1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "CGOpenCLRuntime.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::IndirectField: 49 case Decl::ObjCIvar: 50 case Decl::ObjCAtDefsField: 51 case Decl::ParmVar: 52 case Decl::ImplicitParam: 53 case Decl::ClassTemplate: 54 case Decl::FunctionTemplate: 55 case Decl::TypeAliasTemplate: 56 case Decl::TemplateTemplateParm: 57 case Decl::ObjCMethod: 58 case Decl::ObjCCategory: 59 case Decl::ObjCProtocol: 60 case Decl::ObjCInterface: 61 case Decl::ObjCCategoryImpl: 62 case Decl::ObjCImplementation: 63 case Decl::ObjCProperty: 64 case Decl::ObjCCompatibleAlias: 65 case Decl::AccessSpec: 66 case Decl::LinkageSpec: 67 case Decl::ObjCPropertyImpl: 68 case Decl::ObjCClass: 69 case Decl::ObjCForwardProtocol: 70 case Decl::FileScopeAsm: 71 case Decl::Friend: 72 case Decl::FriendTemplate: 73 case Decl::Block: 74 case Decl::ClassScopeFunctionSpecialization: 75 llvm_unreachable("Declaration should not be in declstmts!"); 76 case Decl::Function: // void X(); 77 case Decl::Record: // struct/union/class X; 78 case Decl::Enum: // enum X; 79 case Decl::EnumConstant: // enum ? { X = ? } 80 case Decl::CXXRecord: // struct/union/class X; [C++] 81 case Decl::Using: // using X; [C++] 82 case Decl::UsingShadow: 83 case Decl::UsingDirective: // using namespace X; [C++] 84 case Decl::NamespaceAlias: 85 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 86 case Decl::Label: // __label__ x; 87 case Decl::Import: 88 // None of these decls require codegen support. 89 return; 90 91 case Decl::Var: { 92 const VarDecl &VD = cast<VarDecl>(D); 93 assert(VD.isLocalVarDecl() && 94 "Should not see file-scope variables inside a function!"); 95 return EmitVarDecl(VD); 96 } 97 98 case Decl::Typedef: // typedef int X; 99 case Decl::TypeAlias: { // using X = int; [C++0x] 100 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 101 QualType Ty = TD.getUnderlyingType(); 102 103 if (Ty->isVariablyModifiedType()) 104 EmitVariablyModifiedType(Ty); 105 } 106 } 107 } 108 109 /// EmitVarDecl - This method handles emission of any variable declaration 110 /// inside a function, including static vars etc. 111 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 112 switch (D.getStorageClass()) { 113 case SC_None: 114 case SC_Auto: 115 case SC_Register: 116 return EmitAutoVarDecl(D); 117 case SC_Static: { 118 llvm::GlobalValue::LinkageTypes Linkage = 119 llvm::GlobalValue::InternalLinkage; 120 121 // If the function definition has some sort of weak linkage, its 122 // static variables should also be weak so that they get properly 123 // uniqued. We can't do this in C, though, because there's no 124 // standard way to agree on which variables are the same (i.e. 125 // there's no mangling). 126 if (getContext().getLangOptions().CPlusPlus) 127 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 128 Linkage = CurFn->getLinkage(); 129 130 return EmitStaticVarDecl(D, Linkage); 131 } 132 case SC_Extern: 133 case SC_PrivateExtern: 134 // Don't emit it now, allow it to be emitted lazily on its first use. 135 return; 136 case SC_OpenCLWorkGroupLocal: 137 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 138 } 139 140 llvm_unreachable("Unknown storage class"); 141 } 142 143 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 144 const char *Separator) { 145 CodeGenModule &CGM = CGF.CGM; 146 if (CGF.getContext().getLangOptions().CPlusPlus) { 147 StringRef Name = CGM.getMangledName(&D); 148 return Name.str(); 149 } 150 151 std::string ContextName; 152 if (!CGF.CurFuncDecl) { 153 // Better be in a block declared in global scope. 154 const NamedDecl *ND = cast<NamedDecl>(&D); 155 const DeclContext *DC = ND->getDeclContext(); 156 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 157 MangleBuffer Name; 158 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 159 ContextName = Name.getString(); 160 } 161 else 162 llvm_unreachable("Unknown context for block static var decl"); 163 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 164 StringRef Name = CGM.getMangledName(FD); 165 ContextName = Name.str(); 166 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 167 ContextName = CGF.CurFn->getName(); 168 else 169 llvm_unreachable("Unknown context for static var decl"); 170 171 return ContextName + Separator + D.getNameAsString(); 172 } 173 174 llvm::GlobalVariable * 175 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 176 const char *Separator, 177 llvm::GlobalValue::LinkageTypes Linkage) { 178 QualType Ty = D.getType(); 179 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 180 181 // Use the label if the variable is renamed with the asm-label extension. 182 std::string Name; 183 if (D.hasAttr<AsmLabelAttr>()) 184 Name = CGM.getMangledName(&D); 185 else 186 Name = GetStaticDeclName(*this, D, Separator); 187 188 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 189 llvm::GlobalVariable *GV = 190 new llvm::GlobalVariable(CGM.getModule(), LTy, 191 Ty.isConstant(getContext()), Linkage, 192 CGM.EmitNullConstant(D.getType()), Name, 0, 193 D.isThreadSpecified(), 194 CGM.getContext().getTargetAddressSpace(Ty)); 195 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 196 if (Linkage != llvm::GlobalValue::InternalLinkage) 197 GV->setVisibility(CurFn->getVisibility()); 198 return GV; 199 } 200 201 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 202 /// global variable that has already been created for it. If the initializer 203 /// has a different type than GV does, this may free GV and return a different 204 /// one. Otherwise it just returns GV. 205 llvm::GlobalVariable * 206 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 207 llvm::GlobalVariable *GV) { 208 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 209 210 // If constant emission failed, then this should be a C++ static 211 // initializer. 212 if (!Init) { 213 if (!getContext().getLangOptions().CPlusPlus) 214 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 215 else if (Builder.GetInsertBlock()) { 216 // Since we have a static initializer, this global variable can't 217 // be constant. 218 GV->setConstant(false); 219 220 EmitCXXGuardedInit(D, GV); 221 } 222 return GV; 223 } 224 225 // The initializer may differ in type from the global. Rewrite 226 // the global to match the initializer. (We have to do this 227 // because some types, like unions, can't be completely represented 228 // in the LLVM type system.) 229 if (GV->getType()->getElementType() != Init->getType()) { 230 llvm::GlobalVariable *OldGV = GV; 231 232 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 233 OldGV->isConstant(), 234 OldGV->getLinkage(), Init, "", 235 /*InsertBefore*/ OldGV, 236 D.isThreadSpecified(), 237 CGM.getContext().getTargetAddressSpace(D.getType())); 238 GV->setVisibility(OldGV->getVisibility()); 239 240 // Steal the name of the old global 241 GV->takeName(OldGV); 242 243 // Replace all uses of the old global with the new global 244 llvm::Constant *NewPtrForOldDecl = 245 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 246 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 247 248 // Erase the old global, since it is no longer used. 249 OldGV->eraseFromParent(); 250 } 251 252 GV->setInitializer(Init); 253 return GV; 254 } 255 256 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 257 llvm::GlobalValue::LinkageTypes Linkage) { 258 llvm::Value *&DMEntry = LocalDeclMap[&D]; 259 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 260 261 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 262 263 // Store into LocalDeclMap before generating initializer to handle 264 // circular references. 265 DMEntry = GV; 266 267 // We can't have a VLA here, but we can have a pointer to a VLA, 268 // even though that doesn't really make any sense. 269 // Make sure to evaluate VLA bounds now so that we have them for later. 270 if (D.getType()->isVariablyModifiedType()) 271 EmitVariablyModifiedType(D.getType()); 272 273 // Local static block variables must be treated as globals as they may be 274 // referenced in their RHS initializer block-literal expresion. 275 CGM.setStaticLocalDeclAddress(&D, GV); 276 277 // If this value has an initializer, emit it. 278 if (D.getInit()) 279 GV = AddInitializerToStaticVarDecl(D, GV); 280 281 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 282 283 if (D.hasAttr<AnnotateAttr>()) 284 CGM.AddGlobalAnnotations(&D, GV); 285 286 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 287 GV->setSection(SA->getName()); 288 289 if (D.hasAttr<UsedAttr>()) 290 CGM.AddUsedGlobal(GV); 291 292 // We may have to cast the constant because of the initializer 293 // mismatch above. 294 // 295 // FIXME: It is really dangerous to store this in the map; if anyone 296 // RAUW's the GV uses of this constant will be invalid. 297 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 298 llvm::Type *LPtrTy = 299 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 300 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 301 302 // Emit global variable debug descriptor for static vars. 303 CGDebugInfo *DI = getDebugInfo(); 304 if (DI) { 305 DI->setLocation(D.getLocation()); 306 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 307 } 308 } 309 310 namespace { 311 struct DestroyObject : EHScopeStack::Cleanup { 312 DestroyObject(llvm::Value *addr, QualType type, 313 CodeGenFunction::Destroyer *destroyer, 314 bool useEHCleanupForArray) 315 : addr(addr), type(type), destroyer(*destroyer), 316 useEHCleanupForArray(useEHCleanupForArray) {} 317 318 llvm::Value *addr; 319 QualType type; 320 CodeGenFunction::Destroyer &destroyer; 321 bool useEHCleanupForArray; 322 323 void Emit(CodeGenFunction &CGF, Flags flags) { 324 // Don't use an EH cleanup recursively from an EH cleanup. 325 bool useEHCleanupForArray = 326 flags.isForNormalCleanup() && this->useEHCleanupForArray; 327 328 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 329 } 330 }; 331 332 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 333 DestroyNRVOVariable(llvm::Value *addr, 334 const CXXDestructorDecl *Dtor, 335 llvm::Value *NRVOFlag) 336 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 337 338 const CXXDestructorDecl *Dtor; 339 llvm::Value *NRVOFlag; 340 llvm::Value *Loc; 341 342 void Emit(CodeGenFunction &CGF, Flags flags) { 343 // Along the exceptions path we always execute the dtor. 344 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 345 346 llvm::BasicBlock *SkipDtorBB = 0; 347 if (NRVO) { 348 // If we exited via NRVO, we skip the destructor call. 349 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 350 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 351 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 352 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 353 CGF.EmitBlock(RunDtorBB); 354 } 355 356 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 357 /*ForVirtualBase=*/false, Loc); 358 359 if (NRVO) CGF.EmitBlock(SkipDtorBB); 360 } 361 }; 362 363 struct CallStackRestore : EHScopeStack::Cleanup { 364 llvm::Value *Stack; 365 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 366 void Emit(CodeGenFunction &CGF, Flags flags) { 367 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 368 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 369 CGF.Builder.CreateCall(F, V); 370 } 371 }; 372 373 struct ExtendGCLifetime : EHScopeStack::Cleanup { 374 const VarDecl &Var; 375 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 376 377 void Emit(CodeGenFunction &CGF, Flags flags) { 378 // Compute the address of the local variable, in case it's a 379 // byref or something. 380 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 381 SourceLocation()); 382 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 383 CGF.EmitExtendGCLifetime(value); 384 } 385 }; 386 387 struct CallCleanupFunction : EHScopeStack::Cleanup { 388 llvm::Constant *CleanupFn; 389 const CGFunctionInfo &FnInfo; 390 const VarDecl &Var; 391 392 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 393 const VarDecl *Var) 394 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 395 396 void Emit(CodeGenFunction &CGF, Flags flags) { 397 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 398 SourceLocation()); 399 // Compute the address of the local variable, in case it's a byref 400 // or something. 401 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 402 403 // In some cases, the type of the function argument will be different from 404 // the type of the pointer. An example of this is 405 // void f(void* arg); 406 // __attribute__((cleanup(f))) void *g; 407 // 408 // To fix this we insert a bitcast here. 409 QualType ArgTy = FnInfo.arg_begin()->type; 410 llvm::Value *Arg = 411 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 412 413 CallArgList Args; 414 Args.add(RValue::get(Arg), 415 CGF.getContext().getPointerType(Var.getType())); 416 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 417 } 418 }; 419 } 420 421 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 422 /// variable with lifetime. 423 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 424 llvm::Value *addr, 425 Qualifiers::ObjCLifetime lifetime) { 426 switch (lifetime) { 427 case Qualifiers::OCL_None: 428 llvm_unreachable("present but none"); 429 430 case Qualifiers::OCL_ExplicitNone: 431 // nothing to do 432 break; 433 434 case Qualifiers::OCL_Strong: { 435 CodeGenFunction::Destroyer &destroyer = 436 (var.hasAttr<ObjCPreciseLifetimeAttr>() 437 ? CodeGenFunction::destroyARCStrongPrecise 438 : CodeGenFunction::destroyARCStrongImprecise); 439 440 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 441 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 442 cleanupKind & EHCleanup); 443 break; 444 } 445 case Qualifiers::OCL_Autoreleasing: 446 // nothing to do 447 break; 448 449 case Qualifiers::OCL_Weak: 450 // __weak objects always get EH cleanups; otherwise, exceptions 451 // could cause really nasty crashes instead of mere leaks. 452 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 453 CodeGenFunction::destroyARCWeak, 454 /*useEHCleanup*/ true); 455 break; 456 } 457 } 458 459 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 460 if (const Expr *e = dyn_cast<Expr>(s)) { 461 // Skip the most common kinds of expressions that make 462 // hierarchy-walking expensive. 463 s = e = e->IgnoreParenCasts(); 464 465 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 466 return (ref->getDecl() == &var); 467 } 468 469 for (Stmt::const_child_range children = s->children(); children; ++children) 470 // children might be null; as in missing decl or conditional of an if-stmt. 471 if ((*children) && isAccessedBy(var, *children)) 472 return true; 473 474 return false; 475 } 476 477 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 478 if (!decl) return false; 479 if (!isa<VarDecl>(decl)) return false; 480 const VarDecl *var = cast<VarDecl>(decl); 481 return isAccessedBy(*var, e); 482 } 483 484 static void drillIntoBlockVariable(CodeGenFunction &CGF, 485 LValue &lvalue, 486 const VarDecl *var) { 487 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 488 } 489 490 void CodeGenFunction::EmitScalarInit(const Expr *init, 491 const ValueDecl *D, 492 LValue lvalue, 493 bool capturedByInit) { 494 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 495 if (!lifetime) { 496 llvm::Value *value = EmitScalarExpr(init); 497 if (capturedByInit) 498 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 499 EmitStoreThroughLValue(RValue::get(value), lvalue); 500 return; 501 } 502 503 // If we're emitting a value with lifetime, we have to do the 504 // initialization *before* we leave the cleanup scopes. 505 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 506 enterFullExpression(ewc); 507 init = ewc->getSubExpr(); 508 } 509 CodeGenFunction::RunCleanupsScope Scope(*this); 510 511 // We have to maintain the illusion that the variable is 512 // zero-initialized. If the variable might be accessed in its 513 // initializer, zero-initialize before running the initializer, then 514 // actually perform the initialization with an assign. 515 bool accessedByInit = false; 516 if (lifetime != Qualifiers::OCL_ExplicitNone) 517 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 518 if (accessedByInit) { 519 LValue tempLV = lvalue; 520 // Drill down to the __block object if necessary. 521 if (capturedByInit) { 522 // We can use a simple GEP for this because it can't have been 523 // moved yet. 524 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 525 getByRefValueLLVMField(cast<VarDecl>(D)))); 526 } 527 528 llvm::PointerType *ty 529 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 530 ty = cast<llvm::PointerType>(ty->getElementType()); 531 532 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 533 534 // If __weak, we want to use a barrier under certain conditions. 535 if (lifetime == Qualifiers::OCL_Weak) 536 EmitARCInitWeak(tempLV.getAddress(), zero); 537 538 // Otherwise just do a simple store. 539 else 540 EmitStoreOfScalar(zero, tempLV); 541 } 542 543 // Emit the initializer. 544 llvm::Value *value = 0; 545 546 switch (lifetime) { 547 case Qualifiers::OCL_None: 548 llvm_unreachable("present but none"); 549 550 case Qualifiers::OCL_ExplicitNone: 551 // nothing to do 552 value = EmitScalarExpr(init); 553 break; 554 555 case Qualifiers::OCL_Strong: { 556 value = EmitARCRetainScalarExpr(init); 557 break; 558 } 559 560 case Qualifiers::OCL_Weak: { 561 // No way to optimize a producing initializer into this. It's not 562 // worth optimizing for, because the value will immediately 563 // disappear in the common case. 564 value = EmitScalarExpr(init); 565 566 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 567 if (accessedByInit) 568 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 569 else 570 EmitARCInitWeak(lvalue.getAddress(), value); 571 return; 572 } 573 574 case Qualifiers::OCL_Autoreleasing: 575 value = EmitARCRetainAutoreleaseScalarExpr(init); 576 break; 577 } 578 579 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 580 581 // If the variable might have been accessed by its initializer, we 582 // might have to initialize with a barrier. We have to do this for 583 // both __weak and __strong, but __weak got filtered out above. 584 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 585 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 586 EmitStoreOfScalar(value, lvalue); 587 EmitARCRelease(oldValue, /*precise*/ false); 588 return; 589 } 590 591 EmitStoreOfScalar(value, lvalue); 592 } 593 594 /// EmitScalarInit - Initialize the given lvalue with the given object. 595 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 596 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 597 if (!lifetime) 598 return EmitStoreThroughLValue(RValue::get(init), lvalue); 599 600 switch (lifetime) { 601 case Qualifiers::OCL_None: 602 llvm_unreachable("present but none"); 603 604 case Qualifiers::OCL_ExplicitNone: 605 // nothing to do 606 break; 607 608 case Qualifiers::OCL_Strong: 609 init = EmitARCRetain(lvalue.getType(), init); 610 break; 611 612 case Qualifiers::OCL_Weak: 613 // Initialize and then skip the primitive store. 614 EmitARCInitWeak(lvalue.getAddress(), init); 615 return; 616 617 case Qualifiers::OCL_Autoreleasing: 618 init = EmitARCRetainAutorelease(lvalue.getType(), init); 619 break; 620 } 621 622 EmitStoreOfScalar(init, lvalue); 623 } 624 625 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 626 /// non-zero parts of the specified initializer with equal or fewer than 627 /// NumStores scalar stores. 628 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 629 unsigned &NumStores) { 630 // Zero and Undef never requires any extra stores. 631 if (isa<llvm::ConstantAggregateZero>(Init) || 632 isa<llvm::ConstantPointerNull>(Init) || 633 isa<llvm::UndefValue>(Init)) 634 return true; 635 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 636 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 637 isa<llvm::ConstantExpr>(Init)) 638 return Init->isNullValue() || NumStores--; 639 640 // See if we can emit each element. 641 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 642 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 643 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 644 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 645 return false; 646 } 647 return true; 648 } 649 650 // Anything else is hard and scary. 651 return false; 652 } 653 654 /// emitStoresForInitAfterMemset - For inits that 655 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 656 /// stores that would be required. 657 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 658 bool isVolatile, CGBuilderTy &Builder) { 659 // Zero doesn't require any stores. 660 if (isa<llvm::ConstantAggregateZero>(Init) || 661 isa<llvm::ConstantPointerNull>(Init) || 662 isa<llvm::UndefValue>(Init)) 663 return; 664 665 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 666 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 667 isa<llvm::ConstantExpr>(Init)) { 668 if (!Init->isNullValue()) 669 Builder.CreateStore(Init, Loc, isVolatile); 670 return; 671 } 672 673 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 674 "Unknown value type!"); 675 676 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 677 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 678 if (Elt->isNullValue()) continue; 679 680 // Otherwise, get a pointer to the element and emit it. 681 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 682 isVolatile, Builder); 683 } 684 } 685 686 687 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 688 /// plus some stores to initialize a local variable instead of using a memcpy 689 /// from a constant global. It is beneficial to use memset if the global is all 690 /// zeros, or mostly zeros and large. 691 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 692 uint64_t GlobalSize) { 693 // If a global is all zeros, always use a memset. 694 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 695 696 697 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 698 // do it if it will require 6 or fewer scalar stores. 699 // TODO: Should budget depends on the size? Avoiding a large global warrants 700 // plopping in more stores. 701 unsigned StoreBudget = 6; 702 uint64_t SizeLimit = 32; 703 704 return GlobalSize > SizeLimit && 705 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 706 } 707 708 709 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 710 /// variable declaration with auto, register, or no storage class specifier. 711 /// These turn into simple stack objects, or GlobalValues depending on target. 712 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 713 AutoVarEmission emission = EmitAutoVarAlloca(D); 714 EmitAutoVarInit(emission); 715 EmitAutoVarCleanups(emission); 716 } 717 718 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 719 /// local variable. Does not emit initalization or destruction. 720 CodeGenFunction::AutoVarEmission 721 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 722 QualType Ty = D.getType(); 723 724 AutoVarEmission emission(D); 725 726 bool isByRef = D.hasAttr<BlocksAttr>(); 727 emission.IsByRef = isByRef; 728 729 CharUnits alignment = getContext().getDeclAlign(&D); 730 emission.Alignment = alignment; 731 732 // If the type is variably-modified, emit all the VLA sizes for it. 733 if (Ty->isVariablyModifiedType()) 734 EmitVariablyModifiedType(Ty); 735 736 llvm::Value *DeclPtr; 737 if (Ty->isConstantSizeType()) { 738 if (!Target.useGlobalsForAutomaticVariables()) { 739 bool NRVO = getContext().getLangOptions().ElideConstructors && 740 D.isNRVOVariable(); 741 742 // If this value is a POD array or struct with a statically 743 // determinable constant initializer, there are optimizations we can do. 744 // 745 // TODO: we should constant-evaluate any variable of literal type 746 // as long as it is initialized by a constant expression. Currently, 747 // isConstantInitializer produces wrong answers for structs with 748 // reference or bitfield members, and a few other cases, and checking 749 // for POD-ness protects us from some of these. 750 if (D.getInit() && 751 (Ty->isArrayType() || Ty->isRecordType()) && 752 (Ty.isPODType(getContext()) || 753 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 754 D.getInit()->isConstantInitializer(getContext(), false)) { 755 756 // If the variable's a const type, and it's neither an NRVO 757 // candidate nor a __block variable and has no mutable members, 758 // emit it as a global instead. 759 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 760 !NRVO && !isByRef && Ty->isLiteralType()) { 761 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 762 763 emission.Address = 0; // signal this condition to later callbacks 764 assert(emission.wasEmittedAsGlobal()); 765 return emission; 766 } 767 768 // Otherwise, tell the initialization code that we're in this case. 769 emission.IsConstantAggregate = true; 770 } 771 772 // A normal fixed sized variable becomes an alloca in the entry block, 773 // unless it's an NRVO variable. 774 llvm::Type *LTy = ConvertTypeForMem(Ty); 775 776 if (NRVO) { 777 // The named return value optimization: allocate this variable in the 778 // return slot, so that we can elide the copy when returning this 779 // variable (C++0x [class.copy]p34). 780 DeclPtr = ReturnValue; 781 782 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 783 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 784 // Create a flag that is used to indicate when the NRVO was applied 785 // to this variable. Set it to zero to indicate that NRVO was not 786 // applied. 787 llvm::Value *Zero = Builder.getFalse(); 788 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 789 EnsureInsertPoint(); 790 Builder.CreateStore(Zero, NRVOFlag); 791 792 // Record the NRVO flag for this variable. 793 NRVOFlags[&D] = NRVOFlag; 794 emission.NRVOFlag = NRVOFlag; 795 } 796 } 797 } else { 798 if (isByRef) 799 LTy = BuildByRefType(&D); 800 801 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 802 Alloc->setName(D.getName()); 803 804 CharUnits allocaAlignment = alignment; 805 if (isByRef) 806 allocaAlignment = std::max(allocaAlignment, 807 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 808 Alloc->setAlignment(allocaAlignment.getQuantity()); 809 DeclPtr = Alloc; 810 } 811 } else { 812 // Targets that don't support recursion emit locals as globals. 813 const char *Class = 814 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 815 DeclPtr = CreateStaticVarDecl(D, Class, 816 llvm::GlobalValue::InternalLinkage); 817 } 818 } else { 819 EnsureInsertPoint(); 820 821 if (!DidCallStackSave) { 822 // Save the stack. 823 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 824 825 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 826 llvm::Value *V = Builder.CreateCall(F); 827 828 Builder.CreateStore(V, Stack); 829 830 DidCallStackSave = true; 831 832 // Push a cleanup block and restore the stack there. 833 // FIXME: in general circumstances, this should be an EH cleanup. 834 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 835 } 836 837 llvm::Value *elementCount; 838 QualType elementType; 839 llvm::tie(elementCount, elementType) = getVLASize(Ty); 840 841 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 842 843 // Allocate memory for the array. 844 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 845 vla->setAlignment(alignment.getQuantity()); 846 847 DeclPtr = vla; 848 } 849 850 llvm::Value *&DMEntry = LocalDeclMap[&D]; 851 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 852 DMEntry = DeclPtr; 853 emission.Address = DeclPtr; 854 855 // Emit debug info for local var declaration. 856 if (HaveInsertPoint()) 857 if (CGDebugInfo *DI = getDebugInfo()) { 858 DI->setLocation(D.getLocation()); 859 if (Target.useGlobalsForAutomaticVariables()) { 860 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 861 } else 862 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 863 } 864 865 if (D.hasAttr<AnnotateAttr>()) 866 EmitVarAnnotations(&D, emission.Address); 867 868 return emission; 869 } 870 871 /// Determines whether the given __block variable is potentially 872 /// captured by the given expression. 873 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 874 // Skip the most common kinds of expressions that make 875 // hierarchy-walking expensive. 876 e = e->IgnoreParenCasts(); 877 878 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 879 const BlockDecl *block = be->getBlockDecl(); 880 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 881 e = block->capture_end(); i != e; ++i) { 882 if (i->getVariable() == &var) 883 return true; 884 } 885 886 // No need to walk into the subexpressions. 887 return false; 888 } 889 890 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 891 const CompoundStmt *CS = SE->getSubStmt(); 892 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 893 BE = CS->body_end(); BI != BE; ++BI) 894 if (Expr *E = dyn_cast<Expr>((*BI))) { 895 if (isCapturedBy(var, E)) 896 return true; 897 } 898 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 899 // special case declarations 900 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 901 I != E; ++I) { 902 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 903 Expr *Init = VD->getInit(); 904 if (Init && isCapturedBy(var, Init)) 905 return true; 906 } 907 } 908 } 909 else 910 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 911 // Later, provide code to poke into statements for capture analysis. 912 return true; 913 return false; 914 } 915 916 for (Stmt::const_child_range children = e->children(); children; ++children) 917 if (isCapturedBy(var, cast<Expr>(*children))) 918 return true; 919 920 return false; 921 } 922 923 /// \brief Determine whether the given initializer is trivial in the sense 924 /// that it requires no code to be generated. 925 static bool isTrivialInitializer(const Expr *Init) { 926 if (!Init) 927 return true; 928 929 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 930 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 931 if (Constructor->isTrivial() && 932 Constructor->isDefaultConstructor() && 933 !Construct->requiresZeroInitialization()) 934 return true; 935 936 return false; 937 } 938 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 939 assert(emission.Variable && "emission was not valid!"); 940 941 // If this was emitted as a global constant, we're done. 942 if (emission.wasEmittedAsGlobal()) return; 943 944 const VarDecl &D = *emission.Variable; 945 QualType type = D.getType(); 946 947 // If this local has an initializer, emit it now. 948 const Expr *Init = D.getInit(); 949 950 // If we are at an unreachable point, we don't need to emit the initializer 951 // unless it contains a label. 952 if (!HaveInsertPoint()) { 953 if (!Init || !ContainsLabel(Init)) return; 954 EnsureInsertPoint(); 955 } 956 957 // Initialize the structure of a __block variable. 958 if (emission.IsByRef) 959 emitByrefStructureInit(emission); 960 961 if (isTrivialInitializer(Init)) 962 return; 963 964 CharUnits alignment = emission.Alignment; 965 966 // Check whether this is a byref variable that's potentially 967 // captured and moved by its own initializer. If so, we'll need to 968 // emit the initializer first, then copy into the variable. 969 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 970 971 llvm::Value *Loc = 972 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 973 974 if (!emission.IsConstantAggregate) { 975 LValue lv = MakeAddrLValue(Loc, type, alignment); 976 lv.setNonGC(true); 977 return EmitExprAsInit(Init, &D, lv, capturedByInit); 978 } 979 980 // If this is a simple aggregate initialization, we can optimize it 981 // in various ways. 982 assert(!capturedByInit && "constant init contains a capturing block?"); 983 984 bool isVolatile = type.isVolatileQualified(); 985 986 llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this); 987 assert(constant != 0 && "Wasn't a simple constant init?"); 988 989 llvm::Value *SizeVal = 990 llvm::ConstantInt::get(IntPtrTy, 991 getContext().getTypeSizeInChars(type).getQuantity()); 992 993 llvm::Type *BP = Int8PtrTy; 994 if (Loc->getType() != BP) 995 Loc = Builder.CreateBitCast(Loc, BP); 996 997 // If the initializer is all or mostly zeros, codegen with memset then do 998 // a few stores afterward. 999 if (shouldUseMemSetPlusStoresToInitialize(constant, 1000 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 1001 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1002 alignment.getQuantity(), isVolatile); 1003 if (!constant->isNullValue()) { 1004 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1005 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1006 } 1007 } else { 1008 // Otherwise, create a temporary global with the initializer then 1009 // memcpy from the global to the alloca. 1010 std::string Name = GetStaticDeclName(*this, D, "."); 1011 llvm::GlobalVariable *GV = 1012 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1013 llvm::GlobalValue::PrivateLinkage, 1014 constant, Name, 0, false, 0); 1015 GV->setAlignment(alignment.getQuantity()); 1016 GV->setUnnamedAddr(true); 1017 1018 llvm::Value *SrcPtr = GV; 1019 if (SrcPtr->getType() != BP) 1020 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1021 1022 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1023 isVolatile); 1024 } 1025 } 1026 1027 /// Emit an expression as an initializer for a variable at the given 1028 /// location. The expression is not necessarily the normal 1029 /// initializer for the variable, and the address is not necessarily 1030 /// its normal location. 1031 /// 1032 /// \param init the initializing expression 1033 /// \param var the variable to act as if we're initializing 1034 /// \param loc the address to initialize; its type is a pointer 1035 /// to the LLVM mapping of the variable's type 1036 /// \param alignment the alignment of the address 1037 /// \param capturedByInit true if the variable is a __block variable 1038 /// whose address is potentially changed by the initializer 1039 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1040 const ValueDecl *D, 1041 LValue lvalue, 1042 bool capturedByInit) { 1043 QualType type = D->getType(); 1044 1045 if (type->isReferenceType()) { 1046 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1047 if (capturedByInit) 1048 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1049 EmitStoreThroughLValue(rvalue, lvalue); 1050 } else if (!hasAggregateLLVMType(type)) { 1051 EmitScalarInit(init, D, lvalue, capturedByInit); 1052 } else if (type->isAnyComplexType()) { 1053 ComplexPairTy complex = EmitComplexExpr(init); 1054 if (capturedByInit) 1055 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1056 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); 1057 } else { 1058 // TODO: how can we delay here if D is captured by its initializer? 1059 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1060 AggValueSlot::IsDestructed, 1061 AggValueSlot::DoesNotNeedGCBarriers, 1062 AggValueSlot::IsNotAliased)); 1063 } 1064 } 1065 1066 /// Enter a destroy cleanup for the given local variable. 1067 void CodeGenFunction::emitAutoVarTypeCleanup( 1068 const CodeGenFunction::AutoVarEmission &emission, 1069 QualType::DestructionKind dtorKind) { 1070 assert(dtorKind != QualType::DK_none); 1071 1072 // Note that for __block variables, we want to destroy the 1073 // original stack object, not the possibly forwarded object. 1074 llvm::Value *addr = emission.getObjectAddress(*this); 1075 1076 const VarDecl *var = emission.Variable; 1077 QualType type = var->getType(); 1078 1079 CleanupKind cleanupKind = NormalAndEHCleanup; 1080 CodeGenFunction::Destroyer *destroyer = 0; 1081 1082 switch (dtorKind) { 1083 case QualType::DK_none: 1084 llvm_unreachable("no cleanup for trivially-destructible variable"); 1085 1086 case QualType::DK_cxx_destructor: 1087 // If there's an NRVO flag on the emission, we need a different 1088 // cleanup. 1089 if (emission.NRVOFlag) { 1090 assert(!type->isArrayType()); 1091 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1092 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1093 emission.NRVOFlag); 1094 return; 1095 } 1096 break; 1097 1098 case QualType::DK_objc_strong_lifetime: 1099 // Suppress cleanups for pseudo-strong variables. 1100 if (var->isARCPseudoStrong()) return; 1101 1102 // Otherwise, consider whether to use an EH cleanup or not. 1103 cleanupKind = getARCCleanupKind(); 1104 1105 // Use the imprecise destroyer by default. 1106 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1107 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1108 break; 1109 1110 case QualType::DK_objc_weak_lifetime: 1111 break; 1112 } 1113 1114 // If we haven't chosen a more specific destroyer, use the default. 1115 if (!destroyer) destroyer = &getDestroyer(dtorKind); 1116 1117 // Use an EH cleanup in array destructors iff the destructor itself 1118 // is being pushed as an EH cleanup. 1119 bool useEHCleanup = (cleanupKind & EHCleanup); 1120 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1121 useEHCleanup); 1122 } 1123 1124 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1125 assert(emission.Variable && "emission was not valid!"); 1126 1127 // If this was emitted as a global constant, we're done. 1128 if (emission.wasEmittedAsGlobal()) return; 1129 1130 const VarDecl &D = *emission.Variable; 1131 1132 // Check the type for a cleanup. 1133 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1134 emitAutoVarTypeCleanup(emission, dtorKind); 1135 1136 // In GC mode, honor objc_precise_lifetime. 1137 if (getLangOptions().getGC() != LangOptions::NonGC && 1138 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1139 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1140 } 1141 1142 // Handle the cleanup attribute. 1143 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1144 const FunctionDecl *FD = CA->getFunctionDecl(); 1145 1146 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1147 assert(F && "Could not find function!"); 1148 1149 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 1150 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1151 } 1152 1153 // If this is a block variable, call _Block_object_destroy 1154 // (on the unforwarded address). 1155 if (emission.IsByRef) 1156 enterByrefCleanup(emission); 1157 } 1158 1159 CodeGenFunction::Destroyer & 1160 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1161 // This is surprisingly compiler-dependent. GCC 4.2 can't bind 1162 // references to functions directly in returns, and using '*&foo' 1163 // confuses MSVC. Luckily, the following code pattern works in both. 1164 Destroyer *destroyer = 0; 1165 switch (kind) { 1166 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1167 case QualType::DK_cxx_destructor: 1168 destroyer = &destroyCXXObject; 1169 break; 1170 case QualType::DK_objc_strong_lifetime: 1171 destroyer = &destroyARCStrongPrecise; 1172 break; 1173 case QualType::DK_objc_weak_lifetime: 1174 destroyer = &destroyARCWeak; 1175 break; 1176 } 1177 return *destroyer; 1178 } 1179 1180 /// pushDestroy - Push the standard destructor for the given type. 1181 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1182 llvm::Value *addr, QualType type) { 1183 assert(dtorKind && "cannot push destructor for trivial type"); 1184 1185 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1186 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1187 cleanupKind & EHCleanup); 1188 } 1189 1190 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1191 QualType type, Destroyer &destroyer, 1192 bool useEHCleanupForArray) { 1193 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1194 destroyer, useEHCleanupForArray); 1195 } 1196 1197 /// emitDestroy - Immediately perform the destruction of the given 1198 /// object. 1199 /// 1200 /// \param addr - the address of the object; a type* 1201 /// \param type - the type of the object; if an array type, all 1202 /// objects are destroyed in reverse order 1203 /// \param destroyer - the function to call to destroy individual 1204 /// elements 1205 /// \param useEHCleanupForArray - whether an EH cleanup should be 1206 /// used when destroying array elements, in case one of the 1207 /// destructions throws an exception 1208 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1209 Destroyer &destroyer, 1210 bool useEHCleanupForArray) { 1211 const ArrayType *arrayType = getContext().getAsArrayType(type); 1212 if (!arrayType) 1213 return destroyer(*this, addr, type); 1214 1215 llvm::Value *begin = addr; 1216 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1217 1218 // Normally we have to check whether the array is zero-length. 1219 bool checkZeroLength = true; 1220 1221 // But if the array length is constant, we can suppress that. 1222 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1223 // ...and if it's constant zero, we can just skip the entire thing. 1224 if (constLength->isZero()) return; 1225 checkZeroLength = false; 1226 } 1227 1228 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1229 emitArrayDestroy(begin, end, type, destroyer, 1230 checkZeroLength, useEHCleanupForArray); 1231 } 1232 1233 /// emitArrayDestroy - Destroys all the elements of the given array, 1234 /// beginning from last to first. The array cannot be zero-length. 1235 /// 1236 /// \param begin - a type* denoting the first element of the array 1237 /// \param end - a type* denoting one past the end of the array 1238 /// \param type - the element type of the array 1239 /// \param destroyer - the function to call to destroy elements 1240 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1241 /// the remaining elements in case the destruction of a single 1242 /// element throws 1243 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1244 llvm::Value *end, 1245 QualType type, 1246 Destroyer &destroyer, 1247 bool checkZeroLength, 1248 bool useEHCleanup) { 1249 assert(!type->isArrayType()); 1250 1251 // The basic structure here is a do-while loop, because we don't 1252 // need to check for the zero-element case. 1253 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1254 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1255 1256 if (checkZeroLength) { 1257 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1258 "arraydestroy.isempty"); 1259 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1260 } 1261 1262 // Enter the loop body, making that address the current address. 1263 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1264 EmitBlock(bodyBB); 1265 llvm::PHINode *elementPast = 1266 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1267 elementPast->addIncoming(end, entryBB); 1268 1269 // Shift the address back by one element. 1270 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1271 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1272 "arraydestroy.element"); 1273 1274 if (useEHCleanup) 1275 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1276 1277 // Perform the actual destruction there. 1278 destroyer(*this, element, type); 1279 1280 if (useEHCleanup) 1281 PopCleanupBlock(); 1282 1283 // Check whether we've reached the end. 1284 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1285 Builder.CreateCondBr(done, doneBB, bodyBB); 1286 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1287 1288 // Done. 1289 EmitBlock(doneBB); 1290 } 1291 1292 /// Perform partial array destruction as if in an EH cleanup. Unlike 1293 /// emitArrayDestroy, the element type here may still be an array type. 1294 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1295 llvm::Value *begin, llvm::Value *end, 1296 QualType type, 1297 CodeGenFunction::Destroyer &destroyer) { 1298 // If the element type is itself an array, drill down. 1299 unsigned arrayDepth = 0; 1300 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1301 // VLAs don't require a GEP index to walk into. 1302 if (!isa<VariableArrayType>(arrayType)) 1303 arrayDepth++; 1304 type = arrayType->getElementType(); 1305 } 1306 1307 if (arrayDepth) { 1308 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1309 1310 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1311 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1312 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1313 } 1314 1315 // Destroy the array. We don't ever need an EH cleanup because we 1316 // assume that we're in an EH cleanup ourselves, so a throwing 1317 // destructor causes an immediate terminate. 1318 CGF.emitArrayDestroy(begin, end, type, destroyer, 1319 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1320 } 1321 1322 namespace { 1323 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1324 /// array destroy where the end pointer is regularly determined and 1325 /// does not need to be loaded from a local. 1326 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1327 llvm::Value *ArrayBegin; 1328 llvm::Value *ArrayEnd; 1329 QualType ElementType; 1330 CodeGenFunction::Destroyer &Destroyer; 1331 public: 1332 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1333 QualType elementType, 1334 CodeGenFunction::Destroyer *destroyer) 1335 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1336 ElementType(elementType), Destroyer(*destroyer) {} 1337 1338 void Emit(CodeGenFunction &CGF, Flags flags) { 1339 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1340 ElementType, Destroyer); 1341 } 1342 }; 1343 1344 /// IrregularPartialArrayDestroy - a cleanup which performs a 1345 /// partial array destroy where the end pointer is irregularly 1346 /// determined and must be loaded from a local. 1347 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1348 llvm::Value *ArrayBegin; 1349 llvm::Value *ArrayEndPointer; 1350 QualType ElementType; 1351 CodeGenFunction::Destroyer &Destroyer; 1352 public: 1353 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1354 llvm::Value *arrayEndPointer, 1355 QualType elementType, 1356 CodeGenFunction::Destroyer *destroyer) 1357 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1358 ElementType(elementType), Destroyer(*destroyer) {} 1359 1360 void Emit(CodeGenFunction &CGF, Flags flags) { 1361 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1362 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1363 ElementType, Destroyer); 1364 } 1365 }; 1366 } 1367 1368 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1369 /// already-constructed elements of the given array. The cleanup 1370 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1371 /// 1372 /// \param elementType - the immediate element type of the array; 1373 /// possibly still an array type 1374 /// \param array - a value of type elementType* 1375 /// \param destructionKind - the kind of destruction required 1376 /// \param initializedElementCount - a value of type size_t* holding 1377 /// the number of successfully-constructed elements 1378 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1379 llvm::Value *arrayEndPointer, 1380 QualType elementType, 1381 Destroyer &destroyer) { 1382 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1383 arrayBegin, arrayEndPointer, 1384 elementType, &destroyer); 1385 } 1386 1387 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1388 /// already-constructed elements of the given array. The cleanup 1389 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1390 /// 1391 /// \param elementType - the immediate element type of the array; 1392 /// possibly still an array type 1393 /// \param array - a value of type elementType* 1394 /// \param destructionKind - the kind of destruction required 1395 /// \param initializedElementCount - a value of type size_t* holding 1396 /// the number of successfully-constructed elements 1397 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1398 llvm::Value *arrayEnd, 1399 QualType elementType, 1400 Destroyer &destroyer) { 1401 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1402 arrayBegin, arrayEnd, 1403 elementType, &destroyer); 1404 } 1405 1406 namespace { 1407 /// A cleanup to perform a release of an object at the end of a 1408 /// function. This is used to balance out the incoming +1 of a 1409 /// ns_consumed argument when we can't reasonably do that just by 1410 /// not doing the initial retain for a __block argument. 1411 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1412 ConsumeARCParameter(llvm::Value *param) : Param(param) {} 1413 1414 llvm::Value *Param; 1415 1416 void Emit(CodeGenFunction &CGF, Flags flags) { 1417 CGF.EmitARCRelease(Param, /*precise*/ false); 1418 } 1419 }; 1420 } 1421 1422 /// Emit an alloca (or GlobalValue depending on target) 1423 /// for the specified parameter and set up LocalDeclMap. 1424 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1425 unsigned ArgNo) { 1426 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1427 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1428 "Invalid argument to EmitParmDecl"); 1429 1430 Arg->setName(D.getName()); 1431 1432 // Use better IR generation for certain implicit parameters. 1433 if (isa<ImplicitParamDecl>(D)) { 1434 // The only implicit argument a block has is its literal. 1435 if (BlockInfo) { 1436 LocalDeclMap[&D] = Arg; 1437 1438 if (CGDebugInfo *DI = getDebugInfo()) { 1439 DI->setLocation(D.getLocation()); 1440 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1441 } 1442 1443 return; 1444 } 1445 } 1446 1447 QualType Ty = D.getType(); 1448 1449 llvm::Value *DeclPtr; 1450 // If this is an aggregate or variable sized value, reuse the input pointer. 1451 if (!Ty->isConstantSizeType() || 1452 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1453 DeclPtr = Arg; 1454 } else { 1455 // Otherwise, create a temporary to hold the value. 1456 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1457 D.getName() + ".addr"); 1458 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1459 DeclPtr = Alloc; 1460 1461 bool doStore = true; 1462 1463 Qualifiers qs = Ty.getQualifiers(); 1464 1465 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1466 // We honor __attribute__((ns_consumed)) for types with lifetime. 1467 // For __strong, it's handled by just skipping the initial retain; 1468 // otherwise we have to balance out the initial +1 with an extra 1469 // cleanup to do the release at the end of the function. 1470 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1471 1472 // 'self' is always formally __strong, but if this is not an 1473 // init method then we don't want to retain it. 1474 if (D.isARCPseudoStrong()) { 1475 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1476 assert(&D == method->getSelfDecl()); 1477 assert(lt == Qualifiers::OCL_Strong); 1478 assert(qs.hasConst()); 1479 assert(method->getMethodFamily() != OMF_init); 1480 (void) method; 1481 lt = Qualifiers::OCL_ExplicitNone; 1482 } 1483 1484 if (lt == Qualifiers::OCL_Strong) { 1485 if (!isConsumed) 1486 // Don't use objc_retainBlock for block pointers, because we 1487 // don't want to Block_copy something just because we got it 1488 // as a parameter. 1489 Arg = EmitARCRetainNonBlock(Arg); 1490 } else { 1491 // Push the cleanup for a consumed parameter. 1492 if (isConsumed) 1493 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); 1494 1495 if (lt == Qualifiers::OCL_Weak) { 1496 EmitARCInitWeak(DeclPtr, Arg); 1497 doStore = false; // The weak init is a store, no need to do two 1498 } 1499 } 1500 1501 // Enter the cleanup scope. 1502 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1503 } 1504 1505 // Store the initial value into the alloca. 1506 if (doStore) { 1507 LValue lv = MakeAddrLValue(DeclPtr, Ty, 1508 getContext().getDeclAlign(&D)); 1509 EmitStoreOfScalar(Arg, lv); 1510 } 1511 } 1512 1513 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1514 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1515 DMEntry = DeclPtr; 1516 1517 // Emit debug info for param declaration. 1518 if (CGDebugInfo *DI = getDebugInfo()) 1519 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1520 1521 if (D.hasAttr<AnnotateAttr>()) 1522 EmitVarAnnotations(&D, DeclPtr); 1523 } 1524