1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Type.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 32 void CodeGenFunction::EmitDecl(const Decl &D) { 33 switch (D.getKind()) { 34 case Decl::TranslationUnit: 35 case Decl::Namespace: 36 case Decl::UnresolvedUsingTypename: 37 case Decl::ClassTemplateSpecialization: 38 case Decl::ClassTemplatePartialSpecialization: 39 case Decl::TemplateTypeParm: 40 case Decl::UnresolvedUsingValue: 41 case Decl::NonTypeTemplateParm: 42 case Decl::CXXMethod: 43 case Decl::CXXConstructor: 44 case Decl::CXXDestructor: 45 case Decl::CXXConversion: 46 case Decl::Field: 47 case Decl::IndirectField: 48 case Decl::ObjCIvar: 49 case Decl::ObjCAtDefsField: 50 case Decl::ParmVar: 51 case Decl::ImplicitParam: 52 case Decl::ClassTemplate: 53 case Decl::FunctionTemplate: 54 case Decl::TypeAliasTemplate: 55 case Decl::TemplateTemplateParm: 56 case Decl::ObjCMethod: 57 case Decl::ObjCCategory: 58 case Decl::ObjCProtocol: 59 case Decl::ObjCInterface: 60 case Decl::ObjCCategoryImpl: 61 case Decl::ObjCImplementation: 62 case Decl::ObjCProperty: 63 case Decl::ObjCCompatibleAlias: 64 case Decl::AccessSpec: 65 case Decl::LinkageSpec: 66 case Decl::ObjCPropertyImpl: 67 case Decl::ObjCClass: 68 case Decl::ObjCForwardProtocol: 69 case Decl::FileScopeAsm: 70 case Decl::Friend: 71 case Decl::FriendTemplate: 72 case Decl::Block: 73 assert(0 && "Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 // None of these decls require codegen support. 86 return; 87 88 case Decl::Var: { 89 const VarDecl &VD = cast<VarDecl>(D); 90 assert(VD.isLocalVarDecl() && 91 "Should not see file-scope variables inside a function!"); 92 return EmitVarDecl(VD); 93 } 94 95 case Decl::Typedef: // typedef int X; 96 case Decl::TypeAlias: { // using X = int; [C++0x] 97 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 98 QualType Ty = TD.getUnderlyingType(); 99 100 if (Ty->isVariablyModifiedType()) 101 EmitVariablyModifiedType(Ty); 102 } 103 } 104 } 105 106 /// EmitVarDecl - This method handles emission of any variable declaration 107 /// inside a function, including static vars etc. 108 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 109 switch (D.getStorageClass()) { 110 case SC_None: 111 case SC_Auto: 112 case SC_Register: 113 return EmitAutoVarDecl(D); 114 case SC_Static: { 115 llvm::GlobalValue::LinkageTypes Linkage = 116 llvm::GlobalValue::InternalLinkage; 117 118 // If the function definition has some sort of weak linkage, its 119 // static variables should also be weak so that they get properly 120 // uniqued. We can't do this in C, though, because there's no 121 // standard way to agree on which variables are the same (i.e. 122 // there's no mangling). 123 if (getContext().getLangOptions().CPlusPlus) 124 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 125 Linkage = CurFn->getLinkage(); 126 127 return EmitStaticVarDecl(D, Linkage); 128 } 129 case SC_Extern: 130 case SC_PrivateExtern: 131 // Don't emit it now, allow it to be emitted lazily on its first use. 132 return; 133 } 134 135 assert(0 && "Unknown storage class"); 136 } 137 138 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 139 const char *Separator) { 140 CodeGenModule &CGM = CGF.CGM; 141 if (CGF.getContext().getLangOptions().CPlusPlus) { 142 StringRef Name = CGM.getMangledName(&D); 143 return Name.str(); 144 } 145 146 std::string ContextName; 147 if (!CGF.CurFuncDecl) { 148 // Better be in a block declared in global scope. 149 const NamedDecl *ND = cast<NamedDecl>(&D); 150 const DeclContext *DC = ND->getDeclContext(); 151 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 152 MangleBuffer Name; 153 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 154 ContextName = Name.getString(); 155 } 156 else 157 assert(0 && "Unknown context for block static var decl"); 158 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 159 StringRef Name = CGM.getMangledName(FD); 160 ContextName = Name.str(); 161 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 162 ContextName = CGF.CurFn->getName(); 163 else 164 assert(0 && "Unknown context for static var decl"); 165 166 return ContextName + Separator + D.getNameAsString(); 167 } 168 169 llvm::GlobalVariable * 170 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 171 const char *Separator, 172 llvm::GlobalValue::LinkageTypes Linkage) { 173 QualType Ty = D.getType(); 174 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 175 176 std::string Name = GetStaticDeclName(*this, D, Separator); 177 178 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 179 llvm::GlobalVariable *GV = 180 new llvm::GlobalVariable(CGM.getModule(), LTy, 181 Ty.isConstant(getContext()), Linkage, 182 CGM.EmitNullConstant(D.getType()), Name, 0, 183 D.isThreadSpecified(), 184 CGM.getContext().getTargetAddressSpace(Ty)); 185 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 186 if (Linkage != llvm::GlobalValue::InternalLinkage) 187 GV->setVisibility(CurFn->getVisibility()); 188 return GV; 189 } 190 191 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 192 /// global variable that has already been created for it. If the initializer 193 /// has a different type than GV does, this may free GV and return a different 194 /// one. Otherwise it just returns GV. 195 llvm::GlobalVariable * 196 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 197 llvm::GlobalVariable *GV) { 198 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 199 200 // If constant emission failed, then this should be a C++ static 201 // initializer. 202 if (!Init) { 203 if (!getContext().getLangOptions().CPlusPlus) 204 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 205 else if (Builder.GetInsertBlock()) { 206 // Since we have a static initializer, this global variable can't 207 // be constant. 208 GV->setConstant(false); 209 210 EmitCXXGuardedInit(D, GV); 211 } 212 return GV; 213 } 214 215 // The initializer may differ in type from the global. Rewrite 216 // the global to match the initializer. (We have to do this 217 // because some types, like unions, can't be completely represented 218 // in the LLVM type system.) 219 if (GV->getType()->getElementType() != Init->getType()) { 220 llvm::GlobalVariable *OldGV = GV; 221 222 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 223 OldGV->isConstant(), 224 OldGV->getLinkage(), Init, "", 225 /*InsertBefore*/ OldGV, 226 D.isThreadSpecified(), 227 CGM.getContext().getTargetAddressSpace(D.getType())); 228 GV->setVisibility(OldGV->getVisibility()); 229 230 // Steal the name of the old global 231 GV->takeName(OldGV); 232 233 // Replace all uses of the old global with the new global 234 llvm::Constant *NewPtrForOldDecl = 235 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 236 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 237 238 // Erase the old global, since it is no longer used. 239 OldGV->eraseFromParent(); 240 } 241 242 GV->setInitializer(Init); 243 return GV; 244 } 245 246 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 247 llvm::GlobalValue::LinkageTypes Linkage) { 248 llvm::Value *&DMEntry = LocalDeclMap[&D]; 249 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 250 251 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 252 253 // Store into LocalDeclMap before generating initializer to handle 254 // circular references. 255 DMEntry = GV; 256 257 // We can't have a VLA here, but we can have a pointer to a VLA, 258 // even though that doesn't really make any sense. 259 // Make sure to evaluate VLA bounds now so that we have them for later. 260 if (D.getType()->isVariablyModifiedType()) 261 EmitVariablyModifiedType(D.getType()); 262 263 // Local static block variables must be treated as globals as they may be 264 // referenced in their RHS initializer block-literal expresion. 265 CGM.setStaticLocalDeclAddress(&D, GV); 266 267 // If this value has an initializer, emit it. 268 if (D.getInit()) 269 GV = AddInitializerToStaticVarDecl(D, GV); 270 271 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 272 273 // FIXME: Merge attribute handling. 274 if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) { 275 SourceManager &SM = CGM.getContext().getSourceManager(); 276 llvm::Constant *Ann = 277 CGM.EmitAnnotateAttr(GV, AA, SM.getExpansionLineNumber(D.getLocation())); 278 CGM.AddAnnotation(Ann); 279 } 280 281 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 282 GV->setSection(SA->getName()); 283 284 if (D.hasAttr<UsedAttr>()) 285 CGM.AddUsedGlobal(GV); 286 287 // We may have to cast the constant because of the initializer 288 // mismatch above. 289 // 290 // FIXME: It is really dangerous to store this in the map; if anyone 291 // RAUW's the GV uses of this constant will be invalid. 292 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 293 llvm::Type *LPtrTy = 294 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 295 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 296 297 // Emit global variable debug descriptor for static vars. 298 CGDebugInfo *DI = getDebugInfo(); 299 if (DI) { 300 DI->setLocation(D.getLocation()); 301 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 302 } 303 } 304 305 namespace { 306 struct DestroyObject : EHScopeStack::Cleanup { 307 DestroyObject(llvm::Value *addr, QualType type, 308 CodeGenFunction::Destroyer *destroyer, 309 bool useEHCleanupForArray) 310 : addr(addr), type(type), destroyer(*destroyer), 311 useEHCleanupForArray(useEHCleanupForArray) {} 312 313 llvm::Value *addr; 314 QualType type; 315 CodeGenFunction::Destroyer &destroyer; 316 bool useEHCleanupForArray; 317 318 void Emit(CodeGenFunction &CGF, Flags flags) { 319 // Don't use an EH cleanup recursively from an EH cleanup. 320 bool useEHCleanupForArray = 321 flags.isForNormalCleanup() && this->useEHCleanupForArray; 322 323 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 324 } 325 }; 326 327 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 328 DestroyNRVOVariable(llvm::Value *addr, 329 const CXXDestructorDecl *Dtor, 330 llvm::Value *NRVOFlag) 331 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 332 333 const CXXDestructorDecl *Dtor; 334 llvm::Value *NRVOFlag; 335 llvm::Value *Loc; 336 337 void Emit(CodeGenFunction &CGF, Flags flags) { 338 // Along the exceptions path we always execute the dtor. 339 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 340 341 llvm::BasicBlock *SkipDtorBB = 0; 342 if (NRVO) { 343 // If we exited via NRVO, we skip the destructor call. 344 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 345 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 346 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 347 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 348 CGF.EmitBlock(RunDtorBB); 349 } 350 351 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 352 /*ForVirtualBase=*/false, Loc); 353 354 if (NRVO) CGF.EmitBlock(SkipDtorBB); 355 } 356 }; 357 358 struct CallStackRestore : EHScopeStack::Cleanup { 359 llvm::Value *Stack; 360 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 361 void Emit(CodeGenFunction &CGF, Flags flags) { 362 llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp"); 363 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 364 CGF.Builder.CreateCall(F, V); 365 } 366 }; 367 368 struct ExtendGCLifetime : EHScopeStack::Cleanup { 369 const VarDecl &Var; 370 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 371 372 void Emit(CodeGenFunction &CGF, Flags flags) { 373 // Compute the address of the local variable, in case it's a 374 // byref or something. 375 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 376 SourceLocation()); 377 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 378 CGF.EmitExtendGCLifetime(value); 379 } 380 }; 381 382 struct CallCleanupFunction : EHScopeStack::Cleanup { 383 llvm::Constant *CleanupFn; 384 const CGFunctionInfo &FnInfo; 385 const VarDecl &Var; 386 387 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 388 const VarDecl *Var) 389 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 390 391 void Emit(CodeGenFunction &CGF, Flags flags) { 392 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 393 SourceLocation()); 394 // Compute the address of the local variable, in case it's a byref 395 // or something. 396 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 397 398 // In some cases, the type of the function argument will be different from 399 // the type of the pointer. An example of this is 400 // void f(void* arg); 401 // __attribute__((cleanup(f))) void *g; 402 // 403 // To fix this we insert a bitcast here. 404 QualType ArgTy = FnInfo.arg_begin()->type; 405 llvm::Value *Arg = 406 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 407 408 CallArgList Args; 409 Args.add(RValue::get(Arg), 410 CGF.getContext().getPointerType(Var.getType())); 411 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 412 } 413 }; 414 } 415 416 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 417 /// variable with lifetime. 418 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 419 llvm::Value *addr, 420 Qualifiers::ObjCLifetime lifetime) { 421 switch (lifetime) { 422 case Qualifiers::OCL_None: 423 llvm_unreachable("present but none"); 424 425 case Qualifiers::OCL_ExplicitNone: 426 // nothing to do 427 break; 428 429 case Qualifiers::OCL_Strong: { 430 CodeGenFunction::Destroyer &destroyer = 431 (var.hasAttr<ObjCPreciseLifetimeAttr>() 432 ? CodeGenFunction::destroyARCStrongPrecise 433 : CodeGenFunction::destroyARCStrongImprecise); 434 435 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 436 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 437 cleanupKind & EHCleanup); 438 break; 439 } 440 case Qualifiers::OCL_Autoreleasing: 441 // nothing to do 442 break; 443 444 case Qualifiers::OCL_Weak: 445 // __weak objects always get EH cleanups; otherwise, exceptions 446 // could cause really nasty crashes instead of mere leaks. 447 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 448 CodeGenFunction::destroyARCWeak, 449 /*useEHCleanup*/ true); 450 break; 451 } 452 } 453 454 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 455 if (const Expr *e = dyn_cast<Expr>(s)) { 456 // Skip the most common kinds of expressions that make 457 // hierarchy-walking expensive. 458 s = e = e->IgnoreParenCasts(); 459 460 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 461 return (ref->getDecl() == &var); 462 } 463 464 for (Stmt::const_child_range children = s->children(); children; ++children) 465 // children might be null; as in missing decl or conditional of an if-stmt. 466 if ((*children) && isAccessedBy(var, *children)) 467 return true; 468 469 return false; 470 } 471 472 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 473 if (!decl) return false; 474 if (!isa<VarDecl>(decl)) return false; 475 const VarDecl *var = cast<VarDecl>(decl); 476 return isAccessedBy(*var, e); 477 } 478 479 static void drillIntoBlockVariable(CodeGenFunction &CGF, 480 LValue &lvalue, 481 const VarDecl *var) { 482 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 483 } 484 485 void CodeGenFunction::EmitScalarInit(const Expr *init, 486 const ValueDecl *D, 487 LValue lvalue, 488 bool capturedByInit) { 489 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 490 if (!lifetime) { 491 llvm::Value *value = EmitScalarExpr(init); 492 if (capturedByInit) 493 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 494 EmitStoreThroughLValue(RValue::get(value), lvalue); 495 return; 496 } 497 498 // If we're emitting a value with lifetime, we have to do the 499 // initialization *before* we leave the cleanup scopes. 500 CodeGenFunction::RunCleanupsScope Scope(*this); 501 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) 502 init = ewc->getSubExpr(); 503 504 // We have to maintain the illusion that the variable is 505 // zero-initialized. If the variable might be accessed in its 506 // initializer, zero-initialize before running the initializer, then 507 // actually perform the initialization with an assign. 508 bool accessedByInit = false; 509 if (lifetime != Qualifiers::OCL_ExplicitNone) 510 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 511 if (accessedByInit) { 512 LValue tempLV = lvalue; 513 // Drill down to the __block object if necessary. 514 if (capturedByInit) { 515 // We can use a simple GEP for this because it can't have been 516 // moved yet. 517 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 518 getByRefValueLLVMField(cast<VarDecl>(D)))); 519 } 520 521 llvm::PointerType *ty 522 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 523 ty = cast<llvm::PointerType>(ty->getElementType()); 524 525 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 526 527 // If __weak, we want to use a barrier under certain conditions. 528 if (lifetime == Qualifiers::OCL_Weak) 529 EmitARCInitWeak(tempLV.getAddress(), zero); 530 531 // Otherwise just do a simple store. 532 else 533 EmitStoreOfScalar(zero, tempLV); 534 } 535 536 // Emit the initializer. 537 llvm::Value *value = 0; 538 539 switch (lifetime) { 540 case Qualifiers::OCL_None: 541 llvm_unreachable("present but none"); 542 543 case Qualifiers::OCL_ExplicitNone: 544 // nothing to do 545 value = EmitScalarExpr(init); 546 break; 547 548 case Qualifiers::OCL_Strong: { 549 value = EmitARCRetainScalarExpr(init); 550 break; 551 } 552 553 case Qualifiers::OCL_Weak: { 554 // No way to optimize a producing initializer into this. It's not 555 // worth optimizing for, because the value will immediately 556 // disappear in the common case. 557 value = EmitScalarExpr(init); 558 559 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 560 if (accessedByInit) 561 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 562 else 563 EmitARCInitWeak(lvalue.getAddress(), value); 564 return; 565 } 566 567 case Qualifiers::OCL_Autoreleasing: 568 value = EmitARCRetainAutoreleaseScalarExpr(init); 569 break; 570 } 571 572 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 573 574 // If the variable might have been accessed by its initializer, we 575 // might have to initialize with a barrier. We have to do this for 576 // both __weak and __strong, but __weak got filtered out above. 577 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 578 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 579 EmitStoreOfScalar(value, lvalue); 580 EmitARCRelease(oldValue, /*precise*/ false); 581 return; 582 } 583 584 EmitStoreOfScalar(value, lvalue); 585 } 586 587 /// EmitScalarInit - Initialize the given lvalue with the given object. 588 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 589 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 590 if (!lifetime) 591 return EmitStoreThroughLValue(RValue::get(init), lvalue); 592 593 switch (lifetime) { 594 case Qualifiers::OCL_None: 595 llvm_unreachable("present but none"); 596 597 case Qualifiers::OCL_ExplicitNone: 598 // nothing to do 599 break; 600 601 case Qualifiers::OCL_Strong: 602 init = EmitARCRetain(lvalue.getType(), init); 603 break; 604 605 case Qualifiers::OCL_Weak: 606 // Initialize and then skip the primitive store. 607 EmitARCInitWeak(lvalue.getAddress(), init); 608 return; 609 610 case Qualifiers::OCL_Autoreleasing: 611 init = EmitARCRetainAutorelease(lvalue.getType(), init); 612 break; 613 } 614 615 EmitStoreOfScalar(init, lvalue); 616 } 617 618 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 619 /// non-zero parts of the specified initializer with equal or fewer than 620 /// NumStores scalar stores. 621 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 622 unsigned &NumStores) { 623 // Zero and Undef never requires any extra stores. 624 if (isa<llvm::ConstantAggregateZero>(Init) || 625 isa<llvm::ConstantPointerNull>(Init) || 626 isa<llvm::UndefValue>(Init)) 627 return true; 628 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 629 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 630 isa<llvm::ConstantExpr>(Init)) 631 return Init->isNullValue() || NumStores--; 632 633 // See if we can emit each element. 634 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 635 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 636 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 637 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 638 return false; 639 } 640 return true; 641 } 642 643 // Anything else is hard and scary. 644 return false; 645 } 646 647 /// emitStoresForInitAfterMemset - For inits that 648 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 649 /// stores that would be required. 650 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 651 bool isVolatile, CGBuilderTy &Builder) { 652 // Zero doesn't require any stores. 653 if (isa<llvm::ConstantAggregateZero>(Init) || 654 isa<llvm::ConstantPointerNull>(Init) || 655 isa<llvm::UndefValue>(Init)) 656 return; 657 658 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 659 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 660 isa<llvm::ConstantExpr>(Init)) { 661 if (!Init->isNullValue()) 662 Builder.CreateStore(Init, Loc, isVolatile); 663 return; 664 } 665 666 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 667 "Unknown value type!"); 668 669 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 670 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 671 if (Elt->isNullValue()) continue; 672 673 // Otherwise, get a pointer to the element and emit it. 674 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 675 isVolatile, Builder); 676 } 677 } 678 679 680 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 681 /// plus some stores to initialize a local variable instead of using a memcpy 682 /// from a constant global. It is beneficial to use memset if the global is all 683 /// zeros, or mostly zeros and large. 684 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 685 uint64_t GlobalSize) { 686 // If a global is all zeros, always use a memset. 687 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 688 689 690 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 691 // do it if it will require 6 or fewer scalar stores. 692 // TODO: Should budget depends on the size? Avoiding a large global warrants 693 // plopping in more stores. 694 unsigned StoreBudget = 6; 695 uint64_t SizeLimit = 32; 696 697 return GlobalSize > SizeLimit && 698 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 699 } 700 701 702 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 703 /// variable declaration with auto, register, or no storage class specifier. 704 /// These turn into simple stack objects, or GlobalValues depending on target. 705 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 706 AutoVarEmission emission = EmitAutoVarAlloca(D); 707 EmitAutoVarInit(emission); 708 EmitAutoVarCleanups(emission); 709 } 710 711 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 712 /// local variable. Does not emit initalization or destruction. 713 CodeGenFunction::AutoVarEmission 714 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 715 QualType Ty = D.getType(); 716 717 AutoVarEmission emission(D); 718 719 bool isByRef = D.hasAttr<BlocksAttr>(); 720 emission.IsByRef = isByRef; 721 722 CharUnits alignment = getContext().getDeclAlign(&D); 723 emission.Alignment = alignment; 724 725 // If the type is variably-modified, emit all the VLA sizes for it. 726 if (Ty->isVariablyModifiedType()) 727 EmitVariablyModifiedType(Ty); 728 729 llvm::Value *DeclPtr; 730 if (Ty->isConstantSizeType()) { 731 if (!Target.useGlobalsForAutomaticVariables()) { 732 bool NRVO = getContext().getLangOptions().ElideConstructors && 733 D.isNRVOVariable(); 734 735 // If this value is a POD array or struct with a statically 736 // determinable constant initializer, there are optimizations we 737 // can do. 738 // TODO: we can potentially constant-evaluate non-POD structs and 739 // arrays as long as the initialization is trivial (e.g. if they 740 // have a non-trivial destructor, but not a non-trivial constructor). 741 if (D.getInit() && 742 (Ty->isArrayType() || Ty->isRecordType()) && 743 (Ty.isPODType(getContext()) || 744 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 745 D.getInit()->isConstantInitializer(getContext(), false)) { 746 747 // If the variable's a const type, and it's neither an NRVO 748 // candidate nor a __block variable, emit it as a global instead. 749 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 750 !NRVO && !isByRef) { 751 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 752 753 emission.Address = 0; // signal this condition to later callbacks 754 assert(emission.wasEmittedAsGlobal()); 755 return emission; 756 } 757 758 // Otherwise, tell the initialization code that we're in this case. 759 emission.IsConstantAggregate = true; 760 } 761 762 // A normal fixed sized variable becomes an alloca in the entry block, 763 // unless it's an NRVO variable. 764 llvm::Type *LTy = ConvertTypeForMem(Ty); 765 766 if (NRVO) { 767 // The named return value optimization: allocate this variable in the 768 // return slot, so that we can elide the copy when returning this 769 // variable (C++0x [class.copy]p34). 770 DeclPtr = ReturnValue; 771 772 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 773 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 774 // Create a flag that is used to indicate when the NRVO was applied 775 // to this variable. Set it to zero to indicate that NRVO was not 776 // applied. 777 llvm::Value *Zero = Builder.getFalse(); 778 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 779 EnsureInsertPoint(); 780 Builder.CreateStore(Zero, NRVOFlag); 781 782 // Record the NRVO flag for this variable. 783 NRVOFlags[&D] = NRVOFlag; 784 emission.NRVOFlag = NRVOFlag; 785 } 786 } 787 } else { 788 if (isByRef) 789 LTy = BuildByRefType(&D); 790 791 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 792 Alloc->setName(D.getNameAsString()); 793 794 CharUnits allocaAlignment = alignment; 795 if (isByRef) 796 allocaAlignment = std::max(allocaAlignment, 797 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 798 Alloc->setAlignment(allocaAlignment.getQuantity()); 799 DeclPtr = Alloc; 800 } 801 } else { 802 // Targets that don't support recursion emit locals as globals. 803 const char *Class = 804 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 805 DeclPtr = CreateStaticVarDecl(D, Class, 806 llvm::GlobalValue::InternalLinkage); 807 } 808 } else { 809 EnsureInsertPoint(); 810 811 if (!DidCallStackSave) { 812 // Save the stack. 813 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 814 815 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 816 llvm::Value *V = Builder.CreateCall(F); 817 818 Builder.CreateStore(V, Stack); 819 820 DidCallStackSave = true; 821 822 // Push a cleanup block and restore the stack there. 823 // FIXME: in general circumstances, this should be an EH cleanup. 824 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 825 } 826 827 llvm::Value *elementCount; 828 QualType elementType; 829 llvm::tie(elementCount, elementType) = getVLASize(Ty); 830 831 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 832 833 // Allocate memory for the array. 834 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 835 vla->setAlignment(alignment.getQuantity()); 836 837 DeclPtr = vla; 838 } 839 840 llvm::Value *&DMEntry = LocalDeclMap[&D]; 841 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 842 DMEntry = DeclPtr; 843 emission.Address = DeclPtr; 844 845 // Emit debug info for local var declaration. 846 if (HaveInsertPoint()) 847 if (CGDebugInfo *DI = getDebugInfo()) { 848 DI->setLocation(D.getLocation()); 849 if (Target.useGlobalsForAutomaticVariables()) { 850 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 851 } else 852 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 853 } 854 855 return emission; 856 } 857 858 /// Determines whether the given __block variable is potentially 859 /// captured by the given expression. 860 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 861 // Skip the most common kinds of expressions that make 862 // hierarchy-walking expensive. 863 e = e->IgnoreParenCasts(); 864 865 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 866 const BlockDecl *block = be->getBlockDecl(); 867 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 868 e = block->capture_end(); i != e; ++i) { 869 if (i->getVariable() == &var) 870 return true; 871 } 872 873 // No need to walk into the subexpressions. 874 return false; 875 } 876 877 for (Stmt::const_child_range children = e->children(); children; ++children) 878 if (isCapturedBy(var, cast<Expr>(*children))) 879 return true; 880 881 return false; 882 } 883 884 /// \brief Determine whether the given initializer is trivial in the sense 885 /// that it requires no code to be generated. 886 static bool isTrivialInitializer(const Expr *Init) { 887 if (!Init) 888 return true; 889 890 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 891 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 892 if (Constructor->isTrivial() && 893 Constructor->isDefaultConstructor() && 894 !Construct->requiresZeroInitialization()) 895 return true; 896 897 return false; 898 } 899 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 900 assert(emission.Variable && "emission was not valid!"); 901 902 // If this was emitted as a global constant, we're done. 903 if (emission.wasEmittedAsGlobal()) return; 904 905 const VarDecl &D = *emission.Variable; 906 QualType type = D.getType(); 907 908 // If this local has an initializer, emit it now. 909 const Expr *Init = D.getInit(); 910 911 // If we are at an unreachable point, we don't need to emit the initializer 912 // unless it contains a label. 913 if (!HaveInsertPoint()) { 914 if (!Init || !ContainsLabel(Init)) return; 915 EnsureInsertPoint(); 916 } 917 918 // Initialize the structure of a __block variable. 919 if (emission.IsByRef) 920 emitByrefStructureInit(emission); 921 922 if (isTrivialInitializer(Init)) 923 return; 924 925 926 CharUnits alignment = emission.Alignment; 927 928 // Check whether this is a byref variable that's potentially 929 // captured and moved by its own initializer. If so, we'll need to 930 // emit the initializer first, then copy into the variable. 931 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 932 933 llvm::Value *Loc = 934 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 935 936 if (!emission.IsConstantAggregate) { 937 LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity()); 938 lv.setNonGC(true); 939 return EmitExprAsInit(Init, &D, lv, capturedByInit); 940 } 941 942 // If this is a simple aggregate initialization, we can optimize it 943 // in various ways. 944 assert(!capturedByInit && "constant init contains a capturing block?"); 945 946 bool isVolatile = type.isVolatileQualified(); 947 948 llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this); 949 assert(constant != 0 && "Wasn't a simple constant init?"); 950 951 llvm::Value *SizeVal = 952 llvm::ConstantInt::get(IntPtrTy, 953 getContext().getTypeSizeInChars(type).getQuantity()); 954 955 llvm::Type *BP = Int8PtrTy; 956 if (Loc->getType() != BP) 957 Loc = Builder.CreateBitCast(Loc, BP, "tmp"); 958 959 // If the initializer is all or mostly zeros, codegen with memset then do 960 // a few stores afterward. 961 if (shouldUseMemSetPlusStoresToInitialize(constant, 962 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 963 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 964 alignment.getQuantity(), isVolatile); 965 if (!constant->isNullValue()) { 966 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 967 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 968 } 969 } else { 970 // Otherwise, create a temporary global with the initializer then 971 // memcpy from the global to the alloca. 972 std::string Name = GetStaticDeclName(*this, D, "."); 973 llvm::GlobalVariable *GV = 974 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 975 llvm::GlobalValue::InternalLinkage, 976 constant, Name, 0, false, 0); 977 GV->setAlignment(alignment.getQuantity()); 978 GV->setUnnamedAddr(true); 979 980 llvm::Value *SrcPtr = GV; 981 if (SrcPtr->getType() != BP) 982 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 983 984 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 985 isVolatile); 986 } 987 } 988 989 /// Emit an expression as an initializer for a variable at the given 990 /// location. The expression is not necessarily the normal 991 /// initializer for the variable, and the address is not necessarily 992 /// its normal location. 993 /// 994 /// \param init the initializing expression 995 /// \param var the variable to act as if we're initializing 996 /// \param loc the address to initialize; its type is a pointer 997 /// to the LLVM mapping of the variable's type 998 /// \param alignment the alignment of the address 999 /// \param capturedByInit true if the variable is a __block variable 1000 /// whose address is potentially changed by the initializer 1001 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1002 const ValueDecl *D, 1003 LValue lvalue, 1004 bool capturedByInit) { 1005 QualType type = D->getType(); 1006 1007 if (type->isReferenceType()) { 1008 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1009 if (capturedByInit) 1010 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1011 EmitStoreThroughLValue(rvalue, lvalue); 1012 } else if (!hasAggregateLLVMType(type)) { 1013 EmitScalarInit(init, D, lvalue, capturedByInit); 1014 } else if (type->isAnyComplexType()) { 1015 ComplexPairTy complex = EmitComplexExpr(init); 1016 if (capturedByInit) 1017 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1018 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); 1019 } else { 1020 // TODO: how can we delay here if D is captured by its initializer? 1021 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, true, false)); 1022 } 1023 } 1024 1025 /// Enter a destroy cleanup for the given local variable. 1026 void CodeGenFunction::emitAutoVarTypeCleanup( 1027 const CodeGenFunction::AutoVarEmission &emission, 1028 QualType::DestructionKind dtorKind) { 1029 assert(dtorKind != QualType::DK_none); 1030 1031 // Note that for __block variables, we want to destroy the 1032 // original stack object, not the possibly forwarded object. 1033 llvm::Value *addr = emission.getObjectAddress(*this); 1034 1035 const VarDecl *var = emission.Variable; 1036 QualType type = var->getType(); 1037 1038 CleanupKind cleanupKind = NormalAndEHCleanup; 1039 CodeGenFunction::Destroyer *destroyer = 0; 1040 1041 switch (dtorKind) { 1042 case QualType::DK_none: 1043 llvm_unreachable("no cleanup for trivially-destructible variable"); 1044 1045 case QualType::DK_cxx_destructor: 1046 // If there's an NRVO flag on the emission, we need a different 1047 // cleanup. 1048 if (emission.NRVOFlag) { 1049 assert(!type->isArrayType()); 1050 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1051 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1052 emission.NRVOFlag); 1053 return; 1054 } 1055 break; 1056 1057 case QualType::DK_objc_strong_lifetime: 1058 // Suppress cleanups for pseudo-strong variables. 1059 if (var->isARCPseudoStrong()) return; 1060 1061 // Otherwise, consider whether to use an EH cleanup or not. 1062 cleanupKind = getARCCleanupKind(); 1063 1064 // Use the imprecise destroyer by default. 1065 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1066 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1067 break; 1068 1069 case QualType::DK_objc_weak_lifetime: 1070 break; 1071 } 1072 1073 // If we haven't chosen a more specific destroyer, use the default. 1074 if (!destroyer) destroyer = &getDestroyer(dtorKind); 1075 1076 // Use an EH cleanup in array destructors iff the destructor itself 1077 // is being pushed as an EH cleanup. 1078 bool useEHCleanup = (cleanupKind & EHCleanup); 1079 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1080 useEHCleanup); 1081 } 1082 1083 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1084 assert(emission.Variable && "emission was not valid!"); 1085 1086 // If this was emitted as a global constant, we're done. 1087 if (emission.wasEmittedAsGlobal()) return; 1088 1089 const VarDecl &D = *emission.Variable; 1090 1091 // Check the type for a cleanup. 1092 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1093 emitAutoVarTypeCleanup(emission, dtorKind); 1094 1095 // In GC mode, honor objc_precise_lifetime. 1096 if (getLangOptions().getGCMode() != LangOptions::NonGC && 1097 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1098 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1099 } 1100 1101 // Handle the cleanup attribute. 1102 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1103 const FunctionDecl *FD = CA->getFunctionDecl(); 1104 1105 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1106 assert(F && "Could not find function!"); 1107 1108 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 1109 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1110 } 1111 1112 // If this is a block variable, call _Block_object_destroy 1113 // (on the unforwarded address). 1114 if (emission.IsByRef) 1115 enterByrefCleanup(emission); 1116 } 1117 1118 CodeGenFunction::Destroyer & 1119 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1120 // This is surprisingly compiler-dependent. GCC 4.2 can't bind 1121 // references to functions directly in returns, and using '*&foo' 1122 // confuses MSVC. Luckily, the following code pattern works in both. 1123 Destroyer *destroyer = 0; 1124 switch (kind) { 1125 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1126 case QualType::DK_cxx_destructor: 1127 destroyer = &destroyCXXObject; 1128 break; 1129 case QualType::DK_objc_strong_lifetime: 1130 destroyer = &destroyARCStrongPrecise; 1131 break; 1132 case QualType::DK_objc_weak_lifetime: 1133 destroyer = &destroyARCWeak; 1134 break; 1135 } 1136 return *destroyer; 1137 } 1138 1139 /// pushDestroy - Push the standard destructor for the given type. 1140 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1141 llvm::Value *addr, QualType type) { 1142 assert(dtorKind && "cannot push destructor for trivial type"); 1143 1144 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1145 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1146 cleanupKind & EHCleanup); 1147 } 1148 1149 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1150 QualType type, Destroyer &destroyer, 1151 bool useEHCleanupForArray) { 1152 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1153 destroyer, useEHCleanupForArray); 1154 } 1155 1156 /// emitDestroy - Immediately perform the destruction of the given 1157 /// object. 1158 /// 1159 /// \param addr - the address of the object; a type* 1160 /// \param type - the type of the object; if an array type, all 1161 /// objects are destroyed in reverse order 1162 /// \param destroyer - the function to call to destroy individual 1163 /// elements 1164 /// \param useEHCleanupForArray - whether an EH cleanup should be 1165 /// used when destroying array elements, in case one of the 1166 /// destructions throws an exception 1167 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1168 Destroyer &destroyer, 1169 bool useEHCleanupForArray) { 1170 const ArrayType *arrayType = getContext().getAsArrayType(type); 1171 if (!arrayType) 1172 return destroyer(*this, addr, type); 1173 1174 llvm::Value *begin = addr; 1175 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1176 1177 // Normally we have to check whether the array is zero-length. 1178 bool checkZeroLength = true; 1179 1180 // But if the array length is constant, we can suppress that. 1181 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1182 // ...and if it's constant zero, we can just skip the entire thing. 1183 if (constLength->isZero()) return; 1184 checkZeroLength = false; 1185 } 1186 1187 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1188 emitArrayDestroy(begin, end, type, destroyer, 1189 checkZeroLength, useEHCleanupForArray); 1190 } 1191 1192 /// emitArrayDestroy - Destroys all the elements of the given array, 1193 /// beginning from last to first. The array cannot be zero-length. 1194 /// 1195 /// \param begin - a type* denoting the first element of the array 1196 /// \param end - a type* denoting one past the end of the array 1197 /// \param type - the element type of the array 1198 /// \param destroyer - the function to call to destroy elements 1199 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1200 /// the remaining elements in case the destruction of a single 1201 /// element throws 1202 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1203 llvm::Value *end, 1204 QualType type, 1205 Destroyer &destroyer, 1206 bool checkZeroLength, 1207 bool useEHCleanup) { 1208 assert(!type->isArrayType()); 1209 1210 // The basic structure here is a do-while loop, because we don't 1211 // need to check for the zero-element case. 1212 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1213 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1214 1215 if (checkZeroLength) { 1216 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1217 "arraydestroy.isempty"); 1218 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1219 } 1220 1221 // Enter the loop body, making that address the current address. 1222 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1223 EmitBlock(bodyBB); 1224 llvm::PHINode *elementPast = 1225 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1226 elementPast->addIncoming(end, entryBB); 1227 1228 // Shift the address back by one element. 1229 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1230 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1231 "arraydestroy.element"); 1232 1233 if (useEHCleanup) 1234 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1235 1236 // Perform the actual destruction there. 1237 destroyer(*this, element, type); 1238 1239 if (useEHCleanup) 1240 PopCleanupBlock(); 1241 1242 // Check whether we've reached the end. 1243 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1244 Builder.CreateCondBr(done, doneBB, bodyBB); 1245 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1246 1247 // Done. 1248 EmitBlock(doneBB); 1249 } 1250 1251 /// Perform partial array destruction as if in an EH cleanup. Unlike 1252 /// emitArrayDestroy, the element type here may still be an array type. 1253 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1254 llvm::Value *begin, llvm::Value *end, 1255 QualType type, 1256 CodeGenFunction::Destroyer &destroyer) { 1257 // If the element type is itself an array, drill down. 1258 unsigned arrayDepth = 0; 1259 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1260 // VLAs don't require a GEP index to walk into. 1261 if (!isa<VariableArrayType>(arrayType)) 1262 arrayDepth++; 1263 type = arrayType->getElementType(); 1264 } 1265 1266 if (arrayDepth) { 1267 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1268 1269 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1270 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1271 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1272 } 1273 1274 // Destroy the array. We don't ever need an EH cleanup because we 1275 // assume that we're in an EH cleanup ourselves, so a throwing 1276 // destructor causes an immediate terminate. 1277 CGF.emitArrayDestroy(begin, end, type, destroyer, 1278 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1279 } 1280 1281 namespace { 1282 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1283 /// array destroy where the end pointer is regularly determined and 1284 /// does not need to be loaded from a local. 1285 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1286 llvm::Value *ArrayBegin; 1287 llvm::Value *ArrayEnd; 1288 QualType ElementType; 1289 CodeGenFunction::Destroyer &Destroyer; 1290 public: 1291 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1292 QualType elementType, 1293 CodeGenFunction::Destroyer *destroyer) 1294 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1295 ElementType(elementType), Destroyer(*destroyer) {} 1296 1297 void Emit(CodeGenFunction &CGF, Flags flags) { 1298 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1299 ElementType, Destroyer); 1300 } 1301 }; 1302 1303 /// IrregularPartialArrayDestroy - a cleanup which performs a 1304 /// partial array destroy where the end pointer is irregularly 1305 /// determined and must be loaded from a local. 1306 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1307 llvm::Value *ArrayBegin; 1308 llvm::Value *ArrayEndPointer; 1309 QualType ElementType; 1310 CodeGenFunction::Destroyer &Destroyer; 1311 public: 1312 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1313 llvm::Value *arrayEndPointer, 1314 QualType elementType, 1315 CodeGenFunction::Destroyer *destroyer) 1316 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1317 ElementType(elementType), Destroyer(*destroyer) {} 1318 1319 void Emit(CodeGenFunction &CGF, Flags flags) { 1320 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1321 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1322 ElementType, Destroyer); 1323 } 1324 }; 1325 } 1326 1327 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1328 /// already-constructed elements of the given array. The cleanup 1329 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1330 /// 1331 /// \param elementType - the immediate element type of the array; 1332 /// possibly still an array type 1333 /// \param array - a value of type elementType* 1334 /// \param destructionKind - the kind of destruction required 1335 /// \param initializedElementCount - a value of type size_t* holding 1336 /// the number of successfully-constructed elements 1337 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1338 llvm::Value *arrayEndPointer, 1339 QualType elementType, 1340 Destroyer &destroyer) { 1341 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1342 arrayBegin, arrayEndPointer, 1343 elementType, &destroyer); 1344 } 1345 1346 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1347 /// already-constructed elements of the given array. The cleanup 1348 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1349 /// 1350 /// \param elementType - the immediate element type of the array; 1351 /// possibly still an array type 1352 /// \param array - a value of type elementType* 1353 /// \param destructionKind - the kind of destruction required 1354 /// \param initializedElementCount - a value of type size_t* holding 1355 /// the number of successfully-constructed elements 1356 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1357 llvm::Value *arrayEnd, 1358 QualType elementType, 1359 Destroyer &destroyer) { 1360 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1361 arrayBegin, arrayEnd, 1362 elementType, &destroyer); 1363 } 1364 1365 namespace { 1366 /// A cleanup to perform a release of an object at the end of a 1367 /// function. This is used to balance out the incoming +1 of a 1368 /// ns_consumed argument when we can't reasonably do that just by 1369 /// not doing the initial retain for a __block argument. 1370 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1371 ConsumeARCParameter(llvm::Value *param) : Param(param) {} 1372 1373 llvm::Value *Param; 1374 1375 void Emit(CodeGenFunction &CGF, Flags flags) { 1376 CGF.EmitARCRelease(Param, /*precise*/ false); 1377 } 1378 }; 1379 } 1380 1381 /// Emit an alloca (or GlobalValue depending on target) 1382 /// for the specified parameter and set up LocalDeclMap. 1383 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1384 unsigned ArgNo) { 1385 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1386 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1387 "Invalid argument to EmitParmDecl"); 1388 1389 Arg->setName(D.getName()); 1390 1391 // Use better IR generation for certain implicit parameters. 1392 if (isa<ImplicitParamDecl>(D)) { 1393 // The only implicit argument a block has is its literal. 1394 if (BlockInfo) { 1395 LocalDeclMap[&D] = Arg; 1396 1397 if (CGDebugInfo *DI = getDebugInfo()) { 1398 DI->setLocation(D.getLocation()); 1399 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1400 } 1401 1402 return; 1403 } 1404 } 1405 1406 QualType Ty = D.getType(); 1407 1408 llvm::Value *DeclPtr; 1409 // If this is an aggregate or variable sized value, reuse the input pointer. 1410 if (!Ty->isConstantSizeType() || 1411 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1412 DeclPtr = Arg; 1413 } else { 1414 // Otherwise, create a temporary to hold the value. 1415 DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr"); 1416 1417 bool doStore = true; 1418 1419 Qualifiers qs = Ty.getQualifiers(); 1420 1421 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1422 // We honor __attribute__((ns_consumed)) for types with lifetime. 1423 // For __strong, it's handled by just skipping the initial retain; 1424 // otherwise we have to balance out the initial +1 with an extra 1425 // cleanup to do the release at the end of the function. 1426 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1427 1428 // 'self' is always formally __strong, but if this is not an 1429 // init method then we don't want to retain it. 1430 if (D.isARCPseudoStrong()) { 1431 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1432 assert(&D == method->getSelfDecl()); 1433 assert(lt == Qualifiers::OCL_Strong); 1434 assert(qs.hasConst()); 1435 assert(method->getMethodFamily() != OMF_init); 1436 (void) method; 1437 lt = Qualifiers::OCL_ExplicitNone; 1438 } 1439 1440 if (lt == Qualifiers::OCL_Strong) { 1441 if (!isConsumed) 1442 // Don't use objc_retainBlock for block pointers, because we 1443 // don't want to Block_copy something just because we got it 1444 // as a parameter. 1445 Arg = EmitARCRetainNonBlock(Arg); 1446 } else { 1447 // Push the cleanup for a consumed parameter. 1448 if (isConsumed) 1449 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); 1450 1451 if (lt == Qualifiers::OCL_Weak) { 1452 EmitARCInitWeak(DeclPtr, Arg); 1453 doStore = false; // The weak init is a store, no need to do two 1454 } 1455 } 1456 1457 // Enter the cleanup scope. 1458 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1459 } 1460 1461 // Store the initial value into the alloca. 1462 if (doStore) { 1463 LValue lv = MakeAddrLValue(DeclPtr, Ty, 1464 getContext().getDeclAlign(&D).getQuantity()); 1465 EmitStoreOfScalar(Arg, lv); 1466 } 1467 } 1468 1469 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1470 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1471 DMEntry = DeclPtr; 1472 1473 // Emit debug info for param declaration. 1474 if (CGDebugInfo *DI = getDebugInfo()) 1475 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1476 } 1477