1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "CGOpenCLRuntime.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::IndirectField: 49 case Decl::ObjCIvar: 50 case Decl::ObjCAtDefsField: 51 case Decl::ParmVar: 52 case Decl::ImplicitParam: 53 case Decl::ClassTemplate: 54 case Decl::FunctionTemplate: 55 case Decl::TypeAliasTemplate: 56 case Decl::TemplateTemplateParm: 57 case Decl::ObjCMethod: 58 case Decl::ObjCCategory: 59 case Decl::ObjCProtocol: 60 case Decl::ObjCInterface: 61 case Decl::ObjCCategoryImpl: 62 case Decl::ObjCImplementation: 63 case Decl::ObjCProperty: 64 case Decl::ObjCCompatibleAlias: 65 case Decl::AccessSpec: 66 case Decl::LinkageSpec: 67 case Decl::ObjCPropertyImpl: 68 case Decl::FileScopeAsm: 69 case Decl::Friend: 70 case Decl::FriendTemplate: 71 case Decl::Block: 72 case Decl::ClassScopeFunctionSpecialization: 73 llvm_unreachable("Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 case Decl::Import: 86 // None of these decls require codegen support. 87 return; 88 89 case Decl::Var: { 90 const VarDecl &VD = cast<VarDecl>(D); 91 assert(VD.isLocalVarDecl() && 92 "Should not see file-scope variables inside a function!"); 93 return EmitVarDecl(VD); 94 } 95 96 case Decl::Typedef: // typedef int X; 97 case Decl::TypeAlias: { // using X = int; [C++0x] 98 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 99 QualType Ty = TD.getUnderlyingType(); 100 101 if (Ty->isVariablyModifiedType()) 102 EmitVariablyModifiedType(Ty); 103 } 104 } 105 } 106 107 /// EmitVarDecl - This method handles emission of any variable declaration 108 /// inside a function, including static vars etc. 109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 110 switch (D.getStorageClass()) { 111 case SC_None: 112 case SC_Auto: 113 case SC_Register: 114 return EmitAutoVarDecl(D); 115 case SC_Static: { 116 llvm::GlobalValue::LinkageTypes Linkage = 117 llvm::GlobalValue::InternalLinkage; 118 119 // If the function definition has some sort of weak linkage, its 120 // static variables should also be weak so that they get properly 121 // uniqued. We can't do this in C, though, because there's no 122 // standard way to agree on which variables are the same (i.e. 123 // there's no mangling). 124 if (getContext().getLangOptions().CPlusPlus) 125 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 126 Linkage = CurFn->getLinkage(); 127 128 return EmitStaticVarDecl(D, Linkage); 129 } 130 case SC_Extern: 131 case SC_PrivateExtern: 132 // Don't emit it now, allow it to be emitted lazily on its first use. 133 return; 134 case SC_OpenCLWorkGroupLocal: 135 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 136 } 137 138 llvm_unreachable("Unknown storage class"); 139 } 140 141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 142 const char *Separator) { 143 CodeGenModule &CGM = CGF.CGM; 144 if (CGF.getContext().getLangOptions().CPlusPlus) { 145 StringRef Name = CGM.getMangledName(&D); 146 return Name.str(); 147 } 148 149 std::string ContextName; 150 if (!CGF.CurFuncDecl) { 151 // Better be in a block declared in global scope. 152 const NamedDecl *ND = cast<NamedDecl>(&D); 153 const DeclContext *DC = ND->getDeclContext(); 154 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 155 MangleBuffer Name; 156 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 157 ContextName = Name.getString(); 158 } 159 else 160 llvm_unreachable("Unknown context for block static var decl"); 161 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 162 StringRef Name = CGM.getMangledName(FD); 163 ContextName = Name.str(); 164 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 165 ContextName = CGF.CurFn->getName(); 166 else 167 llvm_unreachable("Unknown context for static var decl"); 168 169 return ContextName + Separator + D.getNameAsString(); 170 } 171 172 llvm::GlobalVariable * 173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 174 const char *Separator, 175 llvm::GlobalValue::LinkageTypes Linkage) { 176 QualType Ty = D.getType(); 177 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 178 179 // Use the label if the variable is renamed with the asm-label extension. 180 std::string Name; 181 if (D.hasAttr<AsmLabelAttr>()) 182 Name = CGM.getMangledName(&D); 183 else 184 Name = GetStaticDeclName(*this, D, Separator); 185 186 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 187 llvm::GlobalVariable *GV = 188 new llvm::GlobalVariable(CGM.getModule(), LTy, 189 Ty.isConstant(getContext()), Linkage, 190 CGM.EmitNullConstant(D.getType()), Name, 0, 191 D.isThreadSpecified(), 192 CGM.getContext().getTargetAddressSpace(Ty)); 193 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 194 if (Linkage != llvm::GlobalValue::InternalLinkage) 195 GV->setVisibility(CurFn->getVisibility()); 196 return GV; 197 } 198 199 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 200 /// global variable that has already been created for it. If the initializer 201 /// has a different type than GV does, this may free GV and return a different 202 /// one. Otherwise it just returns GV. 203 llvm::GlobalVariable * 204 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 205 llvm::GlobalVariable *GV) { 206 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 207 208 // If constant emission failed, then this should be a C++ static 209 // initializer. 210 if (!Init) { 211 if (!getContext().getLangOptions().CPlusPlus) 212 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 213 else if (Builder.GetInsertBlock()) { 214 // Since we have a static initializer, this global variable can't 215 // be constant. 216 GV->setConstant(false); 217 218 EmitCXXGuardedInit(D, GV); 219 } 220 return GV; 221 } 222 223 // The initializer may differ in type from the global. Rewrite 224 // the global to match the initializer. (We have to do this 225 // because some types, like unions, can't be completely represented 226 // in the LLVM type system.) 227 if (GV->getType()->getElementType() != Init->getType()) { 228 llvm::GlobalVariable *OldGV = GV; 229 230 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 231 OldGV->isConstant(), 232 OldGV->getLinkage(), Init, "", 233 /*InsertBefore*/ OldGV, 234 D.isThreadSpecified(), 235 CGM.getContext().getTargetAddressSpace(D.getType())); 236 GV->setVisibility(OldGV->getVisibility()); 237 238 // Steal the name of the old global 239 GV->takeName(OldGV); 240 241 // Replace all uses of the old global with the new global 242 llvm::Constant *NewPtrForOldDecl = 243 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 244 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 245 246 // Erase the old global, since it is no longer used. 247 OldGV->eraseFromParent(); 248 } 249 250 GV->setInitializer(Init); 251 return GV; 252 } 253 254 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 255 llvm::GlobalValue::LinkageTypes Linkage) { 256 llvm::Value *&DMEntry = LocalDeclMap[&D]; 257 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 258 259 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 260 261 // Store into LocalDeclMap before generating initializer to handle 262 // circular references. 263 DMEntry = GV; 264 265 // We can't have a VLA here, but we can have a pointer to a VLA, 266 // even though that doesn't really make any sense. 267 // Make sure to evaluate VLA bounds now so that we have them for later. 268 if (D.getType()->isVariablyModifiedType()) 269 EmitVariablyModifiedType(D.getType()); 270 271 // Local static block variables must be treated as globals as they may be 272 // referenced in their RHS initializer block-literal expresion. 273 CGM.setStaticLocalDeclAddress(&D, GV); 274 275 // If this value has an initializer, emit it. 276 if (D.getInit()) 277 GV = AddInitializerToStaticVarDecl(D, GV); 278 279 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 280 281 if (D.hasAttr<AnnotateAttr>()) 282 CGM.AddGlobalAnnotations(&D, GV); 283 284 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 285 GV->setSection(SA->getName()); 286 287 if (D.hasAttr<UsedAttr>()) 288 CGM.AddUsedGlobal(GV); 289 290 // We may have to cast the constant because of the initializer 291 // mismatch above. 292 // 293 // FIXME: It is really dangerous to store this in the map; if anyone 294 // RAUW's the GV uses of this constant will be invalid. 295 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 296 llvm::Type *LPtrTy = 297 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 298 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 299 300 // Emit global variable debug descriptor for static vars. 301 CGDebugInfo *DI = getDebugInfo(); 302 if (DI) { 303 DI->setLocation(D.getLocation()); 304 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 305 } 306 } 307 308 namespace { 309 struct DestroyObject : EHScopeStack::Cleanup { 310 DestroyObject(llvm::Value *addr, QualType type, 311 CodeGenFunction::Destroyer *destroyer, 312 bool useEHCleanupForArray) 313 : addr(addr), type(type), destroyer(*destroyer), 314 useEHCleanupForArray(useEHCleanupForArray) {} 315 316 llvm::Value *addr; 317 QualType type; 318 CodeGenFunction::Destroyer &destroyer; 319 bool useEHCleanupForArray; 320 321 void Emit(CodeGenFunction &CGF, Flags flags) { 322 // Don't use an EH cleanup recursively from an EH cleanup. 323 bool useEHCleanupForArray = 324 flags.isForNormalCleanup() && this->useEHCleanupForArray; 325 326 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 327 } 328 }; 329 330 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 331 DestroyNRVOVariable(llvm::Value *addr, 332 const CXXDestructorDecl *Dtor, 333 llvm::Value *NRVOFlag) 334 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 335 336 const CXXDestructorDecl *Dtor; 337 llvm::Value *NRVOFlag; 338 llvm::Value *Loc; 339 340 void Emit(CodeGenFunction &CGF, Flags flags) { 341 // Along the exceptions path we always execute the dtor. 342 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 343 344 llvm::BasicBlock *SkipDtorBB = 0; 345 if (NRVO) { 346 // If we exited via NRVO, we skip the destructor call. 347 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 348 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 349 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 350 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 351 CGF.EmitBlock(RunDtorBB); 352 } 353 354 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 355 /*ForVirtualBase=*/false, Loc); 356 357 if (NRVO) CGF.EmitBlock(SkipDtorBB); 358 } 359 }; 360 361 struct CallStackRestore : EHScopeStack::Cleanup { 362 llvm::Value *Stack; 363 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 364 void Emit(CodeGenFunction &CGF, Flags flags) { 365 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 366 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 367 CGF.Builder.CreateCall(F, V); 368 } 369 }; 370 371 struct ExtendGCLifetime : EHScopeStack::Cleanup { 372 const VarDecl &Var; 373 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 374 375 void Emit(CodeGenFunction &CGF, Flags flags) { 376 // Compute the address of the local variable, in case it's a 377 // byref or something. 378 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 379 SourceLocation()); 380 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 381 CGF.EmitExtendGCLifetime(value); 382 } 383 }; 384 385 struct CallCleanupFunction : EHScopeStack::Cleanup { 386 llvm::Constant *CleanupFn; 387 const CGFunctionInfo &FnInfo; 388 const VarDecl &Var; 389 390 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 391 const VarDecl *Var) 392 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 393 394 void Emit(CodeGenFunction &CGF, Flags flags) { 395 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 396 SourceLocation()); 397 // Compute the address of the local variable, in case it's a byref 398 // or something. 399 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 400 401 // In some cases, the type of the function argument will be different from 402 // the type of the pointer. An example of this is 403 // void f(void* arg); 404 // __attribute__((cleanup(f))) void *g; 405 // 406 // To fix this we insert a bitcast here. 407 QualType ArgTy = FnInfo.arg_begin()->type; 408 llvm::Value *Arg = 409 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 410 411 CallArgList Args; 412 Args.add(RValue::get(Arg), 413 CGF.getContext().getPointerType(Var.getType())); 414 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 415 } 416 }; 417 } 418 419 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 420 /// variable with lifetime. 421 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 422 llvm::Value *addr, 423 Qualifiers::ObjCLifetime lifetime) { 424 switch (lifetime) { 425 case Qualifiers::OCL_None: 426 llvm_unreachable("present but none"); 427 428 case Qualifiers::OCL_ExplicitNone: 429 // nothing to do 430 break; 431 432 case Qualifiers::OCL_Strong: { 433 CodeGenFunction::Destroyer &destroyer = 434 (var.hasAttr<ObjCPreciseLifetimeAttr>() 435 ? CodeGenFunction::destroyARCStrongPrecise 436 : CodeGenFunction::destroyARCStrongImprecise); 437 438 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 439 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 440 cleanupKind & EHCleanup); 441 break; 442 } 443 case Qualifiers::OCL_Autoreleasing: 444 // nothing to do 445 break; 446 447 case Qualifiers::OCL_Weak: 448 // __weak objects always get EH cleanups; otherwise, exceptions 449 // could cause really nasty crashes instead of mere leaks. 450 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 451 CodeGenFunction::destroyARCWeak, 452 /*useEHCleanup*/ true); 453 break; 454 } 455 } 456 457 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 458 if (const Expr *e = dyn_cast<Expr>(s)) { 459 // Skip the most common kinds of expressions that make 460 // hierarchy-walking expensive. 461 s = e = e->IgnoreParenCasts(); 462 463 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 464 return (ref->getDecl() == &var); 465 } 466 467 for (Stmt::const_child_range children = s->children(); children; ++children) 468 // children might be null; as in missing decl or conditional of an if-stmt. 469 if ((*children) && isAccessedBy(var, *children)) 470 return true; 471 472 return false; 473 } 474 475 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 476 if (!decl) return false; 477 if (!isa<VarDecl>(decl)) return false; 478 const VarDecl *var = cast<VarDecl>(decl); 479 return isAccessedBy(*var, e); 480 } 481 482 static void drillIntoBlockVariable(CodeGenFunction &CGF, 483 LValue &lvalue, 484 const VarDecl *var) { 485 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 486 } 487 488 void CodeGenFunction::EmitScalarInit(const Expr *init, 489 const ValueDecl *D, 490 LValue lvalue, 491 bool capturedByInit) { 492 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 493 if (!lifetime) { 494 llvm::Value *value = EmitScalarExpr(init); 495 if (capturedByInit) 496 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 497 EmitStoreThroughLValue(RValue::get(value), lvalue); 498 return; 499 } 500 501 // If we're emitting a value with lifetime, we have to do the 502 // initialization *before* we leave the cleanup scopes. 503 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 504 enterFullExpression(ewc); 505 init = ewc->getSubExpr(); 506 } 507 CodeGenFunction::RunCleanupsScope Scope(*this); 508 509 // We have to maintain the illusion that the variable is 510 // zero-initialized. If the variable might be accessed in its 511 // initializer, zero-initialize before running the initializer, then 512 // actually perform the initialization with an assign. 513 bool accessedByInit = false; 514 if (lifetime != Qualifiers::OCL_ExplicitNone) 515 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 516 if (accessedByInit) { 517 LValue tempLV = lvalue; 518 // Drill down to the __block object if necessary. 519 if (capturedByInit) { 520 // We can use a simple GEP for this because it can't have been 521 // moved yet. 522 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 523 getByRefValueLLVMField(cast<VarDecl>(D)))); 524 } 525 526 llvm::PointerType *ty 527 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 528 ty = cast<llvm::PointerType>(ty->getElementType()); 529 530 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 531 532 // If __weak, we want to use a barrier under certain conditions. 533 if (lifetime == Qualifiers::OCL_Weak) 534 EmitARCInitWeak(tempLV.getAddress(), zero); 535 536 // Otherwise just do a simple store. 537 else 538 EmitStoreOfScalar(zero, tempLV); 539 } 540 541 // Emit the initializer. 542 llvm::Value *value = 0; 543 544 switch (lifetime) { 545 case Qualifiers::OCL_None: 546 llvm_unreachable("present but none"); 547 548 case Qualifiers::OCL_ExplicitNone: 549 // nothing to do 550 value = EmitScalarExpr(init); 551 break; 552 553 case Qualifiers::OCL_Strong: { 554 value = EmitARCRetainScalarExpr(init); 555 break; 556 } 557 558 case Qualifiers::OCL_Weak: { 559 // No way to optimize a producing initializer into this. It's not 560 // worth optimizing for, because the value will immediately 561 // disappear in the common case. 562 value = EmitScalarExpr(init); 563 564 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 565 if (accessedByInit) 566 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 567 else 568 EmitARCInitWeak(lvalue.getAddress(), value); 569 return; 570 } 571 572 case Qualifiers::OCL_Autoreleasing: 573 value = EmitARCRetainAutoreleaseScalarExpr(init); 574 break; 575 } 576 577 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 578 579 // If the variable might have been accessed by its initializer, we 580 // might have to initialize with a barrier. We have to do this for 581 // both __weak and __strong, but __weak got filtered out above. 582 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 583 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 584 EmitStoreOfScalar(value, lvalue); 585 EmitARCRelease(oldValue, /*precise*/ false); 586 return; 587 } 588 589 EmitStoreOfScalar(value, lvalue); 590 } 591 592 /// EmitScalarInit - Initialize the given lvalue with the given object. 593 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 594 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 595 if (!lifetime) 596 return EmitStoreThroughLValue(RValue::get(init), lvalue); 597 598 switch (lifetime) { 599 case Qualifiers::OCL_None: 600 llvm_unreachable("present but none"); 601 602 case Qualifiers::OCL_ExplicitNone: 603 // nothing to do 604 break; 605 606 case Qualifiers::OCL_Strong: 607 init = EmitARCRetain(lvalue.getType(), init); 608 break; 609 610 case Qualifiers::OCL_Weak: 611 // Initialize and then skip the primitive store. 612 EmitARCInitWeak(lvalue.getAddress(), init); 613 return; 614 615 case Qualifiers::OCL_Autoreleasing: 616 init = EmitARCRetainAutorelease(lvalue.getType(), init); 617 break; 618 } 619 620 EmitStoreOfScalar(init, lvalue); 621 } 622 623 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 624 /// non-zero parts of the specified initializer with equal or fewer than 625 /// NumStores scalar stores. 626 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 627 unsigned &NumStores) { 628 // Zero and Undef never requires any extra stores. 629 if (isa<llvm::ConstantAggregateZero>(Init) || 630 isa<llvm::ConstantPointerNull>(Init) || 631 isa<llvm::UndefValue>(Init)) 632 return true; 633 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 634 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 635 isa<llvm::ConstantExpr>(Init)) 636 return Init->isNullValue() || NumStores--; 637 638 // See if we can emit each element. 639 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 640 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 641 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 642 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 643 return false; 644 } 645 return true; 646 } 647 648 // Anything else is hard and scary. 649 return false; 650 } 651 652 /// emitStoresForInitAfterMemset - For inits that 653 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 654 /// stores that would be required. 655 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 656 bool isVolatile, CGBuilderTy &Builder) { 657 // Zero doesn't require any stores. 658 if (isa<llvm::ConstantAggregateZero>(Init) || 659 isa<llvm::ConstantPointerNull>(Init) || 660 isa<llvm::UndefValue>(Init)) 661 return; 662 663 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 664 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 665 isa<llvm::ConstantExpr>(Init)) { 666 if (!Init->isNullValue()) 667 Builder.CreateStore(Init, Loc, isVolatile); 668 return; 669 } 670 671 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 672 "Unknown value type!"); 673 674 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 675 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 676 if (Elt->isNullValue()) continue; 677 678 // Otherwise, get a pointer to the element and emit it. 679 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 680 isVolatile, Builder); 681 } 682 } 683 684 685 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 686 /// plus some stores to initialize a local variable instead of using a memcpy 687 /// from a constant global. It is beneficial to use memset if the global is all 688 /// zeros, or mostly zeros and large. 689 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 690 uint64_t GlobalSize) { 691 // If a global is all zeros, always use a memset. 692 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 693 694 695 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 696 // do it if it will require 6 or fewer scalar stores. 697 // TODO: Should budget depends on the size? Avoiding a large global warrants 698 // plopping in more stores. 699 unsigned StoreBudget = 6; 700 uint64_t SizeLimit = 32; 701 702 return GlobalSize > SizeLimit && 703 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 704 } 705 706 707 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 708 /// variable declaration with auto, register, or no storage class specifier. 709 /// These turn into simple stack objects, or GlobalValues depending on target. 710 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 711 AutoVarEmission emission = EmitAutoVarAlloca(D); 712 EmitAutoVarInit(emission); 713 EmitAutoVarCleanups(emission); 714 } 715 716 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 717 /// local variable. Does not emit initalization or destruction. 718 CodeGenFunction::AutoVarEmission 719 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 720 QualType Ty = D.getType(); 721 722 AutoVarEmission emission(D); 723 724 bool isByRef = D.hasAttr<BlocksAttr>(); 725 emission.IsByRef = isByRef; 726 727 CharUnits alignment = getContext().getDeclAlign(&D); 728 emission.Alignment = alignment; 729 730 // If the type is variably-modified, emit all the VLA sizes for it. 731 if (Ty->isVariablyModifiedType()) 732 EmitVariablyModifiedType(Ty); 733 734 llvm::Value *DeclPtr; 735 if (Ty->isConstantSizeType()) { 736 if (!Target.useGlobalsForAutomaticVariables()) { 737 bool NRVO = getContext().getLangOptions().ElideConstructors && 738 D.isNRVOVariable(); 739 740 // If this value is a POD array or struct with a statically 741 // determinable constant initializer, there are optimizations we can do. 742 // 743 // TODO: we should constant-evaluate any variable of literal type 744 // as long as it is initialized by a constant expression. Currently, 745 // isConstantInitializer produces wrong answers for structs with 746 // reference or bitfield members, and a few other cases, and checking 747 // for POD-ness protects us from some of these. 748 if (D.getInit() && 749 (Ty->isArrayType() || Ty->isRecordType()) && 750 (Ty.isPODType(getContext()) || 751 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 752 D.getInit()->isConstantInitializer(getContext(), false)) { 753 754 // If the variable's a const type, and it's neither an NRVO 755 // candidate nor a __block variable and has no mutable members, 756 // emit it as a global instead. 757 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 758 !NRVO && !isByRef && Ty->isLiteralType()) { 759 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 760 761 emission.Address = 0; // signal this condition to later callbacks 762 assert(emission.wasEmittedAsGlobal()); 763 return emission; 764 } 765 766 // Otherwise, tell the initialization code that we're in this case. 767 emission.IsConstantAggregate = true; 768 } 769 770 // A normal fixed sized variable becomes an alloca in the entry block, 771 // unless it's an NRVO variable. 772 llvm::Type *LTy = ConvertTypeForMem(Ty); 773 774 if (NRVO) { 775 // The named return value optimization: allocate this variable in the 776 // return slot, so that we can elide the copy when returning this 777 // variable (C++0x [class.copy]p34). 778 DeclPtr = ReturnValue; 779 780 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 781 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 782 // Create a flag that is used to indicate when the NRVO was applied 783 // to this variable. Set it to zero to indicate that NRVO was not 784 // applied. 785 llvm::Value *Zero = Builder.getFalse(); 786 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 787 EnsureInsertPoint(); 788 Builder.CreateStore(Zero, NRVOFlag); 789 790 // Record the NRVO flag for this variable. 791 NRVOFlags[&D] = NRVOFlag; 792 emission.NRVOFlag = NRVOFlag; 793 } 794 } 795 } else { 796 if (isByRef) 797 LTy = BuildByRefType(&D); 798 799 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 800 Alloc->setName(D.getName()); 801 802 CharUnits allocaAlignment = alignment; 803 if (isByRef) 804 allocaAlignment = std::max(allocaAlignment, 805 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 806 Alloc->setAlignment(allocaAlignment.getQuantity()); 807 DeclPtr = Alloc; 808 } 809 } else { 810 // Targets that don't support recursion emit locals as globals. 811 const char *Class = 812 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 813 DeclPtr = CreateStaticVarDecl(D, Class, 814 llvm::GlobalValue::InternalLinkage); 815 } 816 } else { 817 EnsureInsertPoint(); 818 819 if (!DidCallStackSave) { 820 // Save the stack. 821 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 822 823 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 824 llvm::Value *V = Builder.CreateCall(F); 825 826 Builder.CreateStore(V, Stack); 827 828 DidCallStackSave = true; 829 830 // Push a cleanup block and restore the stack there. 831 // FIXME: in general circumstances, this should be an EH cleanup. 832 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 833 } 834 835 llvm::Value *elementCount; 836 QualType elementType; 837 llvm::tie(elementCount, elementType) = getVLASize(Ty); 838 839 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 840 841 // Allocate memory for the array. 842 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 843 vla->setAlignment(alignment.getQuantity()); 844 845 DeclPtr = vla; 846 } 847 848 llvm::Value *&DMEntry = LocalDeclMap[&D]; 849 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 850 DMEntry = DeclPtr; 851 emission.Address = DeclPtr; 852 853 // Emit debug info for local var declaration. 854 if (HaveInsertPoint()) 855 if (CGDebugInfo *DI = getDebugInfo()) { 856 DI->setLocation(D.getLocation()); 857 if (Target.useGlobalsForAutomaticVariables()) { 858 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 859 } else 860 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 861 } 862 863 if (D.hasAttr<AnnotateAttr>()) 864 EmitVarAnnotations(&D, emission.Address); 865 866 return emission; 867 } 868 869 /// Determines whether the given __block variable is potentially 870 /// captured by the given expression. 871 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 872 // Skip the most common kinds of expressions that make 873 // hierarchy-walking expensive. 874 e = e->IgnoreParenCasts(); 875 876 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 877 const BlockDecl *block = be->getBlockDecl(); 878 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 879 e = block->capture_end(); i != e; ++i) { 880 if (i->getVariable() == &var) 881 return true; 882 } 883 884 // No need to walk into the subexpressions. 885 return false; 886 } 887 888 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 889 const CompoundStmt *CS = SE->getSubStmt(); 890 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 891 BE = CS->body_end(); BI != BE; ++BI) 892 if (Expr *E = dyn_cast<Expr>((*BI))) { 893 if (isCapturedBy(var, E)) 894 return true; 895 } 896 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 897 // special case declarations 898 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 899 I != E; ++I) { 900 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 901 Expr *Init = VD->getInit(); 902 if (Init && isCapturedBy(var, Init)) 903 return true; 904 } 905 } 906 } 907 else 908 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 909 // Later, provide code to poke into statements for capture analysis. 910 return true; 911 return false; 912 } 913 914 for (Stmt::const_child_range children = e->children(); children; ++children) 915 if (isCapturedBy(var, cast<Expr>(*children))) 916 return true; 917 918 return false; 919 } 920 921 /// \brief Determine whether the given initializer is trivial in the sense 922 /// that it requires no code to be generated. 923 static bool isTrivialInitializer(const Expr *Init) { 924 if (!Init) 925 return true; 926 927 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 928 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 929 if (Constructor->isTrivial() && 930 Constructor->isDefaultConstructor() && 931 !Construct->requiresZeroInitialization()) 932 return true; 933 934 return false; 935 } 936 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 937 assert(emission.Variable && "emission was not valid!"); 938 939 // If this was emitted as a global constant, we're done. 940 if (emission.wasEmittedAsGlobal()) return; 941 942 const VarDecl &D = *emission.Variable; 943 QualType type = D.getType(); 944 945 // If this local has an initializer, emit it now. 946 const Expr *Init = D.getInit(); 947 948 // If we are at an unreachable point, we don't need to emit the initializer 949 // unless it contains a label. 950 if (!HaveInsertPoint()) { 951 if (!Init || !ContainsLabel(Init)) return; 952 EnsureInsertPoint(); 953 } 954 955 // Initialize the structure of a __block variable. 956 if (emission.IsByRef) 957 emitByrefStructureInit(emission); 958 959 if (isTrivialInitializer(Init)) 960 return; 961 962 CharUnits alignment = emission.Alignment; 963 964 // Check whether this is a byref variable that's potentially 965 // captured and moved by its own initializer. If so, we'll need to 966 // emit the initializer first, then copy into the variable. 967 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 968 969 llvm::Value *Loc = 970 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 971 972 llvm::Constant *constant = 0; 973 if (emission.IsConstantAggregate) { 974 assert(!capturedByInit && "constant init contains a capturing block?"); 975 constant = CGM.EmitConstantExpr(D.getInit(), type, this); 976 } 977 978 if (!constant) { 979 LValue lv = MakeAddrLValue(Loc, type, alignment); 980 lv.setNonGC(true); 981 return EmitExprAsInit(Init, &D, lv, capturedByInit); 982 } 983 984 // If this is a simple aggregate initialization, we can optimize it 985 // in various ways. 986 bool isVolatile = type.isVolatileQualified(); 987 988 llvm::Value *SizeVal = 989 llvm::ConstantInt::get(IntPtrTy, 990 getContext().getTypeSizeInChars(type).getQuantity()); 991 992 llvm::Type *BP = Int8PtrTy; 993 if (Loc->getType() != BP) 994 Loc = Builder.CreateBitCast(Loc, BP); 995 996 // If the initializer is all or mostly zeros, codegen with memset then do 997 // a few stores afterward. 998 if (shouldUseMemSetPlusStoresToInitialize(constant, 999 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 1000 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1001 alignment.getQuantity(), isVolatile); 1002 if (!constant->isNullValue()) { 1003 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1004 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1005 } 1006 } else { 1007 // Otherwise, create a temporary global with the initializer then 1008 // memcpy from the global to the alloca. 1009 std::string Name = GetStaticDeclName(*this, D, "."); 1010 llvm::GlobalVariable *GV = 1011 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1012 llvm::GlobalValue::PrivateLinkage, 1013 constant, Name, 0, false, 0); 1014 GV->setAlignment(alignment.getQuantity()); 1015 GV->setUnnamedAddr(true); 1016 1017 llvm::Value *SrcPtr = GV; 1018 if (SrcPtr->getType() != BP) 1019 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1020 1021 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1022 isVolatile); 1023 } 1024 } 1025 1026 /// Emit an expression as an initializer for a variable at the given 1027 /// location. The expression is not necessarily the normal 1028 /// initializer for the variable, and the address is not necessarily 1029 /// its normal location. 1030 /// 1031 /// \param init the initializing expression 1032 /// \param var the variable to act as if we're initializing 1033 /// \param loc the address to initialize; its type is a pointer 1034 /// to the LLVM mapping of the variable's type 1035 /// \param alignment the alignment of the address 1036 /// \param capturedByInit true if the variable is a __block variable 1037 /// whose address is potentially changed by the initializer 1038 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1039 const ValueDecl *D, 1040 LValue lvalue, 1041 bool capturedByInit) { 1042 QualType type = D->getType(); 1043 1044 if (type->isReferenceType()) { 1045 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1046 if (capturedByInit) 1047 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1048 EmitStoreThroughLValue(rvalue, lvalue); 1049 } else if (!hasAggregateLLVMType(type)) { 1050 EmitScalarInit(init, D, lvalue, capturedByInit); 1051 } else if (type->isAnyComplexType()) { 1052 ComplexPairTy complex = EmitComplexExpr(init); 1053 if (capturedByInit) 1054 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1055 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); 1056 } else { 1057 // TODO: how can we delay here if D is captured by its initializer? 1058 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1059 AggValueSlot::IsDestructed, 1060 AggValueSlot::DoesNotNeedGCBarriers, 1061 AggValueSlot::IsNotAliased)); 1062 } 1063 } 1064 1065 /// Enter a destroy cleanup for the given local variable. 1066 void CodeGenFunction::emitAutoVarTypeCleanup( 1067 const CodeGenFunction::AutoVarEmission &emission, 1068 QualType::DestructionKind dtorKind) { 1069 assert(dtorKind != QualType::DK_none); 1070 1071 // Note that for __block variables, we want to destroy the 1072 // original stack object, not the possibly forwarded object. 1073 llvm::Value *addr = emission.getObjectAddress(*this); 1074 1075 const VarDecl *var = emission.Variable; 1076 QualType type = var->getType(); 1077 1078 CleanupKind cleanupKind = NormalAndEHCleanup; 1079 CodeGenFunction::Destroyer *destroyer = 0; 1080 1081 switch (dtorKind) { 1082 case QualType::DK_none: 1083 llvm_unreachable("no cleanup for trivially-destructible variable"); 1084 1085 case QualType::DK_cxx_destructor: 1086 // If there's an NRVO flag on the emission, we need a different 1087 // cleanup. 1088 if (emission.NRVOFlag) { 1089 assert(!type->isArrayType()); 1090 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1091 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1092 emission.NRVOFlag); 1093 return; 1094 } 1095 break; 1096 1097 case QualType::DK_objc_strong_lifetime: 1098 // Suppress cleanups for pseudo-strong variables. 1099 if (var->isARCPseudoStrong()) return; 1100 1101 // Otherwise, consider whether to use an EH cleanup or not. 1102 cleanupKind = getARCCleanupKind(); 1103 1104 // Use the imprecise destroyer by default. 1105 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1106 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1107 break; 1108 1109 case QualType::DK_objc_weak_lifetime: 1110 break; 1111 } 1112 1113 // If we haven't chosen a more specific destroyer, use the default. 1114 if (!destroyer) destroyer = &getDestroyer(dtorKind); 1115 1116 // Use an EH cleanup in array destructors iff the destructor itself 1117 // is being pushed as an EH cleanup. 1118 bool useEHCleanup = (cleanupKind & EHCleanup); 1119 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1120 useEHCleanup); 1121 } 1122 1123 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1124 assert(emission.Variable && "emission was not valid!"); 1125 1126 // If this was emitted as a global constant, we're done. 1127 if (emission.wasEmittedAsGlobal()) return; 1128 1129 const VarDecl &D = *emission.Variable; 1130 1131 // Check the type for a cleanup. 1132 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1133 emitAutoVarTypeCleanup(emission, dtorKind); 1134 1135 // In GC mode, honor objc_precise_lifetime. 1136 if (getLangOptions().getGC() != LangOptions::NonGC && 1137 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1138 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1139 } 1140 1141 // Handle the cleanup attribute. 1142 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1143 const FunctionDecl *FD = CA->getFunctionDecl(); 1144 1145 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1146 assert(F && "Could not find function!"); 1147 1148 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 1149 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1150 } 1151 1152 // If this is a block variable, call _Block_object_destroy 1153 // (on the unforwarded address). 1154 if (emission.IsByRef) 1155 enterByrefCleanup(emission); 1156 } 1157 1158 CodeGenFunction::Destroyer & 1159 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1160 // This is surprisingly compiler-dependent. GCC 4.2 can't bind 1161 // references to functions directly in returns, and using '*&foo' 1162 // confuses MSVC. Luckily, the following code pattern works in both. 1163 Destroyer *destroyer = 0; 1164 switch (kind) { 1165 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1166 case QualType::DK_cxx_destructor: 1167 destroyer = &destroyCXXObject; 1168 break; 1169 case QualType::DK_objc_strong_lifetime: 1170 destroyer = &destroyARCStrongPrecise; 1171 break; 1172 case QualType::DK_objc_weak_lifetime: 1173 destroyer = &destroyARCWeak; 1174 break; 1175 } 1176 return *destroyer; 1177 } 1178 1179 /// pushDestroy - Push the standard destructor for the given type. 1180 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1181 llvm::Value *addr, QualType type) { 1182 assert(dtorKind && "cannot push destructor for trivial type"); 1183 1184 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1185 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1186 cleanupKind & EHCleanup); 1187 } 1188 1189 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1190 QualType type, Destroyer &destroyer, 1191 bool useEHCleanupForArray) { 1192 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1193 destroyer, useEHCleanupForArray); 1194 } 1195 1196 /// emitDestroy - Immediately perform the destruction of the given 1197 /// object. 1198 /// 1199 /// \param addr - the address of the object; a type* 1200 /// \param type - the type of the object; if an array type, all 1201 /// objects are destroyed in reverse order 1202 /// \param destroyer - the function to call to destroy individual 1203 /// elements 1204 /// \param useEHCleanupForArray - whether an EH cleanup should be 1205 /// used when destroying array elements, in case one of the 1206 /// destructions throws an exception 1207 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1208 Destroyer &destroyer, 1209 bool useEHCleanupForArray) { 1210 const ArrayType *arrayType = getContext().getAsArrayType(type); 1211 if (!arrayType) 1212 return destroyer(*this, addr, type); 1213 1214 llvm::Value *begin = addr; 1215 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1216 1217 // Normally we have to check whether the array is zero-length. 1218 bool checkZeroLength = true; 1219 1220 // But if the array length is constant, we can suppress that. 1221 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1222 // ...and if it's constant zero, we can just skip the entire thing. 1223 if (constLength->isZero()) return; 1224 checkZeroLength = false; 1225 } 1226 1227 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1228 emitArrayDestroy(begin, end, type, destroyer, 1229 checkZeroLength, useEHCleanupForArray); 1230 } 1231 1232 /// emitArrayDestroy - Destroys all the elements of the given array, 1233 /// beginning from last to first. The array cannot be zero-length. 1234 /// 1235 /// \param begin - a type* denoting the first element of the array 1236 /// \param end - a type* denoting one past the end of the array 1237 /// \param type - the element type of the array 1238 /// \param destroyer - the function to call to destroy elements 1239 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1240 /// the remaining elements in case the destruction of a single 1241 /// element throws 1242 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1243 llvm::Value *end, 1244 QualType type, 1245 Destroyer &destroyer, 1246 bool checkZeroLength, 1247 bool useEHCleanup) { 1248 assert(!type->isArrayType()); 1249 1250 // The basic structure here is a do-while loop, because we don't 1251 // need to check for the zero-element case. 1252 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1253 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1254 1255 if (checkZeroLength) { 1256 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1257 "arraydestroy.isempty"); 1258 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1259 } 1260 1261 // Enter the loop body, making that address the current address. 1262 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1263 EmitBlock(bodyBB); 1264 llvm::PHINode *elementPast = 1265 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1266 elementPast->addIncoming(end, entryBB); 1267 1268 // Shift the address back by one element. 1269 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1270 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1271 "arraydestroy.element"); 1272 1273 if (useEHCleanup) 1274 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1275 1276 // Perform the actual destruction there. 1277 destroyer(*this, element, type); 1278 1279 if (useEHCleanup) 1280 PopCleanupBlock(); 1281 1282 // Check whether we've reached the end. 1283 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1284 Builder.CreateCondBr(done, doneBB, bodyBB); 1285 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1286 1287 // Done. 1288 EmitBlock(doneBB); 1289 } 1290 1291 /// Perform partial array destruction as if in an EH cleanup. Unlike 1292 /// emitArrayDestroy, the element type here may still be an array type. 1293 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1294 llvm::Value *begin, llvm::Value *end, 1295 QualType type, 1296 CodeGenFunction::Destroyer &destroyer) { 1297 // If the element type is itself an array, drill down. 1298 unsigned arrayDepth = 0; 1299 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1300 // VLAs don't require a GEP index to walk into. 1301 if (!isa<VariableArrayType>(arrayType)) 1302 arrayDepth++; 1303 type = arrayType->getElementType(); 1304 } 1305 1306 if (arrayDepth) { 1307 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1308 1309 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1310 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1311 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1312 } 1313 1314 // Destroy the array. We don't ever need an EH cleanup because we 1315 // assume that we're in an EH cleanup ourselves, so a throwing 1316 // destructor causes an immediate terminate. 1317 CGF.emitArrayDestroy(begin, end, type, destroyer, 1318 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1319 } 1320 1321 namespace { 1322 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1323 /// array destroy where the end pointer is regularly determined and 1324 /// does not need to be loaded from a local. 1325 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1326 llvm::Value *ArrayBegin; 1327 llvm::Value *ArrayEnd; 1328 QualType ElementType; 1329 CodeGenFunction::Destroyer &Destroyer; 1330 public: 1331 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1332 QualType elementType, 1333 CodeGenFunction::Destroyer *destroyer) 1334 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1335 ElementType(elementType), Destroyer(*destroyer) {} 1336 1337 void Emit(CodeGenFunction &CGF, Flags flags) { 1338 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1339 ElementType, Destroyer); 1340 } 1341 }; 1342 1343 /// IrregularPartialArrayDestroy - a cleanup which performs a 1344 /// partial array destroy where the end pointer is irregularly 1345 /// determined and must be loaded from a local. 1346 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1347 llvm::Value *ArrayBegin; 1348 llvm::Value *ArrayEndPointer; 1349 QualType ElementType; 1350 CodeGenFunction::Destroyer &Destroyer; 1351 public: 1352 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1353 llvm::Value *arrayEndPointer, 1354 QualType elementType, 1355 CodeGenFunction::Destroyer *destroyer) 1356 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1357 ElementType(elementType), Destroyer(*destroyer) {} 1358 1359 void Emit(CodeGenFunction &CGF, Flags flags) { 1360 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1361 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1362 ElementType, Destroyer); 1363 } 1364 }; 1365 } 1366 1367 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1368 /// already-constructed elements of the given array. The cleanup 1369 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1370 /// 1371 /// \param elementType - the immediate element type of the array; 1372 /// possibly still an array type 1373 /// \param array - a value of type elementType* 1374 /// \param destructionKind - the kind of destruction required 1375 /// \param initializedElementCount - a value of type size_t* holding 1376 /// the number of successfully-constructed elements 1377 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1378 llvm::Value *arrayEndPointer, 1379 QualType elementType, 1380 Destroyer &destroyer) { 1381 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1382 arrayBegin, arrayEndPointer, 1383 elementType, &destroyer); 1384 } 1385 1386 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1387 /// already-constructed elements of the given array. The cleanup 1388 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1389 /// 1390 /// \param elementType - the immediate element type of the array; 1391 /// possibly still an array type 1392 /// \param array - a value of type elementType* 1393 /// \param destructionKind - the kind of destruction required 1394 /// \param initializedElementCount - a value of type size_t* holding 1395 /// the number of successfully-constructed elements 1396 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1397 llvm::Value *arrayEnd, 1398 QualType elementType, 1399 Destroyer &destroyer) { 1400 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1401 arrayBegin, arrayEnd, 1402 elementType, &destroyer); 1403 } 1404 1405 namespace { 1406 /// A cleanup to perform a release of an object at the end of a 1407 /// function. This is used to balance out the incoming +1 of a 1408 /// ns_consumed argument when we can't reasonably do that just by 1409 /// not doing the initial retain for a __block argument. 1410 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1411 ConsumeARCParameter(llvm::Value *param) : Param(param) {} 1412 1413 llvm::Value *Param; 1414 1415 void Emit(CodeGenFunction &CGF, Flags flags) { 1416 CGF.EmitARCRelease(Param, /*precise*/ false); 1417 } 1418 }; 1419 } 1420 1421 /// Emit an alloca (or GlobalValue depending on target) 1422 /// for the specified parameter and set up LocalDeclMap. 1423 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1424 unsigned ArgNo) { 1425 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1426 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1427 "Invalid argument to EmitParmDecl"); 1428 1429 Arg->setName(D.getName()); 1430 1431 // Use better IR generation for certain implicit parameters. 1432 if (isa<ImplicitParamDecl>(D)) { 1433 // The only implicit argument a block has is its literal. 1434 if (BlockInfo) { 1435 LocalDeclMap[&D] = Arg; 1436 1437 if (CGDebugInfo *DI = getDebugInfo()) { 1438 DI->setLocation(D.getLocation()); 1439 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1440 } 1441 1442 return; 1443 } 1444 } 1445 1446 QualType Ty = D.getType(); 1447 1448 llvm::Value *DeclPtr; 1449 // If this is an aggregate or variable sized value, reuse the input pointer. 1450 if (!Ty->isConstantSizeType() || 1451 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1452 DeclPtr = Arg; 1453 } else { 1454 // Otherwise, create a temporary to hold the value. 1455 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1456 D.getName() + ".addr"); 1457 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1458 DeclPtr = Alloc; 1459 1460 bool doStore = true; 1461 1462 Qualifiers qs = Ty.getQualifiers(); 1463 1464 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1465 // We honor __attribute__((ns_consumed)) for types with lifetime. 1466 // For __strong, it's handled by just skipping the initial retain; 1467 // otherwise we have to balance out the initial +1 with an extra 1468 // cleanup to do the release at the end of the function. 1469 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1470 1471 // 'self' is always formally __strong, but if this is not an 1472 // init method then we don't want to retain it. 1473 if (D.isARCPseudoStrong()) { 1474 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1475 assert(&D == method->getSelfDecl()); 1476 assert(lt == Qualifiers::OCL_Strong); 1477 assert(qs.hasConst()); 1478 assert(method->getMethodFamily() != OMF_init); 1479 (void) method; 1480 lt = Qualifiers::OCL_ExplicitNone; 1481 } 1482 1483 if (lt == Qualifiers::OCL_Strong) { 1484 if (!isConsumed) 1485 // Don't use objc_retainBlock for block pointers, because we 1486 // don't want to Block_copy something just because we got it 1487 // as a parameter. 1488 Arg = EmitARCRetainNonBlock(Arg); 1489 } else { 1490 // Push the cleanup for a consumed parameter. 1491 if (isConsumed) 1492 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); 1493 1494 if (lt == Qualifiers::OCL_Weak) { 1495 EmitARCInitWeak(DeclPtr, Arg); 1496 doStore = false; // The weak init is a store, no need to do two 1497 } 1498 } 1499 1500 // Enter the cleanup scope. 1501 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1502 } 1503 1504 // Store the initial value into the alloca. 1505 if (doStore) { 1506 LValue lv = MakeAddrLValue(DeclPtr, Ty, 1507 getContext().getDeclAlign(&D)); 1508 EmitStoreOfScalar(Arg, lv); 1509 } 1510 } 1511 1512 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1513 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1514 DMEntry = DeclPtr; 1515 1516 // Emit debug info for param declaration. 1517 if (CGDebugInfo *DI = getDebugInfo()) 1518 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1519 1520 if (D.hasAttr<AnnotateAttr>()) 1521 EmitVarAnnotations(&D, DeclPtr); 1522 } 1523