683 case LangOptions::TrivialAutoVarInitKind::Pattern: 1684 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1685 break; 1686 } 1687 return; 1688 } 1689 1690 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1691 // them, so emit a memcpy with the VLA size to initialize each element. 1692 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1693 // will catch that code, but there exists code which generates zero-sized 1694 // VLAs. Be nice and initialize whatever they requested. 1695 const auto *VlaType = getContext().getAsVariableArrayType(type); 1696 if (!VlaType) 1697 return; 1698 auto VlaSize = getVLASize(VlaType); 1699 auto SizeVal = VlaSize.NumElts; 1700 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1701 switch (trivialAutoVarInit) { 1702 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1703 llvm_unreachable("Uninitialized handled by caller"); 1704 1705 case LangOptions::TrivialAutoVarInitKind::Zero: 1706 if (!EltSize.isOne()) 1707 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1708 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1709 isVolatile); 1710 break; 1711 1712 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1713 llvm::Type *ElTy = Loc.getElementType(); 1714 llvm::Constant *Constant = constWithPadding( 1715 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1716 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1717 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1718 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1719 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1720 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1721 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1722 "vla.iszerosized"); 1723 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1724 EmitBlock(SetupBB); 1725 if (!EltSize.isOne()) 1726 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1727 llvm::Value *BaseSizeInChars = 1728 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1729 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1730 llvm::Value *End = 1731 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1732 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1733 EmitBlock(LoopBB); 1734 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1735 Cur->addIncoming(Begin.getPointer(), OriginBB); 1736 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1737 Builder.CreateMemCpy(Address(Cur, CurAlign), 1738 createUnnamedGlobalForMemcpyFrom( 1739 CGM, D, Builder, Constant, ConstantAlign), 1740 BaseSizeInChars, isVolatile); 1741 llvm::Value *Next = 1742 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1743 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1744 Builder.CreateCondBr(Done, ContBB, LoopBB); 1745 Cur->addIncoming(Next, LoopBB); 1746 EmitBlock(ContBB); 1747 } break; 1748 } 1749 } 1750 1751 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1752 assert(emission.Variable && "emission was not valid!"); 1753 1754 // If this was emitted as a global constant, we're done. 1755 if (emission.wasEmittedAsGlobal()) return; 1756 1757 const VarDecl &D = *emission.Variable; 1758 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1759 QualType type = D.getType(); 1760 1761 // If this local has an initializer, emit it now. 1762 const Expr *Init = D.getInit(); 1763 1764 // If we are at an unreachable point, we don't need to emit the initializer 1765 // unless it contains a label. 1766 if (!HaveInsertPoint()) { 1767 if (!Init || !ContainsLabel(Init)) return; 1768 EnsureInsertPoint(); 1769 } 1770 1771 // Initialize the structure of a __block variable. 1772 if (emission.IsEscapingByRef) 1773 emitByrefStructureInit(emission); 1774 1775 // Initialize the variable here if it doesn't have a initializer and it is a 1776 // C struct that is non-trivial to initialize or an array containing such a 1777 // struct. 1778 if (!Init && 1779 type.isNonTrivialToPrimitiveDefaultInitialize() == 1780 QualType::PDIK_Struct) { 1781 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1782 if (emission.IsEscapingByRef) 1783 drillIntoBlockVariable(*this, Dst, &D); 1784 defaultInitNonTrivialCStructVar(Dst); 1785 return; 1786 } 1787 1788 // Check whether this is a byref variable that's potentially 1789 // captured and moved by its own initializer. If so, we'll need to 1790 // emit the initializer first, then copy into the variable. 1791 bool capturedByInit = 1792 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1793 1794 bool locIsByrefHeader = !capturedByInit; 1795 const Address Loc = 1796 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1797 1798 // Note: constexpr already initializes everything correctly. 1799 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1800 (D.isConstexpr() 1801 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1802 : (D.getAttr<UninitializedAttr>() 1803 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1804 : getContext().getLangOpts().getTrivialAutoVarInit())); 1805 1806 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1807 if (trivialAutoVarInit == 1808 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1809 return; 1810 1811 // Only initialize a __block's storage: we always initialize the header. 1812 if (emission.IsEscapingByRef && !locIsByrefHeader) 1813 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1814 1815 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1816 }; 1817 1818 if (isTrivialInitializer(Init)) 1819 return initializeWhatIsTechnicallyUninitialized(Loc); 1820 1821 llvm::Constant *constant = nullptr; 1822 if (emission.IsConstantAggregate || 1823 D.mightBeUsableInConstantExpressions(getContext())) { 1824 assert(!capturedByInit && "constant init contains a capturing block?"); 1825 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1826 if (constant && !constant->isZeroValue() && 1827 (trivialAutoVarInit != 1828 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1829 IsPattern isPattern = 1830 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1831 ? IsPattern::Yes 1832 : IsPattern::No; 1833 // C guarantees that brace-init with fewer initializers than members in 1834 // the aggregate will initialize the rest of the aggregate as-if it were 1835 // static initialization. In turn static initialization guarantees that 1836 // padding is initialized to zero bits. We could instead pattern-init if D 1837 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1838 // behavior. 1839 constant = constWithPadding(CGM, IsPattern::No, 1840 replaceUndef(CGM, isPattern, constant)); 1841 } 1842 } 1843 1844 if (!constant) { 1845 initializeWhatIsTechnicallyUninitialized(Loc); 1846 LValue lv = MakeAddrLValue(Loc, type); 1847 lv.setNonGC(true); 1848 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1849 } 1850 1851 if (!emission.IsConstantAggregate) { 1852 // For simple scalar/complex initialization, store the value directly. 1853 LValue lv = MakeAddrLValue(Loc, type); 1854 lv.setNonGC(true); 1855 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1856 } 1857 1858 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1859 emitStoresForConstant( 1860 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1861 type.isVolatileQualified(), Builder, constant); 1862 } 1863 1864 /// Emit an expression as an initializer for an object (variable, field, etc.) 1865 /// at the given location. The expression is not necessarily the normal 1866 /// initializer for the object, and the address is not necessarily 1867 /// its normal location. 1868 /// 1869 /// \param init the initializing expression 1870 /// \param D the object to act as if we're initializing 1871 /// \param loc the address to initialize; its type is a pointer 1872 /// to the LLVM mapping of the object's type 1873 /// \param alignment the alignment of the address 1874 /// \param capturedByInit true if \p D is a __block variable 1875 /// whose address is potentially changed by the initializer 1876 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1877 LValue lvalue, bool capturedByInit) { 1878 QualType type = D->getType(); 1879 1880 if (type->isReferenceType()) { 1881 RValue rvalue = EmitReferenceBindingToExpr(init); 1882 if (capturedByInit) 1883 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1884 EmitStoreThroughLValue(rvalue, lvalue, true); 1885 return; 1886 } 1887 switch (getEvaluationKind(type)) { 1888 case TEK_Scalar: 1889 EmitScalarInit(init, D, lvalue, capturedByInit); 1890 return; 1891 case TEK_Complex: { 1892 ComplexPairTy complex = EmitComplexExpr(init); 1893 if (capturedByInit) 1894 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1895 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1896 return; 1897 } 1898 case TEK_Aggregate: 1899 if (type->isAtomicType()) { 1900 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1901 } else { 1902 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1903 if (isa<VarDecl>(D)) 1904 Overlap = AggValueSlot::DoesNotOverlap; 1905 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1906 Overlap = getOverlapForFieldInit(FD); 1907 // TODO: how can we delay here if D is captured by its initializer? 1908 EmitAggExpr(init, AggValueSlot::forLValue( 1909 lvalue, *this, AggValueSlot::IsDestructed, 1910 AggValueSlot::DoesNotNeedGCBarriers, 1911 AggValueSlot::IsNotAliased, Overlap)); 1912 } 1913 return; 1914 } 1915 llvm_unreachable("bad evaluation kind"); 1916 } 1917 1918 /// Enter a destroy cleanup for the given local variable. 1919 void CodeGenFunction::emitAutoVarTypeCleanup( 1920 const CodeGenFunction::AutoVarEmission &emission, 1921 QualType::DestructionKind dtorKind) { 1922 assert(dtorKind != QualType::DK_none); 1923 1924 // Note that for __block variables, we want to destroy the 1925 // original stack object, not the possibly forwarded object. 1926 Address addr = emission.getObjectAddress(*this); 1927 1928 const VarDecl *var = emission.Variable; 1929 QualType type = var->getType(); 1930 1931 CleanupKind cleanupKind = NormalAndEHCleanup; 1932 CodeGenFunction::Destroyer *destroyer = nullptr; 1933 1934 switch (dtorKind) { 1935 case QualType::DK_none: 1936 llvm_unreachable("no cleanup for trivially-destructible variable"); 1937 1938 case QualType::DK_cxx_destructor: 1939 // If there's an NRVO flag on the emission, we need a different 1940 // cleanup. 1941 if (emission.NRVOFlag) { 1942 assert(!type->isArrayType()); 1943 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1944 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1945 emission.NRVOFlag); 1946 return; 1947 } 1948 break; 1949 1950 case QualType::DK_objc_strong_lifetime: 1951 // Suppress cleanups for pseudo-strong variables. 1952 if (var->isARCPseudoStrong()) return; 1953 1954 // Otherwise, consider whether to use an EH cleanup or not. 1955 cleanupKind = getARCCleanupKind(); 1956 1957 // Use the imprecise destroyer by default. 1958 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1959 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1960 break; 1961 1962 case QualType::DK_objc_weak_lifetime: 1963 break; 1964 1965 case QualType::DK_nontrivial_c_struct: 1966 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1967 if (emission.NRVOFlag) { 1968 assert(!type->isArrayType()); 1969 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1970 emission.NRVOFlag, type); 1971 return; 1972 } 1973 break; 1974 } 1975 1976 // If we haven't chosen a more specific destroyer, use the default. 1977 if (!destroyer) destroyer = getDestroyer(dtorKind); 1978 1979 // Use an EH cleanup in array destructors iff the destructor itself 1980 // is being pushed as an EH cleanup. 1981 bool useEHCleanup = (cleanupKind & EHCleanup); 1982 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1983 useEHCleanup); 1984 } 1985 1986 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1987 assert(emission.Variable && "emission was not valid!"); 1988 1989 // If this was emitted as a global constant, we're done. 1990 if (emission.wasEmittedAsGlobal()) return; 1991 1992 // If we don't have an insertion point, we're done. Sema prevents 1993 // us from jumping into any of these scopes anyway. 1994 if (!HaveInsertPoint()) return; 1995 1996 const VarDecl &D = *emission.Variable; 1997 1998 // Check the type for a cleanup. 1999 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2000 emitAutoVarTypeCleanup(emission, dtorKind); 2001 2002 // In GC mode, honor objc_precise_lifetime. 2003 if (getLangOpts().getGC() != LangOptions::NonGC && 2004 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2005 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2006 } 2007 2008 // Handle the cleanup attribute. 2009 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2010 const FunctionDecl *FD = CA->getFunctionDecl(); 2011 2012 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2013 assert(F && "Could not find function!"); 2014 2015 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2016 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2017 } 2018 2019 // If this is a block variable, call _Block_object_destroy 2020 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2021 // mode. 2022 if (emission.IsEscapingByRef && 2023 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2024 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2025 if (emission.Variable->getType().isObjCGCWeak()) 2026 Flags |= BLOCK_FIELD_IS_WEAK; 2027 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2028 /*LoadBlockVarAddr*/ false, 2029 cxxDestructorCanThrow(emission.Variable->getType())); 2030 } 2031 } 2032 2033 CodeGenFunction::Destroyer * 2034 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2035 switch (kind) { 2036 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2037 case QualType::DK_cxx_destructor: 2038 return destroyCXXObject; 2039 case QualType::DK_objc_strong_lifetime: 2040 return destroyARCStrongPrecise; 2041 case QualType::DK_objc_weak_lifetime: 2042 return destroyARCWeak; 2043 case QualType::DK_nontrivial_c_struct: 2044 return destroyNonTrivialCStruct; 2045 } 2046 llvm_unreachable("Unknown DestructionKind"); 2047 } 2048 2049 /// pushEHDestroy - Push the standard destructor for the given type as 2050 /// an EH-only cleanup. 2051 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2052 Address addr, QualType type) { 2053 assert(dtorKind && "cannot push destructor for trivial type"); 2054 assert(needsEHCleanup(dtorKind)); 2055 2056 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2057 } 2058 2059 /// pushDestroy - Push the standard destructor for the given type as 2060 /// at least a normal cleanup. 2061 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2062 Address addr, QualType type) { 2063 assert(dtorKind && "cannot push destructor for trivial type"); 2064 2065 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2066 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2067 cleanupKind & EHCleanup); 2068 } 2069 2070 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2071 QualType type, Destroyer *destroyer, 2072 bool useEHCleanupForArray) { 2073 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2074 destroyer, useEHCleanupForArray); 2075 } 2076 2077 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2078 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2079 } 2080 2081 void CodeGenFunction::pushLifetimeExtendedDestroy( 2082 CleanupKind cleanupKind, Address addr, QualType type, 2083 Destroyer *destroyer, bool useEHCleanupForArray) { 2084 // Push an EH-only cleanup for the object now. 2085 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2086 // around in case a temporary's destructor throws an exception. 2087 if (cleanupKind & EHCleanup) 2088 EHStack.pushCleanup<DestroyObject>( 2089 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2090 destroyer, useEHCleanupForArray); 2091 2092 // Remember that we need to push a full cleanup for the object at the 2093 // end of the full-expression. 2094 pushCleanupAfterFullExpr<DestroyObject>( 2095 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2096 } 2097 2098 /// emitDestroy - Immediately perform the destruction of the given 2099 /// object. 2100 /// 2101 /// \param addr - the address of the object; a type* 2102 /// \param type - the type of the object; if an array type, all 2103 /// objects are destroyed in reverse order 2104 /// \param destroyer - the function to call to destroy individual 2105 /// elements 2106 /// \param useEHCleanupForArray - whether an EH cleanup should be 2107 /// used when destroying array elements, in case one of the 2108 /// destructions throws an exception 2109 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2110 Destroyer *destroyer, 2111 bool useEHCleanupForArray) { 2112 const ArrayType *arrayType = getContext().getAsArrayType(type); 2113 if (!arrayType) 2114 return destroyer(*this, addr, type); 2115 2116 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2117 2118 CharUnits elementAlign = 2119 addr.getAlignment() 2120 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2121 2122 // Normally we have to check whether the array is zero-length. 2123 bool checkZeroLength = true; 2124 2125 // But if the array length is constant, we can suppress that. 2126 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2127 // ...and if it's constant zero, we can just skip the entire thing. 2128 if (constLength->isZero()) return; 2129 checkZeroLength = false; 2130 } 2131 2132 llvm::Value *begin = addr.getPointer(); 2133 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2134 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2135 checkZeroLength, useEHCleanupForArray); 2136 } 2137 2138 /// emitArrayDestroy - Destroys all the elements of the given array, 2139 /// beginning from last to first. The array cannot be zero-length. 2140 /// 2141 /// \param begin - a type* denoting the first element of the array 2142 /// \param end - a type* denoting one past the end of the array 2143 /// \param elementType - the element type of the array 2144 /// \param destroyer - the function to call to destroy elements 2145 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2146 /// the remaining elements in case the destruction of a single 2147 /// element throws 2148 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2149 llvm::Value *end, 2150 QualType elementType, 2151 CharUnits elementAlign, 2152 Destroyer *destroyer, 2153 bool checkZeroLength, 2154 bool useEHCleanup) { 2155 assert(!elementType->isArrayType()); 2156 2157 // The basic structure here is a do-while loop, because we don't 2158 // need to check for the zero-element case. 2159 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2160 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2161 2162 if (checkZeroLength) { 2163 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2164 "arraydestroy.isempty"); 2165 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2166 } 2167 2168 // Enter the loop body, making that address the current address. 2169 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2170 EmitBlock(bodyBB); 2171 llvm::PHINode *elementPast = 2172 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2173 elementPast->addIncoming(end, entryBB); 2174 2175 // Shift the address back by one element. 2176 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2177 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2178 "arraydestroy.element"); 2179 2180 if (useEHCleanup) 2181 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2182 destroyer); 2183 2184 // Perform the actual destruction there. 2185 destroyer(*this, Address(element, elementAlign), elementType); 2186 2187 if (useEHCleanup) 2188 PopCleanupBlock(); 2189 2190 // Check whether we've reached the end. 2191 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2192 Builder.CreateCondBr(done, doneBB, bodyBB); 2193 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2194 2195 // Done. 2196 EmitBlock(doneBB); 2197 } 2198 2199 /// Perform partial array destruction as if in an EH cleanup. Unlike 2200 /// emitArrayDestroy, the element type here may still be an array type. 2201 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2202 llvm::Value *begin, llvm::Value *end, 2203 QualType type, CharUnits elementAlign, 2204 CodeGenFunction::Destroyer *destroyer) { 2205 // If the element type is itself an array, drill down. 2206 unsigned arrayDepth = 0; 2207 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2208 // VLAs don't require a GEP index to walk into. 2209 if (!isa<VariableArrayType>(arrayType)) 2210 arrayDepth++; 2211 type = arrayType->getElementType(); 2212 } 2213 2214 if (arrayDepth) { 2215 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2216 2217 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2218 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2219 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2220 } 2221 2222 // Destroy the array. We don't ever need an EH cleanup because we 2223 // assume that we're in an EH cleanup ourselves, so a throwing 2224 // destructor causes an immediate terminate. 2225 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2226 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2227 } 2228 2229 namespace { 2230 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2231 /// array destroy where the end pointer is regularly determined and 2232 /// does not need to be loaded from a local. 2233 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2234 llvm::Value *ArrayBegin; 2235 llvm::Value *ArrayEnd; 2236 QualType ElementType; 2237 CodeGenFunction::Destroyer *Destroyer; 2238 CharUnits ElementAlign; 2239 public: 2240 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2241 QualType elementType, CharUnits elementAlign, 2242 CodeGenFunction::Destroyer *destroyer) 2243 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2244 ElementType(elementType), Destroyer(destroyer), 2245 ElementAlign(elementAlign) {} 2246 2247 void Emit(CodeGenFunction &CGF, Flags flags) override { 2248 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2249 ElementType, ElementAlign, Destroyer); 2250 } 2251 }; 2252 2253 /// IrregularPartialArrayDestroy - a cleanup which performs a 2254 /// partial array destroy where the end pointer is irregularly 2255 /// determined and must be loaded from a local. 2256 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2257 llvm::Value *ArrayBegin; 2258 Address ArrayEndPointer; 2259 QualType ElementType; 2260 CodeGenFunction::Destroyer *Destroyer; 2261 CharUnits ElementAlign; 2262 public: 2263 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2264 Address arrayEndPointer, 2265 QualType elementType, 2266 CharUnits elementAlign, 2267 CodeGenFunction::Destroyer *destroyer) 2268 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2269 ElementType(elementType), Destroyer(destroyer), 2270 ElementAlign(elementAlign) {} 2271 2272 void Emit(CodeGenFunction &CGF, Flags flags) override { 2273 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2274 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2275 ElementType, ElementAlign, Destroyer); 2276 } 2277 }; 2278 } // end anonymous namespace 2279 2280 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2281 /// already-constructed elements of the given array. The cleanup 2282 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2283 /// 2284 /// \param elementType - the immediate element type of the array; 2285 /// possibly still an array type 2286 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2287 Address arrayEndPointer, 2288 QualType elementType, 2289 CharUnits elementAlign, 2290 Destroyer *destroyer) { 2291 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2292 arrayBegin, arrayEndPointer, 2293 elementType, elementAlign, 2294 destroyer); 2295 } 2296 2297 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2298 /// already-constructed elements of the given array. The cleanup 2299 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2300 /// 2301 /// \param elementType - the immediate element type of the array; 2302 /// possibly still an array type 2303 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2304 llvm::Value *arrayEnd, 2305 QualType elementType, 2306 CharUnits elementAlign, 2307 Destroyer *destroyer) { 2308 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2309 arrayBegin, arrayEnd, 2310 elementType, elementAlign, 2311 destroyer); 2312 } 2313 2314 /// Lazily declare the @llvm.lifetime.start intrinsic. 2315 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2316 if (LifetimeStartFn) 2317 return LifetimeStartFn; 2318 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2319 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2320 return LifetimeStartFn; 2321 } 2322 2323 /// Lazily declare the @llvm.lifetime.end intrinsic. 2324 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2325 if (LifetimeEndFn) 2326 return LifetimeEndFn; 2327 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2328 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2329 return LifetimeEndFn; 2330 } 2331 2332 namespace { 2333 /// A cleanup to perform a release of an object at the end of a 2334 /// function. This is used to balance out the incoming +1 of a 2335 /// ns_consumed argument when we can't reasonably do that just by 2336 /// not doing the initial retain for a __block argument. 2337 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2338 ConsumeARCParameter(llvm::Value *param, 2339 ARCPreciseLifetime_t precise) 2340 : Param(param), Precise(precise) {} 2341 2342 llvm::Value *Param; 2343 ARCPreciseLifetime_t Precise; 2344 2345 void Emit(CodeGenFunction &CGF, Flags flags) override { 2346 CGF.EmitARCRelease(Param, Precise); 2347 } 2348 }; 2349 } // end anonymous namespace 2350 2351 /// Emit an alloca (or GlobalValue depending on target) 2352 /// for the specified parameter and set up LocalDeclMap. 2353 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2354 unsigned ArgNo) { 2355 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2356 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2357 "Invalid argument to EmitParmDecl"); 2358 2359 Arg.getAnyValue()->setName(D.getName()); 2360 2361 QualType Ty = D.getType(); 2362 2363 // Use better IR generation for certain implicit parameters. 2364 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2365 // The only implicit argument a block has is its literal. 2366 // This may be passed as an inalloca'ed value on Windows x86. 2367 if (BlockInfo) { 2368 llvm::Value *V = Arg.isIndirect() 2369 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2370 : Arg.getDirectValue(); 2371 setBlockContextParameter(IPD, ArgNo, V); 2372 return; 2373 } 2374 } 2375 2376 Address DeclPtr = Address::invalid(); 2377 bool DoStore = false; 2378 bool IsScalar = hasScalarEvaluationKind(Ty); 2379 // If we already have a pointer to the argument, reuse the input pointer. 2380 if (Arg.isIndirect()) { 2381 DeclPtr = Arg.getIndirectAddress(); 2382 // If we have a prettier pointer type at this point, bitcast to that. 2383 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2384 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2385 if (DeclPtr.getType() != IRTy) 2386 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2387 // Indirect argument is in alloca address space, which may be different 2388 // from the default address space. 2389 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2390 auto *V = DeclPtr.getPointer(); 2391 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2392 auto DestLangAS = 2393 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2394 if (SrcLangAS != DestLangAS) { 2395 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2396 CGM.getDataLayout().getAllocaAddrSpace()); 2397 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2398 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2399 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2400 *this, V, SrcLangAS, DestLangAS, T, true), 2401 DeclPtr.getAlignment()); 2402 } 2403 2404 // Push a destructor cleanup for this parameter if the ABI requires it. 2405 // Don't push a cleanup in a thunk for a method that will also emit a 2406 // cleanup. 2407 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2408 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2409 if (QualType::DestructionKind DtorKind = 2410 D.needsDestruction(getContext())) { 2411 assert((DtorKind == QualType::DK_cxx_destructor || 2412 DtorKind == QualType::DK_nontrivial_c_struct) && 2413 "unexpected destructor type"); 2414 pushDestroy(DtorKind, DeclPtr, Ty); 2415 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2416 EHStack.stable_begin(); 2417 } 2418 } 2419 } else { 2420 // Check if the parameter address is controlled by OpenMP runtime. 2421 Address OpenMPLocalAddr = 2422 getLangOpts().OpenMP 2423 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2424 : Address::invalid(); 2425 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2426 DeclPtr = OpenMPLocalAddr; 2427 } else { 2428 // Otherwise, create a temporary to hold the value. 2429 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2430 D.getName() + ".addr"); 2431 } 2432 DoStore = true; 2433 } 2434 2435 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2436 2437 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2438 if (IsScalar) { 2439 Qualifiers qs = Ty.getQualifiers(); 2440 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2441 // We honor __attribute__((ns_consumed)) for types with lifetime. 2442 // For __strong, it's handled by just skipping the initial retain; 2443 // otherwise we have to balance out the initial +1 with an extra 2444 // cleanup to do the release at the end of the function. 2445 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2446 2447 // If a parameter is pseudo-strong then we can omit the implicit retain. 2448 if (D.isARCPseudoStrong()) { 2449 assert(lt == Qualifiers::OCL_Strong && 2450 "pseudo-strong variable isn't strong?"); 2451 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2452 lt = Qualifiers::OCL_ExplicitNone; 2453 } 2454 2455 // Load objects passed indirectly. 2456 if (Arg.isIndirect() && !ArgVal) 2457 ArgVal = Builder.CreateLoad(DeclPtr); 2458 2459 if (lt == Qualifiers::OCL_Strong) { 2460 if (!isConsumed) { 2461 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2462 // use objc_storeStrong(&dest, value) for retaining the 2463 // object. But first, store a null into 'dest' because 2464 // objc_storeStrong attempts to release its old value. 2465 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2466 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2467 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2468 DoStore = false; 2469 } 2470 else 2471 // Don't use objc_retainBlock for block pointers, because we 2472 // don't want to Block_copy something just because we got it 2473 // as a parameter. 2474 ArgVal = EmitARCRetainNonBlock(ArgVal); 2475 } 2476 } else { 2477 // Push the cleanup for a consumed parameter. 2478 if (isConsumed) { 2479 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2480 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2481 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2482 precise); 2483 } 2484 2485 if (lt == Qualifiers::OCL_Weak) { 2486 EmitARCInitWeak(DeclPtr, ArgVal); 2487 DoStore = false; // The weak init is a store, no need to do two. 2488 } 2489 } 2490 2491 // Enter the cleanup scope. 2492 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2493 } 2494 } 2495 2496 // Store the initial value into the alloca. 2497 if (DoStore) 2498 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2499 2500 setAddrOfLocalVar(&D, DeclPtr); 2501 2502 // Emit debug info for param declarations in non-thunk functions. 2503 if (CGDebugInfo *DI = getDebugInfo()) { 2504 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2505 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2506 } 2507 } 2508 2509 if (D.hasAttr<AnnotateAttr>()) 2510 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2511 2512 // We can only check return value nullability if all arguments to the 2513 // function satisfy their nullability preconditions. This makes it necessary 2514 // to emit null checks for args in the function body itself. 2515 if (requiresReturnValueNullabilityCheck()) { 2516 auto Nullability = Ty->getNullability(getContext()); 2517 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2518 SanitizerScope SanScope(this); 2519 RetValNullabilityPrecondition = 2520 Builder.CreateAnd(RetValNullabilityPrecondition, 2521 Builder.CreateIsNotNull(Arg.getAnyValue())); 2522 } 2523 } 2524 } 2525 2526 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2527 CodeGenFunction *CGF) { 2528 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2529 return; 2530 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2531 } 2532 2533 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2534 CodeGenFunction *CGF) { 2535 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2536 (!LangOpts.EmitAllDecls && !D->isUsed())) 2537 return; 2538 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2539 } 2540 2541 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2542 getOpenMPRuntime().processRequiresDirective(D); 2543 } 2544