1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Type.h"
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 void CodeGenFunction::EmitDecl(const Decl &D) {
43   switch (D.getKind()) {
44   case Decl::BuiltinTemplate:
45   case Decl::TranslationUnit:
46   case Decl::ExternCContext:
47   case Decl::Namespace:
48   case Decl::UnresolvedUsingTypename:
49   case Decl::ClassTemplateSpecialization:
50   case Decl::ClassTemplatePartialSpecialization:
51   case Decl::VarTemplateSpecialization:
52   case Decl::VarTemplatePartialSpecialization:
53   case Decl::TemplateTypeParm:
54   case Decl::UnresolvedUsingValue:
55   case Decl::NonTypeTemplateParm:
56   case Decl::CXXDeductionGuide:
57   case Decl::CXXMethod:
58   case Decl::CXXConstructor:
59   case Decl::CXXDestructor:
60   case Decl::CXXConversion:
61   case Decl::Field:
62   case Decl::MSProperty:
63   case Decl::IndirectField:
64   case Decl::ObjCIvar:
65   case Decl::ObjCAtDefsField:
66   case Decl::ParmVar:
67   case Decl::ImplicitParam:
68   case Decl::ClassTemplate:
69   case Decl::VarTemplate:
70   case Decl::FunctionTemplate:
71   case Decl::TypeAliasTemplate:
72   case Decl::TemplateTemplateParm:
73   case Decl::ObjCMethod:
74   case Decl::ObjCCategory:
75   case Decl::ObjCProtocol:
76   case Decl::ObjCInterface:
77   case Decl::ObjCCategoryImpl:
78   case Decl::ObjCImplementation:
79   case Decl::ObjCProperty:
80   case Decl::ObjCCompatibleAlias:
81   case Decl::PragmaComment:
82   case Decl::PragmaDetectMismatch:
83   case Decl::AccessSpec:
84   case Decl::LinkageSpec:
85   case Decl::Export:
86   case Decl::ObjCPropertyImpl:
87   case Decl::FileScopeAsm:
88   case Decl::Friend:
89   case Decl::FriendTemplate:
90   case Decl::Block:
91   case Decl::Captured:
92   case Decl::ClassScopeFunctionSpecialization:
93   case Decl::UsingShadow:
94   case Decl::ConstructorUsingShadow:
95   case Decl::ObjCTypeParam:
96   case Decl::Binding:
97     llvm_unreachable("Declaration should not be in declstmts!");
98   case Decl::Function:  // void X();
99   case Decl::Record:    // struct/union/class X;
100   case Decl::Enum:      // enum X;
101   case Decl::EnumConstant: // enum ? { X = ? }
102   case Decl::CXXRecord: // struct/union/class X; [C++]
103   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
104   case Decl::Label:        // __label__ x;
105   case Decl::Import:
106   case Decl::OMPThreadPrivate:
107   case Decl::OMPCapturedExpr:
108   case Decl::Empty:
109     // None of these decls require codegen support.
110     return;
111 
112   case Decl::NamespaceAlias:
113     if (CGDebugInfo *DI = getDebugInfo())
114         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
115     return;
116   case Decl::Using:          // using X; [C++]
117     if (CGDebugInfo *DI = getDebugInfo())
118         DI->EmitUsingDecl(cast<UsingDecl>(D));
119     return;
120   case Decl::UsingPack:
121     for (auto *Using : cast<UsingPackDecl>(D).expansions())
122       EmitDecl(*Using);
123     return;
124   case Decl::UsingDirective: // using namespace X; [C++]
125     if (CGDebugInfo *DI = getDebugInfo())
126       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
127     return;
128   case Decl::Var:
129   case Decl::Decomposition: {
130     const VarDecl &VD = cast<VarDecl>(D);
131     assert(VD.isLocalVarDecl() &&
132            "Should not see file-scope variables inside a function!");
133     EmitVarDecl(VD);
134     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
135       for (auto *B : DD->bindings())
136         if (auto *HD = B->getHoldingVar())
137           EmitVarDecl(*HD);
138     return;
139   }
140 
141   case Decl::OMPDeclareReduction:
142     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
143 
144   case Decl::Typedef:      // typedef int X;
145   case Decl::TypeAlias: {  // using X = int; [C++0x]
146     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
147     QualType Ty = TD.getUnderlyingType();
148 
149     if (Ty->isVariablyModifiedType())
150       EmitVariablyModifiedType(Ty);
151   }
152   }
153 }
154 
155 /// EmitVarDecl - This method handles emission of any variable declaration
156 /// inside a function, including static vars etc.
157 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
158   if (D.hasExternalStorage())
159     // Don't emit it now, allow it to be emitted lazily on its first use.
160     return;
161 
162   // Some function-scope variable does not have static storage but still
163   // needs to be emitted like a static variable, e.g. a function-scope
164   // variable in constant address space in OpenCL.
165   if (D.getStorageDuration() != SD_Automatic) {
166     // Static sampler variables translated to function calls.
167     if (D.getType()->isSamplerT())
168       return;
169 
170     llvm::GlobalValue::LinkageTypes Linkage =
171         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
172 
173     // FIXME: We need to force the emission/use of a guard variable for
174     // some variables even if we can constant-evaluate them because
175     // we can't guarantee every translation unit will constant-evaluate them.
176 
177     return EmitStaticVarDecl(D, Linkage);
178   }
179 
180   if (D.getType().getAddressSpace() == LangAS::opencl_local)
181     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
182 
183   assert(D.hasLocalStorage());
184   return EmitAutoVarDecl(D);
185 }
186 
187 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
188   if (CGM.getLangOpts().CPlusPlus)
189     return CGM.getMangledName(&D).str();
190 
191   // If this isn't C++, we don't need a mangled name, just a pretty one.
192   assert(!D.isExternallyVisible() && "name shouldn't matter");
193   std::string ContextName;
194   const DeclContext *DC = D.getDeclContext();
195   if (auto *CD = dyn_cast<CapturedDecl>(DC))
196     DC = cast<DeclContext>(CD->getNonClosureContext());
197   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
198     ContextName = CGM.getMangledName(FD);
199   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
200     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
201   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
202     ContextName = OMD->getSelector().getAsString();
203   else
204     llvm_unreachable("Unknown context for static var decl");
205 
206   ContextName += "." + D.getNameAsString();
207   return ContextName;
208 }
209 
210 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
211     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
212   // In general, we don't always emit static var decls once before we reference
213   // them. It is possible to reference them before emitting the function that
214   // contains them, and it is possible to emit the containing function multiple
215   // times.
216   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
217     return ExistingGV;
218 
219   QualType Ty = D.getType();
220   assert(Ty->isConstantSizeType() && "VLAs can't be static");
221 
222   // Use the label if the variable is renamed with the asm-label extension.
223   std::string Name;
224   if (D.hasAttr<AsmLabelAttr>())
225     Name = getMangledName(&D);
226   else
227     Name = getStaticDeclName(*this, D);
228 
229   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
230   LangAS AS = GetGlobalVarAddressSpace(&D);
231   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
232 
233   // OpenCL variables in local address space and CUDA shared
234   // variables cannot have an initializer.
235   llvm::Constant *Init = nullptr;
236   if (Ty.getAddressSpace() == LangAS::opencl_local ||
237       D.hasAttr<CUDASharedAttr>())
238     Init = llvm::UndefValue::get(LTy);
239   else
240     Init = EmitNullConstant(Ty);
241 
242   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
243       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
244       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
245   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
246 
247   if (supportsCOMDAT() && GV->isWeakForLinker())
248     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
249 
250   if (D.getTLSKind())
251     setTLSMode(GV, D);
252 
253   setGVProperties(GV, &D);
254 
255   // Make sure the result is of the correct type.
256   LangAS ExpectedAS = Ty.getAddressSpace();
257   llvm::Constant *Addr = GV;
258   if (AS != ExpectedAS) {
259     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
260         *this, GV, AS, ExpectedAS,
261         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
262   }
263 
264   setStaticLocalDeclAddress(&D, Addr);
265 
266   // Ensure that the static local gets initialized by making sure the parent
267   // function gets emitted eventually.
268   const Decl *DC = cast<Decl>(D.getDeclContext());
269 
270   // We can't name blocks or captured statements directly, so try to emit their
271   // parents.
272   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
273     DC = DC->getNonClosureContext();
274     // FIXME: Ensure that global blocks get emitted.
275     if (!DC)
276       return Addr;
277   }
278 
279   GlobalDecl GD;
280   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
281     GD = GlobalDecl(CD, Ctor_Base);
282   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
283     GD = GlobalDecl(DD, Dtor_Base);
284   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
285     GD = GlobalDecl(FD);
286   else {
287     // Don't do anything for Obj-C method decls or global closures. We should
288     // never defer them.
289     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
290   }
291   if (GD.getDecl()) {
292     // Disable emission of the parent function for the OpenMP device codegen.
293     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
294     (void)GetAddrOfGlobal(GD);
295   }
296 
297   return Addr;
298 }
299 
300 /// hasNontrivialDestruction - Determine whether a type's destruction is
301 /// non-trivial. If so, and the variable uses static initialization, we must
302 /// register its destructor to run on exit.
303 static bool hasNontrivialDestruction(QualType T) {
304   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
305   return RD && !RD->hasTrivialDestructor();
306 }
307 
308 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
309 /// global variable that has already been created for it.  If the initializer
310 /// has a different type than GV does, this may free GV and return a different
311 /// one.  Otherwise it just returns GV.
312 llvm::GlobalVariable *
313 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
314                                                llvm::GlobalVariable *GV) {
315   ConstantEmitter emitter(*this);
316   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
317 
318   // If constant emission failed, then this should be a C++ static
319   // initializer.
320   if (!Init) {
321     if (!getLangOpts().CPlusPlus)
322       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
323     else if (HaveInsertPoint()) {
324       // Since we have a static initializer, this global variable can't
325       // be constant.
326       GV->setConstant(false);
327 
328       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
329     }
330     return GV;
331   }
332 
333   // The initializer may differ in type from the global. Rewrite
334   // the global to match the initializer.  (We have to do this
335   // because some types, like unions, can't be completely represented
336   // in the LLVM type system.)
337   if (GV->getType()->getElementType() != Init->getType()) {
338     llvm::GlobalVariable *OldGV = GV;
339 
340     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
341                                   OldGV->isConstant(),
342                                   OldGV->getLinkage(), Init, "",
343                                   /*InsertBefore*/ OldGV,
344                                   OldGV->getThreadLocalMode(),
345                            CGM.getContext().getTargetAddressSpace(D.getType()));
346     GV->setVisibility(OldGV->getVisibility());
347     GV->setDSOLocal(OldGV->isDSOLocal());
348     GV->setComdat(OldGV->getComdat());
349 
350     // Steal the name of the old global
351     GV->takeName(OldGV);
352 
353     // Replace all uses of the old global with the new global
354     llvm::Constant *NewPtrForOldDecl =
355     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
356     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
357 
358     // Erase the old global, since it is no longer used.
359     OldGV->eraseFromParent();
360   }
361 
362   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
363   GV->setInitializer(Init);
364 
365   emitter.finalize(GV);
366 
367   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
368     // We have a constant initializer, but a nontrivial destructor. We still
369     // need to perform a guarded "initialization" in order to register the
370     // destructor.
371     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
372   }
373 
374   return GV;
375 }
376 
377 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
378                                       llvm::GlobalValue::LinkageTypes Linkage) {
379   // Check to see if we already have a global variable for this
380   // declaration.  This can happen when double-emitting function
381   // bodies, e.g. with complete and base constructors.
382   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
383   CharUnits alignment = getContext().getDeclAlign(&D);
384 
385   // Store into LocalDeclMap before generating initializer to handle
386   // circular references.
387   setAddrOfLocalVar(&D, Address(addr, alignment));
388 
389   // We can't have a VLA here, but we can have a pointer to a VLA,
390   // even though that doesn't really make any sense.
391   // Make sure to evaluate VLA bounds now so that we have them for later.
392   if (D.getType()->isVariablyModifiedType())
393     EmitVariablyModifiedType(D.getType());
394 
395   // Save the type in case adding the initializer forces a type change.
396   llvm::Type *expectedType = addr->getType();
397 
398   llvm::GlobalVariable *var =
399     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
400 
401   // CUDA's local and local static __shared__ variables should not
402   // have any non-empty initializers. This is ensured by Sema.
403   // Whatever initializer such variable may have when it gets here is
404   // a no-op and should not be emitted.
405   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
406                          D.hasAttr<CUDASharedAttr>();
407   // If this value has an initializer, emit it.
408   if (D.getInit() && !isCudaSharedVar)
409     var = AddInitializerToStaticVarDecl(D, var);
410 
411   var->setAlignment(alignment.getQuantity());
412 
413   if (D.hasAttr<AnnotateAttr>())
414     CGM.AddGlobalAnnotations(&D, var);
415 
416   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
417     var->addAttribute("bss-section", SA->getName());
418   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
419     var->addAttribute("data-section", SA->getName());
420   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
421     var->addAttribute("rodata-section", SA->getName());
422 
423   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
424     var->setSection(SA->getName());
425 
426   if (D.hasAttr<UsedAttr>())
427     CGM.addUsedGlobal(var);
428 
429   // We may have to cast the constant because of the initializer
430   // mismatch above.
431   //
432   // FIXME: It is really dangerous to store this in the map; if anyone
433   // RAUW's the GV uses of this constant will be invalid.
434   llvm::Constant *castedAddr =
435     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
436   if (var != castedAddr)
437     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
438   CGM.setStaticLocalDeclAddress(&D, castedAddr);
439 
440   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
441 
442   // Emit global variable debug descriptor for static vars.
443   CGDebugInfo *DI = getDebugInfo();
444   if (DI &&
445       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
446     DI->setLocation(D.getLocation());
447     DI->EmitGlobalVariable(var, &D);
448   }
449 }
450 
451 namespace {
452   struct DestroyObject final : EHScopeStack::Cleanup {
453     DestroyObject(Address addr, QualType type,
454                   CodeGenFunction::Destroyer *destroyer,
455                   bool useEHCleanupForArray)
456       : addr(addr), type(type), destroyer(destroyer),
457         useEHCleanupForArray(useEHCleanupForArray) {}
458 
459     Address addr;
460     QualType type;
461     CodeGenFunction::Destroyer *destroyer;
462     bool useEHCleanupForArray;
463 
464     void Emit(CodeGenFunction &CGF, Flags flags) override {
465       // Don't use an EH cleanup recursively from an EH cleanup.
466       bool useEHCleanupForArray =
467         flags.isForNormalCleanup() && this->useEHCleanupForArray;
468 
469       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
470     }
471   };
472 
473   template <class Derived>
474   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
475     DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
476         : NRVOFlag(NRVOFlag), Loc(addr) {}
477 
478     llvm::Value *NRVOFlag;
479     Address Loc;
480 
481     void Emit(CodeGenFunction &CGF, Flags flags) override {
482       // Along the exceptions path we always execute the dtor.
483       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
484 
485       llvm::BasicBlock *SkipDtorBB = nullptr;
486       if (NRVO) {
487         // If we exited via NRVO, we skip the destructor call.
488         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
489         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
490         llvm::Value *DidNRVO =
491           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
492         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
493         CGF.EmitBlock(RunDtorBB);
494       }
495 
496       static_cast<Derived *>(this)->emitDestructorCall(CGF);
497 
498       if (NRVO) CGF.EmitBlock(SkipDtorBB);
499     }
500 
501     virtual ~DestroyNRVOVariable() = default;
502   };
503 
504   struct DestroyNRVOVariableCXX final
505       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
506     DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
507                            llvm::Value *NRVOFlag)
508       : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
509         Dtor(Dtor) {}
510 
511     const CXXDestructorDecl *Dtor;
512 
513     void emitDestructorCall(CodeGenFunction &CGF) {
514       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
515                                 /*ForVirtualBase=*/false,
516                                 /*Delegating=*/false, Loc);
517     }
518   };
519 
520   struct DestroyNRVOVariableC final
521       : DestroyNRVOVariable<DestroyNRVOVariableC> {
522     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
523         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
524 
525     QualType Ty;
526 
527     void emitDestructorCall(CodeGenFunction &CGF) {
528       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
529     }
530   };
531 
532   struct CallStackRestore final : EHScopeStack::Cleanup {
533     Address Stack;
534     CallStackRestore(Address Stack) : Stack(Stack) {}
535     void Emit(CodeGenFunction &CGF, Flags flags) override {
536       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
537       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
538       CGF.Builder.CreateCall(F, V);
539     }
540   };
541 
542   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
543     const VarDecl &Var;
544     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
545 
546     void Emit(CodeGenFunction &CGF, Flags flags) override {
547       // Compute the address of the local variable, in case it's a
548       // byref or something.
549       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
550                       Var.getType(), VK_LValue, SourceLocation());
551       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
552                                                 SourceLocation());
553       CGF.EmitExtendGCLifetime(value);
554     }
555   };
556 
557   struct CallCleanupFunction final : EHScopeStack::Cleanup {
558     llvm::Constant *CleanupFn;
559     const CGFunctionInfo &FnInfo;
560     const VarDecl &Var;
561 
562     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
563                         const VarDecl *Var)
564       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
565 
566     void Emit(CodeGenFunction &CGF, Flags flags) override {
567       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
568                       Var.getType(), VK_LValue, SourceLocation());
569       // Compute the address of the local variable, in case it's a byref
570       // or something.
571       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
572 
573       // In some cases, the type of the function argument will be different from
574       // the type of the pointer. An example of this is
575       // void f(void* arg);
576       // __attribute__((cleanup(f))) void *g;
577       //
578       // To fix this we insert a bitcast here.
579       QualType ArgTy = FnInfo.arg_begin()->type;
580       llvm::Value *Arg =
581         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
582 
583       CallArgList Args;
584       Args.add(RValue::get(Arg),
585                CGF.getContext().getPointerType(Var.getType()));
586       auto Callee = CGCallee::forDirect(CleanupFn);
587       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
588     }
589   };
590 } // end anonymous namespace
591 
592 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
593 /// variable with lifetime.
594 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
595                                     Address addr,
596                                     Qualifiers::ObjCLifetime lifetime) {
597   switch (lifetime) {
598   case Qualifiers::OCL_None:
599     llvm_unreachable("present but none");
600 
601   case Qualifiers::OCL_ExplicitNone:
602     // nothing to do
603     break;
604 
605   case Qualifiers::OCL_Strong: {
606     CodeGenFunction::Destroyer *destroyer =
607       (var.hasAttr<ObjCPreciseLifetimeAttr>()
608        ? CodeGenFunction::destroyARCStrongPrecise
609        : CodeGenFunction::destroyARCStrongImprecise);
610 
611     CleanupKind cleanupKind = CGF.getARCCleanupKind();
612     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
613                     cleanupKind & EHCleanup);
614     break;
615   }
616   case Qualifiers::OCL_Autoreleasing:
617     // nothing to do
618     break;
619 
620   case Qualifiers::OCL_Weak:
621     // __weak objects always get EH cleanups; otherwise, exceptions
622     // could cause really nasty crashes instead of mere leaks.
623     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
624                     CodeGenFunction::destroyARCWeak,
625                     /*useEHCleanup*/ true);
626     break;
627   }
628 }
629 
630 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
631   if (const Expr *e = dyn_cast<Expr>(s)) {
632     // Skip the most common kinds of expressions that make
633     // hierarchy-walking expensive.
634     s = e = e->IgnoreParenCasts();
635 
636     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
637       return (ref->getDecl() == &var);
638     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
639       const BlockDecl *block = be->getBlockDecl();
640       for (const auto &I : block->captures()) {
641         if (I.getVariable() == &var)
642           return true;
643       }
644     }
645   }
646 
647   for (const Stmt *SubStmt : s->children())
648     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
649     if (SubStmt && isAccessedBy(var, SubStmt))
650       return true;
651 
652   return false;
653 }
654 
655 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
656   if (!decl) return false;
657   if (!isa<VarDecl>(decl)) return false;
658   const VarDecl *var = cast<VarDecl>(decl);
659   return isAccessedBy(*var, e);
660 }
661 
662 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
663                                    const LValue &destLV, const Expr *init) {
664   bool needsCast = false;
665 
666   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
667     switch (castExpr->getCastKind()) {
668     // Look through casts that don't require representation changes.
669     case CK_NoOp:
670     case CK_BitCast:
671     case CK_BlockPointerToObjCPointerCast:
672       needsCast = true;
673       break;
674 
675     // If we find an l-value to r-value cast from a __weak variable,
676     // emit this operation as a copy or move.
677     case CK_LValueToRValue: {
678       const Expr *srcExpr = castExpr->getSubExpr();
679       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
680         return false;
681 
682       // Emit the source l-value.
683       LValue srcLV = CGF.EmitLValue(srcExpr);
684 
685       // Handle a formal type change to avoid asserting.
686       auto srcAddr = srcLV.getAddress();
687       if (needsCast) {
688         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
689                                          destLV.getAddress().getElementType());
690       }
691 
692       // If it was an l-value, use objc_copyWeak.
693       if (srcExpr->getValueKind() == VK_LValue) {
694         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
695       } else {
696         assert(srcExpr->getValueKind() == VK_XValue);
697         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
698       }
699       return true;
700     }
701 
702     // Stop at anything else.
703     default:
704       return false;
705     }
706 
707     init = castExpr->getSubExpr();
708   }
709   return false;
710 }
711 
712 static void drillIntoBlockVariable(CodeGenFunction &CGF,
713                                    LValue &lvalue,
714                                    const VarDecl *var) {
715   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
716 }
717 
718 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
719                                            SourceLocation Loc) {
720   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
721     return;
722 
723   auto Nullability = LHS.getType()->getNullability(getContext());
724   if (!Nullability || *Nullability != NullabilityKind::NonNull)
725     return;
726 
727   // Check if the right hand side of the assignment is nonnull, if the left
728   // hand side must be nonnull.
729   SanitizerScope SanScope(this);
730   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
731   llvm::Constant *StaticData[] = {
732       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
733       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
734       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
735   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
736             SanitizerHandler::TypeMismatch, StaticData, RHS);
737 }
738 
739 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
740                                      LValue lvalue, bool capturedByInit) {
741   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
742   if (!lifetime) {
743     llvm::Value *value = EmitScalarExpr(init);
744     if (capturedByInit)
745       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
746     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
747     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
748     return;
749   }
750 
751   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
752     init = DIE->getExpr();
753 
754   // If we're emitting a value with lifetime, we have to do the
755   // initialization *before* we leave the cleanup scopes.
756   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
757     enterFullExpression(ewc);
758     init = ewc->getSubExpr();
759   }
760   CodeGenFunction::RunCleanupsScope Scope(*this);
761 
762   // We have to maintain the illusion that the variable is
763   // zero-initialized.  If the variable might be accessed in its
764   // initializer, zero-initialize before running the initializer, then
765   // actually perform the initialization with an assign.
766   bool accessedByInit = false;
767   if (lifetime != Qualifiers::OCL_ExplicitNone)
768     accessedByInit = (capturedByInit || isAccessedBy(D, init));
769   if (accessedByInit) {
770     LValue tempLV = lvalue;
771     // Drill down to the __block object if necessary.
772     if (capturedByInit) {
773       // We can use a simple GEP for this because it can't have been
774       // moved yet.
775       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
776                                               cast<VarDecl>(D),
777                                               /*follow*/ false));
778     }
779 
780     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
781     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
782 
783     // If __weak, we want to use a barrier under certain conditions.
784     if (lifetime == Qualifiers::OCL_Weak)
785       EmitARCInitWeak(tempLV.getAddress(), zero);
786 
787     // Otherwise just do a simple store.
788     else
789       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
790   }
791 
792   // Emit the initializer.
793   llvm::Value *value = nullptr;
794 
795   switch (lifetime) {
796   case Qualifiers::OCL_None:
797     llvm_unreachable("present but none");
798 
799   case Qualifiers::OCL_ExplicitNone:
800     value = EmitARCUnsafeUnretainedScalarExpr(init);
801     break;
802 
803   case Qualifiers::OCL_Strong: {
804     value = EmitARCRetainScalarExpr(init);
805     break;
806   }
807 
808   case Qualifiers::OCL_Weak: {
809     // If it's not accessed by the initializer, try to emit the
810     // initialization with a copy or move.
811     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
812       return;
813     }
814 
815     // No way to optimize a producing initializer into this.  It's not
816     // worth optimizing for, because the value will immediately
817     // disappear in the common case.
818     value = EmitScalarExpr(init);
819 
820     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
821     if (accessedByInit)
822       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
823     else
824       EmitARCInitWeak(lvalue.getAddress(), value);
825     return;
826   }
827 
828   case Qualifiers::OCL_Autoreleasing:
829     value = EmitARCRetainAutoreleaseScalarExpr(init);
830     break;
831   }
832 
833   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
834 
835   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
836 
837   // If the variable might have been accessed by its initializer, we
838   // might have to initialize with a barrier.  We have to do this for
839   // both __weak and __strong, but __weak got filtered out above.
840   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
841     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
842     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
843     EmitARCRelease(oldValue, ARCImpreciseLifetime);
844     return;
845   }
846 
847   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
848 }
849 
850 /// Decide whether we can emit the non-zero parts of the specified initializer
851 /// with equal or fewer than NumStores scalar stores.
852 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
853                                                unsigned &NumStores) {
854   // Zero and Undef never requires any extra stores.
855   if (isa<llvm::ConstantAggregateZero>(Init) ||
856       isa<llvm::ConstantPointerNull>(Init) ||
857       isa<llvm::UndefValue>(Init))
858     return true;
859   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
860       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
861       isa<llvm::ConstantExpr>(Init))
862     return Init->isNullValue() || NumStores--;
863 
864   // See if we can emit each element.
865   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
866     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
867       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
868       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
869         return false;
870     }
871     return true;
872   }
873 
874   if (llvm::ConstantDataSequential *CDS =
875         dyn_cast<llvm::ConstantDataSequential>(Init)) {
876     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
877       llvm::Constant *Elt = CDS->getElementAsConstant(i);
878       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
879         return false;
880     }
881     return true;
882   }
883 
884   // Anything else is hard and scary.
885   return false;
886 }
887 
888 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
889 /// the scalar stores that would be required.
890 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
891                                         llvm::Constant *Init, Address Loc,
892                                         bool isVolatile, CGBuilderTy &Builder) {
893   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
894          "called emitStoresForInitAfterBZero for zero or undef value.");
895 
896   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
897       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
898       isa<llvm::ConstantExpr>(Init)) {
899     Builder.CreateStore(Init, Loc, isVolatile);
900     return;
901   }
902 
903   if (llvm::ConstantDataSequential *CDS =
904           dyn_cast<llvm::ConstantDataSequential>(Init)) {
905     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
906       llvm::Constant *Elt = CDS->getElementAsConstant(i);
907 
908       // If necessary, get a pointer to the element and emit it.
909       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
910         emitStoresForInitAfterBZero(
911             CGM, Elt,
912             Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
913             isVolatile, Builder);
914     }
915     return;
916   }
917 
918   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
919          "Unknown value type!");
920 
921   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
922     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
923 
924     // If necessary, get a pointer to the element and emit it.
925     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
926       emitStoresForInitAfterBZero(
927           CGM, Elt,
928           Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
929           isVolatile, Builder);
930   }
931 }
932 
933 /// Decide whether we should use bzero plus some stores to initialize a local
934 /// variable instead of using a memcpy from a constant global.  It is beneficial
935 /// to use bzero if the global is all zeros, or mostly zeros and large.
936 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
937                                                  uint64_t GlobalSize) {
938   // If a global is all zeros, always use a bzero.
939   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
940 
941   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
942   // do it if it will require 6 or fewer scalar stores.
943   // TODO: Should budget depends on the size?  Avoiding a large global warrants
944   // plopping in more stores.
945   unsigned StoreBudget = 6;
946   uint64_t SizeLimit = 32;
947 
948   return GlobalSize > SizeLimit &&
949          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
950 }
951 
952 /// Decide whether we should use memset to initialize a local variable instead
953 /// of using a memcpy from a constant global. Assumes we've already decided to
954 /// not user bzero.
955 /// FIXME We could be more clever, as we are for bzero above, and generate
956 ///       memset followed by stores. It's unclear that's worth the effort.
957 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
958                                                 uint64_t GlobalSize) {
959   uint64_t SizeLimit = 32;
960   if (GlobalSize <= SizeLimit)
961     return nullptr;
962   return llvm::isBytewiseValue(Init);
963 }
964 
965 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
966                                   Address Loc, bool isVolatile,
967                                   CGBuilderTy &Builder,
968                                   llvm::Constant *constant) {
969   auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
970   auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
971 
972   // If the initializer is all or mostly the same, codegen with bzero / memset
973   // then do a few stores afterward.
974   uint64_t ConstantSize =
975       CGM.getDataLayout().getTypeAllocSize(constant->getType());
976   auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
977   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
978     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
979                          isVolatile);
980 
981     bool valueAlreadyCorrect =
982         constant->isNullValue() || isa<llvm::UndefValue>(constant);
983     if (!valueAlreadyCorrect) {
984       Loc = Builder.CreateBitCast(
985           Loc, constant->getType()->getPointerTo(Loc.getAddressSpace()));
986       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
987     }
988     return;
989   }
990 
991   llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
992   if (Pattern) {
993     uint64_t Value = 0x00;
994     if (!isa<llvm::UndefValue>(Pattern)) {
995       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
996       assert(AP.getBitWidth() <= 8);
997       Value = AP.getLimitedValue();
998     }
999     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
1000                          isVolatile);
1001     return;
1002   }
1003 
1004   // Otherwise, create a temporary global with the initializer then memcpy from
1005   // the global to the alloca.
1006   std::string Name = getStaticDeclName(CGM, D);
1007   unsigned AS = CGM.getContext().getTargetAddressSpace(
1008       CGM.getStringLiteralAddressSpace());
1009   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS);
1010 
1011   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1012       CGM.getModule(), constant->getType(), true,
1013       llvm::GlobalValue::PrivateLinkage, constant, Name, nullptr,
1014       llvm::GlobalValue::NotThreadLocal, AS);
1015   GV->setAlignment(Loc.getAlignment().getQuantity());
1016   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1017 
1018   Address SrcPtr = Address(GV, Loc.getAlignment());
1019   if (SrcPtr.getType() != BP)
1020     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1021 
1022   Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1023 }
1024 
1025 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1026 /// variable declaration with auto, register, or no storage class specifier.
1027 /// These turn into simple stack objects, or GlobalValues depending on target.
1028 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1029   AutoVarEmission emission = EmitAutoVarAlloca(D);
1030   EmitAutoVarInit(emission);
1031   EmitAutoVarCleanups(emission);
1032 }
1033 
1034 /// Emit a lifetime.begin marker if some criteria are satisfied.
1035 /// \return a pointer to the temporary size Value if a marker was emitted, null
1036 /// otherwise
1037 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1038                                                 llvm::Value *Addr) {
1039   if (!ShouldEmitLifetimeMarkers)
1040     return nullptr;
1041 
1042   assert(Addr->getType()->getPointerAddressSpace() ==
1043              CGM.getDataLayout().getAllocaAddrSpace() &&
1044          "Pointer should be in alloca address space");
1045   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1046   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1047   llvm::CallInst *C =
1048       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1049   C->setDoesNotThrow();
1050   return SizeV;
1051 }
1052 
1053 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1054   assert(Addr->getType()->getPointerAddressSpace() ==
1055              CGM.getDataLayout().getAllocaAddrSpace() &&
1056          "Pointer should be in alloca address space");
1057   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1058   llvm::CallInst *C =
1059       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1060   C->setDoesNotThrow();
1061 }
1062 
1063 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1064     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1065   // For each dimension stores its QualType and corresponding
1066   // size-expression Value.
1067   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1068 
1069   // Break down the array into individual dimensions.
1070   QualType Type1D = D.getType();
1071   while (getContext().getAsVariableArrayType(Type1D)) {
1072     auto VlaSize = getVLAElements1D(Type1D);
1073     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1074       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1075     else {
1076       auto SizeExprAddr = CreateDefaultAlignTempAlloca(
1077           VlaSize.NumElts->getType(), "__vla_expr");
1078       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1079       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1080                               Type1D.getUnqualifiedType());
1081     }
1082     Type1D = VlaSize.Type;
1083   }
1084 
1085   if (!EmitDebugInfo)
1086     return;
1087 
1088   // Register each dimension's size-expression with a DILocalVariable,
1089   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1090   // to describe this array.
1091   for (auto &VlaSize : Dimensions) {
1092     llvm::Metadata *MD;
1093     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1094       MD = llvm::ConstantAsMetadata::get(C);
1095     else {
1096       // Create an artificial VarDecl to generate debug info for.
1097       IdentifierInfo &NameIdent = getContext().Idents.getOwn(
1098           cast<llvm::AllocaInst>(VlaSize.NumElts)->getName());
1099       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1100       auto QT = getContext().getIntTypeForBitwidth(
1101           VlaExprTy->getScalarSizeInBits(), false);
1102       auto *ArtificialDecl = VarDecl::Create(
1103           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1104           D.getLocation(), D.getLocation(), &NameIdent, QT,
1105           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1106       ArtificialDecl->setImplicit();
1107 
1108       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1109                                          Builder);
1110     }
1111     assert(MD && "No Size expression debug node created");
1112     DI->registerVLASizeExpression(VlaSize.Type, MD);
1113   }
1114 }
1115 
1116 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1117 /// local variable.  Does not emit initialization or destruction.
1118 CodeGenFunction::AutoVarEmission
1119 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1120   QualType Ty = D.getType();
1121   assert(
1122       Ty.getAddressSpace() == LangAS::Default ||
1123       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1124 
1125   AutoVarEmission emission(D);
1126 
1127   bool isByRef = D.hasAttr<BlocksAttr>();
1128   emission.IsByRef = isByRef;
1129 
1130   CharUnits alignment = getContext().getDeclAlign(&D);
1131 
1132   // If the type is variably-modified, emit all the VLA sizes for it.
1133   if (Ty->isVariablyModifiedType())
1134     EmitVariablyModifiedType(Ty);
1135 
1136   auto *DI = getDebugInfo();
1137   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1138                                  codegenoptions::LimitedDebugInfo;
1139 
1140   Address address = Address::invalid();
1141   Address AllocaAddr = Address::invalid();
1142   if (Ty->isConstantSizeType()) {
1143     bool NRVO = getLangOpts().ElideConstructors &&
1144       D.isNRVOVariable();
1145 
1146     // If this value is an array or struct with a statically determinable
1147     // constant initializer, there are optimizations we can do.
1148     //
1149     // TODO: We should constant-evaluate the initializer of any variable,
1150     // as long as it is initialized by a constant expression. Currently,
1151     // isConstantInitializer produces wrong answers for structs with
1152     // reference or bitfield members, and a few other cases, and checking
1153     // for POD-ness protects us from some of these.
1154     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1155         (D.isConstexpr() ||
1156          ((Ty.isPODType(getContext()) ||
1157            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1158           D.getInit()->isConstantInitializer(getContext(), false)))) {
1159 
1160       // If the variable's a const type, and it's neither an NRVO
1161       // candidate nor a __block variable and has no mutable members,
1162       // emit it as a global instead.
1163       // Exception is if a variable is located in non-constant address space
1164       // in OpenCL.
1165       if ((!getLangOpts().OpenCL ||
1166            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1167           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
1168            CGM.isTypeConstant(Ty, true))) {
1169         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1170 
1171         // Signal this condition to later callbacks.
1172         emission.Addr = Address::invalid();
1173         assert(emission.wasEmittedAsGlobal());
1174         return emission;
1175       }
1176 
1177       // Otherwise, tell the initialization code that we're in this case.
1178       emission.IsConstantAggregate = true;
1179     }
1180 
1181     // A normal fixed sized variable becomes an alloca in the entry block,
1182     // unless:
1183     // - it's an NRVO variable.
1184     // - we are compiling OpenMP and it's an OpenMP local variable.
1185 
1186     Address OpenMPLocalAddr =
1187         getLangOpts().OpenMP
1188             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1189             : Address::invalid();
1190     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1191       address = OpenMPLocalAddr;
1192     } else if (NRVO) {
1193       // The named return value optimization: allocate this variable in the
1194       // return slot, so that we can elide the copy when returning this
1195       // variable (C++0x [class.copy]p34).
1196       address = ReturnValue;
1197 
1198       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1199         const auto *RD = RecordTy->getDecl();
1200         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1201         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1202             RD->isNonTrivialToPrimitiveDestroy()) {
1203           // Create a flag that is used to indicate when the NRVO was applied
1204           // to this variable. Set it to zero to indicate that NRVO was not
1205           // applied.
1206           llvm::Value *Zero = Builder.getFalse();
1207           Address NRVOFlag =
1208             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1209           EnsureInsertPoint();
1210           Builder.CreateStore(Zero, NRVOFlag);
1211 
1212           // Record the NRVO flag for this variable.
1213           NRVOFlags[&D] = NRVOFlag.getPointer();
1214           emission.NRVOFlag = NRVOFlag.getPointer();
1215         }
1216       }
1217     } else {
1218       CharUnits allocaAlignment;
1219       llvm::Type *allocaTy;
1220       if (isByRef) {
1221         auto &byrefInfo = getBlockByrefInfo(&D);
1222         allocaTy = byrefInfo.Type;
1223         allocaAlignment = byrefInfo.ByrefAlignment;
1224       } else {
1225         allocaTy = ConvertTypeForMem(Ty);
1226         allocaAlignment = alignment;
1227       }
1228 
1229       // Create the alloca.  Note that we set the name separately from
1230       // building the instruction so that it's there even in no-asserts
1231       // builds.
1232       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1233                                  /*ArraySize=*/nullptr, &AllocaAddr);
1234 
1235       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1236       // the catch parameter starts in the catchpad instruction, and we can't
1237       // insert code in those basic blocks.
1238       bool IsMSCatchParam =
1239           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1240 
1241       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1242       // if we don't have a valid insertion point (?).
1243       if (HaveInsertPoint() && !IsMSCatchParam) {
1244         // If there's a jump into the lifetime of this variable, its lifetime
1245         // gets broken up into several regions in IR, which requires more work
1246         // to handle correctly. For now, just omit the intrinsics; this is a
1247         // rare case, and it's better to just be conservatively correct.
1248         // PR28267.
1249         //
1250         // We have to do this in all language modes if there's a jump past the
1251         // declaration. We also have to do it in C if there's a jump to an
1252         // earlier point in the current block because non-VLA lifetimes begin as
1253         // soon as the containing block is entered, not when its variables
1254         // actually come into scope; suppressing the lifetime annotations
1255         // completely in this case is unnecessarily pessimistic, but again, this
1256         // is rare.
1257         if (!Bypasses.IsBypassed(&D) &&
1258             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1259           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1260           emission.SizeForLifetimeMarkers =
1261               EmitLifetimeStart(size, AllocaAddr.getPointer());
1262         }
1263       } else {
1264         assert(!emission.useLifetimeMarkers());
1265       }
1266     }
1267   } else {
1268     EnsureInsertPoint();
1269 
1270     if (!DidCallStackSave) {
1271       // Save the stack.
1272       Address Stack =
1273         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1274 
1275       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1276       llvm::Value *V = Builder.CreateCall(F);
1277       Builder.CreateStore(V, Stack);
1278 
1279       DidCallStackSave = true;
1280 
1281       // Push a cleanup block and restore the stack there.
1282       // FIXME: in general circumstances, this should be an EH cleanup.
1283       pushStackRestore(NormalCleanup, Stack);
1284     }
1285 
1286     auto VlaSize = getVLASize(Ty);
1287     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1288 
1289     // Allocate memory for the array.
1290     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1291                                &AllocaAddr);
1292 
1293     // If we have debug info enabled, properly describe the VLA dimensions for
1294     // this type by registering the vla size expression for each of the
1295     // dimensions.
1296     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1297   }
1298 
1299   setAddrOfLocalVar(&D, address);
1300   emission.Addr = address;
1301   emission.AllocaAddr = AllocaAddr;
1302 
1303   // Emit debug info for local var declaration.
1304   if (EmitDebugInfo && HaveInsertPoint()) {
1305     DI->setLocation(D.getLocation());
1306     (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1307   }
1308 
1309   if (D.hasAttr<AnnotateAttr>())
1310     EmitVarAnnotations(&D, address.getPointer());
1311 
1312   // Make sure we call @llvm.lifetime.end.
1313   if (emission.useLifetimeMarkers())
1314     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1315                                          emission.getOriginalAllocatedAddress(),
1316                                          emission.getSizeForLifetimeMarkers());
1317 
1318   return emission;
1319 }
1320 
1321 static bool isCapturedBy(const VarDecl &, const Expr *);
1322 
1323 /// Determines whether the given __block variable is potentially
1324 /// captured by the given statement.
1325 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1326   if (const Expr *E = dyn_cast<Expr>(S))
1327     return isCapturedBy(Var, E);
1328   for (const Stmt *SubStmt : S->children())
1329     if (isCapturedBy(Var, SubStmt))
1330       return true;
1331   return false;
1332 }
1333 
1334 /// Determines whether the given __block variable is potentially
1335 /// captured by the given expression.
1336 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1337   // Skip the most common kinds of expressions that make
1338   // hierarchy-walking expensive.
1339   E = E->IgnoreParenCasts();
1340 
1341   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1342     const BlockDecl *Block = BE->getBlockDecl();
1343     for (const auto &I : Block->captures()) {
1344       if (I.getVariable() == &Var)
1345         return true;
1346     }
1347 
1348     // No need to walk into the subexpressions.
1349     return false;
1350   }
1351 
1352   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1353     const CompoundStmt *CS = SE->getSubStmt();
1354     for (const auto *BI : CS->body())
1355       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1356         if (isCapturedBy(Var, BIE))
1357           return true;
1358       }
1359       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1360           // special case declarations
1361           for (const auto *I : DS->decls()) {
1362               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1363                 const Expr *Init = VD->getInit();
1364                 if (Init && isCapturedBy(Var, Init))
1365                   return true;
1366               }
1367           }
1368       }
1369       else
1370         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1371         // Later, provide code to poke into statements for capture analysis.
1372         return true;
1373     return false;
1374   }
1375 
1376   for (const Stmt *SubStmt : E->children())
1377     if (isCapturedBy(Var, SubStmt))
1378       return true;
1379 
1380   return false;
1381 }
1382 
1383 /// Determine whether the given initializer is trivial in the sense
1384 /// that it requires no code to be generated.
1385 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1386   if (!Init)
1387     return true;
1388 
1389   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1390     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1391       if (Constructor->isTrivial() &&
1392           Constructor->isDefaultConstructor() &&
1393           !Construct->requiresZeroInitialization())
1394         return true;
1395 
1396   return false;
1397 }
1398 
1399 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1400   assert(emission.Variable && "emission was not valid!");
1401 
1402   // If this was emitted as a global constant, we're done.
1403   if (emission.wasEmittedAsGlobal()) return;
1404 
1405   const VarDecl &D = *emission.Variable;
1406   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1407   QualType type = D.getType();
1408 
1409   // If this local has an initializer, emit it now.
1410   const Expr *Init = D.getInit();
1411 
1412   // If we are at an unreachable point, we don't need to emit the initializer
1413   // unless it contains a label.
1414   if (!HaveInsertPoint()) {
1415     if (!Init || !ContainsLabel(Init)) return;
1416     EnsureInsertPoint();
1417   }
1418 
1419   // Initialize the structure of a __block variable.
1420   if (emission.IsByRef)
1421     emitByrefStructureInit(emission);
1422 
1423   // Initialize the variable here if it doesn't have a initializer and it is a
1424   // C struct that is non-trivial to initialize or an array containing such a
1425   // struct.
1426   if (!Init &&
1427       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1428           QualType::PDIK_Struct) {
1429     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1430     if (emission.IsByRef)
1431       drillIntoBlockVariable(*this, Dst, &D);
1432     defaultInitNonTrivialCStructVar(Dst);
1433     return;
1434   }
1435 
1436   if (isTrivialInitializer(Init))
1437     return;
1438 
1439   // Check whether this is a byref variable that's potentially
1440   // captured and moved by its own initializer.  If so, we'll need to
1441   // emit the initializer first, then copy into the variable.
1442   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1443 
1444   Address Loc =
1445     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1446 
1447   llvm::Constant *constant = nullptr;
1448   if (emission.IsConstantAggregate || D.isConstexpr()) {
1449     assert(!capturedByInit && "constant init contains a capturing block?");
1450     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1451   }
1452 
1453   if (!constant) {
1454     LValue lv = MakeAddrLValue(Loc, type);
1455     lv.setNonGC(true);
1456     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1457   }
1458 
1459   if (!emission.IsConstantAggregate) {
1460     // For simple scalar/complex initialization, store the value directly.
1461     LValue lv = MakeAddrLValue(Loc, type);
1462     lv.setNonGC(true);
1463     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1464   }
1465 
1466   // If this is a simple aggregate initialization, we can optimize it
1467   // in various ways.
1468   bool isVolatile = type.isVolatileQualified();
1469 
1470   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1471   if (Loc.getType() != BP)
1472     Loc = Builder.CreateBitCast(Loc, BP);
1473 
1474   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1475 }
1476 
1477 /// Emit an expression as an initializer for an object (variable, field, etc.)
1478 /// at the given location.  The expression is not necessarily the normal
1479 /// initializer for the object, and the address is not necessarily
1480 /// its normal location.
1481 ///
1482 /// \param init the initializing expression
1483 /// \param D the object to act as if we're initializing
1484 /// \param loc the address to initialize; its type is a pointer
1485 ///   to the LLVM mapping of the object's type
1486 /// \param alignment the alignment of the address
1487 /// \param capturedByInit true if \p D is a __block variable
1488 ///   whose address is potentially changed by the initializer
1489 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1490                                      LValue lvalue, bool capturedByInit) {
1491   QualType type = D->getType();
1492 
1493   if (type->isReferenceType()) {
1494     RValue rvalue = EmitReferenceBindingToExpr(init);
1495     if (capturedByInit)
1496       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1497     EmitStoreThroughLValue(rvalue, lvalue, true);
1498     return;
1499   }
1500   switch (getEvaluationKind(type)) {
1501   case TEK_Scalar:
1502     EmitScalarInit(init, D, lvalue, capturedByInit);
1503     return;
1504   case TEK_Complex: {
1505     ComplexPairTy complex = EmitComplexExpr(init);
1506     if (capturedByInit)
1507       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1508     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1509     return;
1510   }
1511   case TEK_Aggregate:
1512     if (type->isAtomicType()) {
1513       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1514     } else {
1515       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1516       if (isa<VarDecl>(D))
1517         Overlap = AggValueSlot::DoesNotOverlap;
1518       else if (auto *FD = dyn_cast<FieldDecl>(D))
1519         Overlap = overlapForFieldInit(FD);
1520       // TODO: how can we delay here if D is captured by its initializer?
1521       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1522                                               AggValueSlot::IsDestructed,
1523                                          AggValueSlot::DoesNotNeedGCBarriers,
1524                                               AggValueSlot::IsNotAliased,
1525                                               Overlap));
1526     }
1527     return;
1528   }
1529   llvm_unreachable("bad evaluation kind");
1530 }
1531 
1532 /// Enter a destroy cleanup for the given local variable.
1533 void CodeGenFunction::emitAutoVarTypeCleanup(
1534                             const CodeGenFunction::AutoVarEmission &emission,
1535                             QualType::DestructionKind dtorKind) {
1536   assert(dtorKind != QualType::DK_none);
1537 
1538   // Note that for __block variables, we want to destroy the
1539   // original stack object, not the possibly forwarded object.
1540   Address addr = emission.getObjectAddress(*this);
1541 
1542   const VarDecl *var = emission.Variable;
1543   QualType type = var->getType();
1544 
1545   CleanupKind cleanupKind = NormalAndEHCleanup;
1546   CodeGenFunction::Destroyer *destroyer = nullptr;
1547 
1548   switch (dtorKind) {
1549   case QualType::DK_none:
1550     llvm_unreachable("no cleanup for trivially-destructible variable");
1551 
1552   case QualType::DK_cxx_destructor:
1553     // If there's an NRVO flag on the emission, we need a different
1554     // cleanup.
1555     if (emission.NRVOFlag) {
1556       assert(!type->isArrayType());
1557       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1558       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
1559                                                   emission.NRVOFlag);
1560       return;
1561     }
1562     break;
1563 
1564   case QualType::DK_objc_strong_lifetime:
1565     // Suppress cleanups for pseudo-strong variables.
1566     if (var->isARCPseudoStrong()) return;
1567 
1568     // Otherwise, consider whether to use an EH cleanup or not.
1569     cleanupKind = getARCCleanupKind();
1570 
1571     // Use the imprecise destroyer by default.
1572     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1573       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1574     break;
1575 
1576   case QualType::DK_objc_weak_lifetime:
1577     break;
1578 
1579   case QualType::DK_nontrivial_c_struct:
1580     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1581     if (emission.NRVOFlag) {
1582       assert(!type->isArrayType());
1583       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1584                                                 emission.NRVOFlag, type);
1585       return;
1586     }
1587     break;
1588   }
1589 
1590   // If we haven't chosen a more specific destroyer, use the default.
1591   if (!destroyer) destroyer = getDestroyer(dtorKind);
1592 
1593   // Use an EH cleanup in array destructors iff the destructor itself
1594   // is being pushed as an EH cleanup.
1595   bool useEHCleanup = (cleanupKind & EHCleanup);
1596   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1597                                      useEHCleanup);
1598 }
1599 
1600 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1601   assert(emission.Variable && "emission was not valid!");
1602 
1603   // If this was emitted as a global constant, we're done.
1604   if (emission.wasEmittedAsGlobal()) return;
1605 
1606   // If we don't have an insertion point, we're done.  Sema prevents
1607   // us from jumping into any of these scopes anyway.
1608   if (!HaveInsertPoint()) return;
1609 
1610   const VarDecl &D = *emission.Variable;
1611 
1612   // Check the type for a cleanup.
1613   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1614     emitAutoVarTypeCleanup(emission, dtorKind);
1615 
1616   // In GC mode, honor objc_precise_lifetime.
1617   if (getLangOpts().getGC() != LangOptions::NonGC &&
1618       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1619     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1620   }
1621 
1622   // Handle the cleanup attribute.
1623   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1624     const FunctionDecl *FD = CA->getFunctionDecl();
1625 
1626     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1627     assert(F && "Could not find function!");
1628 
1629     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1630     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1631   }
1632 
1633   // If this is a block variable, call _Block_object_destroy
1634   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
1635   // mode.
1636   if (emission.IsByRef && CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
1637     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
1638     if (emission.Variable->getType().isObjCGCWeak())
1639       Flags |= BLOCK_FIELD_IS_WEAK;
1640     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
1641                       /*LoadBlockVarAddr*/ false,
1642                       cxxDestructorCanThrow(emission.Variable->getType()));
1643   }
1644 }
1645 
1646 CodeGenFunction::Destroyer *
1647 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1648   switch (kind) {
1649   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1650   case QualType::DK_cxx_destructor:
1651     return destroyCXXObject;
1652   case QualType::DK_objc_strong_lifetime:
1653     return destroyARCStrongPrecise;
1654   case QualType::DK_objc_weak_lifetime:
1655     return destroyARCWeak;
1656   case QualType::DK_nontrivial_c_struct:
1657     return destroyNonTrivialCStruct;
1658   }
1659   llvm_unreachable("Unknown DestructionKind");
1660 }
1661 
1662 /// pushEHDestroy - Push the standard destructor for the given type as
1663 /// an EH-only cleanup.
1664 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1665                                     Address addr, QualType type) {
1666   assert(dtorKind && "cannot push destructor for trivial type");
1667   assert(needsEHCleanup(dtorKind));
1668 
1669   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1670 }
1671 
1672 /// pushDestroy - Push the standard destructor for the given type as
1673 /// at least a normal cleanup.
1674 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1675                                   Address addr, QualType type) {
1676   assert(dtorKind && "cannot push destructor for trivial type");
1677 
1678   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1679   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1680               cleanupKind & EHCleanup);
1681 }
1682 
1683 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1684                                   QualType type, Destroyer *destroyer,
1685                                   bool useEHCleanupForArray) {
1686   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1687                                      destroyer, useEHCleanupForArray);
1688 }
1689 
1690 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1691   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1692 }
1693 
1694 void CodeGenFunction::pushLifetimeExtendedDestroy(
1695     CleanupKind cleanupKind, Address addr, QualType type,
1696     Destroyer *destroyer, bool useEHCleanupForArray) {
1697   // Push an EH-only cleanup for the object now.
1698   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1699   // around in case a temporary's destructor throws an exception.
1700   if (cleanupKind & EHCleanup)
1701     EHStack.pushCleanup<DestroyObject>(
1702         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1703         destroyer, useEHCleanupForArray);
1704 
1705   // Remember that we need to push a full cleanup for the object at the
1706   // end of the full-expression.
1707   pushCleanupAfterFullExpr<DestroyObject>(
1708       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1709 }
1710 
1711 /// emitDestroy - Immediately perform the destruction of the given
1712 /// object.
1713 ///
1714 /// \param addr - the address of the object; a type*
1715 /// \param type - the type of the object; if an array type, all
1716 ///   objects are destroyed in reverse order
1717 /// \param destroyer - the function to call to destroy individual
1718 ///   elements
1719 /// \param useEHCleanupForArray - whether an EH cleanup should be
1720 ///   used when destroying array elements, in case one of the
1721 ///   destructions throws an exception
1722 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1723                                   Destroyer *destroyer,
1724                                   bool useEHCleanupForArray) {
1725   const ArrayType *arrayType = getContext().getAsArrayType(type);
1726   if (!arrayType)
1727     return destroyer(*this, addr, type);
1728 
1729   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1730 
1731   CharUnits elementAlign =
1732     addr.getAlignment()
1733         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1734 
1735   // Normally we have to check whether the array is zero-length.
1736   bool checkZeroLength = true;
1737 
1738   // But if the array length is constant, we can suppress that.
1739   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1740     // ...and if it's constant zero, we can just skip the entire thing.
1741     if (constLength->isZero()) return;
1742     checkZeroLength = false;
1743   }
1744 
1745   llvm::Value *begin = addr.getPointer();
1746   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1747   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1748                    checkZeroLength, useEHCleanupForArray);
1749 }
1750 
1751 /// emitArrayDestroy - Destroys all the elements of the given array,
1752 /// beginning from last to first.  The array cannot be zero-length.
1753 ///
1754 /// \param begin - a type* denoting the first element of the array
1755 /// \param end - a type* denoting one past the end of the array
1756 /// \param elementType - the element type of the array
1757 /// \param destroyer - the function to call to destroy elements
1758 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1759 ///   the remaining elements in case the destruction of a single
1760 ///   element throws
1761 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1762                                        llvm::Value *end,
1763                                        QualType elementType,
1764                                        CharUnits elementAlign,
1765                                        Destroyer *destroyer,
1766                                        bool checkZeroLength,
1767                                        bool useEHCleanup) {
1768   assert(!elementType->isArrayType());
1769 
1770   // The basic structure here is a do-while loop, because we don't
1771   // need to check for the zero-element case.
1772   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1773   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1774 
1775   if (checkZeroLength) {
1776     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1777                                                 "arraydestroy.isempty");
1778     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1779   }
1780 
1781   // Enter the loop body, making that address the current address.
1782   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1783   EmitBlock(bodyBB);
1784   llvm::PHINode *elementPast =
1785     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1786   elementPast->addIncoming(end, entryBB);
1787 
1788   // Shift the address back by one element.
1789   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1790   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1791                                                    "arraydestroy.element");
1792 
1793   if (useEHCleanup)
1794     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1795                                    destroyer);
1796 
1797   // Perform the actual destruction there.
1798   destroyer(*this, Address(element, elementAlign), elementType);
1799 
1800   if (useEHCleanup)
1801     PopCleanupBlock();
1802 
1803   // Check whether we've reached the end.
1804   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1805   Builder.CreateCondBr(done, doneBB, bodyBB);
1806   elementPast->addIncoming(element, Builder.GetInsertBlock());
1807 
1808   // Done.
1809   EmitBlock(doneBB);
1810 }
1811 
1812 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1813 /// emitArrayDestroy, the element type here may still be an array type.
1814 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1815                                     llvm::Value *begin, llvm::Value *end,
1816                                     QualType type, CharUnits elementAlign,
1817                                     CodeGenFunction::Destroyer *destroyer) {
1818   // If the element type is itself an array, drill down.
1819   unsigned arrayDepth = 0;
1820   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1821     // VLAs don't require a GEP index to walk into.
1822     if (!isa<VariableArrayType>(arrayType))
1823       arrayDepth++;
1824     type = arrayType->getElementType();
1825   }
1826 
1827   if (arrayDepth) {
1828     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1829 
1830     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1831     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1832     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1833   }
1834 
1835   // Destroy the array.  We don't ever need an EH cleanup because we
1836   // assume that we're in an EH cleanup ourselves, so a throwing
1837   // destructor causes an immediate terminate.
1838   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1839                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1840 }
1841 
1842 namespace {
1843   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1844   /// array destroy where the end pointer is regularly determined and
1845   /// does not need to be loaded from a local.
1846   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1847     llvm::Value *ArrayBegin;
1848     llvm::Value *ArrayEnd;
1849     QualType ElementType;
1850     CodeGenFunction::Destroyer *Destroyer;
1851     CharUnits ElementAlign;
1852   public:
1853     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1854                                QualType elementType, CharUnits elementAlign,
1855                                CodeGenFunction::Destroyer *destroyer)
1856       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1857         ElementType(elementType), Destroyer(destroyer),
1858         ElementAlign(elementAlign) {}
1859 
1860     void Emit(CodeGenFunction &CGF, Flags flags) override {
1861       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1862                               ElementType, ElementAlign, Destroyer);
1863     }
1864   };
1865 
1866   /// IrregularPartialArrayDestroy - a cleanup which performs a
1867   /// partial array destroy where the end pointer is irregularly
1868   /// determined and must be loaded from a local.
1869   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1870     llvm::Value *ArrayBegin;
1871     Address ArrayEndPointer;
1872     QualType ElementType;
1873     CodeGenFunction::Destroyer *Destroyer;
1874     CharUnits ElementAlign;
1875   public:
1876     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1877                                  Address arrayEndPointer,
1878                                  QualType elementType,
1879                                  CharUnits elementAlign,
1880                                  CodeGenFunction::Destroyer *destroyer)
1881       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1882         ElementType(elementType), Destroyer(destroyer),
1883         ElementAlign(elementAlign) {}
1884 
1885     void Emit(CodeGenFunction &CGF, Flags flags) override {
1886       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1887       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1888                               ElementType, ElementAlign, Destroyer);
1889     }
1890   };
1891 } // end anonymous namespace
1892 
1893 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1894 /// already-constructed elements of the given array.  The cleanup
1895 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1896 ///
1897 /// \param elementType - the immediate element type of the array;
1898 ///   possibly still an array type
1899 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1900                                                        Address arrayEndPointer,
1901                                                        QualType elementType,
1902                                                        CharUnits elementAlign,
1903                                                        Destroyer *destroyer) {
1904   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1905                                                     arrayBegin, arrayEndPointer,
1906                                                     elementType, elementAlign,
1907                                                     destroyer);
1908 }
1909 
1910 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1911 /// already-constructed elements of the given array.  The cleanup
1912 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1913 ///
1914 /// \param elementType - the immediate element type of the array;
1915 ///   possibly still an array type
1916 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1917                                                      llvm::Value *arrayEnd,
1918                                                      QualType elementType,
1919                                                      CharUnits elementAlign,
1920                                                      Destroyer *destroyer) {
1921   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1922                                                   arrayBegin, arrayEnd,
1923                                                   elementType, elementAlign,
1924                                                   destroyer);
1925 }
1926 
1927 /// Lazily declare the @llvm.lifetime.start intrinsic.
1928 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1929   if (LifetimeStartFn)
1930     return LifetimeStartFn;
1931   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1932     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
1933   return LifetimeStartFn;
1934 }
1935 
1936 /// Lazily declare the @llvm.lifetime.end intrinsic.
1937 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1938   if (LifetimeEndFn)
1939     return LifetimeEndFn;
1940   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1941     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
1942   return LifetimeEndFn;
1943 }
1944 
1945 namespace {
1946   /// A cleanup to perform a release of an object at the end of a
1947   /// function.  This is used to balance out the incoming +1 of a
1948   /// ns_consumed argument when we can't reasonably do that just by
1949   /// not doing the initial retain for a __block argument.
1950   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1951     ConsumeARCParameter(llvm::Value *param,
1952                         ARCPreciseLifetime_t precise)
1953       : Param(param), Precise(precise) {}
1954 
1955     llvm::Value *Param;
1956     ARCPreciseLifetime_t Precise;
1957 
1958     void Emit(CodeGenFunction &CGF, Flags flags) override {
1959       CGF.EmitARCRelease(Param, Precise);
1960     }
1961   };
1962 } // end anonymous namespace
1963 
1964 /// Emit an alloca (or GlobalValue depending on target)
1965 /// for the specified parameter and set up LocalDeclMap.
1966 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1967                                    unsigned ArgNo) {
1968   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1969   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1970          "Invalid argument to EmitParmDecl");
1971 
1972   Arg.getAnyValue()->setName(D.getName());
1973 
1974   QualType Ty = D.getType();
1975 
1976   // Use better IR generation for certain implicit parameters.
1977   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1978     // The only implicit argument a block has is its literal.
1979     // This may be passed as an inalloca'ed value on Windows x86.
1980     if (BlockInfo) {
1981       llvm::Value *V = Arg.isIndirect()
1982                            ? Builder.CreateLoad(Arg.getIndirectAddress())
1983                            : Arg.getDirectValue();
1984       setBlockContextParameter(IPD, ArgNo, V);
1985       return;
1986     }
1987   }
1988 
1989   Address DeclPtr = Address::invalid();
1990   bool DoStore = false;
1991   bool IsScalar = hasScalarEvaluationKind(Ty);
1992   // If we already have a pointer to the argument, reuse the input pointer.
1993   if (Arg.isIndirect()) {
1994     DeclPtr = Arg.getIndirectAddress();
1995     // If we have a prettier pointer type at this point, bitcast to that.
1996     unsigned AS = DeclPtr.getType()->getAddressSpace();
1997     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1998     if (DeclPtr.getType() != IRTy)
1999       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2000     // Indirect argument is in alloca address space, which may be different
2001     // from the default address space.
2002     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2003     auto *V = DeclPtr.getPointer();
2004     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2005     auto DestLangAS =
2006         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2007     if (SrcLangAS != DestLangAS) {
2008       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2009              CGM.getDataLayout().getAllocaAddrSpace());
2010       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2011       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2012       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2013                             *this, V, SrcLangAS, DestLangAS, T, true),
2014                         DeclPtr.getAlignment());
2015     }
2016 
2017     // Push a destructor cleanup for this parameter if the ABI requires it.
2018     // Don't push a cleanup in a thunk for a method that will also emit a
2019     // cleanup.
2020     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2021         Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2022       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
2023         assert((DtorKind == QualType::DK_cxx_destructor ||
2024                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2025                "unexpected destructor type");
2026         pushDestroy(DtorKind, DeclPtr, Ty);
2027         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2028             EHStack.stable_begin();
2029       }
2030     }
2031   } else {
2032     // Check if the parameter address is controlled by OpenMP runtime.
2033     Address OpenMPLocalAddr =
2034         getLangOpts().OpenMP
2035             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2036             : Address::invalid();
2037     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2038       DeclPtr = OpenMPLocalAddr;
2039     } else {
2040       // Otherwise, create a temporary to hold the value.
2041       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2042                               D.getName() + ".addr");
2043     }
2044     DoStore = true;
2045   }
2046 
2047   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2048 
2049   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2050   if (IsScalar) {
2051     Qualifiers qs = Ty.getQualifiers();
2052     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2053       // We honor __attribute__((ns_consumed)) for types with lifetime.
2054       // For __strong, it's handled by just skipping the initial retain;
2055       // otherwise we have to balance out the initial +1 with an extra
2056       // cleanup to do the release at the end of the function.
2057       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2058 
2059       // 'self' is always formally __strong, but if this is not an
2060       // init method then we don't want to retain it.
2061       if (D.isARCPseudoStrong()) {
2062         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
2063         assert(&D == method->getSelfDecl());
2064         assert(lt == Qualifiers::OCL_Strong);
2065         assert(qs.hasConst());
2066         assert(method->getMethodFamily() != OMF_init);
2067         (void) method;
2068         lt = Qualifiers::OCL_ExplicitNone;
2069       }
2070 
2071       // Load objects passed indirectly.
2072       if (Arg.isIndirect() && !ArgVal)
2073         ArgVal = Builder.CreateLoad(DeclPtr);
2074 
2075       if (lt == Qualifiers::OCL_Strong) {
2076         if (!isConsumed) {
2077           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2078             // use objc_storeStrong(&dest, value) for retaining the
2079             // object. But first, store a null into 'dest' because
2080             // objc_storeStrong attempts to release its old value.
2081             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2082             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2083             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2084             DoStore = false;
2085           }
2086           else
2087           // Don't use objc_retainBlock for block pointers, because we
2088           // don't want to Block_copy something just because we got it
2089           // as a parameter.
2090             ArgVal = EmitARCRetainNonBlock(ArgVal);
2091         }
2092       } else {
2093         // Push the cleanup for a consumed parameter.
2094         if (isConsumed) {
2095           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2096                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2097           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2098                                                    precise);
2099         }
2100 
2101         if (lt == Qualifiers::OCL_Weak) {
2102           EmitARCInitWeak(DeclPtr, ArgVal);
2103           DoStore = false; // The weak init is a store, no need to do two.
2104         }
2105       }
2106 
2107       // Enter the cleanup scope.
2108       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2109     }
2110   }
2111 
2112   // Store the initial value into the alloca.
2113   if (DoStore)
2114     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2115 
2116   setAddrOfLocalVar(&D, DeclPtr);
2117 
2118   // Emit debug info for param declaration.
2119   if (CGDebugInfo *DI = getDebugInfo()) {
2120     if (CGM.getCodeGenOpts().getDebugInfo() >=
2121         codegenoptions::LimitedDebugInfo) {
2122       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2123     }
2124   }
2125 
2126   if (D.hasAttr<AnnotateAttr>())
2127     EmitVarAnnotations(&D, DeclPtr.getPointer());
2128 
2129   // We can only check return value nullability if all arguments to the
2130   // function satisfy their nullability preconditions. This makes it necessary
2131   // to emit null checks for args in the function body itself.
2132   if (requiresReturnValueNullabilityCheck()) {
2133     auto Nullability = Ty->getNullability(getContext());
2134     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2135       SanitizerScope SanScope(this);
2136       RetValNullabilityPrecondition =
2137           Builder.CreateAnd(RetValNullabilityPrecondition,
2138                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2139     }
2140   }
2141 }
2142 
2143 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2144                                             CodeGenFunction *CGF) {
2145   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2146     return;
2147   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2148 }
2149