1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Type.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 34 void CodeGenFunction::EmitDecl(const Decl &D) { 35 switch (D.getKind()) { 36 case Decl::TranslationUnit: 37 case Decl::Namespace: 38 case Decl::UnresolvedUsingTypename: 39 case Decl::ClassTemplateSpecialization: 40 case Decl::ClassTemplatePartialSpecialization: 41 case Decl::VarTemplateSpecialization: 42 case Decl::VarTemplatePartialSpecialization: 43 case Decl::TemplateTypeParm: 44 case Decl::UnresolvedUsingValue: 45 case Decl::NonTypeTemplateParm: 46 case Decl::CXXMethod: 47 case Decl::CXXConstructor: 48 case Decl::CXXDestructor: 49 case Decl::CXXConversion: 50 case Decl::Field: 51 case Decl::MSProperty: 52 case Decl::IndirectField: 53 case Decl::ObjCIvar: 54 case Decl::ObjCAtDefsField: 55 case Decl::ParmVar: 56 case Decl::ImplicitParam: 57 case Decl::ClassTemplate: 58 case Decl::VarTemplate: 59 case Decl::FunctionTemplate: 60 case Decl::TypeAliasTemplate: 61 case Decl::TemplateTemplateParm: 62 case Decl::ObjCMethod: 63 case Decl::ObjCCategory: 64 case Decl::ObjCProtocol: 65 case Decl::ObjCInterface: 66 case Decl::ObjCCategoryImpl: 67 case Decl::ObjCImplementation: 68 case Decl::ObjCProperty: 69 case Decl::ObjCCompatibleAlias: 70 case Decl::AccessSpec: 71 case Decl::LinkageSpec: 72 case Decl::ObjCPropertyImpl: 73 case Decl::FileScopeAsm: 74 case Decl::Friend: 75 case Decl::FriendTemplate: 76 case Decl::Block: 77 case Decl::Captured: 78 case Decl::ClassScopeFunctionSpecialization: 79 case Decl::UsingShadow: 80 llvm_unreachable("Declaration should not be in declstmts!"); 81 case Decl::Function: // void X(); 82 case Decl::Record: // struct/union/class X; 83 case Decl::Enum: // enum X; 84 case Decl::EnumConstant: // enum ? { X = ? } 85 case Decl::CXXRecord: // struct/union/class X; [C++] 86 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 87 case Decl::Label: // __label__ x; 88 case Decl::Import: 89 case Decl::OMPThreadPrivate: 90 case Decl::Empty: 91 // None of these decls require codegen support. 92 return; 93 94 case Decl::NamespaceAlias: 95 if (CGDebugInfo *DI = getDebugInfo()) 96 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 97 return; 98 case Decl::Using: // using X; [C++] 99 if (CGDebugInfo *DI = getDebugInfo()) 100 DI->EmitUsingDecl(cast<UsingDecl>(D)); 101 return; 102 case Decl::UsingDirective: // using namespace X; [C++] 103 if (CGDebugInfo *DI = getDebugInfo()) 104 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 105 return; 106 case Decl::Var: { 107 const VarDecl &VD = cast<VarDecl>(D); 108 assert(VD.isLocalVarDecl() && 109 "Should not see file-scope variables inside a function!"); 110 return EmitVarDecl(VD); 111 } 112 113 case Decl::Typedef: // typedef int X; 114 case Decl::TypeAlias: { // using X = int; [C++0x] 115 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 116 QualType Ty = TD.getUnderlyingType(); 117 118 if (Ty->isVariablyModifiedType()) 119 EmitVariablyModifiedType(Ty); 120 } 121 } 122 } 123 124 /// EmitVarDecl - This method handles emission of any variable declaration 125 /// inside a function, including static vars etc. 126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 127 if (D.isStaticLocal()) { 128 llvm::GlobalValue::LinkageTypes Linkage = 129 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 130 131 // FIXME: We need to force the emission/use of a guard variable for 132 // some variables even if we can constant-evaluate them because 133 // we can't guarantee every translation unit will constant-evaluate them. 134 135 return EmitStaticVarDecl(D, Linkage); 136 } 137 138 if (D.hasExternalStorage()) 139 // Don't emit it now, allow it to be emitted lazily on its first use. 140 return; 141 142 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 143 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 144 145 assert(D.hasLocalStorage()); 146 return EmitAutoVarDecl(D); 147 } 148 149 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 150 const char *Separator) { 151 CodeGenModule &CGM = CGF.CGM; 152 153 if (CGF.getLangOpts().CPlusPlus) 154 return CGM.getMangledName(&D).str(); 155 156 StringRef ContextName; 157 if (!CGF.CurFuncDecl) { 158 // Better be in a block declared in global scope. 159 const NamedDecl *ND = cast<NamedDecl>(&D); 160 const DeclContext *DC = ND->getDeclContext(); 161 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 162 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 163 else 164 llvm_unreachable("Unknown context for block static var decl"); 165 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) 166 ContextName = CGM.getMangledName(FD); 167 else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 168 ContextName = CGF.CurFn->getName(); 169 else 170 llvm_unreachable("Unknown context for static var decl"); 171 172 return ContextName.str() + Separator + D.getNameAsString(); 173 } 174 175 llvm::Constant * 176 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 177 const char *Separator, 178 llvm::GlobalValue::LinkageTypes Linkage) { 179 QualType Ty = D.getType(); 180 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 181 182 // Use the label if the variable is renamed with the asm-label extension. 183 std::string Name; 184 if (D.hasAttr<AsmLabelAttr>()) 185 Name = CGM.getMangledName(&D); 186 else 187 Name = GetStaticDeclName(*this, D, Separator); 188 189 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 190 unsigned AddrSpace = 191 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 192 llvm::GlobalVariable *GV = 193 new llvm::GlobalVariable(CGM.getModule(), LTy, 194 Ty.isConstant(getContext()), Linkage, 195 CGM.EmitNullConstant(D.getType()), Name, nullptr, 196 llvm::GlobalVariable::NotThreadLocal, 197 AddrSpace); 198 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 199 CGM.setGlobalVisibility(GV, &D); 200 201 if (D.getTLSKind()) 202 CGM.setTLSMode(GV, D); 203 204 // Make sure the result is of the correct type. 205 unsigned ExpectedAddrSpace = CGM.getContext().getTargetAddressSpace(Ty); 206 if (AddrSpace != ExpectedAddrSpace) { 207 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 208 return llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 209 } 210 211 return GV; 212 } 213 214 /// hasNontrivialDestruction - Determine whether a type's destruction is 215 /// non-trivial. If so, and the variable uses static initialization, we must 216 /// register its destructor to run on exit. 217 static bool hasNontrivialDestruction(QualType T) { 218 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 219 return RD && !RD->hasTrivialDestructor(); 220 } 221 222 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 223 /// global variable that has already been created for it. If the initializer 224 /// has a different type than GV does, this may free GV and return a different 225 /// one. Otherwise it just returns GV. 226 llvm::GlobalVariable * 227 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 228 llvm::GlobalVariable *GV) { 229 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 230 231 // If constant emission failed, then this should be a C++ static 232 // initializer. 233 if (!Init) { 234 if (!getLangOpts().CPlusPlus) 235 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 236 else if (Builder.GetInsertBlock()) { 237 // Since we have a static initializer, this global variable can't 238 // be constant. 239 GV->setConstant(false); 240 241 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 242 } 243 return GV; 244 } 245 246 // The initializer may differ in type from the global. Rewrite 247 // the global to match the initializer. (We have to do this 248 // because some types, like unions, can't be completely represented 249 // in the LLVM type system.) 250 if (GV->getType()->getElementType() != Init->getType()) { 251 llvm::GlobalVariable *OldGV = GV; 252 253 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 254 OldGV->isConstant(), 255 OldGV->getLinkage(), Init, "", 256 /*InsertBefore*/ OldGV, 257 OldGV->getThreadLocalMode(), 258 CGM.getContext().getTargetAddressSpace(D.getType())); 259 GV->setVisibility(OldGV->getVisibility()); 260 261 // Steal the name of the old global 262 GV->takeName(OldGV); 263 264 // Replace all uses of the old global with the new global 265 llvm::Constant *NewPtrForOldDecl = 266 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 267 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 268 269 // Erase the old global, since it is no longer used. 270 OldGV->eraseFromParent(); 271 } 272 273 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 274 GV->setInitializer(Init); 275 276 if (hasNontrivialDestruction(D.getType())) { 277 // We have a constant initializer, but a nontrivial destructor. We still 278 // need to perform a guarded "initialization" in order to register the 279 // destructor. 280 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 281 } 282 283 return GV; 284 } 285 286 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 287 llvm::GlobalValue::LinkageTypes Linkage) { 288 llvm::Value *&DMEntry = LocalDeclMap[&D]; 289 assert(!DMEntry && "Decl already exists in localdeclmap!"); 290 291 // Check to see if we already have a global variable for this 292 // declaration. This can happen when double-emitting function 293 // bodies, e.g. with complete and base constructors. 294 llvm::Constant *addr = 295 CGM.getStaticLocalDeclAddress(&D); 296 297 if (!addr) 298 addr = CreateStaticVarDecl(D, ".", Linkage); 299 300 // Store into LocalDeclMap before generating initializer to handle 301 // circular references. 302 DMEntry = addr; 303 CGM.setStaticLocalDeclAddress(&D, addr); 304 305 // We can't have a VLA here, but we can have a pointer to a VLA, 306 // even though that doesn't really make any sense. 307 // Make sure to evaluate VLA bounds now so that we have them for later. 308 if (D.getType()->isVariablyModifiedType()) 309 EmitVariablyModifiedType(D.getType()); 310 311 // Save the type in case adding the initializer forces a type change. 312 llvm::Type *expectedType = addr->getType(); 313 314 llvm::GlobalVariable *var = 315 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 316 // If this value has an initializer, emit it. 317 if (D.getInit()) 318 var = AddInitializerToStaticVarDecl(D, var); 319 320 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 321 322 if (D.hasAttr<AnnotateAttr>()) 323 CGM.AddGlobalAnnotations(&D, var); 324 325 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 326 var->setSection(SA->getName()); 327 328 if (D.hasAttr<UsedAttr>()) 329 CGM.addUsedGlobal(var); 330 331 // We may have to cast the constant because of the initializer 332 // mismatch above. 333 // 334 // FIXME: It is really dangerous to store this in the map; if anyone 335 // RAUW's the GV uses of this constant will be invalid. 336 llvm::Constant *castedAddr = 337 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 338 DMEntry = castedAddr; 339 CGM.setStaticLocalDeclAddress(&D, castedAddr); 340 341 // Emit global variable debug descriptor for static vars. 342 CGDebugInfo *DI = getDebugInfo(); 343 if (DI && 344 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 345 DI->setLocation(D.getLocation()); 346 DI->EmitGlobalVariable(var, &D); 347 } 348 } 349 350 namespace { 351 struct DestroyObject : EHScopeStack::Cleanup { 352 DestroyObject(llvm::Value *addr, QualType type, 353 CodeGenFunction::Destroyer *destroyer, 354 bool useEHCleanupForArray) 355 : addr(addr), type(type), destroyer(destroyer), 356 useEHCleanupForArray(useEHCleanupForArray) {} 357 358 llvm::Value *addr; 359 QualType type; 360 CodeGenFunction::Destroyer *destroyer; 361 bool useEHCleanupForArray; 362 363 void Emit(CodeGenFunction &CGF, Flags flags) override { 364 // Don't use an EH cleanup recursively from an EH cleanup. 365 bool useEHCleanupForArray = 366 flags.isForNormalCleanup() && this->useEHCleanupForArray; 367 368 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 369 } 370 }; 371 372 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 373 DestroyNRVOVariable(llvm::Value *addr, 374 const CXXDestructorDecl *Dtor, 375 llvm::Value *NRVOFlag) 376 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 377 378 const CXXDestructorDecl *Dtor; 379 llvm::Value *NRVOFlag; 380 llvm::Value *Loc; 381 382 void Emit(CodeGenFunction &CGF, Flags flags) override { 383 // Along the exceptions path we always execute the dtor. 384 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 385 386 llvm::BasicBlock *SkipDtorBB = nullptr; 387 if (NRVO) { 388 // If we exited via NRVO, we skip the destructor call. 389 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 390 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 391 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 392 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 393 CGF.EmitBlock(RunDtorBB); 394 } 395 396 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 397 /*ForVirtualBase=*/false, 398 /*Delegating=*/false, 399 Loc); 400 401 if (NRVO) CGF.EmitBlock(SkipDtorBB); 402 } 403 }; 404 405 struct CallStackRestore : EHScopeStack::Cleanup { 406 llvm::Value *Stack; 407 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 408 void Emit(CodeGenFunction &CGF, Flags flags) override { 409 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 410 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 411 CGF.Builder.CreateCall(F, V); 412 } 413 }; 414 415 struct ExtendGCLifetime : EHScopeStack::Cleanup { 416 const VarDecl &Var; 417 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 418 419 void Emit(CodeGenFunction &CGF, Flags flags) override { 420 // Compute the address of the local variable, in case it's a 421 // byref or something. 422 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 423 Var.getType(), VK_LValue, SourceLocation()); 424 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 425 SourceLocation()); 426 CGF.EmitExtendGCLifetime(value); 427 } 428 }; 429 430 struct CallCleanupFunction : EHScopeStack::Cleanup { 431 llvm::Constant *CleanupFn; 432 const CGFunctionInfo &FnInfo; 433 const VarDecl &Var; 434 435 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 436 const VarDecl *Var) 437 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 438 439 void Emit(CodeGenFunction &CGF, Flags flags) override { 440 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 441 Var.getType(), VK_LValue, SourceLocation()); 442 // Compute the address of the local variable, in case it's a byref 443 // or something. 444 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 445 446 // In some cases, the type of the function argument will be different from 447 // the type of the pointer. An example of this is 448 // void f(void* arg); 449 // __attribute__((cleanup(f))) void *g; 450 // 451 // To fix this we insert a bitcast here. 452 QualType ArgTy = FnInfo.arg_begin()->type; 453 llvm::Value *Arg = 454 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 455 456 CallArgList Args; 457 Args.add(RValue::get(Arg), 458 CGF.getContext().getPointerType(Var.getType())); 459 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 460 } 461 }; 462 463 /// A cleanup to call @llvm.lifetime.end. 464 class CallLifetimeEnd : public EHScopeStack::Cleanup { 465 llvm::Value *Addr; 466 llvm::Value *Size; 467 public: 468 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 469 : Addr(addr), Size(size) {} 470 471 void Emit(CodeGenFunction &CGF, Flags flags) override { 472 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 473 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 474 Size, castAddr) 475 ->setDoesNotThrow(); 476 } 477 }; 478 } 479 480 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 481 /// variable with lifetime. 482 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 483 llvm::Value *addr, 484 Qualifiers::ObjCLifetime lifetime) { 485 switch (lifetime) { 486 case Qualifiers::OCL_None: 487 llvm_unreachable("present but none"); 488 489 case Qualifiers::OCL_ExplicitNone: 490 // nothing to do 491 break; 492 493 case Qualifiers::OCL_Strong: { 494 CodeGenFunction::Destroyer *destroyer = 495 (var.hasAttr<ObjCPreciseLifetimeAttr>() 496 ? CodeGenFunction::destroyARCStrongPrecise 497 : CodeGenFunction::destroyARCStrongImprecise); 498 499 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 500 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 501 cleanupKind & EHCleanup); 502 break; 503 } 504 case Qualifiers::OCL_Autoreleasing: 505 // nothing to do 506 break; 507 508 case Qualifiers::OCL_Weak: 509 // __weak objects always get EH cleanups; otherwise, exceptions 510 // could cause really nasty crashes instead of mere leaks. 511 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 512 CodeGenFunction::destroyARCWeak, 513 /*useEHCleanup*/ true); 514 break; 515 } 516 } 517 518 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 519 if (const Expr *e = dyn_cast<Expr>(s)) { 520 // Skip the most common kinds of expressions that make 521 // hierarchy-walking expensive. 522 s = e = e->IgnoreParenCasts(); 523 524 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 525 return (ref->getDecl() == &var); 526 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 527 const BlockDecl *block = be->getBlockDecl(); 528 for (const auto &I : block->captures()) { 529 if (I.getVariable() == &var) 530 return true; 531 } 532 } 533 } 534 535 for (Stmt::const_child_range children = s->children(); children; ++children) 536 // children might be null; as in missing decl or conditional of an if-stmt. 537 if ((*children) && isAccessedBy(var, *children)) 538 return true; 539 540 return false; 541 } 542 543 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 544 if (!decl) return false; 545 if (!isa<VarDecl>(decl)) return false; 546 const VarDecl *var = cast<VarDecl>(decl); 547 return isAccessedBy(*var, e); 548 } 549 550 static void drillIntoBlockVariable(CodeGenFunction &CGF, 551 LValue &lvalue, 552 const VarDecl *var) { 553 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 554 } 555 556 void CodeGenFunction::EmitScalarInit(const Expr *init, 557 const ValueDecl *D, 558 LValue lvalue, 559 bool capturedByInit) { 560 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 561 if (!lifetime) { 562 llvm::Value *value = EmitScalarExpr(init); 563 if (capturedByInit) 564 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 565 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 566 return; 567 } 568 569 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 570 init = DIE->getExpr(); 571 572 // If we're emitting a value with lifetime, we have to do the 573 // initialization *before* we leave the cleanup scopes. 574 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 575 enterFullExpression(ewc); 576 init = ewc->getSubExpr(); 577 } 578 CodeGenFunction::RunCleanupsScope Scope(*this); 579 580 // We have to maintain the illusion that the variable is 581 // zero-initialized. If the variable might be accessed in its 582 // initializer, zero-initialize before running the initializer, then 583 // actually perform the initialization with an assign. 584 bool accessedByInit = false; 585 if (lifetime != Qualifiers::OCL_ExplicitNone) 586 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 587 if (accessedByInit) { 588 LValue tempLV = lvalue; 589 // Drill down to the __block object if necessary. 590 if (capturedByInit) { 591 // We can use a simple GEP for this because it can't have been 592 // moved yet. 593 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 594 getByRefValueLLVMField(cast<VarDecl>(D)))); 595 } 596 597 llvm::PointerType *ty 598 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 599 ty = cast<llvm::PointerType>(ty->getElementType()); 600 601 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 602 603 // If __weak, we want to use a barrier under certain conditions. 604 if (lifetime == Qualifiers::OCL_Weak) 605 EmitARCInitWeak(tempLV.getAddress(), zero); 606 607 // Otherwise just do a simple store. 608 else 609 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 610 } 611 612 // Emit the initializer. 613 llvm::Value *value = nullptr; 614 615 switch (lifetime) { 616 case Qualifiers::OCL_None: 617 llvm_unreachable("present but none"); 618 619 case Qualifiers::OCL_ExplicitNone: 620 // nothing to do 621 value = EmitScalarExpr(init); 622 break; 623 624 case Qualifiers::OCL_Strong: { 625 value = EmitARCRetainScalarExpr(init); 626 break; 627 } 628 629 case Qualifiers::OCL_Weak: { 630 // No way to optimize a producing initializer into this. It's not 631 // worth optimizing for, because the value will immediately 632 // disappear in the common case. 633 value = EmitScalarExpr(init); 634 635 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 636 if (accessedByInit) 637 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 638 else 639 EmitARCInitWeak(lvalue.getAddress(), value); 640 return; 641 } 642 643 case Qualifiers::OCL_Autoreleasing: 644 value = EmitARCRetainAutoreleaseScalarExpr(init); 645 break; 646 } 647 648 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 649 650 // If the variable might have been accessed by its initializer, we 651 // might have to initialize with a barrier. We have to do this for 652 // both __weak and __strong, but __weak got filtered out above. 653 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 654 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 655 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 656 EmitARCRelease(oldValue, ARCImpreciseLifetime); 657 return; 658 } 659 660 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 661 } 662 663 /// EmitScalarInit - Initialize the given lvalue with the given object. 664 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 665 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 666 if (!lifetime) 667 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 668 669 switch (lifetime) { 670 case Qualifiers::OCL_None: 671 llvm_unreachable("present but none"); 672 673 case Qualifiers::OCL_ExplicitNone: 674 // nothing to do 675 break; 676 677 case Qualifiers::OCL_Strong: 678 init = EmitARCRetain(lvalue.getType(), init); 679 break; 680 681 case Qualifiers::OCL_Weak: 682 // Initialize and then skip the primitive store. 683 EmitARCInitWeak(lvalue.getAddress(), init); 684 return; 685 686 case Qualifiers::OCL_Autoreleasing: 687 init = EmitARCRetainAutorelease(lvalue.getType(), init); 688 break; 689 } 690 691 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 692 } 693 694 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 695 /// non-zero parts of the specified initializer with equal or fewer than 696 /// NumStores scalar stores. 697 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 698 unsigned &NumStores) { 699 // Zero and Undef never requires any extra stores. 700 if (isa<llvm::ConstantAggregateZero>(Init) || 701 isa<llvm::ConstantPointerNull>(Init) || 702 isa<llvm::UndefValue>(Init)) 703 return true; 704 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 705 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 706 isa<llvm::ConstantExpr>(Init)) 707 return Init->isNullValue() || NumStores--; 708 709 // See if we can emit each element. 710 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 711 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 712 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 713 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 714 return false; 715 } 716 return true; 717 } 718 719 if (llvm::ConstantDataSequential *CDS = 720 dyn_cast<llvm::ConstantDataSequential>(Init)) { 721 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 722 llvm::Constant *Elt = CDS->getElementAsConstant(i); 723 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 724 return false; 725 } 726 return true; 727 } 728 729 // Anything else is hard and scary. 730 return false; 731 } 732 733 /// emitStoresForInitAfterMemset - For inits that 734 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 735 /// stores that would be required. 736 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 737 bool isVolatile, CGBuilderTy &Builder) { 738 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 739 "called emitStoresForInitAfterMemset for zero or undef value."); 740 741 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 742 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 743 isa<llvm::ConstantExpr>(Init)) { 744 Builder.CreateStore(Init, Loc, isVolatile); 745 return; 746 } 747 748 if (llvm::ConstantDataSequential *CDS = 749 dyn_cast<llvm::ConstantDataSequential>(Init)) { 750 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 751 llvm::Constant *Elt = CDS->getElementAsConstant(i); 752 753 // If necessary, get a pointer to the element and emit it. 754 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 755 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 756 isVolatile, Builder); 757 } 758 return; 759 } 760 761 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 762 "Unknown value type!"); 763 764 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 765 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 766 767 // If necessary, get a pointer to the element and emit it. 768 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 769 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 770 isVolatile, Builder); 771 } 772 } 773 774 775 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 776 /// plus some stores to initialize a local variable instead of using a memcpy 777 /// from a constant global. It is beneficial to use memset if the global is all 778 /// zeros, or mostly zeros and large. 779 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 780 uint64_t GlobalSize) { 781 // If a global is all zeros, always use a memset. 782 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 783 784 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 785 // do it if it will require 6 or fewer scalar stores. 786 // TODO: Should budget depends on the size? Avoiding a large global warrants 787 // plopping in more stores. 788 unsigned StoreBudget = 6; 789 uint64_t SizeLimit = 32; 790 791 return GlobalSize > SizeLimit && 792 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 793 } 794 795 /// Should we use the LLVM lifetime intrinsics for the given local variable? 796 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 797 unsigned Size) { 798 // For now, only in optimized builds. 799 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 800 return false; 801 802 // Limit the size of marked objects to 32 bytes. We don't want to increase 803 // compile time by marking tiny objects. 804 unsigned SizeThreshold = 32; 805 806 return Size > SizeThreshold; 807 } 808 809 810 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 811 /// variable declaration with auto, register, or no storage class specifier. 812 /// These turn into simple stack objects, or GlobalValues depending on target. 813 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 814 AutoVarEmission emission = EmitAutoVarAlloca(D); 815 EmitAutoVarInit(emission); 816 EmitAutoVarCleanups(emission); 817 } 818 819 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 820 /// local variable. Does not emit initialization or destruction. 821 CodeGenFunction::AutoVarEmission 822 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 823 QualType Ty = D.getType(); 824 825 AutoVarEmission emission(D); 826 827 bool isByRef = D.hasAttr<BlocksAttr>(); 828 emission.IsByRef = isByRef; 829 830 CharUnits alignment = getContext().getDeclAlign(&D); 831 emission.Alignment = alignment; 832 833 // If the type is variably-modified, emit all the VLA sizes for it. 834 if (Ty->isVariablyModifiedType()) 835 EmitVariablyModifiedType(Ty); 836 837 llvm::Value *DeclPtr; 838 if (Ty->isConstantSizeType()) { 839 bool NRVO = getLangOpts().ElideConstructors && 840 D.isNRVOVariable(); 841 842 // If this value is an array or struct with a statically determinable 843 // constant initializer, there are optimizations we can do. 844 // 845 // TODO: We should constant-evaluate the initializer of any variable, 846 // as long as it is initialized by a constant expression. Currently, 847 // isConstantInitializer produces wrong answers for structs with 848 // reference or bitfield members, and a few other cases, and checking 849 // for POD-ness protects us from some of these. 850 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 851 (D.isConstexpr() || 852 ((Ty.isPODType(getContext()) || 853 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 854 D.getInit()->isConstantInitializer(getContext(), false)))) { 855 856 // If the variable's a const type, and it's neither an NRVO 857 // candidate nor a __block variable and has no mutable members, 858 // emit it as a global instead. 859 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 860 CGM.isTypeConstant(Ty, true)) { 861 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 862 863 emission.Address = nullptr; // signal this condition to later callbacks 864 assert(emission.wasEmittedAsGlobal()); 865 return emission; 866 } 867 868 // Otherwise, tell the initialization code that we're in this case. 869 emission.IsConstantAggregate = true; 870 } 871 872 // A normal fixed sized variable becomes an alloca in the entry block, 873 // unless it's an NRVO variable. 874 llvm::Type *LTy = ConvertTypeForMem(Ty); 875 876 if (NRVO) { 877 // The named return value optimization: allocate this variable in the 878 // return slot, so that we can elide the copy when returning this 879 // variable (C++0x [class.copy]p34). 880 DeclPtr = ReturnValue; 881 882 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 883 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 884 // Create a flag that is used to indicate when the NRVO was applied 885 // to this variable. Set it to zero to indicate that NRVO was not 886 // applied. 887 llvm::Value *Zero = Builder.getFalse(); 888 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 889 EnsureInsertPoint(); 890 Builder.CreateStore(Zero, NRVOFlag); 891 892 // Record the NRVO flag for this variable. 893 NRVOFlags[&D] = NRVOFlag; 894 emission.NRVOFlag = NRVOFlag; 895 } 896 } 897 } else { 898 if (isByRef) 899 LTy = BuildByRefType(&D); 900 901 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 902 Alloc->setName(D.getName()); 903 904 CharUnits allocaAlignment = alignment; 905 if (isByRef) 906 allocaAlignment = std::max(allocaAlignment, 907 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 908 Alloc->setAlignment(allocaAlignment.getQuantity()); 909 DeclPtr = Alloc; 910 911 // Emit a lifetime intrinsic if meaningful. There's no point 912 // in doing this if we don't have a valid insertion point (?). 913 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 914 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 915 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 916 917 emission.SizeForLifetimeMarkers = sizeV; 918 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 919 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 920 ->setDoesNotThrow(); 921 } else { 922 assert(!emission.useLifetimeMarkers()); 923 } 924 } 925 } else { 926 EnsureInsertPoint(); 927 928 if (!DidCallStackSave) { 929 // Save the stack. 930 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 931 932 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 933 llvm::Value *V = Builder.CreateCall(F); 934 935 Builder.CreateStore(V, Stack); 936 937 DidCallStackSave = true; 938 939 // Push a cleanup block and restore the stack there. 940 // FIXME: in general circumstances, this should be an EH cleanup. 941 pushStackRestore(NormalCleanup, Stack); 942 } 943 944 llvm::Value *elementCount; 945 QualType elementType; 946 std::tie(elementCount, elementType) = getVLASize(Ty); 947 948 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 949 950 // Allocate memory for the array. 951 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 952 vla->setAlignment(alignment.getQuantity()); 953 954 DeclPtr = vla; 955 } 956 957 llvm::Value *&DMEntry = LocalDeclMap[&D]; 958 assert(!DMEntry && "Decl already exists in localdeclmap!"); 959 DMEntry = DeclPtr; 960 emission.Address = DeclPtr; 961 962 // Emit debug info for local var declaration. 963 if (HaveInsertPoint()) 964 if (CGDebugInfo *DI = getDebugInfo()) { 965 if (CGM.getCodeGenOpts().getDebugInfo() 966 >= CodeGenOptions::LimitedDebugInfo) { 967 DI->setLocation(D.getLocation()); 968 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 969 } 970 } 971 972 if (D.hasAttr<AnnotateAttr>()) 973 EmitVarAnnotations(&D, emission.Address); 974 975 return emission; 976 } 977 978 /// Determines whether the given __block variable is potentially 979 /// captured by the given expression. 980 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 981 // Skip the most common kinds of expressions that make 982 // hierarchy-walking expensive. 983 e = e->IgnoreParenCasts(); 984 985 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 986 const BlockDecl *block = be->getBlockDecl(); 987 for (const auto &I : block->captures()) { 988 if (I.getVariable() == &var) 989 return true; 990 } 991 992 // No need to walk into the subexpressions. 993 return false; 994 } 995 996 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 997 const CompoundStmt *CS = SE->getSubStmt(); 998 for (const auto *BI : CS->body()) 999 if (const auto *E = dyn_cast<Expr>(BI)) { 1000 if (isCapturedBy(var, E)) 1001 return true; 1002 } 1003 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1004 // special case declarations 1005 for (const auto *I : DS->decls()) { 1006 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1007 const Expr *Init = VD->getInit(); 1008 if (Init && isCapturedBy(var, Init)) 1009 return true; 1010 } 1011 } 1012 } 1013 else 1014 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1015 // Later, provide code to poke into statements for capture analysis. 1016 return true; 1017 return false; 1018 } 1019 1020 for (Stmt::const_child_range children = e->children(); children; ++children) 1021 if (isCapturedBy(var, cast<Expr>(*children))) 1022 return true; 1023 1024 return false; 1025 } 1026 1027 /// \brief Determine whether the given initializer is trivial in the sense 1028 /// that it requires no code to be generated. 1029 static bool isTrivialInitializer(const Expr *Init) { 1030 if (!Init) 1031 return true; 1032 1033 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1034 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1035 if (Constructor->isTrivial() && 1036 Constructor->isDefaultConstructor() && 1037 !Construct->requiresZeroInitialization()) 1038 return true; 1039 1040 return false; 1041 } 1042 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1043 assert(emission.Variable && "emission was not valid!"); 1044 1045 // If this was emitted as a global constant, we're done. 1046 if (emission.wasEmittedAsGlobal()) return; 1047 1048 const VarDecl &D = *emission.Variable; 1049 QualType type = D.getType(); 1050 1051 // If this local has an initializer, emit it now. 1052 const Expr *Init = D.getInit(); 1053 1054 // If we are at an unreachable point, we don't need to emit the initializer 1055 // unless it contains a label. 1056 if (!HaveInsertPoint()) { 1057 if (!Init || !ContainsLabel(Init)) return; 1058 EnsureInsertPoint(); 1059 } 1060 1061 // Initialize the structure of a __block variable. 1062 if (emission.IsByRef) 1063 emitByrefStructureInit(emission); 1064 1065 if (isTrivialInitializer(Init)) 1066 return; 1067 1068 CharUnits alignment = emission.Alignment; 1069 1070 // Check whether this is a byref variable that's potentially 1071 // captured and moved by its own initializer. If so, we'll need to 1072 // emit the initializer first, then copy into the variable. 1073 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1074 1075 llvm::Value *Loc = 1076 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1077 1078 llvm::Constant *constant = nullptr; 1079 if (emission.IsConstantAggregate || D.isConstexpr()) { 1080 assert(!capturedByInit && "constant init contains a capturing block?"); 1081 constant = CGM.EmitConstantInit(D, this); 1082 } 1083 1084 if (!constant) { 1085 LValue lv = MakeAddrLValue(Loc, type, alignment); 1086 lv.setNonGC(true); 1087 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1088 } 1089 1090 if (!emission.IsConstantAggregate) { 1091 // For simple scalar/complex initialization, store the value directly. 1092 LValue lv = MakeAddrLValue(Loc, type, alignment); 1093 lv.setNonGC(true); 1094 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1095 } 1096 1097 // If this is a simple aggregate initialization, we can optimize it 1098 // in various ways. 1099 bool isVolatile = type.isVolatileQualified(); 1100 1101 llvm::Value *SizeVal = 1102 llvm::ConstantInt::get(IntPtrTy, 1103 getContext().getTypeSizeInChars(type).getQuantity()); 1104 1105 llvm::Type *BP = Int8PtrTy; 1106 if (Loc->getType() != BP) 1107 Loc = Builder.CreateBitCast(Loc, BP); 1108 1109 // If the initializer is all or mostly zeros, codegen with memset then do 1110 // a few stores afterward. 1111 if (shouldUseMemSetPlusStoresToInitialize(constant, 1112 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1113 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1114 alignment.getQuantity(), isVolatile); 1115 // Zero and undef don't require a stores. 1116 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1117 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1118 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1119 } 1120 } else { 1121 // Otherwise, create a temporary global with the initializer then 1122 // memcpy from the global to the alloca. 1123 std::string Name = GetStaticDeclName(*this, D, "."); 1124 llvm::GlobalVariable *GV = 1125 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1126 llvm::GlobalValue::PrivateLinkage, 1127 constant, Name); 1128 GV->setAlignment(alignment.getQuantity()); 1129 GV->setUnnamedAddr(true); 1130 1131 llvm::Value *SrcPtr = GV; 1132 if (SrcPtr->getType() != BP) 1133 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1134 1135 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1136 isVolatile); 1137 } 1138 } 1139 1140 /// Emit an expression as an initializer for a variable at the given 1141 /// location. The expression is not necessarily the normal 1142 /// initializer for the variable, and the address is not necessarily 1143 /// its normal location. 1144 /// 1145 /// \param init the initializing expression 1146 /// \param var the variable to act as if we're initializing 1147 /// \param loc the address to initialize; its type is a pointer 1148 /// to the LLVM mapping of the variable's type 1149 /// \param alignment the alignment of the address 1150 /// \param capturedByInit true if the variable is a __block variable 1151 /// whose address is potentially changed by the initializer 1152 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1153 const ValueDecl *D, 1154 LValue lvalue, 1155 bool capturedByInit) { 1156 QualType type = D->getType(); 1157 1158 if (type->isReferenceType()) { 1159 RValue rvalue = EmitReferenceBindingToExpr(init); 1160 if (capturedByInit) 1161 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1162 EmitStoreThroughLValue(rvalue, lvalue, true); 1163 return; 1164 } 1165 switch (getEvaluationKind(type)) { 1166 case TEK_Scalar: 1167 EmitScalarInit(init, D, lvalue, capturedByInit); 1168 return; 1169 case TEK_Complex: { 1170 ComplexPairTy complex = EmitComplexExpr(init); 1171 if (capturedByInit) 1172 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1173 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1174 return; 1175 } 1176 case TEK_Aggregate: 1177 if (type->isAtomicType()) { 1178 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1179 } else { 1180 // TODO: how can we delay here if D is captured by its initializer? 1181 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1182 AggValueSlot::IsDestructed, 1183 AggValueSlot::DoesNotNeedGCBarriers, 1184 AggValueSlot::IsNotAliased)); 1185 } 1186 return; 1187 } 1188 llvm_unreachable("bad evaluation kind"); 1189 } 1190 1191 /// Enter a destroy cleanup for the given local variable. 1192 void CodeGenFunction::emitAutoVarTypeCleanup( 1193 const CodeGenFunction::AutoVarEmission &emission, 1194 QualType::DestructionKind dtorKind) { 1195 assert(dtorKind != QualType::DK_none); 1196 1197 // Note that for __block variables, we want to destroy the 1198 // original stack object, not the possibly forwarded object. 1199 llvm::Value *addr = emission.getObjectAddress(*this); 1200 1201 const VarDecl *var = emission.Variable; 1202 QualType type = var->getType(); 1203 1204 CleanupKind cleanupKind = NormalAndEHCleanup; 1205 CodeGenFunction::Destroyer *destroyer = nullptr; 1206 1207 switch (dtorKind) { 1208 case QualType::DK_none: 1209 llvm_unreachable("no cleanup for trivially-destructible variable"); 1210 1211 case QualType::DK_cxx_destructor: 1212 // If there's an NRVO flag on the emission, we need a different 1213 // cleanup. 1214 if (emission.NRVOFlag) { 1215 assert(!type->isArrayType()); 1216 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1217 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1218 emission.NRVOFlag); 1219 return; 1220 } 1221 break; 1222 1223 case QualType::DK_objc_strong_lifetime: 1224 // Suppress cleanups for pseudo-strong variables. 1225 if (var->isARCPseudoStrong()) return; 1226 1227 // Otherwise, consider whether to use an EH cleanup or not. 1228 cleanupKind = getARCCleanupKind(); 1229 1230 // Use the imprecise destroyer by default. 1231 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1232 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1233 break; 1234 1235 case QualType::DK_objc_weak_lifetime: 1236 break; 1237 } 1238 1239 // If we haven't chosen a more specific destroyer, use the default. 1240 if (!destroyer) destroyer = getDestroyer(dtorKind); 1241 1242 // Use an EH cleanup in array destructors iff the destructor itself 1243 // is being pushed as an EH cleanup. 1244 bool useEHCleanup = (cleanupKind & EHCleanup); 1245 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1246 useEHCleanup); 1247 } 1248 1249 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1250 assert(emission.Variable && "emission was not valid!"); 1251 1252 // If this was emitted as a global constant, we're done. 1253 if (emission.wasEmittedAsGlobal()) return; 1254 1255 // If we don't have an insertion point, we're done. Sema prevents 1256 // us from jumping into any of these scopes anyway. 1257 if (!HaveInsertPoint()) return; 1258 1259 const VarDecl &D = *emission.Variable; 1260 1261 // Make sure we call @llvm.lifetime.end. This needs to happen 1262 // *last*, so the cleanup needs to be pushed *first*. 1263 if (emission.useLifetimeMarkers()) { 1264 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1265 emission.getAllocatedAddress(), 1266 emission.getSizeForLifetimeMarkers()); 1267 } 1268 1269 // Check the type for a cleanup. 1270 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1271 emitAutoVarTypeCleanup(emission, dtorKind); 1272 1273 // In GC mode, honor objc_precise_lifetime. 1274 if (getLangOpts().getGC() != LangOptions::NonGC && 1275 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1276 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1277 } 1278 1279 // Handle the cleanup attribute. 1280 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1281 const FunctionDecl *FD = CA->getFunctionDecl(); 1282 1283 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1284 assert(F && "Could not find function!"); 1285 1286 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1287 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1288 } 1289 1290 // If this is a block variable, call _Block_object_destroy 1291 // (on the unforwarded address). 1292 if (emission.IsByRef) 1293 enterByrefCleanup(emission); 1294 } 1295 1296 CodeGenFunction::Destroyer * 1297 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1298 switch (kind) { 1299 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1300 case QualType::DK_cxx_destructor: 1301 return destroyCXXObject; 1302 case QualType::DK_objc_strong_lifetime: 1303 return destroyARCStrongPrecise; 1304 case QualType::DK_objc_weak_lifetime: 1305 return destroyARCWeak; 1306 } 1307 llvm_unreachable("Unknown DestructionKind"); 1308 } 1309 1310 /// pushEHDestroy - Push the standard destructor for the given type as 1311 /// an EH-only cleanup. 1312 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1313 llvm::Value *addr, QualType type) { 1314 assert(dtorKind && "cannot push destructor for trivial type"); 1315 assert(needsEHCleanup(dtorKind)); 1316 1317 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1318 } 1319 1320 /// pushDestroy - Push the standard destructor for the given type as 1321 /// at least a normal cleanup. 1322 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1323 llvm::Value *addr, QualType type) { 1324 assert(dtorKind && "cannot push destructor for trivial type"); 1325 1326 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1327 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1328 cleanupKind & EHCleanup); 1329 } 1330 1331 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1332 QualType type, Destroyer *destroyer, 1333 bool useEHCleanupForArray) { 1334 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1335 destroyer, useEHCleanupForArray); 1336 } 1337 1338 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) { 1339 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1340 } 1341 1342 void CodeGenFunction::pushLifetimeExtendedDestroy( 1343 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1344 Destroyer *destroyer, bool useEHCleanupForArray) { 1345 assert(!isInConditionalBranch() && 1346 "performing lifetime extension from within conditional"); 1347 1348 // Push an EH-only cleanup for the object now. 1349 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1350 // around in case a temporary's destructor throws an exception. 1351 if (cleanupKind & EHCleanup) 1352 EHStack.pushCleanup<DestroyObject>( 1353 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1354 destroyer, useEHCleanupForArray); 1355 1356 // Remember that we need to push a full cleanup for the object at the 1357 // end of the full-expression. 1358 pushCleanupAfterFullExpr<DestroyObject>( 1359 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1360 } 1361 1362 /// emitDestroy - Immediately perform the destruction of the given 1363 /// object. 1364 /// 1365 /// \param addr - the address of the object; a type* 1366 /// \param type - the type of the object; if an array type, all 1367 /// objects are destroyed in reverse order 1368 /// \param destroyer - the function to call to destroy individual 1369 /// elements 1370 /// \param useEHCleanupForArray - whether an EH cleanup should be 1371 /// used when destroying array elements, in case one of the 1372 /// destructions throws an exception 1373 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1374 Destroyer *destroyer, 1375 bool useEHCleanupForArray) { 1376 const ArrayType *arrayType = getContext().getAsArrayType(type); 1377 if (!arrayType) 1378 return destroyer(*this, addr, type); 1379 1380 llvm::Value *begin = addr; 1381 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1382 1383 // Normally we have to check whether the array is zero-length. 1384 bool checkZeroLength = true; 1385 1386 // But if the array length is constant, we can suppress that. 1387 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1388 // ...and if it's constant zero, we can just skip the entire thing. 1389 if (constLength->isZero()) return; 1390 checkZeroLength = false; 1391 } 1392 1393 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1394 emitArrayDestroy(begin, end, type, destroyer, 1395 checkZeroLength, useEHCleanupForArray); 1396 } 1397 1398 /// emitArrayDestroy - Destroys all the elements of the given array, 1399 /// beginning from last to first. The array cannot be zero-length. 1400 /// 1401 /// \param begin - a type* denoting the first element of the array 1402 /// \param end - a type* denoting one past the end of the array 1403 /// \param type - the element type of the array 1404 /// \param destroyer - the function to call to destroy elements 1405 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1406 /// the remaining elements in case the destruction of a single 1407 /// element throws 1408 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1409 llvm::Value *end, 1410 QualType type, 1411 Destroyer *destroyer, 1412 bool checkZeroLength, 1413 bool useEHCleanup) { 1414 assert(!type->isArrayType()); 1415 1416 // The basic structure here is a do-while loop, because we don't 1417 // need to check for the zero-element case. 1418 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1419 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1420 1421 if (checkZeroLength) { 1422 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1423 "arraydestroy.isempty"); 1424 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1425 } 1426 1427 // Enter the loop body, making that address the current address. 1428 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1429 EmitBlock(bodyBB); 1430 llvm::PHINode *elementPast = 1431 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1432 elementPast->addIncoming(end, entryBB); 1433 1434 // Shift the address back by one element. 1435 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1436 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1437 "arraydestroy.element"); 1438 1439 if (useEHCleanup) 1440 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1441 1442 // Perform the actual destruction there. 1443 destroyer(*this, element, type); 1444 1445 if (useEHCleanup) 1446 PopCleanupBlock(); 1447 1448 // Check whether we've reached the end. 1449 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1450 Builder.CreateCondBr(done, doneBB, bodyBB); 1451 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1452 1453 // Done. 1454 EmitBlock(doneBB); 1455 } 1456 1457 /// Perform partial array destruction as if in an EH cleanup. Unlike 1458 /// emitArrayDestroy, the element type here may still be an array type. 1459 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1460 llvm::Value *begin, llvm::Value *end, 1461 QualType type, 1462 CodeGenFunction::Destroyer *destroyer) { 1463 // If the element type is itself an array, drill down. 1464 unsigned arrayDepth = 0; 1465 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1466 // VLAs don't require a GEP index to walk into. 1467 if (!isa<VariableArrayType>(arrayType)) 1468 arrayDepth++; 1469 type = arrayType->getElementType(); 1470 } 1471 1472 if (arrayDepth) { 1473 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1474 1475 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1476 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1477 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1478 } 1479 1480 // Destroy the array. We don't ever need an EH cleanup because we 1481 // assume that we're in an EH cleanup ourselves, so a throwing 1482 // destructor causes an immediate terminate. 1483 CGF.emitArrayDestroy(begin, end, type, destroyer, 1484 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1485 } 1486 1487 namespace { 1488 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1489 /// array destroy where the end pointer is regularly determined and 1490 /// does not need to be loaded from a local. 1491 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1492 llvm::Value *ArrayBegin; 1493 llvm::Value *ArrayEnd; 1494 QualType ElementType; 1495 CodeGenFunction::Destroyer *Destroyer; 1496 public: 1497 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1498 QualType elementType, 1499 CodeGenFunction::Destroyer *destroyer) 1500 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1501 ElementType(elementType), Destroyer(destroyer) {} 1502 1503 void Emit(CodeGenFunction &CGF, Flags flags) override { 1504 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1505 ElementType, Destroyer); 1506 } 1507 }; 1508 1509 /// IrregularPartialArrayDestroy - a cleanup which performs a 1510 /// partial array destroy where the end pointer is irregularly 1511 /// determined and must be loaded from a local. 1512 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1513 llvm::Value *ArrayBegin; 1514 llvm::Value *ArrayEndPointer; 1515 QualType ElementType; 1516 CodeGenFunction::Destroyer *Destroyer; 1517 public: 1518 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1519 llvm::Value *arrayEndPointer, 1520 QualType elementType, 1521 CodeGenFunction::Destroyer *destroyer) 1522 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1523 ElementType(elementType), Destroyer(destroyer) {} 1524 1525 void Emit(CodeGenFunction &CGF, Flags flags) override { 1526 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1527 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1528 ElementType, Destroyer); 1529 } 1530 }; 1531 } 1532 1533 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1534 /// already-constructed elements of the given array. The cleanup 1535 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1536 /// 1537 /// \param elementType - the immediate element type of the array; 1538 /// possibly still an array type 1539 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1540 llvm::Value *arrayEndPointer, 1541 QualType elementType, 1542 Destroyer *destroyer) { 1543 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1544 arrayBegin, arrayEndPointer, 1545 elementType, destroyer); 1546 } 1547 1548 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1549 /// already-constructed elements of the given array. The cleanup 1550 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1551 /// 1552 /// \param elementType - the immediate element type of the array; 1553 /// possibly still an array type 1554 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1555 llvm::Value *arrayEnd, 1556 QualType elementType, 1557 Destroyer *destroyer) { 1558 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1559 arrayBegin, arrayEnd, 1560 elementType, destroyer); 1561 } 1562 1563 /// Lazily declare the @llvm.lifetime.start intrinsic. 1564 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1565 if (LifetimeStartFn) return LifetimeStartFn; 1566 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1567 llvm::Intrinsic::lifetime_start); 1568 return LifetimeStartFn; 1569 } 1570 1571 /// Lazily declare the @llvm.lifetime.end intrinsic. 1572 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1573 if (LifetimeEndFn) return LifetimeEndFn; 1574 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1575 llvm::Intrinsic::lifetime_end); 1576 return LifetimeEndFn; 1577 } 1578 1579 namespace { 1580 /// A cleanup to perform a release of an object at the end of a 1581 /// function. This is used to balance out the incoming +1 of a 1582 /// ns_consumed argument when we can't reasonably do that just by 1583 /// not doing the initial retain for a __block argument. 1584 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1585 ConsumeARCParameter(llvm::Value *param, 1586 ARCPreciseLifetime_t precise) 1587 : Param(param), Precise(precise) {} 1588 1589 llvm::Value *Param; 1590 ARCPreciseLifetime_t Precise; 1591 1592 void Emit(CodeGenFunction &CGF, Flags flags) override { 1593 CGF.EmitARCRelease(Param, Precise); 1594 } 1595 }; 1596 } 1597 1598 /// Emit an alloca (or GlobalValue depending on target) 1599 /// for the specified parameter and set up LocalDeclMap. 1600 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1601 bool ArgIsPointer, unsigned ArgNo) { 1602 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1603 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1604 "Invalid argument to EmitParmDecl"); 1605 1606 Arg->setName(D.getName()); 1607 1608 QualType Ty = D.getType(); 1609 1610 // Use better IR generation for certain implicit parameters. 1611 if (isa<ImplicitParamDecl>(D)) { 1612 // The only implicit argument a block has is its literal. 1613 if (BlockInfo) { 1614 LocalDeclMap[&D] = Arg; 1615 llvm::Value *LocalAddr = nullptr; 1616 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1617 // Allocate a stack slot to let the debug info survive the RA. 1618 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1619 D.getName() + ".addr"); 1620 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1621 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1622 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1623 LocalAddr = Builder.CreateLoad(Alloc); 1624 } 1625 1626 if (CGDebugInfo *DI = getDebugInfo()) { 1627 if (CGM.getCodeGenOpts().getDebugInfo() 1628 >= CodeGenOptions::LimitedDebugInfo) { 1629 DI->setLocation(D.getLocation()); 1630 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1631 } 1632 } 1633 1634 return; 1635 } 1636 } 1637 1638 llvm::Value *DeclPtr; 1639 bool DoStore = false; 1640 bool IsScalar = hasScalarEvaluationKind(Ty); 1641 CharUnits Align = getContext().getDeclAlign(&D); 1642 // If we already have a pointer to the argument, reuse the input pointer. 1643 if (ArgIsPointer) { 1644 // If we have a prettier pointer type at this point, bitcast to that. 1645 unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace(); 1646 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1647 DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy, 1648 D.getName()); 1649 // Push a destructor cleanup for this parameter if the ABI requires it. 1650 if (!IsScalar && 1651 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1652 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1653 if (RD && RD->hasNonTrivialDestructor()) 1654 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1655 } 1656 } else { 1657 // Otherwise, create a temporary to hold the value. 1658 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1659 D.getName() + ".addr"); 1660 Alloc->setAlignment(Align.getQuantity()); 1661 DeclPtr = Alloc; 1662 DoStore = true; 1663 } 1664 1665 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1666 if (IsScalar) { 1667 Qualifiers qs = Ty.getQualifiers(); 1668 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1669 // We honor __attribute__((ns_consumed)) for types with lifetime. 1670 // For __strong, it's handled by just skipping the initial retain; 1671 // otherwise we have to balance out the initial +1 with an extra 1672 // cleanup to do the release at the end of the function. 1673 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1674 1675 // 'self' is always formally __strong, but if this is not an 1676 // init method then we don't want to retain it. 1677 if (D.isARCPseudoStrong()) { 1678 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1679 assert(&D == method->getSelfDecl()); 1680 assert(lt == Qualifiers::OCL_Strong); 1681 assert(qs.hasConst()); 1682 assert(method->getMethodFamily() != OMF_init); 1683 (void) method; 1684 lt = Qualifiers::OCL_ExplicitNone; 1685 } 1686 1687 if (lt == Qualifiers::OCL_Strong) { 1688 if (!isConsumed) { 1689 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1690 // use objc_storeStrong(&dest, value) for retaining the 1691 // object. But first, store a null into 'dest' because 1692 // objc_storeStrong attempts to release its old value. 1693 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1694 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1695 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1696 DoStore = false; 1697 } 1698 else 1699 // Don't use objc_retainBlock for block pointers, because we 1700 // don't want to Block_copy something just because we got it 1701 // as a parameter. 1702 Arg = EmitARCRetainNonBlock(Arg); 1703 } 1704 } else { 1705 // Push the cleanup for a consumed parameter. 1706 if (isConsumed) { 1707 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1708 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1709 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1710 precise); 1711 } 1712 1713 if (lt == Qualifiers::OCL_Weak) { 1714 EmitARCInitWeak(DeclPtr, Arg); 1715 DoStore = false; // The weak init is a store, no need to do two. 1716 } 1717 } 1718 1719 // Enter the cleanup scope. 1720 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1721 } 1722 } 1723 1724 // Store the initial value into the alloca. 1725 if (DoStore) 1726 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1727 1728 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1729 assert(!DMEntry && "Decl already exists in localdeclmap!"); 1730 DMEntry = DeclPtr; 1731 1732 // Emit debug info for param declaration. 1733 if (CGDebugInfo *DI = getDebugInfo()) { 1734 if (CGM.getCodeGenOpts().getDebugInfo() 1735 >= CodeGenOptions::LimitedDebugInfo) { 1736 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1737 } 1738 } 1739 1740 if (D.hasAttr<AnnotateAttr>()) 1741 EmitVarAnnotations(&D, DeclPtr); 1742 } 1743