1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenCLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclOpenMP.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Type.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 void CodeGenFunction::EmitDecl(const Decl &D) {
40   switch (D.getKind()) {
41   case Decl::BuiltinTemplate:
42   case Decl::TranslationUnit:
43   case Decl::ExternCContext:
44   case Decl::Namespace:
45   case Decl::UnresolvedUsingTypename:
46   case Decl::ClassTemplateSpecialization:
47   case Decl::ClassTemplatePartialSpecialization:
48   case Decl::VarTemplateSpecialization:
49   case Decl::VarTemplatePartialSpecialization:
50   case Decl::TemplateTypeParm:
51   case Decl::UnresolvedUsingValue:
52   case Decl::NonTypeTemplateParm:
53   case Decl::CXXMethod:
54   case Decl::CXXConstructor:
55   case Decl::CXXDestructor:
56   case Decl::CXXConversion:
57   case Decl::Field:
58   case Decl::MSProperty:
59   case Decl::IndirectField:
60   case Decl::ObjCIvar:
61   case Decl::ObjCAtDefsField:
62   case Decl::ParmVar:
63   case Decl::ImplicitParam:
64   case Decl::ClassTemplate:
65   case Decl::VarTemplate:
66   case Decl::FunctionTemplate:
67   case Decl::TypeAliasTemplate:
68   case Decl::TemplateTemplateParm:
69   case Decl::ObjCMethod:
70   case Decl::ObjCCategory:
71   case Decl::ObjCProtocol:
72   case Decl::ObjCInterface:
73   case Decl::ObjCCategoryImpl:
74   case Decl::ObjCImplementation:
75   case Decl::ObjCProperty:
76   case Decl::ObjCCompatibleAlias:
77   case Decl::PragmaComment:
78   case Decl::PragmaDetectMismatch:
79   case Decl::AccessSpec:
80   case Decl::LinkageSpec:
81   case Decl::ObjCPropertyImpl:
82   case Decl::FileScopeAsm:
83   case Decl::Friend:
84   case Decl::FriendTemplate:
85   case Decl::Block:
86   case Decl::Captured:
87   case Decl::ClassScopeFunctionSpecialization:
88   case Decl::UsingShadow:
89   case Decl::ConstructorUsingShadow:
90   case Decl::ObjCTypeParam:
91   case Decl::Binding:
92     llvm_unreachable("Declaration should not be in declstmts!");
93   case Decl::Function:  // void X();
94   case Decl::Record:    // struct/union/class X;
95   case Decl::Enum:      // enum X;
96   case Decl::EnumConstant: // enum ? { X = ? }
97   case Decl::CXXRecord: // struct/union/class X; [C++]
98   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
99   case Decl::Label:        // __label__ x;
100   case Decl::Import:
101   case Decl::OMPThreadPrivate:
102   case Decl::OMPCapturedExpr:
103   case Decl::Empty:
104     // None of these decls require codegen support.
105     return;
106 
107   case Decl::NamespaceAlias:
108     if (CGDebugInfo *DI = getDebugInfo())
109         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
110     return;
111   case Decl::Using:          // using X; [C++]
112     if (CGDebugInfo *DI = getDebugInfo())
113         DI->EmitUsingDecl(cast<UsingDecl>(D));
114     return;
115   case Decl::UsingDirective: // using namespace X; [C++]
116     if (CGDebugInfo *DI = getDebugInfo())
117       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
118     return;
119   case Decl::Var:
120   case Decl::Decomposition: {
121     const VarDecl &VD = cast<VarDecl>(D);
122     assert(VD.isLocalVarDecl() &&
123            "Should not see file-scope variables inside a function!");
124     EmitVarDecl(VD);
125     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
126       for (auto *B : DD->bindings())
127         if (auto *HD = B->getHoldingVar())
128           EmitVarDecl(*HD);
129     return;
130   }
131 
132   case Decl::OMPDeclareReduction:
133     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
134 
135   case Decl::Typedef:      // typedef int X;
136   case Decl::TypeAlias: {  // using X = int; [C++0x]
137     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
138     QualType Ty = TD.getUnderlyingType();
139 
140     if (Ty->isVariablyModifiedType())
141       EmitVariablyModifiedType(Ty);
142   }
143   }
144 }
145 
146 /// EmitVarDecl - This method handles emission of any variable declaration
147 /// inside a function, including static vars etc.
148 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
149   if (D.isStaticLocal()) {
150     llvm::GlobalValue::LinkageTypes Linkage =
151         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
152 
153     // FIXME: We need to force the emission/use of a guard variable for
154     // some variables even if we can constant-evaluate them because
155     // we can't guarantee every translation unit will constant-evaluate them.
156 
157     return EmitStaticVarDecl(D, Linkage);
158   }
159 
160   if (D.hasExternalStorage())
161     // Don't emit it now, allow it to be emitted lazily on its first use.
162     return;
163 
164   if (D.getType().getAddressSpace() == LangAS::opencl_local)
165     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
166 
167   assert(D.hasLocalStorage());
168   return EmitAutoVarDecl(D);
169 }
170 
171 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
172   if (CGM.getLangOpts().CPlusPlus)
173     return CGM.getMangledName(&D).str();
174 
175   // If this isn't C++, we don't need a mangled name, just a pretty one.
176   assert(!D.isExternallyVisible() && "name shouldn't matter");
177   std::string ContextName;
178   const DeclContext *DC = D.getDeclContext();
179   if (auto *CD = dyn_cast<CapturedDecl>(DC))
180     DC = cast<DeclContext>(CD->getNonClosureContext());
181   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
182     ContextName = CGM.getMangledName(FD);
183   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
184     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
185   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
186     ContextName = OMD->getSelector().getAsString();
187   else
188     llvm_unreachable("Unknown context for static var decl");
189 
190   ContextName += "." + D.getNameAsString();
191   return ContextName;
192 }
193 
194 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
195     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
196   // In general, we don't always emit static var decls once before we reference
197   // them. It is possible to reference them before emitting the function that
198   // contains them, and it is possible to emit the containing function multiple
199   // times.
200   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
201     return ExistingGV;
202 
203   QualType Ty = D.getType();
204   assert(Ty->isConstantSizeType() && "VLAs can't be static");
205 
206   // Use the label if the variable is renamed with the asm-label extension.
207   std::string Name;
208   if (D.hasAttr<AsmLabelAttr>())
209     Name = getMangledName(&D);
210   else
211     Name = getStaticDeclName(*this, D);
212 
213   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
214   unsigned AddrSpace =
215       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
216 
217   // Local address space cannot have an initializer.
218   llvm::Constant *Init = nullptr;
219   if (Ty.getAddressSpace() != LangAS::opencl_local)
220     Init = EmitNullConstant(Ty);
221   else
222     Init = llvm::UndefValue::get(LTy);
223 
224   llvm::GlobalVariable *GV =
225     new llvm::GlobalVariable(getModule(), LTy,
226                              Ty.isConstant(getContext()), Linkage,
227                              Init, Name, nullptr,
228                              llvm::GlobalVariable::NotThreadLocal,
229                              AddrSpace);
230   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
231   setGlobalVisibility(GV, &D);
232 
233   if (supportsCOMDAT() && GV->isWeakForLinker())
234     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
235 
236   if (D.getTLSKind())
237     setTLSMode(GV, D);
238 
239   if (D.isExternallyVisible()) {
240     if (D.hasAttr<DLLImportAttr>())
241       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
242     else if (D.hasAttr<DLLExportAttr>())
243       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
244   }
245 
246   // Make sure the result is of the correct type.
247   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
248   llvm::Constant *Addr = GV;
249   if (AddrSpace != ExpectedAddrSpace) {
250     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
251     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
252   }
253 
254   setStaticLocalDeclAddress(&D, Addr);
255 
256   // Ensure that the static local gets initialized by making sure the parent
257   // function gets emitted eventually.
258   const Decl *DC = cast<Decl>(D.getDeclContext());
259 
260   // We can't name blocks or captured statements directly, so try to emit their
261   // parents.
262   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
263     DC = DC->getNonClosureContext();
264     // FIXME: Ensure that global blocks get emitted.
265     if (!DC)
266       return Addr;
267   }
268 
269   GlobalDecl GD;
270   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
271     GD = GlobalDecl(CD, Ctor_Base);
272   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
273     GD = GlobalDecl(DD, Dtor_Base);
274   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
275     GD = GlobalDecl(FD);
276   else {
277     // Don't do anything for Obj-C method decls or global closures. We should
278     // never defer them.
279     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
280   }
281   if (GD.getDecl())
282     (void)GetAddrOfGlobal(GD);
283 
284   return Addr;
285 }
286 
287 /// hasNontrivialDestruction - Determine whether a type's destruction is
288 /// non-trivial. If so, and the variable uses static initialization, we must
289 /// register its destructor to run on exit.
290 static bool hasNontrivialDestruction(QualType T) {
291   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
292   return RD && !RD->hasTrivialDestructor();
293 }
294 
295 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
296 /// global variable that has already been created for it.  If the initializer
297 /// has a different type than GV does, this may free GV and return a different
298 /// one.  Otherwise it just returns GV.
299 llvm::GlobalVariable *
300 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
301                                                llvm::GlobalVariable *GV) {
302   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
303 
304   // If constant emission failed, then this should be a C++ static
305   // initializer.
306   if (!Init) {
307     if (!getLangOpts().CPlusPlus)
308       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
309     else if (Builder.GetInsertBlock()) {
310       // Since we have a static initializer, this global variable can't
311       // be constant.
312       GV->setConstant(false);
313 
314       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
315     }
316     return GV;
317   }
318 
319   // The initializer may differ in type from the global. Rewrite
320   // the global to match the initializer.  (We have to do this
321   // because some types, like unions, can't be completely represented
322   // in the LLVM type system.)
323   if (GV->getType()->getElementType() != Init->getType()) {
324     llvm::GlobalVariable *OldGV = GV;
325 
326     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
327                                   OldGV->isConstant(),
328                                   OldGV->getLinkage(), Init, "",
329                                   /*InsertBefore*/ OldGV,
330                                   OldGV->getThreadLocalMode(),
331                            CGM.getContext().getTargetAddressSpace(D.getType()));
332     GV->setVisibility(OldGV->getVisibility());
333     GV->setComdat(OldGV->getComdat());
334 
335     // Steal the name of the old global
336     GV->takeName(OldGV);
337 
338     // Replace all uses of the old global with the new global
339     llvm::Constant *NewPtrForOldDecl =
340     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
341     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
342 
343     // Erase the old global, since it is no longer used.
344     OldGV->eraseFromParent();
345   }
346 
347   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
348   GV->setInitializer(Init);
349 
350   if (hasNontrivialDestruction(D.getType())) {
351     // We have a constant initializer, but a nontrivial destructor. We still
352     // need to perform a guarded "initialization" in order to register the
353     // destructor.
354     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
355   }
356 
357   return GV;
358 }
359 
360 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
361                                       llvm::GlobalValue::LinkageTypes Linkage) {
362   // Check to see if we already have a global variable for this
363   // declaration.  This can happen when double-emitting function
364   // bodies, e.g. with complete and base constructors.
365   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
366   CharUnits alignment = getContext().getDeclAlign(&D);
367 
368   // Store into LocalDeclMap before generating initializer to handle
369   // circular references.
370   setAddrOfLocalVar(&D, Address(addr, alignment));
371 
372   // We can't have a VLA here, but we can have a pointer to a VLA,
373   // even though that doesn't really make any sense.
374   // Make sure to evaluate VLA bounds now so that we have them for later.
375   if (D.getType()->isVariablyModifiedType())
376     EmitVariablyModifiedType(D.getType());
377 
378   // Save the type in case adding the initializer forces a type change.
379   llvm::Type *expectedType = addr->getType();
380 
381   llvm::GlobalVariable *var =
382     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
383 
384   // CUDA's local and local static __shared__ variables should not
385   // have any non-empty initializers. This is ensured by Sema.
386   // Whatever initializer such variable may have when it gets here is
387   // a no-op and should not be emitted.
388   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
389                          D.hasAttr<CUDASharedAttr>();
390   // If this value has an initializer, emit it.
391   if (D.getInit() && !isCudaSharedVar)
392     var = AddInitializerToStaticVarDecl(D, var);
393 
394   var->setAlignment(alignment.getQuantity());
395 
396   if (D.hasAttr<AnnotateAttr>())
397     CGM.AddGlobalAnnotations(&D, var);
398 
399   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
400     var->setSection(SA->getName());
401 
402   if (D.hasAttr<UsedAttr>())
403     CGM.addUsedGlobal(var);
404 
405   // We may have to cast the constant because of the initializer
406   // mismatch above.
407   //
408   // FIXME: It is really dangerous to store this in the map; if anyone
409   // RAUW's the GV uses of this constant will be invalid.
410   llvm::Constant *castedAddr =
411     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
412   if (var != castedAddr)
413     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
414   CGM.setStaticLocalDeclAddress(&D, castedAddr);
415 
416   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
417 
418   // Emit global variable debug descriptor for static vars.
419   CGDebugInfo *DI = getDebugInfo();
420   if (DI &&
421       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
422     DI->setLocation(D.getLocation());
423     DI->EmitGlobalVariable(var, &D);
424   }
425 }
426 
427 namespace {
428   struct DestroyObject final : EHScopeStack::Cleanup {
429     DestroyObject(Address addr, QualType type,
430                   CodeGenFunction::Destroyer *destroyer,
431                   bool useEHCleanupForArray)
432       : addr(addr), type(type), destroyer(destroyer),
433         useEHCleanupForArray(useEHCleanupForArray) {}
434 
435     Address addr;
436     QualType type;
437     CodeGenFunction::Destroyer *destroyer;
438     bool useEHCleanupForArray;
439 
440     void Emit(CodeGenFunction &CGF, Flags flags) override {
441       // Don't use an EH cleanup recursively from an EH cleanup.
442       bool useEHCleanupForArray =
443         flags.isForNormalCleanup() && this->useEHCleanupForArray;
444 
445       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
446     }
447   };
448 
449   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
450     DestroyNRVOVariable(Address addr,
451                         const CXXDestructorDecl *Dtor,
452                         llvm::Value *NRVOFlag)
453       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
454 
455     const CXXDestructorDecl *Dtor;
456     llvm::Value *NRVOFlag;
457     Address Loc;
458 
459     void Emit(CodeGenFunction &CGF, Flags flags) override {
460       // Along the exceptions path we always execute the dtor.
461       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
462 
463       llvm::BasicBlock *SkipDtorBB = nullptr;
464       if (NRVO) {
465         // If we exited via NRVO, we skip the destructor call.
466         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
467         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
468         llvm::Value *DidNRVO =
469           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
470         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
471         CGF.EmitBlock(RunDtorBB);
472       }
473 
474       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
475                                 /*ForVirtualBase=*/false,
476                                 /*Delegating=*/false,
477                                 Loc);
478 
479       if (NRVO) CGF.EmitBlock(SkipDtorBB);
480     }
481   };
482 
483   struct CallStackRestore final : EHScopeStack::Cleanup {
484     Address Stack;
485     CallStackRestore(Address Stack) : Stack(Stack) {}
486     void Emit(CodeGenFunction &CGF, Flags flags) override {
487       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
488       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
489       CGF.Builder.CreateCall(F, V);
490     }
491   };
492 
493   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
494     const VarDecl &Var;
495     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
496 
497     void Emit(CodeGenFunction &CGF, Flags flags) override {
498       // Compute the address of the local variable, in case it's a
499       // byref or something.
500       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
501                       Var.getType(), VK_LValue, SourceLocation());
502       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
503                                                 SourceLocation());
504       CGF.EmitExtendGCLifetime(value);
505     }
506   };
507 
508   struct CallCleanupFunction final : EHScopeStack::Cleanup {
509     llvm::Constant *CleanupFn;
510     const CGFunctionInfo &FnInfo;
511     const VarDecl &Var;
512 
513     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
514                         const VarDecl *Var)
515       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
516 
517     void Emit(CodeGenFunction &CGF, Flags flags) override {
518       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
519                       Var.getType(), VK_LValue, SourceLocation());
520       // Compute the address of the local variable, in case it's a byref
521       // or something.
522       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
523 
524       // In some cases, the type of the function argument will be different from
525       // the type of the pointer. An example of this is
526       // void f(void* arg);
527       // __attribute__((cleanup(f))) void *g;
528       //
529       // To fix this we insert a bitcast here.
530       QualType ArgTy = FnInfo.arg_begin()->type;
531       llvm::Value *Arg =
532         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
533 
534       CallArgList Args;
535       Args.add(RValue::get(Arg),
536                CGF.getContext().getPointerType(Var.getType()));
537       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
538     }
539   };
540 } // end anonymous namespace
541 
542 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
543 /// variable with lifetime.
544 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
545                                     Address addr,
546                                     Qualifiers::ObjCLifetime lifetime) {
547   switch (lifetime) {
548   case Qualifiers::OCL_None:
549     llvm_unreachable("present but none");
550 
551   case Qualifiers::OCL_ExplicitNone:
552     // nothing to do
553     break;
554 
555   case Qualifiers::OCL_Strong: {
556     CodeGenFunction::Destroyer *destroyer =
557       (var.hasAttr<ObjCPreciseLifetimeAttr>()
558        ? CodeGenFunction::destroyARCStrongPrecise
559        : CodeGenFunction::destroyARCStrongImprecise);
560 
561     CleanupKind cleanupKind = CGF.getARCCleanupKind();
562     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
563                     cleanupKind & EHCleanup);
564     break;
565   }
566   case Qualifiers::OCL_Autoreleasing:
567     // nothing to do
568     break;
569 
570   case Qualifiers::OCL_Weak:
571     // __weak objects always get EH cleanups; otherwise, exceptions
572     // could cause really nasty crashes instead of mere leaks.
573     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
574                     CodeGenFunction::destroyARCWeak,
575                     /*useEHCleanup*/ true);
576     break;
577   }
578 }
579 
580 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
581   if (const Expr *e = dyn_cast<Expr>(s)) {
582     // Skip the most common kinds of expressions that make
583     // hierarchy-walking expensive.
584     s = e = e->IgnoreParenCasts();
585 
586     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
587       return (ref->getDecl() == &var);
588     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
589       const BlockDecl *block = be->getBlockDecl();
590       for (const auto &I : block->captures()) {
591         if (I.getVariable() == &var)
592           return true;
593       }
594     }
595   }
596 
597   for (const Stmt *SubStmt : s->children())
598     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
599     if (SubStmt && isAccessedBy(var, SubStmt))
600       return true;
601 
602   return false;
603 }
604 
605 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
606   if (!decl) return false;
607   if (!isa<VarDecl>(decl)) return false;
608   const VarDecl *var = cast<VarDecl>(decl);
609   return isAccessedBy(*var, e);
610 }
611 
612 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
613                                    const LValue &destLV, const Expr *init) {
614   bool needsCast = false;
615 
616   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
617     switch (castExpr->getCastKind()) {
618     // Look through casts that don't require representation changes.
619     case CK_NoOp:
620     case CK_BitCast:
621     case CK_BlockPointerToObjCPointerCast:
622       needsCast = true;
623       break;
624 
625     // If we find an l-value to r-value cast from a __weak variable,
626     // emit this operation as a copy or move.
627     case CK_LValueToRValue: {
628       const Expr *srcExpr = castExpr->getSubExpr();
629       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
630         return false;
631 
632       // Emit the source l-value.
633       LValue srcLV = CGF.EmitLValue(srcExpr);
634 
635       // Handle a formal type change to avoid asserting.
636       auto srcAddr = srcLV.getAddress();
637       if (needsCast) {
638         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
639                                          destLV.getAddress().getElementType());
640       }
641 
642       // If it was an l-value, use objc_copyWeak.
643       if (srcExpr->getValueKind() == VK_LValue) {
644         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
645       } else {
646         assert(srcExpr->getValueKind() == VK_XValue);
647         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
648       }
649       return true;
650     }
651 
652     // Stop at anything else.
653     default:
654       return false;
655     }
656 
657     init = castExpr->getSubExpr();
658   }
659   return false;
660 }
661 
662 static void drillIntoBlockVariable(CodeGenFunction &CGF,
663                                    LValue &lvalue,
664                                    const VarDecl *var) {
665   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
666 }
667 
668 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
669                                      LValue lvalue, bool capturedByInit) {
670   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
671   if (!lifetime) {
672     llvm::Value *value = EmitScalarExpr(init);
673     if (capturedByInit)
674       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
675     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
676     return;
677   }
678 
679   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
680     init = DIE->getExpr();
681 
682   // If we're emitting a value with lifetime, we have to do the
683   // initialization *before* we leave the cleanup scopes.
684   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
685     enterFullExpression(ewc);
686     init = ewc->getSubExpr();
687   }
688   CodeGenFunction::RunCleanupsScope Scope(*this);
689 
690   // We have to maintain the illusion that the variable is
691   // zero-initialized.  If the variable might be accessed in its
692   // initializer, zero-initialize before running the initializer, then
693   // actually perform the initialization with an assign.
694   bool accessedByInit = false;
695   if (lifetime != Qualifiers::OCL_ExplicitNone)
696     accessedByInit = (capturedByInit || isAccessedBy(D, init));
697   if (accessedByInit) {
698     LValue tempLV = lvalue;
699     // Drill down to the __block object if necessary.
700     if (capturedByInit) {
701       // We can use a simple GEP for this because it can't have been
702       // moved yet.
703       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
704                                               cast<VarDecl>(D),
705                                               /*follow*/ false));
706     }
707 
708     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
709     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
710 
711     // If __weak, we want to use a barrier under certain conditions.
712     if (lifetime == Qualifiers::OCL_Weak)
713       EmitARCInitWeak(tempLV.getAddress(), zero);
714 
715     // Otherwise just do a simple store.
716     else
717       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
718   }
719 
720   // Emit the initializer.
721   llvm::Value *value = nullptr;
722 
723   switch (lifetime) {
724   case Qualifiers::OCL_None:
725     llvm_unreachable("present but none");
726 
727   case Qualifiers::OCL_ExplicitNone:
728     value = EmitARCUnsafeUnretainedScalarExpr(init);
729     break;
730 
731   case Qualifiers::OCL_Strong: {
732     value = EmitARCRetainScalarExpr(init);
733     break;
734   }
735 
736   case Qualifiers::OCL_Weak: {
737     // If it's not accessed by the initializer, try to emit the
738     // initialization with a copy or move.
739     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
740       return;
741     }
742 
743     // No way to optimize a producing initializer into this.  It's not
744     // worth optimizing for, because the value will immediately
745     // disappear in the common case.
746     value = EmitScalarExpr(init);
747 
748     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
749     if (accessedByInit)
750       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
751     else
752       EmitARCInitWeak(lvalue.getAddress(), value);
753     return;
754   }
755 
756   case Qualifiers::OCL_Autoreleasing:
757     value = EmitARCRetainAutoreleaseScalarExpr(init);
758     break;
759   }
760 
761   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
762 
763   // If the variable might have been accessed by its initializer, we
764   // might have to initialize with a barrier.  We have to do this for
765   // both __weak and __strong, but __weak got filtered out above.
766   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
767     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
768     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
769     EmitARCRelease(oldValue, ARCImpreciseLifetime);
770     return;
771   }
772 
773   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
774 }
775 
776 /// EmitScalarInit - Initialize the given lvalue with the given object.
777 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
778   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
779   if (!lifetime)
780     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
781 
782   switch (lifetime) {
783   case Qualifiers::OCL_None:
784     llvm_unreachable("present but none");
785 
786   case Qualifiers::OCL_ExplicitNone:
787     // nothing to do
788     break;
789 
790   case Qualifiers::OCL_Strong:
791     init = EmitARCRetain(lvalue.getType(), init);
792     break;
793 
794   case Qualifiers::OCL_Weak:
795     // Initialize and then skip the primitive store.
796     EmitARCInitWeak(lvalue.getAddress(), init);
797     return;
798 
799   case Qualifiers::OCL_Autoreleasing:
800     init = EmitARCRetainAutorelease(lvalue.getType(), init);
801     break;
802   }
803 
804   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
805 }
806 
807 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
808 /// non-zero parts of the specified initializer with equal or fewer than
809 /// NumStores scalar stores.
810 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
811                                                 unsigned &NumStores) {
812   // Zero and Undef never requires any extra stores.
813   if (isa<llvm::ConstantAggregateZero>(Init) ||
814       isa<llvm::ConstantPointerNull>(Init) ||
815       isa<llvm::UndefValue>(Init))
816     return true;
817   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
818       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
819       isa<llvm::ConstantExpr>(Init))
820     return Init->isNullValue() || NumStores--;
821 
822   // See if we can emit each element.
823   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
824     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
825       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
826       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
827         return false;
828     }
829     return true;
830   }
831 
832   if (llvm::ConstantDataSequential *CDS =
833         dyn_cast<llvm::ConstantDataSequential>(Init)) {
834     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
835       llvm::Constant *Elt = CDS->getElementAsConstant(i);
836       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
837         return false;
838     }
839     return true;
840   }
841 
842   // Anything else is hard and scary.
843   return false;
844 }
845 
846 /// emitStoresForInitAfterMemset - For inits that
847 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
848 /// stores that would be required.
849 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
850                                          bool isVolatile, CGBuilderTy &Builder) {
851   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
852          "called emitStoresForInitAfterMemset for zero or undef value.");
853 
854   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
855       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
856       isa<llvm::ConstantExpr>(Init)) {
857     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
858     return;
859   }
860 
861   if (llvm::ConstantDataSequential *CDS =
862           dyn_cast<llvm::ConstantDataSequential>(Init)) {
863     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
864       llvm::Constant *Elt = CDS->getElementAsConstant(i);
865 
866       // If necessary, get a pointer to the element and emit it.
867       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
868         emitStoresForInitAfterMemset(
869             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
870             isVolatile, Builder);
871     }
872     return;
873   }
874 
875   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
876          "Unknown value type!");
877 
878   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
879     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
880 
881     // If necessary, get a pointer to the element and emit it.
882     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
883       emitStoresForInitAfterMemset(
884           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
885           isVolatile, Builder);
886   }
887 }
888 
889 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
890 /// plus some stores to initialize a local variable instead of using a memcpy
891 /// from a constant global.  It is beneficial to use memset if the global is all
892 /// zeros, or mostly zeros and large.
893 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
894                                                   uint64_t GlobalSize) {
895   // If a global is all zeros, always use a memset.
896   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
897 
898   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
899   // do it if it will require 6 or fewer scalar stores.
900   // TODO: Should budget depends on the size?  Avoiding a large global warrants
901   // plopping in more stores.
902   unsigned StoreBudget = 6;
903   uint64_t SizeLimit = 32;
904 
905   return GlobalSize > SizeLimit &&
906          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
907 }
908 
909 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
910 /// variable declaration with auto, register, or no storage class specifier.
911 /// These turn into simple stack objects, or GlobalValues depending on target.
912 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
913   AutoVarEmission emission = EmitAutoVarAlloca(D);
914   EmitAutoVarInit(emission);
915   EmitAutoVarCleanups(emission);
916 }
917 
918 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
919 /// markers.
920 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
921                                       const LangOptions &LangOpts) {
922   // Asan uses markers for use-after-scope checks.
923   if (CGOpts.SanitizeAddressUseAfterScope)
924     return true;
925 
926   // Disable lifetime markers in msan builds.
927   // FIXME: Remove this when msan works with lifetime markers.
928   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
929     return false;
930 
931   // For now, only in optimized builds.
932   return CGOpts.OptimizationLevel != 0;
933 }
934 
935 /// Emit a lifetime.begin marker if some criteria are satisfied.
936 /// \return a pointer to the temporary size Value if a marker was emitted, null
937 /// otherwise
938 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
939                                                 llvm::Value *Addr) {
940   if (!shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), getLangOpts()))
941     return nullptr;
942 
943   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
944   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
945   llvm::CallInst *C =
946       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
947   C->setDoesNotThrow();
948   return SizeV;
949 }
950 
951 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
952   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
953   llvm::CallInst *C =
954       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
955   C->setDoesNotThrow();
956 }
957 
958 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
959 /// local variable.  Does not emit initialization or destruction.
960 CodeGenFunction::AutoVarEmission
961 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
962   QualType Ty = D.getType();
963 
964   AutoVarEmission emission(D);
965 
966   bool isByRef = D.hasAttr<BlocksAttr>();
967   emission.IsByRef = isByRef;
968 
969   CharUnits alignment = getContext().getDeclAlign(&D);
970 
971   // If the type is variably-modified, emit all the VLA sizes for it.
972   if (Ty->isVariablyModifiedType())
973     EmitVariablyModifiedType(Ty);
974 
975   Address address = Address::invalid();
976   if (Ty->isConstantSizeType()) {
977     bool NRVO = getLangOpts().ElideConstructors &&
978       D.isNRVOVariable();
979 
980     // If this value is an array or struct with a statically determinable
981     // constant initializer, there are optimizations we can do.
982     //
983     // TODO: We should constant-evaluate the initializer of any variable,
984     // as long as it is initialized by a constant expression. Currently,
985     // isConstantInitializer produces wrong answers for structs with
986     // reference or bitfield members, and a few other cases, and checking
987     // for POD-ness protects us from some of these.
988     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
989         (D.isConstexpr() ||
990          ((Ty.isPODType(getContext()) ||
991            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
992           D.getInit()->isConstantInitializer(getContext(), false)))) {
993 
994       // If the variable's a const type, and it's neither an NRVO
995       // candidate nor a __block variable and has no mutable members,
996       // emit it as a global instead.
997       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
998           CGM.isTypeConstant(Ty, true)) {
999         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1000 
1001         // Signal this condition to later callbacks.
1002         emission.Addr = Address::invalid();
1003         assert(emission.wasEmittedAsGlobal());
1004         return emission;
1005       }
1006 
1007       // Otherwise, tell the initialization code that we're in this case.
1008       emission.IsConstantAggregate = true;
1009     }
1010 
1011     // A normal fixed sized variable becomes an alloca in the entry block,
1012     // unless it's an NRVO variable.
1013 
1014     if (NRVO) {
1015       // The named return value optimization: allocate this variable in the
1016       // return slot, so that we can elide the copy when returning this
1017       // variable (C++0x [class.copy]p34).
1018       address = ReturnValue;
1019 
1020       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1021         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
1022           // Create a flag that is used to indicate when the NRVO was applied
1023           // to this variable. Set it to zero to indicate that NRVO was not
1024           // applied.
1025           llvm::Value *Zero = Builder.getFalse();
1026           Address NRVOFlag =
1027             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1028           EnsureInsertPoint();
1029           Builder.CreateStore(Zero, NRVOFlag);
1030 
1031           // Record the NRVO flag for this variable.
1032           NRVOFlags[&D] = NRVOFlag.getPointer();
1033           emission.NRVOFlag = NRVOFlag.getPointer();
1034         }
1035       }
1036     } else {
1037       CharUnits allocaAlignment;
1038       llvm::Type *allocaTy;
1039       if (isByRef) {
1040         auto &byrefInfo = getBlockByrefInfo(&D);
1041         allocaTy = byrefInfo.Type;
1042         allocaAlignment = byrefInfo.ByrefAlignment;
1043       } else {
1044         allocaTy = ConvertTypeForMem(Ty);
1045         allocaAlignment = alignment;
1046       }
1047 
1048       // Create the alloca.  Note that we set the name separately from
1049       // building the instruction so that it's there even in no-asserts
1050       // builds.
1051       address = CreateTempAlloca(allocaTy, allocaAlignment);
1052       address.getPointer()->setName(D.getName());
1053 
1054       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1055       // the catch parameter starts in the catchpad instruction, and we can't
1056       // insert code in those basic blocks.
1057       bool IsMSCatchParam =
1058           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1059 
1060       // Emit a lifetime intrinsic if meaningful.  There's no point
1061       // in doing this if we don't have a valid insertion point (?).
1062       if (HaveInsertPoint() && !IsMSCatchParam) {
1063         uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1064         emission.SizeForLifetimeMarkers =
1065           EmitLifetimeStart(size, address.getPointer());
1066       } else {
1067         assert(!emission.useLifetimeMarkers());
1068       }
1069     }
1070   } else {
1071     EnsureInsertPoint();
1072 
1073     if (!DidCallStackSave) {
1074       // Save the stack.
1075       Address Stack =
1076         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1077 
1078       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1079       llvm::Value *V = Builder.CreateCall(F);
1080       Builder.CreateStore(V, Stack);
1081 
1082       DidCallStackSave = true;
1083 
1084       // Push a cleanup block and restore the stack there.
1085       // FIXME: in general circumstances, this should be an EH cleanup.
1086       pushStackRestore(NormalCleanup, Stack);
1087     }
1088 
1089     llvm::Value *elementCount;
1090     QualType elementType;
1091     std::tie(elementCount, elementType) = getVLASize(Ty);
1092 
1093     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1094 
1095     // Allocate memory for the array.
1096     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1097     vla->setAlignment(alignment.getQuantity());
1098 
1099     address = Address(vla, alignment);
1100   }
1101 
1102   setAddrOfLocalVar(&D, address);
1103   emission.Addr = address;
1104 
1105   // Emit debug info for local var declaration.
1106   if (HaveInsertPoint())
1107     if (CGDebugInfo *DI = getDebugInfo()) {
1108       if (CGM.getCodeGenOpts().getDebugInfo() >=
1109           codegenoptions::LimitedDebugInfo) {
1110         DI->setLocation(D.getLocation());
1111         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1112       }
1113     }
1114 
1115   if (D.hasAttr<AnnotateAttr>())
1116     EmitVarAnnotations(&D, address.getPointer());
1117 
1118   return emission;
1119 }
1120 
1121 /// Determines whether the given __block variable is potentially
1122 /// captured by the given expression.
1123 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1124   // Skip the most common kinds of expressions that make
1125   // hierarchy-walking expensive.
1126   e = e->IgnoreParenCasts();
1127 
1128   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1129     const BlockDecl *block = be->getBlockDecl();
1130     for (const auto &I : block->captures()) {
1131       if (I.getVariable() == &var)
1132         return true;
1133     }
1134 
1135     // No need to walk into the subexpressions.
1136     return false;
1137   }
1138 
1139   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1140     const CompoundStmt *CS = SE->getSubStmt();
1141     for (const auto *BI : CS->body())
1142       if (const auto *E = dyn_cast<Expr>(BI)) {
1143         if (isCapturedBy(var, E))
1144             return true;
1145       }
1146       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1147           // special case declarations
1148           for (const auto *I : DS->decls()) {
1149               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1150                 const Expr *Init = VD->getInit();
1151                 if (Init && isCapturedBy(var, Init))
1152                   return true;
1153               }
1154           }
1155       }
1156       else
1157         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1158         // Later, provide code to poke into statements for capture analysis.
1159         return true;
1160     return false;
1161   }
1162 
1163   for (const Stmt *SubStmt : e->children())
1164     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1165       return true;
1166 
1167   return false;
1168 }
1169 
1170 /// \brief Determine whether the given initializer is trivial in the sense
1171 /// that it requires no code to be generated.
1172 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1173   if (!Init)
1174     return true;
1175 
1176   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1177     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1178       if (Constructor->isTrivial() &&
1179           Constructor->isDefaultConstructor() &&
1180           !Construct->requiresZeroInitialization())
1181         return true;
1182 
1183   return false;
1184 }
1185 
1186 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1187   assert(emission.Variable && "emission was not valid!");
1188 
1189   // If this was emitted as a global constant, we're done.
1190   if (emission.wasEmittedAsGlobal()) return;
1191 
1192   const VarDecl &D = *emission.Variable;
1193   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1194   QualType type = D.getType();
1195 
1196   // If this local has an initializer, emit it now.
1197   const Expr *Init = D.getInit();
1198 
1199   // If we are at an unreachable point, we don't need to emit the initializer
1200   // unless it contains a label.
1201   if (!HaveInsertPoint()) {
1202     if (!Init || !ContainsLabel(Init)) return;
1203     EnsureInsertPoint();
1204   }
1205 
1206   // Initialize the structure of a __block variable.
1207   if (emission.IsByRef)
1208     emitByrefStructureInit(emission);
1209 
1210   if (isTrivialInitializer(Init))
1211     return;
1212 
1213   // Check whether this is a byref variable that's potentially
1214   // captured and moved by its own initializer.  If so, we'll need to
1215   // emit the initializer first, then copy into the variable.
1216   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1217 
1218   Address Loc =
1219     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1220 
1221   llvm::Constant *constant = nullptr;
1222   if (emission.IsConstantAggregate || D.isConstexpr()) {
1223     assert(!capturedByInit && "constant init contains a capturing block?");
1224     constant = CGM.EmitConstantInit(D, this);
1225   }
1226 
1227   if (!constant) {
1228     LValue lv = MakeAddrLValue(Loc, type);
1229     lv.setNonGC(true);
1230     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1231   }
1232 
1233   if (!emission.IsConstantAggregate) {
1234     // For simple scalar/complex initialization, store the value directly.
1235     LValue lv = MakeAddrLValue(Loc, type);
1236     lv.setNonGC(true);
1237     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1238   }
1239 
1240   // If this is a simple aggregate initialization, we can optimize it
1241   // in various ways.
1242   bool isVolatile = type.isVolatileQualified();
1243 
1244   llvm::Value *SizeVal =
1245     llvm::ConstantInt::get(IntPtrTy,
1246                            getContext().getTypeSizeInChars(type).getQuantity());
1247 
1248   llvm::Type *BP = Int8PtrTy;
1249   if (Loc.getType() != BP)
1250     Loc = Builder.CreateBitCast(Loc, BP);
1251 
1252   // If the initializer is all or mostly zeros, codegen with memset then do
1253   // a few stores afterward.
1254   if (shouldUseMemSetPlusStoresToInitialize(constant,
1255                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1256     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1257                          isVolatile);
1258     // Zero and undef don't require a stores.
1259     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1260       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1261       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1262                                    isVolatile, Builder);
1263     }
1264   } else {
1265     // Otherwise, create a temporary global with the initializer then
1266     // memcpy from the global to the alloca.
1267     std::string Name = getStaticDeclName(CGM, D);
1268     llvm::GlobalVariable *GV =
1269       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1270                                llvm::GlobalValue::PrivateLinkage,
1271                                constant, Name);
1272     GV->setAlignment(Loc.getAlignment().getQuantity());
1273     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1274 
1275     Address SrcPtr = Address(GV, Loc.getAlignment());
1276     if (SrcPtr.getType() != BP)
1277       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1278 
1279     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1280   }
1281 }
1282 
1283 /// Emit an expression as an initializer for a variable at the given
1284 /// location.  The expression is not necessarily the normal
1285 /// initializer for the variable, and the address is not necessarily
1286 /// its normal location.
1287 ///
1288 /// \param init the initializing expression
1289 /// \param var the variable to act as if we're initializing
1290 /// \param loc the address to initialize; its type is a pointer
1291 ///   to the LLVM mapping of the variable's type
1292 /// \param alignment the alignment of the address
1293 /// \param capturedByInit true if the variable is a __block variable
1294 ///   whose address is potentially changed by the initializer
1295 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1296                                      LValue lvalue, bool capturedByInit) {
1297   QualType type = D->getType();
1298 
1299   if (type->isReferenceType()) {
1300     RValue rvalue = EmitReferenceBindingToExpr(init);
1301     if (capturedByInit)
1302       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1303     EmitStoreThroughLValue(rvalue, lvalue, true);
1304     return;
1305   }
1306   switch (getEvaluationKind(type)) {
1307   case TEK_Scalar:
1308     EmitScalarInit(init, D, lvalue, capturedByInit);
1309     return;
1310   case TEK_Complex: {
1311     ComplexPairTy complex = EmitComplexExpr(init);
1312     if (capturedByInit)
1313       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1314     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1315     return;
1316   }
1317   case TEK_Aggregate:
1318     if (type->isAtomicType()) {
1319       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1320     } else {
1321       // TODO: how can we delay here if D is captured by its initializer?
1322       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1323                                               AggValueSlot::IsDestructed,
1324                                          AggValueSlot::DoesNotNeedGCBarriers,
1325                                               AggValueSlot::IsNotAliased));
1326     }
1327     return;
1328   }
1329   llvm_unreachable("bad evaluation kind");
1330 }
1331 
1332 /// Enter a destroy cleanup for the given local variable.
1333 void CodeGenFunction::emitAutoVarTypeCleanup(
1334                             const CodeGenFunction::AutoVarEmission &emission,
1335                             QualType::DestructionKind dtorKind) {
1336   assert(dtorKind != QualType::DK_none);
1337 
1338   // Note that for __block variables, we want to destroy the
1339   // original stack object, not the possibly forwarded object.
1340   Address addr = emission.getObjectAddress(*this);
1341 
1342   const VarDecl *var = emission.Variable;
1343   QualType type = var->getType();
1344 
1345   CleanupKind cleanupKind = NormalAndEHCleanup;
1346   CodeGenFunction::Destroyer *destroyer = nullptr;
1347 
1348   switch (dtorKind) {
1349   case QualType::DK_none:
1350     llvm_unreachable("no cleanup for trivially-destructible variable");
1351 
1352   case QualType::DK_cxx_destructor:
1353     // If there's an NRVO flag on the emission, we need a different
1354     // cleanup.
1355     if (emission.NRVOFlag) {
1356       assert(!type->isArrayType());
1357       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1358       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1359                                                dtor, emission.NRVOFlag);
1360       return;
1361     }
1362     break;
1363 
1364   case QualType::DK_objc_strong_lifetime:
1365     // Suppress cleanups for pseudo-strong variables.
1366     if (var->isARCPseudoStrong()) return;
1367 
1368     // Otherwise, consider whether to use an EH cleanup or not.
1369     cleanupKind = getARCCleanupKind();
1370 
1371     // Use the imprecise destroyer by default.
1372     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1373       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1374     break;
1375 
1376   case QualType::DK_objc_weak_lifetime:
1377     break;
1378   }
1379 
1380   // If we haven't chosen a more specific destroyer, use the default.
1381   if (!destroyer) destroyer = getDestroyer(dtorKind);
1382 
1383   // Use an EH cleanup in array destructors iff the destructor itself
1384   // is being pushed as an EH cleanup.
1385   bool useEHCleanup = (cleanupKind & EHCleanup);
1386   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1387                                      useEHCleanup);
1388 }
1389 
1390 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1391   assert(emission.Variable && "emission was not valid!");
1392 
1393   // If this was emitted as a global constant, we're done.
1394   if (emission.wasEmittedAsGlobal()) return;
1395 
1396   // If we don't have an insertion point, we're done.  Sema prevents
1397   // us from jumping into any of these scopes anyway.
1398   if (!HaveInsertPoint()) return;
1399 
1400   const VarDecl &D = *emission.Variable;
1401 
1402   // Make sure we call @llvm.lifetime.end.  This needs to happen
1403   // *last*, so the cleanup needs to be pushed *first*.
1404   if (emission.useLifetimeMarkers())
1405     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1406                                          emission.getAllocatedAddress(),
1407                                          emission.getSizeForLifetimeMarkers());
1408 
1409   // Check the type for a cleanup.
1410   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1411     emitAutoVarTypeCleanup(emission, dtorKind);
1412 
1413   // In GC mode, honor objc_precise_lifetime.
1414   if (getLangOpts().getGC() != LangOptions::NonGC &&
1415       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1416     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1417   }
1418 
1419   // Handle the cleanup attribute.
1420   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1421     const FunctionDecl *FD = CA->getFunctionDecl();
1422 
1423     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1424     assert(F && "Could not find function!");
1425 
1426     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1427     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1428   }
1429 
1430   // If this is a block variable, call _Block_object_destroy
1431   // (on the unforwarded address).
1432   if (emission.IsByRef)
1433     enterByrefCleanup(emission);
1434 }
1435 
1436 CodeGenFunction::Destroyer *
1437 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1438   switch (kind) {
1439   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1440   case QualType::DK_cxx_destructor:
1441     return destroyCXXObject;
1442   case QualType::DK_objc_strong_lifetime:
1443     return destroyARCStrongPrecise;
1444   case QualType::DK_objc_weak_lifetime:
1445     return destroyARCWeak;
1446   }
1447   llvm_unreachable("Unknown DestructionKind");
1448 }
1449 
1450 /// pushEHDestroy - Push the standard destructor for the given type as
1451 /// an EH-only cleanup.
1452 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1453                                     Address addr, QualType type) {
1454   assert(dtorKind && "cannot push destructor for trivial type");
1455   assert(needsEHCleanup(dtorKind));
1456 
1457   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1458 }
1459 
1460 /// pushDestroy - Push the standard destructor for the given type as
1461 /// at least a normal cleanup.
1462 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1463                                   Address addr, QualType type) {
1464   assert(dtorKind && "cannot push destructor for trivial type");
1465 
1466   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1467   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1468               cleanupKind & EHCleanup);
1469 }
1470 
1471 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1472                                   QualType type, Destroyer *destroyer,
1473                                   bool useEHCleanupForArray) {
1474   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1475                                      destroyer, useEHCleanupForArray);
1476 }
1477 
1478 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1479   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1480 }
1481 
1482 void CodeGenFunction::pushLifetimeExtendedDestroy(
1483     CleanupKind cleanupKind, Address addr, QualType type,
1484     Destroyer *destroyer, bool useEHCleanupForArray) {
1485   assert(!isInConditionalBranch() &&
1486          "performing lifetime extension from within conditional");
1487 
1488   // Push an EH-only cleanup for the object now.
1489   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1490   // around in case a temporary's destructor throws an exception.
1491   if (cleanupKind & EHCleanup)
1492     EHStack.pushCleanup<DestroyObject>(
1493         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1494         destroyer, useEHCleanupForArray);
1495 
1496   // Remember that we need to push a full cleanup for the object at the
1497   // end of the full-expression.
1498   pushCleanupAfterFullExpr<DestroyObject>(
1499       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1500 }
1501 
1502 /// emitDestroy - Immediately perform the destruction of the given
1503 /// object.
1504 ///
1505 /// \param addr - the address of the object; a type*
1506 /// \param type - the type of the object; if an array type, all
1507 ///   objects are destroyed in reverse order
1508 /// \param destroyer - the function to call to destroy individual
1509 ///   elements
1510 /// \param useEHCleanupForArray - whether an EH cleanup should be
1511 ///   used when destroying array elements, in case one of the
1512 ///   destructions throws an exception
1513 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1514                                   Destroyer *destroyer,
1515                                   bool useEHCleanupForArray) {
1516   const ArrayType *arrayType = getContext().getAsArrayType(type);
1517   if (!arrayType)
1518     return destroyer(*this, addr, type);
1519 
1520   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1521 
1522   CharUnits elementAlign =
1523     addr.getAlignment()
1524         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1525 
1526   // Normally we have to check whether the array is zero-length.
1527   bool checkZeroLength = true;
1528 
1529   // But if the array length is constant, we can suppress that.
1530   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1531     // ...and if it's constant zero, we can just skip the entire thing.
1532     if (constLength->isZero()) return;
1533     checkZeroLength = false;
1534   }
1535 
1536   llvm::Value *begin = addr.getPointer();
1537   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1538   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1539                    checkZeroLength, useEHCleanupForArray);
1540 }
1541 
1542 /// emitArrayDestroy - Destroys all the elements of the given array,
1543 /// beginning from last to first.  The array cannot be zero-length.
1544 ///
1545 /// \param begin - a type* denoting the first element of the array
1546 /// \param end - a type* denoting one past the end of the array
1547 /// \param elementType - the element type of the array
1548 /// \param destroyer - the function to call to destroy elements
1549 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1550 ///   the remaining elements in case the destruction of a single
1551 ///   element throws
1552 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1553                                        llvm::Value *end,
1554                                        QualType elementType,
1555                                        CharUnits elementAlign,
1556                                        Destroyer *destroyer,
1557                                        bool checkZeroLength,
1558                                        bool useEHCleanup) {
1559   assert(!elementType->isArrayType());
1560 
1561   // The basic structure here is a do-while loop, because we don't
1562   // need to check for the zero-element case.
1563   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1564   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1565 
1566   if (checkZeroLength) {
1567     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1568                                                 "arraydestroy.isempty");
1569     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1570   }
1571 
1572   // Enter the loop body, making that address the current address.
1573   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1574   EmitBlock(bodyBB);
1575   llvm::PHINode *elementPast =
1576     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1577   elementPast->addIncoming(end, entryBB);
1578 
1579   // Shift the address back by one element.
1580   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1581   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1582                                                    "arraydestroy.element");
1583 
1584   if (useEHCleanup)
1585     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1586                                    destroyer);
1587 
1588   // Perform the actual destruction there.
1589   destroyer(*this, Address(element, elementAlign), elementType);
1590 
1591   if (useEHCleanup)
1592     PopCleanupBlock();
1593 
1594   // Check whether we've reached the end.
1595   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1596   Builder.CreateCondBr(done, doneBB, bodyBB);
1597   elementPast->addIncoming(element, Builder.GetInsertBlock());
1598 
1599   // Done.
1600   EmitBlock(doneBB);
1601 }
1602 
1603 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1604 /// emitArrayDestroy, the element type here may still be an array type.
1605 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1606                                     llvm::Value *begin, llvm::Value *end,
1607                                     QualType type, CharUnits elementAlign,
1608                                     CodeGenFunction::Destroyer *destroyer) {
1609   // If the element type is itself an array, drill down.
1610   unsigned arrayDepth = 0;
1611   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1612     // VLAs don't require a GEP index to walk into.
1613     if (!isa<VariableArrayType>(arrayType))
1614       arrayDepth++;
1615     type = arrayType->getElementType();
1616   }
1617 
1618   if (arrayDepth) {
1619     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1620 
1621     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1622     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1623     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1624   }
1625 
1626   // Destroy the array.  We don't ever need an EH cleanup because we
1627   // assume that we're in an EH cleanup ourselves, so a throwing
1628   // destructor causes an immediate terminate.
1629   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1630                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1631 }
1632 
1633 namespace {
1634   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1635   /// array destroy where the end pointer is regularly determined and
1636   /// does not need to be loaded from a local.
1637   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1638     llvm::Value *ArrayBegin;
1639     llvm::Value *ArrayEnd;
1640     QualType ElementType;
1641     CodeGenFunction::Destroyer *Destroyer;
1642     CharUnits ElementAlign;
1643   public:
1644     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1645                                QualType elementType, CharUnits elementAlign,
1646                                CodeGenFunction::Destroyer *destroyer)
1647       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1648         ElementType(elementType), Destroyer(destroyer),
1649         ElementAlign(elementAlign) {}
1650 
1651     void Emit(CodeGenFunction &CGF, Flags flags) override {
1652       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1653                               ElementType, ElementAlign, Destroyer);
1654     }
1655   };
1656 
1657   /// IrregularPartialArrayDestroy - a cleanup which performs a
1658   /// partial array destroy where the end pointer is irregularly
1659   /// determined and must be loaded from a local.
1660   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1661     llvm::Value *ArrayBegin;
1662     Address ArrayEndPointer;
1663     QualType ElementType;
1664     CodeGenFunction::Destroyer *Destroyer;
1665     CharUnits ElementAlign;
1666   public:
1667     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1668                                  Address arrayEndPointer,
1669                                  QualType elementType,
1670                                  CharUnits elementAlign,
1671                                  CodeGenFunction::Destroyer *destroyer)
1672       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1673         ElementType(elementType), Destroyer(destroyer),
1674         ElementAlign(elementAlign) {}
1675 
1676     void Emit(CodeGenFunction &CGF, Flags flags) override {
1677       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1678       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1679                               ElementType, ElementAlign, Destroyer);
1680     }
1681   };
1682 } // end anonymous namespace
1683 
1684 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1685 /// already-constructed elements of the given array.  The cleanup
1686 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1687 ///
1688 /// \param elementType - the immediate element type of the array;
1689 ///   possibly still an array type
1690 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1691                                                        Address arrayEndPointer,
1692                                                        QualType elementType,
1693                                                        CharUnits elementAlign,
1694                                                        Destroyer *destroyer) {
1695   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1696                                                     arrayBegin, arrayEndPointer,
1697                                                     elementType, elementAlign,
1698                                                     destroyer);
1699 }
1700 
1701 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1702 /// already-constructed elements of the given array.  The cleanup
1703 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1704 ///
1705 /// \param elementType - the immediate element type of the array;
1706 ///   possibly still an array type
1707 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1708                                                      llvm::Value *arrayEnd,
1709                                                      QualType elementType,
1710                                                      CharUnits elementAlign,
1711                                                      Destroyer *destroyer) {
1712   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1713                                                   arrayBegin, arrayEnd,
1714                                                   elementType, elementAlign,
1715                                                   destroyer);
1716 }
1717 
1718 /// Lazily declare the @llvm.lifetime.start intrinsic.
1719 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1720   if (LifetimeStartFn) return LifetimeStartFn;
1721   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1722                                             llvm::Intrinsic::lifetime_start);
1723   return LifetimeStartFn;
1724 }
1725 
1726 /// Lazily declare the @llvm.lifetime.end intrinsic.
1727 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1728   if (LifetimeEndFn) return LifetimeEndFn;
1729   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1730                                               llvm::Intrinsic::lifetime_end);
1731   return LifetimeEndFn;
1732 }
1733 
1734 namespace {
1735   /// A cleanup to perform a release of an object at the end of a
1736   /// function.  This is used to balance out the incoming +1 of a
1737   /// ns_consumed argument when we can't reasonably do that just by
1738   /// not doing the initial retain for a __block argument.
1739   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1740     ConsumeARCParameter(llvm::Value *param,
1741                         ARCPreciseLifetime_t precise)
1742       : Param(param), Precise(precise) {}
1743 
1744     llvm::Value *Param;
1745     ARCPreciseLifetime_t Precise;
1746 
1747     void Emit(CodeGenFunction &CGF, Flags flags) override {
1748       CGF.EmitARCRelease(Param, Precise);
1749     }
1750   };
1751 } // end anonymous namespace
1752 
1753 /// Emit an alloca (or GlobalValue depending on target)
1754 /// for the specified parameter and set up LocalDeclMap.
1755 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1756                                    unsigned ArgNo) {
1757   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1758   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1759          "Invalid argument to EmitParmDecl");
1760 
1761   Arg.getAnyValue()->setName(D.getName());
1762 
1763   QualType Ty = D.getType();
1764 
1765   // Use better IR generation for certain implicit parameters.
1766   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1767     // The only implicit argument a block has is its literal.
1768     // We assume this is always passed directly.
1769     if (BlockInfo) {
1770       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
1771       return;
1772     }
1773 
1774     // Apply any prologue 'this' adjustments required by the ABI. Be careful to
1775     // handle the case where 'this' is passed indirectly as part of an inalloca
1776     // struct.
1777     if (const CXXMethodDecl *MD =
1778             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1779       if (MD->isVirtual() && IPD == CXXABIThisDecl) {
1780         llvm::Value *This = Arg.isIndirect()
1781                                 ? Builder.CreateLoad(Arg.getIndirectAddress())
1782                                 : Arg.getDirectValue();
1783         This = CGM.getCXXABI().adjustThisParameterInVirtualFunctionPrologue(
1784             *this, CurGD, This);
1785         if (Arg.isIndirect())
1786           Builder.CreateStore(This, Arg.getIndirectAddress());
1787         else
1788           Arg = ParamValue::forDirect(This);
1789       }
1790     }
1791   }
1792 
1793   Address DeclPtr = Address::invalid();
1794   bool DoStore = false;
1795   bool IsScalar = hasScalarEvaluationKind(Ty);
1796   // If we already have a pointer to the argument, reuse the input pointer.
1797   if (Arg.isIndirect()) {
1798     DeclPtr = Arg.getIndirectAddress();
1799     // If we have a prettier pointer type at this point, bitcast to that.
1800     unsigned AS = DeclPtr.getType()->getAddressSpace();
1801     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1802     if (DeclPtr.getType() != IRTy)
1803       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1804 
1805     // Push a destructor cleanup for this parameter if the ABI requires it.
1806     // Don't push a cleanup in a thunk for a method that will also emit a
1807     // cleanup.
1808     if (!IsScalar && !CurFuncIsThunk &&
1809         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1810       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1811       if (RD && RD->hasNonTrivialDestructor())
1812         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1813     }
1814   } else {
1815     // Otherwise, create a temporary to hold the value.
1816     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1817                             D.getName() + ".addr");
1818     DoStore = true;
1819   }
1820 
1821   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1822 
1823   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1824   if (IsScalar) {
1825     Qualifiers qs = Ty.getQualifiers();
1826     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1827       // We honor __attribute__((ns_consumed)) for types with lifetime.
1828       // For __strong, it's handled by just skipping the initial retain;
1829       // otherwise we have to balance out the initial +1 with an extra
1830       // cleanup to do the release at the end of the function.
1831       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1832 
1833       // 'self' is always formally __strong, but if this is not an
1834       // init method then we don't want to retain it.
1835       if (D.isARCPseudoStrong()) {
1836         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1837         assert(&D == method->getSelfDecl());
1838         assert(lt == Qualifiers::OCL_Strong);
1839         assert(qs.hasConst());
1840         assert(method->getMethodFamily() != OMF_init);
1841         (void) method;
1842         lt = Qualifiers::OCL_ExplicitNone;
1843       }
1844 
1845       if (lt == Qualifiers::OCL_Strong) {
1846         if (!isConsumed) {
1847           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1848             // use objc_storeStrong(&dest, value) for retaining the
1849             // object. But first, store a null into 'dest' because
1850             // objc_storeStrong attempts to release its old value.
1851             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1852             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1853             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1854             DoStore = false;
1855           }
1856           else
1857           // Don't use objc_retainBlock for block pointers, because we
1858           // don't want to Block_copy something just because we got it
1859           // as a parameter.
1860             ArgVal = EmitARCRetainNonBlock(ArgVal);
1861         }
1862       } else {
1863         // Push the cleanup for a consumed parameter.
1864         if (isConsumed) {
1865           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1866                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1867           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1868                                                    precise);
1869         }
1870 
1871         if (lt == Qualifiers::OCL_Weak) {
1872           EmitARCInitWeak(DeclPtr, ArgVal);
1873           DoStore = false; // The weak init is a store, no need to do two.
1874         }
1875       }
1876 
1877       // Enter the cleanup scope.
1878       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1879     }
1880   }
1881 
1882   // Store the initial value into the alloca.
1883   if (DoStore)
1884     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
1885 
1886   setAddrOfLocalVar(&D, DeclPtr);
1887 
1888   // Emit debug info for param declaration.
1889   if (CGDebugInfo *DI = getDebugInfo()) {
1890     if (CGM.getCodeGenOpts().getDebugInfo() >=
1891         codegenoptions::LimitedDebugInfo) {
1892       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
1893     }
1894   }
1895 
1896   if (D.hasAttr<AnnotateAttr>())
1897     EmitVarAnnotations(&D, DeclPtr.getPointer());
1898 }
1899 
1900 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
1901                                             CodeGenFunction *CGF) {
1902   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
1903     return;
1904   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
1905 }
1906