1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 
34 void CodeGenFunction::EmitDecl(const Decl &D) {
35   switch (D.getKind()) {
36   case Decl::TranslationUnit:
37   case Decl::Namespace:
38   case Decl::UnresolvedUsingTypename:
39   case Decl::ClassTemplateSpecialization:
40   case Decl::ClassTemplatePartialSpecialization:
41   case Decl::VarTemplateSpecialization:
42   case Decl::VarTemplatePartialSpecialization:
43   case Decl::TemplateTypeParm:
44   case Decl::UnresolvedUsingValue:
45   case Decl::NonTypeTemplateParm:
46   case Decl::CXXMethod:
47   case Decl::CXXConstructor:
48   case Decl::CXXDestructor:
49   case Decl::CXXConversion:
50   case Decl::Field:
51   case Decl::MSProperty:
52   case Decl::IndirectField:
53   case Decl::ObjCIvar:
54   case Decl::ObjCAtDefsField:
55   case Decl::ParmVar:
56   case Decl::ImplicitParam:
57   case Decl::ClassTemplate:
58   case Decl::VarTemplate:
59   case Decl::FunctionTemplate:
60   case Decl::TypeAliasTemplate:
61   case Decl::TemplateTemplateParm:
62   case Decl::ObjCMethod:
63   case Decl::ObjCCategory:
64   case Decl::ObjCProtocol:
65   case Decl::ObjCInterface:
66   case Decl::ObjCCategoryImpl:
67   case Decl::ObjCImplementation:
68   case Decl::ObjCProperty:
69   case Decl::ObjCCompatibleAlias:
70   case Decl::AccessSpec:
71   case Decl::LinkageSpec:
72   case Decl::ObjCPropertyImpl:
73   case Decl::FileScopeAsm:
74   case Decl::Friend:
75   case Decl::FriendTemplate:
76   case Decl::Block:
77   case Decl::Captured:
78   case Decl::ClassScopeFunctionSpecialization:
79   case Decl::UsingShadow:
80     llvm_unreachable("Declaration should not be in declstmts!");
81   case Decl::Function:  // void X();
82   case Decl::Record:    // struct/union/class X;
83   case Decl::Enum:      // enum X;
84   case Decl::EnumConstant: // enum ? { X = ? }
85   case Decl::CXXRecord: // struct/union/class X; [C++]
86   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
87   case Decl::Label:        // __label__ x;
88   case Decl::Import:
89   case Decl::OMPThreadPrivate:
90   case Decl::Empty:
91     // None of these decls require codegen support.
92     return;
93 
94   case Decl::NamespaceAlias:
95     if (CGDebugInfo *DI = getDebugInfo())
96         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
97     return;
98   case Decl::Using:          // using X; [C++]
99     if (CGDebugInfo *DI = getDebugInfo())
100         DI->EmitUsingDecl(cast<UsingDecl>(D));
101     return;
102   case Decl::UsingDirective: // using namespace X; [C++]
103     if (CGDebugInfo *DI = getDebugInfo())
104       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
105     return;
106   case Decl::Var: {
107     const VarDecl &VD = cast<VarDecl>(D);
108     assert(VD.isLocalVarDecl() &&
109            "Should not see file-scope variables inside a function!");
110     return EmitVarDecl(VD);
111   }
112 
113   case Decl::Typedef:      // typedef int X;
114   case Decl::TypeAlias: {  // using X = int; [C++0x]
115     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
116     QualType Ty = TD.getUnderlyingType();
117 
118     if (Ty->isVariablyModifiedType())
119       EmitVariablyModifiedType(Ty);
120   }
121   }
122 }
123 
124 /// EmitVarDecl - This method handles emission of any variable declaration
125 /// inside a function, including static vars etc.
126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
127   if (D.isStaticLocal()) {
128     llvm::GlobalValue::LinkageTypes Linkage =
129         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
130 
131     // FIXME: We need to force the emission/use of a guard variable for
132     // some variables even if we can constant-evaluate them because
133     // we can't guarantee every translation unit will constant-evaluate them.
134 
135     return EmitStaticVarDecl(D, Linkage);
136   }
137 
138   if (D.hasExternalStorage())
139     // Don't emit it now, allow it to be emitted lazily on its first use.
140     return;
141 
142   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
143     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
144 
145   assert(D.hasLocalStorage());
146   return EmitAutoVarDecl(D);
147 }
148 
149 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
150                                      const char *Separator) {
151   CodeGenModule &CGM = CGF.CGM;
152 
153   if (CGF.getLangOpts().CPlusPlus)
154     return CGM.getMangledName(&D).str();
155 
156   StringRef ContextName;
157   if (!CGF.CurFuncDecl) {
158     // Better be in a block declared in global scope.
159     const NamedDecl *ND = cast<NamedDecl>(&D);
160     const DeclContext *DC = ND->getDeclContext();
161     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
162       ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
163     else
164       llvm_unreachable("Unknown context for block static var decl");
165   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl))
166     ContextName = CGM.getMangledName(FD);
167   else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
168     ContextName = CGF.CurFn->getName();
169   else
170     llvm_unreachable("Unknown context for static var decl");
171 
172   return ContextName.str() + Separator + D.getNameAsString();
173 }
174 
175 llvm::Constant *
176 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
177                                      const char *Separator,
178                                      llvm::GlobalValue::LinkageTypes Linkage) {
179   QualType Ty = D.getType();
180   assert(Ty->isConstantSizeType() && "VLAs can't be static");
181 
182   // Use the label if the variable is renamed with the asm-label extension.
183   std::string Name;
184   if (D.hasAttr<AsmLabelAttr>())
185     Name = CGM.getMangledName(&D);
186   else
187     Name = GetStaticDeclName(*this, D, Separator);
188 
189   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
190   unsigned AddrSpace =
191    CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
192   llvm::GlobalVariable *GV =
193     new llvm::GlobalVariable(CGM.getModule(), LTy,
194                              Ty.isConstant(getContext()), Linkage,
195                              CGM.EmitNullConstant(D.getType()), Name, nullptr,
196                              llvm::GlobalVariable::NotThreadLocal,
197                              AddrSpace);
198   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
199   CGM.setGlobalVisibility(GV, &D);
200 
201   if (D.getTLSKind())
202     CGM.setTLSMode(GV, D);
203 
204   // Make sure the result is of the correct type.
205   unsigned ExpectedAddrSpace = CGM.getContext().getTargetAddressSpace(Ty);
206   if (AddrSpace != ExpectedAddrSpace) {
207     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
208     return llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
209   }
210 
211   return GV;
212 }
213 
214 /// hasNontrivialDestruction - Determine whether a type's destruction is
215 /// non-trivial. If so, and the variable uses static initialization, we must
216 /// register its destructor to run on exit.
217 static bool hasNontrivialDestruction(QualType T) {
218   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
219   return RD && !RD->hasTrivialDestructor();
220 }
221 
222 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
223 /// global variable that has already been created for it.  If the initializer
224 /// has a different type than GV does, this may free GV and return a different
225 /// one.  Otherwise it just returns GV.
226 llvm::GlobalVariable *
227 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
228                                                llvm::GlobalVariable *GV) {
229   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
230 
231   // If constant emission failed, then this should be a C++ static
232   // initializer.
233   if (!Init) {
234     if (!getLangOpts().CPlusPlus)
235       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
236     else if (Builder.GetInsertBlock()) {
237       // Since we have a static initializer, this global variable can't
238       // be constant.
239       GV->setConstant(false);
240 
241       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
242     }
243     return GV;
244   }
245 
246   // The initializer may differ in type from the global. Rewrite
247   // the global to match the initializer.  (We have to do this
248   // because some types, like unions, can't be completely represented
249   // in the LLVM type system.)
250   if (GV->getType()->getElementType() != Init->getType()) {
251     llvm::GlobalVariable *OldGV = GV;
252 
253     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
254                                   OldGV->isConstant(),
255                                   OldGV->getLinkage(), Init, "",
256                                   /*InsertBefore*/ OldGV,
257                                   OldGV->getThreadLocalMode(),
258                            CGM.getContext().getTargetAddressSpace(D.getType()));
259     GV->setVisibility(OldGV->getVisibility());
260 
261     // Steal the name of the old global
262     GV->takeName(OldGV);
263 
264     // Replace all uses of the old global with the new global
265     llvm::Constant *NewPtrForOldDecl =
266     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
267     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
268 
269     // Erase the old global, since it is no longer used.
270     OldGV->eraseFromParent();
271   }
272 
273   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
274   GV->setInitializer(Init);
275 
276   if (hasNontrivialDestruction(D.getType())) {
277     // We have a constant initializer, but a nontrivial destructor. We still
278     // need to perform a guarded "initialization" in order to register the
279     // destructor.
280     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
281   }
282 
283   return GV;
284 }
285 
286 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
287                                       llvm::GlobalValue::LinkageTypes Linkage) {
288   llvm::Value *&DMEntry = LocalDeclMap[&D];
289   assert(!DMEntry && "Decl already exists in localdeclmap!");
290 
291   // Check to see if we already have a global variable for this
292   // declaration.  This can happen when double-emitting function
293   // bodies, e.g. with complete and base constructors.
294   llvm::Constant *addr =
295     CGM.getStaticLocalDeclAddress(&D);
296 
297   if (!addr)
298     addr = CreateStaticVarDecl(D, ".", Linkage);
299 
300   // Store into LocalDeclMap before generating initializer to handle
301   // circular references.
302   DMEntry = addr;
303   CGM.setStaticLocalDeclAddress(&D, addr);
304 
305   // We can't have a VLA here, but we can have a pointer to a VLA,
306   // even though that doesn't really make any sense.
307   // Make sure to evaluate VLA bounds now so that we have them for later.
308   if (D.getType()->isVariablyModifiedType())
309     EmitVariablyModifiedType(D.getType());
310 
311   // Save the type in case adding the initializer forces a type change.
312   llvm::Type *expectedType = addr->getType();
313 
314   llvm::GlobalVariable *var =
315     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
316   // If this value has an initializer, emit it.
317   if (D.getInit())
318     var = AddInitializerToStaticVarDecl(D, var);
319 
320   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
321 
322   if (D.hasAttr<AnnotateAttr>())
323     CGM.AddGlobalAnnotations(&D, var);
324 
325   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
326     var->setSection(SA->getName());
327 
328   if (D.hasAttr<UsedAttr>())
329     CGM.addUsedGlobal(var);
330 
331   // We may have to cast the constant because of the initializer
332   // mismatch above.
333   //
334   // FIXME: It is really dangerous to store this in the map; if anyone
335   // RAUW's the GV uses of this constant will be invalid.
336   llvm::Constant *castedAddr =
337     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
338   DMEntry = castedAddr;
339   CGM.setStaticLocalDeclAddress(&D, castedAddr);
340 
341   // Emit global variable debug descriptor for static vars.
342   CGDebugInfo *DI = getDebugInfo();
343   if (DI &&
344       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
345     DI->setLocation(D.getLocation());
346     DI->EmitGlobalVariable(var, &D);
347   }
348 }
349 
350 namespace {
351   struct DestroyObject : EHScopeStack::Cleanup {
352     DestroyObject(llvm::Value *addr, QualType type,
353                   CodeGenFunction::Destroyer *destroyer,
354                   bool useEHCleanupForArray)
355       : addr(addr), type(type), destroyer(destroyer),
356         useEHCleanupForArray(useEHCleanupForArray) {}
357 
358     llvm::Value *addr;
359     QualType type;
360     CodeGenFunction::Destroyer *destroyer;
361     bool useEHCleanupForArray;
362 
363     void Emit(CodeGenFunction &CGF, Flags flags) override {
364       // Don't use an EH cleanup recursively from an EH cleanup.
365       bool useEHCleanupForArray =
366         flags.isForNormalCleanup() && this->useEHCleanupForArray;
367 
368       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
369     }
370   };
371 
372   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
373     DestroyNRVOVariable(llvm::Value *addr,
374                         const CXXDestructorDecl *Dtor,
375                         llvm::Value *NRVOFlag)
376       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
377 
378     const CXXDestructorDecl *Dtor;
379     llvm::Value *NRVOFlag;
380     llvm::Value *Loc;
381 
382     void Emit(CodeGenFunction &CGF, Flags flags) override {
383       // Along the exceptions path we always execute the dtor.
384       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
385 
386       llvm::BasicBlock *SkipDtorBB = nullptr;
387       if (NRVO) {
388         // If we exited via NRVO, we skip the destructor call.
389         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
390         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
391         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
392         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
393         CGF.EmitBlock(RunDtorBB);
394       }
395 
396       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
397                                 /*ForVirtualBase=*/false,
398                                 /*Delegating=*/false,
399                                 Loc);
400 
401       if (NRVO) CGF.EmitBlock(SkipDtorBB);
402     }
403   };
404 
405   struct CallStackRestore : EHScopeStack::Cleanup {
406     llvm::Value *Stack;
407     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
408     void Emit(CodeGenFunction &CGF, Flags flags) override {
409       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
410       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
411       CGF.Builder.CreateCall(F, V);
412     }
413   };
414 
415   struct ExtendGCLifetime : EHScopeStack::Cleanup {
416     const VarDecl &Var;
417     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
418 
419     void Emit(CodeGenFunction &CGF, Flags flags) override {
420       // Compute the address of the local variable, in case it's a
421       // byref or something.
422       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
423                       Var.getType(), VK_LValue, SourceLocation());
424       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
425                                                 SourceLocation());
426       CGF.EmitExtendGCLifetime(value);
427     }
428   };
429 
430   struct CallCleanupFunction : EHScopeStack::Cleanup {
431     llvm::Constant *CleanupFn;
432     const CGFunctionInfo &FnInfo;
433     const VarDecl &Var;
434 
435     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
436                         const VarDecl *Var)
437       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
438 
439     void Emit(CodeGenFunction &CGF, Flags flags) override {
440       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
441                       Var.getType(), VK_LValue, SourceLocation());
442       // Compute the address of the local variable, in case it's a byref
443       // or something.
444       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
445 
446       // In some cases, the type of the function argument will be different from
447       // the type of the pointer. An example of this is
448       // void f(void* arg);
449       // __attribute__((cleanup(f))) void *g;
450       //
451       // To fix this we insert a bitcast here.
452       QualType ArgTy = FnInfo.arg_begin()->type;
453       llvm::Value *Arg =
454         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
455 
456       CallArgList Args;
457       Args.add(RValue::get(Arg),
458                CGF.getContext().getPointerType(Var.getType()));
459       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
460     }
461   };
462 
463   /// A cleanup to call @llvm.lifetime.end.
464   class CallLifetimeEnd : public EHScopeStack::Cleanup {
465     llvm::Value *Addr;
466     llvm::Value *Size;
467   public:
468     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
469       : Addr(addr), Size(size) {}
470 
471     void Emit(CodeGenFunction &CGF, Flags flags) override {
472       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
473       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
474                               Size, castAddr)
475         ->setDoesNotThrow();
476     }
477   };
478 }
479 
480 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
481 /// variable with lifetime.
482 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
483                                     llvm::Value *addr,
484                                     Qualifiers::ObjCLifetime lifetime) {
485   switch (lifetime) {
486   case Qualifiers::OCL_None:
487     llvm_unreachable("present but none");
488 
489   case Qualifiers::OCL_ExplicitNone:
490     // nothing to do
491     break;
492 
493   case Qualifiers::OCL_Strong: {
494     CodeGenFunction::Destroyer *destroyer =
495       (var.hasAttr<ObjCPreciseLifetimeAttr>()
496        ? CodeGenFunction::destroyARCStrongPrecise
497        : CodeGenFunction::destroyARCStrongImprecise);
498 
499     CleanupKind cleanupKind = CGF.getARCCleanupKind();
500     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
501                     cleanupKind & EHCleanup);
502     break;
503   }
504   case Qualifiers::OCL_Autoreleasing:
505     // nothing to do
506     break;
507 
508   case Qualifiers::OCL_Weak:
509     // __weak objects always get EH cleanups; otherwise, exceptions
510     // could cause really nasty crashes instead of mere leaks.
511     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
512                     CodeGenFunction::destroyARCWeak,
513                     /*useEHCleanup*/ true);
514     break;
515   }
516 }
517 
518 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
519   if (const Expr *e = dyn_cast<Expr>(s)) {
520     // Skip the most common kinds of expressions that make
521     // hierarchy-walking expensive.
522     s = e = e->IgnoreParenCasts();
523 
524     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
525       return (ref->getDecl() == &var);
526     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
527       const BlockDecl *block = be->getBlockDecl();
528       for (const auto &I : block->captures()) {
529         if (I.getVariable() == &var)
530           return true;
531       }
532     }
533   }
534 
535   for (Stmt::const_child_range children = s->children(); children; ++children)
536     // children might be null; as in missing decl or conditional of an if-stmt.
537     if ((*children) && isAccessedBy(var, *children))
538       return true;
539 
540   return false;
541 }
542 
543 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
544   if (!decl) return false;
545   if (!isa<VarDecl>(decl)) return false;
546   const VarDecl *var = cast<VarDecl>(decl);
547   return isAccessedBy(*var, e);
548 }
549 
550 static void drillIntoBlockVariable(CodeGenFunction &CGF,
551                                    LValue &lvalue,
552                                    const VarDecl *var) {
553   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
554 }
555 
556 void CodeGenFunction::EmitScalarInit(const Expr *init,
557                                      const ValueDecl *D,
558                                      LValue lvalue,
559                                      bool capturedByInit) {
560   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
561   if (!lifetime) {
562     llvm::Value *value = EmitScalarExpr(init);
563     if (capturedByInit)
564       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
565     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
566     return;
567   }
568 
569   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
570     init = DIE->getExpr();
571 
572   // If we're emitting a value with lifetime, we have to do the
573   // initialization *before* we leave the cleanup scopes.
574   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
575     enterFullExpression(ewc);
576     init = ewc->getSubExpr();
577   }
578   CodeGenFunction::RunCleanupsScope Scope(*this);
579 
580   // We have to maintain the illusion that the variable is
581   // zero-initialized.  If the variable might be accessed in its
582   // initializer, zero-initialize before running the initializer, then
583   // actually perform the initialization with an assign.
584   bool accessedByInit = false;
585   if (lifetime != Qualifiers::OCL_ExplicitNone)
586     accessedByInit = (capturedByInit || isAccessedBy(D, init));
587   if (accessedByInit) {
588     LValue tempLV = lvalue;
589     // Drill down to the __block object if necessary.
590     if (capturedByInit) {
591       // We can use a simple GEP for this because it can't have been
592       // moved yet.
593       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
594                                    getByRefValueLLVMField(cast<VarDecl>(D))));
595     }
596 
597     llvm::PointerType *ty
598       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
599     ty = cast<llvm::PointerType>(ty->getElementType());
600 
601     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
602 
603     // If __weak, we want to use a barrier under certain conditions.
604     if (lifetime == Qualifiers::OCL_Weak)
605       EmitARCInitWeak(tempLV.getAddress(), zero);
606 
607     // Otherwise just do a simple store.
608     else
609       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
610   }
611 
612   // Emit the initializer.
613   llvm::Value *value = nullptr;
614 
615   switch (lifetime) {
616   case Qualifiers::OCL_None:
617     llvm_unreachable("present but none");
618 
619   case Qualifiers::OCL_ExplicitNone:
620     // nothing to do
621     value = EmitScalarExpr(init);
622     break;
623 
624   case Qualifiers::OCL_Strong: {
625     value = EmitARCRetainScalarExpr(init);
626     break;
627   }
628 
629   case Qualifiers::OCL_Weak: {
630     // No way to optimize a producing initializer into this.  It's not
631     // worth optimizing for, because the value will immediately
632     // disappear in the common case.
633     value = EmitScalarExpr(init);
634 
635     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
636     if (accessedByInit)
637       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
638     else
639       EmitARCInitWeak(lvalue.getAddress(), value);
640     return;
641   }
642 
643   case Qualifiers::OCL_Autoreleasing:
644     value = EmitARCRetainAutoreleaseScalarExpr(init);
645     break;
646   }
647 
648   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
649 
650   // If the variable might have been accessed by its initializer, we
651   // might have to initialize with a barrier.  We have to do this for
652   // both __weak and __strong, but __weak got filtered out above.
653   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
654     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
655     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
656     EmitARCRelease(oldValue, ARCImpreciseLifetime);
657     return;
658   }
659 
660   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
661 }
662 
663 /// EmitScalarInit - Initialize the given lvalue with the given object.
664 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
665   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
666   if (!lifetime)
667     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
668 
669   switch (lifetime) {
670   case Qualifiers::OCL_None:
671     llvm_unreachable("present but none");
672 
673   case Qualifiers::OCL_ExplicitNone:
674     // nothing to do
675     break;
676 
677   case Qualifiers::OCL_Strong:
678     init = EmitARCRetain(lvalue.getType(), init);
679     break;
680 
681   case Qualifiers::OCL_Weak:
682     // Initialize and then skip the primitive store.
683     EmitARCInitWeak(lvalue.getAddress(), init);
684     return;
685 
686   case Qualifiers::OCL_Autoreleasing:
687     init = EmitARCRetainAutorelease(lvalue.getType(), init);
688     break;
689   }
690 
691   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
692 }
693 
694 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
695 /// non-zero parts of the specified initializer with equal or fewer than
696 /// NumStores scalar stores.
697 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
698                                                 unsigned &NumStores) {
699   // Zero and Undef never requires any extra stores.
700   if (isa<llvm::ConstantAggregateZero>(Init) ||
701       isa<llvm::ConstantPointerNull>(Init) ||
702       isa<llvm::UndefValue>(Init))
703     return true;
704   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
705       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
706       isa<llvm::ConstantExpr>(Init))
707     return Init->isNullValue() || NumStores--;
708 
709   // See if we can emit each element.
710   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
711     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
712       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
713       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
714         return false;
715     }
716     return true;
717   }
718 
719   if (llvm::ConstantDataSequential *CDS =
720         dyn_cast<llvm::ConstantDataSequential>(Init)) {
721     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
722       llvm::Constant *Elt = CDS->getElementAsConstant(i);
723       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
724         return false;
725     }
726     return true;
727   }
728 
729   // Anything else is hard and scary.
730   return false;
731 }
732 
733 /// emitStoresForInitAfterMemset - For inits that
734 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
735 /// stores that would be required.
736 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
737                                          bool isVolatile, CGBuilderTy &Builder) {
738   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
739          "called emitStoresForInitAfterMemset for zero or undef value.");
740 
741   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
742       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
743       isa<llvm::ConstantExpr>(Init)) {
744     Builder.CreateStore(Init, Loc, isVolatile);
745     return;
746   }
747 
748   if (llvm::ConstantDataSequential *CDS =
749         dyn_cast<llvm::ConstantDataSequential>(Init)) {
750     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
751       llvm::Constant *Elt = CDS->getElementAsConstant(i);
752 
753       // If necessary, get a pointer to the element and emit it.
754       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
755         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
756                                      isVolatile, Builder);
757     }
758     return;
759   }
760 
761   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
762          "Unknown value type!");
763 
764   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
765     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
766 
767     // If necessary, get a pointer to the element and emit it.
768     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
769       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
770                                    isVolatile, Builder);
771   }
772 }
773 
774 
775 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
776 /// plus some stores to initialize a local variable instead of using a memcpy
777 /// from a constant global.  It is beneficial to use memset if the global is all
778 /// zeros, or mostly zeros and large.
779 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
780                                                   uint64_t GlobalSize) {
781   // If a global is all zeros, always use a memset.
782   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
783 
784   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
785   // do it if it will require 6 or fewer scalar stores.
786   // TODO: Should budget depends on the size?  Avoiding a large global warrants
787   // plopping in more stores.
788   unsigned StoreBudget = 6;
789   uint64_t SizeLimit = 32;
790 
791   return GlobalSize > SizeLimit &&
792          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
793 }
794 
795 /// Should we use the LLVM lifetime intrinsics for the given local variable?
796 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
797                                      unsigned Size) {
798   // For now, only in optimized builds.
799   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
800     return false;
801 
802   // Limit the size of marked objects to 32 bytes. We don't want to increase
803   // compile time by marking tiny objects.
804   unsigned SizeThreshold = 32;
805 
806   return Size > SizeThreshold;
807 }
808 
809 
810 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
811 /// variable declaration with auto, register, or no storage class specifier.
812 /// These turn into simple stack objects, or GlobalValues depending on target.
813 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
814   AutoVarEmission emission = EmitAutoVarAlloca(D);
815   EmitAutoVarInit(emission);
816   EmitAutoVarCleanups(emission);
817 }
818 
819 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
820 /// local variable.  Does not emit initialization or destruction.
821 CodeGenFunction::AutoVarEmission
822 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
823   QualType Ty = D.getType();
824 
825   AutoVarEmission emission(D);
826 
827   bool isByRef = D.hasAttr<BlocksAttr>();
828   emission.IsByRef = isByRef;
829 
830   CharUnits alignment = getContext().getDeclAlign(&D);
831   emission.Alignment = alignment;
832 
833   // If the type is variably-modified, emit all the VLA sizes for it.
834   if (Ty->isVariablyModifiedType())
835     EmitVariablyModifiedType(Ty);
836 
837   llvm::Value *DeclPtr;
838   if (Ty->isConstantSizeType()) {
839     bool NRVO = getLangOpts().ElideConstructors &&
840       D.isNRVOVariable();
841 
842     // If this value is an array or struct with a statically determinable
843     // constant initializer, there are optimizations we can do.
844     //
845     // TODO: We should constant-evaluate the initializer of any variable,
846     // as long as it is initialized by a constant expression. Currently,
847     // isConstantInitializer produces wrong answers for structs with
848     // reference or bitfield members, and a few other cases, and checking
849     // for POD-ness protects us from some of these.
850     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
851         (D.isConstexpr() ||
852          ((Ty.isPODType(getContext()) ||
853            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
854           D.getInit()->isConstantInitializer(getContext(), false)))) {
855 
856       // If the variable's a const type, and it's neither an NRVO
857       // candidate nor a __block variable and has no mutable members,
858       // emit it as a global instead.
859       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
860           CGM.isTypeConstant(Ty, true)) {
861         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
862 
863         emission.Address = nullptr; // signal this condition to later callbacks
864         assert(emission.wasEmittedAsGlobal());
865         return emission;
866       }
867 
868       // Otherwise, tell the initialization code that we're in this case.
869       emission.IsConstantAggregate = true;
870     }
871 
872     // A normal fixed sized variable becomes an alloca in the entry block,
873     // unless it's an NRVO variable.
874     llvm::Type *LTy = ConvertTypeForMem(Ty);
875 
876     if (NRVO) {
877       // The named return value optimization: allocate this variable in the
878       // return slot, so that we can elide the copy when returning this
879       // variable (C++0x [class.copy]p34).
880       DeclPtr = ReturnValue;
881 
882       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
883         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
884           // Create a flag that is used to indicate when the NRVO was applied
885           // to this variable. Set it to zero to indicate that NRVO was not
886           // applied.
887           llvm::Value *Zero = Builder.getFalse();
888           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
889           EnsureInsertPoint();
890           Builder.CreateStore(Zero, NRVOFlag);
891 
892           // Record the NRVO flag for this variable.
893           NRVOFlags[&D] = NRVOFlag;
894           emission.NRVOFlag = NRVOFlag;
895         }
896       }
897     } else {
898       if (isByRef)
899         LTy = BuildByRefType(&D);
900 
901       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
902       Alloc->setName(D.getName());
903 
904       CharUnits allocaAlignment = alignment;
905       if (isByRef)
906         allocaAlignment = std::max(allocaAlignment,
907             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
908       Alloc->setAlignment(allocaAlignment.getQuantity());
909       DeclPtr = Alloc;
910 
911       // Emit a lifetime intrinsic if meaningful.  There's no point
912       // in doing this if we don't have a valid insertion point (?).
913       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
914       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
915         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
916 
917         emission.SizeForLifetimeMarkers = sizeV;
918         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
919         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
920           ->setDoesNotThrow();
921       } else {
922         assert(!emission.useLifetimeMarkers());
923       }
924     }
925   } else {
926     EnsureInsertPoint();
927 
928     if (!DidCallStackSave) {
929       // Save the stack.
930       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
931 
932       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
933       llvm::Value *V = Builder.CreateCall(F);
934 
935       Builder.CreateStore(V, Stack);
936 
937       DidCallStackSave = true;
938 
939       // Push a cleanup block and restore the stack there.
940       // FIXME: in general circumstances, this should be an EH cleanup.
941       pushStackRestore(NormalCleanup, Stack);
942     }
943 
944     llvm::Value *elementCount;
945     QualType elementType;
946     std::tie(elementCount, elementType) = getVLASize(Ty);
947 
948     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
949 
950     // Allocate memory for the array.
951     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
952     vla->setAlignment(alignment.getQuantity());
953 
954     DeclPtr = vla;
955   }
956 
957   llvm::Value *&DMEntry = LocalDeclMap[&D];
958   assert(!DMEntry && "Decl already exists in localdeclmap!");
959   DMEntry = DeclPtr;
960   emission.Address = DeclPtr;
961 
962   // Emit debug info for local var declaration.
963   if (HaveInsertPoint())
964     if (CGDebugInfo *DI = getDebugInfo()) {
965       if (CGM.getCodeGenOpts().getDebugInfo()
966             >= CodeGenOptions::LimitedDebugInfo) {
967         DI->setLocation(D.getLocation());
968         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
969       }
970     }
971 
972   if (D.hasAttr<AnnotateAttr>())
973       EmitVarAnnotations(&D, emission.Address);
974 
975   return emission;
976 }
977 
978 /// Determines whether the given __block variable is potentially
979 /// captured by the given expression.
980 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
981   // Skip the most common kinds of expressions that make
982   // hierarchy-walking expensive.
983   e = e->IgnoreParenCasts();
984 
985   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
986     const BlockDecl *block = be->getBlockDecl();
987     for (const auto &I : block->captures()) {
988       if (I.getVariable() == &var)
989         return true;
990     }
991 
992     // No need to walk into the subexpressions.
993     return false;
994   }
995 
996   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
997     const CompoundStmt *CS = SE->getSubStmt();
998     for (const auto *BI : CS->body())
999       if (const auto *E = dyn_cast<Expr>(BI)) {
1000         if (isCapturedBy(var, E))
1001             return true;
1002       }
1003       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1004           // special case declarations
1005           for (const auto *I : DS->decls()) {
1006               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1007                 const Expr *Init = VD->getInit();
1008                 if (Init && isCapturedBy(var, Init))
1009                   return true;
1010               }
1011           }
1012       }
1013       else
1014         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1015         // Later, provide code to poke into statements for capture analysis.
1016         return true;
1017     return false;
1018   }
1019 
1020   for (Stmt::const_child_range children = e->children(); children; ++children)
1021     if (isCapturedBy(var, cast<Expr>(*children)))
1022       return true;
1023 
1024   return false;
1025 }
1026 
1027 /// \brief Determine whether the given initializer is trivial in the sense
1028 /// that it requires no code to be generated.
1029 static bool isTrivialInitializer(const Expr *Init) {
1030   if (!Init)
1031     return true;
1032 
1033   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1034     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1035       if (Constructor->isTrivial() &&
1036           Constructor->isDefaultConstructor() &&
1037           !Construct->requiresZeroInitialization())
1038         return true;
1039 
1040   return false;
1041 }
1042 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1043   assert(emission.Variable && "emission was not valid!");
1044 
1045   // If this was emitted as a global constant, we're done.
1046   if (emission.wasEmittedAsGlobal()) return;
1047 
1048   const VarDecl &D = *emission.Variable;
1049   QualType type = D.getType();
1050 
1051   // If this local has an initializer, emit it now.
1052   const Expr *Init = D.getInit();
1053 
1054   // If we are at an unreachable point, we don't need to emit the initializer
1055   // unless it contains a label.
1056   if (!HaveInsertPoint()) {
1057     if (!Init || !ContainsLabel(Init)) return;
1058     EnsureInsertPoint();
1059   }
1060 
1061   // Initialize the structure of a __block variable.
1062   if (emission.IsByRef)
1063     emitByrefStructureInit(emission);
1064 
1065   if (isTrivialInitializer(Init))
1066     return;
1067 
1068   CharUnits alignment = emission.Alignment;
1069 
1070   // Check whether this is a byref variable that's potentially
1071   // captured and moved by its own initializer.  If so, we'll need to
1072   // emit the initializer first, then copy into the variable.
1073   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1074 
1075   llvm::Value *Loc =
1076     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1077 
1078   llvm::Constant *constant = nullptr;
1079   if (emission.IsConstantAggregate || D.isConstexpr()) {
1080     assert(!capturedByInit && "constant init contains a capturing block?");
1081     constant = CGM.EmitConstantInit(D, this);
1082   }
1083 
1084   if (!constant) {
1085     LValue lv = MakeAddrLValue(Loc, type, alignment);
1086     lv.setNonGC(true);
1087     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1088   }
1089 
1090   if (!emission.IsConstantAggregate) {
1091     // For simple scalar/complex initialization, store the value directly.
1092     LValue lv = MakeAddrLValue(Loc, type, alignment);
1093     lv.setNonGC(true);
1094     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1095   }
1096 
1097   // If this is a simple aggregate initialization, we can optimize it
1098   // in various ways.
1099   bool isVolatile = type.isVolatileQualified();
1100 
1101   llvm::Value *SizeVal =
1102     llvm::ConstantInt::get(IntPtrTy,
1103                            getContext().getTypeSizeInChars(type).getQuantity());
1104 
1105   llvm::Type *BP = Int8PtrTy;
1106   if (Loc->getType() != BP)
1107     Loc = Builder.CreateBitCast(Loc, BP);
1108 
1109   // If the initializer is all or mostly zeros, codegen with memset then do
1110   // a few stores afterward.
1111   if (shouldUseMemSetPlusStoresToInitialize(constant,
1112                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1113     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1114                          alignment.getQuantity(), isVolatile);
1115     // Zero and undef don't require a stores.
1116     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1117       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1118       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1119     }
1120   } else {
1121     // Otherwise, create a temporary global with the initializer then
1122     // memcpy from the global to the alloca.
1123     std::string Name = GetStaticDeclName(*this, D, ".");
1124     llvm::GlobalVariable *GV =
1125       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1126                                llvm::GlobalValue::PrivateLinkage,
1127                                constant, Name);
1128     GV->setAlignment(alignment.getQuantity());
1129     GV->setUnnamedAddr(true);
1130 
1131     llvm::Value *SrcPtr = GV;
1132     if (SrcPtr->getType() != BP)
1133       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1134 
1135     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1136                          isVolatile);
1137   }
1138 }
1139 
1140 /// Emit an expression as an initializer for a variable at the given
1141 /// location.  The expression is not necessarily the normal
1142 /// initializer for the variable, and the address is not necessarily
1143 /// its normal location.
1144 ///
1145 /// \param init the initializing expression
1146 /// \param var the variable to act as if we're initializing
1147 /// \param loc the address to initialize; its type is a pointer
1148 ///   to the LLVM mapping of the variable's type
1149 /// \param alignment the alignment of the address
1150 /// \param capturedByInit true if the variable is a __block variable
1151 ///   whose address is potentially changed by the initializer
1152 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1153                                      const ValueDecl *D,
1154                                      LValue lvalue,
1155                                      bool capturedByInit) {
1156   QualType type = D->getType();
1157 
1158   if (type->isReferenceType()) {
1159     RValue rvalue = EmitReferenceBindingToExpr(init);
1160     if (capturedByInit)
1161       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1162     EmitStoreThroughLValue(rvalue, lvalue, true);
1163     return;
1164   }
1165   switch (getEvaluationKind(type)) {
1166   case TEK_Scalar:
1167     EmitScalarInit(init, D, lvalue, capturedByInit);
1168     return;
1169   case TEK_Complex: {
1170     ComplexPairTy complex = EmitComplexExpr(init);
1171     if (capturedByInit)
1172       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1173     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1174     return;
1175   }
1176   case TEK_Aggregate:
1177     if (type->isAtomicType()) {
1178       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1179     } else {
1180       // TODO: how can we delay here if D is captured by its initializer?
1181       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1182                                               AggValueSlot::IsDestructed,
1183                                          AggValueSlot::DoesNotNeedGCBarriers,
1184                                               AggValueSlot::IsNotAliased));
1185     }
1186     return;
1187   }
1188   llvm_unreachable("bad evaluation kind");
1189 }
1190 
1191 /// Enter a destroy cleanup for the given local variable.
1192 void CodeGenFunction::emitAutoVarTypeCleanup(
1193                             const CodeGenFunction::AutoVarEmission &emission,
1194                             QualType::DestructionKind dtorKind) {
1195   assert(dtorKind != QualType::DK_none);
1196 
1197   // Note that for __block variables, we want to destroy the
1198   // original stack object, not the possibly forwarded object.
1199   llvm::Value *addr = emission.getObjectAddress(*this);
1200 
1201   const VarDecl *var = emission.Variable;
1202   QualType type = var->getType();
1203 
1204   CleanupKind cleanupKind = NormalAndEHCleanup;
1205   CodeGenFunction::Destroyer *destroyer = nullptr;
1206 
1207   switch (dtorKind) {
1208   case QualType::DK_none:
1209     llvm_unreachable("no cleanup for trivially-destructible variable");
1210 
1211   case QualType::DK_cxx_destructor:
1212     // If there's an NRVO flag on the emission, we need a different
1213     // cleanup.
1214     if (emission.NRVOFlag) {
1215       assert(!type->isArrayType());
1216       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1217       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1218                                                emission.NRVOFlag);
1219       return;
1220     }
1221     break;
1222 
1223   case QualType::DK_objc_strong_lifetime:
1224     // Suppress cleanups for pseudo-strong variables.
1225     if (var->isARCPseudoStrong()) return;
1226 
1227     // Otherwise, consider whether to use an EH cleanup or not.
1228     cleanupKind = getARCCleanupKind();
1229 
1230     // Use the imprecise destroyer by default.
1231     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1232       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1233     break;
1234 
1235   case QualType::DK_objc_weak_lifetime:
1236     break;
1237   }
1238 
1239   // If we haven't chosen a more specific destroyer, use the default.
1240   if (!destroyer) destroyer = getDestroyer(dtorKind);
1241 
1242   // Use an EH cleanup in array destructors iff the destructor itself
1243   // is being pushed as an EH cleanup.
1244   bool useEHCleanup = (cleanupKind & EHCleanup);
1245   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1246                                      useEHCleanup);
1247 }
1248 
1249 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1250   assert(emission.Variable && "emission was not valid!");
1251 
1252   // If this was emitted as a global constant, we're done.
1253   if (emission.wasEmittedAsGlobal()) return;
1254 
1255   // If we don't have an insertion point, we're done.  Sema prevents
1256   // us from jumping into any of these scopes anyway.
1257   if (!HaveInsertPoint()) return;
1258 
1259   const VarDecl &D = *emission.Variable;
1260 
1261   // Make sure we call @llvm.lifetime.end.  This needs to happen
1262   // *last*, so the cleanup needs to be pushed *first*.
1263   if (emission.useLifetimeMarkers()) {
1264     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1265                                          emission.getAllocatedAddress(),
1266                                          emission.getSizeForLifetimeMarkers());
1267   }
1268 
1269   // Check the type for a cleanup.
1270   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1271     emitAutoVarTypeCleanup(emission, dtorKind);
1272 
1273   // In GC mode, honor objc_precise_lifetime.
1274   if (getLangOpts().getGC() != LangOptions::NonGC &&
1275       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1276     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1277   }
1278 
1279   // Handle the cleanup attribute.
1280   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1281     const FunctionDecl *FD = CA->getFunctionDecl();
1282 
1283     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1284     assert(F && "Could not find function!");
1285 
1286     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1287     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1288   }
1289 
1290   // If this is a block variable, call _Block_object_destroy
1291   // (on the unforwarded address).
1292   if (emission.IsByRef)
1293     enterByrefCleanup(emission);
1294 }
1295 
1296 CodeGenFunction::Destroyer *
1297 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1298   switch (kind) {
1299   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1300   case QualType::DK_cxx_destructor:
1301     return destroyCXXObject;
1302   case QualType::DK_objc_strong_lifetime:
1303     return destroyARCStrongPrecise;
1304   case QualType::DK_objc_weak_lifetime:
1305     return destroyARCWeak;
1306   }
1307   llvm_unreachable("Unknown DestructionKind");
1308 }
1309 
1310 /// pushEHDestroy - Push the standard destructor for the given type as
1311 /// an EH-only cleanup.
1312 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1313                                   llvm::Value *addr, QualType type) {
1314   assert(dtorKind && "cannot push destructor for trivial type");
1315   assert(needsEHCleanup(dtorKind));
1316 
1317   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1318 }
1319 
1320 /// pushDestroy - Push the standard destructor for the given type as
1321 /// at least a normal cleanup.
1322 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1323                                   llvm::Value *addr, QualType type) {
1324   assert(dtorKind && "cannot push destructor for trivial type");
1325 
1326   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1327   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1328               cleanupKind & EHCleanup);
1329 }
1330 
1331 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1332                                   QualType type, Destroyer *destroyer,
1333                                   bool useEHCleanupForArray) {
1334   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1335                                      destroyer, useEHCleanupForArray);
1336 }
1337 
1338 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1339   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1340 }
1341 
1342 void CodeGenFunction::pushLifetimeExtendedDestroy(
1343     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1344     Destroyer *destroyer, bool useEHCleanupForArray) {
1345   assert(!isInConditionalBranch() &&
1346          "performing lifetime extension from within conditional");
1347 
1348   // Push an EH-only cleanup for the object now.
1349   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1350   // around in case a temporary's destructor throws an exception.
1351   if (cleanupKind & EHCleanup)
1352     EHStack.pushCleanup<DestroyObject>(
1353         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1354         destroyer, useEHCleanupForArray);
1355 
1356   // Remember that we need to push a full cleanup for the object at the
1357   // end of the full-expression.
1358   pushCleanupAfterFullExpr<DestroyObject>(
1359       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1360 }
1361 
1362 /// emitDestroy - Immediately perform the destruction of the given
1363 /// object.
1364 ///
1365 /// \param addr - the address of the object; a type*
1366 /// \param type - the type of the object; if an array type, all
1367 ///   objects are destroyed in reverse order
1368 /// \param destroyer - the function to call to destroy individual
1369 ///   elements
1370 /// \param useEHCleanupForArray - whether an EH cleanup should be
1371 ///   used when destroying array elements, in case one of the
1372 ///   destructions throws an exception
1373 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1374                                   Destroyer *destroyer,
1375                                   bool useEHCleanupForArray) {
1376   const ArrayType *arrayType = getContext().getAsArrayType(type);
1377   if (!arrayType)
1378     return destroyer(*this, addr, type);
1379 
1380   llvm::Value *begin = addr;
1381   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1382 
1383   // Normally we have to check whether the array is zero-length.
1384   bool checkZeroLength = true;
1385 
1386   // But if the array length is constant, we can suppress that.
1387   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1388     // ...and if it's constant zero, we can just skip the entire thing.
1389     if (constLength->isZero()) return;
1390     checkZeroLength = false;
1391   }
1392 
1393   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1394   emitArrayDestroy(begin, end, type, destroyer,
1395                    checkZeroLength, useEHCleanupForArray);
1396 }
1397 
1398 /// emitArrayDestroy - Destroys all the elements of the given array,
1399 /// beginning from last to first.  The array cannot be zero-length.
1400 ///
1401 /// \param begin - a type* denoting the first element of the array
1402 /// \param end - a type* denoting one past the end of the array
1403 /// \param type - the element type of the array
1404 /// \param destroyer - the function to call to destroy elements
1405 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1406 ///   the remaining elements in case the destruction of a single
1407 ///   element throws
1408 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1409                                        llvm::Value *end,
1410                                        QualType type,
1411                                        Destroyer *destroyer,
1412                                        bool checkZeroLength,
1413                                        bool useEHCleanup) {
1414   assert(!type->isArrayType());
1415 
1416   // The basic structure here is a do-while loop, because we don't
1417   // need to check for the zero-element case.
1418   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1419   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1420 
1421   if (checkZeroLength) {
1422     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1423                                                 "arraydestroy.isempty");
1424     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1425   }
1426 
1427   // Enter the loop body, making that address the current address.
1428   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1429   EmitBlock(bodyBB);
1430   llvm::PHINode *elementPast =
1431     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1432   elementPast->addIncoming(end, entryBB);
1433 
1434   // Shift the address back by one element.
1435   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1436   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1437                                                    "arraydestroy.element");
1438 
1439   if (useEHCleanup)
1440     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1441 
1442   // Perform the actual destruction there.
1443   destroyer(*this, element, type);
1444 
1445   if (useEHCleanup)
1446     PopCleanupBlock();
1447 
1448   // Check whether we've reached the end.
1449   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1450   Builder.CreateCondBr(done, doneBB, bodyBB);
1451   elementPast->addIncoming(element, Builder.GetInsertBlock());
1452 
1453   // Done.
1454   EmitBlock(doneBB);
1455 }
1456 
1457 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1458 /// emitArrayDestroy, the element type here may still be an array type.
1459 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1460                                     llvm::Value *begin, llvm::Value *end,
1461                                     QualType type,
1462                                     CodeGenFunction::Destroyer *destroyer) {
1463   // If the element type is itself an array, drill down.
1464   unsigned arrayDepth = 0;
1465   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1466     // VLAs don't require a GEP index to walk into.
1467     if (!isa<VariableArrayType>(arrayType))
1468       arrayDepth++;
1469     type = arrayType->getElementType();
1470   }
1471 
1472   if (arrayDepth) {
1473     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1474 
1475     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1476     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1477     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1478   }
1479 
1480   // Destroy the array.  We don't ever need an EH cleanup because we
1481   // assume that we're in an EH cleanup ourselves, so a throwing
1482   // destructor causes an immediate terminate.
1483   CGF.emitArrayDestroy(begin, end, type, destroyer,
1484                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1485 }
1486 
1487 namespace {
1488   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1489   /// array destroy where the end pointer is regularly determined and
1490   /// does not need to be loaded from a local.
1491   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1492     llvm::Value *ArrayBegin;
1493     llvm::Value *ArrayEnd;
1494     QualType ElementType;
1495     CodeGenFunction::Destroyer *Destroyer;
1496   public:
1497     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1498                                QualType elementType,
1499                                CodeGenFunction::Destroyer *destroyer)
1500       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1501         ElementType(elementType), Destroyer(destroyer) {}
1502 
1503     void Emit(CodeGenFunction &CGF, Flags flags) override {
1504       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1505                               ElementType, Destroyer);
1506     }
1507   };
1508 
1509   /// IrregularPartialArrayDestroy - a cleanup which performs a
1510   /// partial array destroy where the end pointer is irregularly
1511   /// determined and must be loaded from a local.
1512   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1513     llvm::Value *ArrayBegin;
1514     llvm::Value *ArrayEndPointer;
1515     QualType ElementType;
1516     CodeGenFunction::Destroyer *Destroyer;
1517   public:
1518     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1519                                  llvm::Value *arrayEndPointer,
1520                                  QualType elementType,
1521                                  CodeGenFunction::Destroyer *destroyer)
1522       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1523         ElementType(elementType), Destroyer(destroyer) {}
1524 
1525     void Emit(CodeGenFunction &CGF, Flags flags) override {
1526       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1527       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1528                               ElementType, Destroyer);
1529     }
1530   };
1531 }
1532 
1533 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1534 /// already-constructed elements of the given array.  The cleanup
1535 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1536 ///
1537 /// \param elementType - the immediate element type of the array;
1538 ///   possibly still an array type
1539 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1540                                                  llvm::Value *arrayEndPointer,
1541                                                        QualType elementType,
1542                                                        Destroyer *destroyer) {
1543   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1544                                                     arrayBegin, arrayEndPointer,
1545                                                     elementType, destroyer);
1546 }
1547 
1548 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1549 /// already-constructed elements of the given array.  The cleanup
1550 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1551 ///
1552 /// \param elementType - the immediate element type of the array;
1553 ///   possibly still an array type
1554 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1555                                                      llvm::Value *arrayEnd,
1556                                                      QualType elementType,
1557                                                      Destroyer *destroyer) {
1558   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1559                                                   arrayBegin, arrayEnd,
1560                                                   elementType, destroyer);
1561 }
1562 
1563 /// Lazily declare the @llvm.lifetime.start intrinsic.
1564 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1565   if (LifetimeStartFn) return LifetimeStartFn;
1566   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1567                                             llvm::Intrinsic::lifetime_start);
1568   return LifetimeStartFn;
1569 }
1570 
1571 /// Lazily declare the @llvm.lifetime.end intrinsic.
1572 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1573   if (LifetimeEndFn) return LifetimeEndFn;
1574   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1575                                               llvm::Intrinsic::lifetime_end);
1576   return LifetimeEndFn;
1577 }
1578 
1579 namespace {
1580   /// A cleanup to perform a release of an object at the end of a
1581   /// function.  This is used to balance out the incoming +1 of a
1582   /// ns_consumed argument when we can't reasonably do that just by
1583   /// not doing the initial retain for a __block argument.
1584   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1585     ConsumeARCParameter(llvm::Value *param,
1586                         ARCPreciseLifetime_t precise)
1587       : Param(param), Precise(precise) {}
1588 
1589     llvm::Value *Param;
1590     ARCPreciseLifetime_t Precise;
1591 
1592     void Emit(CodeGenFunction &CGF, Flags flags) override {
1593       CGF.EmitARCRelease(Param, Precise);
1594     }
1595   };
1596 }
1597 
1598 /// Emit an alloca (or GlobalValue depending on target)
1599 /// for the specified parameter and set up LocalDeclMap.
1600 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1601                                    bool ArgIsPointer, unsigned ArgNo) {
1602   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1603   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1604          "Invalid argument to EmitParmDecl");
1605 
1606   Arg->setName(D.getName());
1607 
1608   QualType Ty = D.getType();
1609 
1610   // Use better IR generation for certain implicit parameters.
1611   if (isa<ImplicitParamDecl>(D)) {
1612     // The only implicit argument a block has is its literal.
1613     if (BlockInfo) {
1614       LocalDeclMap[&D] = Arg;
1615       llvm::Value *LocalAddr = nullptr;
1616       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1617         // Allocate a stack slot to let the debug info survive the RA.
1618         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1619                                                    D.getName() + ".addr");
1620         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1621         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1622         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1623         LocalAddr = Builder.CreateLoad(Alloc);
1624       }
1625 
1626       if (CGDebugInfo *DI = getDebugInfo()) {
1627         if (CGM.getCodeGenOpts().getDebugInfo()
1628               >= CodeGenOptions::LimitedDebugInfo) {
1629           DI->setLocation(D.getLocation());
1630           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1631         }
1632       }
1633 
1634       return;
1635     }
1636   }
1637 
1638   llvm::Value *DeclPtr;
1639   bool DoStore = false;
1640   bool IsScalar = hasScalarEvaluationKind(Ty);
1641   CharUnits Align = getContext().getDeclAlign(&D);
1642   // If we already have a pointer to the argument, reuse the input pointer.
1643   if (ArgIsPointer) {
1644     // If we have a prettier pointer type at this point, bitcast to that.
1645     unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1646     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1647     DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1648                                                                    D.getName());
1649     // Push a destructor cleanup for this parameter if the ABI requires it.
1650     if (!IsScalar &&
1651         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1652       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1653       if (RD && RD->hasNonTrivialDestructor())
1654         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1655     }
1656   } else {
1657     // Otherwise, create a temporary to hold the value.
1658     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1659                                                D.getName() + ".addr");
1660     Alloc->setAlignment(Align.getQuantity());
1661     DeclPtr = Alloc;
1662     DoStore = true;
1663   }
1664 
1665   LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1666   if (IsScalar) {
1667     Qualifiers qs = Ty.getQualifiers();
1668     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1669       // We honor __attribute__((ns_consumed)) for types with lifetime.
1670       // For __strong, it's handled by just skipping the initial retain;
1671       // otherwise we have to balance out the initial +1 with an extra
1672       // cleanup to do the release at the end of the function.
1673       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1674 
1675       // 'self' is always formally __strong, but if this is not an
1676       // init method then we don't want to retain it.
1677       if (D.isARCPseudoStrong()) {
1678         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1679         assert(&D == method->getSelfDecl());
1680         assert(lt == Qualifiers::OCL_Strong);
1681         assert(qs.hasConst());
1682         assert(method->getMethodFamily() != OMF_init);
1683         (void) method;
1684         lt = Qualifiers::OCL_ExplicitNone;
1685       }
1686 
1687       if (lt == Qualifiers::OCL_Strong) {
1688         if (!isConsumed) {
1689           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1690             // use objc_storeStrong(&dest, value) for retaining the
1691             // object. But first, store a null into 'dest' because
1692             // objc_storeStrong attempts to release its old value.
1693             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1694             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1695             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1696             DoStore = false;
1697           }
1698           else
1699           // Don't use objc_retainBlock for block pointers, because we
1700           // don't want to Block_copy something just because we got it
1701           // as a parameter.
1702             Arg = EmitARCRetainNonBlock(Arg);
1703         }
1704       } else {
1705         // Push the cleanup for a consumed parameter.
1706         if (isConsumed) {
1707           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1708                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1709           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1710                                                    precise);
1711         }
1712 
1713         if (lt == Qualifiers::OCL_Weak) {
1714           EmitARCInitWeak(DeclPtr, Arg);
1715           DoStore = false; // The weak init is a store, no need to do two.
1716         }
1717       }
1718 
1719       // Enter the cleanup scope.
1720       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1721     }
1722   }
1723 
1724   // Store the initial value into the alloca.
1725   if (DoStore)
1726     EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1727 
1728   llvm::Value *&DMEntry = LocalDeclMap[&D];
1729   assert(!DMEntry && "Decl already exists in localdeclmap!");
1730   DMEntry = DeclPtr;
1731 
1732   // Emit debug info for param declaration.
1733   if (CGDebugInfo *DI = getDebugInfo()) {
1734     if (CGM.getCodeGenOpts().getDebugInfo()
1735           >= CodeGenOptions::LimitedDebugInfo) {
1736       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1737     }
1738   }
1739 
1740   if (D.hasAttr<AnnotateAttr>())
1741       EmitVarAnnotations(&D, DeclPtr);
1742 }
1743