1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Type.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 
32 void CodeGenFunction::EmitDecl(const Decl &D) {
33   switch (D.getKind()) {
34   case Decl::TranslationUnit:
35   case Decl::Namespace:
36   case Decl::UnresolvedUsingTypename:
37   case Decl::ClassTemplateSpecialization:
38   case Decl::ClassTemplatePartialSpecialization:
39   case Decl::TemplateTypeParm:
40   case Decl::UnresolvedUsingValue:
41   case Decl::NonTypeTemplateParm:
42   case Decl::CXXMethod:
43   case Decl::CXXConstructor:
44   case Decl::CXXDestructor:
45   case Decl::CXXConversion:
46   case Decl::Field:
47   case Decl::IndirectField:
48   case Decl::ObjCIvar:
49   case Decl::ObjCAtDefsField:
50   case Decl::ParmVar:
51   case Decl::ImplicitParam:
52   case Decl::ClassTemplate:
53   case Decl::FunctionTemplate:
54   case Decl::TypeAliasTemplate:
55   case Decl::TemplateTemplateParm:
56   case Decl::ObjCMethod:
57   case Decl::ObjCCategory:
58   case Decl::ObjCProtocol:
59   case Decl::ObjCInterface:
60   case Decl::ObjCCategoryImpl:
61   case Decl::ObjCImplementation:
62   case Decl::ObjCProperty:
63   case Decl::ObjCCompatibleAlias:
64   case Decl::AccessSpec:
65   case Decl::LinkageSpec:
66   case Decl::ObjCPropertyImpl:
67   case Decl::ObjCClass:
68   case Decl::ObjCForwardProtocol:
69   case Decl::FileScopeAsm:
70   case Decl::Friend:
71   case Decl::FriendTemplate:
72   case Decl::Block:
73   case Decl::ClassScopeFunctionSpecialization:
74     assert(0 && "Declaration should not be in declstmts!");
75   case Decl::Function:  // void X();
76   case Decl::Record:    // struct/union/class X;
77   case Decl::Enum:      // enum X;
78   case Decl::EnumConstant: // enum ? { X = ? }
79   case Decl::CXXRecord: // struct/union/class X; [C++]
80   case Decl::Using:          // using X; [C++]
81   case Decl::UsingShadow:
82   case Decl::UsingDirective: // using namespace X; [C++]
83   case Decl::NamespaceAlias:
84   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
85   case Decl::Label:        // __label__ x;
86     // None of these decls require codegen support.
87     return;
88 
89   case Decl::Var: {
90     const VarDecl &VD = cast<VarDecl>(D);
91     assert(VD.isLocalVarDecl() &&
92            "Should not see file-scope variables inside a function!");
93     return EmitVarDecl(VD);
94   }
95 
96   case Decl::Typedef:      // typedef int X;
97   case Decl::TypeAlias: {  // using X = int; [C++0x]
98     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
99     QualType Ty = TD.getUnderlyingType();
100 
101     if (Ty->isVariablyModifiedType())
102       EmitVariablyModifiedType(Ty);
103   }
104   }
105 }
106 
107 /// EmitVarDecl - This method handles emission of any variable declaration
108 /// inside a function, including static vars etc.
109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
110   switch (D.getStorageClass()) {
111   case SC_None:
112   case SC_Auto:
113   case SC_Register:
114     return EmitAutoVarDecl(D);
115   case SC_Static: {
116     llvm::GlobalValue::LinkageTypes Linkage =
117       llvm::GlobalValue::InternalLinkage;
118 
119     // If the function definition has some sort of weak linkage, its
120     // static variables should also be weak so that they get properly
121     // uniqued.  We can't do this in C, though, because there's no
122     // standard way to agree on which variables are the same (i.e.
123     // there's no mangling).
124     if (getContext().getLangOptions().CPlusPlus)
125       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
126         Linkage = CurFn->getLinkage();
127 
128     return EmitStaticVarDecl(D, Linkage);
129   }
130   case SC_Extern:
131   case SC_PrivateExtern:
132     // Don't emit it now, allow it to be emitted lazily on its first use.
133     return;
134   }
135 
136   assert(0 && "Unknown storage class");
137 }
138 
139 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
140                                      const char *Separator) {
141   CodeGenModule &CGM = CGF.CGM;
142   if (CGF.getContext().getLangOptions().CPlusPlus) {
143     StringRef Name = CGM.getMangledName(&D);
144     return Name.str();
145   }
146 
147   std::string ContextName;
148   if (!CGF.CurFuncDecl) {
149     // Better be in a block declared in global scope.
150     const NamedDecl *ND = cast<NamedDecl>(&D);
151     const DeclContext *DC = ND->getDeclContext();
152     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
153       MangleBuffer Name;
154       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
155       ContextName = Name.getString();
156     }
157     else
158       assert(0 && "Unknown context for block static var decl");
159   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
160     StringRef Name = CGM.getMangledName(FD);
161     ContextName = Name.str();
162   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
163     ContextName = CGF.CurFn->getName();
164   else
165     assert(0 && "Unknown context for static var decl");
166 
167   return ContextName + Separator + D.getNameAsString();
168 }
169 
170 llvm::GlobalVariable *
171 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
172                                      const char *Separator,
173                                      llvm::GlobalValue::LinkageTypes Linkage) {
174   QualType Ty = D.getType();
175   assert(Ty->isConstantSizeType() && "VLAs can't be static");
176 
177   std::string Name = GetStaticDeclName(*this, D, Separator);
178 
179   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
180   llvm::GlobalVariable *GV =
181     new llvm::GlobalVariable(CGM.getModule(), LTy,
182                              Ty.isConstant(getContext()), Linkage,
183                              CGM.EmitNullConstant(D.getType()), Name, 0,
184                              D.isThreadSpecified(),
185                              CGM.getContext().getTargetAddressSpace(Ty));
186   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
187   if (Linkage != llvm::GlobalValue::InternalLinkage)
188     GV->setVisibility(CurFn->getVisibility());
189   return GV;
190 }
191 
192 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
193 /// global variable that has already been created for it.  If the initializer
194 /// has a different type than GV does, this may free GV and return a different
195 /// one.  Otherwise it just returns GV.
196 llvm::GlobalVariable *
197 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
198                                                llvm::GlobalVariable *GV) {
199   llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
200 
201   // If constant emission failed, then this should be a C++ static
202   // initializer.
203   if (!Init) {
204     if (!getContext().getLangOptions().CPlusPlus)
205       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
206     else if (Builder.GetInsertBlock()) {
207       // Since we have a static initializer, this global variable can't
208       // be constant.
209       GV->setConstant(false);
210 
211       EmitCXXGuardedInit(D, GV);
212     }
213     return GV;
214   }
215 
216   // The initializer may differ in type from the global. Rewrite
217   // the global to match the initializer.  (We have to do this
218   // because some types, like unions, can't be completely represented
219   // in the LLVM type system.)
220   if (GV->getType()->getElementType() != Init->getType()) {
221     llvm::GlobalVariable *OldGV = GV;
222 
223     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
224                                   OldGV->isConstant(),
225                                   OldGV->getLinkage(), Init, "",
226                                   /*InsertBefore*/ OldGV,
227                                   D.isThreadSpecified(),
228                            CGM.getContext().getTargetAddressSpace(D.getType()));
229     GV->setVisibility(OldGV->getVisibility());
230 
231     // Steal the name of the old global
232     GV->takeName(OldGV);
233 
234     // Replace all uses of the old global with the new global
235     llvm::Constant *NewPtrForOldDecl =
236     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
237     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
238 
239     // Erase the old global, since it is no longer used.
240     OldGV->eraseFromParent();
241   }
242 
243   GV->setInitializer(Init);
244   return GV;
245 }
246 
247 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
248                                       llvm::GlobalValue::LinkageTypes Linkage) {
249   llvm::Value *&DMEntry = LocalDeclMap[&D];
250   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
251 
252   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
253 
254   // Store into LocalDeclMap before generating initializer to handle
255   // circular references.
256   DMEntry = GV;
257 
258   // We can't have a VLA here, but we can have a pointer to a VLA,
259   // even though that doesn't really make any sense.
260   // Make sure to evaluate VLA bounds now so that we have them for later.
261   if (D.getType()->isVariablyModifiedType())
262     EmitVariablyModifiedType(D.getType());
263 
264   // Local static block variables must be treated as globals as they may be
265   // referenced in their RHS initializer block-literal expresion.
266   CGM.setStaticLocalDeclAddress(&D, GV);
267 
268   // If this value has an initializer, emit it.
269   if (D.getInit())
270     GV = AddInitializerToStaticVarDecl(D, GV);
271 
272   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
273 
274   if (D.hasAttr<AnnotateAttr>())
275     CGM.AddGlobalAnnotations(&D, GV);
276 
277   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
278     GV->setSection(SA->getName());
279 
280   if (D.hasAttr<UsedAttr>())
281     CGM.AddUsedGlobal(GV);
282 
283   // We may have to cast the constant because of the initializer
284   // mismatch above.
285   //
286   // FIXME: It is really dangerous to store this in the map; if anyone
287   // RAUW's the GV uses of this constant will be invalid.
288   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
289   llvm::Type *LPtrTy =
290     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
291   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
292 
293   // Emit global variable debug descriptor for static vars.
294   CGDebugInfo *DI = getDebugInfo();
295   if (DI) {
296     DI->setLocation(D.getLocation());
297     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
298   }
299 }
300 
301 namespace {
302   struct DestroyObject : EHScopeStack::Cleanup {
303     DestroyObject(llvm::Value *addr, QualType type,
304                   CodeGenFunction::Destroyer *destroyer,
305                   bool useEHCleanupForArray)
306       : addr(addr), type(type), destroyer(*destroyer),
307         useEHCleanupForArray(useEHCleanupForArray) {}
308 
309     llvm::Value *addr;
310     QualType type;
311     CodeGenFunction::Destroyer &destroyer;
312     bool useEHCleanupForArray;
313 
314     void Emit(CodeGenFunction &CGF, Flags flags) {
315       // Don't use an EH cleanup recursively from an EH cleanup.
316       bool useEHCleanupForArray =
317         flags.isForNormalCleanup() && this->useEHCleanupForArray;
318 
319       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
320     }
321   };
322 
323   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
324     DestroyNRVOVariable(llvm::Value *addr,
325                         const CXXDestructorDecl *Dtor,
326                         llvm::Value *NRVOFlag)
327       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
328 
329     const CXXDestructorDecl *Dtor;
330     llvm::Value *NRVOFlag;
331     llvm::Value *Loc;
332 
333     void Emit(CodeGenFunction &CGF, Flags flags) {
334       // Along the exceptions path we always execute the dtor.
335       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
336 
337       llvm::BasicBlock *SkipDtorBB = 0;
338       if (NRVO) {
339         // If we exited via NRVO, we skip the destructor call.
340         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
341         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
342         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
343         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
344         CGF.EmitBlock(RunDtorBB);
345       }
346 
347       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
348                                 /*ForVirtualBase=*/false, Loc);
349 
350       if (NRVO) CGF.EmitBlock(SkipDtorBB);
351     }
352   };
353 
354   struct CallStackRestore : EHScopeStack::Cleanup {
355     llvm::Value *Stack;
356     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
357     void Emit(CodeGenFunction &CGF, Flags flags) {
358       llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp");
359       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
360       CGF.Builder.CreateCall(F, V);
361     }
362   };
363 
364   struct ExtendGCLifetime : EHScopeStack::Cleanup {
365     const VarDecl &Var;
366     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
367 
368     void Emit(CodeGenFunction &CGF, Flags flags) {
369       // Compute the address of the local variable, in case it's a
370       // byref or something.
371       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
372                       SourceLocation());
373       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
374       CGF.EmitExtendGCLifetime(value);
375     }
376   };
377 
378   struct CallCleanupFunction : EHScopeStack::Cleanup {
379     llvm::Constant *CleanupFn;
380     const CGFunctionInfo &FnInfo;
381     const VarDecl &Var;
382 
383     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
384                         const VarDecl *Var)
385       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
386 
387     void Emit(CodeGenFunction &CGF, Flags flags) {
388       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
389                       SourceLocation());
390       // Compute the address of the local variable, in case it's a byref
391       // or something.
392       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
393 
394       // In some cases, the type of the function argument will be different from
395       // the type of the pointer. An example of this is
396       // void f(void* arg);
397       // __attribute__((cleanup(f))) void *g;
398       //
399       // To fix this we insert a bitcast here.
400       QualType ArgTy = FnInfo.arg_begin()->type;
401       llvm::Value *Arg =
402         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
403 
404       CallArgList Args;
405       Args.add(RValue::get(Arg),
406                CGF.getContext().getPointerType(Var.getType()));
407       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
408     }
409   };
410 }
411 
412 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
413 /// variable with lifetime.
414 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
415                                     llvm::Value *addr,
416                                     Qualifiers::ObjCLifetime lifetime) {
417   switch (lifetime) {
418   case Qualifiers::OCL_None:
419     llvm_unreachable("present but none");
420 
421   case Qualifiers::OCL_ExplicitNone:
422     // nothing to do
423     break;
424 
425   case Qualifiers::OCL_Strong: {
426     CodeGenFunction::Destroyer &destroyer =
427       (var.hasAttr<ObjCPreciseLifetimeAttr>()
428        ? CodeGenFunction::destroyARCStrongPrecise
429        : CodeGenFunction::destroyARCStrongImprecise);
430 
431     CleanupKind cleanupKind = CGF.getARCCleanupKind();
432     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
433                     cleanupKind & EHCleanup);
434     break;
435   }
436   case Qualifiers::OCL_Autoreleasing:
437     // nothing to do
438     break;
439 
440   case Qualifiers::OCL_Weak:
441     // __weak objects always get EH cleanups; otherwise, exceptions
442     // could cause really nasty crashes instead of mere leaks.
443     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
444                     CodeGenFunction::destroyARCWeak,
445                     /*useEHCleanup*/ true);
446     break;
447   }
448 }
449 
450 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
451   if (const Expr *e = dyn_cast<Expr>(s)) {
452     // Skip the most common kinds of expressions that make
453     // hierarchy-walking expensive.
454     s = e = e->IgnoreParenCasts();
455 
456     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
457       return (ref->getDecl() == &var);
458   }
459 
460   for (Stmt::const_child_range children = s->children(); children; ++children)
461     // children might be null; as in missing decl or conditional of an if-stmt.
462     if ((*children) && isAccessedBy(var, *children))
463       return true;
464 
465   return false;
466 }
467 
468 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
469   if (!decl) return false;
470   if (!isa<VarDecl>(decl)) return false;
471   const VarDecl *var = cast<VarDecl>(decl);
472   return isAccessedBy(*var, e);
473 }
474 
475 static void drillIntoBlockVariable(CodeGenFunction &CGF,
476                                    LValue &lvalue,
477                                    const VarDecl *var) {
478   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
479 }
480 
481 void CodeGenFunction::EmitScalarInit(const Expr *init,
482                                      const ValueDecl *D,
483                                      LValue lvalue,
484                                      bool capturedByInit) {
485   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
486   if (!lifetime) {
487     llvm::Value *value = EmitScalarExpr(init);
488     if (capturedByInit)
489       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
490     EmitStoreThroughLValue(RValue::get(value), lvalue);
491     return;
492   }
493 
494   // If we're emitting a value with lifetime, we have to do the
495   // initialization *before* we leave the cleanup scopes.
496   CodeGenFunction::RunCleanupsScope Scope(*this);
497   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init))
498     init = ewc->getSubExpr();
499 
500   // We have to maintain the illusion that the variable is
501   // zero-initialized.  If the variable might be accessed in its
502   // initializer, zero-initialize before running the initializer, then
503   // actually perform the initialization with an assign.
504   bool accessedByInit = false;
505   if (lifetime != Qualifiers::OCL_ExplicitNone)
506     accessedByInit = (capturedByInit || isAccessedBy(D, init));
507   if (accessedByInit) {
508     LValue tempLV = lvalue;
509     // Drill down to the __block object if necessary.
510     if (capturedByInit) {
511       // We can use a simple GEP for this because it can't have been
512       // moved yet.
513       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
514                                    getByRefValueLLVMField(cast<VarDecl>(D))));
515     }
516 
517     llvm::PointerType *ty
518       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
519     ty = cast<llvm::PointerType>(ty->getElementType());
520 
521     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
522 
523     // If __weak, we want to use a barrier under certain conditions.
524     if (lifetime == Qualifiers::OCL_Weak)
525       EmitARCInitWeak(tempLV.getAddress(), zero);
526 
527     // Otherwise just do a simple store.
528     else
529       EmitStoreOfScalar(zero, tempLV);
530   }
531 
532   // Emit the initializer.
533   llvm::Value *value = 0;
534 
535   switch (lifetime) {
536   case Qualifiers::OCL_None:
537     llvm_unreachable("present but none");
538 
539   case Qualifiers::OCL_ExplicitNone:
540     // nothing to do
541     value = EmitScalarExpr(init);
542     break;
543 
544   case Qualifiers::OCL_Strong: {
545     value = EmitARCRetainScalarExpr(init);
546     break;
547   }
548 
549   case Qualifiers::OCL_Weak: {
550     // No way to optimize a producing initializer into this.  It's not
551     // worth optimizing for, because the value will immediately
552     // disappear in the common case.
553     value = EmitScalarExpr(init);
554 
555     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
556     if (accessedByInit)
557       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
558     else
559       EmitARCInitWeak(lvalue.getAddress(), value);
560     return;
561   }
562 
563   case Qualifiers::OCL_Autoreleasing:
564     value = EmitARCRetainAutoreleaseScalarExpr(init);
565     break;
566   }
567 
568   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
569 
570   // If the variable might have been accessed by its initializer, we
571   // might have to initialize with a barrier.  We have to do this for
572   // both __weak and __strong, but __weak got filtered out above.
573   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
574     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
575     EmitStoreOfScalar(value, lvalue);
576     EmitARCRelease(oldValue, /*precise*/ false);
577     return;
578   }
579 
580   EmitStoreOfScalar(value, lvalue);
581 }
582 
583 /// EmitScalarInit - Initialize the given lvalue with the given object.
584 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
585   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
586   if (!lifetime)
587     return EmitStoreThroughLValue(RValue::get(init), lvalue);
588 
589   switch (lifetime) {
590   case Qualifiers::OCL_None:
591     llvm_unreachable("present but none");
592 
593   case Qualifiers::OCL_ExplicitNone:
594     // nothing to do
595     break;
596 
597   case Qualifiers::OCL_Strong:
598     init = EmitARCRetain(lvalue.getType(), init);
599     break;
600 
601   case Qualifiers::OCL_Weak:
602     // Initialize and then skip the primitive store.
603     EmitARCInitWeak(lvalue.getAddress(), init);
604     return;
605 
606   case Qualifiers::OCL_Autoreleasing:
607     init = EmitARCRetainAutorelease(lvalue.getType(), init);
608     break;
609   }
610 
611   EmitStoreOfScalar(init, lvalue);
612 }
613 
614 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
615 /// non-zero parts of the specified initializer with equal or fewer than
616 /// NumStores scalar stores.
617 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
618                                                 unsigned &NumStores) {
619   // Zero and Undef never requires any extra stores.
620   if (isa<llvm::ConstantAggregateZero>(Init) ||
621       isa<llvm::ConstantPointerNull>(Init) ||
622       isa<llvm::UndefValue>(Init))
623     return true;
624   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
625       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
626       isa<llvm::ConstantExpr>(Init))
627     return Init->isNullValue() || NumStores--;
628 
629   // See if we can emit each element.
630   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
631     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
632       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
633       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
634         return false;
635     }
636     return true;
637   }
638 
639   // Anything else is hard and scary.
640   return false;
641 }
642 
643 /// emitStoresForInitAfterMemset - For inits that
644 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
645 /// stores that would be required.
646 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
647                                          bool isVolatile, CGBuilderTy &Builder) {
648   // Zero doesn't require any stores.
649   if (isa<llvm::ConstantAggregateZero>(Init) ||
650       isa<llvm::ConstantPointerNull>(Init) ||
651       isa<llvm::UndefValue>(Init))
652     return;
653 
654   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
655       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
656       isa<llvm::ConstantExpr>(Init)) {
657     if (!Init->isNullValue())
658       Builder.CreateStore(Init, Loc, isVolatile);
659     return;
660   }
661 
662   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
663          "Unknown value type!");
664 
665   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
666     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
667     if (Elt->isNullValue()) continue;
668 
669     // Otherwise, get a pointer to the element and emit it.
670     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
671                                  isVolatile, Builder);
672   }
673 }
674 
675 
676 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
677 /// plus some stores to initialize a local variable instead of using a memcpy
678 /// from a constant global.  It is beneficial to use memset if the global is all
679 /// zeros, or mostly zeros and large.
680 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
681                                                   uint64_t GlobalSize) {
682   // If a global is all zeros, always use a memset.
683   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
684 
685 
686   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
687   // do it if it will require 6 or fewer scalar stores.
688   // TODO: Should budget depends on the size?  Avoiding a large global warrants
689   // plopping in more stores.
690   unsigned StoreBudget = 6;
691   uint64_t SizeLimit = 32;
692 
693   return GlobalSize > SizeLimit &&
694          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
695 }
696 
697 
698 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
699 /// variable declaration with auto, register, or no storage class specifier.
700 /// These turn into simple stack objects, or GlobalValues depending on target.
701 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
702   AutoVarEmission emission = EmitAutoVarAlloca(D);
703   EmitAutoVarInit(emission);
704   EmitAutoVarCleanups(emission);
705 }
706 
707 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
708 /// local variable.  Does not emit initalization or destruction.
709 CodeGenFunction::AutoVarEmission
710 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
711   QualType Ty = D.getType();
712 
713   AutoVarEmission emission(D);
714 
715   bool isByRef = D.hasAttr<BlocksAttr>();
716   emission.IsByRef = isByRef;
717 
718   CharUnits alignment = getContext().getDeclAlign(&D);
719   emission.Alignment = alignment;
720 
721   // If the type is variably-modified, emit all the VLA sizes for it.
722   if (Ty->isVariablyModifiedType())
723     EmitVariablyModifiedType(Ty);
724 
725   llvm::Value *DeclPtr;
726   if (Ty->isConstantSizeType()) {
727     if (!Target.useGlobalsForAutomaticVariables()) {
728       bool NRVO = getContext().getLangOptions().ElideConstructors &&
729                   D.isNRVOVariable();
730 
731       // If this value is a POD array or struct with a statically
732       // determinable constant initializer, there are optimizations we
733       // can do.
734       // TODO: we can potentially constant-evaluate non-POD structs and
735       // arrays as long as the initialization is trivial (e.g. if they
736       // have a non-trivial destructor, but not a non-trivial constructor).
737       if (D.getInit() &&
738           (Ty->isArrayType() || Ty->isRecordType()) &&
739           (Ty.isPODType(getContext()) ||
740            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
741           D.getInit()->isConstantInitializer(getContext(), false)) {
742 
743         // If the variable's a const type, and it's neither an NRVO
744         // candidate nor a __block variable, emit it as a global instead.
745         if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
746             !NRVO && !isByRef) {
747           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
748 
749           emission.Address = 0; // signal this condition to later callbacks
750           assert(emission.wasEmittedAsGlobal());
751           return emission;
752         }
753 
754         // Otherwise, tell the initialization code that we're in this case.
755         emission.IsConstantAggregate = true;
756       }
757 
758       // A normal fixed sized variable becomes an alloca in the entry block,
759       // unless it's an NRVO variable.
760       llvm::Type *LTy = ConvertTypeForMem(Ty);
761 
762       if (NRVO) {
763         // The named return value optimization: allocate this variable in the
764         // return slot, so that we can elide the copy when returning this
765         // variable (C++0x [class.copy]p34).
766         DeclPtr = ReturnValue;
767 
768         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
769           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
770             // Create a flag that is used to indicate when the NRVO was applied
771             // to this variable. Set it to zero to indicate that NRVO was not
772             // applied.
773             llvm::Value *Zero = Builder.getFalse();
774             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
775             EnsureInsertPoint();
776             Builder.CreateStore(Zero, NRVOFlag);
777 
778             // Record the NRVO flag for this variable.
779             NRVOFlags[&D] = NRVOFlag;
780             emission.NRVOFlag = NRVOFlag;
781           }
782         }
783       } else {
784         if (isByRef)
785           LTy = BuildByRefType(&D);
786 
787         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
788         Alloc->setName(D.getNameAsString());
789 
790         CharUnits allocaAlignment = alignment;
791         if (isByRef)
792           allocaAlignment = std::max(allocaAlignment,
793               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
794         Alloc->setAlignment(allocaAlignment.getQuantity());
795         DeclPtr = Alloc;
796       }
797     } else {
798       // Targets that don't support recursion emit locals as globals.
799       const char *Class =
800         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
801       DeclPtr = CreateStaticVarDecl(D, Class,
802                                     llvm::GlobalValue::InternalLinkage);
803     }
804   } else {
805     EnsureInsertPoint();
806 
807     if (!DidCallStackSave) {
808       // Save the stack.
809       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
810 
811       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
812       llvm::Value *V = Builder.CreateCall(F);
813 
814       Builder.CreateStore(V, Stack);
815 
816       DidCallStackSave = true;
817 
818       // Push a cleanup block and restore the stack there.
819       // FIXME: in general circumstances, this should be an EH cleanup.
820       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
821     }
822 
823     llvm::Value *elementCount;
824     QualType elementType;
825     llvm::tie(elementCount, elementType) = getVLASize(Ty);
826 
827     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
828 
829     // Allocate memory for the array.
830     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
831     vla->setAlignment(alignment.getQuantity());
832 
833     DeclPtr = vla;
834   }
835 
836   llvm::Value *&DMEntry = LocalDeclMap[&D];
837   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
838   DMEntry = DeclPtr;
839   emission.Address = DeclPtr;
840 
841   // Emit debug info for local var declaration.
842   if (HaveInsertPoint())
843     if (CGDebugInfo *DI = getDebugInfo()) {
844       DI->setLocation(D.getLocation());
845       if (Target.useGlobalsForAutomaticVariables()) {
846         DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
847       } else
848         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
849     }
850 
851   if (D.hasAttr<AnnotateAttr>())
852       EmitVarAnnotations(&D, emission.Address);
853 
854   return emission;
855 }
856 
857 /// Determines whether the given __block variable is potentially
858 /// captured by the given expression.
859 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
860   // Skip the most common kinds of expressions that make
861   // hierarchy-walking expensive.
862   e = e->IgnoreParenCasts();
863 
864   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
865     const BlockDecl *block = be->getBlockDecl();
866     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
867            e = block->capture_end(); i != e; ++i) {
868       if (i->getVariable() == &var)
869         return true;
870     }
871 
872     // No need to walk into the subexpressions.
873     return false;
874   }
875 
876   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
877     const CompoundStmt *CS = SE->getSubStmt();
878     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
879 	   BE = CS->body_end(); BI != BE; ++BI)
880       if (Expr *E = dyn_cast<Expr>((*BI))) {
881         if (isCapturedBy(var, E))
882             return true;
883       }
884       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
885           // special case declarations
886           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
887                I != E; ++I) {
888               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
889                 Expr *Init = VD->getInit();
890                 if (Init && isCapturedBy(var, Init))
891                   return true;
892               }
893           }
894       }
895       else
896         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
897         // Later, provide code to poke into statements for capture analysis.
898         return true;
899     return false;
900   }
901 
902   for (Stmt::const_child_range children = e->children(); children; ++children)
903     if (isCapturedBy(var, cast<Expr>(*children)))
904       return true;
905 
906   return false;
907 }
908 
909 /// \brief Determine whether the given initializer is trivial in the sense
910 /// that it requires no code to be generated.
911 static bool isTrivialInitializer(const Expr *Init) {
912   if (!Init)
913     return true;
914 
915   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
916     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
917       if (Constructor->isTrivial() &&
918           Constructor->isDefaultConstructor() &&
919           !Construct->requiresZeroInitialization())
920         return true;
921 
922   return false;
923 }
924 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
925   assert(emission.Variable && "emission was not valid!");
926 
927   // If this was emitted as a global constant, we're done.
928   if (emission.wasEmittedAsGlobal()) return;
929 
930   const VarDecl &D = *emission.Variable;
931   QualType type = D.getType();
932 
933   // If this local has an initializer, emit it now.
934   const Expr *Init = D.getInit();
935 
936   // If we are at an unreachable point, we don't need to emit the initializer
937   // unless it contains a label.
938   if (!HaveInsertPoint()) {
939     if (!Init || !ContainsLabel(Init)) return;
940     EnsureInsertPoint();
941   }
942 
943   // Initialize the structure of a __block variable.
944   if (emission.IsByRef)
945     emitByrefStructureInit(emission);
946 
947   if (isTrivialInitializer(Init))
948     return;
949 
950   CharUnits alignment = emission.Alignment;
951 
952   // Check whether this is a byref variable that's potentially
953   // captured and moved by its own initializer.  If so, we'll need to
954   // emit the initializer first, then copy into the variable.
955   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
956 
957   llvm::Value *Loc =
958     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
959 
960   if (!emission.IsConstantAggregate) {
961     LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity());
962     lv.setNonGC(true);
963     return EmitExprAsInit(Init, &D, lv, capturedByInit);
964   }
965 
966   // If this is a simple aggregate initialization, we can optimize it
967   // in various ways.
968   assert(!capturedByInit && "constant init contains a capturing block?");
969 
970   bool isVolatile = type.isVolatileQualified();
971 
972   llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this);
973   assert(constant != 0 && "Wasn't a simple constant init?");
974 
975   llvm::Value *SizeVal =
976     llvm::ConstantInt::get(IntPtrTy,
977                            getContext().getTypeSizeInChars(type).getQuantity());
978 
979   llvm::Type *BP = Int8PtrTy;
980   if (Loc->getType() != BP)
981     Loc = Builder.CreateBitCast(Loc, BP, "tmp");
982 
983   // If the initializer is all or mostly zeros, codegen with memset then do
984   // a few stores afterward.
985   if (shouldUseMemSetPlusStoresToInitialize(constant,
986                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
987     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
988                          alignment.getQuantity(), isVolatile);
989     if (!constant->isNullValue()) {
990       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
991       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
992     }
993   } else {
994     // Otherwise, create a temporary global with the initializer then
995     // memcpy from the global to the alloca.
996     std::string Name = GetStaticDeclName(*this, D, ".");
997     llvm::GlobalVariable *GV =
998       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
999                                llvm::GlobalValue::PrivateLinkage,
1000                                constant, Name, 0, false, 0);
1001     GV->setAlignment(alignment.getQuantity());
1002     GV->setUnnamedAddr(true);
1003 
1004     llvm::Value *SrcPtr = GV;
1005     if (SrcPtr->getType() != BP)
1006       SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
1007 
1008     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1009                          isVolatile);
1010   }
1011 }
1012 
1013 /// Emit an expression as an initializer for a variable at the given
1014 /// location.  The expression is not necessarily the normal
1015 /// initializer for the variable, and the address is not necessarily
1016 /// its normal location.
1017 ///
1018 /// \param init the initializing expression
1019 /// \param var the variable to act as if we're initializing
1020 /// \param loc the address to initialize; its type is a pointer
1021 ///   to the LLVM mapping of the variable's type
1022 /// \param alignment the alignment of the address
1023 /// \param capturedByInit true if the variable is a __block variable
1024 ///   whose address is potentially changed by the initializer
1025 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1026                                      const ValueDecl *D,
1027                                      LValue lvalue,
1028                                      bool capturedByInit) {
1029   QualType type = D->getType();
1030 
1031   if (type->isReferenceType()) {
1032     RValue rvalue = EmitReferenceBindingToExpr(init, D);
1033     if (capturedByInit)
1034       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1035     EmitStoreThroughLValue(rvalue, lvalue);
1036   } else if (!hasAggregateLLVMType(type)) {
1037     EmitScalarInit(init, D, lvalue, capturedByInit);
1038   } else if (type->isAnyComplexType()) {
1039     ComplexPairTy complex = EmitComplexExpr(init);
1040     if (capturedByInit)
1041       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1042     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1043   } else {
1044     // TODO: how can we delay here if D is captured by its initializer?
1045     EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1046                                               AggValueSlot::IsDestructed,
1047                                          AggValueSlot::DoesNotNeedGCBarriers,
1048                                               AggValueSlot::IsNotAliased));
1049   }
1050 }
1051 
1052 /// Enter a destroy cleanup for the given local variable.
1053 void CodeGenFunction::emitAutoVarTypeCleanup(
1054                             const CodeGenFunction::AutoVarEmission &emission,
1055                             QualType::DestructionKind dtorKind) {
1056   assert(dtorKind != QualType::DK_none);
1057 
1058   // Note that for __block variables, we want to destroy the
1059   // original stack object, not the possibly forwarded object.
1060   llvm::Value *addr = emission.getObjectAddress(*this);
1061 
1062   const VarDecl *var = emission.Variable;
1063   QualType type = var->getType();
1064 
1065   CleanupKind cleanupKind = NormalAndEHCleanup;
1066   CodeGenFunction::Destroyer *destroyer = 0;
1067 
1068   switch (dtorKind) {
1069   case QualType::DK_none:
1070     llvm_unreachable("no cleanup for trivially-destructible variable");
1071 
1072   case QualType::DK_cxx_destructor:
1073     // If there's an NRVO flag on the emission, we need a different
1074     // cleanup.
1075     if (emission.NRVOFlag) {
1076       assert(!type->isArrayType());
1077       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1078       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1079                                                emission.NRVOFlag);
1080       return;
1081     }
1082     break;
1083 
1084   case QualType::DK_objc_strong_lifetime:
1085     // Suppress cleanups for pseudo-strong variables.
1086     if (var->isARCPseudoStrong()) return;
1087 
1088     // Otherwise, consider whether to use an EH cleanup or not.
1089     cleanupKind = getARCCleanupKind();
1090 
1091     // Use the imprecise destroyer by default.
1092     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1093       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1094     break;
1095 
1096   case QualType::DK_objc_weak_lifetime:
1097     break;
1098   }
1099 
1100   // If we haven't chosen a more specific destroyer, use the default.
1101   if (!destroyer) destroyer = &getDestroyer(dtorKind);
1102 
1103   // Use an EH cleanup in array destructors iff the destructor itself
1104   // is being pushed as an EH cleanup.
1105   bool useEHCleanup = (cleanupKind & EHCleanup);
1106   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1107                                      useEHCleanup);
1108 }
1109 
1110 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1111   assert(emission.Variable && "emission was not valid!");
1112 
1113   // If this was emitted as a global constant, we're done.
1114   if (emission.wasEmittedAsGlobal()) return;
1115 
1116   const VarDecl &D = *emission.Variable;
1117 
1118   // Check the type for a cleanup.
1119   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1120     emitAutoVarTypeCleanup(emission, dtorKind);
1121 
1122   // In GC mode, honor objc_precise_lifetime.
1123   if (getLangOptions().getGC() != LangOptions::NonGC &&
1124       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1125     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1126   }
1127 
1128   // Handle the cleanup attribute.
1129   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1130     const FunctionDecl *FD = CA->getFunctionDecl();
1131 
1132     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1133     assert(F && "Could not find function!");
1134 
1135     const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
1136     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1137   }
1138 
1139   // If this is a block variable, call _Block_object_destroy
1140   // (on the unforwarded address).
1141   if (emission.IsByRef)
1142     enterByrefCleanup(emission);
1143 }
1144 
1145 CodeGenFunction::Destroyer &
1146 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1147   // This is surprisingly compiler-dependent.  GCC 4.2 can't bind
1148   // references to functions directly in returns, and using '*&foo'
1149   // confuses MSVC.  Luckily, the following code pattern works in both.
1150   Destroyer *destroyer = 0;
1151   switch (kind) {
1152   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1153   case QualType::DK_cxx_destructor:
1154     destroyer = &destroyCXXObject;
1155     break;
1156   case QualType::DK_objc_strong_lifetime:
1157     destroyer = &destroyARCStrongPrecise;
1158     break;
1159   case QualType::DK_objc_weak_lifetime:
1160     destroyer = &destroyARCWeak;
1161     break;
1162   }
1163   return *destroyer;
1164 }
1165 
1166 /// pushDestroy - Push the standard destructor for the given type.
1167 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1168                                   llvm::Value *addr, QualType type) {
1169   assert(dtorKind && "cannot push destructor for trivial type");
1170 
1171   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1172   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1173               cleanupKind & EHCleanup);
1174 }
1175 
1176 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1177                                   QualType type, Destroyer &destroyer,
1178                                   bool useEHCleanupForArray) {
1179   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1180                                      destroyer, useEHCleanupForArray);
1181 }
1182 
1183 /// emitDestroy - Immediately perform the destruction of the given
1184 /// object.
1185 ///
1186 /// \param addr - the address of the object; a type*
1187 /// \param type - the type of the object; if an array type, all
1188 ///   objects are destroyed in reverse order
1189 /// \param destroyer - the function to call to destroy individual
1190 ///   elements
1191 /// \param useEHCleanupForArray - whether an EH cleanup should be
1192 ///   used when destroying array elements, in case one of the
1193 ///   destructions throws an exception
1194 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1195                                   Destroyer &destroyer,
1196                                   bool useEHCleanupForArray) {
1197   const ArrayType *arrayType = getContext().getAsArrayType(type);
1198   if (!arrayType)
1199     return destroyer(*this, addr, type);
1200 
1201   llvm::Value *begin = addr;
1202   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1203 
1204   // Normally we have to check whether the array is zero-length.
1205   bool checkZeroLength = true;
1206 
1207   // But if the array length is constant, we can suppress that.
1208   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1209     // ...and if it's constant zero, we can just skip the entire thing.
1210     if (constLength->isZero()) return;
1211     checkZeroLength = false;
1212   }
1213 
1214   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1215   emitArrayDestroy(begin, end, type, destroyer,
1216                    checkZeroLength, useEHCleanupForArray);
1217 }
1218 
1219 /// emitArrayDestroy - Destroys all the elements of the given array,
1220 /// beginning from last to first.  The array cannot be zero-length.
1221 ///
1222 /// \param begin - a type* denoting the first element of the array
1223 /// \param end - a type* denoting one past the end of the array
1224 /// \param type - the element type of the array
1225 /// \param destroyer - the function to call to destroy elements
1226 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1227 ///   the remaining elements in case the destruction of a single
1228 ///   element throws
1229 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1230                                        llvm::Value *end,
1231                                        QualType type,
1232                                        Destroyer &destroyer,
1233                                        bool checkZeroLength,
1234                                        bool useEHCleanup) {
1235   assert(!type->isArrayType());
1236 
1237   // The basic structure here is a do-while loop, because we don't
1238   // need to check for the zero-element case.
1239   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1240   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1241 
1242   if (checkZeroLength) {
1243     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1244                                                 "arraydestroy.isempty");
1245     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1246   }
1247 
1248   // Enter the loop body, making that address the current address.
1249   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1250   EmitBlock(bodyBB);
1251   llvm::PHINode *elementPast =
1252     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1253   elementPast->addIncoming(end, entryBB);
1254 
1255   // Shift the address back by one element.
1256   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1257   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1258                                                    "arraydestroy.element");
1259 
1260   if (useEHCleanup)
1261     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1262 
1263   // Perform the actual destruction there.
1264   destroyer(*this, element, type);
1265 
1266   if (useEHCleanup)
1267     PopCleanupBlock();
1268 
1269   // Check whether we've reached the end.
1270   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1271   Builder.CreateCondBr(done, doneBB, bodyBB);
1272   elementPast->addIncoming(element, Builder.GetInsertBlock());
1273 
1274   // Done.
1275   EmitBlock(doneBB);
1276 }
1277 
1278 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1279 /// emitArrayDestroy, the element type here may still be an array type.
1280 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1281                                     llvm::Value *begin, llvm::Value *end,
1282                                     QualType type,
1283                                     CodeGenFunction::Destroyer &destroyer) {
1284   // If the element type is itself an array, drill down.
1285   unsigned arrayDepth = 0;
1286   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1287     // VLAs don't require a GEP index to walk into.
1288     if (!isa<VariableArrayType>(arrayType))
1289       arrayDepth++;
1290     type = arrayType->getElementType();
1291   }
1292 
1293   if (arrayDepth) {
1294     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1295 
1296     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1297     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1298     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1299   }
1300 
1301   // Destroy the array.  We don't ever need an EH cleanup because we
1302   // assume that we're in an EH cleanup ourselves, so a throwing
1303   // destructor causes an immediate terminate.
1304   CGF.emitArrayDestroy(begin, end, type, destroyer,
1305                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1306 }
1307 
1308 namespace {
1309   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1310   /// array destroy where the end pointer is regularly determined and
1311   /// does not need to be loaded from a local.
1312   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1313     llvm::Value *ArrayBegin;
1314     llvm::Value *ArrayEnd;
1315     QualType ElementType;
1316     CodeGenFunction::Destroyer &Destroyer;
1317   public:
1318     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1319                                QualType elementType,
1320                                CodeGenFunction::Destroyer *destroyer)
1321       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1322         ElementType(elementType), Destroyer(*destroyer) {}
1323 
1324     void Emit(CodeGenFunction &CGF, Flags flags) {
1325       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1326                               ElementType, Destroyer);
1327     }
1328   };
1329 
1330   /// IrregularPartialArrayDestroy - a cleanup which performs a
1331   /// partial array destroy where the end pointer is irregularly
1332   /// determined and must be loaded from a local.
1333   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1334     llvm::Value *ArrayBegin;
1335     llvm::Value *ArrayEndPointer;
1336     QualType ElementType;
1337     CodeGenFunction::Destroyer &Destroyer;
1338   public:
1339     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1340                                  llvm::Value *arrayEndPointer,
1341                                  QualType elementType,
1342                                  CodeGenFunction::Destroyer *destroyer)
1343       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1344         ElementType(elementType), Destroyer(*destroyer) {}
1345 
1346     void Emit(CodeGenFunction &CGF, Flags flags) {
1347       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1348       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1349                               ElementType, Destroyer);
1350     }
1351   };
1352 }
1353 
1354 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1355 /// already-constructed elements of the given array.  The cleanup
1356 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1357 ///
1358 /// \param elementType - the immediate element type of the array;
1359 ///   possibly still an array type
1360 /// \param array - a value of type elementType*
1361 /// \param destructionKind - the kind of destruction required
1362 /// \param initializedElementCount - a value of type size_t* holding
1363 ///   the number of successfully-constructed elements
1364 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1365                                                  llvm::Value *arrayEndPointer,
1366                                                        QualType elementType,
1367                                                        Destroyer &destroyer) {
1368   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1369                                                     arrayBegin, arrayEndPointer,
1370                                                     elementType, &destroyer);
1371 }
1372 
1373 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1374 /// already-constructed elements of the given array.  The cleanup
1375 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1376 ///
1377 /// \param elementType - the immediate element type of the array;
1378 ///   possibly still an array type
1379 /// \param array - a value of type elementType*
1380 /// \param destructionKind - the kind of destruction required
1381 /// \param initializedElementCount - a value of type size_t* holding
1382 ///   the number of successfully-constructed elements
1383 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1384                                                      llvm::Value *arrayEnd,
1385                                                      QualType elementType,
1386                                                      Destroyer &destroyer) {
1387   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1388                                                   arrayBegin, arrayEnd,
1389                                                   elementType, &destroyer);
1390 }
1391 
1392 namespace {
1393   /// A cleanup to perform a release of an object at the end of a
1394   /// function.  This is used to balance out the incoming +1 of a
1395   /// ns_consumed argument when we can't reasonably do that just by
1396   /// not doing the initial retain for a __block argument.
1397   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1398     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1399 
1400     llvm::Value *Param;
1401 
1402     void Emit(CodeGenFunction &CGF, Flags flags) {
1403       CGF.EmitARCRelease(Param, /*precise*/ false);
1404     }
1405   };
1406 }
1407 
1408 /// Emit an alloca (or GlobalValue depending on target)
1409 /// for the specified parameter and set up LocalDeclMap.
1410 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1411                                    unsigned ArgNo) {
1412   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1413   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1414          "Invalid argument to EmitParmDecl");
1415 
1416   Arg->setName(D.getName());
1417 
1418   // Use better IR generation for certain implicit parameters.
1419   if (isa<ImplicitParamDecl>(D)) {
1420     // The only implicit argument a block has is its literal.
1421     if (BlockInfo) {
1422       LocalDeclMap[&D] = Arg;
1423 
1424       if (CGDebugInfo *DI = getDebugInfo()) {
1425         DI->setLocation(D.getLocation());
1426         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1427       }
1428 
1429       return;
1430     }
1431   }
1432 
1433   QualType Ty = D.getType();
1434 
1435   llvm::Value *DeclPtr;
1436   // If this is an aggregate or variable sized value, reuse the input pointer.
1437   if (!Ty->isConstantSizeType() ||
1438       CodeGenFunction::hasAggregateLLVMType(Ty)) {
1439     DeclPtr = Arg;
1440   } else {
1441     // Otherwise, create a temporary to hold the value.
1442     DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
1443 
1444     bool doStore = true;
1445 
1446     Qualifiers qs = Ty.getQualifiers();
1447 
1448     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1449       // We honor __attribute__((ns_consumed)) for types with lifetime.
1450       // For __strong, it's handled by just skipping the initial retain;
1451       // otherwise we have to balance out the initial +1 with an extra
1452       // cleanup to do the release at the end of the function.
1453       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1454 
1455       // 'self' is always formally __strong, but if this is not an
1456       // init method then we don't want to retain it.
1457       if (D.isARCPseudoStrong()) {
1458         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1459         assert(&D == method->getSelfDecl());
1460         assert(lt == Qualifiers::OCL_Strong);
1461         assert(qs.hasConst());
1462         assert(method->getMethodFamily() != OMF_init);
1463         (void) method;
1464         lt = Qualifiers::OCL_ExplicitNone;
1465       }
1466 
1467       if (lt == Qualifiers::OCL_Strong) {
1468         if (!isConsumed)
1469           // Don't use objc_retainBlock for block pointers, because we
1470           // don't want to Block_copy something just because we got it
1471           // as a parameter.
1472           Arg = EmitARCRetainNonBlock(Arg);
1473       } else {
1474         // Push the cleanup for a consumed parameter.
1475         if (isConsumed)
1476           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1477 
1478         if (lt == Qualifiers::OCL_Weak) {
1479           EmitARCInitWeak(DeclPtr, Arg);
1480           doStore = false; // The weak init is a store, no need to do two
1481         }
1482       }
1483 
1484       // Enter the cleanup scope.
1485       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1486     }
1487 
1488     // Store the initial value into the alloca.
1489     if (doStore) {
1490       LValue lv = MakeAddrLValue(DeclPtr, Ty,
1491                                  getContext().getDeclAlign(&D).getQuantity());
1492       EmitStoreOfScalar(Arg, lv);
1493     }
1494   }
1495 
1496   llvm::Value *&DMEntry = LocalDeclMap[&D];
1497   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1498   DMEntry = DeclPtr;
1499 
1500   // Emit debug info for param declaration.
1501   if (CGDebugInfo *DI = getDebugInfo())
1502     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1503 
1504   if (D.hasAttr<AnnotateAttr>())
1505       EmitVarAnnotations(&D, DeclPtr);
1506 }
1507