1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 45 "Clang max alignment greater than what LLVM supports?"); 46 47 void CodeGenFunction::EmitDecl(const Decl &D) { 48 switch (D.getKind()) { 49 case Decl::BuiltinTemplate: 50 case Decl::TranslationUnit: 51 case Decl::ExternCContext: 52 case Decl::Namespace: 53 case Decl::UnresolvedUsingTypename: 54 case Decl::ClassTemplateSpecialization: 55 case Decl::ClassTemplatePartialSpecialization: 56 case Decl::VarTemplateSpecialization: 57 case Decl::VarTemplatePartialSpecialization: 58 case Decl::TemplateTypeParm: 59 case Decl::UnresolvedUsingValue: 60 case Decl::NonTypeTemplateParm: 61 case Decl::CXXDeductionGuide: 62 case Decl::CXXMethod: 63 case Decl::CXXConstructor: 64 case Decl::CXXDestructor: 65 case Decl::CXXConversion: 66 case Decl::Field: 67 case Decl::MSProperty: 68 case Decl::IndirectField: 69 case Decl::ObjCIvar: 70 case Decl::ObjCAtDefsField: 71 case Decl::ParmVar: 72 case Decl::ImplicitParam: 73 case Decl::ClassTemplate: 74 case Decl::VarTemplate: 75 case Decl::FunctionTemplate: 76 case Decl::TypeAliasTemplate: 77 case Decl::TemplateTemplateParm: 78 case Decl::ObjCMethod: 79 case Decl::ObjCCategory: 80 case Decl::ObjCProtocol: 81 case Decl::ObjCInterface: 82 case Decl::ObjCCategoryImpl: 83 case Decl::ObjCImplementation: 84 case Decl::ObjCProperty: 85 case Decl::ObjCCompatibleAlias: 86 case Decl::PragmaComment: 87 case Decl::PragmaDetectMismatch: 88 case Decl::AccessSpec: 89 case Decl::LinkageSpec: 90 case Decl::Export: 91 case Decl::ObjCPropertyImpl: 92 case Decl::FileScopeAsm: 93 case Decl::Friend: 94 case Decl::FriendTemplate: 95 case Decl::Block: 96 case Decl::Captured: 97 case Decl::ClassScopeFunctionSpecialization: 98 case Decl::UsingShadow: 99 case Decl::ConstructorUsingShadow: 100 case Decl::ObjCTypeParam: 101 case Decl::Binding: 102 case Decl::UnresolvedUsingIfExists: 103 llvm_unreachable("Declaration should not be in declstmts!"); 104 case Decl::Record: // struct/union/class X; 105 case Decl::CXXRecord: // struct/union/class X; [C++] 106 if (CGDebugInfo *DI = getDebugInfo()) 107 if (cast<RecordDecl>(D).getDefinition()) 108 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D))); 109 return; 110 case Decl::Enum: // enum X; 111 if (CGDebugInfo *DI = getDebugInfo()) 112 if (cast<EnumDecl>(D).getDefinition()) 113 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D))); 114 return; 115 case Decl::Function: // void X(); 116 case Decl::EnumConstant: // enum ? { X = ? } 117 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 118 case Decl::Label: // __label__ x; 119 case Decl::Import: 120 case Decl::MSGuid: // __declspec(uuid("...")) 121 case Decl::UnnamedGlobalConstant: 122 case Decl::TemplateParamObject: 123 case Decl::OMPThreadPrivate: 124 case Decl::OMPAllocate: 125 case Decl::OMPCapturedExpr: 126 case Decl::OMPRequires: 127 case Decl::Empty: 128 case Decl::Concept: 129 case Decl::LifetimeExtendedTemporary: 130 case Decl::RequiresExprBody: 131 // None of these decls require codegen support. 132 return; 133 134 case Decl::NamespaceAlias: 135 if (CGDebugInfo *DI = getDebugInfo()) 136 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 137 return; 138 case Decl::Using: // using X; [C++] 139 if (CGDebugInfo *DI = getDebugInfo()) 140 DI->EmitUsingDecl(cast<UsingDecl>(D)); 141 return; 142 case Decl::UsingEnum: // using enum X; [C++] 143 if (CGDebugInfo *DI = getDebugInfo()) 144 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D)); 145 return; 146 case Decl::UsingPack: 147 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 148 EmitDecl(*Using); 149 return; 150 case Decl::UsingDirective: // using namespace X; [C++] 151 if (CGDebugInfo *DI = getDebugInfo()) 152 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 153 return; 154 case Decl::Var: 155 case Decl::Decomposition: { 156 const VarDecl &VD = cast<VarDecl>(D); 157 assert(VD.isLocalVarDecl() && 158 "Should not see file-scope variables inside a function!"); 159 EmitVarDecl(VD); 160 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 161 for (auto *B : DD->bindings()) 162 if (auto *HD = B->getHoldingVar()) 163 EmitVarDecl(*HD); 164 return; 165 } 166 167 case Decl::OMPDeclareReduction: 168 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 169 170 case Decl::OMPDeclareMapper: 171 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 172 173 case Decl::Typedef: // typedef int X; 174 case Decl::TypeAlias: { // using X = int; [C++0x] 175 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); 176 if (CGDebugInfo *DI = getDebugInfo()) 177 DI->EmitAndRetainType(Ty); 178 if (Ty->isVariablyModifiedType()) 179 EmitVariablyModifiedType(Ty); 180 return; 181 } 182 } 183 } 184 185 /// EmitVarDecl - This method handles emission of any variable declaration 186 /// inside a function, including static vars etc. 187 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 188 if (D.hasExternalStorage()) 189 // Don't emit it now, allow it to be emitted lazily on its first use. 190 return; 191 192 // Some function-scope variable does not have static storage but still 193 // needs to be emitted like a static variable, e.g. a function-scope 194 // variable in constant address space in OpenCL. 195 if (D.getStorageDuration() != SD_Automatic) { 196 // Static sampler variables translated to function calls. 197 if (D.getType()->isSamplerT()) 198 return; 199 200 llvm::GlobalValue::LinkageTypes Linkage = 201 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 202 203 // FIXME: We need to force the emission/use of a guard variable for 204 // some variables even if we can constant-evaluate them because 205 // we can't guarantee every translation unit will constant-evaluate them. 206 207 return EmitStaticVarDecl(D, Linkage); 208 } 209 210 if (D.getType().getAddressSpace() == LangAS::opencl_local) 211 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 212 213 assert(D.hasLocalStorage()); 214 return EmitAutoVarDecl(D); 215 } 216 217 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 218 if (CGM.getLangOpts().CPlusPlus) 219 return CGM.getMangledName(&D).str(); 220 221 // If this isn't C++, we don't need a mangled name, just a pretty one. 222 assert(!D.isExternallyVisible() && "name shouldn't matter"); 223 std::string ContextName; 224 const DeclContext *DC = D.getDeclContext(); 225 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 226 DC = cast<DeclContext>(CD->getNonClosureContext()); 227 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 228 ContextName = std::string(CGM.getMangledName(FD)); 229 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 230 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 231 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 232 ContextName = OMD->getSelector().getAsString(); 233 else 234 llvm_unreachable("Unknown context for static var decl"); 235 236 ContextName += "." + D.getNameAsString(); 237 return ContextName; 238 } 239 240 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 241 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 242 // In general, we don't always emit static var decls once before we reference 243 // them. It is possible to reference them before emitting the function that 244 // contains them, and it is possible to emit the containing function multiple 245 // times. 246 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 247 return ExistingGV; 248 249 QualType Ty = D.getType(); 250 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 251 252 // Use the label if the variable is renamed with the asm-label extension. 253 std::string Name; 254 if (D.hasAttr<AsmLabelAttr>()) 255 Name = std::string(getMangledName(&D)); 256 else 257 Name = getStaticDeclName(*this, D); 258 259 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 260 LangAS AS = GetGlobalVarAddressSpace(&D); 261 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 262 263 // OpenCL variables in local address space and CUDA shared 264 // variables cannot have an initializer. 265 llvm::Constant *Init = nullptr; 266 if (Ty.getAddressSpace() == LangAS::opencl_local || 267 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 268 Init = llvm::UndefValue::get(LTy); 269 else 270 Init = EmitNullConstant(Ty); 271 272 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 273 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 274 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 275 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 276 277 if (supportsCOMDAT() && GV->isWeakForLinker()) 278 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 279 280 if (D.getTLSKind()) 281 setTLSMode(GV, D); 282 283 setGVProperties(GV, &D); 284 285 // Make sure the result is of the correct type. 286 LangAS ExpectedAS = Ty.getAddressSpace(); 287 llvm::Constant *Addr = GV; 288 if (AS != ExpectedAS) { 289 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 290 *this, GV, AS, ExpectedAS, 291 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 292 } 293 294 setStaticLocalDeclAddress(&D, Addr); 295 296 // Ensure that the static local gets initialized by making sure the parent 297 // function gets emitted eventually. 298 const Decl *DC = cast<Decl>(D.getDeclContext()); 299 300 // We can't name blocks or captured statements directly, so try to emit their 301 // parents. 302 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 303 DC = DC->getNonClosureContext(); 304 // FIXME: Ensure that global blocks get emitted. 305 if (!DC) 306 return Addr; 307 } 308 309 GlobalDecl GD; 310 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 311 GD = GlobalDecl(CD, Ctor_Base); 312 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 313 GD = GlobalDecl(DD, Dtor_Base); 314 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 315 GD = GlobalDecl(FD); 316 else { 317 // Don't do anything for Obj-C method decls or global closures. We should 318 // never defer them. 319 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 320 } 321 if (GD.getDecl()) { 322 // Disable emission of the parent function for the OpenMP device codegen. 323 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 324 (void)GetAddrOfGlobal(GD); 325 } 326 327 return Addr; 328 } 329 330 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 331 /// global variable that has already been created for it. If the initializer 332 /// has a different type than GV does, this may free GV and return a different 333 /// one. Otherwise it just returns GV. 334 llvm::GlobalVariable * 335 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 336 llvm::GlobalVariable *GV) { 337 ConstantEmitter emitter(*this); 338 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 339 340 // If constant emission failed, then this should be a C++ static 341 // initializer. 342 if (!Init) { 343 if (!getLangOpts().CPlusPlus) 344 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 345 else if (HaveInsertPoint()) { 346 // Since we have a static initializer, this global variable can't 347 // be constant. 348 GV->setConstant(false); 349 350 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 351 } 352 return GV; 353 } 354 355 // The initializer may differ in type from the global. Rewrite 356 // the global to match the initializer. (We have to do this 357 // because some types, like unions, can't be completely represented 358 // in the LLVM type system.) 359 if (GV->getValueType() != Init->getType()) { 360 llvm::GlobalVariable *OldGV = GV; 361 362 GV = new llvm::GlobalVariable( 363 CGM.getModule(), Init->getType(), OldGV->isConstant(), 364 OldGV->getLinkage(), Init, "", 365 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(), 366 OldGV->getType()->getPointerAddressSpace()); 367 GV->setVisibility(OldGV->getVisibility()); 368 GV->setDSOLocal(OldGV->isDSOLocal()); 369 GV->setComdat(OldGV->getComdat()); 370 371 // Steal the name of the old global 372 GV->takeName(OldGV); 373 374 // Replace all uses of the old global with the new global 375 llvm::Constant *NewPtrForOldDecl = 376 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 377 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 378 379 // Erase the old global, since it is no longer used. 380 OldGV->eraseFromParent(); 381 } 382 383 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 384 GV->setInitializer(Init); 385 386 emitter.finalize(GV); 387 388 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 389 HaveInsertPoint()) { 390 // We have a constant initializer, but a nontrivial destructor. We still 391 // need to perform a guarded "initialization" in order to register the 392 // destructor. 393 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 394 } 395 396 return GV; 397 } 398 399 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 400 llvm::GlobalValue::LinkageTypes Linkage) { 401 // Check to see if we already have a global variable for this 402 // declaration. This can happen when double-emitting function 403 // bodies, e.g. with complete and base constructors. 404 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 405 CharUnits alignment = getContext().getDeclAlign(&D); 406 407 // Store into LocalDeclMap before generating initializer to handle 408 // circular references. 409 llvm::Type *elemTy = ConvertTypeForMem(D.getType()); 410 setAddrOfLocalVar(&D, Address(addr, elemTy, alignment)); 411 412 // We can't have a VLA here, but we can have a pointer to a VLA, 413 // even though that doesn't really make any sense. 414 // Make sure to evaluate VLA bounds now so that we have them for later. 415 if (D.getType()->isVariablyModifiedType()) 416 EmitVariablyModifiedType(D.getType()); 417 418 // Save the type in case adding the initializer forces a type change. 419 llvm::Type *expectedType = addr->getType(); 420 421 llvm::GlobalVariable *var = 422 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 423 424 // CUDA's local and local static __shared__ variables should not 425 // have any non-empty initializers. This is ensured by Sema. 426 // Whatever initializer such variable may have when it gets here is 427 // a no-op and should not be emitted. 428 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 429 D.hasAttr<CUDASharedAttr>(); 430 // If this value has an initializer, emit it. 431 if (D.getInit() && !isCudaSharedVar) 432 var = AddInitializerToStaticVarDecl(D, var); 433 434 var->setAlignment(alignment.getAsAlign()); 435 436 if (D.hasAttr<AnnotateAttr>()) 437 CGM.AddGlobalAnnotations(&D, var); 438 439 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 440 var->addAttribute("bss-section", SA->getName()); 441 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 442 var->addAttribute("data-section", SA->getName()); 443 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 444 var->addAttribute("rodata-section", SA->getName()); 445 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 446 var->addAttribute("relro-section", SA->getName()); 447 448 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 449 var->setSection(SA->getName()); 450 451 if (D.hasAttr<RetainAttr>()) 452 CGM.addUsedGlobal(var); 453 else if (D.hasAttr<UsedAttr>()) 454 CGM.addUsedOrCompilerUsedGlobal(var); 455 456 // We may have to cast the constant because of the initializer 457 // mismatch above. 458 // 459 // FIXME: It is really dangerous to store this in the map; if anyone 460 // RAUW's the GV uses of this constant will be invalid. 461 llvm::Constant *castedAddr = 462 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 463 LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment); 464 CGM.setStaticLocalDeclAddress(&D, castedAddr); 465 466 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 467 468 // Emit global variable debug descriptor for static vars. 469 CGDebugInfo *DI = getDebugInfo(); 470 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 471 DI->setLocation(D.getLocation()); 472 DI->EmitGlobalVariable(var, &D); 473 } 474 } 475 476 namespace { 477 struct DestroyObject final : EHScopeStack::Cleanup { 478 DestroyObject(Address addr, QualType type, 479 CodeGenFunction::Destroyer *destroyer, 480 bool useEHCleanupForArray) 481 : addr(addr), type(type), destroyer(destroyer), 482 useEHCleanupForArray(useEHCleanupForArray) {} 483 484 Address addr; 485 QualType type; 486 CodeGenFunction::Destroyer *destroyer; 487 bool useEHCleanupForArray; 488 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 // Don't use an EH cleanup recursively from an EH cleanup. 491 bool useEHCleanupForArray = 492 flags.isForNormalCleanup() && this->useEHCleanupForArray; 493 494 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 495 } 496 }; 497 498 template <class Derived> 499 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 500 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 501 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 502 503 llvm::Value *NRVOFlag; 504 Address Loc; 505 QualType Ty; 506 507 void Emit(CodeGenFunction &CGF, Flags flags) override { 508 // Along the exceptions path we always execute the dtor. 509 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 510 511 llvm::BasicBlock *SkipDtorBB = nullptr; 512 if (NRVO) { 513 // If we exited via NRVO, we skip the destructor call. 514 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 515 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 516 llvm::Value *DidNRVO = 517 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 518 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 519 CGF.EmitBlock(RunDtorBB); 520 } 521 522 static_cast<Derived *>(this)->emitDestructorCall(CGF); 523 524 if (NRVO) CGF.EmitBlock(SkipDtorBB); 525 } 526 527 virtual ~DestroyNRVOVariable() = default; 528 }; 529 530 struct DestroyNRVOVariableCXX final 531 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 532 DestroyNRVOVariableCXX(Address addr, QualType type, 533 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 534 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 535 Dtor(Dtor) {} 536 537 const CXXDestructorDecl *Dtor; 538 539 void emitDestructorCall(CodeGenFunction &CGF) { 540 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 541 /*ForVirtualBase=*/false, 542 /*Delegating=*/false, Loc, Ty); 543 } 544 }; 545 546 struct DestroyNRVOVariableC final 547 : DestroyNRVOVariable<DestroyNRVOVariableC> { 548 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 549 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 550 551 void emitDestructorCall(CodeGenFunction &CGF) { 552 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 553 } 554 }; 555 556 struct CallStackRestore final : EHScopeStack::Cleanup { 557 Address Stack; 558 CallStackRestore(Address Stack) : Stack(Stack) {} 559 bool isRedundantBeforeReturn() override { return true; } 560 void Emit(CodeGenFunction &CGF, Flags flags) override { 561 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 562 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 563 CGF.Builder.CreateCall(F, V); 564 } 565 }; 566 567 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 568 const VarDecl &Var; 569 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 570 571 void Emit(CodeGenFunction &CGF, Flags flags) override { 572 // Compute the address of the local variable, in case it's a 573 // byref or something. 574 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 575 Var.getType(), VK_LValue, SourceLocation()); 576 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 577 SourceLocation()); 578 CGF.EmitExtendGCLifetime(value); 579 } 580 }; 581 582 struct CallCleanupFunction final : EHScopeStack::Cleanup { 583 llvm::Constant *CleanupFn; 584 const CGFunctionInfo &FnInfo; 585 const VarDecl &Var; 586 587 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 588 const VarDecl *Var) 589 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 590 591 void Emit(CodeGenFunction &CGF, Flags flags) override { 592 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 593 Var.getType(), VK_LValue, SourceLocation()); 594 // Compute the address of the local variable, in case it's a byref 595 // or something. 596 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 597 598 // In some cases, the type of the function argument will be different from 599 // the type of the pointer. An example of this is 600 // void f(void* arg); 601 // __attribute__((cleanup(f))) void *g; 602 // 603 // To fix this we insert a bitcast here. 604 QualType ArgTy = FnInfo.arg_begin()->type; 605 llvm::Value *Arg = 606 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 607 608 CallArgList Args; 609 Args.add(RValue::get(Arg), 610 CGF.getContext().getPointerType(Var.getType())); 611 auto Callee = CGCallee::forDirect(CleanupFn); 612 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 613 } 614 }; 615 } // end anonymous namespace 616 617 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 618 /// variable with lifetime. 619 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 620 Address addr, 621 Qualifiers::ObjCLifetime lifetime) { 622 switch (lifetime) { 623 case Qualifiers::OCL_None: 624 llvm_unreachable("present but none"); 625 626 case Qualifiers::OCL_ExplicitNone: 627 // nothing to do 628 break; 629 630 case Qualifiers::OCL_Strong: { 631 CodeGenFunction::Destroyer *destroyer = 632 (var.hasAttr<ObjCPreciseLifetimeAttr>() 633 ? CodeGenFunction::destroyARCStrongPrecise 634 : CodeGenFunction::destroyARCStrongImprecise); 635 636 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 637 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 638 cleanupKind & EHCleanup); 639 break; 640 } 641 case Qualifiers::OCL_Autoreleasing: 642 // nothing to do 643 break; 644 645 case Qualifiers::OCL_Weak: 646 // __weak objects always get EH cleanups; otherwise, exceptions 647 // could cause really nasty crashes instead of mere leaks. 648 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 649 CodeGenFunction::destroyARCWeak, 650 /*useEHCleanup*/ true); 651 break; 652 } 653 } 654 655 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 656 if (const Expr *e = dyn_cast<Expr>(s)) { 657 // Skip the most common kinds of expressions that make 658 // hierarchy-walking expensive. 659 s = e = e->IgnoreParenCasts(); 660 661 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 662 return (ref->getDecl() == &var); 663 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 664 const BlockDecl *block = be->getBlockDecl(); 665 for (const auto &I : block->captures()) { 666 if (I.getVariable() == &var) 667 return true; 668 } 669 } 670 } 671 672 for (const Stmt *SubStmt : s->children()) 673 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 674 if (SubStmt && isAccessedBy(var, SubStmt)) 675 return true; 676 677 return false; 678 } 679 680 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 681 if (!decl) return false; 682 if (!isa<VarDecl>(decl)) return false; 683 const VarDecl *var = cast<VarDecl>(decl); 684 return isAccessedBy(*var, e); 685 } 686 687 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 688 const LValue &destLV, const Expr *init) { 689 bool needsCast = false; 690 691 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 692 switch (castExpr->getCastKind()) { 693 // Look through casts that don't require representation changes. 694 case CK_NoOp: 695 case CK_BitCast: 696 case CK_BlockPointerToObjCPointerCast: 697 needsCast = true; 698 break; 699 700 // If we find an l-value to r-value cast from a __weak variable, 701 // emit this operation as a copy or move. 702 case CK_LValueToRValue: { 703 const Expr *srcExpr = castExpr->getSubExpr(); 704 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 705 return false; 706 707 // Emit the source l-value. 708 LValue srcLV = CGF.EmitLValue(srcExpr); 709 710 // Handle a formal type change to avoid asserting. 711 auto srcAddr = srcLV.getAddress(CGF); 712 if (needsCast) { 713 srcAddr = CGF.Builder.CreateElementBitCast( 714 srcAddr, destLV.getAddress(CGF).getElementType()); 715 } 716 717 // If it was an l-value, use objc_copyWeak. 718 if (srcExpr->isLValue()) { 719 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 720 } else { 721 assert(srcExpr->isXValue()); 722 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 723 } 724 return true; 725 } 726 727 // Stop at anything else. 728 default: 729 return false; 730 } 731 732 init = castExpr->getSubExpr(); 733 } 734 return false; 735 } 736 737 static void drillIntoBlockVariable(CodeGenFunction &CGF, 738 LValue &lvalue, 739 const VarDecl *var) { 740 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 741 } 742 743 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 744 SourceLocation Loc) { 745 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 746 return; 747 748 auto Nullability = LHS.getType()->getNullability(getContext()); 749 if (!Nullability || *Nullability != NullabilityKind::NonNull) 750 return; 751 752 // Check if the right hand side of the assignment is nonnull, if the left 753 // hand side must be nonnull. 754 SanitizerScope SanScope(this); 755 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 756 llvm::Constant *StaticData[] = { 757 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 758 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 759 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 760 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 761 SanitizerHandler::TypeMismatch, StaticData, RHS); 762 } 763 764 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 765 LValue lvalue, bool capturedByInit) { 766 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 767 if (!lifetime) { 768 llvm::Value *value = EmitScalarExpr(init); 769 if (capturedByInit) 770 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 771 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 772 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 773 return; 774 } 775 776 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 777 init = DIE->getExpr(); 778 779 // If we're emitting a value with lifetime, we have to do the 780 // initialization *before* we leave the cleanup scopes. 781 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) { 782 CodeGenFunction::RunCleanupsScope Scope(*this); 783 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit); 784 } 785 786 // We have to maintain the illusion that the variable is 787 // zero-initialized. If the variable might be accessed in its 788 // initializer, zero-initialize before running the initializer, then 789 // actually perform the initialization with an assign. 790 bool accessedByInit = false; 791 if (lifetime != Qualifiers::OCL_ExplicitNone) 792 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 793 if (accessedByInit) { 794 LValue tempLV = lvalue; 795 // Drill down to the __block object if necessary. 796 if (capturedByInit) { 797 // We can use a simple GEP for this because it can't have been 798 // moved yet. 799 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 800 cast<VarDecl>(D), 801 /*follow*/ false)); 802 } 803 804 auto ty = 805 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 806 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 807 808 // If __weak, we want to use a barrier under certain conditions. 809 if (lifetime == Qualifiers::OCL_Weak) 810 EmitARCInitWeak(tempLV.getAddress(*this), zero); 811 812 // Otherwise just do a simple store. 813 else 814 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 815 } 816 817 // Emit the initializer. 818 llvm::Value *value = nullptr; 819 820 switch (lifetime) { 821 case Qualifiers::OCL_None: 822 llvm_unreachable("present but none"); 823 824 case Qualifiers::OCL_Strong: { 825 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 826 value = EmitARCRetainScalarExpr(init); 827 break; 828 } 829 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 830 // that we omit the retain, and causes non-autoreleased return values to be 831 // immediately released. 832 LLVM_FALLTHROUGH; 833 } 834 835 case Qualifiers::OCL_ExplicitNone: 836 value = EmitARCUnsafeUnretainedScalarExpr(init); 837 break; 838 839 case Qualifiers::OCL_Weak: { 840 // If it's not accessed by the initializer, try to emit the 841 // initialization with a copy or move. 842 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 843 return; 844 } 845 846 // No way to optimize a producing initializer into this. It's not 847 // worth optimizing for, because the value will immediately 848 // disappear in the common case. 849 value = EmitScalarExpr(init); 850 851 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 852 if (accessedByInit) 853 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 854 else 855 EmitARCInitWeak(lvalue.getAddress(*this), value); 856 return; 857 } 858 859 case Qualifiers::OCL_Autoreleasing: 860 value = EmitARCRetainAutoreleaseScalarExpr(init); 861 break; 862 } 863 864 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 865 866 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 867 868 // If the variable might have been accessed by its initializer, we 869 // might have to initialize with a barrier. We have to do this for 870 // both __weak and __strong, but __weak got filtered out above. 871 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 872 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 873 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 874 EmitARCRelease(oldValue, ARCImpreciseLifetime); 875 return; 876 } 877 878 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 879 } 880 881 /// Decide whether we can emit the non-zero parts of the specified initializer 882 /// with equal or fewer than NumStores scalar stores. 883 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 884 unsigned &NumStores) { 885 // Zero and Undef never requires any extra stores. 886 if (isa<llvm::ConstantAggregateZero>(Init) || 887 isa<llvm::ConstantPointerNull>(Init) || 888 isa<llvm::UndefValue>(Init)) 889 return true; 890 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 891 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 892 isa<llvm::ConstantExpr>(Init)) 893 return Init->isNullValue() || NumStores--; 894 895 // See if we can emit each element. 896 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 897 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 898 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 899 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 900 return false; 901 } 902 return true; 903 } 904 905 if (llvm::ConstantDataSequential *CDS = 906 dyn_cast<llvm::ConstantDataSequential>(Init)) { 907 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 908 llvm::Constant *Elt = CDS->getElementAsConstant(i); 909 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 910 return false; 911 } 912 return true; 913 } 914 915 // Anything else is hard and scary. 916 return false; 917 } 918 919 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 920 /// the scalar stores that would be required. 921 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 922 llvm::Constant *Init, Address Loc, 923 bool isVolatile, CGBuilderTy &Builder, 924 bool IsAutoInit) { 925 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 926 "called emitStoresForInitAfterBZero for zero or undef value."); 927 928 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 929 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 930 isa<llvm::ConstantExpr>(Init)) { 931 auto *I = Builder.CreateStore(Init, Loc, isVolatile); 932 if (IsAutoInit) 933 I->addAnnotationMetadata("auto-init"); 934 return; 935 } 936 937 if (llvm::ConstantDataSequential *CDS = 938 dyn_cast<llvm::ConstantDataSequential>(Init)) { 939 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 940 llvm::Constant *Elt = CDS->getElementAsConstant(i); 941 942 // If necessary, get a pointer to the element and emit it. 943 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 944 emitStoresForInitAfterBZero( 945 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 946 Builder, IsAutoInit); 947 } 948 return; 949 } 950 951 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 952 "Unknown value type!"); 953 954 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 955 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 956 957 // If necessary, get a pointer to the element and emit it. 958 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 959 emitStoresForInitAfterBZero(CGM, Elt, 960 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 961 isVolatile, Builder, IsAutoInit); 962 } 963 } 964 965 /// Decide whether we should use bzero plus some stores to initialize a local 966 /// variable instead of using a memcpy from a constant global. It is beneficial 967 /// to use bzero if the global is all zeros, or mostly zeros and large. 968 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 969 uint64_t GlobalSize) { 970 // If a global is all zeros, always use a bzero. 971 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 972 973 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 974 // do it if it will require 6 or fewer scalar stores. 975 // TODO: Should budget depends on the size? Avoiding a large global warrants 976 // plopping in more stores. 977 unsigned StoreBudget = 6; 978 uint64_t SizeLimit = 32; 979 980 return GlobalSize > SizeLimit && 981 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 982 } 983 984 /// Decide whether we should use memset to initialize a local variable instead 985 /// of using a memcpy from a constant global. Assumes we've already decided to 986 /// not user bzero. 987 /// FIXME We could be more clever, as we are for bzero above, and generate 988 /// memset followed by stores. It's unclear that's worth the effort. 989 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 990 uint64_t GlobalSize, 991 const llvm::DataLayout &DL) { 992 uint64_t SizeLimit = 32; 993 if (GlobalSize <= SizeLimit) 994 return nullptr; 995 return llvm::isBytewiseValue(Init, DL); 996 } 997 998 /// Decide whether we want to split a constant structure or array store into a 999 /// sequence of its fields' stores. This may cost us code size and compilation 1000 /// speed, but plays better with store optimizations. 1001 static bool shouldSplitConstantStore(CodeGenModule &CGM, 1002 uint64_t GlobalByteSize) { 1003 // Don't break things that occupy more than one cacheline. 1004 uint64_t ByteSizeLimit = 64; 1005 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1006 return false; 1007 if (GlobalByteSize <= ByteSizeLimit) 1008 return true; 1009 return false; 1010 } 1011 1012 enum class IsPattern { No, Yes }; 1013 1014 /// Generate a constant filled with either a pattern or zeroes. 1015 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 1016 llvm::Type *Ty) { 1017 if (isPattern == IsPattern::Yes) 1018 return initializationPatternFor(CGM, Ty); 1019 else 1020 return llvm::Constant::getNullValue(Ty); 1021 } 1022 1023 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1024 llvm::Constant *constant); 1025 1026 /// Helper function for constWithPadding() to deal with padding in structures. 1027 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1028 IsPattern isPattern, 1029 llvm::StructType *STy, 1030 llvm::Constant *constant) { 1031 const llvm::DataLayout &DL = CGM.getDataLayout(); 1032 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1033 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1034 unsigned SizeSoFar = 0; 1035 SmallVector<llvm::Constant *, 8> Values; 1036 bool NestedIntact = true; 1037 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1038 unsigned CurOff = Layout->getElementOffset(i); 1039 if (SizeSoFar < CurOff) { 1040 assert(!STy->isPacked()); 1041 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1042 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1043 } 1044 llvm::Constant *CurOp; 1045 if (constant->isZeroValue()) 1046 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1047 else 1048 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1049 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1050 if (CurOp != NewOp) 1051 NestedIntact = false; 1052 Values.push_back(NewOp); 1053 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1054 } 1055 unsigned TotalSize = Layout->getSizeInBytes(); 1056 if (SizeSoFar < TotalSize) { 1057 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1058 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1059 } 1060 if (NestedIntact && Values.size() == STy->getNumElements()) 1061 return constant; 1062 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1063 } 1064 1065 /// Replace all padding bytes in a given constant with either a pattern byte or 1066 /// 0x00. 1067 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1068 llvm::Constant *constant) { 1069 llvm::Type *OrigTy = constant->getType(); 1070 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1071 return constStructWithPadding(CGM, isPattern, STy, constant); 1072 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1073 llvm::SmallVector<llvm::Constant *, 8> Values; 1074 uint64_t Size = ArrayTy->getNumElements(); 1075 if (!Size) 1076 return constant; 1077 llvm::Type *ElemTy = ArrayTy->getElementType(); 1078 bool ZeroInitializer = constant->isNullValue(); 1079 llvm::Constant *OpValue, *PaddedOp; 1080 if (ZeroInitializer) { 1081 OpValue = llvm::Constant::getNullValue(ElemTy); 1082 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1083 } 1084 for (unsigned Op = 0; Op != Size; ++Op) { 1085 if (!ZeroInitializer) { 1086 OpValue = constant->getAggregateElement(Op); 1087 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1088 } 1089 Values.push_back(PaddedOp); 1090 } 1091 auto *NewElemTy = Values[0]->getType(); 1092 if (NewElemTy == ElemTy) 1093 return constant; 1094 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1095 return llvm::ConstantArray::get(NewArrayTy, Values); 1096 } 1097 // FIXME: Add handling for tail padding in vectors. Vectors don't 1098 // have padding between or inside elements, but the total amount of 1099 // data can be less than the allocated size. 1100 return constant; 1101 } 1102 1103 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1104 llvm::Constant *Constant, 1105 CharUnits Align) { 1106 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1107 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1108 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1109 return CC->getNameAsString(); 1110 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1111 return CD->getNameAsString(); 1112 return std::string(getMangledName(FD)); 1113 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1114 return OM->getNameAsString(); 1115 } else if (isa<BlockDecl>(DC)) { 1116 return "<block>"; 1117 } else if (isa<CapturedDecl>(DC)) { 1118 return "<captured>"; 1119 } else { 1120 llvm_unreachable("expected a function or method"); 1121 } 1122 }; 1123 1124 // Form a simple per-variable cache of these values in case we find we 1125 // want to reuse them. 1126 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1127 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1128 auto *Ty = Constant->getType(); 1129 bool isConstant = true; 1130 llvm::GlobalVariable *InsertBefore = nullptr; 1131 unsigned AS = 1132 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace()); 1133 std::string Name; 1134 if (D.hasGlobalStorage()) 1135 Name = getMangledName(&D).str() + ".const"; 1136 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1137 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1138 else 1139 llvm_unreachable("local variable has no parent function or method"); 1140 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1141 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1142 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1143 GV->setAlignment(Align.getAsAlign()); 1144 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1145 CacheEntry = GV; 1146 } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) { 1147 CacheEntry->setAlignment(Align.getAsAlign()); 1148 } 1149 1150 return Address(CacheEntry, CacheEntry->getValueType(), Align); 1151 } 1152 1153 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1154 const VarDecl &D, 1155 CGBuilderTy &Builder, 1156 llvm::Constant *Constant, 1157 CharUnits Align) { 1158 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1159 return Builder.CreateElementBitCast(SrcPtr, CGM.Int8Ty); 1160 } 1161 1162 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1163 Address Loc, bool isVolatile, 1164 CGBuilderTy &Builder, 1165 llvm::Constant *constant, bool IsAutoInit) { 1166 auto *Ty = constant->getType(); 1167 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1168 if (!ConstantSize) 1169 return; 1170 1171 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1172 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1173 if (canDoSingleStore) { 1174 auto *I = Builder.CreateStore(constant, Loc, isVolatile); 1175 if (IsAutoInit) 1176 I->addAnnotationMetadata("auto-init"); 1177 return; 1178 } 1179 1180 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1181 1182 // If the initializer is all or mostly the same, codegen with bzero / memset 1183 // then do a few stores afterward. 1184 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1185 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), 1186 SizeVal, isVolatile); 1187 if (IsAutoInit) 1188 I->addAnnotationMetadata("auto-init"); 1189 1190 bool valueAlreadyCorrect = 1191 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1192 if (!valueAlreadyCorrect) { 1193 Loc = Builder.CreateElementBitCast(Loc, Ty); 1194 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder, 1195 IsAutoInit); 1196 } 1197 return; 1198 } 1199 1200 // If the initializer is a repeated byte pattern, use memset. 1201 llvm::Value *Pattern = 1202 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1203 if (Pattern) { 1204 uint64_t Value = 0x00; 1205 if (!isa<llvm::UndefValue>(Pattern)) { 1206 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1207 assert(AP.getBitWidth() <= 8); 1208 Value = AP.getLimitedValue(); 1209 } 1210 auto *I = Builder.CreateMemSet( 1211 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile); 1212 if (IsAutoInit) 1213 I->addAnnotationMetadata("auto-init"); 1214 return; 1215 } 1216 1217 // If the initializer is small, use a handful of stores. 1218 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1219 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1220 // FIXME: handle the case when STy != Loc.getElementType(). 1221 if (STy == Loc.getElementType()) { 1222 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1223 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1224 emitStoresForConstant( 1225 CGM, D, EltPtr, isVolatile, Builder, 1226 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1227 IsAutoInit); 1228 } 1229 return; 1230 } 1231 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1232 // FIXME: handle the case when ATy != Loc.getElementType(). 1233 if (ATy == Loc.getElementType()) { 1234 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1235 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1236 emitStoresForConstant( 1237 CGM, D, EltPtr, isVolatile, Builder, 1238 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1239 IsAutoInit); 1240 } 1241 return; 1242 } 1243 } 1244 } 1245 1246 // Copy from a global. 1247 auto *I = 1248 Builder.CreateMemCpy(Loc, 1249 createUnnamedGlobalForMemcpyFrom( 1250 CGM, D, Builder, constant, Loc.getAlignment()), 1251 SizeVal, isVolatile); 1252 if (IsAutoInit) 1253 I->addAnnotationMetadata("auto-init"); 1254 } 1255 1256 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1257 Address Loc, bool isVolatile, 1258 CGBuilderTy &Builder) { 1259 llvm::Type *ElTy = Loc.getElementType(); 1260 llvm::Constant *constant = 1261 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1262 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1263 /*IsAutoInit=*/true); 1264 } 1265 1266 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1267 Address Loc, bool isVolatile, 1268 CGBuilderTy &Builder) { 1269 llvm::Type *ElTy = Loc.getElementType(); 1270 llvm::Constant *constant = constWithPadding( 1271 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1272 assert(!isa<llvm::UndefValue>(constant)); 1273 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1274 /*IsAutoInit=*/true); 1275 } 1276 1277 static bool containsUndef(llvm::Constant *constant) { 1278 auto *Ty = constant->getType(); 1279 if (isa<llvm::UndefValue>(constant)) 1280 return true; 1281 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1282 for (llvm::Use &Op : constant->operands()) 1283 if (containsUndef(cast<llvm::Constant>(Op))) 1284 return true; 1285 return false; 1286 } 1287 1288 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1289 llvm::Constant *constant) { 1290 auto *Ty = constant->getType(); 1291 if (isa<llvm::UndefValue>(constant)) 1292 return patternOrZeroFor(CGM, isPattern, Ty); 1293 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1294 return constant; 1295 if (!containsUndef(constant)) 1296 return constant; 1297 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1298 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1299 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1300 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1301 } 1302 if (Ty->isStructTy()) 1303 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1304 if (Ty->isArrayTy()) 1305 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1306 assert(Ty->isVectorTy()); 1307 return llvm::ConstantVector::get(Values); 1308 } 1309 1310 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1311 /// variable declaration with auto, register, or no storage class specifier. 1312 /// These turn into simple stack objects, or GlobalValues depending on target. 1313 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1314 AutoVarEmission emission = EmitAutoVarAlloca(D); 1315 EmitAutoVarInit(emission); 1316 EmitAutoVarCleanups(emission); 1317 } 1318 1319 /// Emit a lifetime.begin marker if some criteria are satisfied. 1320 /// \return a pointer to the temporary size Value if a marker was emitted, null 1321 /// otherwise 1322 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size, 1323 llvm::Value *Addr) { 1324 if (!ShouldEmitLifetimeMarkers) 1325 return nullptr; 1326 1327 assert(Addr->getType()->getPointerAddressSpace() == 1328 CGM.getDataLayout().getAllocaAddrSpace() && 1329 "Pointer should be in alloca address space"); 1330 llvm::Value *SizeV = llvm::ConstantInt::get( 1331 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue()); 1332 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1333 llvm::CallInst *C = 1334 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1335 C->setDoesNotThrow(); 1336 return SizeV; 1337 } 1338 1339 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1340 assert(Addr->getType()->getPointerAddressSpace() == 1341 CGM.getDataLayout().getAllocaAddrSpace() && 1342 "Pointer should be in alloca address space"); 1343 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1344 llvm::CallInst *C = 1345 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1346 C->setDoesNotThrow(); 1347 } 1348 1349 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1350 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1351 // For each dimension stores its QualType and corresponding 1352 // size-expression Value. 1353 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1354 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1355 1356 // Break down the array into individual dimensions. 1357 QualType Type1D = D.getType(); 1358 while (getContext().getAsVariableArrayType(Type1D)) { 1359 auto VlaSize = getVLAElements1D(Type1D); 1360 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1361 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1362 else { 1363 // Generate a locally unique name for the size expression. 1364 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1365 SmallString<12> Buffer; 1366 StringRef NameRef = Name.toStringRef(Buffer); 1367 auto &Ident = getContext().Idents.getOwn(NameRef); 1368 VLAExprNames.push_back(&Ident); 1369 auto SizeExprAddr = 1370 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1371 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1372 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1373 Type1D.getUnqualifiedType()); 1374 } 1375 Type1D = VlaSize.Type; 1376 } 1377 1378 if (!EmitDebugInfo) 1379 return; 1380 1381 // Register each dimension's size-expression with a DILocalVariable, 1382 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1383 // to describe this array. 1384 unsigned NameIdx = 0; 1385 for (auto &VlaSize : Dimensions) { 1386 llvm::Metadata *MD; 1387 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1388 MD = llvm::ConstantAsMetadata::get(C); 1389 else { 1390 // Create an artificial VarDecl to generate debug info for. 1391 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1392 assert(cast<llvm::PointerType>(VlaSize.NumElts->getType()) 1393 ->isOpaqueOrPointeeTypeMatches(SizeTy) && 1394 "Number of VLA elements must be SizeTy"); 1395 auto QT = getContext().getIntTypeForBitwidth( 1396 SizeTy->getScalarSizeInBits(), false); 1397 auto *ArtificialDecl = VarDecl::Create( 1398 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1399 D.getLocation(), D.getLocation(), NameIdent, QT, 1400 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1401 ArtificialDecl->setImplicit(); 1402 1403 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1404 Builder); 1405 } 1406 assert(MD && "No Size expression debug node created"); 1407 DI->registerVLASizeExpression(VlaSize.Type, MD); 1408 } 1409 } 1410 1411 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1412 /// local variable. Does not emit initialization or destruction. 1413 CodeGenFunction::AutoVarEmission 1414 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1415 QualType Ty = D.getType(); 1416 assert( 1417 Ty.getAddressSpace() == LangAS::Default || 1418 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1419 1420 AutoVarEmission emission(D); 1421 1422 bool isEscapingByRef = D.isEscapingByref(); 1423 emission.IsEscapingByRef = isEscapingByRef; 1424 1425 CharUnits alignment = getContext().getDeclAlign(&D); 1426 1427 // If the type is variably-modified, emit all the VLA sizes for it. 1428 if (Ty->isVariablyModifiedType()) 1429 EmitVariablyModifiedType(Ty); 1430 1431 auto *DI = getDebugInfo(); 1432 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1433 1434 Address address = Address::invalid(); 1435 Address AllocaAddr = Address::invalid(); 1436 Address OpenMPLocalAddr = Address::invalid(); 1437 if (CGM.getLangOpts().OpenMPIRBuilder) 1438 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1439 else 1440 OpenMPLocalAddr = 1441 getLangOpts().OpenMP 1442 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1443 : Address::invalid(); 1444 1445 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1446 1447 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1448 address = OpenMPLocalAddr; 1449 AllocaAddr = OpenMPLocalAddr; 1450 } else if (Ty->isConstantSizeType()) { 1451 // If this value is an array or struct with a statically determinable 1452 // constant initializer, there are optimizations we can do. 1453 // 1454 // TODO: We should constant-evaluate the initializer of any variable, 1455 // as long as it is initialized by a constant expression. Currently, 1456 // isConstantInitializer produces wrong answers for structs with 1457 // reference or bitfield members, and a few other cases, and checking 1458 // for POD-ness protects us from some of these. 1459 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1460 (D.isConstexpr() || 1461 ((Ty.isPODType(getContext()) || 1462 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1463 D.getInit()->isConstantInitializer(getContext(), false)))) { 1464 1465 // If the variable's a const type, and it's neither an NRVO 1466 // candidate nor a __block variable and has no mutable members, 1467 // emit it as a global instead. 1468 // Exception is if a variable is located in non-constant address space 1469 // in OpenCL. 1470 if ((!getLangOpts().OpenCL || 1471 Ty.getAddressSpace() == LangAS::opencl_constant) && 1472 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1473 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1474 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1475 1476 // Signal this condition to later callbacks. 1477 emission.Addr = Address::invalid(); 1478 assert(emission.wasEmittedAsGlobal()); 1479 return emission; 1480 } 1481 1482 // Otherwise, tell the initialization code that we're in this case. 1483 emission.IsConstantAggregate = true; 1484 } 1485 1486 // A normal fixed sized variable becomes an alloca in the entry block, 1487 // unless: 1488 // - it's an NRVO variable. 1489 // - we are compiling OpenMP and it's an OpenMP local variable. 1490 if (NRVO) { 1491 // The named return value optimization: allocate this variable in the 1492 // return slot, so that we can elide the copy when returning this 1493 // variable (C++0x [class.copy]p34). 1494 address = ReturnValue; 1495 AllocaAddr = ReturnValue; 1496 1497 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1498 const auto *RD = RecordTy->getDecl(); 1499 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1500 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1501 RD->isNonTrivialToPrimitiveDestroy()) { 1502 // Create a flag that is used to indicate when the NRVO was applied 1503 // to this variable. Set it to zero to indicate that NRVO was not 1504 // applied. 1505 llvm::Value *Zero = Builder.getFalse(); 1506 Address NRVOFlag = 1507 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo", 1508 /*ArraySize=*/nullptr, &AllocaAddr); 1509 EnsureInsertPoint(); 1510 Builder.CreateStore(Zero, NRVOFlag); 1511 1512 // Record the NRVO flag for this variable. 1513 NRVOFlags[&D] = NRVOFlag.getPointer(); 1514 emission.NRVOFlag = NRVOFlag.getPointer(); 1515 } 1516 } 1517 } else { 1518 CharUnits allocaAlignment; 1519 llvm::Type *allocaTy; 1520 if (isEscapingByRef) { 1521 auto &byrefInfo = getBlockByrefInfo(&D); 1522 allocaTy = byrefInfo.Type; 1523 allocaAlignment = byrefInfo.ByrefAlignment; 1524 } else { 1525 allocaTy = ConvertTypeForMem(Ty); 1526 allocaAlignment = alignment; 1527 } 1528 1529 // Create the alloca. Note that we set the name separately from 1530 // building the instruction so that it's there even in no-asserts 1531 // builds. 1532 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1533 /*ArraySize=*/nullptr, &AllocaAddr); 1534 1535 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1536 // the catch parameter starts in the catchpad instruction, and we can't 1537 // insert code in those basic blocks. 1538 bool IsMSCatchParam = 1539 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1540 1541 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1542 // if we don't have a valid insertion point (?). 1543 if (HaveInsertPoint() && !IsMSCatchParam) { 1544 // If there's a jump into the lifetime of this variable, its lifetime 1545 // gets broken up into several regions in IR, which requires more work 1546 // to handle correctly. For now, just omit the intrinsics; this is a 1547 // rare case, and it's better to just be conservatively correct. 1548 // PR28267. 1549 // 1550 // We have to do this in all language modes if there's a jump past the 1551 // declaration. We also have to do it in C if there's a jump to an 1552 // earlier point in the current block because non-VLA lifetimes begin as 1553 // soon as the containing block is entered, not when its variables 1554 // actually come into scope; suppressing the lifetime annotations 1555 // completely in this case is unnecessarily pessimistic, but again, this 1556 // is rare. 1557 if (!Bypasses.IsBypassed(&D) && 1558 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1559 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1560 emission.SizeForLifetimeMarkers = 1561 EmitLifetimeStart(Size, AllocaAddr.getPointer()); 1562 } 1563 } else { 1564 assert(!emission.useLifetimeMarkers()); 1565 } 1566 } 1567 } else { 1568 EnsureInsertPoint(); 1569 1570 if (!DidCallStackSave) { 1571 // Save the stack. 1572 Address Stack = 1573 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1574 1575 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1576 llvm::Value *V = Builder.CreateCall(F); 1577 Builder.CreateStore(V, Stack); 1578 1579 DidCallStackSave = true; 1580 1581 // Push a cleanup block and restore the stack there. 1582 // FIXME: in general circumstances, this should be an EH cleanup. 1583 pushStackRestore(NormalCleanup, Stack); 1584 } 1585 1586 auto VlaSize = getVLASize(Ty); 1587 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1588 1589 // Allocate memory for the array. 1590 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1591 &AllocaAddr); 1592 1593 // If we have debug info enabled, properly describe the VLA dimensions for 1594 // this type by registering the vla size expression for each of the 1595 // dimensions. 1596 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1597 } 1598 1599 setAddrOfLocalVar(&D, address); 1600 emission.Addr = address; 1601 emission.AllocaAddr = AllocaAddr; 1602 1603 // Emit debug info for local var declaration. 1604 if (EmitDebugInfo && HaveInsertPoint()) { 1605 Address DebugAddr = address; 1606 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1607 DI->setLocation(D.getLocation()); 1608 1609 // If NRVO, use a pointer to the return address. 1610 if (UsePointerValue) { 1611 DebugAddr = ReturnValuePointer; 1612 AllocaAddr = ReturnValuePointer; 1613 } 1614 (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder, 1615 UsePointerValue); 1616 } 1617 1618 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1619 EmitVarAnnotations(&D, address.getPointer()); 1620 1621 // Make sure we call @llvm.lifetime.end. 1622 if (emission.useLifetimeMarkers()) 1623 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1624 emission.getOriginalAllocatedAddress(), 1625 emission.getSizeForLifetimeMarkers()); 1626 1627 return emission; 1628 } 1629 1630 static bool isCapturedBy(const VarDecl &, const Expr *); 1631 1632 /// Determines whether the given __block variable is potentially 1633 /// captured by the given statement. 1634 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1635 if (const Expr *E = dyn_cast<Expr>(S)) 1636 return isCapturedBy(Var, E); 1637 for (const Stmt *SubStmt : S->children()) 1638 if (isCapturedBy(Var, SubStmt)) 1639 return true; 1640 return false; 1641 } 1642 1643 /// Determines whether the given __block variable is potentially 1644 /// captured by the given expression. 1645 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1646 // Skip the most common kinds of expressions that make 1647 // hierarchy-walking expensive. 1648 E = E->IgnoreParenCasts(); 1649 1650 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1651 const BlockDecl *Block = BE->getBlockDecl(); 1652 for (const auto &I : Block->captures()) { 1653 if (I.getVariable() == &Var) 1654 return true; 1655 } 1656 1657 // No need to walk into the subexpressions. 1658 return false; 1659 } 1660 1661 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1662 const CompoundStmt *CS = SE->getSubStmt(); 1663 for (const auto *BI : CS->body()) 1664 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1665 if (isCapturedBy(Var, BIE)) 1666 return true; 1667 } 1668 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1669 // special case declarations 1670 for (const auto *I : DS->decls()) { 1671 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1672 const Expr *Init = VD->getInit(); 1673 if (Init && isCapturedBy(Var, Init)) 1674 return true; 1675 } 1676 } 1677 } 1678 else 1679 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1680 // Later, provide code to poke into statements for capture analysis. 1681 return true; 1682 return false; 1683 } 1684 1685 for (const Stmt *SubStmt : E->children()) 1686 if (isCapturedBy(Var, SubStmt)) 1687 return true; 1688 1689 return false; 1690 } 1691 1692 /// Determine whether the given initializer is trivial in the sense 1693 /// that it requires no code to be generated. 1694 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1695 if (!Init) 1696 return true; 1697 1698 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1699 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1700 if (Constructor->isTrivial() && 1701 Constructor->isDefaultConstructor() && 1702 !Construct->requiresZeroInitialization()) 1703 return true; 1704 1705 return false; 1706 } 1707 1708 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1709 const VarDecl &D, 1710 Address Loc) { 1711 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1712 CharUnits Size = getContext().getTypeSizeInChars(type); 1713 bool isVolatile = type.isVolatileQualified(); 1714 if (!Size.isZero()) { 1715 switch (trivialAutoVarInit) { 1716 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1717 llvm_unreachable("Uninitialized handled by caller"); 1718 case LangOptions::TrivialAutoVarInitKind::Zero: 1719 if (CGM.stopAutoInit()) 1720 return; 1721 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1722 break; 1723 case LangOptions::TrivialAutoVarInitKind::Pattern: 1724 if (CGM.stopAutoInit()) 1725 return; 1726 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1727 break; 1728 } 1729 return; 1730 } 1731 1732 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1733 // them, so emit a memcpy with the VLA size to initialize each element. 1734 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1735 // will catch that code, but there exists code which generates zero-sized 1736 // VLAs. Be nice and initialize whatever they requested. 1737 const auto *VlaType = getContext().getAsVariableArrayType(type); 1738 if (!VlaType) 1739 return; 1740 auto VlaSize = getVLASize(VlaType); 1741 auto SizeVal = VlaSize.NumElts; 1742 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1743 switch (trivialAutoVarInit) { 1744 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1745 llvm_unreachable("Uninitialized handled by caller"); 1746 1747 case LangOptions::TrivialAutoVarInitKind::Zero: { 1748 if (CGM.stopAutoInit()) 1749 return; 1750 if (!EltSize.isOne()) 1751 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1752 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), 1753 SizeVal, isVolatile); 1754 I->addAnnotationMetadata("auto-init"); 1755 break; 1756 } 1757 1758 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1759 if (CGM.stopAutoInit()) 1760 return; 1761 llvm::Type *ElTy = Loc.getElementType(); 1762 llvm::Constant *Constant = constWithPadding( 1763 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1764 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1765 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1766 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1767 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1768 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1769 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1770 "vla.iszerosized"); 1771 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1772 EmitBlock(SetupBB); 1773 if (!EltSize.isOne()) 1774 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1775 llvm::Value *BaseSizeInChars = 1776 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1777 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1778 llvm::Value *End = Builder.CreateInBoundsGEP( 1779 Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end"); 1780 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1781 EmitBlock(LoopBB); 1782 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1783 Cur->addIncoming(Begin.getPointer(), OriginBB); 1784 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1785 auto *I = 1786 Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign), 1787 createUnnamedGlobalForMemcpyFrom( 1788 CGM, D, Builder, Constant, ConstantAlign), 1789 BaseSizeInChars, isVolatile); 1790 I->addAnnotationMetadata("auto-init"); 1791 llvm::Value *Next = 1792 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1793 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1794 Builder.CreateCondBr(Done, ContBB, LoopBB); 1795 Cur->addIncoming(Next, LoopBB); 1796 EmitBlock(ContBB); 1797 } break; 1798 } 1799 } 1800 1801 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1802 assert(emission.Variable && "emission was not valid!"); 1803 1804 // If this was emitted as a global constant, we're done. 1805 if (emission.wasEmittedAsGlobal()) return; 1806 1807 const VarDecl &D = *emission.Variable; 1808 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1809 QualType type = D.getType(); 1810 1811 // If this local has an initializer, emit it now. 1812 const Expr *Init = D.getInit(); 1813 1814 // If we are at an unreachable point, we don't need to emit the initializer 1815 // unless it contains a label. 1816 if (!HaveInsertPoint()) { 1817 if (!Init || !ContainsLabel(Init)) return; 1818 EnsureInsertPoint(); 1819 } 1820 1821 // Initialize the structure of a __block variable. 1822 if (emission.IsEscapingByRef) 1823 emitByrefStructureInit(emission); 1824 1825 // Initialize the variable here if it doesn't have a initializer and it is a 1826 // C struct that is non-trivial to initialize or an array containing such a 1827 // struct. 1828 if (!Init && 1829 type.isNonTrivialToPrimitiveDefaultInitialize() == 1830 QualType::PDIK_Struct) { 1831 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1832 if (emission.IsEscapingByRef) 1833 drillIntoBlockVariable(*this, Dst, &D); 1834 defaultInitNonTrivialCStructVar(Dst); 1835 return; 1836 } 1837 1838 // Check whether this is a byref variable that's potentially 1839 // captured and moved by its own initializer. If so, we'll need to 1840 // emit the initializer first, then copy into the variable. 1841 bool capturedByInit = 1842 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1843 1844 bool locIsByrefHeader = !capturedByInit; 1845 const Address Loc = 1846 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1847 1848 // Note: constexpr already initializes everything correctly. 1849 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1850 (D.isConstexpr() 1851 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1852 : (D.getAttr<UninitializedAttr>() 1853 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1854 : getContext().getLangOpts().getTrivialAutoVarInit())); 1855 1856 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1857 if (trivialAutoVarInit == 1858 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1859 return; 1860 1861 // Only initialize a __block's storage: we always initialize the header. 1862 if (emission.IsEscapingByRef && !locIsByrefHeader) 1863 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1864 1865 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1866 }; 1867 1868 if (isTrivialInitializer(Init)) 1869 return initializeWhatIsTechnicallyUninitialized(Loc); 1870 1871 llvm::Constant *constant = nullptr; 1872 if (emission.IsConstantAggregate || 1873 D.mightBeUsableInConstantExpressions(getContext())) { 1874 assert(!capturedByInit && "constant init contains a capturing block?"); 1875 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1876 if (constant && !constant->isZeroValue() && 1877 (trivialAutoVarInit != 1878 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1879 IsPattern isPattern = 1880 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1881 ? IsPattern::Yes 1882 : IsPattern::No; 1883 // C guarantees that brace-init with fewer initializers than members in 1884 // the aggregate will initialize the rest of the aggregate as-if it were 1885 // static initialization. In turn static initialization guarantees that 1886 // padding is initialized to zero bits. We could instead pattern-init if D 1887 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1888 // behavior. 1889 constant = constWithPadding(CGM, IsPattern::No, 1890 replaceUndef(CGM, isPattern, constant)); 1891 } 1892 } 1893 1894 if (!constant) { 1895 initializeWhatIsTechnicallyUninitialized(Loc); 1896 LValue lv = MakeAddrLValue(Loc, type); 1897 lv.setNonGC(true); 1898 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1899 } 1900 1901 if (!emission.IsConstantAggregate) { 1902 // For simple scalar/complex initialization, store the value directly. 1903 LValue lv = MakeAddrLValue(Loc, type); 1904 lv.setNonGC(true); 1905 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1906 } 1907 1908 emitStoresForConstant(CGM, D, Builder.CreateElementBitCast(Loc, CGM.Int8Ty), 1909 type.isVolatileQualified(), Builder, constant, 1910 /*IsAutoInit=*/false); 1911 } 1912 1913 /// Emit an expression as an initializer for an object (variable, field, etc.) 1914 /// at the given location. The expression is not necessarily the normal 1915 /// initializer for the object, and the address is not necessarily 1916 /// its normal location. 1917 /// 1918 /// \param init the initializing expression 1919 /// \param D the object to act as if we're initializing 1920 /// \param lvalue the lvalue to initialize 1921 /// \param capturedByInit true if \p D is a __block variable 1922 /// whose address is potentially changed by the initializer 1923 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1924 LValue lvalue, bool capturedByInit) { 1925 QualType type = D->getType(); 1926 1927 if (type->isReferenceType()) { 1928 RValue rvalue = EmitReferenceBindingToExpr(init); 1929 if (capturedByInit) 1930 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1931 EmitStoreThroughLValue(rvalue, lvalue, true); 1932 return; 1933 } 1934 switch (getEvaluationKind(type)) { 1935 case TEK_Scalar: 1936 EmitScalarInit(init, D, lvalue, capturedByInit); 1937 return; 1938 case TEK_Complex: { 1939 ComplexPairTy complex = EmitComplexExpr(init); 1940 if (capturedByInit) 1941 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1942 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1943 return; 1944 } 1945 case TEK_Aggregate: 1946 if (type->isAtomicType()) { 1947 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1948 } else { 1949 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1950 if (isa<VarDecl>(D)) 1951 Overlap = AggValueSlot::DoesNotOverlap; 1952 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1953 Overlap = getOverlapForFieldInit(FD); 1954 // TODO: how can we delay here if D is captured by its initializer? 1955 EmitAggExpr(init, AggValueSlot::forLValue( 1956 lvalue, *this, AggValueSlot::IsDestructed, 1957 AggValueSlot::DoesNotNeedGCBarriers, 1958 AggValueSlot::IsNotAliased, Overlap)); 1959 } 1960 return; 1961 } 1962 llvm_unreachable("bad evaluation kind"); 1963 } 1964 1965 /// Enter a destroy cleanup for the given local variable. 1966 void CodeGenFunction::emitAutoVarTypeCleanup( 1967 const CodeGenFunction::AutoVarEmission &emission, 1968 QualType::DestructionKind dtorKind) { 1969 assert(dtorKind != QualType::DK_none); 1970 1971 // Note that for __block variables, we want to destroy the 1972 // original stack object, not the possibly forwarded object. 1973 Address addr = emission.getObjectAddress(*this); 1974 1975 const VarDecl *var = emission.Variable; 1976 QualType type = var->getType(); 1977 1978 CleanupKind cleanupKind = NormalAndEHCleanup; 1979 CodeGenFunction::Destroyer *destroyer = nullptr; 1980 1981 switch (dtorKind) { 1982 case QualType::DK_none: 1983 llvm_unreachable("no cleanup for trivially-destructible variable"); 1984 1985 case QualType::DK_cxx_destructor: 1986 // If there's an NRVO flag on the emission, we need a different 1987 // cleanup. 1988 if (emission.NRVOFlag) { 1989 assert(!type->isArrayType()); 1990 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1991 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1992 emission.NRVOFlag); 1993 return; 1994 } 1995 break; 1996 1997 case QualType::DK_objc_strong_lifetime: 1998 // Suppress cleanups for pseudo-strong variables. 1999 if (var->isARCPseudoStrong()) return; 2000 2001 // Otherwise, consider whether to use an EH cleanup or not. 2002 cleanupKind = getARCCleanupKind(); 2003 2004 // Use the imprecise destroyer by default. 2005 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 2006 destroyer = CodeGenFunction::destroyARCStrongImprecise; 2007 break; 2008 2009 case QualType::DK_objc_weak_lifetime: 2010 break; 2011 2012 case QualType::DK_nontrivial_c_struct: 2013 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 2014 if (emission.NRVOFlag) { 2015 assert(!type->isArrayType()); 2016 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 2017 emission.NRVOFlag, type); 2018 return; 2019 } 2020 break; 2021 } 2022 2023 // If we haven't chosen a more specific destroyer, use the default. 2024 if (!destroyer) destroyer = getDestroyer(dtorKind); 2025 2026 // Use an EH cleanup in array destructors iff the destructor itself 2027 // is being pushed as an EH cleanup. 2028 bool useEHCleanup = (cleanupKind & EHCleanup); 2029 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 2030 useEHCleanup); 2031 } 2032 2033 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 2034 assert(emission.Variable && "emission was not valid!"); 2035 2036 // If this was emitted as a global constant, we're done. 2037 if (emission.wasEmittedAsGlobal()) return; 2038 2039 // If we don't have an insertion point, we're done. Sema prevents 2040 // us from jumping into any of these scopes anyway. 2041 if (!HaveInsertPoint()) return; 2042 2043 const VarDecl &D = *emission.Variable; 2044 2045 // Check the type for a cleanup. 2046 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2047 emitAutoVarTypeCleanup(emission, dtorKind); 2048 2049 // In GC mode, honor objc_precise_lifetime. 2050 if (getLangOpts().getGC() != LangOptions::NonGC && 2051 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2052 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2053 } 2054 2055 // Handle the cleanup attribute. 2056 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2057 const FunctionDecl *FD = CA->getFunctionDecl(); 2058 2059 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2060 assert(F && "Could not find function!"); 2061 2062 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2063 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2064 } 2065 2066 // If this is a block variable, call _Block_object_destroy 2067 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2068 // mode. 2069 if (emission.IsEscapingByRef && 2070 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2071 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2072 if (emission.Variable->getType().isObjCGCWeak()) 2073 Flags |= BLOCK_FIELD_IS_WEAK; 2074 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2075 /*LoadBlockVarAddr*/ false, 2076 cxxDestructorCanThrow(emission.Variable->getType())); 2077 } 2078 } 2079 2080 CodeGenFunction::Destroyer * 2081 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2082 switch (kind) { 2083 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2084 case QualType::DK_cxx_destructor: 2085 return destroyCXXObject; 2086 case QualType::DK_objc_strong_lifetime: 2087 return destroyARCStrongPrecise; 2088 case QualType::DK_objc_weak_lifetime: 2089 return destroyARCWeak; 2090 case QualType::DK_nontrivial_c_struct: 2091 return destroyNonTrivialCStruct; 2092 } 2093 llvm_unreachable("Unknown DestructionKind"); 2094 } 2095 2096 /// pushEHDestroy - Push the standard destructor for the given type as 2097 /// an EH-only cleanup. 2098 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2099 Address addr, QualType type) { 2100 assert(dtorKind && "cannot push destructor for trivial type"); 2101 assert(needsEHCleanup(dtorKind)); 2102 2103 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2104 } 2105 2106 /// pushDestroy - Push the standard destructor for the given type as 2107 /// at least a normal cleanup. 2108 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2109 Address addr, QualType type) { 2110 assert(dtorKind && "cannot push destructor for trivial type"); 2111 2112 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2113 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2114 cleanupKind & EHCleanup); 2115 } 2116 2117 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2118 QualType type, Destroyer *destroyer, 2119 bool useEHCleanupForArray) { 2120 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2121 destroyer, useEHCleanupForArray); 2122 } 2123 2124 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2125 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2126 } 2127 2128 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind, 2129 Address addr, QualType type, 2130 Destroyer *destroyer, 2131 bool useEHCleanupForArray) { 2132 // If we're not in a conditional branch, we don't need to bother generating a 2133 // conditional cleanup. 2134 if (!isInConditionalBranch()) { 2135 // Push an EH-only cleanup for the object now. 2136 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2137 // around in case a temporary's destructor throws an exception. 2138 if (cleanupKind & EHCleanup) 2139 EHStack.pushCleanup<DestroyObject>( 2140 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2141 destroyer, useEHCleanupForArray); 2142 2143 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>( 2144 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray); 2145 } 2146 2147 // Otherwise, we should only destroy the object if it's been initialized. 2148 // Re-use the active flag and saved address across both the EH and end of 2149 // scope cleanups. 2150 2151 using SavedType = typename DominatingValue<Address>::saved_type; 2152 using ConditionalCleanupType = 2153 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType, 2154 Destroyer *, bool>; 2155 2156 Address ActiveFlag = createCleanupActiveFlag(); 2157 SavedType SavedAddr = saveValueInCond(addr); 2158 2159 if (cleanupKind & EHCleanup) { 2160 EHStack.pushCleanup<ConditionalCleanupType>( 2161 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type, 2162 destroyer, useEHCleanupForArray); 2163 initFullExprCleanupWithFlag(ActiveFlag); 2164 } 2165 2166 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>( 2167 cleanupKind, ActiveFlag, SavedAddr, type, destroyer, 2168 useEHCleanupForArray); 2169 } 2170 2171 /// emitDestroy - Immediately perform the destruction of the given 2172 /// object. 2173 /// 2174 /// \param addr - the address of the object; a type* 2175 /// \param type - the type of the object; if an array type, all 2176 /// objects are destroyed in reverse order 2177 /// \param destroyer - the function to call to destroy individual 2178 /// elements 2179 /// \param useEHCleanupForArray - whether an EH cleanup should be 2180 /// used when destroying array elements, in case one of the 2181 /// destructions throws an exception 2182 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2183 Destroyer *destroyer, 2184 bool useEHCleanupForArray) { 2185 const ArrayType *arrayType = getContext().getAsArrayType(type); 2186 if (!arrayType) 2187 return destroyer(*this, addr, type); 2188 2189 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2190 2191 CharUnits elementAlign = 2192 addr.getAlignment() 2193 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2194 2195 // Normally we have to check whether the array is zero-length. 2196 bool checkZeroLength = true; 2197 2198 // But if the array length is constant, we can suppress that. 2199 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2200 // ...and if it's constant zero, we can just skip the entire thing. 2201 if (constLength->isZero()) return; 2202 checkZeroLength = false; 2203 } 2204 2205 llvm::Value *begin = addr.getPointer(); 2206 llvm::Value *end = 2207 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length); 2208 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2209 checkZeroLength, useEHCleanupForArray); 2210 } 2211 2212 /// emitArrayDestroy - Destroys all the elements of the given array, 2213 /// beginning from last to first. The array cannot be zero-length. 2214 /// 2215 /// \param begin - a type* denoting the first element of the array 2216 /// \param end - a type* denoting one past the end of the array 2217 /// \param elementType - the element type of the array 2218 /// \param destroyer - the function to call to destroy elements 2219 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2220 /// the remaining elements in case the destruction of a single 2221 /// element throws 2222 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2223 llvm::Value *end, 2224 QualType elementType, 2225 CharUnits elementAlign, 2226 Destroyer *destroyer, 2227 bool checkZeroLength, 2228 bool useEHCleanup) { 2229 assert(!elementType->isArrayType()); 2230 2231 // The basic structure here is a do-while loop, because we don't 2232 // need to check for the zero-element case. 2233 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2234 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2235 2236 if (checkZeroLength) { 2237 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2238 "arraydestroy.isempty"); 2239 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2240 } 2241 2242 // Enter the loop body, making that address the current address. 2243 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2244 EmitBlock(bodyBB); 2245 llvm::PHINode *elementPast = 2246 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2247 elementPast->addIncoming(end, entryBB); 2248 2249 // Shift the address back by one element. 2250 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2251 llvm::Type *llvmElementType = ConvertTypeForMem(elementType); 2252 llvm::Value *element = Builder.CreateInBoundsGEP( 2253 llvmElementType, elementPast, negativeOne, "arraydestroy.element"); 2254 2255 if (useEHCleanup) 2256 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2257 destroyer); 2258 2259 // Perform the actual destruction there. 2260 destroyer(*this, Address(element, llvmElementType, elementAlign), 2261 elementType); 2262 2263 if (useEHCleanup) 2264 PopCleanupBlock(); 2265 2266 // Check whether we've reached the end. 2267 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2268 Builder.CreateCondBr(done, doneBB, bodyBB); 2269 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2270 2271 // Done. 2272 EmitBlock(doneBB); 2273 } 2274 2275 /// Perform partial array destruction as if in an EH cleanup. Unlike 2276 /// emitArrayDestroy, the element type here may still be an array type. 2277 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2278 llvm::Value *begin, llvm::Value *end, 2279 QualType type, CharUnits elementAlign, 2280 CodeGenFunction::Destroyer *destroyer) { 2281 llvm::Type *elemTy = CGF.ConvertTypeForMem(type); 2282 2283 // If the element type is itself an array, drill down. 2284 unsigned arrayDepth = 0; 2285 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2286 // VLAs don't require a GEP index to walk into. 2287 if (!isa<VariableArrayType>(arrayType)) 2288 arrayDepth++; 2289 type = arrayType->getElementType(); 2290 } 2291 2292 if (arrayDepth) { 2293 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2294 2295 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2296 begin = CGF.Builder.CreateInBoundsGEP( 2297 elemTy, begin, gepIndices, "pad.arraybegin"); 2298 end = CGF.Builder.CreateInBoundsGEP( 2299 elemTy, end, gepIndices, "pad.arrayend"); 2300 } 2301 2302 // Destroy the array. We don't ever need an EH cleanup because we 2303 // assume that we're in an EH cleanup ourselves, so a throwing 2304 // destructor causes an immediate terminate. 2305 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2306 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2307 } 2308 2309 namespace { 2310 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2311 /// array destroy where the end pointer is regularly determined and 2312 /// does not need to be loaded from a local. 2313 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2314 llvm::Value *ArrayBegin; 2315 llvm::Value *ArrayEnd; 2316 QualType ElementType; 2317 CodeGenFunction::Destroyer *Destroyer; 2318 CharUnits ElementAlign; 2319 public: 2320 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2321 QualType elementType, CharUnits elementAlign, 2322 CodeGenFunction::Destroyer *destroyer) 2323 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2324 ElementType(elementType), Destroyer(destroyer), 2325 ElementAlign(elementAlign) {} 2326 2327 void Emit(CodeGenFunction &CGF, Flags flags) override { 2328 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2329 ElementType, ElementAlign, Destroyer); 2330 } 2331 }; 2332 2333 /// IrregularPartialArrayDestroy - a cleanup which performs a 2334 /// partial array destroy where the end pointer is irregularly 2335 /// determined and must be loaded from a local. 2336 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2337 llvm::Value *ArrayBegin; 2338 Address ArrayEndPointer; 2339 QualType ElementType; 2340 CodeGenFunction::Destroyer *Destroyer; 2341 CharUnits ElementAlign; 2342 public: 2343 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2344 Address arrayEndPointer, 2345 QualType elementType, 2346 CharUnits elementAlign, 2347 CodeGenFunction::Destroyer *destroyer) 2348 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2349 ElementType(elementType), Destroyer(destroyer), 2350 ElementAlign(elementAlign) {} 2351 2352 void Emit(CodeGenFunction &CGF, Flags flags) override { 2353 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2354 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2355 ElementType, ElementAlign, Destroyer); 2356 } 2357 }; 2358 } // end anonymous namespace 2359 2360 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2361 /// already-constructed elements of the given array. The cleanup 2362 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2363 /// 2364 /// \param elementType - the immediate element type of the array; 2365 /// possibly still an array type 2366 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2367 Address arrayEndPointer, 2368 QualType elementType, 2369 CharUnits elementAlign, 2370 Destroyer *destroyer) { 2371 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2372 arrayBegin, arrayEndPointer, 2373 elementType, elementAlign, 2374 destroyer); 2375 } 2376 2377 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2378 /// already-constructed elements of the given array. The cleanup 2379 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2380 /// 2381 /// \param elementType - the immediate element type of the array; 2382 /// possibly still an array type 2383 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2384 llvm::Value *arrayEnd, 2385 QualType elementType, 2386 CharUnits elementAlign, 2387 Destroyer *destroyer) { 2388 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2389 arrayBegin, arrayEnd, 2390 elementType, elementAlign, 2391 destroyer); 2392 } 2393 2394 /// Lazily declare the @llvm.lifetime.start intrinsic. 2395 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2396 if (LifetimeStartFn) 2397 return LifetimeStartFn; 2398 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2399 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2400 return LifetimeStartFn; 2401 } 2402 2403 /// Lazily declare the @llvm.lifetime.end intrinsic. 2404 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2405 if (LifetimeEndFn) 2406 return LifetimeEndFn; 2407 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2408 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2409 return LifetimeEndFn; 2410 } 2411 2412 namespace { 2413 /// A cleanup to perform a release of an object at the end of a 2414 /// function. This is used to balance out the incoming +1 of a 2415 /// ns_consumed argument when we can't reasonably do that just by 2416 /// not doing the initial retain for a __block argument. 2417 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2418 ConsumeARCParameter(llvm::Value *param, 2419 ARCPreciseLifetime_t precise) 2420 : Param(param), Precise(precise) {} 2421 2422 llvm::Value *Param; 2423 ARCPreciseLifetime_t Precise; 2424 2425 void Emit(CodeGenFunction &CGF, Flags flags) override { 2426 CGF.EmitARCRelease(Param, Precise); 2427 } 2428 }; 2429 } // end anonymous namespace 2430 2431 /// Emit an alloca (or GlobalValue depending on target) 2432 /// for the specified parameter and set up LocalDeclMap. 2433 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2434 unsigned ArgNo) { 2435 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2436 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2437 "Invalid argument to EmitParmDecl"); 2438 2439 Arg.getAnyValue()->setName(D.getName()); 2440 2441 QualType Ty = D.getType(); 2442 2443 // Use better IR generation for certain implicit parameters. 2444 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2445 // The only implicit argument a block has is its literal. 2446 // This may be passed as an inalloca'ed value on Windows x86. 2447 if (BlockInfo) { 2448 llvm::Value *V = Arg.isIndirect() 2449 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2450 : Arg.getDirectValue(); 2451 setBlockContextParameter(IPD, ArgNo, V); 2452 return; 2453 } 2454 } 2455 2456 Address DeclPtr = Address::invalid(); 2457 Address AllocaPtr = Address::invalid(); 2458 bool DoStore = false; 2459 bool IsScalar = hasScalarEvaluationKind(Ty); 2460 // If we already have a pointer to the argument, reuse the input pointer. 2461 if (Arg.isIndirect()) { 2462 // If we have a prettier pointer type at this point, bitcast to that. 2463 DeclPtr = Arg.getIndirectAddress(); 2464 DeclPtr = Builder.CreateElementBitCast(DeclPtr, ConvertTypeForMem(Ty), 2465 D.getName()); 2466 // Indirect argument is in alloca address space, which may be different 2467 // from the default address space. 2468 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2469 auto *V = DeclPtr.getPointer(); 2470 AllocaPtr = DeclPtr; 2471 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2472 auto DestLangAS = 2473 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2474 if (SrcLangAS != DestLangAS) { 2475 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2476 CGM.getDataLayout().getAllocaAddrSpace()); 2477 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2478 auto *T = DeclPtr.getElementType()->getPointerTo(DestAS); 2479 DeclPtr = DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast( 2480 *this, V, SrcLangAS, DestLangAS, T, true)); 2481 } 2482 2483 // Push a destructor cleanup for this parameter if the ABI requires it. 2484 // Don't push a cleanup in a thunk for a method that will also emit a 2485 // cleanup. 2486 if (Ty->isRecordType() && !CurFuncIsThunk && 2487 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2488 if (QualType::DestructionKind DtorKind = 2489 D.needsDestruction(getContext())) { 2490 assert((DtorKind == QualType::DK_cxx_destructor || 2491 DtorKind == QualType::DK_nontrivial_c_struct) && 2492 "unexpected destructor type"); 2493 pushDestroy(DtorKind, DeclPtr, Ty); 2494 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2495 EHStack.stable_begin(); 2496 } 2497 } 2498 } else { 2499 // Check if the parameter address is controlled by OpenMP runtime. 2500 Address OpenMPLocalAddr = 2501 getLangOpts().OpenMP 2502 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2503 : Address::invalid(); 2504 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2505 DeclPtr = OpenMPLocalAddr; 2506 AllocaPtr = DeclPtr; 2507 } else { 2508 // Otherwise, create a temporary to hold the value. 2509 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2510 D.getName() + ".addr", &AllocaPtr); 2511 } 2512 DoStore = true; 2513 } 2514 2515 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2516 2517 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2518 if (IsScalar) { 2519 Qualifiers qs = Ty.getQualifiers(); 2520 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2521 // We honor __attribute__((ns_consumed)) for types with lifetime. 2522 // For __strong, it's handled by just skipping the initial retain; 2523 // otherwise we have to balance out the initial +1 with an extra 2524 // cleanup to do the release at the end of the function. 2525 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2526 2527 // If a parameter is pseudo-strong then we can omit the implicit retain. 2528 if (D.isARCPseudoStrong()) { 2529 assert(lt == Qualifiers::OCL_Strong && 2530 "pseudo-strong variable isn't strong?"); 2531 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2532 lt = Qualifiers::OCL_ExplicitNone; 2533 } 2534 2535 // Load objects passed indirectly. 2536 if (Arg.isIndirect() && !ArgVal) 2537 ArgVal = Builder.CreateLoad(DeclPtr); 2538 2539 if (lt == Qualifiers::OCL_Strong) { 2540 if (!isConsumed) { 2541 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2542 // use objc_storeStrong(&dest, value) for retaining the 2543 // object. But first, store a null into 'dest' because 2544 // objc_storeStrong attempts to release its old value. 2545 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2546 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2547 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2548 DoStore = false; 2549 } 2550 else 2551 // Don't use objc_retainBlock for block pointers, because we 2552 // don't want to Block_copy something just because we got it 2553 // as a parameter. 2554 ArgVal = EmitARCRetainNonBlock(ArgVal); 2555 } 2556 } else { 2557 // Push the cleanup for a consumed parameter. 2558 if (isConsumed) { 2559 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2560 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2561 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2562 precise); 2563 } 2564 2565 if (lt == Qualifiers::OCL_Weak) { 2566 EmitARCInitWeak(DeclPtr, ArgVal); 2567 DoStore = false; // The weak init is a store, no need to do two. 2568 } 2569 } 2570 2571 // Enter the cleanup scope. 2572 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2573 } 2574 } 2575 2576 // Store the initial value into the alloca. 2577 if (DoStore) 2578 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2579 2580 setAddrOfLocalVar(&D, DeclPtr); 2581 2582 // Emit debug info for param declarations in non-thunk functions. 2583 if (CGDebugInfo *DI = getDebugInfo()) { 2584 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2585 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable( 2586 &D, AllocaPtr.getPointer(), ArgNo, Builder); 2587 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D)) 2588 DI->getParamDbgMappings().insert({Var, DILocalVar}); 2589 } 2590 } 2591 2592 if (D.hasAttr<AnnotateAttr>()) 2593 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2594 2595 // We can only check return value nullability if all arguments to the 2596 // function satisfy their nullability preconditions. This makes it necessary 2597 // to emit null checks for args in the function body itself. 2598 if (requiresReturnValueNullabilityCheck()) { 2599 auto Nullability = Ty->getNullability(getContext()); 2600 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2601 SanitizerScope SanScope(this); 2602 RetValNullabilityPrecondition = 2603 Builder.CreateAnd(RetValNullabilityPrecondition, 2604 Builder.CreateIsNotNull(Arg.getAnyValue())); 2605 } 2606 } 2607 } 2608 2609 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2610 CodeGenFunction *CGF) { 2611 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2612 return; 2613 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2614 } 2615 2616 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2617 CodeGenFunction *CGF) { 2618 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2619 (!LangOpts.EmitAllDecls && !D->isUsed())) 2620 return; 2621 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2622 } 2623 2624 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2625 getOpenMPRuntime().processRequiresDirective(D); 2626 } 2627 2628 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) { 2629 for (const Expr *E : D->varlists()) { 2630 const auto *DE = cast<DeclRefExpr>(E); 2631 const auto *VD = cast<VarDecl>(DE->getDecl()); 2632 2633 // Skip all but globals. 2634 if (!VD->hasGlobalStorage()) 2635 continue; 2636 2637 // Check if the global has been materialized yet or not. If not, we are done 2638 // as any later generation will utilize the OMPAllocateDeclAttr. However, if 2639 // we already emitted the global we might have done so before the 2640 // OMPAllocateDeclAttr was attached, leading to the wrong address space 2641 // (potentially). While not pretty, common practise is to remove the old IR 2642 // global and generate a new one, so we do that here too. Uses are replaced 2643 // properly. 2644 StringRef MangledName = getMangledName(VD); 2645 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2646 if (!Entry) 2647 continue; 2648 2649 // We can also keep the existing global if the address space is what we 2650 // expect it to be, if not, it is replaced. 2651 QualType ASTTy = VD->getType(); 2652 clang::LangAS GVAS = GetGlobalVarAddressSpace(VD); 2653 auto TargetAS = getContext().getTargetAddressSpace(GVAS); 2654 if (Entry->getType()->getAddressSpace() == TargetAS) 2655 continue; 2656 2657 // Make a new global with the correct type / address space. 2658 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 2659 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS); 2660 2661 // Replace all uses of the old global with a cast. Since we mutate the type 2662 // in place we neeed an intermediate that takes the spot of the old entry 2663 // until we can create the cast. 2664 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable( 2665 getModule(), Entry->getValueType(), false, 2666 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr, 2667 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace()); 2668 Entry->replaceAllUsesWith(DummyGV); 2669 2670 Entry->mutateType(PTy); 2671 llvm::Constant *NewPtrForOldDecl = 2672 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2673 Entry, DummyGV->getType()); 2674 2675 // Now we have a casted version of the changed global, the dummy can be 2676 // replaced and deleted. 2677 DummyGV->replaceAllUsesWith(NewPtrForOldDecl); 2678 DummyGV->eraseFromParent(); 2679 } 2680 } 2681