1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::Empty: 108 // None of these decls require codegen support. 109 return; 110 111 case Decl::NamespaceAlias: 112 if (CGDebugInfo *DI = getDebugInfo()) 113 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 114 return; 115 case Decl::Using: // using X; [C++] 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitUsingDecl(cast<UsingDecl>(D)); 118 return; 119 case Decl::UsingPack: 120 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 121 EmitDecl(*Using); 122 return; 123 case Decl::UsingDirective: // using namespace X; [C++] 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 126 return; 127 case Decl::Var: 128 case Decl::Decomposition: { 129 const VarDecl &VD = cast<VarDecl>(D); 130 assert(VD.isLocalVarDecl() && 131 "Should not see file-scope variables inside a function!"); 132 EmitVarDecl(VD); 133 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 134 for (auto *B : DD->bindings()) 135 if (auto *HD = B->getHoldingVar()) 136 EmitVarDecl(*HD); 137 return; 138 } 139 140 case Decl::OMPDeclareReduction: 141 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 142 143 case Decl::Typedef: // typedef int X; 144 case Decl::TypeAlias: { // using X = int; [C++0x] 145 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 146 QualType Ty = TD.getUnderlyingType(); 147 148 if (Ty->isVariablyModifiedType()) 149 EmitVariablyModifiedType(Ty); 150 } 151 } 152 } 153 154 /// EmitVarDecl - This method handles emission of any variable declaration 155 /// inside a function, including static vars etc. 156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 157 if (D.hasExternalStorage()) 158 // Don't emit it now, allow it to be emitted lazily on its first use. 159 return; 160 161 // Some function-scope variable does not have static storage but still 162 // needs to be emitted like a static variable, e.g. a function-scope 163 // variable in constant address space in OpenCL. 164 if (D.getStorageDuration() != SD_Automatic) { 165 // Static sampler variables translated to function calls. 166 if (D.getType()->isSamplerT()) 167 return; 168 169 llvm::GlobalValue::LinkageTypes Linkage = 170 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 171 172 // FIXME: We need to force the emission/use of a guard variable for 173 // some variables even if we can constant-evaluate them because 174 // we can't guarantee every translation unit will constant-evaluate them. 175 176 return EmitStaticVarDecl(D, Linkage); 177 } 178 179 if (D.getType().getAddressSpace() == LangAS::opencl_local) 180 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 181 182 assert(D.hasLocalStorage()); 183 return EmitAutoVarDecl(D); 184 } 185 186 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 187 if (CGM.getLangOpts().CPlusPlus) 188 return CGM.getMangledName(&D).str(); 189 190 // If this isn't C++, we don't need a mangled name, just a pretty one. 191 assert(!D.isExternallyVisible() && "name shouldn't matter"); 192 std::string ContextName; 193 const DeclContext *DC = D.getDeclContext(); 194 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 195 DC = cast<DeclContext>(CD->getNonClosureContext()); 196 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 197 ContextName = CGM.getMangledName(FD); 198 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 199 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 200 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 201 ContextName = OMD->getSelector().getAsString(); 202 else 203 llvm_unreachable("Unknown context for static var decl"); 204 205 ContextName += "." + D.getNameAsString(); 206 return ContextName; 207 } 208 209 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 210 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 211 // In general, we don't always emit static var decls once before we reference 212 // them. It is possible to reference them before emitting the function that 213 // contains them, and it is possible to emit the containing function multiple 214 // times. 215 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 216 return ExistingGV; 217 218 QualType Ty = D.getType(); 219 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 220 221 // Use the label if the variable is renamed with the asm-label extension. 222 std::string Name; 223 if (D.hasAttr<AsmLabelAttr>()) 224 Name = getMangledName(&D); 225 else 226 Name = getStaticDeclName(*this, D); 227 228 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 229 LangAS AS = GetGlobalVarAddressSpace(&D); 230 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 231 232 // Local address space cannot have an initializer. 233 llvm::Constant *Init = nullptr; 234 if (Ty.getAddressSpace() != LangAS::opencl_local) 235 Init = EmitNullConstant(Ty); 236 else 237 Init = llvm::UndefValue::get(LTy); 238 239 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 240 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 241 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 242 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 243 setGlobalVisibility(GV, &D, ForDefinition); 244 245 if (supportsCOMDAT() && GV->isWeakForLinker()) 246 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 247 248 if (D.getTLSKind()) 249 setTLSMode(GV, D); 250 251 if (D.isExternallyVisible()) { 252 if (D.hasAttr<DLLImportAttr>()) 253 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 254 else if (D.hasAttr<DLLExportAttr>()) 255 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 256 } 257 258 // Make sure the result is of the correct type. 259 LangAS ExpectedAS = Ty.getAddressSpace(); 260 llvm::Constant *Addr = GV; 261 if (AS != ExpectedAS) { 262 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 263 *this, GV, AS, ExpectedAS, 264 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 265 } 266 267 setStaticLocalDeclAddress(&D, Addr); 268 269 // Ensure that the static local gets initialized by making sure the parent 270 // function gets emitted eventually. 271 const Decl *DC = cast<Decl>(D.getDeclContext()); 272 273 // We can't name blocks or captured statements directly, so try to emit their 274 // parents. 275 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 276 DC = DC->getNonClosureContext(); 277 // FIXME: Ensure that global blocks get emitted. 278 if (!DC) 279 return Addr; 280 } 281 282 GlobalDecl GD; 283 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 284 GD = GlobalDecl(CD, Ctor_Base); 285 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 286 GD = GlobalDecl(DD, Dtor_Base); 287 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 288 GD = GlobalDecl(FD); 289 else { 290 // Don't do anything for Obj-C method decls or global closures. We should 291 // never defer them. 292 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 293 } 294 if (GD.getDecl()) 295 (void)GetAddrOfGlobal(GD); 296 297 return Addr; 298 } 299 300 /// hasNontrivialDestruction - Determine whether a type's destruction is 301 /// non-trivial. If so, and the variable uses static initialization, we must 302 /// register its destructor to run on exit. 303 static bool hasNontrivialDestruction(QualType T) { 304 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 305 return RD && !RD->hasTrivialDestructor(); 306 } 307 308 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 309 /// global variable that has already been created for it. If the initializer 310 /// has a different type than GV does, this may free GV and return a different 311 /// one. Otherwise it just returns GV. 312 llvm::GlobalVariable * 313 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 314 llvm::GlobalVariable *GV) { 315 ConstantEmitter emitter(*this); 316 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 317 318 // If constant emission failed, then this should be a C++ static 319 // initializer. 320 if (!Init) { 321 if (!getLangOpts().CPlusPlus) 322 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 323 else if (HaveInsertPoint()) { 324 // Since we have a static initializer, this global variable can't 325 // be constant. 326 GV->setConstant(false); 327 328 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 329 } 330 return GV; 331 } 332 333 // The initializer may differ in type from the global. Rewrite 334 // the global to match the initializer. (We have to do this 335 // because some types, like unions, can't be completely represented 336 // in the LLVM type system.) 337 if (GV->getType()->getElementType() != Init->getType()) { 338 llvm::GlobalVariable *OldGV = GV; 339 340 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 341 OldGV->isConstant(), 342 OldGV->getLinkage(), Init, "", 343 /*InsertBefore*/ OldGV, 344 OldGV->getThreadLocalMode(), 345 CGM.getContext().getTargetAddressSpace(D.getType())); 346 GV->setVisibility(OldGV->getVisibility()); 347 GV->setComdat(OldGV->getComdat()); 348 349 // Steal the name of the old global 350 GV->takeName(OldGV); 351 352 // Replace all uses of the old global with the new global 353 llvm::Constant *NewPtrForOldDecl = 354 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 355 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 356 357 // Erase the old global, since it is no longer used. 358 OldGV->eraseFromParent(); 359 } 360 361 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 362 GV->setInitializer(Init); 363 364 emitter.finalize(GV); 365 366 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 367 // We have a constant initializer, but a nontrivial destructor. We still 368 // need to perform a guarded "initialization" in order to register the 369 // destructor. 370 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 371 } 372 373 return GV; 374 } 375 376 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 377 llvm::GlobalValue::LinkageTypes Linkage) { 378 // Check to see if we already have a global variable for this 379 // declaration. This can happen when double-emitting function 380 // bodies, e.g. with complete and base constructors. 381 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 382 CharUnits alignment = getContext().getDeclAlign(&D); 383 384 // Store into LocalDeclMap before generating initializer to handle 385 // circular references. 386 setAddrOfLocalVar(&D, Address(addr, alignment)); 387 388 // We can't have a VLA here, but we can have a pointer to a VLA, 389 // even though that doesn't really make any sense. 390 // Make sure to evaluate VLA bounds now so that we have them for later. 391 if (D.getType()->isVariablyModifiedType()) 392 EmitVariablyModifiedType(D.getType()); 393 394 // Save the type in case adding the initializer forces a type change. 395 llvm::Type *expectedType = addr->getType(); 396 397 llvm::GlobalVariable *var = 398 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 399 400 // CUDA's local and local static __shared__ variables should not 401 // have any non-empty initializers. This is ensured by Sema. 402 // Whatever initializer such variable may have when it gets here is 403 // a no-op and should not be emitted. 404 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 405 D.hasAttr<CUDASharedAttr>(); 406 // If this value has an initializer, emit it. 407 if (D.getInit() && !isCudaSharedVar) 408 var = AddInitializerToStaticVarDecl(D, var); 409 410 var->setAlignment(alignment.getQuantity()); 411 412 if (D.hasAttr<AnnotateAttr>()) 413 CGM.AddGlobalAnnotations(&D, var); 414 415 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 416 var->addAttribute("bss-section", SA->getName()); 417 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 418 var->addAttribute("data-section", SA->getName()); 419 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 420 var->addAttribute("rodata-section", SA->getName()); 421 422 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 423 var->setSection(SA->getName()); 424 425 if (D.hasAttr<UsedAttr>()) 426 CGM.addUsedGlobal(var); 427 428 // We may have to cast the constant because of the initializer 429 // mismatch above. 430 // 431 // FIXME: It is really dangerous to store this in the map; if anyone 432 // RAUW's the GV uses of this constant will be invalid. 433 llvm::Constant *castedAddr = 434 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 435 if (var != castedAddr) 436 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 437 CGM.setStaticLocalDeclAddress(&D, castedAddr); 438 439 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 440 441 // Emit global variable debug descriptor for static vars. 442 CGDebugInfo *DI = getDebugInfo(); 443 if (DI && 444 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 445 DI->setLocation(D.getLocation()); 446 DI->EmitGlobalVariable(var, &D); 447 } 448 } 449 450 namespace { 451 struct DestroyObject final : EHScopeStack::Cleanup { 452 DestroyObject(Address addr, QualType type, 453 CodeGenFunction::Destroyer *destroyer, 454 bool useEHCleanupForArray) 455 : addr(addr), type(type), destroyer(destroyer), 456 useEHCleanupForArray(useEHCleanupForArray) {} 457 458 Address addr; 459 QualType type; 460 CodeGenFunction::Destroyer *destroyer; 461 bool useEHCleanupForArray; 462 463 void Emit(CodeGenFunction &CGF, Flags flags) override { 464 // Don't use an EH cleanup recursively from an EH cleanup. 465 bool useEHCleanupForArray = 466 flags.isForNormalCleanup() && this->useEHCleanupForArray; 467 468 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 469 } 470 }; 471 472 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 473 DestroyNRVOVariable(Address addr, 474 const CXXDestructorDecl *Dtor, 475 llvm::Value *NRVOFlag) 476 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 477 478 const CXXDestructorDecl *Dtor; 479 llvm::Value *NRVOFlag; 480 Address Loc; 481 482 void Emit(CodeGenFunction &CGF, Flags flags) override { 483 // Along the exceptions path we always execute the dtor. 484 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 485 486 llvm::BasicBlock *SkipDtorBB = nullptr; 487 if (NRVO) { 488 // If we exited via NRVO, we skip the destructor call. 489 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 490 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 491 llvm::Value *DidNRVO = 492 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 493 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 494 CGF.EmitBlock(RunDtorBB); 495 } 496 497 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 498 /*ForVirtualBase=*/false, 499 /*Delegating=*/false, 500 Loc); 501 502 if (NRVO) CGF.EmitBlock(SkipDtorBB); 503 } 504 }; 505 506 struct CallStackRestore final : EHScopeStack::Cleanup { 507 Address Stack; 508 CallStackRestore(Address Stack) : Stack(Stack) {} 509 void Emit(CodeGenFunction &CGF, Flags flags) override { 510 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 511 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 512 CGF.Builder.CreateCall(F, V); 513 } 514 }; 515 516 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 517 const VarDecl &Var; 518 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 519 520 void Emit(CodeGenFunction &CGF, Flags flags) override { 521 // Compute the address of the local variable, in case it's a 522 // byref or something. 523 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 524 Var.getType(), VK_LValue, SourceLocation()); 525 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 526 SourceLocation()); 527 CGF.EmitExtendGCLifetime(value); 528 } 529 }; 530 531 struct CallCleanupFunction final : EHScopeStack::Cleanup { 532 llvm::Constant *CleanupFn; 533 const CGFunctionInfo &FnInfo; 534 const VarDecl &Var; 535 536 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 537 const VarDecl *Var) 538 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 539 540 void Emit(CodeGenFunction &CGF, Flags flags) override { 541 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 542 Var.getType(), VK_LValue, SourceLocation()); 543 // Compute the address of the local variable, in case it's a byref 544 // or something. 545 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 546 547 // In some cases, the type of the function argument will be different from 548 // the type of the pointer. An example of this is 549 // void f(void* arg); 550 // __attribute__((cleanup(f))) void *g; 551 // 552 // To fix this we insert a bitcast here. 553 QualType ArgTy = FnInfo.arg_begin()->type; 554 llvm::Value *Arg = 555 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 556 557 CallArgList Args; 558 Args.add(RValue::get(Arg), 559 CGF.getContext().getPointerType(Var.getType())); 560 auto Callee = CGCallee::forDirect(CleanupFn); 561 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 562 } 563 }; 564 } // end anonymous namespace 565 566 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 567 /// variable with lifetime. 568 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 569 Address addr, 570 Qualifiers::ObjCLifetime lifetime) { 571 switch (lifetime) { 572 case Qualifiers::OCL_None: 573 llvm_unreachable("present but none"); 574 575 case Qualifiers::OCL_ExplicitNone: 576 // nothing to do 577 break; 578 579 case Qualifiers::OCL_Strong: { 580 CodeGenFunction::Destroyer *destroyer = 581 (var.hasAttr<ObjCPreciseLifetimeAttr>() 582 ? CodeGenFunction::destroyARCStrongPrecise 583 : CodeGenFunction::destroyARCStrongImprecise); 584 585 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 586 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 587 cleanupKind & EHCleanup); 588 break; 589 } 590 case Qualifiers::OCL_Autoreleasing: 591 // nothing to do 592 break; 593 594 case Qualifiers::OCL_Weak: 595 // __weak objects always get EH cleanups; otherwise, exceptions 596 // could cause really nasty crashes instead of mere leaks. 597 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 598 CodeGenFunction::destroyARCWeak, 599 /*useEHCleanup*/ true); 600 break; 601 } 602 } 603 604 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 605 if (const Expr *e = dyn_cast<Expr>(s)) { 606 // Skip the most common kinds of expressions that make 607 // hierarchy-walking expensive. 608 s = e = e->IgnoreParenCasts(); 609 610 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 611 return (ref->getDecl() == &var); 612 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 613 const BlockDecl *block = be->getBlockDecl(); 614 for (const auto &I : block->captures()) { 615 if (I.getVariable() == &var) 616 return true; 617 } 618 } 619 } 620 621 for (const Stmt *SubStmt : s->children()) 622 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 623 if (SubStmt && isAccessedBy(var, SubStmt)) 624 return true; 625 626 return false; 627 } 628 629 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 630 if (!decl) return false; 631 if (!isa<VarDecl>(decl)) return false; 632 const VarDecl *var = cast<VarDecl>(decl); 633 return isAccessedBy(*var, e); 634 } 635 636 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 637 const LValue &destLV, const Expr *init) { 638 bool needsCast = false; 639 640 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 641 switch (castExpr->getCastKind()) { 642 // Look through casts that don't require representation changes. 643 case CK_NoOp: 644 case CK_BitCast: 645 case CK_BlockPointerToObjCPointerCast: 646 needsCast = true; 647 break; 648 649 // If we find an l-value to r-value cast from a __weak variable, 650 // emit this operation as a copy or move. 651 case CK_LValueToRValue: { 652 const Expr *srcExpr = castExpr->getSubExpr(); 653 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 654 return false; 655 656 // Emit the source l-value. 657 LValue srcLV = CGF.EmitLValue(srcExpr); 658 659 // Handle a formal type change to avoid asserting. 660 auto srcAddr = srcLV.getAddress(); 661 if (needsCast) { 662 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 663 destLV.getAddress().getElementType()); 664 } 665 666 // If it was an l-value, use objc_copyWeak. 667 if (srcExpr->getValueKind() == VK_LValue) { 668 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 669 } else { 670 assert(srcExpr->getValueKind() == VK_XValue); 671 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 672 } 673 return true; 674 } 675 676 // Stop at anything else. 677 default: 678 return false; 679 } 680 681 init = castExpr->getSubExpr(); 682 } 683 return false; 684 } 685 686 static void drillIntoBlockVariable(CodeGenFunction &CGF, 687 LValue &lvalue, 688 const VarDecl *var) { 689 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 690 } 691 692 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 693 SourceLocation Loc) { 694 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 695 return; 696 697 auto Nullability = LHS.getType()->getNullability(getContext()); 698 if (!Nullability || *Nullability != NullabilityKind::NonNull) 699 return; 700 701 // Check if the right hand side of the assignment is nonnull, if the left 702 // hand side must be nonnull. 703 SanitizerScope SanScope(this); 704 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 705 llvm::Constant *StaticData[] = { 706 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 707 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 708 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 709 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 710 SanitizerHandler::TypeMismatch, StaticData, RHS); 711 } 712 713 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 714 LValue lvalue, bool capturedByInit) { 715 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 716 if (!lifetime) { 717 llvm::Value *value = EmitScalarExpr(init); 718 if (capturedByInit) 719 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 720 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 721 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 722 return; 723 } 724 725 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 726 init = DIE->getExpr(); 727 728 // If we're emitting a value with lifetime, we have to do the 729 // initialization *before* we leave the cleanup scopes. 730 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 731 enterFullExpression(ewc); 732 init = ewc->getSubExpr(); 733 } 734 CodeGenFunction::RunCleanupsScope Scope(*this); 735 736 // We have to maintain the illusion that the variable is 737 // zero-initialized. If the variable might be accessed in its 738 // initializer, zero-initialize before running the initializer, then 739 // actually perform the initialization with an assign. 740 bool accessedByInit = false; 741 if (lifetime != Qualifiers::OCL_ExplicitNone) 742 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 743 if (accessedByInit) { 744 LValue tempLV = lvalue; 745 // Drill down to the __block object if necessary. 746 if (capturedByInit) { 747 // We can use a simple GEP for this because it can't have been 748 // moved yet. 749 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 750 cast<VarDecl>(D), 751 /*follow*/ false)); 752 } 753 754 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 755 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 756 757 // If __weak, we want to use a barrier under certain conditions. 758 if (lifetime == Qualifiers::OCL_Weak) 759 EmitARCInitWeak(tempLV.getAddress(), zero); 760 761 // Otherwise just do a simple store. 762 else 763 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 764 } 765 766 // Emit the initializer. 767 llvm::Value *value = nullptr; 768 769 switch (lifetime) { 770 case Qualifiers::OCL_None: 771 llvm_unreachable("present but none"); 772 773 case Qualifiers::OCL_ExplicitNone: 774 value = EmitARCUnsafeUnretainedScalarExpr(init); 775 break; 776 777 case Qualifiers::OCL_Strong: { 778 value = EmitARCRetainScalarExpr(init); 779 break; 780 } 781 782 case Qualifiers::OCL_Weak: { 783 // If it's not accessed by the initializer, try to emit the 784 // initialization with a copy or move. 785 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 786 return; 787 } 788 789 // No way to optimize a producing initializer into this. It's not 790 // worth optimizing for, because the value will immediately 791 // disappear in the common case. 792 value = EmitScalarExpr(init); 793 794 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 795 if (accessedByInit) 796 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 797 else 798 EmitARCInitWeak(lvalue.getAddress(), value); 799 return; 800 } 801 802 case Qualifiers::OCL_Autoreleasing: 803 value = EmitARCRetainAutoreleaseScalarExpr(init); 804 break; 805 } 806 807 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 808 809 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 810 811 // If the variable might have been accessed by its initializer, we 812 // might have to initialize with a barrier. We have to do this for 813 // both __weak and __strong, but __weak got filtered out above. 814 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 815 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 816 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 817 EmitARCRelease(oldValue, ARCImpreciseLifetime); 818 return; 819 } 820 821 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 822 } 823 824 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 825 /// non-zero parts of the specified initializer with equal or fewer than 826 /// NumStores scalar stores. 827 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 828 unsigned &NumStores) { 829 // Zero and Undef never requires any extra stores. 830 if (isa<llvm::ConstantAggregateZero>(Init) || 831 isa<llvm::ConstantPointerNull>(Init) || 832 isa<llvm::UndefValue>(Init)) 833 return true; 834 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 835 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 836 isa<llvm::ConstantExpr>(Init)) 837 return Init->isNullValue() || NumStores--; 838 839 // See if we can emit each element. 840 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 841 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 842 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 843 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 844 return false; 845 } 846 return true; 847 } 848 849 if (llvm::ConstantDataSequential *CDS = 850 dyn_cast<llvm::ConstantDataSequential>(Init)) { 851 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 852 llvm::Constant *Elt = CDS->getElementAsConstant(i); 853 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 854 return false; 855 } 856 return true; 857 } 858 859 // Anything else is hard and scary. 860 return false; 861 } 862 863 /// emitStoresForInitAfterMemset - For inits that 864 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 865 /// stores that would be required. 866 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 867 bool isVolatile, CGBuilderTy &Builder) { 868 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 869 "called emitStoresForInitAfterMemset for zero or undef value."); 870 871 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 872 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 873 isa<llvm::ConstantExpr>(Init)) { 874 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 875 return; 876 } 877 878 if (llvm::ConstantDataSequential *CDS = 879 dyn_cast<llvm::ConstantDataSequential>(Init)) { 880 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 881 llvm::Constant *Elt = CDS->getElementAsConstant(i); 882 883 // If necessary, get a pointer to the element and emit it. 884 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 885 emitStoresForInitAfterMemset( 886 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 887 isVolatile, Builder); 888 } 889 return; 890 } 891 892 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 893 "Unknown value type!"); 894 895 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 896 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 897 898 // If necessary, get a pointer to the element and emit it. 899 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 900 emitStoresForInitAfterMemset( 901 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 902 isVolatile, Builder); 903 } 904 } 905 906 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 907 /// plus some stores to initialize a local variable instead of using a memcpy 908 /// from a constant global. It is beneficial to use memset if the global is all 909 /// zeros, or mostly zeros and large. 910 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 911 uint64_t GlobalSize) { 912 // If a global is all zeros, always use a memset. 913 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 914 915 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 916 // do it if it will require 6 or fewer scalar stores. 917 // TODO: Should budget depends on the size? Avoiding a large global warrants 918 // plopping in more stores. 919 unsigned StoreBudget = 6; 920 uint64_t SizeLimit = 32; 921 922 return GlobalSize > SizeLimit && 923 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 924 } 925 926 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 927 /// variable declaration with auto, register, or no storage class specifier. 928 /// These turn into simple stack objects, or GlobalValues depending on target. 929 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 930 AutoVarEmission emission = EmitAutoVarAlloca(D); 931 EmitAutoVarInit(emission); 932 EmitAutoVarCleanups(emission); 933 } 934 935 /// Emit a lifetime.begin marker if some criteria are satisfied. 936 /// \return a pointer to the temporary size Value if a marker was emitted, null 937 /// otherwise 938 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 939 llvm::Value *Addr) { 940 if (!ShouldEmitLifetimeMarkers) 941 return nullptr; 942 943 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 944 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 945 llvm::CallInst *C = 946 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 947 C->setDoesNotThrow(); 948 return SizeV; 949 } 950 951 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 952 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 953 llvm::CallInst *C = 954 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 955 C->setDoesNotThrow(); 956 } 957 958 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 959 /// local variable. Does not emit initialization or destruction. 960 CodeGenFunction::AutoVarEmission 961 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 962 QualType Ty = D.getType(); 963 assert( 964 Ty.getAddressSpace() == LangAS::Default || 965 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 966 967 AutoVarEmission emission(D); 968 969 bool isByRef = D.hasAttr<BlocksAttr>(); 970 emission.IsByRef = isByRef; 971 972 CharUnits alignment = getContext().getDeclAlign(&D); 973 974 // If the type is variably-modified, emit all the VLA sizes for it. 975 if (Ty->isVariablyModifiedType()) 976 EmitVariablyModifiedType(Ty); 977 978 Address address = Address::invalid(); 979 if (Ty->isConstantSizeType()) { 980 bool NRVO = getLangOpts().ElideConstructors && 981 D.isNRVOVariable(); 982 983 // If this value is an array or struct with a statically determinable 984 // constant initializer, there are optimizations we can do. 985 // 986 // TODO: We should constant-evaluate the initializer of any variable, 987 // as long as it is initialized by a constant expression. Currently, 988 // isConstantInitializer produces wrong answers for structs with 989 // reference or bitfield members, and a few other cases, and checking 990 // for POD-ness protects us from some of these. 991 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 992 (D.isConstexpr() || 993 ((Ty.isPODType(getContext()) || 994 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 995 D.getInit()->isConstantInitializer(getContext(), false)))) { 996 997 // If the variable's a const type, and it's neither an NRVO 998 // candidate nor a __block variable and has no mutable members, 999 // emit it as a global instead. 1000 // Exception is if a variable is located in non-constant address space 1001 // in OpenCL. 1002 if ((!getLangOpts().OpenCL || 1003 Ty.getAddressSpace() == LangAS::opencl_constant) && 1004 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 1005 CGM.isTypeConstant(Ty, true))) { 1006 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1007 1008 // Signal this condition to later callbacks. 1009 emission.Addr = Address::invalid(); 1010 assert(emission.wasEmittedAsGlobal()); 1011 return emission; 1012 } 1013 1014 // Otherwise, tell the initialization code that we're in this case. 1015 emission.IsConstantAggregate = true; 1016 } 1017 1018 // A normal fixed sized variable becomes an alloca in the entry block, 1019 // unless it's an NRVO variable. 1020 1021 if (NRVO) { 1022 // The named return value optimization: allocate this variable in the 1023 // return slot, so that we can elide the copy when returning this 1024 // variable (C++0x [class.copy]p34). 1025 address = ReturnValue; 1026 1027 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1028 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1029 // Create a flag that is used to indicate when the NRVO was applied 1030 // to this variable. Set it to zero to indicate that NRVO was not 1031 // applied. 1032 llvm::Value *Zero = Builder.getFalse(); 1033 Address NRVOFlag = 1034 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1035 EnsureInsertPoint(); 1036 Builder.CreateStore(Zero, NRVOFlag); 1037 1038 // Record the NRVO flag for this variable. 1039 NRVOFlags[&D] = NRVOFlag.getPointer(); 1040 emission.NRVOFlag = NRVOFlag.getPointer(); 1041 } 1042 } 1043 } else { 1044 CharUnits allocaAlignment; 1045 llvm::Type *allocaTy; 1046 if (isByRef) { 1047 auto &byrefInfo = getBlockByrefInfo(&D); 1048 allocaTy = byrefInfo.Type; 1049 allocaAlignment = byrefInfo.ByrefAlignment; 1050 } else { 1051 allocaTy = ConvertTypeForMem(Ty); 1052 allocaAlignment = alignment; 1053 } 1054 1055 // Create the alloca. Note that we set the name separately from 1056 // building the instruction so that it's there even in no-asserts 1057 // builds. 1058 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName()); 1059 1060 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1061 // the catch parameter starts in the catchpad instruction, and we can't 1062 // insert code in those basic blocks. 1063 bool IsMSCatchParam = 1064 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1065 1066 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1067 // if we don't have a valid insertion point (?). 1068 if (HaveInsertPoint() && !IsMSCatchParam) { 1069 // If there's a jump into the lifetime of this variable, its lifetime 1070 // gets broken up into several regions in IR, which requires more work 1071 // to handle correctly. For now, just omit the intrinsics; this is a 1072 // rare case, and it's better to just be conservatively correct. 1073 // PR28267. 1074 // 1075 // We have to do this in all language modes if there's a jump past the 1076 // declaration. We also have to do it in C if there's a jump to an 1077 // earlier point in the current block because non-VLA lifetimes begin as 1078 // soon as the containing block is entered, not when its variables 1079 // actually come into scope; suppressing the lifetime annotations 1080 // completely in this case is unnecessarily pessimistic, but again, this 1081 // is rare. 1082 if (!Bypasses.IsBypassed(&D) && 1083 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1084 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1085 emission.SizeForLifetimeMarkers = 1086 EmitLifetimeStart(size, address.getPointer()); 1087 } 1088 } else { 1089 assert(!emission.useLifetimeMarkers()); 1090 } 1091 } 1092 } else { 1093 EnsureInsertPoint(); 1094 1095 if (!DidCallStackSave) { 1096 // Save the stack. 1097 Address Stack = 1098 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1099 1100 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1101 llvm::Value *V = Builder.CreateCall(F); 1102 Builder.CreateStore(V, Stack); 1103 1104 DidCallStackSave = true; 1105 1106 // Push a cleanup block and restore the stack there. 1107 // FIXME: in general circumstances, this should be an EH cleanup. 1108 pushStackRestore(NormalCleanup, Stack); 1109 } 1110 1111 llvm::Value *elementCount; 1112 QualType elementType; 1113 std::tie(elementCount, elementType) = getVLASize(Ty); 1114 1115 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1116 1117 // Allocate memory for the array. 1118 address = CreateTempAlloca(llvmTy, alignment, "vla", elementCount); 1119 } 1120 1121 setAddrOfLocalVar(&D, address); 1122 emission.Addr = address; 1123 1124 // Emit debug info for local var declaration. 1125 if (HaveInsertPoint()) 1126 if (CGDebugInfo *DI = getDebugInfo()) { 1127 if (CGM.getCodeGenOpts().getDebugInfo() >= 1128 codegenoptions::LimitedDebugInfo) { 1129 DI->setLocation(D.getLocation()); 1130 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1131 } 1132 } 1133 1134 if (D.hasAttr<AnnotateAttr>()) 1135 EmitVarAnnotations(&D, address.getPointer()); 1136 1137 // Make sure we call @llvm.lifetime.end. 1138 if (emission.useLifetimeMarkers()) 1139 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1140 emission.getAllocatedAddress(), 1141 emission.getSizeForLifetimeMarkers()); 1142 1143 return emission; 1144 } 1145 1146 /// Determines whether the given __block variable is potentially 1147 /// captured by the given expression. 1148 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1149 // Skip the most common kinds of expressions that make 1150 // hierarchy-walking expensive. 1151 e = e->IgnoreParenCasts(); 1152 1153 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1154 const BlockDecl *block = be->getBlockDecl(); 1155 for (const auto &I : block->captures()) { 1156 if (I.getVariable() == &var) 1157 return true; 1158 } 1159 1160 // No need to walk into the subexpressions. 1161 return false; 1162 } 1163 1164 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1165 const CompoundStmt *CS = SE->getSubStmt(); 1166 for (const auto *BI : CS->body()) 1167 if (const auto *E = dyn_cast<Expr>(BI)) { 1168 if (isCapturedBy(var, E)) 1169 return true; 1170 } 1171 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1172 // special case declarations 1173 for (const auto *I : DS->decls()) { 1174 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1175 const Expr *Init = VD->getInit(); 1176 if (Init && isCapturedBy(var, Init)) 1177 return true; 1178 } 1179 } 1180 } 1181 else 1182 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1183 // Later, provide code to poke into statements for capture analysis. 1184 return true; 1185 return false; 1186 } 1187 1188 for (const Stmt *SubStmt : e->children()) 1189 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1190 return true; 1191 1192 return false; 1193 } 1194 1195 /// \brief Determine whether the given initializer is trivial in the sense 1196 /// that it requires no code to be generated. 1197 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1198 if (!Init) 1199 return true; 1200 1201 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1202 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1203 if (Constructor->isTrivial() && 1204 Constructor->isDefaultConstructor() && 1205 !Construct->requiresZeroInitialization()) 1206 return true; 1207 1208 return false; 1209 } 1210 1211 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1212 assert(emission.Variable && "emission was not valid!"); 1213 1214 // If this was emitted as a global constant, we're done. 1215 if (emission.wasEmittedAsGlobal()) return; 1216 1217 const VarDecl &D = *emission.Variable; 1218 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1219 QualType type = D.getType(); 1220 1221 // If this local has an initializer, emit it now. 1222 const Expr *Init = D.getInit(); 1223 1224 // If we are at an unreachable point, we don't need to emit the initializer 1225 // unless it contains a label. 1226 if (!HaveInsertPoint()) { 1227 if (!Init || !ContainsLabel(Init)) return; 1228 EnsureInsertPoint(); 1229 } 1230 1231 // Initialize the structure of a __block variable. 1232 if (emission.IsByRef) 1233 emitByrefStructureInit(emission); 1234 1235 if (isTrivialInitializer(Init)) 1236 return; 1237 1238 // Check whether this is a byref variable that's potentially 1239 // captured and moved by its own initializer. If so, we'll need to 1240 // emit the initializer first, then copy into the variable. 1241 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1242 1243 Address Loc = 1244 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1245 1246 llvm::Constant *constant = nullptr; 1247 if (emission.IsConstantAggregate || D.isConstexpr()) { 1248 assert(!capturedByInit && "constant init contains a capturing block?"); 1249 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1250 } 1251 1252 if (!constant) { 1253 LValue lv = MakeAddrLValue(Loc, type); 1254 lv.setNonGC(true); 1255 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1256 } 1257 1258 if (!emission.IsConstantAggregate) { 1259 // For simple scalar/complex initialization, store the value directly. 1260 LValue lv = MakeAddrLValue(Loc, type); 1261 lv.setNonGC(true); 1262 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1263 } 1264 1265 // If this is a simple aggregate initialization, we can optimize it 1266 // in various ways. 1267 bool isVolatile = type.isVolatileQualified(); 1268 1269 llvm::Value *SizeVal = 1270 llvm::ConstantInt::get(IntPtrTy, 1271 getContext().getTypeSizeInChars(type).getQuantity()); 1272 1273 llvm::Type *BP = AllocaInt8PtrTy; 1274 if (Loc.getType() != BP) 1275 Loc = Builder.CreateBitCast(Loc, BP); 1276 1277 // If the initializer is all or mostly zeros, codegen with memset then do 1278 // a few stores afterward. 1279 if (shouldUseMemSetPlusStoresToInitialize(constant, 1280 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1281 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1282 isVolatile); 1283 // Zero and undef don't require a stores. 1284 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1285 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1286 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1287 isVolatile, Builder); 1288 } 1289 } else { 1290 // Otherwise, create a temporary global with the initializer then 1291 // memcpy from the global to the alloca. 1292 std::string Name = getStaticDeclName(CGM, D); 1293 unsigned AS = 0; 1294 if (getLangOpts().OpenCL) { 1295 AS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 1296 BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS); 1297 } 1298 llvm::GlobalVariable *GV = 1299 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1300 llvm::GlobalValue::PrivateLinkage, 1301 constant, Name, nullptr, 1302 llvm::GlobalValue::NotThreadLocal, AS); 1303 GV->setAlignment(Loc.getAlignment().getQuantity()); 1304 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1305 1306 Address SrcPtr = Address(GV, Loc.getAlignment()); 1307 if (SrcPtr.getType() != BP) 1308 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1309 1310 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1311 } 1312 } 1313 1314 /// Emit an expression as an initializer for a variable at the given 1315 /// location. The expression is not necessarily the normal 1316 /// initializer for the variable, and the address is not necessarily 1317 /// its normal location. 1318 /// 1319 /// \param init the initializing expression 1320 /// \param var the variable to act as if we're initializing 1321 /// \param loc the address to initialize; its type is a pointer 1322 /// to the LLVM mapping of the variable's type 1323 /// \param alignment the alignment of the address 1324 /// \param capturedByInit true if the variable is a __block variable 1325 /// whose address is potentially changed by the initializer 1326 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1327 LValue lvalue, bool capturedByInit) { 1328 QualType type = D->getType(); 1329 1330 if (type->isReferenceType()) { 1331 RValue rvalue = EmitReferenceBindingToExpr(init); 1332 if (capturedByInit) 1333 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1334 EmitStoreThroughLValue(rvalue, lvalue, true); 1335 return; 1336 } 1337 switch (getEvaluationKind(type)) { 1338 case TEK_Scalar: 1339 EmitScalarInit(init, D, lvalue, capturedByInit); 1340 return; 1341 case TEK_Complex: { 1342 ComplexPairTy complex = EmitComplexExpr(init); 1343 if (capturedByInit) 1344 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1345 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1346 return; 1347 } 1348 case TEK_Aggregate: 1349 if (type->isAtomicType()) { 1350 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1351 } else { 1352 // TODO: how can we delay here if D is captured by its initializer? 1353 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1354 AggValueSlot::IsDestructed, 1355 AggValueSlot::DoesNotNeedGCBarriers, 1356 AggValueSlot::IsNotAliased)); 1357 } 1358 return; 1359 } 1360 llvm_unreachable("bad evaluation kind"); 1361 } 1362 1363 /// Enter a destroy cleanup for the given local variable. 1364 void CodeGenFunction::emitAutoVarTypeCleanup( 1365 const CodeGenFunction::AutoVarEmission &emission, 1366 QualType::DestructionKind dtorKind) { 1367 assert(dtorKind != QualType::DK_none); 1368 1369 // Note that for __block variables, we want to destroy the 1370 // original stack object, not the possibly forwarded object. 1371 Address addr = emission.getObjectAddress(*this); 1372 1373 const VarDecl *var = emission.Variable; 1374 QualType type = var->getType(); 1375 1376 CleanupKind cleanupKind = NormalAndEHCleanup; 1377 CodeGenFunction::Destroyer *destroyer = nullptr; 1378 1379 switch (dtorKind) { 1380 case QualType::DK_none: 1381 llvm_unreachable("no cleanup for trivially-destructible variable"); 1382 1383 case QualType::DK_cxx_destructor: 1384 // If there's an NRVO flag on the emission, we need a different 1385 // cleanup. 1386 if (emission.NRVOFlag) { 1387 assert(!type->isArrayType()); 1388 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1389 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1390 dtor, emission.NRVOFlag); 1391 return; 1392 } 1393 break; 1394 1395 case QualType::DK_objc_strong_lifetime: 1396 // Suppress cleanups for pseudo-strong variables. 1397 if (var->isARCPseudoStrong()) return; 1398 1399 // Otherwise, consider whether to use an EH cleanup or not. 1400 cleanupKind = getARCCleanupKind(); 1401 1402 // Use the imprecise destroyer by default. 1403 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1404 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1405 break; 1406 1407 case QualType::DK_objc_weak_lifetime: 1408 break; 1409 } 1410 1411 // If we haven't chosen a more specific destroyer, use the default. 1412 if (!destroyer) destroyer = getDestroyer(dtorKind); 1413 1414 // Use an EH cleanup in array destructors iff the destructor itself 1415 // is being pushed as an EH cleanup. 1416 bool useEHCleanup = (cleanupKind & EHCleanup); 1417 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1418 useEHCleanup); 1419 } 1420 1421 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1422 assert(emission.Variable && "emission was not valid!"); 1423 1424 // If this was emitted as a global constant, we're done. 1425 if (emission.wasEmittedAsGlobal()) return; 1426 1427 // If we don't have an insertion point, we're done. Sema prevents 1428 // us from jumping into any of these scopes anyway. 1429 if (!HaveInsertPoint()) return; 1430 1431 const VarDecl &D = *emission.Variable; 1432 1433 // Check the type for a cleanup. 1434 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1435 emitAutoVarTypeCleanup(emission, dtorKind); 1436 1437 // In GC mode, honor objc_precise_lifetime. 1438 if (getLangOpts().getGC() != LangOptions::NonGC && 1439 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1440 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1441 } 1442 1443 // Handle the cleanup attribute. 1444 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1445 const FunctionDecl *FD = CA->getFunctionDecl(); 1446 1447 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1448 assert(F && "Could not find function!"); 1449 1450 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1451 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1452 } 1453 1454 // If this is a block variable, call _Block_object_destroy 1455 // (on the unforwarded address). 1456 if (emission.IsByRef) 1457 enterByrefCleanup(emission); 1458 } 1459 1460 CodeGenFunction::Destroyer * 1461 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1462 switch (kind) { 1463 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1464 case QualType::DK_cxx_destructor: 1465 return destroyCXXObject; 1466 case QualType::DK_objc_strong_lifetime: 1467 return destroyARCStrongPrecise; 1468 case QualType::DK_objc_weak_lifetime: 1469 return destroyARCWeak; 1470 } 1471 llvm_unreachable("Unknown DestructionKind"); 1472 } 1473 1474 /// pushEHDestroy - Push the standard destructor for the given type as 1475 /// an EH-only cleanup. 1476 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1477 Address addr, QualType type) { 1478 assert(dtorKind && "cannot push destructor for trivial type"); 1479 assert(needsEHCleanup(dtorKind)); 1480 1481 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1482 } 1483 1484 /// pushDestroy - Push the standard destructor for the given type as 1485 /// at least a normal cleanup. 1486 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1487 Address addr, QualType type) { 1488 assert(dtorKind && "cannot push destructor for trivial type"); 1489 1490 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1491 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1492 cleanupKind & EHCleanup); 1493 } 1494 1495 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1496 QualType type, Destroyer *destroyer, 1497 bool useEHCleanupForArray) { 1498 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1499 destroyer, useEHCleanupForArray); 1500 } 1501 1502 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1503 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1504 } 1505 1506 void CodeGenFunction::pushLifetimeExtendedDestroy( 1507 CleanupKind cleanupKind, Address addr, QualType type, 1508 Destroyer *destroyer, bool useEHCleanupForArray) { 1509 assert(!isInConditionalBranch() && 1510 "performing lifetime extension from within conditional"); 1511 1512 // Push an EH-only cleanup for the object now. 1513 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1514 // around in case a temporary's destructor throws an exception. 1515 if (cleanupKind & EHCleanup) 1516 EHStack.pushCleanup<DestroyObject>( 1517 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1518 destroyer, useEHCleanupForArray); 1519 1520 // Remember that we need to push a full cleanup for the object at the 1521 // end of the full-expression. 1522 pushCleanupAfterFullExpr<DestroyObject>( 1523 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1524 } 1525 1526 /// emitDestroy - Immediately perform the destruction of the given 1527 /// object. 1528 /// 1529 /// \param addr - the address of the object; a type* 1530 /// \param type - the type of the object; if an array type, all 1531 /// objects are destroyed in reverse order 1532 /// \param destroyer - the function to call to destroy individual 1533 /// elements 1534 /// \param useEHCleanupForArray - whether an EH cleanup should be 1535 /// used when destroying array elements, in case one of the 1536 /// destructions throws an exception 1537 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1538 Destroyer *destroyer, 1539 bool useEHCleanupForArray) { 1540 const ArrayType *arrayType = getContext().getAsArrayType(type); 1541 if (!arrayType) 1542 return destroyer(*this, addr, type); 1543 1544 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1545 1546 CharUnits elementAlign = 1547 addr.getAlignment() 1548 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1549 1550 // Normally we have to check whether the array is zero-length. 1551 bool checkZeroLength = true; 1552 1553 // But if the array length is constant, we can suppress that. 1554 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1555 // ...and if it's constant zero, we can just skip the entire thing. 1556 if (constLength->isZero()) return; 1557 checkZeroLength = false; 1558 } 1559 1560 llvm::Value *begin = addr.getPointer(); 1561 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1562 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1563 checkZeroLength, useEHCleanupForArray); 1564 } 1565 1566 /// emitArrayDestroy - Destroys all the elements of the given array, 1567 /// beginning from last to first. The array cannot be zero-length. 1568 /// 1569 /// \param begin - a type* denoting the first element of the array 1570 /// \param end - a type* denoting one past the end of the array 1571 /// \param elementType - the element type of the array 1572 /// \param destroyer - the function to call to destroy elements 1573 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1574 /// the remaining elements in case the destruction of a single 1575 /// element throws 1576 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1577 llvm::Value *end, 1578 QualType elementType, 1579 CharUnits elementAlign, 1580 Destroyer *destroyer, 1581 bool checkZeroLength, 1582 bool useEHCleanup) { 1583 assert(!elementType->isArrayType()); 1584 1585 // The basic structure here is a do-while loop, because we don't 1586 // need to check for the zero-element case. 1587 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1588 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1589 1590 if (checkZeroLength) { 1591 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1592 "arraydestroy.isempty"); 1593 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1594 } 1595 1596 // Enter the loop body, making that address the current address. 1597 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1598 EmitBlock(bodyBB); 1599 llvm::PHINode *elementPast = 1600 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1601 elementPast->addIncoming(end, entryBB); 1602 1603 // Shift the address back by one element. 1604 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1605 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1606 "arraydestroy.element"); 1607 1608 if (useEHCleanup) 1609 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1610 destroyer); 1611 1612 // Perform the actual destruction there. 1613 destroyer(*this, Address(element, elementAlign), elementType); 1614 1615 if (useEHCleanup) 1616 PopCleanupBlock(); 1617 1618 // Check whether we've reached the end. 1619 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1620 Builder.CreateCondBr(done, doneBB, bodyBB); 1621 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1622 1623 // Done. 1624 EmitBlock(doneBB); 1625 } 1626 1627 /// Perform partial array destruction as if in an EH cleanup. Unlike 1628 /// emitArrayDestroy, the element type here may still be an array type. 1629 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1630 llvm::Value *begin, llvm::Value *end, 1631 QualType type, CharUnits elementAlign, 1632 CodeGenFunction::Destroyer *destroyer) { 1633 // If the element type is itself an array, drill down. 1634 unsigned arrayDepth = 0; 1635 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1636 // VLAs don't require a GEP index to walk into. 1637 if (!isa<VariableArrayType>(arrayType)) 1638 arrayDepth++; 1639 type = arrayType->getElementType(); 1640 } 1641 1642 if (arrayDepth) { 1643 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1644 1645 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1646 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1647 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1648 } 1649 1650 // Destroy the array. We don't ever need an EH cleanup because we 1651 // assume that we're in an EH cleanup ourselves, so a throwing 1652 // destructor causes an immediate terminate. 1653 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1654 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1655 } 1656 1657 namespace { 1658 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1659 /// array destroy where the end pointer is regularly determined and 1660 /// does not need to be loaded from a local. 1661 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1662 llvm::Value *ArrayBegin; 1663 llvm::Value *ArrayEnd; 1664 QualType ElementType; 1665 CodeGenFunction::Destroyer *Destroyer; 1666 CharUnits ElementAlign; 1667 public: 1668 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1669 QualType elementType, CharUnits elementAlign, 1670 CodeGenFunction::Destroyer *destroyer) 1671 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1672 ElementType(elementType), Destroyer(destroyer), 1673 ElementAlign(elementAlign) {} 1674 1675 void Emit(CodeGenFunction &CGF, Flags flags) override { 1676 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1677 ElementType, ElementAlign, Destroyer); 1678 } 1679 }; 1680 1681 /// IrregularPartialArrayDestroy - a cleanup which performs a 1682 /// partial array destroy where the end pointer is irregularly 1683 /// determined and must be loaded from a local. 1684 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1685 llvm::Value *ArrayBegin; 1686 Address ArrayEndPointer; 1687 QualType ElementType; 1688 CodeGenFunction::Destroyer *Destroyer; 1689 CharUnits ElementAlign; 1690 public: 1691 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1692 Address arrayEndPointer, 1693 QualType elementType, 1694 CharUnits elementAlign, 1695 CodeGenFunction::Destroyer *destroyer) 1696 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1697 ElementType(elementType), Destroyer(destroyer), 1698 ElementAlign(elementAlign) {} 1699 1700 void Emit(CodeGenFunction &CGF, Flags flags) override { 1701 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1702 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1703 ElementType, ElementAlign, Destroyer); 1704 } 1705 }; 1706 } // end anonymous namespace 1707 1708 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1709 /// already-constructed elements of the given array. The cleanup 1710 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1711 /// 1712 /// \param elementType - the immediate element type of the array; 1713 /// possibly still an array type 1714 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1715 Address arrayEndPointer, 1716 QualType elementType, 1717 CharUnits elementAlign, 1718 Destroyer *destroyer) { 1719 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1720 arrayBegin, arrayEndPointer, 1721 elementType, elementAlign, 1722 destroyer); 1723 } 1724 1725 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1726 /// already-constructed elements of the given array. The cleanup 1727 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1728 /// 1729 /// \param elementType - the immediate element type of the array; 1730 /// possibly still an array type 1731 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1732 llvm::Value *arrayEnd, 1733 QualType elementType, 1734 CharUnits elementAlign, 1735 Destroyer *destroyer) { 1736 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1737 arrayBegin, arrayEnd, 1738 elementType, elementAlign, 1739 destroyer); 1740 } 1741 1742 /// Lazily declare the @llvm.lifetime.start intrinsic. 1743 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1744 if (LifetimeStartFn) 1745 return LifetimeStartFn; 1746 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1747 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 1748 return LifetimeStartFn; 1749 } 1750 1751 /// Lazily declare the @llvm.lifetime.end intrinsic. 1752 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1753 if (LifetimeEndFn) 1754 return LifetimeEndFn; 1755 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1756 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 1757 return LifetimeEndFn; 1758 } 1759 1760 namespace { 1761 /// A cleanup to perform a release of an object at the end of a 1762 /// function. This is used to balance out the incoming +1 of a 1763 /// ns_consumed argument when we can't reasonably do that just by 1764 /// not doing the initial retain for a __block argument. 1765 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1766 ConsumeARCParameter(llvm::Value *param, 1767 ARCPreciseLifetime_t precise) 1768 : Param(param), Precise(precise) {} 1769 1770 llvm::Value *Param; 1771 ARCPreciseLifetime_t Precise; 1772 1773 void Emit(CodeGenFunction &CGF, Flags flags) override { 1774 CGF.EmitARCRelease(Param, Precise); 1775 } 1776 }; 1777 } // end anonymous namespace 1778 1779 /// Emit an alloca (or GlobalValue depending on target) 1780 /// for the specified parameter and set up LocalDeclMap. 1781 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1782 unsigned ArgNo) { 1783 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1784 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1785 "Invalid argument to EmitParmDecl"); 1786 1787 Arg.getAnyValue()->setName(D.getName()); 1788 1789 QualType Ty = D.getType(); 1790 1791 // Use better IR generation for certain implicit parameters. 1792 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1793 // The only implicit argument a block has is its literal. 1794 // We assume this is always passed directly. 1795 if (BlockInfo) { 1796 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1797 return; 1798 } 1799 } 1800 1801 Address DeclPtr = Address::invalid(); 1802 bool DoStore = false; 1803 bool IsScalar = hasScalarEvaluationKind(Ty); 1804 // If we already have a pointer to the argument, reuse the input pointer. 1805 if (Arg.isIndirect()) { 1806 DeclPtr = Arg.getIndirectAddress(); 1807 // If we have a prettier pointer type at this point, bitcast to that. 1808 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1809 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1810 if (DeclPtr.getType() != IRTy) 1811 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1812 1813 // Push a destructor cleanup for this parameter if the ABI requires it. 1814 // Don't push a cleanup in a thunk for a method that will also emit a 1815 // cleanup. 1816 if (!IsScalar && !CurFuncIsThunk && 1817 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1818 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1819 if (RD && RD->hasNonTrivialDestructor()) 1820 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1821 } 1822 } else { 1823 // Otherwise, create a temporary to hold the value. 1824 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1825 D.getName() + ".addr"); 1826 DoStore = true; 1827 } 1828 1829 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1830 1831 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1832 if (IsScalar) { 1833 Qualifiers qs = Ty.getQualifiers(); 1834 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1835 // We honor __attribute__((ns_consumed)) for types with lifetime. 1836 // For __strong, it's handled by just skipping the initial retain; 1837 // otherwise we have to balance out the initial +1 with an extra 1838 // cleanup to do the release at the end of the function. 1839 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1840 1841 // 'self' is always formally __strong, but if this is not an 1842 // init method then we don't want to retain it. 1843 if (D.isARCPseudoStrong()) { 1844 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1845 assert(&D == method->getSelfDecl()); 1846 assert(lt == Qualifiers::OCL_Strong); 1847 assert(qs.hasConst()); 1848 assert(method->getMethodFamily() != OMF_init); 1849 (void) method; 1850 lt = Qualifiers::OCL_ExplicitNone; 1851 } 1852 1853 // Load objects passed indirectly. 1854 if (Arg.isIndirect() && !ArgVal) 1855 ArgVal = Builder.CreateLoad(DeclPtr); 1856 1857 if (lt == Qualifiers::OCL_Strong) { 1858 if (!isConsumed) { 1859 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1860 // use objc_storeStrong(&dest, value) for retaining the 1861 // object. But first, store a null into 'dest' because 1862 // objc_storeStrong attempts to release its old value. 1863 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1864 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1865 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1866 DoStore = false; 1867 } 1868 else 1869 // Don't use objc_retainBlock for block pointers, because we 1870 // don't want to Block_copy something just because we got it 1871 // as a parameter. 1872 ArgVal = EmitARCRetainNonBlock(ArgVal); 1873 } 1874 } else { 1875 // Push the cleanup for a consumed parameter. 1876 if (isConsumed) { 1877 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1878 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1879 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1880 precise); 1881 } 1882 1883 if (lt == Qualifiers::OCL_Weak) { 1884 EmitARCInitWeak(DeclPtr, ArgVal); 1885 DoStore = false; // The weak init is a store, no need to do two. 1886 } 1887 } 1888 1889 // Enter the cleanup scope. 1890 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1891 } 1892 } 1893 1894 // Store the initial value into the alloca. 1895 if (DoStore) 1896 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1897 1898 setAddrOfLocalVar(&D, DeclPtr); 1899 1900 // Emit debug info for param declaration. 1901 if (CGDebugInfo *DI = getDebugInfo()) { 1902 if (CGM.getCodeGenOpts().getDebugInfo() >= 1903 codegenoptions::LimitedDebugInfo) { 1904 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1905 } 1906 } 1907 1908 if (D.hasAttr<AnnotateAttr>()) 1909 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1910 1911 // We can only check return value nullability if all arguments to the 1912 // function satisfy their nullability preconditions. This makes it necessary 1913 // to emit null checks for args in the function body itself. 1914 if (requiresReturnValueNullabilityCheck()) { 1915 auto Nullability = Ty->getNullability(getContext()); 1916 if (Nullability && *Nullability == NullabilityKind::NonNull) { 1917 SanitizerScope SanScope(this); 1918 RetValNullabilityPrecondition = 1919 Builder.CreateAnd(RetValNullabilityPrecondition, 1920 Builder.CreateIsNotNull(Arg.getAnyValue())); 1921 } 1922 } 1923 } 1924 1925 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1926 CodeGenFunction *CGF) { 1927 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1928 return; 1929 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1930 } 1931