1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Type.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 35 void CodeGenFunction::EmitDecl(const Decl &D) { 36 switch (D.getKind()) { 37 case Decl::TranslationUnit: 38 case Decl::ExternCContext: 39 case Decl::Namespace: 40 case Decl::UnresolvedUsingTypename: 41 case Decl::ClassTemplateSpecialization: 42 case Decl::ClassTemplatePartialSpecialization: 43 case Decl::VarTemplateSpecialization: 44 case Decl::VarTemplatePartialSpecialization: 45 case Decl::TemplateTypeParm: 46 case Decl::UnresolvedUsingValue: 47 case Decl::NonTypeTemplateParm: 48 case Decl::CXXMethod: 49 case Decl::CXXConstructor: 50 case Decl::CXXDestructor: 51 case Decl::CXXConversion: 52 case Decl::Field: 53 case Decl::MSProperty: 54 case Decl::IndirectField: 55 case Decl::ObjCIvar: 56 case Decl::ObjCAtDefsField: 57 case Decl::ParmVar: 58 case Decl::ImplicitParam: 59 case Decl::ClassTemplate: 60 case Decl::VarTemplate: 61 case Decl::FunctionTemplate: 62 case Decl::TypeAliasTemplate: 63 case Decl::TemplateTemplateParm: 64 case Decl::ObjCMethod: 65 case Decl::ObjCCategory: 66 case Decl::ObjCProtocol: 67 case Decl::ObjCInterface: 68 case Decl::ObjCCategoryImpl: 69 case Decl::ObjCImplementation: 70 case Decl::ObjCProperty: 71 case Decl::ObjCCompatibleAlias: 72 case Decl::AccessSpec: 73 case Decl::LinkageSpec: 74 case Decl::ObjCPropertyImpl: 75 case Decl::FileScopeAsm: 76 case Decl::Friend: 77 case Decl::FriendTemplate: 78 case Decl::Block: 79 case Decl::Captured: 80 case Decl::ClassScopeFunctionSpecialization: 81 case Decl::UsingShadow: 82 case Decl::ObjCTypeParam: 83 llvm_unreachable("Declaration should not be in declstmts!"); 84 case Decl::Function: // void X(); 85 case Decl::Record: // struct/union/class X; 86 case Decl::Enum: // enum X; 87 case Decl::EnumConstant: // enum ? { X = ? } 88 case Decl::CXXRecord: // struct/union/class X; [C++] 89 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 90 case Decl::Label: // __label__ x; 91 case Decl::Import: 92 case Decl::OMPThreadPrivate: 93 case Decl::Empty: 94 // None of these decls require codegen support. 95 return; 96 97 case Decl::NamespaceAlias: 98 if (CGDebugInfo *DI = getDebugInfo()) 99 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 100 return; 101 case Decl::Using: // using X; [C++] 102 if (CGDebugInfo *DI = getDebugInfo()) 103 DI->EmitUsingDecl(cast<UsingDecl>(D)); 104 return; 105 case Decl::UsingDirective: // using namespace X; [C++] 106 if (CGDebugInfo *DI = getDebugInfo()) 107 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 108 return; 109 case Decl::Var: { 110 const VarDecl &VD = cast<VarDecl>(D); 111 assert(VD.isLocalVarDecl() && 112 "Should not see file-scope variables inside a function!"); 113 return EmitVarDecl(VD); 114 } 115 116 case Decl::Typedef: // typedef int X; 117 case Decl::TypeAlias: { // using X = int; [C++0x] 118 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 119 QualType Ty = TD.getUnderlyingType(); 120 121 if (Ty->isVariablyModifiedType()) 122 EmitVariablyModifiedType(Ty); 123 } 124 } 125 } 126 127 /// EmitVarDecl - This method handles emission of any variable declaration 128 /// inside a function, including static vars etc. 129 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 130 if (D.isStaticLocal()) { 131 llvm::GlobalValue::LinkageTypes Linkage = 132 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 133 134 // FIXME: We need to force the emission/use of a guard variable for 135 // some variables even if we can constant-evaluate them because 136 // we can't guarantee every translation unit will constant-evaluate them. 137 138 return EmitStaticVarDecl(D, Linkage); 139 } 140 141 if (D.hasExternalStorage()) 142 // Don't emit it now, allow it to be emitted lazily on its first use. 143 return; 144 145 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 146 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 147 148 assert(D.hasLocalStorage()); 149 return EmitAutoVarDecl(D); 150 } 151 152 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 153 if (CGM.getLangOpts().CPlusPlus) 154 return CGM.getMangledName(&D).str(); 155 156 // If this isn't C++, we don't need a mangled name, just a pretty one. 157 assert(!D.isExternallyVisible() && "name shouldn't matter"); 158 std::string ContextName; 159 const DeclContext *DC = D.getDeclContext(); 160 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 161 DC = cast<DeclContext>(CD->getNonClosureContext()); 162 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 163 ContextName = CGM.getMangledName(FD); 164 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 165 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 166 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 167 ContextName = OMD->getSelector().getAsString(); 168 else 169 llvm_unreachable("Unknown context for static var decl"); 170 171 ContextName += "." + D.getNameAsString(); 172 return ContextName; 173 } 174 175 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 176 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 177 // In general, we don't always emit static var decls once before we reference 178 // them. It is possible to reference them before emitting the function that 179 // contains them, and it is possible to emit the containing function multiple 180 // times. 181 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 182 return ExistingGV; 183 184 QualType Ty = D.getType(); 185 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 186 187 // Use the label if the variable is renamed with the asm-label extension. 188 std::string Name; 189 if (D.hasAttr<AsmLabelAttr>()) 190 Name = getMangledName(&D); 191 else 192 Name = getStaticDeclName(*this, D); 193 194 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 195 unsigned AddrSpace = 196 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 197 198 // Local address space cannot have an initializer. 199 llvm::Constant *Init = nullptr; 200 if (Ty.getAddressSpace() != LangAS::opencl_local) 201 Init = EmitNullConstant(Ty); 202 else 203 Init = llvm::UndefValue::get(LTy); 204 205 llvm::GlobalVariable *GV = 206 new llvm::GlobalVariable(getModule(), LTy, 207 Ty.isConstant(getContext()), Linkage, 208 Init, Name, nullptr, 209 llvm::GlobalVariable::NotThreadLocal, 210 AddrSpace); 211 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 212 setGlobalVisibility(GV, &D); 213 214 if (supportsCOMDAT() && GV->isWeakForLinker()) 215 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 216 217 if (D.getTLSKind()) 218 setTLSMode(GV, D); 219 220 if (D.isExternallyVisible()) { 221 if (D.hasAttr<DLLImportAttr>()) 222 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 223 else if (D.hasAttr<DLLExportAttr>()) 224 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 225 } 226 227 // Make sure the result is of the correct type. 228 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 229 llvm::Constant *Addr = GV; 230 if (AddrSpace != ExpectedAddrSpace) { 231 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 232 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 233 } 234 235 setStaticLocalDeclAddress(&D, Addr); 236 237 // Ensure that the static local gets initialized by making sure the parent 238 // function gets emitted eventually. 239 const Decl *DC = cast<Decl>(D.getDeclContext()); 240 241 // We can't name blocks or captured statements directly, so try to emit their 242 // parents. 243 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 244 DC = DC->getNonClosureContext(); 245 // FIXME: Ensure that global blocks get emitted. 246 if (!DC) 247 return Addr; 248 } 249 250 GlobalDecl GD; 251 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 252 GD = GlobalDecl(CD, Ctor_Base); 253 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 254 GD = GlobalDecl(DD, Dtor_Base); 255 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 256 GD = GlobalDecl(FD); 257 else { 258 // Don't do anything for Obj-C method decls or global closures. We should 259 // never defer them. 260 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 261 } 262 if (GD.getDecl()) 263 (void)GetAddrOfGlobal(GD); 264 265 return Addr; 266 } 267 268 /// hasNontrivialDestruction - Determine whether a type's destruction is 269 /// non-trivial. If so, and the variable uses static initialization, we must 270 /// register its destructor to run on exit. 271 static bool hasNontrivialDestruction(QualType T) { 272 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 273 return RD && !RD->hasTrivialDestructor(); 274 } 275 276 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 277 /// global variable that has already been created for it. If the initializer 278 /// has a different type than GV does, this may free GV and return a different 279 /// one. Otherwise it just returns GV. 280 llvm::GlobalVariable * 281 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 282 llvm::GlobalVariable *GV) { 283 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 284 285 // If constant emission failed, then this should be a C++ static 286 // initializer. 287 if (!Init) { 288 if (!getLangOpts().CPlusPlus) 289 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 290 else if (Builder.GetInsertBlock()) { 291 // Since we have a static initializer, this global variable can't 292 // be constant. 293 GV->setConstant(false); 294 295 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 296 } 297 return GV; 298 } 299 300 // The initializer may differ in type from the global. Rewrite 301 // the global to match the initializer. (We have to do this 302 // because some types, like unions, can't be completely represented 303 // in the LLVM type system.) 304 if (GV->getType()->getElementType() != Init->getType()) { 305 llvm::GlobalVariable *OldGV = GV; 306 307 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 308 OldGV->isConstant(), 309 OldGV->getLinkage(), Init, "", 310 /*InsertBefore*/ OldGV, 311 OldGV->getThreadLocalMode(), 312 CGM.getContext().getTargetAddressSpace(D.getType())); 313 GV->setVisibility(OldGV->getVisibility()); 314 GV->setComdat(OldGV->getComdat()); 315 316 // Steal the name of the old global 317 GV->takeName(OldGV); 318 319 // Replace all uses of the old global with the new global 320 llvm::Constant *NewPtrForOldDecl = 321 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 322 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 323 324 // Erase the old global, since it is no longer used. 325 OldGV->eraseFromParent(); 326 } 327 328 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 329 GV->setInitializer(Init); 330 331 if (hasNontrivialDestruction(D.getType())) { 332 // We have a constant initializer, but a nontrivial destructor. We still 333 // need to perform a guarded "initialization" in order to register the 334 // destructor. 335 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 336 } 337 338 return GV; 339 } 340 341 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 342 llvm::GlobalValue::LinkageTypes Linkage) { 343 llvm::Value *&DMEntry = LocalDeclMap[&D]; 344 assert(!DMEntry && "Decl already exists in localdeclmap!"); 345 346 // Check to see if we already have a global variable for this 347 // declaration. This can happen when double-emitting function 348 // bodies, e.g. with complete and base constructors. 349 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 350 351 // Store into LocalDeclMap before generating initializer to handle 352 // circular references. 353 DMEntry = addr; 354 355 // We can't have a VLA here, but we can have a pointer to a VLA, 356 // even though that doesn't really make any sense. 357 // Make sure to evaluate VLA bounds now so that we have them for later. 358 if (D.getType()->isVariablyModifiedType()) 359 EmitVariablyModifiedType(D.getType()); 360 361 // Save the type in case adding the initializer forces a type change. 362 llvm::Type *expectedType = addr->getType(); 363 364 llvm::GlobalVariable *var = 365 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 366 // If this value has an initializer, emit it. 367 if (D.getInit()) 368 var = AddInitializerToStaticVarDecl(D, var); 369 370 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 371 372 if (D.hasAttr<AnnotateAttr>()) 373 CGM.AddGlobalAnnotations(&D, var); 374 375 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 376 var->setSection(SA->getName()); 377 378 if (D.hasAttr<UsedAttr>()) 379 CGM.addUsedGlobal(var); 380 381 // We may have to cast the constant because of the initializer 382 // mismatch above. 383 // 384 // FIXME: It is really dangerous to store this in the map; if anyone 385 // RAUW's the GV uses of this constant will be invalid. 386 llvm::Constant *castedAddr = 387 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 388 DMEntry = castedAddr; 389 CGM.setStaticLocalDeclAddress(&D, castedAddr); 390 391 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 392 393 // Emit global variable debug descriptor for static vars. 394 CGDebugInfo *DI = getDebugInfo(); 395 if (DI && 396 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 397 DI->setLocation(D.getLocation()); 398 DI->EmitGlobalVariable(var, &D); 399 } 400 } 401 402 namespace { 403 struct DestroyObject : EHScopeStack::Cleanup { 404 DestroyObject(llvm::Value *addr, QualType type, 405 CodeGenFunction::Destroyer *destroyer, 406 bool useEHCleanupForArray) 407 : addr(addr), type(type), destroyer(destroyer), 408 useEHCleanupForArray(useEHCleanupForArray) {} 409 410 llvm::Value *addr; 411 QualType type; 412 CodeGenFunction::Destroyer *destroyer; 413 bool useEHCleanupForArray; 414 415 void Emit(CodeGenFunction &CGF, Flags flags) override { 416 // Don't use an EH cleanup recursively from an EH cleanup. 417 bool useEHCleanupForArray = 418 flags.isForNormalCleanup() && this->useEHCleanupForArray; 419 420 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 421 } 422 }; 423 424 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 425 DestroyNRVOVariable(llvm::Value *addr, 426 const CXXDestructorDecl *Dtor, 427 llvm::Value *NRVOFlag) 428 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 429 430 const CXXDestructorDecl *Dtor; 431 llvm::Value *NRVOFlag; 432 llvm::Value *Loc; 433 434 void Emit(CodeGenFunction &CGF, Flags flags) override { 435 // Along the exceptions path we always execute the dtor. 436 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 437 438 llvm::BasicBlock *SkipDtorBB = nullptr; 439 if (NRVO) { 440 // If we exited via NRVO, we skip the destructor call. 441 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 442 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 443 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 444 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 445 CGF.EmitBlock(RunDtorBB); 446 } 447 448 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 449 /*ForVirtualBase=*/false, 450 /*Delegating=*/false, 451 Loc); 452 453 if (NRVO) CGF.EmitBlock(SkipDtorBB); 454 } 455 }; 456 457 struct CallStackRestore : EHScopeStack::Cleanup { 458 llvm::Value *Stack; 459 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 460 void Emit(CodeGenFunction &CGF, Flags flags) override { 461 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 462 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 463 CGF.Builder.CreateCall(F, V); 464 } 465 }; 466 467 struct ExtendGCLifetime : EHScopeStack::Cleanup { 468 const VarDecl &Var; 469 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 470 471 void Emit(CodeGenFunction &CGF, Flags flags) override { 472 // Compute the address of the local variable, in case it's a 473 // byref or something. 474 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 475 Var.getType(), VK_LValue, SourceLocation()); 476 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 477 SourceLocation()); 478 CGF.EmitExtendGCLifetime(value); 479 } 480 }; 481 482 struct CallCleanupFunction : EHScopeStack::Cleanup { 483 llvm::Constant *CleanupFn; 484 const CGFunctionInfo &FnInfo; 485 const VarDecl &Var; 486 487 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 488 const VarDecl *Var) 489 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 490 491 void Emit(CodeGenFunction &CGF, Flags flags) override { 492 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 493 Var.getType(), VK_LValue, SourceLocation()); 494 // Compute the address of the local variable, in case it's a byref 495 // or something. 496 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 497 498 // In some cases, the type of the function argument will be different from 499 // the type of the pointer. An example of this is 500 // void f(void* arg); 501 // __attribute__((cleanup(f))) void *g; 502 // 503 // To fix this we insert a bitcast here. 504 QualType ArgTy = FnInfo.arg_begin()->type; 505 llvm::Value *Arg = 506 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 507 508 CallArgList Args; 509 Args.add(RValue::get(Arg), 510 CGF.getContext().getPointerType(Var.getType())); 511 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 512 } 513 }; 514 515 /// A cleanup to call @llvm.lifetime.end. 516 class CallLifetimeEnd : public EHScopeStack::Cleanup { 517 llvm::Value *Addr; 518 llvm::Value *Size; 519 public: 520 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 521 : Addr(addr), Size(size) {} 522 523 void Emit(CodeGenFunction &CGF, Flags flags) override { 524 CGF.EmitLifetimeEnd(Size, Addr); 525 } 526 }; 527 } 528 529 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 530 /// variable with lifetime. 531 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 532 llvm::Value *addr, 533 Qualifiers::ObjCLifetime lifetime) { 534 switch (lifetime) { 535 case Qualifiers::OCL_None: 536 llvm_unreachable("present but none"); 537 538 case Qualifiers::OCL_ExplicitNone: 539 // nothing to do 540 break; 541 542 case Qualifiers::OCL_Strong: { 543 CodeGenFunction::Destroyer *destroyer = 544 (var.hasAttr<ObjCPreciseLifetimeAttr>() 545 ? CodeGenFunction::destroyARCStrongPrecise 546 : CodeGenFunction::destroyARCStrongImprecise); 547 548 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 549 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 550 cleanupKind & EHCleanup); 551 break; 552 } 553 case Qualifiers::OCL_Autoreleasing: 554 // nothing to do 555 break; 556 557 case Qualifiers::OCL_Weak: 558 // __weak objects always get EH cleanups; otherwise, exceptions 559 // could cause really nasty crashes instead of mere leaks. 560 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 561 CodeGenFunction::destroyARCWeak, 562 /*useEHCleanup*/ true); 563 break; 564 } 565 } 566 567 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 568 if (const Expr *e = dyn_cast<Expr>(s)) { 569 // Skip the most common kinds of expressions that make 570 // hierarchy-walking expensive. 571 s = e = e->IgnoreParenCasts(); 572 573 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 574 return (ref->getDecl() == &var); 575 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 576 const BlockDecl *block = be->getBlockDecl(); 577 for (const auto &I : block->captures()) { 578 if (I.getVariable() == &var) 579 return true; 580 } 581 } 582 } 583 584 for (const Stmt *SubStmt : s->children()) 585 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 586 if (SubStmt && isAccessedBy(var, SubStmt)) 587 return true; 588 589 return false; 590 } 591 592 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 593 if (!decl) return false; 594 if (!isa<VarDecl>(decl)) return false; 595 const VarDecl *var = cast<VarDecl>(decl); 596 return isAccessedBy(*var, e); 597 } 598 599 static void drillIntoBlockVariable(CodeGenFunction &CGF, 600 LValue &lvalue, 601 const VarDecl *var) { 602 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 603 } 604 605 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 606 LValue lvalue, bool capturedByInit) { 607 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 608 if (!lifetime) { 609 llvm::Value *value = EmitScalarExpr(init); 610 if (capturedByInit) 611 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 612 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 613 return; 614 } 615 616 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 617 init = DIE->getExpr(); 618 619 // If we're emitting a value with lifetime, we have to do the 620 // initialization *before* we leave the cleanup scopes. 621 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 622 enterFullExpression(ewc); 623 init = ewc->getSubExpr(); 624 } 625 CodeGenFunction::RunCleanupsScope Scope(*this); 626 627 // We have to maintain the illusion that the variable is 628 // zero-initialized. If the variable might be accessed in its 629 // initializer, zero-initialize before running the initializer, then 630 // actually perform the initialization with an assign. 631 bool accessedByInit = false; 632 if (lifetime != Qualifiers::OCL_ExplicitNone) 633 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 634 if (accessedByInit) { 635 LValue tempLV = lvalue; 636 // Drill down to the __block object if necessary. 637 if (capturedByInit) { 638 // We can use a simple GEP for this because it can't have been 639 // moved yet. 640 tempLV.setAddress(Builder.CreateStructGEP( 641 nullptr, tempLV.getAddress(), 642 getByRefValueLLVMField(cast<VarDecl>(D)).second)); 643 } 644 645 llvm::PointerType *ty 646 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 647 ty = cast<llvm::PointerType>(ty->getElementType()); 648 649 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 650 651 // If __weak, we want to use a barrier under certain conditions. 652 if (lifetime == Qualifiers::OCL_Weak) 653 EmitARCInitWeak(tempLV.getAddress(), zero); 654 655 // Otherwise just do a simple store. 656 else 657 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 658 } 659 660 // Emit the initializer. 661 llvm::Value *value = nullptr; 662 663 switch (lifetime) { 664 case Qualifiers::OCL_None: 665 llvm_unreachable("present but none"); 666 667 case Qualifiers::OCL_ExplicitNone: 668 // nothing to do 669 value = EmitScalarExpr(init); 670 break; 671 672 case Qualifiers::OCL_Strong: { 673 value = EmitARCRetainScalarExpr(init); 674 break; 675 } 676 677 case Qualifiers::OCL_Weak: { 678 // No way to optimize a producing initializer into this. It's not 679 // worth optimizing for, because the value will immediately 680 // disappear in the common case. 681 value = EmitScalarExpr(init); 682 683 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 684 if (accessedByInit) 685 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 686 else 687 EmitARCInitWeak(lvalue.getAddress(), value); 688 return; 689 } 690 691 case Qualifiers::OCL_Autoreleasing: 692 value = EmitARCRetainAutoreleaseScalarExpr(init); 693 break; 694 } 695 696 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 697 698 // If the variable might have been accessed by its initializer, we 699 // might have to initialize with a barrier. We have to do this for 700 // both __weak and __strong, but __weak got filtered out above. 701 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 702 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 703 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 704 EmitARCRelease(oldValue, ARCImpreciseLifetime); 705 return; 706 } 707 708 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 709 } 710 711 /// EmitScalarInit - Initialize the given lvalue with the given object. 712 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 713 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 714 if (!lifetime) 715 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 716 717 switch (lifetime) { 718 case Qualifiers::OCL_None: 719 llvm_unreachable("present but none"); 720 721 case Qualifiers::OCL_ExplicitNone: 722 // nothing to do 723 break; 724 725 case Qualifiers::OCL_Strong: 726 init = EmitARCRetain(lvalue.getType(), init); 727 break; 728 729 case Qualifiers::OCL_Weak: 730 // Initialize and then skip the primitive store. 731 EmitARCInitWeak(lvalue.getAddress(), init); 732 return; 733 734 case Qualifiers::OCL_Autoreleasing: 735 init = EmitARCRetainAutorelease(lvalue.getType(), init); 736 break; 737 } 738 739 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 740 } 741 742 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 743 /// non-zero parts of the specified initializer with equal or fewer than 744 /// NumStores scalar stores. 745 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 746 unsigned &NumStores) { 747 // Zero and Undef never requires any extra stores. 748 if (isa<llvm::ConstantAggregateZero>(Init) || 749 isa<llvm::ConstantPointerNull>(Init) || 750 isa<llvm::UndefValue>(Init)) 751 return true; 752 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 753 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 754 isa<llvm::ConstantExpr>(Init)) 755 return Init->isNullValue() || NumStores--; 756 757 // See if we can emit each element. 758 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 759 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 760 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 761 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 762 return false; 763 } 764 return true; 765 } 766 767 if (llvm::ConstantDataSequential *CDS = 768 dyn_cast<llvm::ConstantDataSequential>(Init)) { 769 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 770 llvm::Constant *Elt = CDS->getElementAsConstant(i); 771 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 772 return false; 773 } 774 return true; 775 } 776 777 // Anything else is hard and scary. 778 return false; 779 } 780 781 /// emitStoresForInitAfterMemset - For inits that 782 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 783 /// stores that would be required. 784 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 785 bool isVolatile, CGBuilderTy &Builder) { 786 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 787 "called emitStoresForInitAfterMemset for zero or undef value."); 788 789 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 790 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 791 isa<llvm::ConstantExpr>(Init)) { 792 Builder.CreateStore(Init, Loc, isVolatile); 793 return; 794 } 795 796 if (llvm::ConstantDataSequential *CDS = 797 dyn_cast<llvm::ConstantDataSequential>(Init)) { 798 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 799 llvm::Constant *Elt = CDS->getElementAsConstant(i); 800 801 // If necessary, get a pointer to the element and emit it. 802 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 803 emitStoresForInitAfterMemset( 804 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 805 isVolatile, Builder); 806 } 807 return; 808 } 809 810 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 811 "Unknown value type!"); 812 813 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 814 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 815 816 // If necessary, get a pointer to the element and emit it. 817 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 818 emitStoresForInitAfterMemset( 819 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 820 isVolatile, Builder); 821 } 822 } 823 824 825 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 826 /// plus some stores to initialize a local variable instead of using a memcpy 827 /// from a constant global. It is beneficial to use memset if the global is all 828 /// zeros, or mostly zeros and large. 829 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 830 uint64_t GlobalSize) { 831 // If a global is all zeros, always use a memset. 832 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 833 834 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 835 // do it if it will require 6 or fewer scalar stores. 836 // TODO: Should budget depends on the size? Avoiding a large global warrants 837 // plopping in more stores. 838 unsigned StoreBudget = 6; 839 uint64_t SizeLimit = 32; 840 841 return GlobalSize > SizeLimit && 842 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 843 } 844 845 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 846 /// variable declaration with auto, register, or no storage class specifier. 847 /// These turn into simple stack objects, or GlobalValues depending on target. 848 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 849 AutoVarEmission emission = EmitAutoVarAlloca(D); 850 EmitAutoVarInit(emission); 851 EmitAutoVarCleanups(emission); 852 } 853 854 /// Emit a lifetime.begin marker if some criteria are satisfied. 855 /// \return a pointer to the temporary size Value if a marker was emitted, null 856 /// otherwise 857 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 858 llvm::Value *Addr) { 859 // For now, only in optimized builds. 860 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 861 return nullptr; 862 863 // Disable lifetime markers in msan builds. 864 // FIXME: Remove this when msan works with lifetime markers. 865 if (getLangOpts().Sanitize.has(SanitizerKind::Memory)) 866 return nullptr; 867 868 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 869 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 870 llvm::CallInst *C = 871 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 872 C->setDoesNotThrow(); 873 return SizeV; 874 } 875 876 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 877 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 878 llvm::CallInst *C = 879 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 880 C->setDoesNotThrow(); 881 } 882 883 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 884 /// local variable. Does not emit initialization or destruction. 885 CodeGenFunction::AutoVarEmission 886 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 887 QualType Ty = D.getType(); 888 889 AutoVarEmission emission(D); 890 891 bool isByRef = D.hasAttr<BlocksAttr>(); 892 emission.IsByRef = isByRef; 893 894 CharUnits alignment = getContext().getDeclAlign(&D); 895 emission.Alignment = alignment; 896 897 // If the type is variably-modified, emit all the VLA sizes for it. 898 if (Ty->isVariablyModifiedType()) 899 EmitVariablyModifiedType(Ty); 900 901 llvm::Value *DeclPtr; 902 if (Ty->isConstantSizeType()) { 903 bool NRVO = getLangOpts().ElideConstructors && 904 D.isNRVOVariable(); 905 906 // If this value is an array or struct with a statically determinable 907 // constant initializer, there are optimizations we can do. 908 // 909 // TODO: We should constant-evaluate the initializer of any variable, 910 // as long as it is initialized by a constant expression. Currently, 911 // isConstantInitializer produces wrong answers for structs with 912 // reference or bitfield members, and a few other cases, and checking 913 // for POD-ness protects us from some of these. 914 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 915 (D.isConstexpr() || 916 ((Ty.isPODType(getContext()) || 917 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 918 D.getInit()->isConstantInitializer(getContext(), false)))) { 919 920 // If the variable's a const type, and it's neither an NRVO 921 // candidate nor a __block variable and has no mutable members, 922 // emit it as a global instead. 923 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 924 CGM.isTypeConstant(Ty, true)) { 925 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 926 927 emission.Address = nullptr; // signal this condition to later callbacks 928 assert(emission.wasEmittedAsGlobal()); 929 return emission; 930 } 931 932 // Otherwise, tell the initialization code that we're in this case. 933 emission.IsConstantAggregate = true; 934 } 935 936 // A normal fixed sized variable becomes an alloca in the entry block, 937 // unless it's an NRVO variable. 938 llvm::Type *LTy = ConvertTypeForMem(Ty); 939 940 if (NRVO) { 941 // The named return value optimization: allocate this variable in the 942 // return slot, so that we can elide the copy when returning this 943 // variable (C++0x [class.copy]p34). 944 DeclPtr = ReturnValue; 945 946 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 947 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 948 // Create a flag that is used to indicate when the NRVO was applied 949 // to this variable. Set it to zero to indicate that NRVO was not 950 // applied. 951 llvm::Value *Zero = Builder.getFalse(); 952 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 953 EnsureInsertPoint(); 954 Builder.CreateStore(Zero, NRVOFlag); 955 956 // Record the NRVO flag for this variable. 957 NRVOFlags[&D] = NRVOFlag; 958 emission.NRVOFlag = NRVOFlag; 959 } 960 } 961 } else { 962 if (isByRef) 963 LTy = BuildByRefType(&D); 964 965 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 966 Alloc->setName(D.getName()); 967 968 CharUnits allocaAlignment = alignment; 969 if (isByRef) 970 allocaAlignment = std::max(allocaAlignment, 971 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 972 Alloc->setAlignment(allocaAlignment.getQuantity()); 973 DeclPtr = Alloc; 974 975 // Emit a lifetime intrinsic if meaningful. There's no point 976 // in doing this if we don't have a valid insertion point (?). 977 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 978 if (HaveInsertPoint()) { 979 emission.SizeForLifetimeMarkers = EmitLifetimeStart(size, Alloc); 980 } else { 981 assert(!emission.useLifetimeMarkers()); 982 } 983 } 984 } else { 985 EnsureInsertPoint(); 986 987 if (!DidCallStackSave) { 988 // Save the stack. 989 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 990 991 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 992 llvm::Value *V = Builder.CreateCall(F); 993 994 Builder.CreateStore(V, Stack); 995 996 DidCallStackSave = true; 997 998 // Push a cleanup block and restore the stack there. 999 // FIXME: in general circumstances, this should be an EH cleanup. 1000 pushStackRestore(NormalCleanup, Stack); 1001 } 1002 1003 llvm::Value *elementCount; 1004 QualType elementType; 1005 std::tie(elementCount, elementType) = getVLASize(Ty); 1006 1007 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1008 1009 // Allocate memory for the array. 1010 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 1011 vla->setAlignment(alignment.getQuantity()); 1012 1013 DeclPtr = vla; 1014 } 1015 1016 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1017 assert(!DMEntry && "Decl already exists in localdeclmap!"); 1018 DMEntry = DeclPtr; 1019 emission.Address = DeclPtr; 1020 1021 // Emit debug info for local var declaration. 1022 if (HaveInsertPoint()) 1023 if (CGDebugInfo *DI = getDebugInfo()) { 1024 if (CGM.getCodeGenOpts().getDebugInfo() 1025 >= CodeGenOptions::LimitedDebugInfo) { 1026 DI->setLocation(D.getLocation()); 1027 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 1028 } 1029 } 1030 1031 if (D.hasAttr<AnnotateAttr>()) 1032 EmitVarAnnotations(&D, emission.Address); 1033 1034 return emission; 1035 } 1036 1037 /// Determines whether the given __block variable is potentially 1038 /// captured by the given expression. 1039 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1040 // Skip the most common kinds of expressions that make 1041 // hierarchy-walking expensive. 1042 e = e->IgnoreParenCasts(); 1043 1044 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1045 const BlockDecl *block = be->getBlockDecl(); 1046 for (const auto &I : block->captures()) { 1047 if (I.getVariable() == &var) 1048 return true; 1049 } 1050 1051 // No need to walk into the subexpressions. 1052 return false; 1053 } 1054 1055 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1056 const CompoundStmt *CS = SE->getSubStmt(); 1057 for (const auto *BI : CS->body()) 1058 if (const auto *E = dyn_cast<Expr>(BI)) { 1059 if (isCapturedBy(var, E)) 1060 return true; 1061 } 1062 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1063 // special case declarations 1064 for (const auto *I : DS->decls()) { 1065 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1066 const Expr *Init = VD->getInit(); 1067 if (Init && isCapturedBy(var, Init)) 1068 return true; 1069 } 1070 } 1071 } 1072 else 1073 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1074 // Later, provide code to poke into statements for capture analysis. 1075 return true; 1076 return false; 1077 } 1078 1079 for (const Stmt *SubStmt : e->children()) 1080 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1081 return true; 1082 1083 return false; 1084 } 1085 1086 /// \brief Determine whether the given initializer is trivial in the sense 1087 /// that it requires no code to be generated. 1088 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1089 if (!Init) 1090 return true; 1091 1092 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1093 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1094 if (Constructor->isTrivial() && 1095 Constructor->isDefaultConstructor() && 1096 !Construct->requiresZeroInitialization()) 1097 return true; 1098 1099 return false; 1100 } 1101 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1102 assert(emission.Variable && "emission was not valid!"); 1103 1104 // If this was emitted as a global constant, we're done. 1105 if (emission.wasEmittedAsGlobal()) return; 1106 1107 const VarDecl &D = *emission.Variable; 1108 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1109 QualType type = D.getType(); 1110 1111 // If this local has an initializer, emit it now. 1112 const Expr *Init = D.getInit(); 1113 1114 // If we are at an unreachable point, we don't need to emit the initializer 1115 // unless it contains a label. 1116 if (!HaveInsertPoint()) { 1117 if (!Init || !ContainsLabel(Init)) return; 1118 EnsureInsertPoint(); 1119 } 1120 1121 // Initialize the structure of a __block variable. 1122 if (emission.IsByRef) 1123 emitByrefStructureInit(emission); 1124 1125 if (isTrivialInitializer(Init)) 1126 return; 1127 1128 CharUnits alignment = emission.Alignment; 1129 1130 // Check whether this is a byref variable that's potentially 1131 // captured and moved by its own initializer. If so, we'll need to 1132 // emit the initializer first, then copy into the variable. 1133 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1134 1135 llvm::Value *Loc = 1136 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1137 1138 llvm::Constant *constant = nullptr; 1139 if (emission.IsConstantAggregate || D.isConstexpr()) { 1140 assert(!capturedByInit && "constant init contains a capturing block?"); 1141 constant = CGM.EmitConstantInit(D, this); 1142 } 1143 1144 if (!constant) { 1145 LValue lv = MakeAddrLValue(Loc, type, alignment); 1146 lv.setNonGC(true); 1147 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1148 } 1149 1150 if (!emission.IsConstantAggregate) { 1151 // For simple scalar/complex initialization, store the value directly. 1152 LValue lv = MakeAddrLValue(Loc, type, alignment); 1153 lv.setNonGC(true); 1154 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1155 } 1156 1157 // If this is a simple aggregate initialization, we can optimize it 1158 // in various ways. 1159 bool isVolatile = type.isVolatileQualified(); 1160 1161 llvm::Value *SizeVal = 1162 llvm::ConstantInt::get(IntPtrTy, 1163 getContext().getTypeSizeInChars(type).getQuantity()); 1164 1165 llvm::Type *BP = Int8PtrTy; 1166 if (Loc->getType() != BP) 1167 Loc = Builder.CreateBitCast(Loc, BP); 1168 1169 // If the initializer is all or mostly zeros, codegen with memset then do 1170 // a few stores afterward. 1171 if (shouldUseMemSetPlusStoresToInitialize(constant, 1172 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1173 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1174 alignment.getQuantity(), isVolatile); 1175 // Zero and undef don't require a stores. 1176 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1177 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1178 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1179 } 1180 } else { 1181 // Otherwise, create a temporary global with the initializer then 1182 // memcpy from the global to the alloca. 1183 std::string Name = getStaticDeclName(CGM, D); 1184 llvm::GlobalVariable *GV = 1185 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1186 llvm::GlobalValue::PrivateLinkage, 1187 constant, Name); 1188 GV->setAlignment(alignment.getQuantity()); 1189 GV->setUnnamedAddr(true); 1190 1191 llvm::Value *SrcPtr = GV; 1192 if (SrcPtr->getType() != BP) 1193 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1194 1195 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1196 isVolatile); 1197 } 1198 } 1199 1200 /// Emit an expression as an initializer for a variable at the given 1201 /// location. The expression is not necessarily the normal 1202 /// initializer for the variable, and the address is not necessarily 1203 /// its normal location. 1204 /// 1205 /// \param init the initializing expression 1206 /// \param var the variable to act as if we're initializing 1207 /// \param loc the address to initialize; its type is a pointer 1208 /// to the LLVM mapping of the variable's type 1209 /// \param alignment the alignment of the address 1210 /// \param capturedByInit true if the variable is a __block variable 1211 /// whose address is potentially changed by the initializer 1212 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1213 LValue lvalue, bool capturedByInit) { 1214 QualType type = D->getType(); 1215 1216 if (type->isReferenceType()) { 1217 RValue rvalue = EmitReferenceBindingToExpr(init); 1218 if (capturedByInit) 1219 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1220 EmitStoreThroughLValue(rvalue, lvalue, true); 1221 return; 1222 } 1223 switch (getEvaluationKind(type)) { 1224 case TEK_Scalar: 1225 EmitScalarInit(init, D, lvalue, capturedByInit); 1226 return; 1227 case TEK_Complex: { 1228 ComplexPairTy complex = EmitComplexExpr(init); 1229 if (capturedByInit) 1230 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1231 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1232 return; 1233 } 1234 case TEK_Aggregate: 1235 if (type->isAtomicType()) { 1236 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1237 } else { 1238 // TODO: how can we delay here if D is captured by its initializer? 1239 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1240 AggValueSlot::IsDestructed, 1241 AggValueSlot::DoesNotNeedGCBarriers, 1242 AggValueSlot::IsNotAliased)); 1243 } 1244 return; 1245 } 1246 llvm_unreachable("bad evaluation kind"); 1247 } 1248 1249 /// Enter a destroy cleanup for the given local variable. 1250 void CodeGenFunction::emitAutoVarTypeCleanup( 1251 const CodeGenFunction::AutoVarEmission &emission, 1252 QualType::DestructionKind dtorKind) { 1253 assert(dtorKind != QualType::DK_none); 1254 1255 // Note that for __block variables, we want to destroy the 1256 // original stack object, not the possibly forwarded object. 1257 llvm::Value *addr = emission.getObjectAddress(*this); 1258 1259 const VarDecl *var = emission.Variable; 1260 QualType type = var->getType(); 1261 1262 CleanupKind cleanupKind = NormalAndEHCleanup; 1263 CodeGenFunction::Destroyer *destroyer = nullptr; 1264 1265 switch (dtorKind) { 1266 case QualType::DK_none: 1267 llvm_unreachable("no cleanup for trivially-destructible variable"); 1268 1269 case QualType::DK_cxx_destructor: 1270 // If there's an NRVO flag on the emission, we need a different 1271 // cleanup. 1272 if (emission.NRVOFlag) { 1273 assert(!type->isArrayType()); 1274 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1275 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1276 emission.NRVOFlag); 1277 return; 1278 } 1279 break; 1280 1281 case QualType::DK_objc_strong_lifetime: 1282 // Suppress cleanups for pseudo-strong variables. 1283 if (var->isARCPseudoStrong()) return; 1284 1285 // Otherwise, consider whether to use an EH cleanup or not. 1286 cleanupKind = getARCCleanupKind(); 1287 1288 // Use the imprecise destroyer by default. 1289 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1290 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1291 break; 1292 1293 case QualType::DK_objc_weak_lifetime: 1294 break; 1295 } 1296 1297 // If we haven't chosen a more specific destroyer, use the default. 1298 if (!destroyer) destroyer = getDestroyer(dtorKind); 1299 1300 // Use an EH cleanup in array destructors iff the destructor itself 1301 // is being pushed as an EH cleanup. 1302 bool useEHCleanup = (cleanupKind & EHCleanup); 1303 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1304 useEHCleanup); 1305 } 1306 1307 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1308 assert(emission.Variable && "emission was not valid!"); 1309 1310 // If this was emitted as a global constant, we're done. 1311 if (emission.wasEmittedAsGlobal()) return; 1312 1313 // If we don't have an insertion point, we're done. Sema prevents 1314 // us from jumping into any of these scopes anyway. 1315 if (!HaveInsertPoint()) return; 1316 1317 const VarDecl &D = *emission.Variable; 1318 1319 // Make sure we call @llvm.lifetime.end. This needs to happen 1320 // *last*, so the cleanup needs to be pushed *first*. 1321 if (emission.useLifetimeMarkers()) { 1322 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1323 emission.getAllocatedAddress(), 1324 emission.getSizeForLifetimeMarkers()); 1325 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin()); 1326 cleanup.setLifetimeMarker(); 1327 } 1328 1329 // Check the type for a cleanup. 1330 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1331 emitAutoVarTypeCleanup(emission, dtorKind); 1332 1333 // In GC mode, honor objc_precise_lifetime. 1334 if (getLangOpts().getGC() != LangOptions::NonGC && 1335 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1336 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1337 } 1338 1339 // Handle the cleanup attribute. 1340 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1341 const FunctionDecl *FD = CA->getFunctionDecl(); 1342 1343 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1344 assert(F && "Could not find function!"); 1345 1346 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1347 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1348 } 1349 1350 // If this is a block variable, call _Block_object_destroy 1351 // (on the unforwarded address). 1352 if (emission.IsByRef) 1353 enterByrefCleanup(emission); 1354 } 1355 1356 CodeGenFunction::Destroyer * 1357 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1358 switch (kind) { 1359 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1360 case QualType::DK_cxx_destructor: 1361 return destroyCXXObject; 1362 case QualType::DK_objc_strong_lifetime: 1363 return destroyARCStrongPrecise; 1364 case QualType::DK_objc_weak_lifetime: 1365 return destroyARCWeak; 1366 } 1367 llvm_unreachable("Unknown DestructionKind"); 1368 } 1369 1370 /// pushEHDestroy - Push the standard destructor for the given type as 1371 /// an EH-only cleanup. 1372 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1373 llvm::Value *addr, QualType type) { 1374 assert(dtorKind && "cannot push destructor for trivial type"); 1375 assert(needsEHCleanup(dtorKind)); 1376 1377 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1378 } 1379 1380 /// pushDestroy - Push the standard destructor for the given type as 1381 /// at least a normal cleanup. 1382 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1383 llvm::Value *addr, QualType type) { 1384 assert(dtorKind && "cannot push destructor for trivial type"); 1385 1386 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1387 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1388 cleanupKind & EHCleanup); 1389 } 1390 1391 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1392 QualType type, Destroyer *destroyer, 1393 bool useEHCleanupForArray) { 1394 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1395 destroyer, useEHCleanupForArray); 1396 } 1397 1398 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) { 1399 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1400 } 1401 1402 void CodeGenFunction::pushLifetimeExtendedDestroy( 1403 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1404 Destroyer *destroyer, bool useEHCleanupForArray) { 1405 assert(!isInConditionalBranch() && 1406 "performing lifetime extension from within conditional"); 1407 1408 // Push an EH-only cleanup for the object now. 1409 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1410 // around in case a temporary's destructor throws an exception. 1411 if (cleanupKind & EHCleanup) 1412 EHStack.pushCleanup<DestroyObject>( 1413 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1414 destroyer, useEHCleanupForArray); 1415 1416 // Remember that we need to push a full cleanup for the object at the 1417 // end of the full-expression. 1418 pushCleanupAfterFullExpr<DestroyObject>( 1419 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1420 } 1421 1422 /// emitDestroy - Immediately perform the destruction of the given 1423 /// object. 1424 /// 1425 /// \param addr - the address of the object; a type* 1426 /// \param type - the type of the object; if an array type, all 1427 /// objects are destroyed in reverse order 1428 /// \param destroyer - the function to call to destroy individual 1429 /// elements 1430 /// \param useEHCleanupForArray - whether an EH cleanup should be 1431 /// used when destroying array elements, in case one of the 1432 /// destructions throws an exception 1433 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1434 Destroyer *destroyer, 1435 bool useEHCleanupForArray) { 1436 const ArrayType *arrayType = getContext().getAsArrayType(type); 1437 if (!arrayType) 1438 return destroyer(*this, addr, type); 1439 1440 llvm::Value *begin = addr; 1441 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1442 1443 // Normally we have to check whether the array is zero-length. 1444 bool checkZeroLength = true; 1445 1446 // But if the array length is constant, we can suppress that. 1447 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1448 // ...and if it's constant zero, we can just skip the entire thing. 1449 if (constLength->isZero()) return; 1450 checkZeroLength = false; 1451 } 1452 1453 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1454 emitArrayDestroy(begin, end, type, destroyer, 1455 checkZeroLength, useEHCleanupForArray); 1456 } 1457 1458 /// emitArrayDestroy - Destroys all the elements of the given array, 1459 /// beginning from last to first. The array cannot be zero-length. 1460 /// 1461 /// \param begin - a type* denoting the first element of the array 1462 /// \param end - a type* denoting one past the end of the array 1463 /// \param type - the element type of the array 1464 /// \param destroyer - the function to call to destroy elements 1465 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1466 /// the remaining elements in case the destruction of a single 1467 /// element throws 1468 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1469 llvm::Value *end, 1470 QualType type, 1471 Destroyer *destroyer, 1472 bool checkZeroLength, 1473 bool useEHCleanup) { 1474 assert(!type->isArrayType()); 1475 1476 // The basic structure here is a do-while loop, because we don't 1477 // need to check for the zero-element case. 1478 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1479 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1480 1481 if (checkZeroLength) { 1482 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1483 "arraydestroy.isempty"); 1484 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1485 } 1486 1487 // Enter the loop body, making that address the current address. 1488 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1489 EmitBlock(bodyBB); 1490 llvm::PHINode *elementPast = 1491 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1492 elementPast->addIncoming(end, entryBB); 1493 1494 // Shift the address back by one element. 1495 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1496 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1497 "arraydestroy.element"); 1498 1499 if (useEHCleanup) 1500 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1501 1502 // Perform the actual destruction there. 1503 destroyer(*this, element, type); 1504 1505 if (useEHCleanup) 1506 PopCleanupBlock(); 1507 1508 // Check whether we've reached the end. 1509 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1510 Builder.CreateCondBr(done, doneBB, bodyBB); 1511 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1512 1513 // Done. 1514 EmitBlock(doneBB); 1515 } 1516 1517 /// Perform partial array destruction as if in an EH cleanup. Unlike 1518 /// emitArrayDestroy, the element type here may still be an array type. 1519 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1520 llvm::Value *begin, llvm::Value *end, 1521 QualType type, 1522 CodeGenFunction::Destroyer *destroyer) { 1523 // If the element type is itself an array, drill down. 1524 unsigned arrayDepth = 0; 1525 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1526 // VLAs don't require a GEP index to walk into. 1527 if (!isa<VariableArrayType>(arrayType)) 1528 arrayDepth++; 1529 type = arrayType->getElementType(); 1530 } 1531 1532 if (arrayDepth) { 1533 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1534 1535 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1536 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1537 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1538 } 1539 1540 // Destroy the array. We don't ever need an EH cleanup because we 1541 // assume that we're in an EH cleanup ourselves, so a throwing 1542 // destructor causes an immediate terminate. 1543 CGF.emitArrayDestroy(begin, end, type, destroyer, 1544 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1545 } 1546 1547 namespace { 1548 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1549 /// array destroy where the end pointer is regularly determined and 1550 /// does not need to be loaded from a local. 1551 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1552 llvm::Value *ArrayBegin; 1553 llvm::Value *ArrayEnd; 1554 QualType ElementType; 1555 CodeGenFunction::Destroyer *Destroyer; 1556 public: 1557 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1558 QualType elementType, 1559 CodeGenFunction::Destroyer *destroyer) 1560 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1561 ElementType(elementType), Destroyer(destroyer) {} 1562 1563 void Emit(CodeGenFunction &CGF, Flags flags) override { 1564 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1565 ElementType, Destroyer); 1566 } 1567 }; 1568 1569 /// IrregularPartialArrayDestroy - a cleanup which performs a 1570 /// partial array destroy where the end pointer is irregularly 1571 /// determined and must be loaded from a local. 1572 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1573 llvm::Value *ArrayBegin; 1574 llvm::Value *ArrayEndPointer; 1575 QualType ElementType; 1576 CodeGenFunction::Destroyer *Destroyer; 1577 public: 1578 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1579 llvm::Value *arrayEndPointer, 1580 QualType elementType, 1581 CodeGenFunction::Destroyer *destroyer) 1582 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1583 ElementType(elementType), Destroyer(destroyer) {} 1584 1585 void Emit(CodeGenFunction &CGF, Flags flags) override { 1586 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1587 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1588 ElementType, Destroyer); 1589 } 1590 }; 1591 } 1592 1593 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1594 /// already-constructed elements of the given array. The cleanup 1595 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1596 /// 1597 /// \param elementType - the immediate element type of the array; 1598 /// possibly still an array type 1599 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1600 llvm::Value *arrayEndPointer, 1601 QualType elementType, 1602 Destroyer *destroyer) { 1603 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1604 arrayBegin, arrayEndPointer, 1605 elementType, destroyer); 1606 } 1607 1608 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1609 /// already-constructed elements of the given array. The cleanup 1610 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1611 /// 1612 /// \param elementType - the immediate element type of the array; 1613 /// possibly still an array type 1614 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1615 llvm::Value *arrayEnd, 1616 QualType elementType, 1617 Destroyer *destroyer) { 1618 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1619 arrayBegin, arrayEnd, 1620 elementType, destroyer); 1621 } 1622 1623 /// Lazily declare the @llvm.lifetime.start intrinsic. 1624 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1625 if (LifetimeStartFn) return LifetimeStartFn; 1626 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1627 llvm::Intrinsic::lifetime_start); 1628 return LifetimeStartFn; 1629 } 1630 1631 /// Lazily declare the @llvm.lifetime.end intrinsic. 1632 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1633 if (LifetimeEndFn) return LifetimeEndFn; 1634 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1635 llvm::Intrinsic::lifetime_end); 1636 return LifetimeEndFn; 1637 } 1638 1639 namespace { 1640 /// A cleanup to perform a release of an object at the end of a 1641 /// function. This is used to balance out the incoming +1 of a 1642 /// ns_consumed argument when we can't reasonably do that just by 1643 /// not doing the initial retain for a __block argument. 1644 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1645 ConsumeARCParameter(llvm::Value *param, 1646 ARCPreciseLifetime_t precise) 1647 : Param(param), Precise(precise) {} 1648 1649 llvm::Value *Param; 1650 ARCPreciseLifetime_t Precise; 1651 1652 void Emit(CodeGenFunction &CGF, Flags flags) override { 1653 CGF.EmitARCRelease(Param, Precise); 1654 } 1655 }; 1656 } 1657 1658 /// Emit an alloca (or GlobalValue depending on target) 1659 /// for the specified parameter and set up LocalDeclMap. 1660 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1661 bool ArgIsPointer, unsigned ArgNo) { 1662 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1663 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1664 "Invalid argument to EmitParmDecl"); 1665 1666 Arg->setName(D.getName()); 1667 1668 QualType Ty = D.getType(); 1669 1670 // Use better IR generation for certain implicit parameters. 1671 if (isa<ImplicitParamDecl>(D)) { 1672 // The only implicit argument a block has is its literal. 1673 if (BlockInfo) { 1674 LocalDeclMap[&D] = Arg; 1675 llvm::Value *LocalAddr = nullptr; 1676 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1677 // Allocate a stack slot to let the debug info survive the RA. 1678 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1679 D.getName() + ".addr"); 1680 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1681 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1682 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1683 LocalAddr = Builder.CreateLoad(Alloc); 1684 } 1685 1686 if (CGDebugInfo *DI = getDebugInfo()) { 1687 if (CGM.getCodeGenOpts().getDebugInfo() 1688 >= CodeGenOptions::LimitedDebugInfo) { 1689 DI->setLocation(D.getLocation()); 1690 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo, 1691 LocalAddr, Builder); 1692 } 1693 } 1694 1695 return; 1696 } 1697 } 1698 1699 llvm::Value *DeclPtr; 1700 bool DoStore = false; 1701 bool IsScalar = hasScalarEvaluationKind(Ty); 1702 CharUnits Align = getContext().getDeclAlign(&D); 1703 // If we already have a pointer to the argument, reuse the input pointer. 1704 if (ArgIsPointer) { 1705 // If we have a prettier pointer type at this point, bitcast to that. 1706 unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace(); 1707 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1708 DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy, 1709 D.getName()); 1710 // Push a destructor cleanup for this parameter if the ABI requires it. 1711 // Don't push a cleanup in a thunk for a method that will also emit a 1712 // cleanup. 1713 if (!IsScalar && !CurFuncIsThunk && 1714 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1715 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1716 if (RD && RD->hasNonTrivialDestructor()) 1717 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1718 } 1719 } else { 1720 // Otherwise, create a temporary to hold the value. 1721 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1722 D.getName() + ".addr"); 1723 Alloc->setAlignment(Align.getQuantity()); 1724 DeclPtr = Alloc; 1725 DoStore = true; 1726 } 1727 1728 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1729 if (IsScalar) { 1730 Qualifiers qs = Ty.getQualifiers(); 1731 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1732 // We honor __attribute__((ns_consumed)) for types with lifetime. 1733 // For __strong, it's handled by just skipping the initial retain; 1734 // otherwise we have to balance out the initial +1 with an extra 1735 // cleanup to do the release at the end of the function. 1736 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1737 1738 // 'self' is always formally __strong, but if this is not an 1739 // init method then we don't want to retain it. 1740 if (D.isARCPseudoStrong()) { 1741 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1742 assert(&D == method->getSelfDecl()); 1743 assert(lt == Qualifiers::OCL_Strong); 1744 assert(qs.hasConst()); 1745 assert(method->getMethodFamily() != OMF_init); 1746 (void) method; 1747 lt = Qualifiers::OCL_ExplicitNone; 1748 } 1749 1750 if (lt == Qualifiers::OCL_Strong) { 1751 if (!isConsumed) { 1752 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1753 // use objc_storeStrong(&dest, value) for retaining the 1754 // object. But first, store a null into 'dest' because 1755 // objc_storeStrong attempts to release its old value. 1756 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1757 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1758 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1759 DoStore = false; 1760 } 1761 else 1762 // Don't use objc_retainBlock for block pointers, because we 1763 // don't want to Block_copy something just because we got it 1764 // as a parameter. 1765 Arg = EmitARCRetainNonBlock(Arg); 1766 } 1767 } else { 1768 // Push the cleanup for a consumed parameter. 1769 if (isConsumed) { 1770 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1771 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1772 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1773 precise); 1774 } 1775 1776 if (lt == Qualifiers::OCL_Weak) { 1777 EmitARCInitWeak(DeclPtr, Arg); 1778 DoStore = false; // The weak init is a store, no need to do two. 1779 } 1780 } 1781 1782 // Enter the cleanup scope. 1783 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1784 } 1785 } 1786 1787 // Store the initial value into the alloca. 1788 if (DoStore) 1789 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1790 1791 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1792 assert(!DMEntry && "Decl already exists in localdeclmap!"); 1793 DMEntry = DeclPtr; 1794 1795 // Emit debug info for param declaration. 1796 if (CGDebugInfo *DI = getDebugInfo()) { 1797 if (CGM.getCodeGenOpts().getDebugInfo() 1798 >= CodeGenOptions::LimitedDebugInfo) { 1799 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1800 } 1801 } 1802 1803 if (D.hasAttr<AnnotateAttr>()) 1804 EmitVarAnnotations(&D, DeclPtr); 1805 } 1806