1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Type.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 
32 void CodeGenFunction::EmitDecl(const Decl &D) {
33   switch (D.getKind()) {
34   case Decl::TranslationUnit:
35   case Decl::Namespace:
36   case Decl::UnresolvedUsingTypename:
37   case Decl::ClassTemplateSpecialization:
38   case Decl::ClassTemplatePartialSpecialization:
39   case Decl::TemplateTypeParm:
40   case Decl::UnresolvedUsingValue:
41   case Decl::NonTypeTemplateParm:
42   case Decl::CXXMethod:
43   case Decl::CXXConstructor:
44   case Decl::CXXDestructor:
45   case Decl::CXXConversion:
46   case Decl::Field:
47   case Decl::IndirectField:
48   case Decl::ObjCIvar:
49   case Decl::ObjCAtDefsField:
50   case Decl::ParmVar:
51   case Decl::ImplicitParam:
52   case Decl::ClassTemplate:
53   case Decl::FunctionTemplate:
54   case Decl::TypeAliasTemplate:
55   case Decl::TemplateTemplateParm:
56   case Decl::ObjCMethod:
57   case Decl::ObjCCategory:
58   case Decl::ObjCProtocol:
59   case Decl::ObjCInterface:
60   case Decl::ObjCCategoryImpl:
61   case Decl::ObjCImplementation:
62   case Decl::ObjCProperty:
63   case Decl::ObjCCompatibleAlias:
64   case Decl::AccessSpec:
65   case Decl::LinkageSpec:
66   case Decl::ObjCPropertyImpl:
67   case Decl::ObjCClass:
68   case Decl::ObjCForwardProtocol:
69   case Decl::FileScopeAsm:
70   case Decl::Friend:
71   case Decl::FriendTemplate:
72   case Decl::Block:
73     assert(0 && "Declaration should not be in declstmts!");
74   case Decl::Function:  // void X();
75   case Decl::Record:    // struct/union/class X;
76   case Decl::Enum:      // enum X;
77   case Decl::EnumConstant: // enum ? { X = ? }
78   case Decl::CXXRecord: // struct/union/class X; [C++]
79   case Decl::Using:          // using X; [C++]
80   case Decl::UsingShadow:
81   case Decl::UsingDirective: // using namespace X; [C++]
82   case Decl::NamespaceAlias:
83   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84   case Decl::Label:        // __label__ x;
85     // None of these decls require codegen support.
86     return;
87 
88   case Decl::Var: {
89     const VarDecl &VD = cast<VarDecl>(D);
90     assert(VD.isLocalVarDecl() &&
91            "Should not see file-scope variables inside a function!");
92     return EmitVarDecl(VD);
93   }
94 
95   case Decl::Typedef:      // typedef int X;
96   case Decl::TypeAlias: {  // using X = int; [C++0x]
97     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
98     QualType Ty = TD.getUnderlyingType();
99 
100     if (Ty->isVariablyModifiedType())
101       EmitVariablyModifiedType(Ty);
102   }
103   }
104 }
105 
106 /// EmitVarDecl - This method handles emission of any variable declaration
107 /// inside a function, including static vars etc.
108 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
109   switch (D.getStorageClass()) {
110   case SC_None:
111   case SC_Auto:
112   case SC_Register:
113     return EmitAutoVarDecl(D);
114   case SC_Static: {
115     llvm::GlobalValue::LinkageTypes Linkage =
116       llvm::GlobalValue::InternalLinkage;
117 
118     // If the function definition has some sort of weak linkage, its
119     // static variables should also be weak so that they get properly
120     // uniqued.  We can't do this in C, though, because there's no
121     // standard way to agree on which variables are the same (i.e.
122     // there's no mangling).
123     if (getContext().getLangOptions().CPlusPlus)
124       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
125         Linkage = CurFn->getLinkage();
126 
127     return EmitStaticVarDecl(D, Linkage);
128   }
129   case SC_Extern:
130   case SC_PrivateExtern:
131     // Don't emit it now, allow it to be emitted lazily on its first use.
132     return;
133   }
134 
135   assert(0 && "Unknown storage class");
136 }
137 
138 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
139                                      const char *Separator) {
140   CodeGenModule &CGM = CGF.CGM;
141   if (CGF.getContext().getLangOptions().CPlusPlus) {
142     StringRef Name = CGM.getMangledName(&D);
143     return Name.str();
144   }
145 
146   std::string ContextName;
147   if (!CGF.CurFuncDecl) {
148     // Better be in a block declared in global scope.
149     const NamedDecl *ND = cast<NamedDecl>(&D);
150     const DeclContext *DC = ND->getDeclContext();
151     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
152       MangleBuffer Name;
153       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
154       ContextName = Name.getString();
155     }
156     else
157       assert(0 && "Unknown context for block static var decl");
158   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
159     StringRef Name = CGM.getMangledName(FD);
160     ContextName = Name.str();
161   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
162     ContextName = CGF.CurFn->getName();
163   else
164     assert(0 && "Unknown context for static var decl");
165 
166   return ContextName + Separator + D.getNameAsString();
167 }
168 
169 llvm::GlobalVariable *
170 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
171                                      const char *Separator,
172                                      llvm::GlobalValue::LinkageTypes Linkage) {
173   QualType Ty = D.getType();
174   assert(Ty->isConstantSizeType() && "VLAs can't be static");
175 
176   std::string Name = GetStaticDeclName(*this, D, Separator);
177 
178   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
179   llvm::GlobalVariable *GV =
180     new llvm::GlobalVariable(CGM.getModule(), LTy,
181                              Ty.isConstant(getContext()), Linkage,
182                              CGM.EmitNullConstant(D.getType()), Name, 0,
183                              D.isThreadSpecified(),
184                              CGM.getContext().getTargetAddressSpace(Ty));
185   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
186   if (Linkage != llvm::GlobalValue::InternalLinkage)
187     GV->setVisibility(CurFn->getVisibility());
188   return GV;
189 }
190 
191 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
192 /// global variable that has already been created for it.  If the initializer
193 /// has a different type than GV does, this may free GV and return a different
194 /// one.  Otherwise it just returns GV.
195 llvm::GlobalVariable *
196 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
197                                                llvm::GlobalVariable *GV) {
198   llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
199 
200   // If constant emission failed, then this should be a C++ static
201   // initializer.
202   if (!Init) {
203     if (!getContext().getLangOptions().CPlusPlus)
204       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
205     else if (Builder.GetInsertBlock()) {
206       // Since we have a static initializer, this global variable can't
207       // be constant.
208       GV->setConstant(false);
209 
210       EmitCXXGuardedInit(D, GV);
211     }
212     return GV;
213   }
214 
215   // The initializer may differ in type from the global. Rewrite
216   // the global to match the initializer.  (We have to do this
217   // because some types, like unions, can't be completely represented
218   // in the LLVM type system.)
219   if (GV->getType()->getElementType() != Init->getType()) {
220     llvm::GlobalVariable *OldGV = GV;
221 
222     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
223                                   OldGV->isConstant(),
224                                   OldGV->getLinkage(), Init, "",
225                                   /*InsertBefore*/ OldGV,
226                                   D.isThreadSpecified(),
227                            CGM.getContext().getTargetAddressSpace(D.getType()));
228     GV->setVisibility(OldGV->getVisibility());
229 
230     // Steal the name of the old global
231     GV->takeName(OldGV);
232 
233     // Replace all uses of the old global with the new global
234     llvm::Constant *NewPtrForOldDecl =
235     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
236     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
237 
238     // Erase the old global, since it is no longer used.
239     OldGV->eraseFromParent();
240   }
241 
242   GV->setInitializer(Init);
243   return GV;
244 }
245 
246 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
247                                       llvm::GlobalValue::LinkageTypes Linkage) {
248   llvm::Value *&DMEntry = LocalDeclMap[&D];
249   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
250 
251   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
252 
253   // Store into LocalDeclMap before generating initializer to handle
254   // circular references.
255   DMEntry = GV;
256 
257   // We can't have a VLA here, but we can have a pointer to a VLA,
258   // even though that doesn't really make any sense.
259   // Make sure to evaluate VLA bounds now so that we have them for later.
260   if (D.getType()->isVariablyModifiedType())
261     EmitVariablyModifiedType(D.getType());
262 
263   // Local static block variables must be treated as globals as they may be
264   // referenced in their RHS initializer block-literal expresion.
265   CGM.setStaticLocalDeclAddress(&D, GV);
266 
267   // If this value has an initializer, emit it.
268   if (D.getInit())
269     GV = AddInitializerToStaticVarDecl(D, GV);
270 
271   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
272 
273   // FIXME: Merge attribute handling.
274   if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) {
275     SourceManager &SM = CGM.getContext().getSourceManager();
276     llvm::Constant *Ann =
277       CGM.EmitAnnotateAttr(GV, AA, SM.getExpansionLineNumber(D.getLocation()));
278     CGM.AddAnnotation(Ann);
279   }
280 
281   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
282     GV->setSection(SA->getName());
283 
284   if (D.hasAttr<UsedAttr>())
285     CGM.AddUsedGlobal(GV);
286 
287   // We may have to cast the constant because of the initializer
288   // mismatch above.
289   //
290   // FIXME: It is really dangerous to store this in the map; if anyone
291   // RAUW's the GV uses of this constant will be invalid.
292   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
293   llvm::Type *LPtrTy =
294     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
295   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
296 
297   // Emit global variable debug descriptor for static vars.
298   CGDebugInfo *DI = getDebugInfo();
299   if (DI) {
300     DI->setLocation(D.getLocation());
301     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
302   }
303 }
304 
305 namespace {
306   struct DestroyObject : EHScopeStack::Cleanup {
307     DestroyObject(llvm::Value *addr, QualType type,
308                   CodeGenFunction::Destroyer *destroyer,
309                   bool useEHCleanupForArray)
310       : addr(addr), type(type), destroyer(*destroyer),
311         useEHCleanupForArray(useEHCleanupForArray) {}
312 
313     llvm::Value *addr;
314     QualType type;
315     CodeGenFunction::Destroyer &destroyer;
316     bool useEHCleanupForArray;
317 
318     void Emit(CodeGenFunction &CGF, Flags flags) {
319       // Don't use an EH cleanup recursively from an EH cleanup.
320       bool useEHCleanupForArray =
321         flags.isForNormalCleanup() && this->useEHCleanupForArray;
322 
323       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
324     }
325   };
326 
327   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
328     DestroyNRVOVariable(llvm::Value *addr,
329                         const CXXDestructorDecl *Dtor,
330                         llvm::Value *NRVOFlag)
331       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
332 
333     const CXXDestructorDecl *Dtor;
334     llvm::Value *NRVOFlag;
335     llvm::Value *Loc;
336 
337     void Emit(CodeGenFunction &CGF, Flags flags) {
338       // Along the exceptions path we always execute the dtor.
339       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
340 
341       llvm::BasicBlock *SkipDtorBB = 0;
342       if (NRVO) {
343         // If we exited via NRVO, we skip the destructor call.
344         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
345         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
346         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
347         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
348         CGF.EmitBlock(RunDtorBB);
349       }
350 
351       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
352                                 /*ForVirtualBase=*/false, Loc);
353 
354       if (NRVO) CGF.EmitBlock(SkipDtorBB);
355     }
356   };
357 
358   struct CallStackRestore : EHScopeStack::Cleanup {
359     llvm::Value *Stack;
360     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
361     void Emit(CodeGenFunction &CGF, Flags flags) {
362       llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp");
363       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
364       CGF.Builder.CreateCall(F, V);
365     }
366   };
367 
368   struct ExtendGCLifetime : EHScopeStack::Cleanup {
369     const VarDecl &Var;
370     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
371 
372     void Emit(CodeGenFunction &CGF, Flags flags) {
373       // Compute the address of the local variable, in case it's a
374       // byref or something.
375       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
376                       SourceLocation());
377       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
378       CGF.EmitExtendGCLifetime(value);
379     }
380   };
381 
382   struct CallCleanupFunction : EHScopeStack::Cleanup {
383     llvm::Constant *CleanupFn;
384     const CGFunctionInfo &FnInfo;
385     const VarDecl &Var;
386 
387     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
388                         const VarDecl *Var)
389       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
390 
391     void Emit(CodeGenFunction &CGF, Flags flags) {
392       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
393                       SourceLocation());
394       // Compute the address of the local variable, in case it's a byref
395       // or something.
396       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
397 
398       // In some cases, the type of the function argument will be different from
399       // the type of the pointer. An example of this is
400       // void f(void* arg);
401       // __attribute__((cleanup(f))) void *g;
402       //
403       // To fix this we insert a bitcast here.
404       QualType ArgTy = FnInfo.arg_begin()->type;
405       llvm::Value *Arg =
406         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
407 
408       CallArgList Args;
409       Args.add(RValue::get(Arg),
410                CGF.getContext().getPointerType(Var.getType()));
411       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
412     }
413   };
414 }
415 
416 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
417 /// variable with lifetime.
418 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
419                                     llvm::Value *addr,
420                                     Qualifiers::ObjCLifetime lifetime) {
421   switch (lifetime) {
422   case Qualifiers::OCL_None:
423     llvm_unreachable("present but none");
424 
425   case Qualifiers::OCL_ExplicitNone:
426     // nothing to do
427     break;
428 
429   case Qualifiers::OCL_Strong: {
430     CodeGenFunction::Destroyer &destroyer =
431       (var.hasAttr<ObjCPreciseLifetimeAttr>()
432        ? CodeGenFunction::destroyARCStrongPrecise
433        : CodeGenFunction::destroyARCStrongImprecise);
434 
435     CleanupKind cleanupKind = CGF.getARCCleanupKind();
436     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
437                     cleanupKind & EHCleanup);
438     break;
439   }
440   case Qualifiers::OCL_Autoreleasing:
441     // nothing to do
442     break;
443 
444   case Qualifiers::OCL_Weak:
445     // __weak objects always get EH cleanups; otherwise, exceptions
446     // could cause really nasty crashes instead of mere leaks.
447     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
448                     CodeGenFunction::destroyARCWeak,
449                     /*useEHCleanup*/ true);
450     break;
451   }
452 }
453 
454 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
455   if (const Expr *e = dyn_cast<Expr>(s)) {
456     // Skip the most common kinds of expressions that make
457     // hierarchy-walking expensive.
458     s = e = e->IgnoreParenCasts();
459 
460     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
461       return (ref->getDecl() == &var);
462   }
463 
464   for (Stmt::const_child_range children = s->children(); children; ++children)
465     // children might be null; as in missing decl or conditional of an if-stmt.
466     if ((*children) && isAccessedBy(var, *children))
467       return true;
468 
469   return false;
470 }
471 
472 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
473   if (!decl) return false;
474   if (!isa<VarDecl>(decl)) return false;
475   const VarDecl *var = cast<VarDecl>(decl);
476   return isAccessedBy(*var, e);
477 }
478 
479 static void drillIntoBlockVariable(CodeGenFunction &CGF,
480                                    LValue &lvalue,
481                                    const VarDecl *var) {
482   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
483 }
484 
485 void CodeGenFunction::EmitScalarInit(const Expr *init,
486                                      const ValueDecl *D,
487                                      LValue lvalue,
488                                      bool capturedByInit) {
489   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
490   if (!lifetime) {
491     llvm::Value *value = EmitScalarExpr(init);
492     if (capturedByInit)
493       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
494     EmitStoreThroughLValue(RValue::get(value), lvalue);
495     return;
496   }
497 
498   // If we're emitting a value with lifetime, we have to do the
499   // initialization *before* we leave the cleanup scopes.
500   CodeGenFunction::RunCleanupsScope Scope(*this);
501   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init))
502     init = ewc->getSubExpr();
503 
504   // We have to maintain the illusion that the variable is
505   // zero-initialized.  If the variable might be accessed in its
506   // initializer, zero-initialize before running the initializer, then
507   // actually perform the initialization with an assign.
508   bool accessedByInit = false;
509   if (lifetime != Qualifiers::OCL_ExplicitNone)
510     accessedByInit = (capturedByInit || isAccessedBy(D, init));
511   if (accessedByInit) {
512     LValue tempLV = lvalue;
513     // Drill down to the __block object if necessary.
514     if (capturedByInit) {
515       // We can use a simple GEP for this because it can't have been
516       // moved yet.
517       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
518                                    getByRefValueLLVMField(cast<VarDecl>(D))));
519     }
520 
521     llvm::PointerType *ty
522       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
523     ty = cast<llvm::PointerType>(ty->getElementType());
524 
525     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
526 
527     // If __weak, we want to use a barrier under certain conditions.
528     if (lifetime == Qualifiers::OCL_Weak)
529       EmitARCInitWeak(tempLV.getAddress(), zero);
530 
531     // Otherwise just do a simple store.
532     else
533       EmitStoreOfScalar(zero, tempLV);
534   }
535 
536   // Emit the initializer.
537   llvm::Value *value = 0;
538 
539   switch (lifetime) {
540   case Qualifiers::OCL_None:
541     llvm_unreachable("present but none");
542 
543   case Qualifiers::OCL_ExplicitNone:
544     // nothing to do
545     value = EmitScalarExpr(init);
546     break;
547 
548   case Qualifiers::OCL_Strong: {
549     value = EmitARCRetainScalarExpr(init);
550     break;
551   }
552 
553   case Qualifiers::OCL_Weak: {
554     // No way to optimize a producing initializer into this.  It's not
555     // worth optimizing for, because the value will immediately
556     // disappear in the common case.
557     value = EmitScalarExpr(init);
558 
559     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
560     if (accessedByInit)
561       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
562     else
563       EmitARCInitWeak(lvalue.getAddress(), value);
564     return;
565   }
566 
567   case Qualifiers::OCL_Autoreleasing:
568     value = EmitARCRetainAutoreleaseScalarExpr(init);
569     break;
570   }
571 
572   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
573 
574   // If the variable might have been accessed by its initializer, we
575   // might have to initialize with a barrier.  We have to do this for
576   // both __weak and __strong, but __weak got filtered out above.
577   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
578     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
579     EmitStoreOfScalar(value, lvalue);
580     EmitARCRelease(oldValue, /*precise*/ false);
581     return;
582   }
583 
584   EmitStoreOfScalar(value, lvalue);
585 }
586 
587 /// EmitScalarInit - Initialize the given lvalue with the given object.
588 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
589   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
590   if (!lifetime)
591     return EmitStoreThroughLValue(RValue::get(init), lvalue);
592 
593   switch (lifetime) {
594   case Qualifiers::OCL_None:
595     llvm_unreachable("present but none");
596 
597   case Qualifiers::OCL_ExplicitNone:
598     // nothing to do
599     break;
600 
601   case Qualifiers::OCL_Strong:
602     init = EmitARCRetain(lvalue.getType(), init);
603     break;
604 
605   case Qualifiers::OCL_Weak:
606     // Initialize and then skip the primitive store.
607     EmitARCInitWeak(lvalue.getAddress(), init);
608     return;
609 
610   case Qualifiers::OCL_Autoreleasing:
611     init = EmitARCRetainAutorelease(lvalue.getType(), init);
612     break;
613   }
614 
615   EmitStoreOfScalar(init, lvalue);
616 }
617 
618 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
619 /// non-zero parts of the specified initializer with equal or fewer than
620 /// NumStores scalar stores.
621 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
622                                                 unsigned &NumStores) {
623   // Zero and Undef never requires any extra stores.
624   if (isa<llvm::ConstantAggregateZero>(Init) ||
625       isa<llvm::ConstantPointerNull>(Init) ||
626       isa<llvm::UndefValue>(Init))
627     return true;
628   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
629       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
630       isa<llvm::ConstantExpr>(Init))
631     return Init->isNullValue() || NumStores--;
632 
633   // See if we can emit each element.
634   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
635     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
636       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
637       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
638         return false;
639     }
640     return true;
641   }
642 
643   // Anything else is hard and scary.
644   return false;
645 }
646 
647 /// emitStoresForInitAfterMemset - For inits that
648 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
649 /// stores that would be required.
650 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
651                                          bool isVolatile, CGBuilderTy &Builder) {
652   // Zero doesn't require any stores.
653   if (isa<llvm::ConstantAggregateZero>(Init) ||
654       isa<llvm::ConstantPointerNull>(Init) ||
655       isa<llvm::UndefValue>(Init))
656     return;
657 
658   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
659       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
660       isa<llvm::ConstantExpr>(Init)) {
661     if (!Init->isNullValue())
662       Builder.CreateStore(Init, Loc, isVolatile);
663     return;
664   }
665 
666   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
667          "Unknown value type!");
668 
669   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
670     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
671     if (Elt->isNullValue()) continue;
672 
673     // Otherwise, get a pointer to the element and emit it.
674     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
675                                  isVolatile, Builder);
676   }
677 }
678 
679 
680 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
681 /// plus some stores to initialize a local variable instead of using a memcpy
682 /// from a constant global.  It is beneficial to use memset if the global is all
683 /// zeros, or mostly zeros and large.
684 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
685                                                   uint64_t GlobalSize) {
686   // If a global is all zeros, always use a memset.
687   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
688 
689 
690   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
691   // do it if it will require 6 or fewer scalar stores.
692   // TODO: Should budget depends on the size?  Avoiding a large global warrants
693   // plopping in more stores.
694   unsigned StoreBudget = 6;
695   uint64_t SizeLimit = 32;
696 
697   return GlobalSize > SizeLimit &&
698          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
699 }
700 
701 
702 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
703 /// variable declaration with auto, register, or no storage class specifier.
704 /// These turn into simple stack objects, or GlobalValues depending on target.
705 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
706   AutoVarEmission emission = EmitAutoVarAlloca(D);
707   EmitAutoVarInit(emission);
708   EmitAutoVarCleanups(emission);
709 }
710 
711 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
712 /// local variable.  Does not emit initalization or destruction.
713 CodeGenFunction::AutoVarEmission
714 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
715   QualType Ty = D.getType();
716 
717   AutoVarEmission emission(D);
718 
719   bool isByRef = D.hasAttr<BlocksAttr>();
720   emission.IsByRef = isByRef;
721 
722   CharUnits alignment = getContext().getDeclAlign(&D);
723   emission.Alignment = alignment;
724 
725   // If the type is variably-modified, emit all the VLA sizes for it.
726   if (Ty->isVariablyModifiedType())
727     EmitVariablyModifiedType(Ty);
728 
729   llvm::Value *DeclPtr;
730   if (Ty->isConstantSizeType()) {
731     if (!Target.useGlobalsForAutomaticVariables()) {
732       bool NRVO = getContext().getLangOptions().ElideConstructors &&
733                   D.isNRVOVariable();
734 
735       // If this value is a POD array or struct with a statically
736       // determinable constant initializer, there are optimizations we
737       // can do.
738       // TODO: we can potentially constant-evaluate non-POD structs and
739       // arrays as long as the initialization is trivial (e.g. if they
740       // have a non-trivial destructor, but not a non-trivial constructor).
741       if (D.getInit() &&
742           (Ty->isArrayType() || Ty->isRecordType()) &&
743           (Ty.isPODType(getContext()) ||
744            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
745           D.getInit()->isConstantInitializer(getContext(), false)) {
746 
747         // If the variable's a const type, and it's neither an NRVO
748         // candidate nor a __block variable, emit it as a global instead.
749         if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
750             !NRVO && !isByRef) {
751           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
752 
753           emission.Address = 0; // signal this condition to later callbacks
754           assert(emission.wasEmittedAsGlobal());
755           return emission;
756         }
757 
758         // Otherwise, tell the initialization code that we're in this case.
759         emission.IsConstantAggregate = true;
760       }
761 
762       // A normal fixed sized variable becomes an alloca in the entry block,
763       // unless it's an NRVO variable.
764       llvm::Type *LTy = ConvertTypeForMem(Ty);
765 
766       if (NRVO) {
767         // The named return value optimization: allocate this variable in the
768         // return slot, so that we can elide the copy when returning this
769         // variable (C++0x [class.copy]p34).
770         DeclPtr = ReturnValue;
771 
772         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
773           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
774             // Create a flag that is used to indicate when the NRVO was applied
775             // to this variable. Set it to zero to indicate that NRVO was not
776             // applied.
777             llvm::Value *Zero = Builder.getFalse();
778             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
779             EnsureInsertPoint();
780             Builder.CreateStore(Zero, NRVOFlag);
781 
782             // Record the NRVO flag for this variable.
783             NRVOFlags[&D] = NRVOFlag;
784             emission.NRVOFlag = NRVOFlag;
785           }
786         }
787       } else {
788         if (isByRef)
789           LTy = BuildByRefType(&D);
790 
791         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
792         Alloc->setName(D.getNameAsString());
793 
794         CharUnits allocaAlignment = alignment;
795         if (isByRef)
796           allocaAlignment = std::max(allocaAlignment,
797               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
798         Alloc->setAlignment(allocaAlignment.getQuantity());
799         DeclPtr = Alloc;
800       }
801     } else {
802       // Targets that don't support recursion emit locals as globals.
803       const char *Class =
804         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
805       DeclPtr = CreateStaticVarDecl(D, Class,
806                                     llvm::GlobalValue::InternalLinkage);
807     }
808   } else {
809     EnsureInsertPoint();
810 
811     if (!DidCallStackSave) {
812       // Save the stack.
813       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
814 
815       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
816       llvm::Value *V = Builder.CreateCall(F);
817 
818       Builder.CreateStore(V, Stack);
819 
820       DidCallStackSave = true;
821 
822       // Push a cleanup block and restore the stack there.
823       // FIXME: in general circumstances, this should be an EH cleanup.
824       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
825     }
826 
827     llvm::Value *elementCount;
828     QualType elementType;
829     llvm::tie(elementCount, elementType) = getVLASize(Ty);
830 
831     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
832 
833     // Allocate memory for the array.
834     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
835     vla->setAlignment(alignment.getQuantity());
836 
837     DeclPtr = vla;
838   }
839 
840   llvm::Value *&DMEntry = LocalDeclMap[&D];
841   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
842   DMEntry = DeclPtr;
843   emission.Address = DeclPtr;
844 
845   // Emit debug info for local var declaration.
846   if (HaveInsertPoint())
847     if (CGDebugInfo *DI = getDebugInfo()) {
848       DI->setLocation(D.getLocation());
849       if (Target.useGlobalsForAutomaticVariables()) {
850         DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
851       } else
852         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
853     }
854 
855   return emission;
856 }
857 
858 /// Determines whether the given __block variable is potentially
859 /// captured by the given expression.
860 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
861   // Skip the most common kinds of expressions that make
862   // hierarchy-walking expensive.
863   e = e->IgnoreParenCasts();
864 
865   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
866     const BlockDecl *block = be->getBlockDecl();
867     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
868            e = block->capture_end(); i != e; ++i) {
869       if (i->getVariable() == &var)
870         return true;
871     }
872 
873     // No need to walk into the subexpressions.
874     return false;
875   }
876 
877   for (Stmt::const_child_range children = e->children(); children; ++children)
878     if (isCapturedBy(var, cast<Expr>(*children)))
879       return true;
880 
881   return false;
882 }
883 
884 /// \brief Determine whether the given initializer is trivial in the sense
885 /// that it requires no code to be generated.
886 static bool isTrivialInitializer(const Expr *Init) {
887   if (!Init)
888     return true;
889 
890   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
891     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
892       if (Constructor->isTrivial() &&
893           Constructor->isDefaultConstructor() &&
894           !Construct->requiresZeroInitialization())
895         return true;
896 
897   return false;
898 }
899 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
900   assert(emission.Variable && "emission was not valid!");
901 
902   // If this was emitted as a global constant, we're done.
903   if (emission.wasEmittedAsGlobal()) return;
904 
905   const VarDecl &D = *emission.Variable;
906   QualType type = D.getType();
907 
908   // If this local has an initializer, emit it now.
909   const Expr *Init = D.getInit();
910 
911   // If we are at an unreachable point, we don't need to emit the initializer
912   // unless it contains a label.
913   if (!HaveInsertPoint()) {
914     if (!Init || !ContainsLabel(Init)) return;
915     EnsureInsertPoint();
916   }
917 
918   // Initialize the structure of a __block variable.
919   if (emission.IsByRef)
920     emitByrefStructureInit(emission);
921 
922   if (isTrivialInitializer(Init))
923     return;
924 
925 
926   CharUnits alignment = emission.Alignment;
927 
928   // Check whether this is a byref variable that's potentially
929   // captured and moved by its own initializer.  If so, we'll need to
930   // emit the initializer first, then copy into the variable.
931   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
932 
933   llvm::Value *Loc =
934     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
935 
936   if (!emission.IsConstantAggregate) {
937     LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity());
938     lv.setNonGC(true);
939     return EmitExprAsInit(Init, &D, lv, capturedByInit);
940   }
941 
942   // If this is a simple aggregate initialization, we can optimize it
943   // in various ways.
944   assert(!capturedByInit && "constant init contains a capturing block?");
945 
946   bool isVolatile = type.isVolatileQualified();
947 
948   llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this);
949   assert(constant != 0 && "Wasn't a simple constant init?");
950 
951   llvm::Value *SizeVal =
952     llvm::ConstantInt::get(IntPtrTy,
953                            getContext().getTypeSizeInChars(type).getQuantity());
954 
955   llvm::Type *BP = Int8PtrTy;
956   if (Loc->getType() != BP)
957     Loc = Builder.CreateBitCast(Loc, BP, "tmp");
958 
959   // If the initializer is all or mostly zeros, codegen with memset then do
960   // a few stores afterward.
961   if (shouldUseMemSetPlusStoresToInitialize(constant,
962                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
963     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
964                          alignment.getQuantity(), isVolatile);
965     if (!constant->isNullValue()) {
966       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
967       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
968     }
969   } else {
970     // Otherwise, create a temporary global with the initializer then
971     // memcpy from the global to the alloca.
972     std::string Name = GetStaticDeclName(*this, D, ".");
973     llvm::GlobalVariable *GV =
974       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
975                                llvm::GlobalValue::InternalLinkage,
976                                constant, Name, 0, false, 0);
977     GV->setAlignment(alignment.getQuantity());
978     GV->setUnnamedAddr(true);
979 
980     llvm::Value *SrcPtr = GV;
981     if (SrcPtr->getType() != BP)
982       SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
983 
984     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
985                          isVolatile);
986   }
987 }
988 
989 /// Emit an expression as an initializer for a variable at the given
990 /// location.  The expression is not necessarily the normal
991 /// initializer for the variable, and the address is not necessarily
992 /// its normal location.
993 ///
994 /// \param init the initializing expression
995 /// \param var the variable to act as if we're initializing
996 /// \param loc the address to initialize; its type is a pointer
997 ///   to the LLVM mapping of the variable's type
998 /// \param alignment the alignment of the address
999 /// \param capturedByInit true if the variable is a __block variable
1000 ///   whose address is potentially changed by the initializer
1001 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1002                                      const ValueDecl *D,
1003                                      LValue lvalue,
1004                                      bool capturedByInit) {
1005   QualType type = D->getType();
1006 
1007   if (type->isReferenceType()) {
1008     RValue rvalue = EmitReferenceBindingToExpr(init, D);
1009     if (capturedByInit)
1010       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1011     EmitStoreThroughLValue(rvalue, lvalue);
1012   } else if (!hasAggregateLLVMType(type)) {
1013     EmitScalarInit(init, D, lvalue, capturedByInit);
1014   } else if (type->isAnyComplexType()) {
1015     ComplexPairTy complex = EmitComplexExpr(init);
1016     if (capturedByInit)
1017       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1018     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1019   } else {
1020     // TODO: how can we delay here if D is captured by its initializer?
1021     EmitAggExpr(init, AggValueSlot::forLValue(lvalue, true, false));
1022   }
1023 }
1024 
1025 /// Enter a destroy cleanup for the given local variable.
1026 void CodeGenFunction::emitAutoVarTypeCleanup(
1027                             const CodeGenFunction::AutoVarEmission &emission,
1028                             QualType::DestructionKind dtorKind) {
1029   assert(dtorKind != QualType::DK_none);
1030 
1031   // Note that for __block variables, we want to destroy the
1032   // original stack object, not the possibly forwarded object.
1033   llvm::Value *addr = emission.getObjectAddress(*this);
1034 
1035   const VarDecl *var = emission.Variable;
1036   QualType type = var->getType();
1037 
1038   CleanupKind cleanupKind = NormalAndEHCleanup;
1039   CodeGenFunction::Destroyer *destroyer = 0;
1040 
1041   switch (dtorKind) {
1042   case QualType::DK_none:
1043     llvm_unreachable("no cleanup for trivially-destructible variable");
1044 
1045   case QualType::DK_cxx_destructor:
1046     // If there's an NRVO flag on the emission, we need a different
1047     // cleanup.
1048     if (emission.NRVOFlag) {
1049       assert(!type->isArrayType());
1050       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1051       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1052                                                emission.NRVOFlag);
1053       return;
1054     }
1055     break;
1056 
1057   case QualType::DK_objc_strong_lifetime:
1058     // Suppress cleanups for pseudo-strong variables.
1059     if (var->isARCPseudoStrong()) return;
1060 
1061     // Otherwise, consider whether to use an EH cleanup or not.
1062     cleanupKind = getARCCleanupKind();
1063 
1064     // Use the imprecise destroyer by default.
1065     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1066       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1067     break;
1068 
1069   case QualType::DK_objc_weak_lifetime:
1070     break;
1071   }
1072 
1073   // If we haven't chosen a more specific destroyer, use the default.
1074   if (!destroyer) destroyer = &getDestroyer(dtorKind);
1075 
1076   // Use an EH cleanup in array destructors iff the destructor itself
1077   // is being pushed as an EH cleanup.
1078   bool useEHCleanup = (cleanupKind & EHCleanup);
1079   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1080                                      useEHCleanup);
1081 }
1082 
1083 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1084   assert(emission.Variable && "emission was not valid!");
1085 
1086   // If this was emitted as a global constant, we're done.
1087   if (emission.wasEmittedAsGlobal()) return;
1088 
1089   const VarDecl &D = *emission.Variable;
1090 
1091   // Check the type for a cleanup.
1092   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1093     emitAutoVarTypeCleanup(emission, dtorKind);
1094 
1095   // In GC mode, honor objc_precise_lifetime.
1096   if (getLangOptions().getGCMode() != LangOptions::NonGC &&
1097       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1098     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1099   }
1100 
1101   // Handle the cleanup attribute.
1102   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1103     const FunctionDecl *FD = CA->getFunctionDecl();
1104 
1105     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1106     assert(F && "Could not find function!");
1107 
1108     const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
1109     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1110   }
1111 
1112   // If this is a block variable, call _Block_object_destroy
1113   // (on the unforwarded address).
1114   if (emission.IsByRef)
1115     enterByrefCleanup(emission);
1116 }
1117 
1118 CodeGenFunction::Destroyer &
1119 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1120   // This is surprisingly compiler-dependent.  GCC 4.2 can't bind
1121   // references to functions directly in returns, and using '*&foo'
1122   // confuses MSVC.  Luckily, the following code pattern works in both.
1123   Destroyer *destroyer = 0;
1124   switch (kind) {
1125   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1126   case QualType::DK_cxx_destructor:
1127     destroyer = &destroyCXXObject;
1128     break;
1129   case QualType::DK_objc_strong_lifetime:
1130     destroyer = &destroyARCStrongPrecise;
1131     break;
1132   case QualType::DK_objc_weak_lifetime:
1133     destroyer = &destroyARCWeak;
1134     break;
1135   }
1136   return *destroyer;
1137 }
1138 
1139 /// pushDestroy - Push the standard destructor for the given type.
1140 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1141                                   llvm::Value *addr, QualType type) {
1142   assert(dtorKind && "cannot push destructor for trivial type");
1143 
1144   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1145   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1146               cleanupKind & EHCleanup);
1147 }
1148 
1149 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1150                                   QualType type, Destroyer &destroyer,
1151                                   bool useEHCleanupForArray) {
1152   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1153                                      destroyer, useEHCleanupForArray);
1154 }
1155 
1156 /// emitDestroy - Immediately perform the destruction of the given
1157 /// object.
1158 ///
1159 /// \param addr - the address of the object; a type*
1160 /// \param type - the type of the object; if an array type, all
1161 ///   objects are destroyed in reverse order
1162 /// \param destroyer - the function to call to destroy individual
1163 ///   elements
1164 /// \param useEHCleanupForArray - whether an EH cleanup should be
1165 ///   used when destroying array elements, in case one of the
1166 ///   destructions throws an exception
1167 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1168                                   Destroyer &destroyer,
1169                                   bool useEHCleanupForArray) {
1170   const ArrayType *arrayType = getContext().getAsArrayType(type);
1171   if (!arrayType)
1172     return destroyer(*this, addr, type);
1173 
1174   llvm::Value *begin = addr;
1175   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1176 
1177   // Normally we have to check whether the array is zero-length.
1178   bool checkZeroLength = true;
1179 
1180   // But if the array length is constant, we can suppress that.
1181   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1182     // ...and if it's constant zero, we can just skip the entire thing.
1183     if (constLength->isZero()) return;
1184     checkZeroLength = false;
1185   }
1186 
1187   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1188   emitArrayDestroy(begin, end, type, destroyer,
1189                    checkZeroLength, useEHCleanupForArray);
1190 }
1191 
1192 /// emitArrayDestroy - Destroys all the elements of the given array,
1193 /// beginning from last to first.  The array cannot be zero-length.
1194 ///
1195 /// \param begin - a type* denoting the first element of the array
1196 /// \param end - a type* denoting one past the end of the array
1197 /// \param type - the element type of the array
1198 /// \param destroyer - the function to call to destroy elements
1199 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1200 ///   the remaining elements in case the destruction of a single
1201 ///   element throws
1202 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1203                                        llvm::Value *end,
1204                                        QualType type,
1205                                        Destroyer &destroyer,
1206                                        bool checkZeroLength,
1207                                        bool useEHCleanup) {
1208   assert(!type->isArrayType());
1209 
1210   // The basic structure here is a do-while loop, because we don't
1211   // need to check for the zero-element case.
1212   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1213   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1214 
1215   if (checkZeroLength) {
1216     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1217                                                 "arraydestroy.isempty");
1218     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1219   }
1220 
1221   // Enter the loop body, making that address the current address.
1222   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1223   EmitBlock(bodyBB);
1224   llvm::PHINode *elementPast =
1225     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1226   elementPast->addIncoming(end, entryBB);
1227 
1228   // Shift the address back by one element.
1229   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1230   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1231                                                    "arraydestroy.element");
1232 
1233   if (useEHCleanup)
1234     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1235 
1236   // Perform the actual destruction there.
1237   destroyer(*this, element, type);
1238 
1239   if (useEHCleanup)
1240     PopCleanupBlock();
1241 
1242   // Check whether we've reached the end.
1243   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1244   Builder.CreateCondBr(done, doneBB, bodyBB);
1245   elementPast->addIncoming(element, Builder.GetInsertBlock());
1246 
1247   // Done.
1248   EmitBlock(doneBB);
1249 }
1250 
1251 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1252 /// emitArrayDestroy, the element type here may still be an array type.
1253 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1254                                     llvm::Value *begin, llvm::Value *end,
1255                                     QualType type,
1256                                     CodeGenFunction::Destroyer &destroyer) {
1257   // If the element type is itself an array, drill down.
1258   unsigned arrayDepth = 0;
1259   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1260     // VLAs don't require a GEP index to walk into.
1261     if (!isa<VariableArrayType>(arrayType))
1262       arrayDepth++;
1263     type = arrayType->getElementType();
1264   }
1265 
1266   if (arrayDepth) {
1267     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1268 
1269     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1270     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1271     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1272   }
1273 
1274   // Destroy the array.  We don't ever need an EH cleanup because we
1275   // assume that we're in an EH cleanup ourselves, so a throwing
1276   // destructor causes an immediate terminate.
1277   CGF.emitArrayDestroy(begin, end, type, destroyer,
1278                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1279 }
1280 
1281 namespace {
1282   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1283   /// array destroy where the end pointer is regularly determined and
1284   /// does not need to be loaded from a local.
1285   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1286     llvm::Value *ArrayBegin;
1287     llvm::Value *ArrayEnd;
1288     QualType ElementType;
1289     CodeGenFunction::Destroyer &Destroyer;
1290   public:
1291     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1292                                QualType elementType,
1293                                CodeGenFunction::Destroyer *destroyer)
1294       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1295         ElementType(elementType), Destroyer(*destroyer) {}
1296 
1297     void Emit(CodeGenFunction &CGF, Flags flags) {
1298       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1299                               ElementType, Destroyer);
1300     }
1301   };
1302 
1303   /// IrregularPartialArrayDestroy - a cleanup which performs a
1304   /// partial array destroy where the end pointer is irregularly
1305   /// determined and must be loaded from a local.
1306   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1307     llvm::Value *ArrayBegin;
1308     llvm::Value *ArrayEndPointer;
1309     QualType ElementType;
1310     CodeGenFunction::Destroyer &Destroyer;
1311   public:
1312     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1313                                  llvm::Value *arrayEndPointer,
1314                                  QualType elementType,
1315                                  CodeGenFunction::Destroyer *destroyer)
1316       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1317         ElementType(elementType), Destroyer(*destroyer) {}
1318 
1319     void Emit(CodeGenFunction &CGF, Flags flags) {
1320       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1321       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1322                               ElementType, Destroyer);
1323     }
1324   };
1325 }
1326 
1327 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1328 /// already-constructed elements of the given array.  The cleanup
1329 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1330 ///
1331 /// \param elementType - the immediate element type of the array;
1332 ///   possibly still an array type
1333 /// \param array - a value of type elementType*
1334 /// \param destructionKind - the kind of destruction required
1335 /// \param initializedElementCount - a value of type size_t* holding
1336 ///   the number of successfully-constructed elements
1337 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1338                                                  llvm::Value *arrayEndPointer,
1339                                                        QualType elementType,
1340                                                        Destroyer &destroyer) {
1341   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1342                                                     arrayBegin, arrayEndPointer,
1343                                                     elementType, &destroyer);
1344 }
1345 
1346 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1347 /// already-constructed elements of the given array.  The cleanup
1348 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1349 ///
1350 /// \param elementType - the immediate element type of the array;
1351 ///   possibly still an array type
1352 /// \param array - a value of type elementType*
1353 /// \param destructionKind - the kind of destruction required
1354 /// \param initializedElementCount - a value of type size_t* holding
1355 ///   the number of successfully-constructed elements
1356 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1357                                                      llvm::Value *arrayEnd,
1358                                                      QualType elementType,
1359                                                      Destroyer &destroyer) {
1360   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1361                                                   arrayBegin, arrayEnd,
1362                                                   elementType, &destroyer);
1363 }
1364 
1365 namespace {
1366   /// A cleanup to perform a release of an object at the end of a
1367   /// function.  This is used to balance out the incoming +1 of a
1368   /// ns_consumed argument when we can't reasonably do that just by
1369   /// not doing the initial retain for a __block argument.
1370   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1371     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1372 
1373     llvm::Value *Param;
1374 
1375     void Emit(CodeGenFunction &CGF, Flags flags) {
1376       CGF.EmitARCRelease(Param, /*precise*/ false);
1377     }
1378   };
1379 }
1380 
1381 /// Emit an alloca (or GlobalValue depending on target)
1382 /// for the specified parameter and set up LocalDeclMap.
1383 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1384                                    unsigned ArgNo) {
1385   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1386   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1387          "Invalid argument to EmitParmDecl");
1388 
1389   Arg->setName(D.getName());
1390 
1391   // Use better IR generation for certain implicit parameters.
1392   if (isa<ImplicitParamDecl>(D)) {
1393     // The only implicit argument a block has is its literal.
1394     if (BlockInfo) {
1395       LocalDeclMap[&D] = Arg;
1396 
1397       if (CGDebugInfo *DI = getDebugInfo()) {
1398         DI->setLocation(D.getLocation());
1399         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1400       }
1401 
1402       return;
1403     }
1404   }
1405 
1406   QualType Ty = D.getType();
1407 
1408   llvm::Value *DeclPtr;
1409   // If this is an aggregate or variable sized value, reuse the input pointer.
1410   if (!Ty->isConstantSizeType() ||
1411       CodeGenFunction::hasAggregateLLVMType(Ty)) {
1412     DeclPtr = Arg;
1413   } else {
1414     // Otherwise, create a temporary to hold the value.
1415     DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
1416 
1417     bool doStore = true;
1418 
1419     Qualifiers qs = Ty.getQualifiers();
1420 
1421     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1422       // We honor __attribute__((ns_consumed)) for types with lifetime.
1423       // For __strong, it's handled by just skipping the initial retain;
1424       // otherwise we have to balance out the initial +1 with an extra
1425       // cleanup to do the release at the end of the function.
1426       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1427 
1428       // 'self' is always formally __strong, but if this is not an
1429       // init method then we don't want to retain it.
1430       if (D.isARCPseudoStrong()) {
1431         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1432         assert(&D == method->getSelfDecl());
1433         assert(lt == Qualifiers::OCL_Strong);
1434         assert(qs.hasConst());
1435         assert(method->getMethodFamily() != OMF_init);
1436         (void) method;
1437         lt = Qualifiers::OCL_ExplicitNone;
1438       }
1439 
1440       if (lt == Qualifiers::OCL_Strong) {
1441         if (!isConsumed)
1442           // Don't use objc_retainBlock for block pointers, because we
1443           // don't want to Block_copy something just because we got it
1444           // as a parameter.
1445           Arg = EmitARCRetainNonBlock(Arg);
1446       } else {
1447         // Push the cleanup for a consumed parameter.
1448         if (isConsumed)
1449           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1450 
1451         if (lt == Qualifiers::OCL_Weak) {
1452           EmitARCInitWeak(DeclPtr, Arg);
1453           doStore = false; // The weak init is a store, no need to do two
1454         }
1455       }
1456 
1457       // Enter the cleanup scope.
1458       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1459     }
1460 
1461     // Store the initial value into the alloca.
1462     if (doStore) {
1463       LValue lv = MakeAddrLValue(DeclPtr, Ty,
1464                                  getContext().getDeclAlign(&D).getQuantity());
1465       EmitStoreOfScalar(Arg, lv);
1466     }
1467   }
1468 
1469   llvm::Value *&DMEntry = LocalDeclMap[&D];
1470   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1471   DMEntry = DeclPtr;
1472 
1473   // Emit debug info for param declaration.
1474   if (CGDebugInfo *DI = getDebugInfo())
1475     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1476 }
1477