1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Type.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 
32 void CodeGenFunction::EmitDecl(const Decl &D) {
33   switch (D.getKind()) {
34   case Decl::TranslationUnit:
35   case Decl::Namespace:
36   case Decl::UnresolvedUsingTypename:
37   case Decl::ClassTemplateSpecialization:
38   case Decl::ClassTemplatePartialSpecialization:
39   case Decl::TemplateTypeParm:
40   case Decl::UnresolvedUsingValue:
41   case Decl::NonTypeTemplateParm:
42   case Decl::CXXMethod:
43   case Decl::CXXConstructor:
44   case Decl::CXXDestructor:
45   case Decl::CXXConversion:
46   case Decl::Field:
47   case Decl::IndirectField:
48   case Decl::ObjCIvar:
49   case Decl::ObjCAtDefsField:
50   case Decl::ParmVar:
51   case Decl::ImplicitParam:
52   case Decl::ClassTemplate:
53   case Decl::FunctionTemplate:
54   case Decl::TemplateTemplateParm:
55   case Decl::ObjCMethod:
56   case Decl::ObjCCategory:
57   case Decl::ObjCProtocol:
58   case Decl::ObjCInterface:
59   case Decl::ObjCCategoryImpl:
60   case Decl::ObjCImplementation:
61   case Decl::ObjCProperty:
62   case Decl::ObjCCompatibleAlias:
63   case Decl::AccessSpec:
64   case Decl::LinkageSpec:
65   case Decl::ObjCPropertyImpl:
66   case Decl::ObjCClass:
67   case Decl::ObjCForwardProtocol:
68   case Decl::FileScopeAsm:
69   case Decl::Friend:
70   case Decl::FriendTemplate:
71   case Decl::Block:
72     assert(0 && "Declaration should not be in declstmts!");
73   case Decl::Function:  // void X();
74   case Decl::Record:    // struct/union/class X;
75   case Decl::Enum:      // enum X;
76   case Decl::EnumConstant: // enum ? { X = ? }
77   case Decl::CXXRecord: // struct/union/class X; [C++]
78   case Decl::Using:          // using X; [C++]
79   case Decl::UsingShadow:
80   case Decl::UsingDirective: // using namespace X; [C++]
81   case Decl::NamespaceAlias:
82   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
83   case Decl::Label:        // __label__ x;
84     // None of these decls require codegen support.
85     return;
86 
87   case Decl::Var: {
88     const VarDecl &VD = cast<VarDecl>(D);
89     assert(VD.isLocalVarDecl() &&
90            "Should not see file-scope variables inside a function!");
91     return EmitVarDecl(VD);
92   }
93 
94   case Decl::Typedef:      // typedef int X;
95   case Decl::TypeAlias: {  // using X = int; [C++0x]
96     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
97     QualType Ty = TD.getUnderlyingType();
98 
99     if (Ty->isVariablyModifiedType())
100       EmitVLASize(Ty);
101   }
102   }
103 }
104 
105 /// EmitVarDecl - This method handles emission of any variable declaration
106 /// inside a function, including static vars etc.
107 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
108   switch (D.getStorageClass()) {
109   case SC_None:
110   case SC_Auto:
111   case SC_Register:
112     return EmitAutoVarDecl(D);
113   case SC_Static: {
114     llvm::GlobalValue::LinkageTypes Linkage =
115       llvm::GlobalValue::InternalLinkage;
116 
117     // If the function definition has some sort of weak linkage, its
118     // static variables should also be weak so that they get properly
119     // uniqued.  We can't do this in C, though, because there's no
120     // standard way to agree on which variables are the same (i.e.
121     // there's no mangling).
122     if (getContext().getLangOptions().CPlusPlus)
123       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
124         Linkage = CurFn->getLinkage();
125 
126     return EmitStaticVarDecl(D, Linkage);
127   }
128   case SC_Extern:
129   case SC_PrivateExtern:
130     // Don't emit it now, allow it to be emitted lazily on its first use.
131     return;
132   }
133 
134   assert(0 && "Unknown storage class");
135 }
136 
137 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
138                                      const char *Separator) {
139   CodeGenModule &CGM = CGF.CGM;
140   if (CGF.getContext().getLangOptions().CPlusPlus) {
141     llvm::StringRef Name = CGM.getMangledName(&D);
142     return Name.str();
143   }
144 
145   std::string ContextName;
146   if (!CGF.CurFuncDecl) {
147     // Better be in a block declared in global scope.
148     const NamedDecl *ND = cast<NamedDecl>(&D);
149     const DeclContext *DC = ND->getDeclContext();
150     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
151       MangleBuffer Name;
152       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
153       ContextName = Name.getString();
154     }
155     else
156       assert(0 && "Unknown context for block static var decl");
157   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
158     llvm::StringRef Name = CGM.getMangledName(FD);
159     ContextName = Name.str();
160   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
161     ContextName = CGF.CurFn->getName();
162   else
163     assert(0 && "Unknown context for static var decl");
164 
165   return ContextName + Separator + D.getNameAsString();
166 }
167 
168 llvm::GlobalVariable *
169 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
170                                      const char *Separator,
171                                      llvm::GlobalValue::LinkageTypes Linkage) {
172   QualType Ty = D.getType();
173   assert(Ty->isConstantSizeType() && "VLAs can't be static");
174 
175   std::string Name = GetStaticDeclName(*this, D, Separator);
176 
177   const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
178   llvm::GlobalVariable *GV =
179     new llvm::GlobalVariable(CGM.getModule(), LTy,
180                              Ty.isConstant(getContext()), Linkage,
181                              CGM.EmitNullConstant(D.getType()), Name, 0,
182                              D.isThreadSpecified(),
183                              CGM.getContext().getTargetAddressSpace(Ty));
184   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
185   if (Linkage != llvm::GlobalValue::InternalLinkage)
186     GV->setVisibility(CurFn->getVisibility());
187   return GV;
188 }
189 
190 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
191 /// global variable that has already been created for it.  If the initializer
192 /// has a different type than GV does, this may free GV and return a different
193 /// one.  Otherwise it just returns GV.
194 llvm::GlobalVariable *
195 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
196                                                llvm::GlobalVariable *GV) {
197   llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
198 
199   // If constant emission failed, then this should be a C++ static
200   // initializer.
201   if (!Init) {
202     if (!getContext().getLangOptions().CPlusPlus)
203       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
204     else if (Builder.GetInsertBlock()) {
205       // Since we have a static initializer, this global variable can't
206       // be constant.
207       GV->setConstant(false);
208 
209       EmitCXXGuardedInit(D, GV);
210     }
211     return GV;
212   }
213 
214   // The initializer may differ in type from the global. Rewrite
215   // the global to match the initializer.  (We have to do this
216   // because some types, like unions, can't be completely represented
217   // in the LLVM type system.)
218   if (GV->getType()->getElementType() != Init->getType()) {
219     llvm::GlobalVariable *OldGV = GV;
220 
221     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
222                                   OldGV->isConstant(),
223                                   OldGV->getLinkage(), Init, "",
224                                   /*InsertBefore*/ OldGV,
225                                   D.isThreadSpecified(),
226                            CGM.getContext().getTargetAddressSpace(D.getType()));
227     GV->setVisibility(OldGV->getVisibility());
228 
229     // Steal the name of the old global
230     GV->takeName(OldGV);
231 
232     // Replace all uses of the old global with the new global
233     llvm::Constant *NewPtrForOldDecl =
234     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
235     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
236 
237     // Erase the old global, since it is no longer used.
238     OldGV->eraseFromParent();
239   }
240 
241   GV->setInitializer(Init);
242   return GV;
243 }
244 
245 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
246                                       llvm::GlobalValue::LinkageTypes Linkage) {
247   llvm::Value *&DMEntry = LocalDeclMap[&D];
248   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
249 
250   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
251 
252   // Store into LocalDeclMap before generating initializer to handle
253   // circular references.
254   DMEntry = GV;
255 
256   // We can't have a VLA here, but we can have a pointer to a VLA,
257   // even though that doesn't really make any sense.
258   // Make sure to evaluate VLA bounds now so that we have them for later.
259   if (D.getType()->isVariablyModifiedType())
260     EmitVLASize(D.getType());
261 
262   // Local static block variables must be treated as globals as they may be
263   // referenced in their RHS initializer block-literal expresion.
264   CGM.setStaticLocalDeclAddress(&D, GV);
265 
266   // If this value has an initializer, emit it.
267   if (D.getInit())
268     GV = AddInitializerToStaticVarDecl(D, GV);
269 
270   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
271 
272   // FIXME: Merge attribute handling.
273   if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) {
274     SourceManager &SM = CGM.getContext().getSourceManager();
275     llvm::Constant *Ann =
276       CGM.EmitAnnotateAttr(GV, AA,
277                            SM.getInstantiationLineNumber(D.getLocation()));
278     CGM.AddAnnotation(Ann);
279   }
280 
281   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
282     GV->setSection(SA->getName());
283 
284   if (D.hasAttr<UsedAttr>())
285     CGM.AddUsedGlobal(GV);
286 
287   // We may have to cast the constant because of the initializer
288   // mismatch above.
289   //
290   // FIXME: It is really dangerous to store this in the map; if anyone
291   // RAUW's the GV uses of this constant will be invalid.
292   const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
293   const llvm::Type *LPtrTy =
294     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
295   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
296 
297   // Emit global variable debug descriptor for static vars.
298   CGDebugInfo *DI = getDebugInfo();
299   if (DI) {
300     DI->setLocation(D.getLocation());
301     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
302   }
303 }
304 
305 namespace {
306   struct CallArrayDtor : EHScopeStack::Cleanup {
307     CallArrayDtor(const CXXDestructorDecl *Dtor,
308                   const ConstantArrayType *Type,
309                   llvm::Value *Loc)
310       : Dtor(Dtor), Type(Type), Loc(Loc) {}
311 
312     const CXXDestructorDecl *Dtor;
313     const ConstantArrayType *Type;
314     llvm::Value *Loc;
315 
316     void Emit(CodeGenFunction &CGF, bool IsForEH) {
317       QualType BaseElementTy = CGF.getContext().getBaseElementType(Type);
318       const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy);
319       BasePtr = llvm::PointerType::getUnqual(BasePtr);
320       llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(Loc, BasePtr);
321       CGF.EmitCXXAggrDestructorCall(Dtor, Type, BaseAddrPtr);
322     }
323   };
324 
325   struct CallVarDtor : EHScopeStack::Cleanup {
326     CallVarDtor(const CXXDestructorDecl *Dtor,
327                 llvm::Value *NRVOFlag,
328                 llvm::Value *Loc)
329       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(Loc) {}
330 
331     const CXXDestructorDecl *Dtor;
332     llvm::Value *NRVOFlag;
333     llvm::Value *Loc;
334 
335     void Emit(CodeGenFunction &CGF, bool IsForEH) {
336       // Along the exceptions path we always execute the dtor.
337       bool NRVO = !IsForEH && NRVOFlag;
338 
339       llvm::BasicBlock *SkipDtorBB = 0;
340       if (NRVO) {
341         // If we exited via NRVO, we skip the destructor call.
342         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
343         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
344         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
345         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
346         CGF.EmitBlock(RunDtorBB);
347       }
348 
349       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
350                                 /*ForVirtualBase=*/false, Loc);
351 
352       if (NRVO) CGF.EmitBlock(SkipDtorBB);
353     }
354   };
355 }
356 
357 namespace {
358   struct CallStackRestore : EHScopeStack::Cleanup {
359     llvm::Value *Stack;
360     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
361     void Emit(CodeGenFunction &CGF, bool IsForEH) {
362       llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp");
363       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
364       CGF.Builder.CreateCall(F, V);
365     }
366   };
367 
368   struct CallCleanupFunction : EHScopeStack::Cleanup {
369     llvm::Constant *CleanupFn;
370     const CGFunctionInfo &FnInfo;
371     const VarDecl &Var;
372 
373     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
374                         const VarDecl *Var)
375       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
376 
377     void Emit(CodeGenFunction &CGF, bool IsForEH) {
378       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
379                       SourceLocation());
380       // Compute the address of the local variable, in case it's a byref
381       // or something.
382       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
383 
384       // In some cases, the type of the function argument will be different from
385       // the type of the pointer. An example of this is
386       // void f(void* arg);
387       // __attribute__((cleanup(f))) void *g;
388       //
389       // To fix this we insert a bitcast here.
390       QualType ArgTy = FnInfo.arg_begin()->type;
391       llvm::Value *Arg =
392         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
393 
394       CallArgList Args;
395       Args.push_back(std::make_pair(RValue::get(Arg),
396                             CGF.getContext().getPointerType(Var.getType())));
397       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
398     }
399   };
400 }
401 
402 
403 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
404 /// non-zero parts of the specified initializer with equal or fewer than
405 /// NumStores scalar stores.
406 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
407                                                 unsigned &NumStores) {
408   // Zero and Undef never requires any extra stores.
409   if (isa<llvm::ConstantAggregateZero>(Init) ||
410       isa<llvm::ConstantPointerNull>(Init) ||
411       isa<llvm::UndefValue>(Init))
412     return true;
413   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
414       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
415       isa<llvm::ConstantExpr>(Init))
416     return Init->isNullValue() || NumStores--;
417 
418   // See if we can emit each element.
419   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
420     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
421       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
422       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
423         return false;
424     }
425     return true;
426   }
427 
428   // Anything else is hard and scary.
429   return false;
430 }
431 
432 /// emitStoresForInitAfterMemset - For inits that
433 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
434 /// stores that would be required.
435 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
436                                          bool isVolatile, CGBuilderTy &Builder) {
437   // Zero doesn't require any stores.
438   if (isa<llvm::ConstantAggregateZero>(Init) ||
439       isa<llvm::ConstantPointerNull>(Init) ||
440       isa<llvm::UndefValue>(Init))
441     return;
442 
443   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
444       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
445       isa<llvm::ConstantExpr>(Init)) {
446     if (!Init->isNullValue())
447       Builder.CreateStore(Init, Loc, isVolatile);
448     return;
449   }
450 
451   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
452          "Unknown value type!");
453 
454   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
455     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
456     if (Elt->isNullValue()) continue;
457 
458     // Otherwise, get a pointer to the element and emit it.
459     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
460                                  isVolatile, Builder);
461   }
462 }
463 
464 
465 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
466 /// plus some stores to initialize a local variable instead of using a memcpy
467 /// from a constant global.  It is beneficial to use memset if the global is all
468 /// zeros, or mostly zeros and large.
469 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
470                                                   uint64_t GlobalSize) {
471   // If a global is all zeros, always use a memset.
472   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
473 
474 
475   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
476   // do it if it will require 6 or fewer scalar stores.
477   // TODO: Should budget depends on the size?  Avoiding a large global warrants
478   // plopping in more stores.
479   unsigned StoreBudget = 6;
480   uint64_t SizeLimit = 32;
481 
482   return GlobalSize > SizeLimit &&
483          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
484 }
485 
486 
487 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
488 /// variable declaration with auto, register, or no storage class specifier.
489 /// These turn into simple stack objects, or GlobalValues depending on target.
490 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
491   AutoVarEmission emission = EmitAutoVarAlloca(D);
492   EmitAutoVarInit(emission);
493   EmitAutoVarCleanups(emission);
494 }
495 
496 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
497 /// local variable.  Does not emit initalization or destruction.
498 CodeGenFunction::AutoVarEmission
499 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
500   QualType Ty = D.getType();
501 
502   AutoVarEmission emission(D);
503 
504   bool isByRef = D.hasAttr<BlocksAttr>();
505   emission.IsByRef = isByRef;
506 
507   CharUnits alignment = getContext().getDeclAlign(&D);
508   emission.Alignment = alignment;
509 
510   llvm::Value *DeclPtr;
511   if (Ty->isConstantSizeType()) {
512     if (!Target.useGlobalsForAutomaticVariables()) {
513       bool NRVO = getContext().getLangOptions().ElideConstructors &&
514                   D.isNRVOVariable();
515 
516       // If this value is a POD array or struct with a statically
517       // determinable constant initializer, there are optimizations we
518       // can do.
519       // TODO: we can potentially constant-evaluate non-POD structs and
520       // arrays as long as the initialization is trivial (e.g. if they
521       // have a non-trivial destructor, but not a non-trivial constructor).
522       if (D.getInit() &&
523           (Ty->isArrayType() || Ty->isRecordType()) && Ty->isPODType() &&
524           D.getInit()->isConstantInitializer(getContext(), false)) {
525 
526         // If the variable's a const type, and it's neither an NRVO
527         // candidate nor a __block variable, emit it as a global instead.
528         if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
529             !NRVO && !isByRef) {
530           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
531 
532           emission.Address = 0; // signal this condition to later callbacks
533           assert(emission.wasEmittedAsGlobal());
534           return emission;
535         }
536 
537         // Otherwise, tell the initialization code that we're in this case.
538         emission.IsConstantAggregate = true;
539       }
540 
541       // A normal fixed sized variable becomes an alloca in the entry block,
542       // unless it's an NRVO variable.
543       const llvm::Type *LTy = ConvertTypeForMem(Ty);
544 
545       if (NRVO) {
546         // The named return value optimization: allocate this variable in the
547         // return slot, so that we can elide the copy when returning this
548         // variable (C++0x [class.copy]p34).
549         DeclPtr = ReturnValue;
550 
551         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
552           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
553             // Create a flag that is used to indicate when the NRVO was applied
554             // to this variable. Set it to zero to indicate that NRVO was not
555             // applied.
556             llvm::Value *Zero = Builder.getFalse();
557             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
558             EnsureInsertPoint();
559             Builder.CreateStore(Zero, NRVOFlag);
560 
561             // Record the NRVO flag for this variable.
562             NRVOFlags[&D] = NRVOFlag;
563             emission.NRVOFlag = NRVOFlag;
564           }
565         }
566       } else {
567         if (isByRef)
568           LTy = BuildByRefType(&D);
569 
570         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
571         Alloc->setName(D.getNameAsString());
572 
573         CharUnits allocaAlignment = alignment;
574         if (isByRef)
575           allocaAlignment = std::max(allocaAlignment,
576               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
577         Alloc->setAlignment(allocaAlignment.getQuantity());
578         DeclPtr = Alloc;
579       }
580     } else {
581       // Targets that don't support recursion emit locals as globals.
582       const char *Class =
583         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
584       DeclPtr = CreateStaticVarDecl(D, Class,
585                                     llvm::GlobalValue::InternalLinkage);
586     }
587 
588     // FIXME: Can this happen?
589     if (Ty->isVariablyModifiedType())
590       EmitVLASize(Ty);
591   } else {
592     EnsureInsertPoint();
593 
594     if (!DidCallStackSave) {
595       // Save the stack.
596       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
597 
598       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
599       llvm::Value *V = Builder.CreateCall(F);
600 
601       Builder.CreateStore(V, Stack);
602 
603       DidCallStackSave = true;
604 
605       // Push a cleanup block and restore the stack there.
606       // FIXME: in general circumstances, this should be an EH cleanup.
607       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
608     }
609 
610     // Get the element type.
611     const llvm::Type *LElemTy = ConvertTypeForMem(Ty);
612     const llvm::Type *LElemPtrTy =
613       LElemTy->getPointerTo(CGM.getContext().getTargetAddressSpace(Ty));
614 
615     llvm::Value *VLASize = EmitVLASize(Ty);
616 
617     // Allocate memory for the array.
618     llvm::AllocaInst *VLA =
619       Builder.CreateAlloca(llvm::Type::getInt8Ty(getLLVMContext()), VLASize, "vla");
620     VLA->setAlignment(alignment.getQuantity());
621 
622     DeclPtr = Builder.CreateBitCast(VLA, LElemPtrTy, "tmp");
623   }
624 
625   llvm::Value *&DMEntry = LocalDeclMap[&D];
626   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
627   DMEntry = DeclPtr;
628   emission.Address = DeclPtr;
629 
630   // Emit debug info for local var declaration.
631   if (CGDebugInfo *DI = getDebugInfo()) {
632     assert(HaveInsertPoint() && "Unexpected unreachable point!");
633 
634     DI->setLocation(D.getLocation());
635     if (Target.useGlobalsForAutomaticVariables()) {
636       DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
637     } else
638       DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
639   }
640 
641   return emission;
642 }
643 
644 /// Determines whether the given __block variable is potentially
645 /// captured by the given expression.
646 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
647   // Skip the most common kinds of expressions that make
648   // hierarchy-walking expensive.
649   e = e->IgnoreParenCasts();
650 
651   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
652     const BlockDecl *block = be->getBlockDecl();
653     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
654            e = block->capture_end(); i != e; ++i) {
655       if (i->getVariable() == &var)
656         return true;
657     }
658 
659     // No need to walk into the subexpressions.
660     return false;
661   }
662 
663   for (Stmt::const_child_range children = e->children(); children; ++children)
664     if (isCapturedBy(var, cast<Expr>(*children)))
665       return true;
666 
667   return false;
668 }
669 
670 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
671   assert(emission.Variable && "emission was not valid!");
672 
673   // If this was emitted as a global constant, we're done.
674   if (emission.wasEmittedAsGlobal()) return;
675 
676   const VarDecl &D = *emission.Variable;
677   QualType type = D.getType();
678 
679   // If this local has an initializer, emit it now.
680   const Expr *Init = D.getInit();
681 
682   // If we are at an unreachable point, we don't need to emit the initializer
683   // unless it contains a label.
684   if (!HaveInsertPoint()) {
685     if (!Init || !ContainsLabel(Init)) return;
686     EnsureInsertPoint();
687   }
688 
689   // Initialize the structure of a __block variable.
690   if (emission.IsByRef)
691     emitByrefStructureInit(emission);
692 
693   if (!Init) return;
694 
695   CharUnits alignment = emission.Alignment;
696 
697   // Check whether this is a byref variable that's potentially
698   // captured and moved by its own initializer.  If so, we'll need to
699   // emit the initializer first, then copy into the variable.
700   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
701 
702   llvm::Value *Loc =
703     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
704 
705   if (!emission.IsConstantAggregate)
706     return EmitExprAsInit(Init, &D, Loc, alignment, capturedByInit);
707 
708   // If this is a simple aggregate initialization, we can optimize it
709   // in various ways.
710   assert(!capturedByInit && "constant init contains a capturing block?");
711 
712   bool isVolatile = type.isVolatileQualified();
713 
714   llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this);
715   assert(constant != 0 && "Wasn't a simple constant init?");
716 
717   llvm::Value *SizeVal =
718     llvm::ConstantInt::get(IntPtrTy,
719                            getContext().getTypeSizeInChars(type).getQuantity());
720 
721   const llvm::Type *BP = Int8PtrTy;
722   if (Loc->getType() != BP)
723     Loc = Builder.CreateBitCast(Loc, BP, "tmp");
724 
725   // If the initializer is all or mostly zeros, codegen with memset then do
726   // a few stores afterward.
727   if (shouldUseMemSetPlusStoresToInitialize(constant,
728                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
729     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
730                          alignment.getQuantity(), isVolatile);
731     if (!constant->isNullValue()) {
732       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
733       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
734     }
735   } else {
736     // Otherwise, create a temporary global with the initializer then
737     // memcpy from the global to the alloca.
738     std::string Name = GetStaticDeclName(*this, D, ".");
739     llvm::GlobalVariable *GV =
740       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
741                                llvm::GlobalValue::InternalLinkage,
742                                constant, Name, 0, false, 0);
743     GV->setAlignment(alignment.getQuantity());
744 
745     llvm::Value *SrcPtr = GV;
746     if (SrcPtr->getType() != BP)
747       SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
748 
749     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
750                          isVolatile);
751   }
752 }
753 
754 /// Emit an expression as an initializer for a variable at the given
755 /// location.  The expression is not necessarily the normal
756 /// initializer for the variable, and the address is not necessarily
757 /// its normal location.
758 ///
759 /// \param init the initializing expression
760 /// \param var the variable to act as if we're initializing
761 /// \param loc the address to initialize; its type is a pointer
762 ///   to the LLVM mapping of the variable's type
763 /// \param alignment the alignment of the address
764 /// \param capturedByInit true if the variable is a __block variable
765 ///   whose address is potentially changed by the initializer
766 void CodeGenFunction::EmitExprAsInit(const Expr *init,
767                                      const VarDecl *var,
768                                      llvm::Value *loc,
769                                      CharUnits alignment,
770                                      bool capturedByInit) {
771   QualType type = var->getType();
772   bool isVolatile = type.isVolatileQualified();
773 
774   if (type->isReferenceType()) {
775     RValue RV = EmitReferenceBindingToExpr(init, var);
776     if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
777     EmitStoreOfScalar(RV.getScalarVal(), loc, false,
778                       alignment.getQuantity(), type);
779   } else if (!hasAggregateLLVMType(type)) {
780     llvm::Value *V = EmitScalarExpr(init);
781     if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
782     EmitStoreOfScalar(V, loc, isVolatile, alignment.getQuantity(), type);
783   } else if (type->isAnyComplexType()) {
784     ComplexPairTy complex = EmitComplexExpr(init);
785     if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
786     StoreComplexToAddr(complex, loc, isVolatile);
787   } else {
788     // TODO: how can we delay here if D is captured by its initializer?
789     EmitAggExpr(init, AggValueSlot::forAddr(loc, isVolatile, true, false));
790   }
791 }
792 
793 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
794   assert(emission.Variable && "emission was not valid!");
795 
796   // If this was emitted as a global constant, we're done.
797   if (emission.wasEmittedAsGlobal()) return;
798 
799   const VarDecl &D = *emission.Variable;
800 
801   // Handle C++ destruction of variables.
802   if (getLangOptions().CPlusPlus) {
803     QualType type = D.getType();
804     QualType baseType = getContext().getBaseElementType(type);
805     if (const RecordType *RT = baseType->getAs<RecordType>()) {
806       CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
807       if (!ClassDecl->hasTrivialDestructor()) {
808         // Note: We suppress the destructor call when the corresponding NRVO
809         // flag has been set.
810 
811         // Note that for __block variables, we want to destroy the
812         // original stack object, not the possible forwarded object.
813         llvm::Value *Loc = emission.getObjectAddress(*this);
814 
815         const CXXDestructorDecl *D = ClassDecl->getDestructor();
816         assert(D && "EmitLocalBlockVarDecl - destructor is nul");
817 
818         if (type != baseType) {
819           const ConstantArrayType *Array =
820             getContext().getAsConstantArrayType(type);
821           assert(Array && "types changed without array?");
822           EHStack.pushCleanup<CallArrayDtor>(NormalAndEHCleanup,
823                                              D, Array, Loc);
824         } else {
825           EHStack.pushCleanup<CallVarDtor>(NormalAndEHCleanup,
826                                            D, emission.NRVOFlag, Loc);
827         }
828       }
829     }
830   }
831 
832   // Handle the cleanup attribute.
833   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
834     const FunctionDecl *FD = CA->getFunctionDecl();
835 
836     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
837     assert(F && "Could not find function!");
838 
839     const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
840     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
841   }
842 
843   // If this is a block variable, call _Block_object_destroy
844   // (on the unforwarded address).
845   if (emission.IsByRef)
846     enterByrefCleanup(emission);
847 }
848 
849 /// Emit an alloca (or GlobalValue depending on target)
850 /// for the specified parameter and set up LocalDeclMap.
851 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
852                                    unsigned ArgNo) {
853   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
854   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
855          "Invalid argument to EmitParmDecl");
856 
857   Arg->setName(D.getName());
858 
859   // Use better IR generation for certain implicit parameters.
860   if (isa<ImplicitParamDecl>(D)) {
861     // The only implicit argument a block has is its literal.
862     if (BlockInfo) {
863       LocalDeclMap[&D] = Arg;
864 
865       if (CGDebugInfo *DI = getDebugInfo()) {
866         DI->setLocation(D.getLocation());
867         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
868       }
869 
870       return;
871     }
872   }
873 
874   QualType Ty = D.getType();
875 
876   llvm::Value *DeclPtr;
877   // If this is an aggregate or variable sized value, reuse the input pointer.
878   if (!Ty->isConstantSizeType() ||
879       CodeGenFunction::hasAggregateLLVMType(Ty)) {
880     DeclPtr = Arg;
881   } else {
882     // Otherwise, create a temporary to hold the value.
883     DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
884 
885     // Store the initial value into the alloca.
886     EmitStoreOfScalar(Arg, DeclPtr, Ty.isVolatileQualified(),
887                       getContext().getDeclAlign(&D).getQuantity(), Ty,
888                       CGM.getTBAAInfo(Ty));
889   }
890 
891   llvm::Value *&DMEntry = LocalDeclMap[&D];
892   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
893   DMEntry = DeclPtr;
894 
895   // Emit debug info for param declaration.
896   if (CGDebugInfo *DI = getDebugInfo()) {
897     DI->setLocation(D.getLocation());
898     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
899   }
900 }
901