1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 
33 void CodeGenFunction::EmitDecl(const Decl &D) {
34   switch (D.getKind()) {
35   case Decl::TranslationUnit:
36   case Decl::Namespace:
37   case Decl::UnresolvedUsingTypename:
38   case Decl::ClassTemplateSpecialization:
39   case Decl::ClassTemplatePartialSpecialization:
40   case Decl::TemplateTypeParm:
41   case Decl::UnresolvedUsingValue:
42   case Decl::NonTypeTemplateParm:
43   case Decl::CXXMethod:
44   case Decl::CXXConstructor:
45   case Decl::CXXDestructor:
46   case Decl::CXXConversion:
47   case Decl::Field:
48   case Decl::IndirectField:
49   case Decl::ObjCIvar:
50   case Decl::ObjCAtDefsField:
51   case Decl::ParmVar:
52   case Decl::ImplicitParam:
53   case Decl::ClassTemplate:
54   case Decl::FunctionTemplate:
55   case Decl::TypeAliasTemplate:
56   case Decl::TemplateTemplateParm:
57   case Decl::ObjCMethod:
58   case Decl::ObjCCategory:
59   case Decl::ObjCProtocol:
60   case Decl::ObjCInterface:
61   case Decl::ObjCCategoryImpl:
62   case Decl::ObjCImplementation:
63   case Decl::ObjCProperty:
64   case Decl::ObjCCompatibleAlias:
65   case Decl::AccessSpec:
66   case Decl::LinkageSpec:
67   case Decl::ObjCPropertyImpl:
68   case Decl::FileScopeAsm:
69   case Decl::Friend:
70   case Decl::FriendTemplate:
71   case Decl::Block:
72   case Decl::ClassScopeFunctionSpecialization:
73     llvm_unreachable("Declaration should not be in declstmts!");
74   case Decl::Function:  // void X();
75   case Decl::Record:    // struct/union/class X;
76   case Decl::Enum:      // enum X;
77   case Decl::EnumConstant: // enum ? { X = ? }
78   case Decl::CXXRecord: // struct/union/class X; [C++]
79   case Decl::Using:          // using X; [C++]
80   case Decl::UsingShadow:
81   case Decl::UsingDirective: // using namespace X; [C++]
82   case Decl::NamespaceAlias:
83   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84   case Decl::Label:        // __label__ x;
85   case Decl::Import:
86     // None of these decls require codegen support.
87     return;
88 
89   case Decl::Var: {
90     const VarDecl &VD = cast<VarDecl>(D);
91     assert(VD.isLocalVarDecl() &&
92            "Should not see file-scope variables inside a function!");
93     return EmitVarDecl(VD);
94   }
95 
96   case Decl::Typedef:      // typedef int X;
97   case Decl::TypeAlias: {  // using X = int; [C++0x]
98     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
99     QualType Ty = TD.getUnderlyingType();
100 
101     if (Ty->isVariablyModifiedType())
102       EmitVariablyModifiedType(Ty);
103   }
104   }
105 }
106 
107 /// EmitVarDecl - This method handles emission of any variable declaration
108 /// inside a function, including static vars etc.
109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
110   switch (D.getStorageClassAsWritten()) {
111   case SC_None:
112   case SC_Auto:
113   case SC_Register:
114     return EmitAutoVarDecl(D);
115   case SC_Static: {
116     llvm::GlobalValue::LinkageTypes Linkage =
117       llvm::GlobalValue::InternalLinkage;
118 
119     // If the function definition has some sort of weak linkage, its
120     // static variables should also be weak so that they get properly
121     // uniqued.  We can't do this in C, though, because there's no
122     // standard way to agree on which variables are the same (i.e.
123     // there's no mangling).
124     if (getLangOpts().CPlusPlus)
125       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
126         Linkage = CurFn->getLinkage();
127 
128     return EmitStaticVarDecl(D, Linkage);
129   }
130   case SC_Extern:
131   case SC_PrivateExtern:
132     // Don't emit it now, allow it to be emitted lazily on its first use.
133     return;
134   case SC_OpenCLWorkGroupLocal:
135     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
136   }
137 
138   llvm_unreachable("Unknown storage class");
139 }
140 
141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
142                                      const char *Separator) {
143   CodeGenModule &CGM = CGF.CGM;
144   if (CGF.getLangOpts().CPlusPlus) {
145     StringRef Name = CGM.getMangledName(&D);
146     return Name.str();
147   }
148 
149   std::string ContextName;
150   if (!CGF.CurFuncDecl) {
151     // Better be in a block declared in global scope.
152     const NamedDecl *ND = cast<NamedDecl>(&D);
153     const DeclContext *DC = ND->getDeclContext();
154     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
155       MangleBuffer Name;
156       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
157       ContextName = Name.getString();
158     }
159     else
160       llvm_unreachable("Unknown context for block static var decl");
161   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
162     StringRef Name = CGM.getMangledName(FD);
163     ContextName = Name.str();
164   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
165     ContextName = CGF.CurFn->getName();
166   else
167     llvm_unreachable("Unknown context for static var decl");
168 
169   return ContextName + Separator + D.getNameAsString();
170 }
171 
172 llvm::GlobalVariable *
173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
174                                      const char *Separator,
175                                      llvm::GlobalValue::LinkageTypes Linkage) {
176   QualType Ty = D.getType();
177   assert(Ty->isConstantSizeType() && "VLAs can't be static");
178 
179   // Use the label if the variable is renamed with the asm-label extension.
180   std::string Name;
181   if (D.hasAttr<AsmLabelAttr>())
182     Name = CGM.getMangledName(&D);
183   else
184     Name = GetStaticDeclName(*this, D, Separator);
185 
186   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
187   unsigned AddrSpace =
188    CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
189   llvm::GlobalVariable *GV =
190     new llvm::GlobalVariable(CGM.getModule(), LTy,
191                              Ty.isConstant(getContext()), Linkage,
192                              CGM.EmitNullConstant(D.getType()), Name, 0,
193                              llvm::GlobalVariable::NotThreadLocal,
194                              AddrSpace);
195   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
196   if (Linkage != llvm::GlobalValue::InternalLinkage)
197     GV->setVisibility(CurFn->getVisibility());
198 
199   if (D.isThreadSpecified())
200     CGM.setTLSMode(GV, D);
201 
202   return GV;
203 }
204 
205 /// hasNontrivialDestruction - Determine whether a type's destruction is
206 /// non-trivial. If so, and the variable uses static initialization, we must
207 /// register its destructor to run on exit.
208 static bool hasNontrivialDestruction(QualType T) {
209   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
210   return RD && !RD->hasTrivialDestructor();
211 }
212 
213 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
214 /// global variable that has already been created for it.  If the initializer
215 /// has a different type than GV does, this may free GV and return a different
216 /// one.  Otherwise it just returns GV.
217 llvm::GlobalVariable *
218 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
219                                                llvm::GlobalVariable *GV) {
220   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
221 
222   // If constant emission failed, then this should be a C++ static
223   // initializer.
224   if (!Init) {
225     if (!getLangOpts().CPlusPlus)
226       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
227     else if (Builder.GetInsertBlock()) {
228       // Since we have a static initializer, this global variable can't
229       // be constant.
230       GV->setConstant(false);
231 
232       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
233     }
234     return GV;
235   }
236 
237   // The initializer may differ in type from the global. Rewrite
238   // the global to match the initializer.  (We have to do this
239   // because some types, like unions, can't be completely represented
240   // in the LLVM type system.)
241   if (GV->getType()->getElementType() != Init->getType()) {
242     llvm::GlobalVariable *OldGV = GV;
243 
244     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
245                                   OldGV->isConstant(),
246                                   OldGV->getLinkage(), Init, "",
247                                   /*InsertBefore*/ OldGV,
248                                   OldGV->getThreadLocalMode(),
249                            CGM.getContext().getTargetAddressSpace(D.getType()));
250     GV->setVisibility(OldGV->getVisibility());
251 
252     // Steal the name of the old global
253     GV->takeName(OldGV);
254 
255     // Replace all uses of the old global with the new global
256     llvm::Constant *NewPtrForOldDecl =
257     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
258     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
259 
260     // Erase the old global, since it is no longer used.
261     OldGV->eraseFromParent();
262   }
263 
264   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
265   GV->setInitializer(Init);
266 
267   if (hasNontrivialDestruction(D.getType())) {
268     // We have a constant initializer, but a nontrivial destructor. We still
269     // need to perform a guarded "initialization" in order to register the
270     // destructor.
271     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
272   }
273 
274   return GV;
275 }
276 
277 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
278                                       llvm::GlobalValue::LinkageTypes Linkage) {
279   llvm::Value *&DMEntry = LocalDeclMap[&D];
280   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
281 
282   // Check to see if we already have a global variable for this
283   // declaration.  This can happen when double-emitting function
284   // bodies, e.g. with complete and base constructors.
285   llvm::Constant *addr =
286     CGM.getStaticLocalDeclAddress(&D);
287 
288   llvm::GlobalVariable *var;
289   if (addr) {
290     var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
291   } else {
292     addr = var = CreateStaticVarDecl(D, ".", Linkage);
293   }
294 
295   // Store into LocalDeclMap before generating initializer to handle
296   // circular references.
297   DMEntry = addr;
298   CGM.setStaticLocalDeclAddress(&D, addr);
299 
300   // We can't have a VLA here, but we can have a pointer to a VLA,
301   // even though that doesn't really make any sense.
302   // Make sure to evaluate VLA bounds now so that we have them for later.
303   if (D.getType()->isVariablyModifiedType())
304     EmitVariablyModifiedType(D.getType());
305 
306   // Save the type in case adding the initializer forces a type change.
307   llvm::Type *expectedType = addr->getType();
308 
309   // If this value has an initializer, emit it.
310   if (D.getInit())
311     var = AddInitializerToStaticVarDecl(D, var);
312 
313   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
314 
315   if (D.hasAttr<AnnotateAttr>())
316     CGM.AddGlobalAnnotations(&D, var);
317 
318   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
319     var->setSection(SA->getName());
320 
321   if (D.hasAttr<UsedAttr>())
322     CGM.AddUsedGlobal(var);
323 
324   // We may have to cast the constant because of the initializer
325   // mismatch above.
326   //
327   // FIXME: It is really dangerous to store this in the map; if anyone
328   // RAUW's the GV uses of this constant will be invalid.
329   llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
330   DMEntry = castedAddr;
331   CGM.setStaticLocalDeclAddress(&D, castedAddr);
332 
333   // Emit global variable debug descriptor for static vars.
334   CGDebugInfo *DI = getDebugInfo();
335   if (DI &&
336       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
337     DI->setLocation(D.getLocation());
338     DI->EmitGlobalVariable(var, &D);
339   }
340 }
341 
342 namespace {
343   struct DestroyObject : EHScopeStack::Cleanup {
344     DestroyObject(llvm::Value *addr, QualType type,
345                   CodeGenFunction::Destroyer *destroyer,
346                   bool useEHCleanupForArray)
347       : addr(addr), type(type), destroyer(destroyer),
348         useEHCleanupForArray(useEHCleanupForArray) {}
349 
350     llvm::Value *addr;
351     QualType type;
352     CodeGenFunction::Destroyer *destroyer;
353     bool useEHCleanupForArray;
354 
355     void Emit(CodeGenFunction &CGF, Flags flags) {
356       // Don't use an EH cleanup recursively from an EH cleanup.
357       bool useEHCleanupForArray =
358         flags.isForNormalCleanup() && this->useEHCleanupForArray;
359 
360       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
361     }
362   };
363 
364   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
365     DestroyNRVOVariable(llvm::Value *addr,
366                         const CXXDestructorDecl *Dtor,
367                         llvm::Value *NRVOFlag)
368       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
369 
370     const CXXDestructorDecl *Dtor;
371     llvm::Value *NRVOFlag;
372     llvm::Value *Loc;
373 
374     void Emit(CodeGenFunction &CGF, Flags flags) {
375       // Along the exceptions path we always execute the dtor.
376       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
377 
378       llvm::BasicBlock *SkipDtorBB = 0;
379       if (NRVO) {
380         // If we exited via NRVO, we skip the destructor call.
381         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
382         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
383         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
384         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
385         CGF.EmitBlock(RunDtorBB);
386       }
387 
388       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
389                                 /*ForVirtualBase=*/false,
390                                 /*Delegating=*/false,
391                                 Loc);
392 
393       if (NRVO) CGF.EmitBlock(SkipDtorBB);
394     }
395   };
396 
397   struct CallStackRestore : EHScopeStack::Cleanup {
398     llvm::Value *Stack;
399     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
400     void Emit(CodeGenFunction &CGF, Flags flags) {
401       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
402       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
403       CGF.Builder.CreateCall(F, V);
404     }
405   };
406 
407   struct ExtendGCLifetime : EHScopeStack::Cleanup {
408     const VarDecl &Var;
409     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
410 
411     void Emit(CodeGenFunction &CGF, Flags flags) {
412       // Compute the address of the local variable, in case it's a
413       // byref or something.
414       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
415                       Var.getType(), VK_LValue, SourceLocation());
416       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
417       CGF.EmitExtendGCLifetime(value);
418     }
419   };
420 
421   struct CallCleanupFunction : EHScopeStack::Cleanup {
422     llvm::Constant *CleanupFn;
423     const CGFunctionInfo &FnInfo;
424     const VarDecl &Var;
425 
426     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
427                         const VarDecl *Var)
428       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
429 
430     void Emit(CodeGenFunction &CGF, Flags flags) {
431       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
432                       Var.getType(), VK_LValue, SourceLocation());
433       // Compute the address of the local variable, in case it's a byref
434       // or something.
435       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
436 
437       // In some cases, the type of the function argument will be different from
438       // the type of the pointer. An example of this is
439       // void f(void* arg);
440       // __attribute__((cleanup(f))) void *g;
441       //
442       // To fix this we insert a bitcast here.
443       QualType ArgTy = FnInfo.arg_begin()->type;
444       llvm::Value *Arg =
445         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
446 
447       CallArgList Args;
448       Args.add(RValue::get(Arg),
449                CGF.getContext().getPointerType(Var.getType()));
450       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
451     }
452   };
453 }
454 
455 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
456 /// variable with lifetime.
457 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
458                                     llvm::Value *addr,
459                                     Qualifiers::ObjCLifetime lifetime) {
460   switch (lifetime) {
461   case Qualifiers::OCL_None:
462     llvm_unreachable("present but none");
463 
464   case Qualifiers::OCL_ExplicitNone:
465     // nothing to do
466     break;
467 
468   case Qualifiers::OCL_Strong: {
469     CodeGenFunction::Destroyer *destroyer =
470       (var.hasAttr<ObjCPreciseLifetimeAttr>()
471        ? CodeGenFunction::destroyARCStrongPrecise
472        : CodeGenFunction::destroyARCStrongImprecise);
473 
474     CleanupKind cleanupKind = CGF.getARCCleanupKind();
475     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
476                     cleanupKind & EHCleanup);
477     break;
478   }
479   case Qualifiers::OCL_Autoreleasing:
480     // nothing to do
481     break;
482 
483   case Qualifiers::OCL_Weak:
484     // __weak objects always get EH cleanups; otherwise, exceptions
485     // could cause really nasty crashes instead of mere leaks.
486     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
487                     CodeGenFunction::destroyARCWeak,
488                     /*useEHCleanup*/ true);
489     break;
490   }
491 }
492 
493 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
494   if (const Expr *e = dyn_cast<Expr>(s)) {
495     // Skip the most common kinds of expressions that make
496     // hierarchy-walking expensive.
497     s = e = e->IgnoreParenCasts();
498 
499     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
500       return (ref->getDecl() == &var);
501     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
502       const BlockDecl *block = be->getBlockDecl();
503       for (BlockDecl::capture_const_iterator i = block->capture_begin(),
504            e = block->capture_end(); i != e; ++i) {
505         if (i->getVariable() == &var)
506           return true;
507       }
508     }
509   }
510 
511   for (Stmt::const_child_range children = s->children(); children; ++children)
512     // children might be null; as in missing decl or conditional of an if-stmt.
513     if ((*children) && isAccessedBy(var, *children))
514       return true;
515 
516   return false;
517 }
518 
519 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
520   if (!decl) return false;
521   if (!isa<VarDecl>(decl)) return false;
522   const VarDecl *var = cast<VarDecl>(decl);
523   return isAccessedBy(*var, e);
524 }
525 
526 static void drillIntoBlockVariable(CodeGenFunction &CGF,
527                                    LValue &lvalue,
528                                    const VarDecl *var) {
529   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
530 }
531 
532 void CodeGenFunction::EmitScalarInit(const Expr *init,
533                                      const ValueDecl *D,
534                                      LValue lvalue,
535                                      bool capturedByInit) {
536   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
537   if (!lifetime) {
538     llvm::Value *value = EmitScalarExpr(init);
539     if (capturedByInit)
540       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
541     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
542     return;
543   }
544 
545   // If we're emitting a value with lifetime, we have to do the
546   // initialization *before* we leave the cleanup scopes.
547   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
548     enterFullExpression(ewc);
549     init = ewc->getSubExpr();
550   }
551   CodeGenFunction::RunCleanupsScope Scope(*this);
552 
553   // We have to maintain the illusion that the variable is
554   // zero-initialized.  If the variable might be accessed in its
555   // initializer, zero-initialize before running the initializer, then
556   // actually perform the initialization with an assign.
557   bool accessedByInit = false;
558   if (lifetime != Qualifiers::OCL_ExplicitNone)
559     accessedByInit = (capturedByInit || isAccessedBy(D, init));
560   if (accessedByInit) {
561     LValue tempLV = lvalue;
562     // Drill down to the __block object if necessary.
563     if (capturedByInit) {
564       // We can use a simple GEP for this because it can't have been
565       // moved yet.
566       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
567                                    getByRefValueLLVMField(cast<VarDecl>(D))));
568     }
569 
570     llvm::PointerType *ty
571       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
572     ty = cast<llvm::PointerType>(ty->getElementType());
573 
574     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
575 
576     // If __weak, we want to use a barrier under certain conditions.
577     if (lifetime == Qualifiers::OCL_Weak)
578       EmitARCInitWeak(tempLV.getAddress(), zero);
579 
580     // Otherwise just do a simple store.
581     else
582       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
583   }
584 
585   // Emit the initializer.
586   llvm::Value *value = 0;
587 
588   switch (lifetime) {
589   case Qualifiers::OCL_None:
590     llvm_unreachable("present but none");
591 
592   case Qualifiers::OCL_ExplicitNone:
593     // nothing to do
594     value = EmitScalarExpr(init);
595     break;
596 
597   case Qualifiers::OCL_Strong: {
598     value = EmitARCRetainScalarExpr(init);
599     break;
600   }
601 
602   case Qualifiers::OCL_Weak: {
603     // No way to optimize a producing initializer into this.  It's not
604     // worth optimizing for, because the value will immediately
605     // disappear in the common case.
606     value = EmitScalarExpr(init);
607 
608     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
609     if (accessedByInit)
610       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
611     else
612       EmitARCInitWeak(lvalue.getAddress(), value);
613     return;
614   }
615 
616   case Qualifiers::OCL_Autoreleasing:
617     value = EmitARCRetainAutoreleaseScalarExpr(init);
618     break;
619   }
620 
621   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
622 
623   // If the variable might have been accessed by its initializer, we
624   // might have to initialize with a barrier.  We have to do this for
625   // both __weak and __strong, but __weak got filtered out above.
626   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
627     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
628     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
629     EmitARCRelease(oldValue, /*precise*/ false);
630     return;
631   }
632 
633   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
634 }
635 
636 /// EmitScalarInit - Initialize the given lvalue with the given object.
637 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
638   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
639   if (!lifetime)
640     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
641 
642   switch (lifetime) {
643   case Qualifiers::OCL_None:
644     llvm_unreachable("present but none");
645 
646   case Qualifiers::OCL_ExplicitNone:
647     // nothing to do
648     break;
649 
650   case Qualifiers::OCL_Strong:
651     init = EmitARCRetain(lvalue.getType(), init);
652     break;
653 
654   case Qualifiers::OCL_Weak:
655     // Initialize and then skip the primitive store.
656     EmitARCInitWeak(lvalue.getAddress(), init);
657     return;
658 
659   case Qualifiers::OCL_Autoreleasing:
660     init = EmitARCRetainAutorelease(lvalue.getType(), init);
661     break;
662   }
663 
664   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
665 }
666 
667 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
668 /// non-zero parts of the specified initializer with equal or fewer than
669 /// NumStores scalar stores.
670 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
671                                                 unsigned &NumStores) {
672   // Zero and Undef never requires any extra stores.
673   if (isa<llvm::ConstantAggregateZero>(Init) ||
674       isa<llvm::ConstantPointerNull>(Init) ||
675       isa<llvm::UndefValue>(Init))
676     return true;
677   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
678       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
679       isa<llvm::ConstantExpr>(Init))
680     return Init->isNullValue() || NumStores--;
681 
682   // See if we can emit each element.
683   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
684     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
685       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
686       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
687         return false;
688     }
689     return true;
690   }
691 
692   if (llvm::ConstantDataSequential *CDS =
693         dyn_cast<llvm::ConstantDataSequential>(Init)) {
694     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
695       llvm::Constant *Elt = CDS->getElementAsConstant(i);
696       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
697         return false;
698     }
699     return true;
700   }
701 
702   // Anything else is hard and scary.
703   return false;
704 }
705 
706 /// emitStoresForInitAfterMemset - For inits that
707 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
708 /// stores that would be required.
709 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
710                                          bool isVolatile, CGBuilderTy &Builder) {
711   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
712          "called emitStoresForInitAfterMemset for zero or undef value.");
713 
714   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
715       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
716       isa<llvm::ConstantExpr>(Init)) {
717     Builder.CreateStore(Init, Loc, isVolatile);
718     return;
719   }
720 
721   if (llvm::ConstantDataSequential *CDS =
722         dyn_cast<llvm::ConstantDataSequential>(Init)) {
723     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
724       llvm::Constant *Elt = CDS->getElementAsConstant(i);
725 
726       // If necessary, get a pointer to the element and emit it.
727       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
728         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
729                                      isVolatile, Builder);
730     }
731     return;
732   }
733 
734   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
735          "Unknown value type!");
736 
737   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
738     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
739 
740     // If necessary, get a pointer to the element and emit it.
741     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
742       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
743                                    isVolatile, Builder);
744   }
745 }
746 
747 
748 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
749 /// plus some stores to initialize a local variable instead of using a memcpy
750 /// from a constant global.  It is beneficial to use memset if the global is all
751 /// zeros, or mostly zeros and large.
752 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
753                                                   uint64_t GlobalSize) {
754   // If a global is all zeros, always use a memset.
755   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
756 
757 
758   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
759   // do it if it will require 6 or fewer scalar stores.
760   // TODO: Should budget depends on the size?  Avoiding a large global warrants
761   // plopping in more stores.
762   unsigned StoreBudget = 6;
763   uint64_t SizeLimit = 32;
764 
765   return GlobalSize > SizeLimit &&
766          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
767 }
768 
769 
770 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
771 /// variable declaration with auto, register, or no storage class specifier.
772 /// These turn into simple stack objects, or GlobalValues depending on target.
773 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
774   AutoVarEmission emission = EmitAutoVarAlloca(D);
775   EmitAutoVarInit(emission);
776   EmitAutoVarCleanups(emission);
777 }
778 
779 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
780 /// local variable.  Does not emit initalization or destruction.
781 CodeGenFunction::AutoVarEmission
782 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
783   QualType Ty = D.getType();
784 
785   AutoVarEmission emission(D);
786 
787   bool isByRef = D.hasAttr<BlocksAttr>();
788   emission.IsByRef = isByRef;
789 
790   CharUnits alignment = getContext().getDeclAlign(&D);
791   emission.Alignment = alignment;
792 
793   // If the type is variably-modified, emit all the VLA sizes for it.
794   if (Ty->isVariablyModifiedType())
795     EmitVariablyModifiedType(Ty);
796 
797   llvm::Value *DeclPtr;
798   if (Ty->isConstantSizeType()) {
799     if (!Target.useGlobalsForAutomaticVariables()) {
800       bool NRVO = getLangOpts().ElideConstructors &&
801                   D.isNRVOVariable();
802 
803       // If this value is a POD array or struct with a statically
804       // determinable constant initializer, there are optimizations we can do.
805       //
806       // TODO: We should constant-evaluate the initializer of any variable,
807       // as long as it is initialized by a constant expression. Currently,
808       // isConstantInitializer produces wrong answers for structs with
809       // reference or bitfield members, and a few other cases, and checking
810       // for POD-ness protects us from some of these.
811       if (D.getInit() &&
812           (Ty->isArrayType() || Ty->isRecordType()) &&
813           (Ty.isPODType(getContext()) ||
814            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
815           D.getInit()->isConstantInitializer(getContext(), false)) {
816 
817         // If the variable's a const type, and it's neither an NRVO
818         // candidate nor a __block variable and has no mutable members,
819         // emit it as a global instead.
820         if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
821             CGM.isTypeConstant(Ty, true)) {
822           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
823 
824           emission.Address = 0; // signal this condition to later callbacks
825           assert(emission.wasEmittedAsGlobal());
826           return emission;
827         }
828 
829         // Otherwise, tell the initialization code that we're in this case.
830         emission.IsConstantAggregate = true;
831       }
832 
833       // A normal fixed sized variable becomes an alloca in the entry block,
834       // unless it's an NRVO variable.
835       llvm::Type *LTy = ConvertTypeForMem(Ty);
836 
837       if (NRVO) {
838         // The named return value optimization: allocate this variable in the
839         // return slot, so that we can elide the copy when returning this
840         // variable (C++0x [class.copy]p34).
841         DeclPtr = ReturnValue;
842 
843         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
844           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
845             // Create a flag that is used to indicate when the NRVO was applied
846             // to this variable. Set it to zero to indicate that NRVO was not
847             // applied.
848             llvm::Value *Zero = Builder.getFalse();
849             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
850             EnsureInsertPoint();
851             Builder.CreateStore(Zero, NRVOFlag);
852 
853             // Record the NRVO flag for this variable.
854             NRVOFlags[&D] = NRVOFlag;
855             emission.NRVOFlag = NRVOFlag;
856           }
857         }
858       } else {
859         if (isByRef)
860           LTy = BuildByRefType(&D);
861 
862         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
863         Alloc->setName(D.getName());
864 
865         CharUnits allocaAlignment = alignment;
866         if (isByRef)
867           allocaAlignment = std::max(allocaAlignment,
868               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
869         Alloc->setAlignment(allocaAlignment.getQuantity());
870         DeclPtr = Alloc;
871       }
872     } else {
873       // Targets that don't support recursion emit locals as globals.
874       const char *Class =
875         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
876       DeclPtr = CreateStaticVarDecl(D, Class,
877                                     llvm::GlobalValue::InternalLinkage);
878     }
879   } else {
880     EnsureInsertPoint();
881 
882     if (!DidCallStackSave) {
883       // Save the stack.
884       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
885 
886       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
887       llvm::Value *V = Builder.CreateCall(F);
888 
889       Builder.CreateStore(V, Stack);
890 
891       DidCallStackSave = true;
892 
893       // Push a cleanup block and restore the stack there.
894       // FIXME: in general circumstances, this should be an EH cleanup.
895       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
896     }
897 
898     llvm::Value *elementCount;
899     QualType elementType;
900     llvm::tie(elementCount, elementType) = getVLASize(Ty);
901 
902     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
903 
904     // Allocate memory for the array.
905     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
906     vla->setAlignment(alignment.getQuantity());
907 
908     DeclPtr = vla;
909   }
910 
911   llvm::Value *&DMEntry = LocalDeclMap[&D];
912   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
913   DMEntry = DeclPtr;
914   emission.Address = DeclPtr;
915 
916   // Emit debug info for local var declaration.
917   if (HaveInsertPoint())
918     if (CGDebugInfo *DI = getDebugInfo()) {
919       if (CGM.getCodeGenOpts().getDebugInfo()
920             >= CodeGenOptions::LimitedDebugInfo) {
921         DI->setLocation(D.getLocation());
922         if (Target.useGlobalsForAutomaticVariables()) {
923           DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr),
924                                  &D);
925         } else
926           DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
927       }
928     }
929 
930   if (D.hasAttr<AnnotateAttr>())
931       EmitVarAnnotations(&D, emission.Address);
932 
933   return emission;
934 }
935 
936 /// Determines whether the given __block variable is potentially
937 /// captured by the given expression.
938 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
939   // Skip the most common kinds of expressions that make
940   // hierarchy-walking expensive.
941   e = e->IgnoreParenCasts();
942 
943   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
944     const BlockDecl *block = be->getBlockDecl();
945     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
946            e = block->capture_end(); i != e; ++i) {
947       if (i->getVariable() == &var)
948         return true;
949     }
950 
951     // No need to walk into the subexpressions.
952     return false;
953   }
954 
955   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
956     const CompoundStmt *CS = SE->getSubStmt();
957     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
958 	   BE = CS->body_end(); BI != BE; ++BI)
959       if (Expr *E = dyn_cast<Expr>((*BI))) {
960         if (isCapturedBy(var, E))
961             return true;
962       }
963       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
964           // special case declarations
965           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
966                I != E; ++I) {
967               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
968                 Expr *Init = VD->getInit();
969                 if (Init && isCapturedBy(var, Init))
970                   return true;
971               }
972           }
973       }
974       else
975         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
976         // Later, provide code to poke into statements for capture analysis.
977         return true;
978     return false;
979   }
980 
981   for (Stmt::const_child_range children = e->children(); children; ++children)
982     if (isCapturedBy(var, cast<Expr>(*children)))
983       return true;
984 
985   return false;
986 }
987 
988 /// \brief Determine whether the given initializer is trivial in the sense
989 /// that it requires no code to be generated.
990 static bool isTrivialInitializer(const Expr *Init) {
991   if (!Init)
992     return true;
993 
994   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
995     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
996       if (Constructor->isTrivial() &&
997           Constructor->isDefaultConstructor() &&
998           !Construct->requiresZeroInitialization())
999         return true;
1000 
1001   return false;
1002 }
1003 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1004   assert(emission.Variable && "emission was not valid!");
1005 
1006   // If this was emitted as a global constant, we're done.
1007   if (emission.wasEmittedAsGlobal()) return;
1008 
1009   const VarDecl &D = *emission.Variable;
1010   QualType type = D.getType();
1011 
1012   // If this local has an initializer, emit it now.
1013   const Expr *Init = D.getInit();
1014 
1015   // If we are at an unreachable point, we don't need to emit the initializer
1016   // unless it contains a label.
1017   if (!HaveInsertPoint()) {
1018     if (!Init || !ContainsLabel(Init)) return;
1019     EnsureInsertPoint();
1020   }
1021 
1022   // Initialize the structure of a __block variable.
1023   if (emission.IsByRef)
1024     emitByrefStructureInit(emission);
1025 
1026   if (isTrivialInitializer(Init))
1027     return;
1028 
1029   CharUnits alignment = emission.Alignment;
1030 
1031   // Check whether this is a byref variable that's potentially
1032   // captured and moved by its own initializer.  If so, we'll need to
1033   // emit the initializer first, then copy into the variable.
1034   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1035 
1036   llvm::Value *Loc =
1037     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1038 
1039   llvm::Constant *constant = 0;
1040   if (emission.IsConstantAggregate) {
1041     assert(!capturedByInit && "constant init contains a capturing block?");
1042     constant = CGM.EmitConstantInit(D, this);
1043   }
1044 
1045   if (!constant) {
1046     LValue lv = MakeAddrLValue(Loc, type, alignment);
1047     lv.setNonGC(true);
1048     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1049   }
1050 
1051   // If this is a simple aggregate initialization, we can optimize it
1052   // in various ways.
1053   bool isVolatile = type.isVolatileQualified();
1054 
1055   llvm::Value *SizeVal =
1056     llvm::ConstantInt::get(IntPtrTy,
1057                            getContext().getTypeSizeInChars(type).getQuantity());
1058 
1059   llvm::Type *BP = Int8PtrTy;
1060   if (Loc->getType() != BP)
1061     Loc = Builder.CreateBitCast(Loc, BP);
1062 
1063   // If the initializer is all or mostly zeros, codegen with memset then do
1064   // a few stores afterward.
1065   if (shouldUseMemSetPlusStoresToInitialize(constant,
1066                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1067     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1068                          alignment.getQuantity(), isVolatile);
1069     // Zero and undef don't require a stores.
1070     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1071       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1072       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1073     }
1074   } else {
1075     // Otherwise, create a temporary global with the initializer then
1076     // memcpy from the global to the alloca.
1077     std::string Name = GetStaticDeclName(*this, D, ".");
1078     llvm::GlobalVariable *GV =
1079       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1080                                llvm::GlobalValue::PrivateLinkage,
1081                                constant, Name);
1082     GV->setAlignment(alignment.getQuantity());
1083     GV->setUnnamedAddr(true);
1084 
1085     llvm::Value *SrcPtr = GV;
1086     if (SrcPtr->getType() != BP)
1087       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1088 
1089     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1090                          isVolatile);
1091   }
1092 }
1093 
1094 /// Emit an expression as an initializer for a variable at the given
1095 /// location.  The expression is not necessarily the normal
1096 /// initializer for the variable, and the address is not necessarily
1097 /// its normal location.
1098 ///
1099 /// \param init the initializing expression
1100 /// \param var the variable to act as if we're initializing
1101 /// \param loc the address to initialize; its type is a pointer
1102 ///   to the LLVM mapping of the variable's type
1103 /// \param alignment the alignment of the address
1104 /// \param capturedByInit true if the variable is a __block variable
1105 ///   whose address is potentially changed by the initializer
1106 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1107                                      const ValueDecl *D,
1108                                      LValue lvalue,
1109                                      bool capturedByInit) {
1110   QualType type = D->getType();
1111 
1112   if (type->isReferenceType()) {
1113     RValue rvalue = EmitReferenceBindingToExpr(init, D);
1114     if (capturedByInit)
1115       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1116     EmitStoreThroughLValue(rvalue, lvalue, true);
1117   } else if (!hasAggregateLLVMType(type)) {
1118     EmitScalarInit(init, D, lvalue, capturedByInit);
1119   } else if (type->isAnyComplexType()) {
1120     ComplexPairTy complex = EmitComplexExpr(init);
1121     if (capturedByInit)
1122       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1123     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1124   } else {
1125     // TODO: how can we delay here if D is captured by its initializer?
1126     EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1127                                               AggValueSlot::IsDestructed,
1128                                          AggValueSlot::DoesNotNeedGCBarriers,
1129                                               AggValueSlot::IsNotAliased));
1130     MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init);
1131   }
1132 }
1133 
1134 /// Enter a destroy cleanup for the given local variable.
1135 void CodeGenFunction::emitAutoVarTypeCleanup(
1136                             const CodeGenFunction::AutoVarEmission &emission,
1137                             QualType::DestructionKind dtorKind) {
1138   assert(dtorKind != QualType::DK_none);
1139 
1140   // Note that for __block variables, we want to destroy the
1141   // original stack object, not the possibly forwarded object.
1142   llvm::Value *addr = emission.getObjectAddress(*this);
1143 
1144   const VarDecl *var = emission.Variable;
1145   QualType type = var->getType();
1146 
1147   CleanupKind cleanupKind = NormalAndEHCleanup;
1148   CodeGenFunction::Destroyer *destroyer = 0;
1149 
1150   switch (dtorKind) {
1151   case QualType::DK_none:
1152     llvm_unreachable("no cleanup for trivially-destructible variable");
1153 
1154   case QualType::DK_cxx_destructor:
1155     // If there's an NRVO flag on the emission, we need a different
1156     // cleanup.
1157     if (emission.NRVOFlag) {
1158       assert(!type->isArrayType());
1159       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1160       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1161                                                emission.NRVOFlag);
1162       return;
1163     }
1164     break;
1165 
1166   case QualType::DK_objc_strong_lifetime:
1167     // Suppress cleanups for pseudo-strong variables.
1168     if (var->isARCPseudoStrong()) return;
1169 
1170     // Otherwise, consider whether to use an EH cleanup or not.
1171     cleanupKind = getARCCleanupKind();
1172 
1173     // Use the imprecise destroyer by default.
1174     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1175       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1176     break;
1177 
1178   case QualType::DK_objc_weak_lifetime:
1179     break;
1180   }
1181 
1182   // If we haven't chosen a more specific destroyer, use the default.
1183   if (!destroyer) destroyer = getDestroyer(dtorKind);
1184 
1185   // Use an EH cleanup in array destructors iff the destructor itself
1186   // is being pushed as an EH cleanup.
1187   bool useEHCleanup = (cleanupKind & EHCleanup);
1188   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1189                                      useEHCleanup);
1190 }
1191 
1192 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1193   assert(emission.Variable && "emission was not valid!");
1194 
1195   // If this was emitted as a global constant, we're done.
1196   if (emission.wasEmittedAsGlobal()) return;
1197 
1198   // If we don't have an insertion point, we're done.  Sema prevents
1199   // us from jumping into any of these scopes anyway.
1200   if (!HaveInsertPoint()) return;
1201 
1202   const VarDecl &D = *emission.Variable;
1203 
1204   // Check the type for a cleanup.
1205   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1206     emitAutoVarTypeCleanup(emission, dtorKind);
1207 
1208   // In GC mode, honor objc_precise_lifetime.
1209   if (getLangOpts().getGC() != LangOptions::NonGC &&
1210       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1211     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1212   }
1213 
1214   // Handle the cleanup attribute.
1215   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1216     const FunctionDecl *FD = CA->getFunctionDecl();
1217 
1218     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1219     assert(F && "Could not find function!");
1220 
1221     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1222     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1223   }
1224 
1225   // If this is a block variable, call _Block_object_destroy
1226   // (on the unforwarded address).
1227   if (emission.IsByRef)
1228     enterByrefCleanup(emission);
1229 }
1230 
1231 CodeGenFunction::Destroyer *
1232 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1233   switch (kind) {
1234   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1235   case QualType::DK_cxx_destructor:
1236     return destroyCXXObject;
1237   case QualType::DK_objc_strong_lifetime:
1238     return destroyARCStrongPrecise;
1239   case QualType::DK_objc_weak_lifetime:
1240     return destroyARCWeak;
1241   }
1242   llvm_unreachable("Unknown DestructionKind");
1243 }
1244 
1245 /// pushEHDestroy - Push the standard destructor for the given type as
1246 /// an EH-only cleanup.
1247 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1248                                   llvm::Value *addr, QualType type) {
1249   assert(dtorKind && "cannot push destructor for trivial type");
1250   assert(needsEHCleanup(dtorKind));
1251 
1252   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1253 }
1254 
1255 /// pushDestroy - Push the standard destructor for the given type as
1256 /// at least a normal cleanup.
1257 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1258                                   llvm::Value *addr, QualType type) {
1259   assert(dtorKind && "cannot push destructor for trivial type");
1260 
1261   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1262   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1263               cleanupKind & EHCleanup);
1264 }
1265 
1266 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1267                                   QualType type, Destroyer *destroyer,
1268                                   bool useEHCleanupForArray) {
1269   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1270                                      destroyer, useEHCleanupForArray);
1271 }
1272 
1273 /// emitDestroy - Immediately perform the destruction of the given
1274 /// object.
1275 ///
1276 /// \param addr - the address of the object; a type*
1277 /// \param type - the type of the object; if an array type, all
1278 ///   objects are destroyed in reverse order
1279 /// \param destroyer - the function to call to destroy individual
1280 ///   elements
1281 /// \param useEHCleanupForArray - whether an EH cleanup should be
1282 ///   used when destroying array elements, in case one of the
1283 ///   destructions throws an exception
1284 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1285                                   Destroyer *destroyer,
1286                                   bool useEHCleanupForArray) {
1287   const ArrayType *arrayType = getContext().getAsArrayType(type);
1288   if (!arrayType)
1289     return destroyer(*this, addr, type);
1290 
1291   llvm::Value *begin = addr;
1292   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1293 
1294   // Normally we have to check whether the array is zero-length.
1295   bool checkZeroLength = true;
1296 
1297   // But if the array length is constant, we can suppress that.
1298   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1299     // ...and if it's constant zero, we can just skip the entire thing.
1300     if (constLength->isZero()) return;
1301     checkZeroLength = false;
1302   }
1303 
1304   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1305   emitArrayDestroy(begin, end, type, destroyer,
1306                    checkZeroLength, useEHCleanupForArray);
1307 }
1308 
1309 /// emitArrayDestroy - Destroys all the elements of the given array,
1310 /// beginning from last to first.  The array cannot be zero-length.
1311 ///
1312 /// \param begin - a type* denoting the first element of the array
1313 /// \param end - a type* denoting one past the end of the array
1314 /// \param type - the element type of the array
1315 /// \param destroyer - the function to call to destroy elements
1316 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1317 ///   the remaining elements in case the destruction of a single
1318 ///   element throws
1319 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1320                                        llvm::Value *end,
1321                                        QualType type,
1322                                        Destroyer *destroyer,
1323                                        bool checkZeroLength,
1324                                        bool useEHCleanup) {
1325   assert(!type->isArrayType());
1326 
1327   // The basic structure here is a do-while loop, because we don't
1328   // need to check for the zero-element case.
1329   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1330   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1331 
1332   if (checkZeroLength) {
1333     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1334                                                 "arraydestroy.isempty");
1335     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1336   }
1337 
1338   // Enter the loop body, making that address the current address.
1339   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1340   EmitBlock(bodyBB);
1341   llvm::PHINode *elementPast =
1342     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1343   elementPast->addIncoming(end, entryBB);
1344 
1345   // Shift the address back by one element.
1346   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1347   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1348                                                    "arraydestroy.element");
1349 
1350   if (useEHCleanup)
1351     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1352 
1353   // Perform the actual destruction there.
1354   destroyer(*this, element, type);
1355 
1356   if (useEHCleanup)
1357     PopCleanupBlock();
1358 
1359   // Check whether we've reached the end.
1360   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1361   Builder.CreateCondBr(done, doneBB, bodyBB);
1362   elementPast->addIncoming(element, Builder.GetInsertBlock());
1363 
1364   // Done.
1365   EmitBlock(doneBB);
1366 }
1367 
1368 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1369 /// emitArrayDestroy, the element type here may still be an array type.
1370 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1371                                     llvm::Value *begin, llvm::Value *end,
1372                                     QualType type,
1373                                     CodeGenFunction::Destroyer *destroyer) {
1374   // If the element type is itself an array, drill down.
1375   unsigned arrayDepth = 0;
1376   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1377     // VLAs don't require a GEP index to walk into.
1378     if (!isa<VariableArrayType>(arrayType))
1379       arrayDepth++;
1380     type = arrayType->getElementType();
1381   }
1382 
1383   if (arrayDepth) {
1384     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1385 
1386     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1387     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1388     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1389   }
1390 
1391   // Destroy the array.  We don't ever need an EH cleanup because we
1392   // assume that we're in an EH cleanup ourselves, so a throwing
1393   // destructor causes an immediate terminate.
1394   CGF.emitArrayDestroy(begin, end, type, destroyer,
1395                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1396 }
1397 
1398 namespace {
1399   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1400   /// array destroy where the end pointer is regularly determined and
1401   /// does not need to be loaded from a local.
1402   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1403     llvm::Value *ArrayBegin;
1404     llvm::Value *ArrayEnd;
1405     QualType ElementType;
1406     CodeGenFunction::Destroyer *Destroyer;
1407   public:
1408     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1409                                QualType elementType,
1410                                CodeGenFunction::Destroyer *destroyer)
1411       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1412         ElementType(elementType), Destroyer(destroyer) {}
1413 
1414     void Emit(CodeGenFunction &CGF, Flags flags) {
1415       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1416                               ElementType, Destroyer);
1417     }
1418   };
1419 
1420   /// IrregularPartialArrayDestroy - a cleanup which performs a
1421   /// partial array destroy where the end pointer is irregularly
1422   /// determined and must be loaded from a local.
1423   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1424     llvm::Value *ArrayBegin;
1425     llvm::Value *ArrayEndPointer;
1426     QualType ElementType;
1427     CodeGenFunction::Destroyer *Destroyer;
1428   public:
1429     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1430                                  llvm::Value *arrayEndPointer,
1431                                  QualType elementType,
1432                                  CodeGenFunction::Destroyer *destroyer)
1433       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1434         ElementType(elementType), Destroyer(destroyer) {}
1435 
1436     void Emit(CodeGenFunction &CGF, Flags flags) {
1437       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1438       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1439                               ElementType, Destroyer);
1440     }
1441   };
1442 }
1443 
1444 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1445 /// already-constructed elements of the given array.  The cleanup
1446 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1447 ///
1448 /// \param elementType - the immediate element type of the array;
1449 ///   possibly still an array type
1450 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1451                                                  llvm::Value *arrayEndPointer,
1452                                                        QualType elementType,
1453                                                        Destroyer *destroyer) {
1454   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1455                                                     arrayBegin, arrayEndPointer,
1456                                                     elementType, destroyer);
1457 }
1458 
1459 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1460 /// already-constructed elements of the given array.  The cleanup
1461 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1462 ///
1463 /// \param elementType - the immediate element type of the array;
1464 ///   possibly still an array type
1465 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1466                                                      llvm::Value *arrayEnd,
1467                                                      QualType elementType,
1468                                                      Destroyer *destroyer) {
1469   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1470                                                   arrayBegin, arrayEnd,
1471                                                   elementType, destroyer);
1472 }
1473 
1474 namespace {
1475   /// A cleanup to perform a release of an object at the end of a
1476   /// function.  This is used to balance out the incoming +1 of a
1477   /// ns_consumed argument when we can't reasonably do that just by
1478   /// not doing the initial retain for a __block argument.
1479   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1480     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1481 
1482     llvm::Value *Param;
1483 
1484     void Emit(CodeGenFunction &CGF, Flags flags) {
1485       CGF.EmitARCRelease(Param, /*precise*/ false);
1486     }
1487   };
1488 }
1489 
1490 /// Emit an alloca (or GlobalValue depending on target)
1491 /// for the specified parameter and set up LocalDeclMap.
1492 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1493                                    unsigned ArgNo) {
1494   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1495   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1496          "Invalid argument to EmitParmDecl");
1497 
1498   Arg->setName(D.getName());
1499 
1500   // Use better IR generation for certain implicit parameters.
1501   if (isa<ImplicitParamDecl>(D)) {
1502     // The only implicit argument a block has is its literal.
1503     if (BlockInfo) {
1504       LocalDeclMap[&D] = Arg;
1505 
1506       if (CGDebugInfo *DI = getDebugInfo()) {
1507         if (CGM.getCodeGenOpts().getDebugInfo()
1508               >= CodeGenOptions::LimitedDebugInfo) {
1509           DI->setLocation(D.getLocation());
1510           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1511         }
1512       }
1513 
1514       return;
1515     }
1516   }
1517 
1518   QualType Ty = D.getType();
1519 
1520   llvm::Value *DeclPtr;
1521   // If this is an aggregate or variable sized value, reuse the input pointer.
1522   if (!Ty->isConstantSizeType() ||
1523       CodeGenFunction::hasAggregateLLVMType(Ty)) {
1524     DeclPtr = Arg;
1525   } else {
1526     // Otherwise, create a temporary to hold the value.
1527     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1528                                                D.getName() + ".addr");
1529     Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1530     DeclPtr = Alloc;
1531 
1532     bool doStore = true;
1533 
1534     Qualifiers qs = Ty.getQualifiers();
1535 
1536     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1537       // We honor __attribute__((ns_consumed)) for types with lifetime.
1538       // For __strong, it's handled by just skipping the initial retain;
1539       // otherwise we have to balance out the initial +1 with an extra
1540       // cleanup to do the release at the end of the function.
1541       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1542 
1543       // 'self' is always formally __strong, but if this is not an
1544       // init method then we don't want to retain it.
1545       if (D.isARCPseudoStrong()) {
1546         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1547         assert(&D == method->getSelfDecl());
1548         assert(lt == Qualifiers::OCL_Strong);
1549         assert(qs.hasConst());
1550         assert(method->getMethodFamily() != OMF_init);
1551         (void) method;
1552         lt = Qualifiers::OCL_ExplicitNone;
1553       }
1554 
1555       if (lt == Qualifiers::OCL_Strong) {
1556         if (!isConsumed)
1557           // Don't use objc_retainBlock for block pointers, because we
1558           // don't want to Block_copy something just because we got it
1559           // as a parameter.
1560           Arg = EmitARCRetainNonBlock(Arg);
1561       } else {
1562         // Push the cleanup for a consumed parameter.
1563         if (isConsumed)
1564           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1565 
1566         if (lt == Qualifiers::OCL_Weak) {
1567           EmitARCInitWeak(DeclPtr, Arg);
1568           doStore = false; // The weak init is a store, no need to do two.
1569         }
1570       }
1571 
1572       // Enter the cleanup scope.
1573       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1574     }
1575 
1576     // Store the initial value into the alloca.
1577     if (doStore) {
1578       LValue lv = MakeAddrLValue(DeclPtr, Ty,
1579                                  getContext().getDeclAlign(&D));
1580       EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1581     }
1582   }
1583 
1584   llvm::Value *&DMEntry = LocalDeclMap[&D];
1585   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1586   DMEntry = DeclPtr;
1587 
1588   // Emit debug info for param declaration.
1589   if (CGDebugInfo *DI = getDebugInfo()) {
1590     if (CGM.getCodeGenOpts().getDebugInfo()
1591           >= CodeGenOptions::LimitedDebugInfo) {
1592       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1593     }
1594   }
1595 
1596   if (D.hasAttr<AnnotateAttr>())
1597       EmitVarAnnotations(&D, DeclPtr);
1598 }
1599