1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclOpenMP.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Type.h"
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 void CodeGenFunction::EmitDecl(const Decl &D) {
39   switch (D.getKind()) {
40   case Decl::BuiltinTemplate:
41   case Decl::TranslationUnit:
42   case Decl::ExternCContext:
43   case Decl::Namespace:
44   case Decl::UnresolvedUsingTypename:
45   case Decl::ClassTemplateSpecialization:
46   case Decl::ClassTemplatePartialSpecialization:
47   case Decl::VarTemplateSpecialization:
48   case Decl::VarTemplatePartialSpecialization:
49   case Decl::TemplateTypeParm:
50   case Decl::UnresolvedUsingValue:
51   case Decl::NonTypeTemplateParm:
52   case Decl::CXXMethod:
53   case Decl::CXXConstructor:
54   case Decl::CXXDestructor:
55   case Decl::CXXConversion:
56   case Decl::Field:
57   case Decl::MSProperty:
58   case Decl::IndirectField:
59   case Decl::ObjCIvar:
60   case Decl::ObjCAtDefsField:
61   case Decl::ParmVar:
62   case Decl::ImplicitParam:
63   case Decl::ClassTemplate:
64   case Decl::VarTemplate:
65   case Decl::FunctionTemplate:
66   case Decl::TypeAliasTemplate:
67   case Decl::TemplateTemplateParm:
68   case Decl::ObjCMethod:
69   case Decl::ObjCCategory:
70   case Decl::ObjCProtocol:
71   case Decl::ObjCInterface:
72   case Decl::ObjCCategoryImpl:
73   case Decl::ObjCImplementation:
74   case Decl::ObjCProperty:
75   case Decl::ObjCCompatibleAlias:
76   case Decl::PragmaComment:
77   case Decl::PragmaDetectMismatch:
78   case Decl::AccessSpec:
79   case Decl::LinkageSpec:
80   case Decl::ObjCPropertyImpl:
81   case Decl::FileScopeAsm:
82   case Decl::Friend:
83   case Decl::FriendTemplate:
84   case Decl::Block:
85   case Decl::Captured:
86   case Decl::ClassScopeFunctionSpecialization:
87   case Decl::UsingShadow:
88   case Decl::ConstructorUsingShadow:
89   case Decl::ObjCTypeParam:
90     llvm_unreachable("Declaration should not be in declstmts!");
91   case Decl::Function:  // void X();
92   case Decl::Record:    // struct/union/class X;
93   case Decl::Enum:      // enum X;
94   case Decl::EnumConstant: // enum ? { X = ? }
95   case Decl::CXXRecord: // struct/union/class X; [C++]
96   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
97   case Decl::Label:        // __label__ x;
98   case Decl::Import:
99   case Decl::OMPThreadPrivate:
100   case Decl::OMPCapturedExpr:
101   case Decl::Empty:
102     // None of these decls require codegen support.
103     return;
104 
105   case Decl::NamespaceAlias:
106     if (CGDebugInfo *DI = getDebugInfo())
107         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
108     return;
109   case Decl::Using:          // using X; [C++]
110     if (CGDebugInfo *DI = getDebugInfo())
111         DI->EmitUsingDecl(cast<UsingDecl>(D));
112     return;
113   case Decl::UsingDirective: // using namespace X; [C++]
114     if (CGDebugInfo *DI = getDebugInfo())
115       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
116     return;
117   case Decl::Var: {
118     const VarDecl &VD = cast<VarDecl>(D);
119     assert(VD.isLocalVarDecl() &&
120            "Should not see file-scope variables inside a function!");
121     return EmitVarDecl(VD);
122   }
123 
124   case Decl::OMPDeclareReduction:
125     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
126 
127   case Decl::Typedef:      // typedef int X;
128   case Decl::TypeAlias: {  // using X = int; [C++0x]
129     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
130     QualType Ty = TD.getUnderlyingType();
131 
132     if (Ty->isVariablyModifiedType())
133       EmitVariablyModifiedType(Ty);
134   }
135   }
136 }
137 
138 /// EmitVarDecl - This method handles emission of any variable declaration
139 /// inside a function, including static vars etc.
140 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
141   if (D.isStaticLocal()) {
142     llvm::GlobalValue::LinkageTypes Linkage =
143         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
144 
145     // FIXME: We need to force the emission/use of a guard variable for
146     // some variables even if we can constant-evaluate them because
147     // we can't guarantee every translation unit will constant-evaluate them.
148 
149     return EmitStaticVarDecl(D, Linkage);
150   }
151 
152   if (D.hasExternalStorage())
153     // Don't emit it now, allow it to be emitted lazily on its first use.
154     return;
155 
156   if (D.getType().getAddressSpace() == LangAS::opencl_local)
157     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
158 
159   assert(D.hasLocalStorage());
160   return EmitAutoVarDecl(D);
161 }
162 
163 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
164   if (CGM.getLangOpts().CPlusPlus)
165     return CGM.getMangledName(&D).str();
166 
167   // If this isn't C++, we don't need a mangled name, just a pretty one.
168   assert(!D.isExternallyVisible() && "name shouldn't matter");
169   std::string ContextName;
170   const DeclContext *DC = D.getDeclContext();
171   if (auto *CD = dyn_cast<CapturedDecl>(DC))
172     DC = cast<DeclContext>(CD->getNonClosureContext());
173   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
174     ContextName = CGM.getMangledName(FD);
175   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
176     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
177   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
178     ContextName = OMD->getSelector().getAsString();
179   else
180     llvm_unreachable("Unknown context for static var decl");
181 
182   ContextName += "." + D.getNameAsString();
183   return ContextName;
184 }
185 
186 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
187     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
188   // In general, we don't always emit static var decls once before we reference
189   // them. It is possible to reference them before emitting the function that
190   // contains them, and it is possible to emit the containing function multiple
191   // times.
192   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
193     return ExistingGV;
194 
195   QualType Ty = D.getType();
196   assert(Ty->isConstantSizeType() && "VLAs can't be static");
197 
198   // Use the label if the variable is renamed with the asm-label extension.
199   std::string Name;
200   if (D.hasAttr<AsmLabelAttr>())
201     Name = getMangledName(&D);
202   else
203     Name = getStaticDeclName(*this, D);
204 
205   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
206   unsigned AddrSpace =
207       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
208 
209   // Local address space cannot have an initializer.
210   llvm::Constant *Init = nullptr;
211   if (Ty.getAddressSpace() != LangAS::opencl_local)
212     Init = EmitNullConstant(Ty);
213   else
214     Init = llvm::UndefValue::get(LTy);
215 
216   llvm::GlobalVariable *GV =
217     new llvm::GlobalVariable(getModule(), LTy,
218                              Ty.isConstant(getContext()), Linkage,
219                              Init, Name, nullptr,
220                              llvm::GlobalVariable::NotThreadLocal,
221                              AddrSpace);
222   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
223   setGlobalVisibility(GV, &D);
224 
225   if (supportsCOMDAT() && GV->isWeakForLinker())
226     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
227 
228   if (D.getTLSKind())
229     setTLSMode(GV, D);
230 
231   if (D.isExternallyVisible()) {
232     if (D.hasAttr<DLLImportAttr>())
233       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
234     else if (D.hasAttr<DLLExportAttr>())
235       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
236   }
237 
238   // Make sure the result is of the correct type.
239   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
240   llvm::Constant *Addr = GV;
241   if (AddrSpace != ExpectedAddrSpace) {
242     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
243     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
244   }
245 
246   setStaticLocalDeclAddress(&D, Addr);
247 
248   // Ensure that the static local gets initialized by making sure the parent
249   // function gets emitted eventually.
250   const Decl *DC = cast<Decl>(D.getDeclContext());
251 
252   // We can't name blocks or captured statements directly, so try to emit their
253   // parents.
254   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
255     DC = DC->getNonClosureContext();
256     // FIXME: Ensure that global blocks get emitted.
257     if (!DC)
258       return Addr;
259   }
260 
261   GlobalDecl GD;
262   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
263     GD = GlobalDecl(CD, Ctor_Base);
264   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
265     GD = GlobalDecl(DD, Dtor_Base);
266   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
267     GD = GlobalDecl(FD);
268   else {
269     // Don't do anything for Obj-C method decls or global closures. We should
270     // never defer them.
271     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
272   }
273   if (GD.getDecl())
274     (void)GetAddrOfGlobal(GD);
275 
276   return Addr;
277 }
278 
279 /// hasNontrivialDestruction - Determine whether a type's destruction is
280 /// non-trivial. If so, and the variable uses static initialization, we must
281 /// register its destructor to run on exit.
282 static bool hasNontrivialDestruction(QualType T) {
283   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
284   return RD && !RD->hasTrivialDestructor();
285 }
286 
287 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
288 /// global variable that has already been created for it.  If the initializer
289 /// has a different type than GV does, this may free GV and return a different
290 /// one.  Otherwise it just returns GV.
291 llvm::GlobalVariable *
292 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
293                                                llvm::GlobalVariable *GV) {
294   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
295 
296   // If constant emission failed, then this should be a C++ static
297   // initializer.
298   if (!Init) {
299     if (!getLangOpts().CPlusPlus)
300       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
301     else if (Builder.GetInsertBlock()) {
302       // Since we have a static initializer, this global variable can't
303       // be constant.
304       GV->setConstant(false);
305 
306       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
307     }
308     return GV;
309   }
310 
311   // The initializer may differ in type from the global. Rewrite
312   // the global to match the initializer.  (We have to do this
313   // because some types, like unions, can't be completely represented
314   // in the LLVM type system.)
315   if (GV->getType()->getElementType() != Init->getType()) {
316     llvm::GlobalVariable *OldGV = GV;
317 
318     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
319                                   OldGV->isConstant(),
320                                   OldGV->getLinkage(), Init, "",
321                                   /*InsertBefore*/ OldGV,
322                                   OldGV->getThreadLocalMode(),
323                            CGM.getContext().getTargetAddressSpace(D.getType()));
324     GV->setVisibility(OldGV->getVisibility());
325     GV->setComdat(OldGV->getComdat());
326 
327     // Steal the name of the old global
328     GV->takeName(OldGV);
329 
330     // Replace all uses of the old global with the new global
331     llvm::Constant *NewPtrForOldDecl =
332     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
333     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
334 
335     // Erase the old global, since it is no longer used.
336     OldGV->eraseFromParent();
337   }
338 
339   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
340   GV->setInitializer(Init);
341 
342   if (hasNontrivialDestruction(D.getType())) {
343     // We have a constant initializer, but a nontrivial destructor. We still
344     // need to perform a guarded "initialization" in order to register the
345     // destructor.
346     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
347   }
348 
349   return GV;
350 }
351 
352 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
353                                       llvm::GlobalValue::LinkageTypes Linkage) {
354   // Check to see if we already have a global variable for this
355   // declaration.  This can happen when double-emitting function
356   // bodies, e.g. with complete and base constructors.
357   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
358   CharUnits alignment = getContext().getDeclAlign(&D);
359 
360   // Store into LocalDeclMap before generating initializer to handle
361   // circular references.
362   setAddrOfLocalVar(&D, Address(addr, alignment));
363 
364   // We can't have a VLA here, but we can have a pointer to a VLA,
365   // even though that doesn't really make any sense.
366   // Make sure to evaluate VLA bounds now so that we have them for later.
367   if (D.getType()->isVariablyModifiedType())
368     EmitVariablyModifiedType(D.getType());
369 
370   // Save the type in case adding the initializer forces a type change.
371   llvm::Type *expectedType = addr->getType();
372 
373   llvm::GlobalVariable *var =
374     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
375 
376   // CUDA's local and local static __shared__ variables should not
377   // have any non-empty initializers. This is ensured by Sema.
378   // Whatever initializer such variable may have when it gets here is
379   // a no-op and should not be emitted.
380   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
381                          D.hasAttr<CUDASharedAttr>();
382   // If this value has an initializer, emit it.
383   if (D.getInit() && !isCudaSharedVar)
384     var = AddInitializerToStaticVarDecl(D, var);
385 
386   var->setAlignment(alignment.getQuantity());
387 
388   if (D.hasAttr<AnnotateAttr>())
389     CGM.AddGlobalAnnotations(&D, var);
390 
391   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
392     var->setSection(SA->getName());
393 
394   if (D.hasAttr<UsedAttr>())
395     CGM.addUsedGlobal(var);
396 
397   // We may have to cast the constant because of the initializer
398   // mismatch above.
399   //
400   // FIXME: It is really dangerous to store this in the map; if anyone
401   // RAUW's the GV uses of this constant will be invalid.
402   llvm::Constant *castedAddr =
403     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
404   if (var != castedAddr)
405     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
406   CGM.setStaticLocalDeclAddress(&D, castedAddr);
407 
408   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
409 
410   // Emit global variable debug descriptor for static vars.
411   CGDebugInfo *DI = getDebugInfo();
412   if (DI &&
413       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
414     DI->setLocation(D.getLocation());
415     DI->EmitGlobalVariable(var, &D);
416   }
417 }
418 
419 namespace {
420   struct DestroyObject final : EHScopeStack::Cleanup {
421     DestroyObject(Address addr, QualType type,
422                   CodeGenFunction::Destroyer *destroyer,
423                   bool useEHCleanupForArray)
424       : addr(addr), type(type), destroyer(destroyer),
425         useEHCleanupForArray(useEHCleanupForArray) {}
426 
427     Address addr;
428     QualType type;
429     CodeGenFunction::Destroyer *destroyer;
430     bool useEHCleanupForArray;
431 
432     void Emit(CodeGenFunction &CGF, Flags flags) override {
433       // Don't use an EH cleanup recursively from an EH cleanup.
434       bool useEHCleanupForArray =
435         flags.isForNormalCleanup() && this->useEHCleanupForArray;
436 
437       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
438     }
439   };
440 
441   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
442     DestroyNRVOVariable(Address addr,
443                         const CXXDestructorDecl *Dtor,
444                         llvm::Value *NRVOFlag)
445       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
446 
447     const CXXDestructorDecl *Dtor;
448     llvm::Value *NRVOFlag;
449     Address Loc;
450 
451     void Emit(CodeGenFunction &CGF, Flags flags) override {
452       // Along the exceptions path we always execute the dtor.
453       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
454 
455       llvm::BasicBlock *SkipDtorBB = nullptr;
456       if (NRVO) {
457         // If we exited via NRVO, we skip the destructor call.
458         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
459         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
460         llvm::Value *DidNRVO =
461           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
462         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
463         CGF.EmitBlock(RunDtorBB);
464       }
465 
466       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
467                                 /*ForVirtualBase=*/false,
468                                 /*Delegating=*/false,
469                                 Loc);
470 
471       if (NRVO) CGF.EmitBlock(SkipDtorBB);
472     }
473   };
474 
475   struct CallStackRestore final : EHScopeStack::Cleanup {
476     Address Stack;
477     CallStackRestore(Address Stack) : Stack(Stack) {}
478     void Emit(CodeGenFunction &CGF, Flags flags) override {
479       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
480       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
481       CGF.Builder.CreateCall(F, V);
482     }
483   };
484 
485   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
486     const VarDecl &Var;
487     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
488 
489     void Emit(CodeGenFunction &CGF, Flags flags) override {
490       // Compute the address of the local variable, in case it's a
491       // byref or something.
492       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
493                       Var.getType(), VK_LValue, SourceLocation());
494       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
495                                                 SourceLocation());
496       CGF.EmitExtendGCLifetime(value);
497     }
498   };
499 
500   struct CallCleanupFunction final : EHScopeStack::Cleanup {
501     llvm::Constant *CleanupFn;
502     const CGFunctionInfo &FnInfo;
503     const VarDecl &Var;
504 
505     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
506                         const VarDecl *Var)
507       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
508 
509     void Emit(CodeGenFunction &CGF, Flags flags) override {
510       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
511                       Var.getType(), VK_LValue, SourceLocation());
512       // Compute the address of the local variable, in case it's a byref
513       // or something.
514       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
515 
516       // In some cases, the type of the function argument will be different from
517       // the type of the pointer. An example of this is
518       // void f(void* arg);
519       // __attribute__((cleanup(f))) void *g;
520       //
521       // To fix this we insert a bitcast here.
522       QualType ArgTy = FnInfo.arg_begin()->type;
523       llvm::Value *Arg =
524         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
525 
526       CallArgList Args;
527       Args.add(RValue::get(Arg),
528                CGF.getContext().getPointerType(Var.getType()));
529       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
530     }
531   };
532 
533   /// A cleanup to call @llvm.lifetime.end.
534   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
535     llvm::Value *Addr;
536     llvm::Value *Size;
537   public:
538     CallLifetimeEnd(Address addr, llvm::Value *size)
539       : Addr(addr.getPointer()), Size(size) {}
540 
541     void Emit(CodeGenFunction &CGF, Flags flags) override {
542       CGF.EmitLifetimeEnd(Size, Addr);
543     }
544   };
545 } // end anonymous namespace
546 
547 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
548 /// variable with lifetime.
549 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
550                                     Address addr,
551                                     Qualifiers::ObjCLifetime lifetime) {
552   switch (lifetime) {
553   case Qualifiers::OCL_None:
554     llvm_unreachable("present but none");
555 
556   case Qualifiers::OCL_ExplicitNone:
557     // nothing to do
558     break;
559 
560   case Qualifiers::OCL_Strong: {
561     CodeGenFunction::Destroyer *destroyer =
562       (var.hasAttr<ObjCPreciseLifetimeAttr>()
563        ? CodeGenFunction::destroyARCStrongPrecise
564        : CodeGenFunction::destroyARCStrongImprecise);
565 
566     CleanupKind cleanupKind = CGF.getARCCleanupKind();
567     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
568                     cleanupKind & EHCleanup);
569     break;
570   }
571   case Qualifiers::OCL_Autoreleasing:
572     // nothing to do
573     break;
574 
575   case Qualifiers::OCL_Weak:
576     // __weak objects always get EH cleanups; otherwise, exceptions
577     // could cause really nasty crashes instead of mere leaks.
578     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
579                     CodeGenFunction::destroyARCWeak,
580                     /*useEHCleanup*/ true);
581     break;
582   }
583 }
584 
585 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
586   if (const Expr *e = dyn_cast<Expr>(s)) {
587     // Skip the most common kinds of expressions that make
588     // hierarchy-walking expensive.
589     s = e = e->IgnoreParenCasts();
590 
591     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
592       return (ref->getDecl() == &var);
593     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
594       const BlockDecl *block = be->getBlockDecl();
595       for (const auto &I : block->captures()) {
596         if (I.getVariable() == &var)
597           return true;
598       }
599     }
600   }
601 
602   for (const Stmt *SubStmt : s->children())
603     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
604     if (SubStmt && isAccessedBy(var, SubStmt))
605       return true;
606 
607   return false;
608 }
609 
610 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
611   if (!decl) return false;
612   if (!isa<VarDecl>(decl)) return false;
613   const VarDecl *var = cast<VarDecl>(decl);
614   return isAccessedBy(*var, e);
615 }
616 
617 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
618                                    const LValue &destLV, const Expr *init) {
619   bool needsCast = false;
620 
621   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
622     switch (castExpr->getCastKind()) {
623     // Look through casts that don't require representation changes.
624     case CK_NoOp:
625     case CK_BitCast:
626     case CK_BlockPointerToObjCPointerCast:
627       needsCast = true;
628       break;
629 
630     // If we find an l-value to r-value cast from a __weak variable,
631     // emit this operation as a copy or move.
632     case CK_LValueToRValue: {
633       const Expr *srcExpr = castExpr->getSubExpr();
634       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
635         return false;
636 
637       // Emit the source l-value.
638       LValue srcLV = CGF.EmitLValue(srcExpr);
639 
640       // Handle a formal type change to avoid asserting.
641       auto srcAddr = srcLV.getAddress();
642       if (needsCast) {
643         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
644                                          destLV.getAddress().getElementType());
645       }
646 
647       // If it was an l-value, use objc_copyWeak.
648       if (srcExpr->getValueKind() == VK_LValue) {
649         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
650       } else {
651         assert(srcExpr->getValueKind() == VK_XValue);
652         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
653       }
654       return true;
655     }
656 
657     // Stop at anything else.
658     default:
659       return false;
660     }
661 
662     init = castExpr->getSubExpr();
663   }
664   return false;
665 }
666 
667 static void drillIntoBlockVariable(CodeGenFunction &CGF,
668                                    LValue &lvalue,
669                                    const VarDecl *var) {
670   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
671 }
672 
673 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
674                                      LValue lvalue, bool capturedByInit) {
675   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
676   if (!lifetime) {
677     llvm::Value *value = EmitScalarExpr(init);
678     if (capturedByInit)
679       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
680     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
681     return;
682   }
683 
684   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
685     init = DIE->getExpr();
686 
687   // If we're emitting a value with lifetime, we have to do the
688   // initialization *before* we leave the cleanup scopes.
689   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
690     enterFullExpression(ewc);
691     init = ewc->getSubExpr();
692   }
693   CodeGenFunction::RunCleanupsScope Scope(*this);
694 
695   // We have to maintain the illusion that the variable is
696   // zero-initialized.  If the variable might be accessed in its
697   // initializer, zero-initialize before running the initializer, then
698   // actually perform the initialization with an assign.
699   bool accessedByInit = false;
700   if (lifetime != Qualifiers::OCL_ExplicitNone)
701     accessedByInit = (capturedByInit || isAccessedBy(D, init));
702   if (accessedByInit) {
703     LValue tempLV = lvalue;
704     // Drill down to the __block object if necessary.
705     if (capturedByInit) {
706       // We can use a simple GEP for this because it can't have been
707       // moved yet.
708       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
709                                               cast<VarDecl>(D),
710                                               /*follow*/ false));
711     }
712 
713     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
714     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
715 
716     // If __weak, we want to use a barrier under certain conditions.
717     if (lifetime == Qualifiers::OCL_Weak)
718       EmitARCInitWeak(tempLV.getAddress(), zero);
719 
720     // Otherwise just do a simple store.
721     else
722       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
723   }
724 
725   // Emit the initializer.
726   llvm::Value *value = nullptr;
727 
728   switch (lifetime) {
729   case Qualifiers::OCL_None:
730     llvm_unreachable("present but none");
731 
732   case Qualifiers::OCL_ExplicitNone:
733     value = EmitARCUnsafeUnretainedScalarExpr(init);
734     break;
735 
736   case Qualifiers::OCL_Strong: {
737     value = EmitARCRetainScalarExpr(init);
738     break;
739   }
740 
741   case Qualifiers::OCL_Weak: {
742     // If it's not accessed by the initializer, try to emit the
743     // initialization with a copy or move.
744     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
745       return;
746     }
747 
748     // No way to optimize a producing initializer into this.  It's not
749     // worth optimizing for, because the value will immediately
750     // disappear in the common case.
751     value = EmitScalarExpr(init);
752 
753     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
754     if (accessedByInit)
755       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
756     else
757       EmitARCInitWeak(lvalue.getAddress(), value);
758     return;
759   }
760 
761   case Qualifiers::OCL_Autoreleasing:
762     value = EmitARCRetainAutoreleaseScalarExpr(init);
763     break;
764   }
765 
766   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
767 
768   // If the variable might have been accessed by its initializer, we
769   // might have to initialize with a barrier.  We have to do this for
770   // both __weak and __strong, but __weak got filtered out above.
771   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
772     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
773     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
774     EmitARCRelease(oldValue, ARCImpreciseLifetime);
775     return;
776   }
777 
778   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
779 }
780 
781 /// EmitScalarInit - Initialize the given lvalue with the given object.
782 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
783   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
784   if (!lifetime)
785     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
786 
787   switch (lifetime) {
788   case Qualifiers::OCL_None:
789     llvm_unreachable("present but none");
790 
791   case Qualifiers::OCL_ExplicitNone:
792     // nothing to do
793     break;
794 
795   case Qualifiers::OCL_Strong:
796     init = EmitARCRetain(lvalue.getType(), init);
797     break;
798 
799   case Qualifiers::OCL_Weak:
800     // Initialize and then skip the primitive store.
801     EmitARCInitWeak(lvalue.getAddress(), init);
802     return;
803 
804   case Qualifiers::OCL_Autoreleasing:
805     init = EmitARCRetainAutorelease(lvalue.getType(), init);
806     break;
807   }
808 
809   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
810 }
811 
812 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
813 /// non-zero parts of the specified initializer with equal or fewer than
814 /// NumStores scalar stores.
815 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
816                                                 unsigned &NumStores) {
817   // Zero and Undef never requires any extra stores.
818   if (isa<llvm::ConstantAggregateZero>(Init) ||
819       isa<llvm::ConstantPointerNull>(Init) ||
820       isa<llvm::UndefValue>(Init))
821     return true;
822   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
823       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
824       isa<llvm::ConstantExpr>(Init))
825     return Init->isNullValue() || NumStores--;
826 
827   // See if we can emit each element.
828   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
829     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
830       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
831       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
832         return false;
833     }
834     return true;
835   }
836 
837   if (llvm::ConstantDataSequential *CDS =
838         dyn_cast<llvm::ConstantDataSequential>(Init)) {
839     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
840       llvm::Constant *Elt = CDS->getElementAsConstant(i);
841       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
842         return false;
843     }
844     return true;
845   }
846 
847   // Anything else is hard and scary.
848   return false;
849 }
850 
851 /// emitStoresForInitAfterMemset - For inits that
852 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
853 /// stores that would be required.
854 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
855                                          bool isVolatile, CGBuilderTy &Builder) {
856   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
857          "called emitStoresForInitAfterMemset for zero or undef value.");
858 
859   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
860       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
861       isa<llvm::ConstantExpr>(Init)) {
862     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
863     return;
864   }
865 
866   if (llvm::ConstantDataSequential *CDS =
867           dyn_cast<llvm::ConstantDataSequential>(Init)) {
868     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
869       llvm::Constant *Elt = CDS->getElementAsConstant(i);
870 
871       // If necessary, get a pointer to the element and emit it.
872       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
873         emitStoresForInitAfterMemset(
874             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
875             isVolatile, Builder);
876     }
877     return;
878   }
879 
880   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
881          "Unknown value type!");
882 
883   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
884     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
885 
886     // If necessary, get a pointer to the element and emit it.
887     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
888       emitStoresForInitAfterMemset(
889           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
890           isVolatile, Builder);
891   }
892 }
893 
894 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
895 /// plus some stores to initialize a local variable instead of using a memcpy
896 /// from a constant global.  It is beneficial to use memset if the global is all
897 /// zeros, or mostly zeros and large.
898 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
899                                                   uint64_t GlobalSize) {
900   // If a global is all zeros, always use a memset.
901   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
902 
903   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
904   // do it if it will require 6 or fewer scalar stores.
905   // TODO: Should budget depends on the size?  Avoiding a large global warrants
906   // plopping in more stores.
907   unsigned StoreBudget = 6;
908   uint64_t SizeLimit = 32;
909 
910   return GlobalSize > SizeLimit &&
911          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
912 }
913 
914 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
915 /// variable declaration with auto, register, or no storage class specifier.
916 /// These turn into simple stack objects, or GlobalValues depending on target.
917 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
918   AutoVarEmission emission = EmitAutoVarAlloca(D);
919   EmitAutoVarInit(emission);
920   EmitAutoVarCleanups(emission);
921 }
922 
923 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
924 /// markers.
925 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
926                                       const LangOptions &LangOpts) {
927   // Asan uses markers for use-after-scope checks.
928   if (CGOpts.SanitizeAddressUseAfterScope)
929     return true;
930 
931   // Disable lifetime markers in msan builds.
932   // FIXME: Remove this when msan works with lifetime markers.
933   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
934     return false;
935 
936   // For now, only in optimized builds.
937   return CGOpts.OptimizationLevel != 0;
938 }
939 
940 /// Emit a lifetime.begin marker if some criteria are satisfied.
941 /// \return a pointer to the temporary size Value if a marker was emitted, null
942 /// otherwise
943 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
944                                                 llvm::Value *Addr) {
945   if (!shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), getLangOpts()))
946     return nullptr;
947 
948   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
949   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
950   llvm::CallInst *C =
951       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
952   C->setDoesNotThrow();
953   return SizeV;
954 }
955 
956 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
957   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
958   llvm::CallInst *C =
959       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
960   C->setDoesNotThrow();
961 }
962 
963 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
964 /// local variable.  Does not emit initialization or destruction.
965 CodeGenFunction::AutoVarEmission
966 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
967   QualType Ty = D.getType();
968 
969   AutoVarEmission emission(D);
970 
971   bool isByRef = D.hasAttr<BlocksAttr>();
972   emission.IsByRef = isByRef;
973 
974   CharUnits alignment = getContext().getDeclAlign(&D);
975 
976   // If the type is variably-modified, emit all the VLA sizes for it.
977   if (Ty->isVariablyModifiedType())
978     EmitVariablyModifiedType(Ty);
979 
980   Address address = Address::invalid();
981   if (Ty->isConstantSizeType()) {
982     bool NRVO = getLangOpts().ElideConstructors &&
983       D.isNRVOVariable();
984 
985     // If this value is an array or struct with a statically determinable
986     // constant initializer, there are optimizations we can do.
987     //
988     // TODO: We should constant-evaluate the initializer of any variable,
989     // as long as it is initialized by a constant expression. Currently,
990     // isConstantInitializer produces wrong answers for structs with
991     // reference or bitfield members, and a few other cases, and checking
992     // for POD-ness protects us from some of these.
993     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
994         (D.isConstexpr() ||
995          ((Ty.isPODType(getContext()) ||
996            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
997           D.getInit()->isConstantInitializer(getContext(), false)))) {
998 
999       // If the variable's a const type, and it's neither an NRVO
1000       // candidate nor a __block variable and has no mutable members,
1001       // emit it as a global instead.
1002       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
1003           CGM.isTypeConstant(Ty, true)) {
1004         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1005 
1006         // Signal this condition to later callbacks.
1007         emission.Addr = Address::invalid();
1008         assert(emission.wasEmittedAsGlobal());
1009         return emission;
1010       }
1011 
1012       // Otherwise, tell the initialization code that we're in this case.
1013       emission.IsConstantAggregate = true;
1014     }
1015 
1016     // A normal fixed sized variable becomes an alloca in the entry block,
1017     // unless it's an NRVO variable.
1018 
1019     if (NRVO) {
1020       // The named return value optimization: allocate this variable in the
1021       // return slot, so that we can elide the copy when returning this
1022       // variable (C++0x [class.copy]p34).
1023       address = ReturnValue;
1024 
1025       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1026         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
1027           // Create a flag that is used to indicate when the NRVO was applied
1028           // to this variable. Set it to zero to indicate that NRVO was not
1029           // applied.
1030           llvm::Value *Zero = Builder.getFalse();
1031           Address NRVOFlag =
1032             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1033           EnsureInsertPoint();
1034           Builder.CreateStore(Zero, NRVOFlag);
1035 
1036           // Record the NRVO flag for this variable.
1037           NRVOFlags[&D] = NRVOFlag.getPointer();
1038           emission.NRVOFlag = NRVOFlag.getPointer();
1039         }
1040       }
1041     } else {
1042       CharUnits allocaAlignment;
1043       llvm::Type *allocaTy;
1044       if (isByRef) {
1045         auto &byrefInfo = getBlockByrefInfo(&D);
1046         allocaTy = byrefInfo.Type;
1047         allocaAlignment = byrefInfo.ByrefAlignment;
1048       } else {
1049         allocaTy = ConvertTypeForMem(Ty);
1050         allocaAlignment = alignment;
1051       }
1052 
1053       // Create the alloca.  Note that we set the name separately from
1054       // building the instruction so that it's there even in no-asserts
1055       // builds.
1056       address = CreateTempAlloca(allocaTy, allocaAlignment);
1057       address.getPointer()->setName(D.getName());
1058 
1059       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1060       // the catch parameter starts in the catchpad instruction, and we can't
1061       // insert code in those basic blocks.
1062       bool IsMSCatchParam =
1063           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1064 
1065       // Emit a lifetime intrinsic if meaningful.  There's no point
1066       // in doing this if we don't have a valid insertion point (?).
1067       if (HaveInsertPoint() && !IsMSCatchParam) {
1068         uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1069         emission.SizeForLifetimeMarkers =
1070           EmitLifetimeStart(size, address.getPointer());
1071       } else {
1072         assert(!emission.useLifetimeMarkers());
1073       }
1074     }
1075   } else {
1076     EnsureInsertPoint();
1077 
1078     if (!DidCallStackSave) {
1079       // Save the stack.
1080       Address Stack =
1081         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1082 
1083       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1084       llvm::Value *V = Builder.CreateCall(F);
1085       Builder.CreateStore(V, Stack);
1086 
1087       DidCallStackSave = true;
1088 
1089       // Push a cleanup block and restore the stack there.
1090       // FIXME: in general circumstances, this should be an EH cleanup.
1091       pushStackRestore(NormalCleanup, Stack);
1092     }
1093 
1094     llvm::Value *elementCount;
1095     QualType elementType;
1096     std::tie(elementCount, elementType) = getVLASize(Ty);
1097 
1098     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1099 
1100     // Allocate memory for the array.
1101     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1102     vla->setAlignment(alignment.getQuantity());
1103 
1104     address = Address(vla, alignment);
1105   }
1106 
1107   setAddrOfLocalVar(&D, address);
1108   emission.Addr = address;
1109 
1110   // Emit debug info for local var declaration.
1111   if (HaveInsertPoint())
1112     if (CGDebugInfo *DI = getDebugInfo()) {
1113       if (CGM.getCodeGenOpts().getDebugInfo() >=
1114           codegenoptions::LimitedDebugInfo) {
1115         DI->setLocation(D.getLocation());
1116         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1117       }
1118     }
1119 
1120   if (D.hasAttr<AnnotateAttr>())
1121     EmitVarAnnotations(&D, address.getPointer());
1122 
1123   return emission;
1124 }
1125 
1126 /// Determines whether the given __block variable is potentially
1127 /// captured by the given expression.
1128 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1129   // Skip the most common kinds of expressions that make
1130   // hierarchy-walking expensive.
1131   e = e->IgnoreParenCasts();
1132 
1133   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1134     const BlockDecl *block = be->getBlockDecl();
1135     for (const auto &I : block->captures()) {
1136       if (I.getVariable() == &var)
1137         return true;
1138     }
1139 
1140     // No need to walk into the subexpressions.
1141     return false;
1142   }
1143 
1144   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1145     const CompoundStmt *CS = SE->getSubStmt();
1146     for (const auto *BI : CS->body())
1147       if (const auto *E = dyn_cast<Expr>(BI)) {
1148         if (isCapturedBy(var, E))
1149             return true;
1150       }
1151       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1152           // special case declarations
1153           for (const auto *I : DS->decls()) {
1154               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1155                 const Expr *Init = VD->getInit();
1156                 if (Init && isCapturedBy(var, Init))
1157                   return true;
1158               }
1159           }
1160       }
1161       else
1162         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1163         // Later, provide code to poke into statements for capture analysis.
1164         return true;
1165     return false;
1166   }
1167 
1168   for (const Stmt *SubStmt : e->children())
1169     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1170       return true;
1171 
1172   return false;
1173 }
1174 
1175 /// \brief Determine whether the given initializer is trivial in the sense
1176 /// that it requires no code to be generated.
1177 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1178   if (!Init)
1179     return true;
1180 
1181   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1182     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1183       if (Constructor->isTrivial() &&
1184           Constructor->isDefaultConstructor() &&
1185           !Construct->requiresZeroInitialization())
1186         return true;
1187 
1188   return false;
1189 }
1190 
1191 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1192   assert(emission.Variable && "emission was not valid!");
1193 
1194   // If this was emitted as a global constant, we're done.
1195   if (emission.wasEmittedAsGlobal()) return;
1196 
1197   const VarDecl &D = *emission.Variable;
1198   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1199   QualType type = D.getType();
1200 
1201   // If this local has an initializer, emit it now.
1202   const Expr *Init = D.getInit();
1203 
1204   // If we are at an unreachable point, we don't need to emit the initializer
1205   // unless it contains a label.
1206   if (!HaveInsertPoint()) {
1207     if (!Init || !ContainsLabel(Init)) return;
1208     EnsureInsertPoint();
1209   }
1210 
1211   // Initialize the structure of a __block variable.
1212   if (emission.IsByRef)
1213     emitByrefStructureInit(emission);
1214 
1215   if (isTrivialInitializer(Init))
1216     return;
1217 
1218   // Check whether this is a byref variable that's potentially
1219   // captured and moved by its own initializer.  If so, we'll need to
1220   // emit the initializer first, then copy into the variable.
1221   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1222 
1223   Address Loc =
1224     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1225 
1226   llvm::Constant *constant = nullptr;
1227   if (emission.IsConstantAggregate || D.isConstexpr()) {
1228     assert(!capturedByInit && "constant init contains a capturing block?");
1229     constant = CGM.EmitConstantInit(D, this);
1230   }
1231 
1232   if (!constant) {
1233     LValue lv = MakeAddrLValue(Loc, type);
1234     lv.setNonGC(true);
1235     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1236   }
1237 
1238   if (!emission.IsConstantAggregate) {
1239     // For simple scalar/complex initialization, store the value directly.
1240     LValue lv = MakeAddrLValue(Loc, type);
1241     lv.setNonGC(true);
1242     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1243   }
1244 
1245   // If this is a simple aggregate initialization, we can optimize it
1246   // in various ways.
1247   bool isVolatile = type.isVolatileQualified();
1248 
1249   llvm::Value *SizeVal =
1250     llvm::ConstantInt::get(IntPtrTy,
1251                            getContext().getTypeSizeInChars(type).getQuantity());
1252 
1253   llvm::Type *BP = Int8PtrTy;
1254   if (Loc.getType() != BP)
1255     Loc = Builder.CreateBitCast(Loc, BP);
1256 
1257   // If the initializer is all or mostly zeros, codegen with memset then do
1258   // a few stores afterward.
1259   if (shouldUseMemSetPlusStoresToInitialize(constant,
1260                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1261     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1262                          isVolatile);
1263     // Zero and undef don't require a stores.
1264     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1265       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1266       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1267                                    isVolatile, Builder);
1268     }
1269   } else {
1270     // Otherwise, create a temporary global with the initializer then
1271     // memcpy from the global to the alloca.
1272     std::string Name = getStaticDeclName(CGM, D);
1273     llvm::GlobalVariable *GV =
1274       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1275                                llvm::GlobalValue::PrivateLinkage,
1276                                constant, Name);
1277     GV->setAlignment(Loc.getAlignment().getQuantity());
1278     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1279 
1280     Address SrcPtr = Address(GV, Loc.getAlignment());
1281     if (SrcPtr.getType() != BP)
1282       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1283 
1284     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1285   }
1286 }
1287 
1288 /// Emit an expression as an initializer for a variable at the given
1289 /// location.  The expression is not necessarily the normal
1290 /// initializer for the variable, and the address is not necessarily
1291 /// its normal location.
1292 ///
1293 /// \param init the initializing expression
1294 /// \param var the variable to act as if we're initializing
1295 /// \param loc the address to initialize; its type is a pointer
1296 ///   to the LLVM mapping of the variable's type
1297 /// \param alignment the alignment of the address
1298 /// \param capturedByInit true if the variable is a __block variable
1299 ///   whose address is potentially changed by the initializer
1300 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1301                                      LValue lvalue, bool capturedByInit) {
1302   QualType type = D->getType();
1303 
1304   if (type->isReferenceType()) {
1305     RValue rvalue = EmitReferenceBindingToExpr(init);
1306     if (capturedByInit)
1307       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1308     EmitStoreThroughLValue(rvalue, lvalue, true);
1309     return;
1310   }
1311   switch (getEvaluationKind(type)) {
1312   case TEK_Scalar:
1313     EmitScalarInit(init, D, lvalue, capturedByInit);
1314     return;
1315   case TEK_Complex: {
1316     ComplexPairTy complex = EmitComplexExpr(init);
1317     if (capturedByInit)
1318       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1319     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1320     return;
1321   }
1322   case TEK_Aggregate:
1323     if (type->isAtomicType()) {
1324       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1325     } else {
1326       // TODO: how can we delay here if D is captured by its initializer?
1327       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1328                                               AggValueSlot::IsDestructed,
1329                                          AggValueSlot::DoesNotNeedGCBarriers,
1330                                               AggValueSlot::IsNotAliased));
1331     }
1332     return;
1333   }
1334   llvm_unreachable("bad evaluation kind");
1335 }
1336 
1337 /// Enter a destroy cleanup for the given local variable.
1338 void CodeGenFunction::emitAutoVarTypeCleanup(
1339                             const CodeGenFunction::AutoVarEmission &emission,
1340                             QualType::DestructionKind dtorKind) {
1341   assert(dtorKind != QualType::DK_none);
1342 
1343   // Note that for __block variables, we want to destroy the
1344   // original stack object, not the possibly forwarded object.
1345   Address addr = emission.getObjectAddress(*this);
1346 
1347   const VarDecl *var = emission.Variable;
1348   QualType type = var->getType();
1349 
1350   CleanupKind cleanupKind = NormalAndEHCleanup;
1351   CodeGenFunction::Destroyer *destroyer = nullptr;
1352 
1353   switch (dtorKind) {
1354   case QualType::DK_none:
1355     llvm_unreachable("no cleanup for trivially-destructible variable");
1356 
1357   case QualType::DK_cxx_destructor:
1358     // If there's an NRVO flag on the emission, we need a different
1359     // cleanup.
1360     if (emission.NRVOFlag) {
1361       assert(!type->isArrayType());
1362       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1363       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1364                                                dtor, emission.NRVOFlag);
1365       return;
1366     }
1367     break;
1368 
1369   case QualType::DK_objc_strong_lifetime:
1370     // Suppress cleanups for pseudo-strong variables.
1371     if (var->isARCPseudoStrong()) return;
1372 
1373     // Otherwise, consider whether to use an EH cleanup or not.
1374     cleanupKind = getARCCleanupKind();
1375 
1376     // Use the imprecise destroyer by default.
1377     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1378       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1379     break;
1380 
1381   case QualType::DK_objc_weak_lifetime:
1382     break;
1383   }
1384 
1385   // If we haven't chosen a more specific destroyer, use the default.
1386   if (!destroyer) destroyer = getDestroyer(dtorKind);
1387 
1388   // Use an EH cleanup in array destructors iff the destructor itself
1389   // is being pushed as an EH cleanup.
1390   bool useEHCleanup = (cleanupKind & EHCleanup);
1391   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1392                                      useEHCleanup);
1393 }
1394 
1395 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1396   assert(emission.Variable && "emission was not valid!");
1397 
1398   // If this was emitted as a global constant, we're done.
1399   if (emission.wasEmittedAsGlobal()) return;
1400 
1401   // If we don't have an insertion point, we're done.  Sema prevents
1402   // us from jumping into any of these scopes anyway.
1403   if (!HaveInsertPoint()) return;
1404 
1405   const VarDecl &D = *emission.Variable;
1406 
1407   // Make sure we call @llvm.lifetime.end.  This needs to happen
1408   // *last*, so the cleanup needs to be pushed *first*.
1409   if (emission.useLifetimeMarkers()) {
1410     EHStack.pushCleanup<CallLifetimeEnd>(NormalAndEHCleanup,
1411                                          emission.getAllocatedAddress(),
1412                                          emission.getSizeForLifetimeMarkers());
1413     EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
1414     cleanup.setLifetimeMarker();
1415   }
1416 
1417   // Check the type for a cleanup.
1418   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1419     emitAutoVarTypeCleanup(emission, dtorKind);
1420 
1421   // In GC mode, honor objc_precise_lifetime.
1422   if (getLangOpts().getGC() != LangOptions::NonGC &&
1423       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1424     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1425   }
1426 
1427   // Handle the cleanup attribute.
1428   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1429     const FunctionDecl *FD = CA->getFunctionDecl();
1430 
1431     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1432     assert(F && "Could not find function!");
1433 
1434     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1435     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1436   }
1437 
1438   // If this is a block variable, call _Block_object_destroy
1439   // (on the unforwarded address).
1440   if (emission.IsByRef)
1441     enterByrefCleanup(emission);
1442 }
1443 
1444 CodeGenFunction::Destroyer *
1445 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1446   switch (kind) {
1447   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1448   case QualType::DK_cxx_destructor:
1449     return destroyCXXObject;
1450   case QualType::DK_objc_strong_lifetime:
1451     return destroyARCStrongPrecise;
1452   case QualType::DK_objc_weak_lifetime:
1453     return destroyARCWeak;
1454   }
1455   llvm_unreachable("Unknown DestructionKind");
1456 }
1457 
1458 /// pushEHDestroy - Push the standard destructor for the given type as
1459 /// an EH-only cleanup.
1460 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1461                                     Address addr, QualType type) {
1462   assert(dtorKind && "cannot push destructor for trivial type");
1463   assert(needsEHCleanup(dtorKind));
1464 
1465   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1466 }
1467 
1468 /// pushDestroy - Push the standard destructor for the given type as
1469 /// at least a normal cleanup.
1470 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1471                                   Address addr, QualType type) {
1472   assert(dtorKind && "cannot push destructor for trivial type");
1473 
1474   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1475   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1476               cleanupKind & EHCleanup);
1477 }
1478 
1479 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1480                                   QualType type, Destroyer *destroyer,
1481                                   bool useEHCleanupForArray) {
1482   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1483                                      destroyer, useEHCleanupForArray);
1484 }
1485 
1486 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1487   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1488 }
1489 
1490 void CodeGenFunction::pushLifetimeExtendedDestroy(
1491     CleanupKind cleanupKind, Address addr, QualType type,
1492     Destroyer *destroyer, bool useEHCleanupForArray) {
1493   assert(!isInConditionalBranch() &&
1494          "performing lifetime extension from within conditional");
1495 
1496   // Push an EH-only cleanup for the object now.
1497   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1498   // around in case a temporary's destructor throws an exception.
1499   if (cleanupKind & EHCleanup)
1500     EHStack.pushCleanup<DestroyObject>(
1501         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1502         destroyer, useEHCleanupForArray);
1503 
1504   // Remember that we need to push a full cleanup for the object at the
1505   // end of the full-expression.
1506   pushCleanupAfterFullExpr<DestroyObject>(
1507       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1508 }
1509 
1510 /// emitDestroy - Immediately perform the destruction of the given
1511 /// object.
1512 ///
1513 /// \param addr - the address of the object; a type*
1514 /// \param type - the type of the object; if an array type, all
1515 ///   objects are destroyed in reverse order
1516 /// \param destroyer - the function to call to destroy individual
1517 ///   elements
1518 /// \param useEHCleanupForArray - whether an EH cleanup should be
1519 ///   used when destroying array elements, in case one of the
1520 ///   destructions throws an exception
1521 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1522                                   Destroyer *destroyer,
1523                                   bool useEHCleanupForArray) {
1524   const ArrayType *arrayType = getContext().getAsArrayType(type);
1525   if (!arrayType)
1526     return destroyer(*this, addr, type);
1527 
1528   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1529 
1530   CharUnits elementAlign =
1531     addr.getAlignment()
1532         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1533 
1534   // Normally we have to check whether the array is zero-length.
1535   bool checkZeroLength = true;
1536 
1537   // But if the array length is constant, we can suppress that.
1538   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1539     // ...and if it's constant zero, we can just skip the entire thing.
1540     if (constLength->isZero()) return;
1541     checkZeroLength = false;
1542   }
1543 
1544   llvm::Value *begin = addr.getPointer();
1545   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1546   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1547                    checkZeroLength, useEHCleanupForArray);
1548 }
1549 
1550 /// emitArrayDestroy - Destroys all the elements of the given array,
1551 /// beginning from last to first.  The array cannot be zero-length.
1552 ///
1553 /// \param begin - a type* denoting the first element of the array
1554 /// \param end - a type* denoting one past the end of the array
1555 /// \param elementType - the element type of the array
1556 /// \param destroyer - the function to call to destroy elements
1557 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1558 ///   the remaining elements in case the destruction of a single
1559 ///   element throws
1560 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1561                                        llvm::Value *end,
1562                                        QualType elementType,
1563                                        CharUnits elementAlign,
1564                                        Destroyer *destroyer,
1565                                        bool checkZeroLength,
1566                                        bool useEHCleanup) {
1567   assert(!elementType->isArrayType());
1568 
1569   // The basic structure here is a do-while loop, because we don't
1570   // need to check for the zero-element case.
1571   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1572   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1573 
1574   if (checkZeroLength) {
1575     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1576                                                 "arraydestroy.isempty");
1577     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1578   }
1579 
1580   // Enter the loop body, making that address the current address.
1581   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1582   EmitBlock(bodyBB);
1583   llvm::PHINode *elementPast =
1584     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1585   elementPast->addIncoming(end, entryBB);
1586 
1587   // Shift the address back by one element.
1588   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1589   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1590                                                    "arraydestroy.element");
1591 
1592   if (useEHCleanup)
1593     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1594                                    destroyer);
1595 
1596   // Perform the actual destruction there.
1597   destroyer(*this, Address(element, elementAlign), elementType);
1598 
1599   if (useEHCleanup)
1600     PopCleanupBlock();
1601 
1602   // Check whether we've reached the end.
1603   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1604   Builder.CreateCondBr(done, doneBB, bodyBB);
1605   elementPast->addIncoming(element, Builder.GetInsertBlock());
1606 
1607   // Done.
1608   EmitBlock(doneBB);
1609 }
1610 
1611 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1612 /// emitArrayDestroy, the element type here may still be an array type.
1613 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1614                                     llvm::Value *begin, llvm::Value *end,
1615                                     QualType type, CharUnits elementAlign,
1616                                     CodeGenFunction::Destroyer *destroyer) {
1617   // If the element type is itself an array, drill down.
1618   unsigned arrayDepth = 0;
1619   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1620     // VLAs don't require a GEP index to walk into.
1621     if (!isa<VariableArrayType>(arrayType))
1622       arrayDepth++;
1623     type = arrayType->getElementType();
1624   }
1625 
1626   if (arrayDepth) {
1627     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1628 
1629     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1630     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1631     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1632   }
1633 
1634   // Destroy the array.  We don't ever need an EH cleanup because we
1635   // assume that we're in an EH cleanup ourselves, so a throwing
1636   // destructor causes an immediate terminate.
1637   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1638                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1639 }
1640 
1641 namespace {
1642   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1643   /// array destroy where the end pointer is regularly determined and
1644   /// does not need to be loaded from a local.
1645   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1646     llvm::Value *ArrayBegin;
1647     llvm::Value *ArrayEnd;
1648     QualType ElementType;
1649     CodeGenFunction::Destroyer *Destroyer;
1650     CharUnits ElementAlign;
1651   public:
1652     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1653                                QualType elementType, CharUnits elementAlign,
1654                                CodeGenFunction::Destroyer *destroyer)
1655       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1656         ElementType(elementType), Destroyer(destroyer),
1657         ElementAlign(elementAlign) {}
1658 
1659     void Emit(CodeGenFunction &CGF, Flags flags) override {
1660       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1661                               ElementType, ElementAlign, Destroyer);
1662     }
1663   };
1664 
1665   /// IrregularPartialArrayDestroy - a cleanup which performs a
1666   /// partial array destroy where the end pointer is irregularly
1667   /// determined and must be loaded from a local.
1668   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1669     llvm::Value *ArrayBegin;
1670     Address ArrayEndPointer;
1671     QualType ElementType;
1672     CodeGenFunction::Destroyer *Destroyer;
1673     CharUnits ElementAlign;
1674   public:
1675     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1676                                  Address arrayEndPointer,
1677                                  QualType elementType,
1678                                  CharUnits elementAlign,
1679                                  CodeGenFunction::Destroyer *destroyer)
1680       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1681         ElementType(elementType), Destroyer(destroyer),
1682         ElementAlign(elementAlign) {}
1683 
1684     void Emit(CodeGenFunction &CGF, Flags flags) override {
1685       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1686       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1687                               ElementType, ElementAlign, Destroyer);
1688     }
1689   };
1690 } // end anonymous namespace
1691 
1692 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1693 /// already-constructed elements of the given array.  The cleanup
1694 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1695 ///
1696 /// \param elementType - the immediate element type of the array;
1697 ///   possibly still an array type
1698 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1699                                                        Address arrayEndPointer,
1700                                                        QualType elementType,
1701                                                        CharUnits elementAlign,
1702                                                        Destroyer *destroyer) {
1703   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1704                                                     arrayBegin, arrayEndPointer,
1705                                                     elementType, elementAlign,
1706                                                     destroyer);
1707 }
1708 
1709 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1710 /// already-constructed elements of the given array.  The cleanup
1711 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1712 ///
1713 /// \param elementType - the immediate element type of the array;
1714 ///   possibly still an array type
1715 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1716                                                      llvm::Value *arrayEnd,
1717                                                      QualType elementType,
1718                                                      CharUnits elementAlign,
1719                                                      Destroyer *destroyer) {
1720   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1721                                                   arrayBegin, arrayEnd,
1722                                                   elementType, elementAlign,
1723                                                   destroyer);
1724 }
1725 
1726 /// Lazily declare the @llvm.lifetime.start intrinsic.
1727 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1728   if (LifetimeStartFn) return LifetimeStartFn;
1729   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1730                                             llvm::Intrinsic::lifetime_start);
1731   return LifetimeStartFn;
1732 }
1733 
1734 /// Lazily declare the @llvm.lifetime.end intrinsic.
1735 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1736   if (LifetimeEndFn) return LifetimeEndFn;
1737   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1738                                               llvm::Intrinsic::lifetime_end);
1739   return LifetimeEndFn;
1740 }
1741 
1742 namespace {
1743   /// A cleanup to perform a release of an object at the end of a
1744   /// function.  This is used to balance out the incoming +1 of a
1745   /// ns_consumed argument when we can't reasonably do that just by
1746   /// not doing the initial retain for a __block argument.
1747   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1748     ConsumeARCParameter(llvm::Value *param,
1749                         ARCPreciseLifetime_t precise)
1750       : Param(param), Precise(precise) {}
1751 
1752     llvm::Value *Param;
1753     ARCPreciseLifetime_t Precise;
1754 
1755     void Emit(CodeGenFunction &CGF, Flags flags) override {
1756       CGF.EmitARCRelease(Param, Precise);
1757     }
1758   };
1759 } // end anonymous namespace
1760 
1761 /// Emit an alloca (or GlobalValue depending on target)
1762 /// for the specified parameter and set up LocalDeclMap.
1763 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1764                                    unsigned ArgNo) {
1765   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1766   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1767          "Invalid argument to EmitParmDecl");
1768 
1769   Arg.getAnyValue()->setName(D.getName());
1770 
1771   QualType Ty = D.getType();
1772 
1773   // Use better IR generation for certain implicit parameters.
1774   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1775     // The only implicit argument a block has is its literal.
1776     // We assume this is always passed directly.
1777     if (BlockInfo) {
1778       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
1779       return;
1780     }
1781   }
1782 
1783   Address DeclPtr = Address::invalid();
1784   bool DoStore = false;
1785   bool IsScalar = hasScalarEvaluationKind(Ty);
1786   // If we already have a pointer to the argument, reuse the input pointer.
1787   if (Arg.isIndirect()) {
1788     DeclPtr = Arg.getIndirectAddress();
1789     // If we have a prettier pointer type at this point, bitcast to that.
1790     unsigned AS = DeclPtr.getType()->getAddressSpace();
1791     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1792     if (DeclPtr.getType() != IRTy)
1793       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1794 
1795     // Push a destructor cleanup for this parameter if the ABI requires it.
1796     // Don't push a cleanup in a thunk for a method that will also emit a
1797     // cleanup.
1798     if (!IsScalar && !CurFuncIsThunk &&
1799         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1800       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1801       if (RD && RD->hasNonTrivialDestructor())
1802         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1803     }
1804   } else {
1805     // Otherwise, create a temporary to hold the value.
1806     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1807                             D.getName() + ".addr");
1808     DoStore = true;
1809   }
1810 
1811   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1812 
1813   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1814   if (IsScalar) {
1815     Qualifiers qs = Ty.getQualifiers();
1816     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1817       // We honor __attribute__((ns_consumed)) for types with lifetime.
1818       // For __strong, it's handled by just skipping the initial retain;
1819       // otherwise we have to balance out the initial +1 with an extra
1820       // cleanup to do the release at the end of the function.
1821       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1822 
1823       // 'self' is always formally __strong, but if this is not an
1824       // init method then we don't want to retain it.
1825       if (D.isARCPseudoStrong()) {
1826         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1827         assert(&D == method->getSelfDecl());
1828         assert(lt == Qualifiers::OCL_Strong);
1829         assert(qs.hasConst());
1830         assert(method->getMethodFamily() != OMF_init);
1831         (void) method;
1832         lt = Qualifiers::OCL_ExplicitNone;
1833       }
1834 
1835       if (lt == Qualifiers::OCL_Strong) {
1836         if (!isConsumed) {
1837           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1838             // use objc_storeStrong(&dest, value) for retaining the
1839             // object. But first, store a null into 'dest' because
1840             // objc_storeStrong attempts to release its old value.
1841             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1842             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1843             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1844             DoStore = false;
1845           }
1846           else
1847           // Don't use objc_retainBlock for block pointers, because we
1848           // don't want to Block_copy something just because we got it
1849           // as a parameter.
1850             ArgVal = EmitARCRetainNonBlock(ArgVal);
1851         }
1852       } else {
1853         // Push the cleanup for a consumed parameter.
1854         if (isConsumed) {
1855           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1856                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1857           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1858                                                    precise);
1859         }
1860 
1861         if (lt == Qualifiers::OCL_Weak) {
1862           EmitARCInitWeak(DeclPtr, ArgVal);
1863           DoStore = false; // The weak init is a store, no need to do two.
1864         }
1865       }
1866 
1867       // Enter the cleanup scope.
1868       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1869     }
1870   }
1871 
1872   // Store the initial value into the alloca.
1873   if (DoStore)
1874     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
1875 
1876   setAddrOfLocalVar(&D, DeclPtr);
1877 
1878   // Emit debug info for param declaration.
1879   if (CGDebugInfo *DI = getDebugInfo()) {
1880     if (CGM.getCodeGenOpts().getDebugInfo() >=
1881         codegenoptions::LimitedDebugInfo) {
1882       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
1883     }
1884   }
1885 
1886   if (D.hasAttr<AnnotateAttr>())
1887     EmitVarAnnotations(&D, DeclPtr.getPointer());
1888 }
1889 
1890 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
1891                                             CodeGenFunction *CGF) {
1892   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
1893     return;
1894   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
1895 }
1896