1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 
34 void CodeGenFunction::EmitDecl(const Decl &D) {
35   switch (D.getKind()) {
36   case Decl::TranslationUnit:
37   case Decl::Namespace:
38   case Decl::UnresolvedUsingTypename:
39   case Decl::ClassTemplateSpecialization:
40   case Decl::ClassTemplatePartialSpecialization:
41   case Decl::VarTemplateSpecialization:
42   case Decl::VarTemplatePartialSpecialization:
43   case Decl::TemplateTypeParm:
44   case Decl::UnresolvedUsingValue:
45   case Decl::NonTypeTemplateParm:
46   case Decl::CXXMethod:
47   case Decl::CXXConstructor:
48   case Decl::CXXDestructor:
49   case Decl::CXXConversion:
50   case Decl::Field:
51   case Decl::MSProperty:
52   case Decl::IndirectField:
53   case Decl::ObjCIvar:
54   case Decl::ObjCAtDefsField:
55   case Decl::ParmVar:
56   case Decl::ImplicitParam:
57   case Decl::ClassTemplate:
58   case Decl::VarTemplate:
59   case Decl::FunctionTemplate:
60   case Decl::TypeAliasTemplate:
61   case Decl::TemplateTemplateParm:
62   case Decl::ObjCMethod:
63   case Decl::ObjCCategory:
64   case Decl::ObjCProtocol:
65   case Decl::ObjCInterface:
66   case Decl::ObjCCategoryImpl:
67   case Decl::ObjCImplementation:
68   case Decl::ObjCProperty:
69   case Decl::ObjCCompatibleAlias:
70   case Decl::AccessSpec:
71   case Decl::LinkageSpec:
72   case Decl::ObjCPropertyImpl:
73   case Decl::FileScopeAsm:
74   case Decl::Friend:
75   case Decl::FriendTemplate:
76   case Decl::Block:
77   case Decl::Captured:
78   case Decl::ClassScopeFunctionSpecialization:
79   case Decl::UsingShadow:
80     llvm_unreachable("Declaration should not be in declstmts!");
81   case Decl::Function:  // void X();
82   case Decl::Record:    // struct/union/class X;
83   case Decl::Enum:      // enum X;
84   case Decl::EnumConstant: // enum ? { X = ? }
85   case Decl::CXXRecord: // struct/union/class X; [C++]
86   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
87   case Decl::Label:        // __label__ x;
88   case Decl::Import:
89   case Decl::OMPThreadPrivate:
90   case Decl::Empty:
91     // None of these decls require codegen support.
92     return;
93 
94   case Decl::NamespaceAlias:
95     if (CGDebugInfo *DI = getDebugInfo())
96         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
97     return;
98   case Decl::Using:          // using X; [C++]
99     if (CGDebugInfo *DI = getDebugInfo())
100         DI->EmitUsingDecl(cast<UsingDecl>(D));
101     return;
102   case Decl::UsingDirective: // using namespace X; [C++]
103     if (CGDebugInfo *DI = getDebugInfo())
104       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
105     return;
106   case Decl::Var: {
107     const VarDecl &VD = cast<VarDecl>(D);
108     assert(VD.isLocalVarDecl() &&
109            "Should not see file-scope variables inside a function!");
110     return EmitVarDecl(VD);
111   }
112 
113   case Decl::Typedef:      // typedef int X;
114   case Decl::TypeAlias: {  // using X = int; [C++0x]
115     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
116     QualType Ty = TD.getUnderlyingType();
117 
118     if (Ty->isVariablyModifiedType())
119       EmitVariablyModifiedType(Ty);
120   }
121   }
122 }
123 
124 /// EmitVarDecl - This method handles emission of any variable declaration
125 /// inside a function, including static vars etc.
126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
127   if (D.isStaticLocal()) {
128     llvm::GlobalValue::LinkageTypes Linkage =
129         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
130 
131     // FIXME: We need to force the emission/use of a guard variable for
132     // some variables even if we can constant-evaluate them because
133     // we can't guarantee every translation unit will constant-evaluate them.
134 
135     return EmitStaticVarDecl(D, Linkage);
136   }
137 
138   if (D.hasExternalStorage())
139     // Don't emit it now, allow it to be emitted lazily on its first use.
140     return;
141 
142   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
143     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
144 
145   assert(D.hasLocalStorage());
146   return EmitAutoVarDecl(D);
147 }
148 
149 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
150   if (CGM.getLangOpts().CPlusPlus)
151     return CGM.getMangledName(&D).str();
152 
153   // If this isn't C++, we don't need a mangled name, just a pretty one.
154   assert(!D.isExternallyVisible() && "name shouldn't matter");
155   std::string ContextName;
156   const DeclContext *DC = D.getDeclContext();
157   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
158     ContextName = CGM.getMangledName(FD);
159   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
160     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
161   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
162     ContextName = OMD->getSelector().getAsString();
163   else
164     llvm_unreachable("Unknown context for static var decl");
165 
166   ContextName += "." + D.getNameAsString();
167   return ContextName;
168 }
169 
170 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
171     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
172   // In general, we don't always emit static var decls once before we reference
173   // them. It is possible to reference them before emitting the function that
174   // contains them, and it is possible to emit the containing function multiple
175   // times.
176   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
177     return ExistingGV;
178 
179   QualType Ty = D.getType();
180   assert(Ty->isConstantSizeType() && "VLAs can't be static");
181 
182   // Use the label if the variable is renamed with the asm-label extension.
183   std::string Name;
184   if (D.hasAttr<AsmLabelAttr>())
185     Name = getMangledName(&D);
186   else
187     Name = getStaticDeclName(*this, D);
188 
189   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
190   unsigned AddrSpace =
191       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
192   llvm::GlobalVariable *GV =
193     new llvm::GlobalVariable(getModule(), LTy,
194                              Ty.isConstant(getContext()), Linkage,
195                              EmitNullConstant(D.getType()), Name, nullptr,
196                              llvm::GlobalVariable::NotThreadLocal,
197                              AddrSpace);
198   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
199   setGlobalVisibility(GV, &D);
200 
201   if (D.getTLSKind())
202     setTLSMode(GV, D);
203 
204   if (D.isExternallyVisible()) {
205     if (D.hasAttr<DLLImportAttr>())
206       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
207     else if (D.hasAttr<DLLExportAttr>())
208       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
209   }
210 
211   // Make sure the result is of the correct type.
212   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
213   llvm::Constant *Addr = GV;
214   if (AddrSpace != ExpectedAddrSpace) {
215     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
216     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
217   }
218 
219   setStaticLocalDeclAddress(&D, Addr);
220 
221   // Ensure that the static local gets initialized by making sure the parent
222   // function gets emitted eventually.
223   const Decl *DC = cast<Decl>(D.getDeclContext());
224 
225   // We can't name blocks or captured statements directly, so try to emit their
226   // parents.
227   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
228     DC = DC->getNonClosureContext();
229     // FIXME: Ensure that global blocks get emitted.
230     if (!DC)
231       return Addr;
232   }
233 
234   GlobalDecl GD;
235   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
236     GD = GlobalDecl(CD, Ctor_Base);
237   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
238     GD = GlobalDecl(DD, Dtor_Base);
239   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
240     GD = GlobalDecl(FD);
241   else {
242     // Don't do anything for Obj-C method decls or global closures. We should
243     // never defer them.
244     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
245   }
246   if (GD.getDecl())
247     (void)GetAddrOfGlobal(GD);
248 
249   return Addr;
250 }
251 
252 /// hasNontrivialDestruction - Determine whether a type's destruction is
253 /// non-trivial. If so, and the variable uses static initialization, we must
254 /// register its destructor to run on exit.
255 static bool hasNontrivialDestruction(QualType T) {
256   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
257   return RD && !RD->hasTrivialDestructor();
258 }
259 
260 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
261 /// global variable that has already been created for it.  If the initializer
262 /// has a different type than GV does, this may free GV and return a different
263 /// one.  Otherwise it just returns GV.
264 llvm::GlobalVariable *
265 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
266                                                llvm::GlobalVariable *GV) {
267   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
268 
269   // If constant emission failed, then this should be a C++ static
270   // initializer.
271   if (!Init) {
272     if (!getLangOpts().CPlusPlus)
273       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
274     else if (Builder.GetInsertBlock()) {
275       // Since we have a static initializer, this global variable can't
276       // be constant.
277       GV->setConstant(false);
278 
279       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
280     }
281     return GV;
282   }
283 
284   // The initializer may differ in type from the global. Rewrite
285   // the global to match the initializer.  (We have to do this
286   // because some types, like unions, can't be completely represented
287   // in the LLVM type system.)
288   if (GV->getType()->getElementType() != Init->getType()) {
289     llvm::GlobalVariable *OldGV = GV;
290 
291     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
292                                   OldGV->isConstant(),
293                                   OldGV->getLinkage(), Init, "",
294                                   /*InsertBefore*/ OldGV,
295                                   OldGV->getThreadLocalMode(),
296                            CGM.getContext().getTargetAddressSpace(D.getType()));
297     GV->setVisibility(OldGV->getVisibility());
298 
299     // Steal the name of the old global
300     GV->takeName(OldGV);
301 
302     // Replace all uses of the old global with the new global
303     llvm::Constant *NewPtrForOldDecl =
304     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
305     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
306 
307     // Erase the old global, since it is no longer used.
308     OldGV->eraseFromParent();
309   }
310 
311   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
312   GV->setInitializer(Init);
313 
314   if (hasNontrivialDestruction(D.getType())) {
315     // We have a constant initializer, but a nontrivial destructor. We still
316     // need to perform a guarded "initialization" in order to register the
317     // destructor.
318     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
319   }
320 
321   return GV;
322 }
323 
324 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
325                                       llvm::GlobalValue::LinkageTypes Linkage) {
326   llvm::Value *&DMEntry = LocalDeclMap[&D];
327   assert(!DMEntry && "Decl already exists in localdeclmap!");
328 
329   // Check to see if we already have a global variable for this
330   // declaration.  This can happen when double-emitting function
331   // bodies, e.g. with complete and base constructors.
332   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
333 
334   // Store into LocalDeclMap before generating initializer to handle
335   // circular references.
336   DMEntry = addr;
337 
338   // We can't have a VLA here, but we can have a pointer to a VLA,
339   // even though that doesn't really make any sense.
340   // Make sure to evaluate VLA bounds now so that we have them for later.
341   if (D.getType()->isVariablyModifiedType())
342     EmitVariablyModifiedType(D.getType());
343 
344   // Save the type in case adding the initializer forces a type change.
345   llvm::Type *expectedType = addr->getType();
346 
347   llvm::GlobalVariable *var =
348     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
349   // If this value has an initializer, emit it.
350   if (D.getInit())
351     var = AddInitializerToStaticVarDecl(D, var);
352 
353   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
354 
355   if (D.hasAttr<AnnotateAttr>())
356     CGM.AddGlobalAnnotations(&D, var);
357 
358   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
359     var->setSection(SA->getName());
360 
361   if (D.hasAttr<UsedAttr>())
362     CGM.addUsedGlobal(var);
363 
364   // We may have to cast the constant because of the initializer
365   // mismatch above.
366   //
367   // FIXME: It is really dangerous to store this in the map; if anyone
368   // RAUW's the GV uses of this constant will be invalid.
369   llvm::Constant *castedAddr =
370     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
371   DMEntry = castedAddr;
372   CGM.setStaticLocalDeclAddress(&D, castedAddr);
373 
374   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
375 
376   // Emit global variable debug descriptor for static vars.
377   CGDebugInfo *DI = getDebugInfo();
378   if (DI &&
379       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
380     DI->setLocation(D.getLocation());
381     DI->EmitGlobalVariable(var, &D);
382   }
383 }
384 
385 namespace {
386   struct DestroyObject : EHScopeStack::Cleanup {
387     DestroyObject(llvm::Value *addr, QualType type,
388                   CodeGenFunction::Destroyer *destroyer,
389                   bool useEHCleanupForArray)
390       : addr(addr), type(type), destroyer(destroyer),
391         useEHCleanupForArray(useEHCleanupForArray) {}
392 
393     llvm::Value *addr;
394     QualType type;
395     CodeGenFunction::Destroyer *destroyer;
396     bool useEHCleanupForArray;
397 
398     void Emit(CodeGenFunction &CGF, Flags flags) override {
399       // Don't use an EH cleanup recursively from an EH cleanup.
400       bool useEHCleanupForArray =
401         flags.isForNormalCleanup() && this->useEHCleanupForArray;
402 
403       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
404     }
405   };
406 
407   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
408     DestroyNRVOVariable(llvm::Value *addr,
409                         const CXXDestructorDecl *Dtor,
410                         llvm::Value *NRVOFlag)
411       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
412 
413     const CXXDestructorDecl *Dtor;
414     llvm::Value *NRVOFlag;
415     llvm::Value *Loc;
416 
417     void Emit(CodeGenFunction &CGF, Flags flags) override {
418       // Along the exceptions path we always execute the dtor.
419       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
420 
421       llvm::BasicBlock *SkipDtorBB = nullptr;
422       if (NRVO) {
423         // If we exited via NRVO, we skip the destructor call.
424         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
425         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
426         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
427         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
428         CGF.EmitBlock(RunDtorBB);
429       }
430 
431       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
432                                 /*ForVirtualBase=*/false,
433                                 /*Delegating=*/false,
434                                 Loc);
435 
436       if (NRVO) CGF.EmitBlock(SkipDtorBB);
437     }
438   };
439 
440   struct CallStackRestore : EHScopeStack::Cleanup {
441     llvm::Value *Stack;
442     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
443     void Emit(CodeGenFunction &CGF, Flags flags) override {
444       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
445       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
446       CGF.Builder.CreateCall(F, V);
447     }
448   };
449 
450   struct ExtendGCLifetime : EHScopeStack::Cleanup {
451     const VarDecl &Var;
452     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
453 
454     void Emit(CodeGenFunction &CGF, Flags flags) override {
455       // Compute the address of the local variable, in case it's a
456       // byref or something.
457       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
458                       Var.getType(), VK_LValue, SourceLocation());
459       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
460                                                 SourceLocation());
461       CGF.EmitExtendGCLifetime(value);
462     }
463   };
464 
465   struct CallCleanupFunction : EHScopeStack::Cleanup {
466     llvm::Constant *CleanupFn;
467     const CGFunctionInfo &FnInfo;
468     const VarDecl &Var;
469 
470     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
471                         const VarDecl *Var)
472       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
473 
474     void Emit(CodeGenFunction &CGF, Flags flags) override {
475       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
476                       Var.getType(), VK_LValue, SourceLocation());
477       // Compute the address of the local variable, in case it's a byref
478       // or something.
479       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
480 
481       // In some cases, the type of the function argument will be different from
482       // the type of the pointer. An example of this is
483       // void f(void* arg);
484       // __attribute__((cleanup(f))) void *g;
485       //
486       // To fix this we insert a bitcast here.
487       QualType ArgTy = FnInfo.arg_begin()->type;
488       llvm::Value *Arg =
489         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
490 
491       CallArgList Args;
492       Args.add(RValue::get(Arg),
493                CGF.getContext().getPointerType(Var.getType()));
494       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
495     }
496   };
497 
498   /// A cleanup to call @llvm.lifetime.end.
499   class CallLifetimeEnd : public EHScopeStack::Cleanup {
500     llvm::Value *Addr;
501     llvm::Value *Size;
502   public:
503     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
504       : Addr(addr), Size(size) {}
505 
506     void Emit(CodeGenFunction &CGF, Flags flags) override {
507       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
508       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
509                               Size, castAddr)
510         ->setDoesNotThrow();
511     }
512   };
513 }
514 
515 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
516 /// variable with lifetime.
517 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
518                                     llvm::Value *addr,
519                                     Qualifiers::ObjCLifetime lifetime) {
520   switch (lifetime) {
521   case Qualifiers::OCL_None:
522     llvm_unreachable("present but none");
523 
524   case Qualifiers::OCL_ExplicitNone:
525     // nothing to do
526     break;
527 
528   case Qualifiers::OCL_Strong: {
529     CodeGenFunction::Destroyer *destroyer =
530       (var.hasAttr<ObjCPreciseLifetimeAttr>()
531        ? CodeGenFunction::destroyARCStrongPrecise
532        : CodeGenFunction::destroyARCStrongImprecise);
533 
534     CleanupKind cleanupKind = CGF.getARCCleanupKind();
535     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
536                     cleanupKind & EHCleanup);
537     break;
538   }
539   case Qualifiers::OCL_Autoreleasing:
540     // nothing to do
541     break;
542 
543   case Qualifiers::OCL_Weak:
544     // __weak objects always get EH cleanups; otherwise, exceptions
545     // could cause really nasty crashes instead of mere leaks.
546     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
547                     CodeGenFunction::destroyARCWeak,
548                     /*useEHCleanup*/ true);
549     break;
550   }
551 }
552 
553 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
554   if (const Expr *e = dyn_cast<Expr>(s)) {
555     // Skip the most common kinds of expressions that make
556     // hierarchy-walking expensive.
557     s = e = e->IgnoreParenCasts();
558 
559     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
560       return (ref->getDecl() == &var);
561     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
562       const BlockDecl *block = be->getBlockDecl();
563       for (const auto &I : block->captures()) {
564         if (I.getVariable() == &var)
565           return true;
566       }
567     }
568   }
569 
570   for (Stmt::const_child_range children = s->children(); children; ++children)
571     // children might be null; as in missing decl or conditional of an if-stmt.
572     if ((*children) && isAccessedBy(var, *children))
573       return true;
574 
575   return false;
576 }
577 
578 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
579   if (!decl) return false;
580   if (!isa<VarDecl>(decl)) return false;
581   const VarDecl *var = cast<VarDecl>(decl);
582   return isAccessedBy(*var, e);
583 }
584 
585 static void drillIntoBlockVariable(CodeGenFunction &CGF,
586                                    LValue &lvalue,
587                                    const VarDecl *var) {
588   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
589 }
590 
591 void CodeGenFunction::EmitScalarInit(const Expr *init,
592                                      const ValueDecl *D,
593                                      LValue lvalue,
594                                      bool capturedByInit) {
595   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
596   if (!lifetime) {
597     llvm::Value *value = EmitScalarExpr(init);
598     if (capturedByInit)
599       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
600     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
601     return;
602   }
603 
604   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
605     init = DIE->getExpr();
606 
607   // If we're emitting a value with lifetime, we have to do the
608   // initialization *before* we leave the cleanup scopes.
609   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
610     enterFullExpression(ewc);
611     init = ewc->getSubExpr();
612   }
613   CodeGenFunction::RunCleanupsScope Scope(*this);
614 
615   // We have to maintain the illusion that the variable is
616   // zero-initialized.  If the variable might be accessed in its
617   // initializer, zero-initialize before running the initializer, then
618   // actually perform the initialization with an assign.
619   bool accessedByInit = false;
620   if (lifetime != Qualifiers::OCL_ExplicitNone)
621     accessedByInit = (capturedByInit || isAccessedBy(D, init));
622   if (accessedByInit) {
623     LValue tempLV = lvalue;
624     // Drill down to the __block object if necessary.
625     if (capturedByInit) {
626       // We can use a simple GEP for this because it can't have been
627       // moved yet.
628       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
629                                    getByRefValueLLVMField(cast<VarDecl>(D))));
630     }
631 
632     llvm::PointerType *ty
633       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
634     ty = cast<llvm::PointerType>(ty->getElementType());
635 
636     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
637 
638     // If __weak, we want to use a barrier under certain conditions.
639     if (lifetime == Qualifiers::OCL_Weak)
640       EmitARCInitWeak(tempLV.getAddress(), zero);
641 
642     // Otherwise just do a simple store.
643     else
644       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
645   }
646 
647   // Emit the initializer.
648   llvm::Value *value = nullptr;
649 
650   switch (lifetime) {
651   case Qualifiers::OCL_None:
652     llvm_unreachable("present but none");
653 
654   case Qualifiers::OCL_ExplicitNone:
655     // nothing to do
656     value = EmitScalarExpr(init);
657     break;
658 
659   case Qualifiers::OCL_Strong: {
660     value = EmitARCRetainScalarExpr(init);
661     break;
662   }
663 
664   case Qualifiers::OCL_Weak: {
665     // No way to optimize a producing initializer into this.  It's not
666     // worth optimizing for, because the value will immediately
667     // disappear in the common case.
668     value = EmitScalarExpr(init);
669 
670     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
671     if (accessedByInit)
672       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
673     else
674       EmitARCInitWeak(lvalue.getAddress(), value);
675     return;
676   }
677 
678   case Qualifiers::OCL_Autoreleasing:
679     value = EmitARCRetainAutoreleaseScalarExpr(init);
680     break;
681   }
682 
683   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
684 
685   // If the variable might have been accessed by its initializer, we
686   // might have to initialize with a barrier.  We have to do this for
687   // both __weak and __strong, but __weak got filtered out above.
688   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
689     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
690     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
691     EmitARCRelease(oldValue, ARCImpreciseLifetime);
692     return;
693   }
694 
695   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
696 }
697 
698 /// EmitScalarInit - Initialize the given lvalue with the given object.
699 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
700   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
701   if (!lifetime)
702     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
703 
704   switch (lifetime) {
705   case Qualifiers::OCL_None:
706     llvm_unreachable("present but none");
707 
708   case Qualifiers::OCL_ExplicitNone:
709     // nothing to do
710     break;
711 
712   case Qualifiers::OCL_Strong:
713     init = EmitARCRetain(lvalue.getType(), init);
714     break;
715 
716   case Qualifiers::OCL_Weak:
717     // Initialize and then skip the primitive store.
718     EmitARCInitWeak(lvalue.getAddress(), init);
719     return;
720 
721   case Qualifiers::OCL_Autoreleasing:
722     init = EmitARCRetainAutorelease(lvalue.getType(), init);
723     break;
724   }
725 
726   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
727 }
728 
729 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
730 /// non-zero parts of the specified initializer with equal or fewer than
731 /// NumStores scalar stores.
732 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
733                                                 unsigned &NumStores) {
734   // Zero and Undef never requires any extra stores.
735   if (isa<llvm::ConstantAggregateZero>(Init) ||
736       isa<llvm::ConstantPointerNull>(Init) ||
737       isa<llvm::UndefValue>(Init))
738     return true;
739   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
740       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
741       isa<llvm::ConstantExpr>(Init))
742     return Init->isNullValue() || NumStores--;
743 
744   // See if we can emit each element.
745   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
746     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
747       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
748       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
749         return false;
750     }
751     return true;
752   }
753 
754   if (llvm::ConstantDataSequential *CDS =
755         dyn_cast<llvm::ConstantDataSequential>(Init)) {
756     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
757       llvm::Constant *Elt = CDS->getElementAsConstant(i);
758       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
759         return false;
760     }
761     return true;
762   }
763 
764   // Anything else is hard and scary.
765   return false;
766 }
767 
768 /// emitStoresForInitAfterMemset - For inits that
769 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
770 /// stores that would be required.
771 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
772                                          bool isVolatile, CGBuilderTy &Builder) {
773   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
774          "called emitStoresForInitAfterMemset for zero or undef value.");
775 
776   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
777       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
778       isa<llvm::ConstantExpr>(Init)) {
779     Builder.CreateStore(Init, Loc, isVolatile);
780     return;
781   }
782 
783   if (llvm::ConstantDataSequential *CDS =
784         dyn_cast<llvm::ConstantDataSequential>(Init)) {
785     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
786       llvm::Constant *Elt = CDS->getElementAsConstant(i);
787 
788       // If necessary, get a pointer to the element and emit it.
789       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
790         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
791                                      isVolatile, Builder);
792     }
793     return;
794   }
795 
796   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
797          "Unknown value type!");
798 
799   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
800     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
801 
802     // If necessary, get a pointer to the element and emit it.
803     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
804       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
805                                    isVolatile, Builder);
806   }
807 }
808 
809 
810 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
811 /// plus some stores to initialize a local variable instead of using a memcpy
812 /// from a constant global.  It is beneficial to use memset if the global is all
813 /// zeros, or mostly zeros and large.
814 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
815                                                   uint64_t GlobalSize) {
816   // If a global is all zeros, always use a memset.
817   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
818 
819   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
820   // do it if it will require 6 or fewer scalar stores.
821   // TODO: Should budget depends on the size?  Avoiding a large global warrants
822   // plopping in more stores.
823   unsigned StoreBudget = 6;
824   uint64_t SizeLimit = 32;
825 
826   return GlobalSize > SizeLimit &&
827          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
828 }
829 
830 /// Should we use the LLVM lifetime intrinsics for the given local variable?
831 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
832                                      unsigned Size) {
833   // For now, only in optimized builds.
834   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
835     return false;
836 
837   // Limit the size of marked objects to 32 bytes. We don't want to increase
838   // compile time by marking tiny objects.
839   unsigned SizeThreshold = 32;
840 
841   return Size > SizeThreshold;
842 }
843 
844 
845 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
846 /// variable declaration with auto, register, or no storage class specifier.
847 /// These turn into simple stack objects, or GlobalValues depending on target.
848 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
849   AutoVarEmission emission = EmitAutoVarAlloca(D);
850   EmitAutoVarInit(emission);
851   EmitAutoVarCleanups(emission);
852 }
853 
854 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
855 /// local variable.  Does not emit initialization or destruction.
856 CodeGenFunction::AutoVarEmission
857 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
858   QualType Ty = D.getType();
859 
860   AutoVarEmission emission(D);
861 
862   bool isByRef = D.hasAttr<BlocksAttr>();
863   emission.IsByRef = isByRef;
864 
865   CharUnits alignment = getContext().getDeclAlign(&D);
866   emission.Alignment = alignment;
867 
868   // If the type is variably-modified, emit all the VLA sizes for it.
869   if (Ty->isVariablyModifiedType())
870     EmitVariablyModifiedType(Ty);
871 
872   llvm::Value *DeclPtr;
873   if (Ty->isConstantSizeType()) {
874     bool NRVO = getLangOpts().ElideConstructors &&
875       D.isNRVOVariable();
876 
877     // If this value is an array or struct with a statically determinable
878     // constant initializer, there are optimizations we can do.
879     //
880     // TODO: We should constant-evaluate the initializer of any variable,
881     // as long as it is initialized by a constant expression. Currently,
882     // isConstantInitializer produces wrong answers for structs with
883     // reference or bitfield members, and a few other cases, and checking
884     // for POD-ness protects us from some of these.
885     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
886         (D.isConstexpr() ||
887          ((Ty.isPODType(getContext()) ||
888            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
889           D.getInit()->isConstantInitializer(getContext(), false)))) {
890 
891       // If the variable's a const type, and it's neither an NRVO
892       // candidate nor a __block variable and has no mutable members,
893       // emit it as a global instead.
894       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
895           CGM.isTypeConstant(Ty, true)) {
896         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
897 
898         emission.Address = nullptr; // signal this condition to later callbacks
899         assert(emission.wasEmittedAsGlobal());
900         return emission;
901       }
902 
903       // Otherwise, tell the initialization code that we're in this case.
904       emission.IsConstantAggregate = true;
905     }
906 
907     // A normal fixed sized variable becomes an alloca in the entry block,
908     // unless it's an NRVO variable.
909     llvm::Type *LTy = ConvertTypeForMem(Ty);
910 
911     if (NRVO) {
912       // The named return value optimization: allocate this variable in the
913       // return slot, so that we can elide the copy when returning this
914       // variable (C++0x [class.copy]p34).
915       DeclPtr = ReturnValue;
916 
917       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
918         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
919           // Create a flag that is used to indicate when the NRVO was applied
920           // to this variable. Set it to zero to indicate that NRVO was not
921           // applied.
922           llvm::Value *Zero = Builder.getFalse();
923           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
924           EnsureInsertPoint();
925           Builder.CreateStore(Zero, NRVOFlag);
926 
927           // Record the NRVO flag for this variable.
928           NRVOFlags[&D] = NRVOFlag;
929           emission.NRVOFlag = NRVOFlag;
930         }
931       }
932     } else {
933       if (isByRef)
934         LTy = BuildByRefType(&D);
935 
936       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
937       Alloc->setName(D.getName());
938 
939       CharUnits allocaAlignment = alignment;
940       if (isByRef)
941         allocaAlignment = std::max(allocaAlignment,
942             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
943       Alloc->setAlignment(allocaAlignment.getQuantity());
944       DeclPtr = Alloc;
945 
946       // Emit a lifetime intrinsic if meaningful.  There's no point
947       // in doing this if we don't have a valid insertion point (?).
948       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
949       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
950         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
951 
952         emission.SizeForLifetimeMarkers = sizeV;
953         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
954         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
955           ->setDoesNotThrow();
956       } else {
957         assert(!emission.useLifetimeMarkers());
958       }
959     }
960   } else {
961     EnsureInsertPoint();
962 
963     if (!DidCallStackSave) {
964       // Save the stack.
965       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
966 
967       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
968       llvm::Value *V = Builder.CreateCall(F);
969 
970       Builder.CreateStore(V, Stack);
971 
972       DidCallStackSave = true;
973 
974       // Push a cleanup block and restore the stack there.
975       // FIXME: in general circumstances, this should be an EH cleanup.
976       pushStackRestore(NormalCleanup, Stack);
977     }
978 
979     llvm::Value *elementCount;
980     QualType elementType;
981     std::tie(elementCount, elementType) = getVLASize(Ty);
982 
983     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
984 
985     // Allocate memory for the array.
986     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
987     vla->setAlignment(alignment.getQuantity());
988 
989     DeclPtr = vla;
990   }
991 
992   llvm::Value *&DMEntry = LocalDeclMap[&D];
993   assert(!DMEntry && "Decl already exists in localdeclmap!");
994   DMEntry = DeclPtr;
995   emission.Address = DeclPtr;
996 
997   // Emit debug info for local var declaration.
998   if (HaveInsertPoint())
999     if (CGDebugInfo *DI = getDebugInfo()) {
1000       if (CGM.getCodeGenOpts().getDebugInfo()
1001             >= CodeGenOptions::LimitedDebugInfo) {
1002         DI->setLocation(D.getLocation());
1003         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
1004       }
1005     }
1006 
1007   if (D.hasAttr<AnnotateAttr>())
1008       EmitVarAnnotations(&D, emission.Address);
1009 
1010   return emission;
1011 }
1012 
1013 /// Determines whether the given __block variable is potentially
1014 /// captured by the given expression.
1015 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1016   // Skip the most common kinds of expressions that make
1017   // hierarchy-walking expensive.
1018   e = e->IgnoreParenCasts();
1019 
1020   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1021     const BlockDecl *block = be->getBlockDecl();
1022     for (const auto &I : block->captures()) {
1023       if (I.getVariable() == &var)
1024         return true;
1025     }
1026 
1027     // No need to walk into the subexpressions.
1028     return false;
1029   }
1030 
1031   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1032     const CompoundStmt *CS = SE->getSubStmt();
1033     for (const auto *BI : CS->body())
1034       if (const auto *E = dyn_cast<Expr>(BI)) {
1035         if (isCapturedBy(var, E))
1036             return true;
1037       }
1038       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1039           // special case declarations
1040           for (const auto *I : DS->decls()) {
1041               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1042                 const Expr *Init = VD->getInit();
1043                 if (Init && isCapturedBy(var, Init))
1044                   return true;
1045               }
1046           }
1047       }
1048       else
1049         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1050         // Later, provide code to poke into statements for capture analysis.
1051         return true;
1052     return false;
1053   }
1054 
1055   for (Stmt::const_child_range children = e->children(); children; ++children)
1056     if (isCapturedBy(var, cast<Expr>(*children)))
1057       return true;
1058 
1059   return false;
1060 }
1061 
1062 /// \brief Determine whether the given initializer is trivial in the sense
1063 /// that it requires no code to be generated.
1064 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1065   if (!Init)
1066     return true;
1067 
1068   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1069     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1070       if (Constructor->isTrivial() &&
1071           Constructor->isDefaultConstructor() &&
1072           !Construct->requiresZeroInitialization())
1073         return true;
1074 
1075   return false;
1076 }
1077 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1078   assert(emission.Variable && "emission was not valid!");
1079 
1080   // If this was emitted as a global constant, we're done.
1081   if (emission.wasEmittedAsGlobal()) return;
1082 
1083   const VarDecl &D = *emission.Variable;
1084   QualType type = D.getType();
1085 
1086   // If this local has an initializer, emit it now.
1087   const Expr *Init = D.getInit();
1088 
1089   // If we are at an unreachable point, we don't need to emit the initializer
1090   // unless it contains a label.
1091   if (!HaveInsertPoint()) {
1092     if (!Init || !ContainsLabel(Init)) return;
1093     EnsureInsertPoint();
1094   }
1095 
1096   // Initialize the structure of a __block variable.
1097   if (emission.IsByRef)
1098     emitByrefStructureInit(emission);
1099 
1100   if (isTrivialInitializer(Init))
1101     return;
1102 
1103   CharUnits alignment = emission.Alignment;
1104 
1105   // Check whether this is a byref variable that's potentially
1106   // captured and moved by its own initializer.  If so, we'll need to
1107   // emit the initializer first, then copy into the variable.
1108   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1109 
1110   llvm::Value *Loc =
1111     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1112 
1113   llvm::Constant *constant = nullptr;
1114   if (emission.IsConstantAggregate || D.isConstexpr()) {
1115     assert(!capturedByInit && "constant init contains a capturing block?");
1116     constant = CGM.EmitConstantInit(D, this);
1117   }
1118 
1119   if (!constant) {
1120     LValue lv = MakeAddrLValue(Loc, type, alignment);
1121     lv.setNonGC(true);
1122     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1123   }
1124 
1125   if (!emission.IsConstantAggregate) {
1126     // For simple scalar/complex initialization, store the value directly.
1127     LValue lv = MakeAddrLValue(Loc, type, alignment);
1128     lv.setNonGC(true);
1129     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1130   }
1131 
1132   // If this is a simple aggregate initialization, we can optimize it
1133   // in various ways.
1134   bool isVolatile = type.isVolatileQualified();
1135 
1136   llvm::Value *SizeVal =
1137     llvm::ConstantInt::get(IntPtrTy,
1138                            getContext().getTypeSizeInChars(type).getQuantity());
1139 
1140   llvm::Type *BP = Int8PtrTy;
1141   if (Loc->getType() != BP)
1142     Loc = Builder.CreateBitCast(Loc, BP);
1143 
1144   // If the initializer is all or mostly zeros, codegen with memset then do
1145   // a few stores afterward.
1146   if (shouldUseMemSetPlusStoresToInitialize(constant,
1147                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1148     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1149                          alignment.getQuantity(), isVolatile);
1150     // Zero and undef don't require a stores.
1151     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1152       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1153       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1154     }
1155   } else {
1156     // Otherwise, create a temporary global with the initializer then
1157     // memcpy from the global to the alloca.
1158     std::string Name = getStaticDeclName(CGM, D);
1159     llvm::GlobalVariable *GV =
1160       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1161                                llvm::GlobalValue::PrivateLinkage,
1162                                constant, Name);
1163     GV->setAlignment(alignment.getQuantity());
1164     GV->setUnnamedAddr(true);
1165 
1166     llvm::Value *SrcPtr = GV;
1167     if (SrcPtr->getType() != BP)
1168       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1169 
1170     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1171                          isVolatile);
1172   }
1173 }
1174 
1175 /// Emit an expression as an initializer for a variable at the given
1176 /// location.  The expression is not necessarily the normal
1177 /// initializer for the variable, and the address is not necessarily
1178 /// its normal location.
1179 ///
1180 /// \param init the initializing expression
1181 /// \param var the variable to act as if we're initializing
1182 /// \param loc the address to initialize; its type is a pointer
1183 ///   to the LLVM mapping of the variable's type
1184 /// \param alignment the alignment of the address
1185 /// \param capturedByInit true if the variable is a __block variable
1186 ///   whose address is potentially changed by the initializer
1187 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1188                                      const ValueDecl *D,
1189                                      LValue lvalue,
1190                                      bool capturedByInit) {
1191   QualType type = D->getType();
1192 
1193   if (type->isReferenceType()) {
1194     RValue rvalue = EmitReferenceBindingToExpr(init);
1195     if (capturedByInit)
1196       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1197     EmitStoreThroughLValue(rvalue, lvalue, true);
1198     return;
1199   }
1200   switch (getEvaluationKind(type)) {
1201   case TEK_Scalar:
1202     EmitScalarInit(init, D, lvalue, capturedByInit);
1203     return;
1204   case TEK_Complex: {
1205     ComplexPairTy complex = EmitComplexExpr(init);
1206     if (capturedByInit)
1207       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1208     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1209     return;
1210   }
1211   case TEK_Aggregate:
1212     if (type->isAtomicType()) {
1213       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1214     } else {
1215       // TODO: how can we delay here if D is captured by its initializer?
1216       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1217                                               AggValueSlot::IsDestructed,
1218                                          AggValueSlot::DoesNotNeedGCBarriers,
1219                                               AggValueSlot::IsNotAliased));
1220     }
1221     return;
1222   }
1223   llvm_unreachable("bad evaluation kind");
1224 }
1225 
1226 /// Enter a destroy cleanup for the given local variable.
1227 void CodeGenFunction::emitAutoVarTypeCleanup(
1228                             const CodeGenFunction::AutoVarEmission &emission,
1229                             QualType::DestructionKind dtorKind) {
1230   assert(dtorKind != QualType::DK_none);
1231 
1232   // Note that for __block variables, we want to destroy the
1233   // original stack object, not the possibly forwarded object.
1234   llvm::Value *addr = emission.getObjectAddress(*this);
1235 
1236   const VarDecl *var = emission.Variable;
1237   QualType type = var->getType();
1238 
1239   CleanupKind cleanupKind = NormalAndEHCleanup;
1240   CodeGenFunction::Destroyer *destroyer = nullptr;
1241 
1242   switch (dtorKind) {
1243   case QualType::DK_none:
1244     llvm_unreachable("no cleanup for trivially-destructible variable");
1245 
1246   case QualType::DK_cxx_destructor:
1247     // If there's an NRVO flag on the emission, we need a different
1248     // cleanup.
1249     if (emission.NRVOFlag) {
1250       assert(!type->isArrayType());
1251       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1252       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1253                                                emission.NRVOFlag);
1254       return;
1255     }
1256     break;
1257 
1258   case QualType::DK_objc_strong_lifetime:
1259     // Suppress cleanups for pseudo-strong variables.
1260     if (var->isARCPseudoStrong()) return;
1261 
1262     // Otherwise, consider whether to use an EH cleanup or not.
1263     cleanupKind = getARCCleanupKind();
1264 
1265     // Use the imprecise destroyer by default.
1266     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1267       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1268     break;
1269 
1270   case QualType::DK_objc_weak_lifetime:
1271     break;
1272   }
1273 
1274   // If we haven't chosen a more specific destroyer, use the default.
1275   if (!destroyer) destroyer = getDestroyer(dtorKind);
1276 
1277   // Use an EH cleanup in array destructors iff the destructor itself
1278   // is being pushed as an EH cleanup.
1279   bool useEHCleanup = (cleanupKind & EHCleanup);
1280   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1281                                      useEHCleanup);
1282 }
1283 
1284 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1285   assert(emission.Variable && "emission was not valid!");
1286 
1287   // If this was emitted as a global constant, we're done.
1288   if (emission.wasEmittedAsGlobal()) return;
1289 
1290   // If we don't have an insertion point, we're done.  Sema prevents
1291   // us from jumping into any of these scopes anyway.
1292   if (!HaveInsertPoint()) return;
1293 
1294   const VarDecl &D = *emission.Variable;
1295 
1296   // Make sure we call @llvm.lifetime.end.  This needs to happen
1297   // *last*, so the cleanup needs to be pushed *first*.
1298   if (emission.useLifetimeMarkers()) {
1299     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1300                                          emission.getAllocatedAddress(),
1301                                          emission.getSizeForLifetimeMarkers());
1302   }
1303 
1304   // Check the type for a cleanup.
1305   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1306     emitAutoVarTypeCleanup(emission, dtorKind);
1307 
1308   // In GC mode, honor objc_precise_lifetime.
1309   if (getLangOpts().getGC() != LangOptions::NonGC &&
1310       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1311     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1312   }
1313 
1314   // Handle the cleanup attribute.
1315   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1316     const FunctionDecl *FD = CA->getFunctionDecl();
1317 
1318     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1319     assert(F && "Could not find function!");
1320 
1321     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1322     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1323   }
1324 
1325   // If this is a block variable, call _Block_object_destroy
1326   // (on the unforwarded address).
1327   if (emission.IsByRef)
1328     enterByrefCleanup(emission);
1329 }
1330 
1331 CodeGenFunction::Destroyer *
1332 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1333   switch (kind) {
1334   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1335   case QualType::DK_cxx_destructor:
1336     return destroyCXXObject;
1337   case QualType::DK_objc_strong_lifetime:
1338     return destroyARCStrongPrecise;
1339   case QualType::DK_objc_weak_lifetime:
1340     return destroyARCWeak;
1341   }
1342   llvm_unreachable("Unknown DestructionKind");
1343 }
1344 
1345 /// pushEHDestroy - Push the standard destructor for the given type as
1346 /// an EH-only cleanup.
1347 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1348                                   llvm::Value *addr, QualType type) {
1349   assert(dtorKind && "cannot push destructor for trivial type");
1350   assert(needsEHCleanup(dtorKind));
1351 
1352   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1353 }
1354 
1355 /// pushDestroy - Push the standard destructor for the given type as
1356 /// at least a normal cleanup.
1357 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1358                                   llvm::Value *addr, QualType type) {
1359   assert(dtorKind && "cannot push destructor for trivial type");
1360 
1361   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1362   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1363               cleanupKind & EHCleanup);
1364 }
1365 
1366 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1367                                   QualType type, Destroyer *destroyer,
1368                                   bool useEHCleanupForArray) {
1369   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1370                                      destroyer, useEHCleanupForArray);
1371 }
1372 
1373 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1374   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1375 }
1376 
1377 void CodeGenFunction::pushLifetimeExtendedDestroy(
1378     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1379     Destroyer *destroyer, bool useEHCleanupForArray) {
1380   assert(!isInConditionalBranch() &&
1381          "performing lifetime extension from within conditional");
1382 
1383   // Push an EH-only cleanup for the object now.
1384   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1385   // around in case a temporary's destructor throws an exception.
1386   if (cleanupKind & EHCleanup)
1387     EHStack.pushCleanup<DestroyObject>(
1388         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1389         destroyer, useEHCleanupForArray);
1390 
1391   // Remember that we need to push a full cleanup for the object at the
1392   // end of the full-expression.
1393   pushCleanupAfterFullExpr<DestroyObject>(
1394       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1395 }
1396 
1397 /// emitDestroy - Immediately perform the destruction of the given
1398 /// object.
1399 ///
1400 /// \param addr - the address of the object; a type*
1401 /// \param type - the type of the object; if an array type, all
1402 ///   objects are destroyed in reverse order
1403 /// \param destroyer - the function to call to destroy individual
1404 ///   elements
1405 /// \param useEHCleanupForArray - whether an EH cleanup should be
1406 ///   used when destroying array elements, in case one of the
1407 ///   destructions throws an exception
1408 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1409                                   Destroyer *destroyer,
1410                                   bool useEHCleanupForArray) {
1411   const ArrayType *arrayType = getContext().getAsArrayType(type);
1412   if (!arrayType)
1413     return destroyer(*this, addr, type);
1414 
1415   llvm::Value *begin = addr;
1416   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1417 
1418   // Normally we have to check whether the array is zero-length.
1419   bool checkZeroLength = true;
1420 
1421   // But if the array length is constant, we can suppress that.
1422   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1423     // ...and if it's constant zero, we can just skip the entire thing.
1424     if (constLength->isZero()) return;
1425     checkZeroLength = false;
1426   }
1427 
1428   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1429   emitArrayDestroy(begin, end, type, destroyer,
1430                    checkZeroLength, useEHCleanupForArray);
1431 }
1432 
1433 /// emitArrayDestroy - Destroys all the elements of the given array,
1434 /// beginning from last to first.  The array cannot be zero-length.
1435 ///
1436 /// \param begin - a type* denoting the first element of the array
1437 /// \param end - a type* denoting one past the end of the array
1438 /// \param type - the element type of the array
1439 /// \param destroyer - the function to call to destroy elements
1440 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1441 ///   the remaining elements in case the destruction of a single
1442 ///   element throws
1443 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1444                                        llvm::Value *end,
1445                                        QualType type,
1446                                        Destroyer *destroyer,
1447                                        bool checkZeroLength,
1448                                        bool useEHCleanup) {
1449   assert(!type->isArrayType());
1450 
1451   // The basic structure here is a do-while loop, because we don't
1452   // need to check for the zero-element case.
1453   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1454   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1455 
1456   if (checkZeroLength) {
1457     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1458                                                 "arraydestroy.isempty");
1459     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1460   }
1461 
1462   // Enter the loop body, making that address the current address.
1463   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1464   EmitBlock(bodyBB);
1465   llvm::PHINode *elementPast =
1466     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1467   elementPast->addIncoming(end, entryBB);
1468 
1469   // Shift the address back by one element.
1470   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1471   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1472                                                    "arraydestroy.element");
1473 
1474   if (useEHCleanup)
1475     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1476 
1477   // Perform the actual destruction there.
1478   destroyer(*this, element, type);
1479 
1480   if (useEHCleanup)
1481     PopCleanupBlock();
1482 
1483   // Check whether we've reached the end.
1484   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1485   Builder.CreateCondBr(done, doneBB, bodyBB);
1486   elementPast->addIncoming(element, Builder.GetInsertBlock());
1487 
1488   // Done.
1489   EmitBlock(doneBB);
1490 }
1491 
1492 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1493 /// emitArrayDestroy, the element type here may still be an array type.
1494 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1495                                     llvm::Value *begin, llvm::Value *end,
1496                                     QualType type,
1497                                     CodeGenFunction::Destroyer *destroyer) {
1498   // If the element type is itself an array, drill down.
1499   unsigned arrayDepth = 0;
1500   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1501     // VLAs don't require a GEP index to walk into.
1502     if (!isa<VariableArrayType>(arrayType))
1503       arrayDepth++;
1504     type = arrayType->getElementType();
1505   }
1506 
1507   if (arrayDepth) {
1508     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1509 
1510     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1511     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1512     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1513   }
1514 
1515   // Destroy the array.  We don't ever need an EH cleanup because we
1516   // assume that we're in an EH cleanup ourselves, so a throwing
1517   // destructor causes an immediate terminate.
1518   CGF.emitArrayDestroy(begin, end, type, destroyer,
1519                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1520 }
1521 
1522 namespace {
1523   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1524   /// array destroy where the end pointer is regularly determined and
1525   /// does not need to be loaded from a local.
1526   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1527     llvm::Value *ArrayBegin;
1528     llvm::Value *ArrayEnd;
1529     QualType ElementType;
1530     CodeGenFunction::Destroyer *Destroyer;
1531   public:
1532     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1533                                QualType elementType,
1534                                CodeGenFunction::Destroyer *destroyer)
1535       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1536         ElementType(elementType), Destroyer(destroyer) {}
1537 
1538     void Emit(CodeGenFunction &CGF, Flags flags) override {
1539       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1540                               ElementType, Destroyer);
1541     }
1542   };
1543 
1544   /// IrregularPartialArrayDestroy - a cleanup which performs a
1545   /// partial array destroy where the end pointer is irregularly
1546   /// determined and must be loaded from a local.
1547   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1548     llvm::Value *ArrayBegin;
1549     llvm::Value *ArrayEndPointer;
1550     QualType ElementType;
1551     CodeGenFunction::Destroyer *Destroyer;
1552   public:
1553     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1554                                  llvm::Value *arrayEndPointer,
1555                                  QualType elementType,
1556                                  CodeGenFunction::Destroyer *destroyer)
1557       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1558         ElementType(elementType), Destroyer(destroyer) {}
1559 
1560     void Emit(CodeGenFunction &CGF, Flags flags) override {
1561       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1562       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1563                               ElementType, Destroyer);
1564     }
1565   };
1566 }
1567 
1568 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1569 /// already-constructed elements of the given array.  The cleanup
1570 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1571 ///
1572 /// \param elementType - the immediate element type of the array;
1573 ///   possibly still an array type
1574 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1575                                                  llvm::Value *arrayEndPointer,
1576                                                        QualType elementType,
1577                                                        Destroyer *destroyer) {
1578   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1579                                                     arrayBegin, arrayEndPointer,
1580                                                     elementType, destroyer);
1581 }
1582 
1583 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1584 /// already-constructed elements of the given array.  The cleanup
1585 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1586 ///
1587 /// \param elementType - the immediate element type of the array;
1588 ///   possibly still an array type
1589 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1590                                                      llvm::Value *arrayEnd,
1591                                                      QualType elementType,
1592                                                      Destroyer *destroyer) {
1593   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1594                                                   arrayBegin, arrayEnd,
1595                                                   elementType, destroyer);
1596 }
1597 
1598 /// Lazily declare the @llvm.lifetime.start intrinsic.
1599 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1600   if (LifetimeStartFn) return LifetimeStartFn;
1601   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1602                                             llvm::Intrinsic::lifetime_start);
1603   return LifetimeStartFn;
1604 }
1605 
1606 /// Lazily declare the @llvm.lifetime.end intrinsic.
1607 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1608   if (LifetimeEndFn) return LifetimeEndFn;
1609   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1610                                               llvm::Intrinsic::lifetime_end);
1611   return LifetimeEndFn;
1612 }
1613 
1614 namespace {
1615   /// A cleanup to perform a release of an object at the end of a
1616   /// function.  This is used to balance out the incoming +1 of a
1617   /// ns_consumed argument when we can't reasonably do that just by
1618   /// not doing the initial retain for a __block argument.
1619   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1620     ConsumeARCParameter(llvm::Value *param,
1621                         ARCPreciseLifetime_t precise)
1622       : Param(param), Precise(precise) {}
1623 
1624     llvm::Value *Param;
1625     ARCPreciseLifetime_t Precise;
1626 
1627     void Emit(CodeGenFunction &CGF, Flags flags) override {
1628       CGF.EmitARCRelease(Param, Precise);
1629     }
1630   };
1631 }
1632 
1633 /// Emit an alloca (or GlobalValue depending on target)
1634 /// for the specified parameter and set up LocalDeclMap.
1635 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1636                                    bool ArgIsPointer, unsigned ArgNo) {
1637   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1638   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1639          "Invalid argument to EmitParmDecl");
1640 
1641   Arg->setName(D.getName());
1642 
1643   QualType Ty = D.getType();
1644 
1645   // Use better IR generation for certain implicit parameters.
1646   if (isa<ImplicitParamDecl>(D)) {
1647     // The only implicit argument a block has is its literal.
1648     if (BlockInfo) {
1649       LocalDeclMap[&D] = Arg;
1650       llvm::Value *LocalAddr = nullptr;
1651       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1652         // Allocate a stack slot to let the debug info survive the RA.
1653         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1654                                                    D.getName() + ".addr");
1655         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1656         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1657         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1658         LocalAddr = Builder.CreateLoad(Alloc);
1659       }
1660 
1661       if (CGDebugInfo *DI = getDebugInfo()) {
1662         if (CGM.getCodeGenOpts().getDebugInfo()
1663               >= CodeGenOptions::LimitedDebugInfo) {
1664           DI->setLocation(D.getLocation());
1665           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
1666                                                    LocalAddr, Builder);
1667         }
1668       }
1669 
1670       return;
1671     }
1672   }
1673 
1674   llvm::Value *DeclPtr;
1675   bool DoStore = false;
1676   bool IsScalar = hasScalarEvaluationKind(Ty);
1677   CharUnits Align = getContext().getDeclAlign(&D);
1678   // If we already have a pointer to the argument, reuse the input pointer.
1679   if (ArgIsPointer) {
1680     // If we have a prettier pointer type at this point, bitcast to that.
1681     unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1682     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1683     DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1684                                                                    D.getName());
1685     // Push a destructor cleanup for this parameter if the ABI requires it.
1686     // Don't push a cleanup in a thunk for a method that will also emit a
1687     // cleanup.
1688     if (!IsScalar && !CurFuncIsThunk &&
1689         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1690       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1691       if (RD && RD->hasNonTrivialDestructor())
1692         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1693     }
1694   } else {
1695     // Otherwise, create a temporary to hold the value.
1696     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1697                                                D.getName() + ".addr");
1698     Alloc->setAlignment(Align.getQuantity());
1699     DeclPtr = Alloc;
1700     DoStore = true;
1701   }
1702 
1703   LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1704   if (IsScalar) {
1705     Qualifiers qs = Ty.getQualifiers();
1706     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1707       // We honor __attribute__((ns_consumed)) for types with lifetime.
1708       // For __strong, it's handled by just skipping the initial retain;
1709       // otherwise we have to balance out the initial +1 with an extra
1710       // cleanup to do the release at the end of the function.
1711       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1712 
1713       // 'self' is always formally __strong, but if this is not an
1714       // init method then we don't want to retain it.
1715       if (D.isARCPseudoStrong()) {
1716         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1717         assert(&D == method->getSelfDecl());
1718         assert(lt == Qualifiers::OCL_Strong);
1719         assert(qs.hasConst());
1720         assert(method->getMethodFamily() != OMF_init);
1721         (void) method;
1722         lt = Qualifiers::OCL_ExplicitNone;
1723       }
1724 
1725       if (lt == Qualifiers::OCL_Strong) {
1726         if (!isConsumed) {
1727           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1728             // use objc_storeStrong(&dest, value) for retaining the
1729             // object. But first, store a null into 'dest' because
1730             // objc_storeStrong attempts to release its old value.
1731             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1732             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1733             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1734             DoStore = false;
1735           }
1736           else
1737           // Don't use objc_retainBlock for block pointers, because we
1738           // don't want to Block_copy something just because we got it
1739           // as a parameter.
1740             Arg = EmitARCRetainNonBlock(Arg);
1741         }
1742       } else {
1743         // Push the cleanup for a consumed parameter.
1744         if (isConsumed) {
1745           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1746                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1747           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1748                                                    precise);
1749         }
1750 
1751         if (lt == Qualifiers::OCL_Weak) {
1752           EmitARCInitWeak(DeclPtr, Arg);
1753           DoStore = false; // The weak init is a store, no need to do two.
1754         }
1755       }
1756 
1757       // Enter the cleanup scope.
1758       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1759     }
1760   }
1761 
1762   // Store the initial value into the alloca.
1763   if (DoStore)
1764     EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1765 
1766   llvm::Value *&DMEntry = LocalDeclMap[&D];
1767   assert(!DMEntry && "Decl already exists in localdeclmap!");
1768   DMEntry = DeclPtr;
1769 
1770   // Emit debug info for param declaration.
1771   if (CGDebugInfo *DI = getDebugInfo()) {
1772     if (CGM.getCodeGenOpts().getDebugInfo()
1773           >= CodeGenOptions::LimitedDebugInfo) {
1774       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1775     }
1776   }
1777 
1778   if (D.hasAttr<AnnotateAttr>())
1779       EmitVarAnnotations(&D, DeclPtr);
1780 }
1781