1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Type.h" 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 void CodeGenFunction::EmitDecl(const Decl &D) { 43 switch (D.getKind()) { 44 case Decl::BuiltinTemplate: 45 case Decl::TranslationUnit: 46 case Decl::ExternCContext: 47 case Decl::Namespace: 48 case Decl::UnresolvedUsingTypename: 49 case Decl::ClassTemplateSpecialization: 50 case Decl::ClassTemplatePartialSpecialization: 51 case Decl::VarTemplateSpecialization: 52 case Decl::VarTemplatePartialSpecialization: 53 case Decl::TemplateTypeParm: 54 case Decl::UnresolvedUsingValue: 55 case Decl::NonTypeTemplateParm: 56 case Decl::CXXDeductionGuide: 57 case Decl::CXXMethod: 58 case Decl::CXXConstructor: 59 case Decl::CXXDestructor: 60 case Decl::CXXConversion: 61 case Decl::Field: 62 case Decl::MSProperty: 63 case Decl::IndirectField: 64 case Decl::ObjCIvar: 65 case Decl::ObjCAtDefsField: 66 case Decl::ParmVar: 67 case Decl::ImplicitParam: 68 case Decl::ClassTemplate: 69 case Decl::VarTemplate: 70 case Decl::FunctionTemplate: 71 case Decl::TypeAliasTemplate: 72 case Decl::TemplateTemplateParm: 73 case Decl::ObjCMethod: 74 case Decl::ObjCCategory: 75 case Decl::ObjCProtocol: 76 case Decl::ObjCInterface: 77 case Decl::ObjCCategoryImpl: 78 case Decl::ObjCImplementation: 79 case Decl::ObjCProperty: 80 case Decl::ObjCCompatibleAlias: 81 case Decl::PragmaComment: 82 case Decl::PragmaDetectMismatch: 83 case Decl::AccessSpec: 84 case Decl::LinkageSpec: 85 case Decl::Export: 86 case Decl::ObjCPropertyImpl: 87 case Decl::FileScopeAsm: 88 case Decl::Friend: 89 case Decl::FriendTemplate: 90 case Decl::Block: 91 case Decl::Captured: 92 case Decl::ClassScopeFunctionSpecialization: 93 case Decl::UsingShadow: 94 case Decl::ConstructorUsingShadow: 95 case Decl::ObjCTypeParam: 96 case Decl::Binding: 97 llvm_unreachable("Declaration should not be in declstmts!"); 98 case Decl::Function: // void X(); 99 case Decl::Record: // struct/union/class X; 100 case Decl::Enum: // enum X; 101 case Decl::EnumConstant: // enum ? { X = ? } 102 case Decl::CXXRecord: // struct/union/class X; [C++] 103 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 104 case Decl::Label: // __label__ x; 105 case Decl::Import: 106 case Decl::OMPThreadPrivate: 107 case Decl::OMPCapturedExpr: 108 case Decl::OMPRequires: 109 case Decl::Empty: 110 // None of these decls require codegen support. 111 return; 112 113 case Decl::NamespaceAlias: 114 if (CGDebugInfo *DI = getDebugInfo()) 115 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 116 return; 117 case Decl::Using: // using X; [C++] 118 if (CGDebugInfo *DI = getDebugInfo()) 119 DI->EmitUsingDecl(cast<UsingDecl>(D)); 120 return; 121 case Decl::UsingPack: 122 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 123 EmitDecl(*Using); 124 return; 125 case Decl::UsingDirective: // using namespace X; [C++] 126 if (CGDebugInfo *DI = getDebugInfo()) 127 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 128 return; 129 case Decl::Var: 130 case Decl::Decomposition: { 131 const VarDecl &VD = cast<VarDecl>(D); 132 assert(VD.isLocalVarDecl() && 133 "Should not see file-scope variables inside a function!"); 134 EmitVarDecl(VD); 135 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 136 for (auto *B : DD->bindings()) 137 if (auto *HD = B->getHoldingVar()) 138 EmitVarDecl(*HD); 139 return; 140 } 141 142 case Decl::OMPDeclareReduction: 143 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 144 145 case Decl::Typedef: // typedef int X; 146 case Decl::TypeAlias: { // using X = int; [C++0x] 147 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 148 QualType Ty = TD.getUnderlyingType(); 149 150 if (Ty->isVariablyModifiedType()) 151 EmitVariablyModifiedType(Ty); 152 } 153 } 154 } 155 156 /// EmitVarDecl - This method handles emission of any variable declaration 157 /// inside a function, including static vars etc. 158 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 159 if (D.hasExternalStorage()) 160 // Don't emit it now, allow it to be emitted lazily on its first use. 161 return; 162 163 // Some function-scope variable does not have static storage but still 164 // needs to be emitted like a static variable, e.g. a function-scope 165 // variable in constant address space in OpenCL. 166 if (D.getStorageDuration() != SD_Automatic) { 167 // Static sampler variables translated to function calls. 168 if (D.getType()->isSamplerT()) 169 return; 170 171 llvm::GlobalValue::LinkageTypes Linkage = 172 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 173 174 // FIXME: We need to force the emission/use of a guard variable for 175 // some variables even if we can constant-evaluate them because 176 // we can't guarantee every translation unit will constant-evaluate them. 177 178 return EmitStaticVarDecl(D, Linkage); 179 } 180 181 if (D.getType().getAddressSpace() == LangAS::opencl_local) 182 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 183 184 assert(D.hasLocalStorage()); 185 return EmitAutoVarDecl(D); 186 } 187 188 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 189 if (CGM.getLangOpts().CPlusPlus) 190 return CGM.getMangledName(&D).str(); 191 192 // If this isn't C++, we don't need a mangled name, just a pretty one. 193 assert(!D.isExternallyVisible() && "name shouldn't matter"); 194 std::string ContextName; 195 const DeclContext *DC = D.getDeclContext(); 196 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 197 DC = cast<DeclContext>(CD->getNonClosureContext()); 198 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 199 ContextName = CGM.getMangledName(FD); 200 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 201 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 202 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 203 ContextName = OMD->getSelector().getAsString(); 204 else 205 llvm_unreachable("Unknown context for static var decl"); 206 207 ContextName += "." + D.getNameAsString(); 208 return ContextName; 209 } 210 211 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 212 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 213 // In general, we don't always emit static var decls once before we reference 214 // them. It is possible to reference them before emitting the function that 215 // contains them, and it is possible to emit the containing function multiple 216 // times. 217 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 218 return ExistingGV; 219 220 QualType Ty = D.getType(); 221 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 222 223 // Use the label if the variable is renamed with the asm-label extension. 224 std::string Name; 225 if (D.hasAttr<AsmLabelAttr>()) 226 Name = getMangledName(&D); 227 else 228 Name = getStaticDeclName(*this, D); 229 230 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 231 LangAS AS = GetGlobalVarAddressSpace(&D); 232 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 233 234 // OpenCL variables in local address space and CUDA shared 235 // variables cannot have an initializer. 236 llvm::Constant *Init = nullptr; 237 if (Ty.getAddressSpace() == LangAS::opencl_local || 238 D.hasAttr<CUDASharedAttr>()) 239 Init = llvm::UndefValue::get(LTy); 240 else 241 Init = EmitNullConstant(Ty); 242 243 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 244 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 245 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 246 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 247 248 if (supportsCOMDAT() && GV->isWeakForLinker()) 249 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 250 251 if (D.getTLSKind()) 252 setTLSMode(GV, D); 253 254 setGVProperties(GV, &D); 255 256 // Make sure the result is of the correct type. 257 LangAS ExpectedAS = Ty.getAddressSpace(); 258 llvm::Constant *Addr = GV; 259 if (AS != ExpectedAS) { 260 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 261 *this, GV, AS, ExpectedAS, 262 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 263 } 264 265 setStaticLocalDeclAddress(&D, Addr); 266 267 // Ensure that the static local gets initialized by making sure the parent 268 // function gets emitted eventually. 269 const Decl *DC = cast<Decl>(D.getDeclContext()); 270 271 // We can't name blocks or captured statements directly, so try to emit their 272 // parents. 273 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 274 DC = DC->getNonClosureContext(); 275 // FIXME: Ensure that global blocks get emitted. 276 if (!DC) 277 return Addr; 278 } 279 280 GlobalDecl GD; 281 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 282 GD = GlobalDecl(CD, Ctor_Base); 283 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 284 GD = GlobalDecl(DD, Dtor_Base); 285 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 286 GD = GlobalDecl(FD); 287 else { 288 // Don't do anything for Obj-C method decls or global closures. We should 289 // never defer them. 290 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 291 } 292 if (GD.getDecl()) { 293 // Disable emission of the parent function for the OpenMP device codegen. 294 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 295 (void)GetAddrOfGlobal(GD); 296 } 297 298 return Addr; 299 } 300 301 /// hasNontrivialDestruction - Determine whether a type's destruction is 302 /// non-trivial. If so, and the variable uses static initialization, we must 303 /// register its destructor to run on exit. 304 static bool hasNontrivialDestruction(QualType T) { 305 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 306 return RD && !RD->hasTrivialDestructor(); 307 } 308 309 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 310 /// global variable that has already been created for it. If the initializer 311 /// has a different type than GV does, this may free GV and return a different 312 /// one. Otherwise it just returns GV. 313 llvm::GlobalVariable * 314 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 315 llvm::GlobalVariable *GV) { 316 ConstantEmitter emitter(*this); 317 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 318 319 // If constant emission failed, then this should be a C++ static 320 // initializer. 321 if (!Init) { 322 if (!getLangOpts().CPlusPlus) 323 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 324 else if (HaveInsertPoint()) { 325 // Since we have a static initializer, this global variable can't 326 // be constant. 327 GV->setConstant(false); 328 329 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 330 } 331 return GV; 332 } 333 334 // The initializer may differ in type from the global. Rewrite 335 // the global to match the initializer. (We have to do this 336 // because some types, like unions, can't be completely represented 337 // in the LLVM type system.) 338 if (GV->getType()->getElementType() != Init->getType()) { 339 llvm::GlobalVariable *OldGV = GV; 340 341 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 342 OldGV->isConstant(), 343 OldGV->getLinkage(), Init, "", 344 /*InsertBefore*/ OldGV, 345 OldGV->getThreadLocalMode(), 346 CGM.getContext().getTargetAddressSpace(D.getType())); 347 GV->setVisibility(OldGV->getVisibility()); 348 GV->setDSOLocal(OldGV->isDSOLocal()); 349 GV->setComdat(OldGV->getComdat()); 350 351 // Steal the name of the old global 352 GV->takeName(OldGV); 353 354 // Replace all uses of the old global with the new global 355 llvm::Constant *NewPtrForOldDecl = 356 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 357 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 358 359 // Erase the old global, since it is no longer used. 360 OldGV->eraseFromParent(); 361 } 362 363 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 364 GV->setInitializer(Init); 365 366 emitter.finalize(GV); 367 368 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 369 // We have a constant initializer, but a nontrivial destructor. We still 370 // need to perform a guarded "initialization" in order to register the 371 // destructor. 372 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 373 } 374 375 return GV; 376 } 377 378 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 379 llvm::GlobalValue::LinkageTypes Linkage) { 380 // Check to see if we already have a global variable for this 381 // declaration. This can happen when double-emitting function 382 // bodies, e.g. with complete and base constructors. 383 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 384 CharUnits alignment = getContext().getDeclAlign(&D); 385 386 // Store into LocalDeclMap before generating initializer to handle 387 // circular references. 388 setAddrOfLocalVar(&D, Address(addr, alignment)); 389 390 // We can't have a VLA here, but we can have a pointer to a VLA, 391 // even though that doesn't really make any sense. 392 // Make sure to evaluate VLA bounds now so that we have them for later. 393 if (D.getType()->isVariablyModifiedType()) 394 EmitVariablyModifiedType(D.getType()); 395 396 // Save the type in case adding the initializer forces a type change. 397 llvm::Type *expectedType = addr->getType(); 398 399 llvm::GlobalVariable *var = 400 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 401 402 // CUDA's local and local static __shared__ variables should not 403 // have any non-empty initializers. This is ensured by Sema. 404 // Whatever initializer such variable may have when it gets here is 405 // a no-op and should not be emitted. 406 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 407 D.hasAttr<CUDASharedAttr>(); 408 // If this value has an initializer, emit it. 409 if (D.getInit() && !isCudaSharedVar) 410 var = AddInitializerToStaticVarDecl(D, var); 411 412 var->setAlignment(alignment.getQuantity()); 413 414 if (D.hasAttr<AnnotateAttr>()) 415 CGM.AddGlobalAnnotations(&D, var); 416 417 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 418 var->addAttribute("bss-section", SA->getName()); 419 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 420 var->addAttribute("data-section", SA->getName()); 421 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 422 var->addAttribute("rodata-section", SA->getName()); 423 424 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 425 var->setSection(SA->getName()); 426 427 if (D.hasAttr<UsedAttr>()) 428 CGM.addUsedGlobal(var); 429 430 // We may have to cast the constant because of the initializer 431 // mismatch above. 432 // 433 // FIXME: It is really dangerous to store this in the map; if anyone 434 // RAUW's the GV uses of this constant will be invalid. 435 llvm::Constant *castedAddr = 436 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 437 if (var != castedAddr) 438 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 439 CGM.setStaticLocalDeclAddress(&D, castedAddr); 440 441 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 442 443 // Emit global variable debug descriptor for static vars. 444 CGDebugInfo *DI = getDebugInfo(); 445 if (DI && 446 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 447 DI->setLocation(D.getLocation()); 448 DI->EmitGlobalVariable(var, &D); 449 } 450 } 451 452 namespace { 453 struct DestroyObject final : EHScopeStack::Cleanup { 454 DestroyObject(Address addr, QualType type, 455 CodeGenFunction::Destroyer *destroyer, 456 bool useEHCleanupForArray) 457 : addr(addr), type(type), destroyer(destroyer), 458 useEHCleanupForArray(useEHCleanupForArray) {} 459 460 Address addr; 461 QualType type; 462 CodeGenFunction::Destroyer *destroyer; 463 bool useEHCleanupForArray; 464 465 void Emit(CodeGenFunction &CGF, Flags flags) override { 466 // Don't use an EH cleanup recursively from an EH cleanup. 467 bool useEHCleanupForArray = 468 flags.isForNormalCleanup() && this->useEHCleanupForArray; 469 470 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 471 } 472 }; 473 474 template <class Derived> 475 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 476 DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) 477 : NRVOFlag(NRVOFlag), Loc(addr) {} 478 479 llvm::Value *NRVOFlag; 480 Address Loc; 481 482 void Emit(CodeGenFunction &CGF, Flags flags) override { 483 // Along the exceptions path we always execute the dtor. 484 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 485 486 llvm::BasicBlock *SkipDtorBB = nullptr; 487 if (NRVO) { 488 // If we exited via NRVO, we skip the destructor call. 489 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 490 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 491 llvm::Value *DidNRVO = 492 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 493 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 494 CGF.EmitBlock(RunDtorBB); 495 } 496 497 static_cast<Derived *>(this)->emitDestructorCall(CGF); 498 499 if (NRVO) CGF.EmitBlock(SkipDtorBB); 500 } 501 502 virtual ~DestroyNRVOVariable() = default; 503 }; 504 505 struct DestroyNRVOVariableCXX final 506 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 507 DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, 508 llvm::Value *NRVOFlag) 509 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), 510 Dtor(Dtor) {} 511 512 const CXXDestructorDecl *Dtor; 513 514 void emitDestructorCall(CodeGenFunction &CGF) { 515 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 516 /*ForVirtualBase=*/false, 517 /*Delegating=*/false, Loc); 518 } 519 }; 520 521 struct DestroyNRVOVariableC final 522 : DestroyNRVOVariable<DestroyNRVOVariableC> { 523 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 524 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} 525 526 QualType Ty; 527 528 void emitDestructorCall(CodeGenFunction &CGF) { 529 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 530 } 531 }; 532 533 struct CallStackRestore final : EHScopeStack::Cleanup { 534 Address Stack; 535 CallStackRestore(Address Stack) : Stack(Stack) {} 536 void Emit(CodeGenFunction &CGF, Flags flags) override { 537 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 538 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 539 CGF.Builder.CreateCall(F, V); 540 } 541 }; 542 543 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 544 const VarDecl &Var; 545 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 546 547 void Emit(CodeGenFunction &CGF, Flags flags) override { 548 // Compute the address of the local variable, in case it's a 549 // byref or something. 550 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 551 Var.getType(), VK_LValue, SourceLocation()); 552 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 553 SourceLocation()); 554 CGF.EmitExtendGCLifetime(value); 555 } 556 }; 557 558 struct CallCleanupFunction final : EHScopeStack::Cleanup { 559 llvm::Constant *CleanupFn; 560 const CGFunctionInfo &FnInfo; 561 const VarDecl &Var; 562 563 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 564 const VarDecl *Var) 565 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 566 567 void Emit(CodeGenFunction &CGF, Flags flags) override { 568 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 569 Var.getType(), VK_LValue, SourceLocation()); 570 // Compute the address of the local variable, in case it's a byref 571 // or something. 572 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 573 574 // In some cases, the type of the function argument will be different from 575 // the type of the pointer. An example of this is 576 // void f(void* arg); 577 // __attribute__((cleanup(f))) void *g; 578 // 579 // To fix this we insert a bitcast here. 580 QualType ArgTy = FnInfo.arg_begin()->type; 581 llvm::Value *Arg = 582 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 583 584 CallArgList Args; 585 Args.add(RValue::get(Arg), 586 CGF.getContext().getPointerType(Var.getType())); 587 auto Callee = CGCallee::forDirect(CleanupFn); 588 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 589 } 590 }; 591 } // end anonymous namespace 592 593 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 594 /// variable with lifetime. 595 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 596 Address addr, 597 Qualifiers::ObjCLifetime lifetime) { 598 switch (lifetime) { 599 case Qualifiers::OCL_None: 600 llvm_unreachable("present but none"); 601 602 case Qualifiers::OCL_ExplicitNone: 603 // nothing to do 604 break; 605 606 case Qualifiers::OCL_Strong: { 607 CodeGenFunction::Destroyer *destroyer = 608 (var.hasAttr<ObjCPreciseLifetimeAttr>() 609 ? CodeGenFunction::destroyARCStrongPrecise 610 : CodeGenFunction::destroyARCStrongImprecise); 611 612 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 613 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 614 cleanupKind & EHCleanup); 615 break; 616 } 617 case Qualifiers::OCL_Autoreleasing: 618 // nothing to do 619 break; 620 621 case Qualifiers::OCL_Weak: 622 // __weak objects always get EH cleanups; otherwise, exceptions 623 // could cause really nasty crashes instead of mere leaks. 624 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 625 CodeGenFunction::destroyARCWeak, 626 /*useEHCleanup*/ true); 627 break; 628 } 629 } 630 631 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 632 if (const Expr *e = dyn_cast<Expr>(s)) { 633 // Skip the most common kinds of expressions that make 634 // hierarchy-walking expensive. 635 s = e = e->IgnoreParenCasts(); 636 637 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 638 return (ref->getDecl() == &var); 639 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 640 const BlockDecl *block = be->getBlockDecl(); 641 for (const auto &I : block->captures()) { 642 if (I.getVariable() == &var) 643 return true; 644 } 645 } 646 } 647 648 for (const Stmt *SubStmt : s->children()) 649 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 650 if (SubStmt && isAccessedBy(var, SubStmt)) 651 return true; 652 653 return false; 654 } 655 656 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 657 if (!decl) return false; 658 if (!isa<VarDecl>(decl)) return false; 659 const VarDecl *var = cast<VarDecl>(decl); 660 return isAccessedBy(*var, e); 661 } 662 663 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 664 const LValue &destLV, const Expr *init) { 665 bool needsCast = false; 666 667 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 668 switch (castExpr->getCastKind()) { 669 // Look through casts that don't require representation changes. 670 case CK_NoOp: 671 case CK_BitCast: 672 case CK_BlockPointerToObjCPointerCast: 673 needsCast = true; 674 break; 675 676 // If we find an l-value to r-value cast from a __weak variable, 677 // emit this operation as a copy or move. 678 case CK_LValueToRValue: { 679 const Expr *srcExpr = castExpr->getSubExpr(); 680 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 681 return false; 682 683 // Emit the source l-value. 684 LValue srcLV = CGF.EmitLValue(srcExpr); 685 686 // Handle a formal type change to avoid asserting. 687 auto srcAddr = srcLV.getAddress(); 688 if (needsCast) { 689 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 690 destLV.getAddress().getElementType()); 691 } 692 693 // If it was an l-value, use objc_copyWeak. 694 if (srcExpr->getValueKind() == VK_LValue) { 695 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 696 } else { 697 assert(srcExpr->getValueKind() == VK_XValue); 698 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 699 } 700 return true; 701 } 702 703 // Stop at anything else. 704 default: 705 return false; 706 } 707 708 init = castExpr->getSubExpr(); 709 } 710 return false; 711 } 712 713 static void drillIntoBlockVariable(CodeGenFunction &CGF, 714 LValue &lvalue, 715 const VarDecl *var) { 716 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 717 } 718 719 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 720 SourceLocation Loc) { 721 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 722 return; 723 724 auto Nullability = LHS.getType()->getNullability(getContext()); 725 if (!Nullability || *Nullability != NullabilityKind::NonNull) 726 return; 727 728 // Check if the right hand side of the assignment is nonnull, if the left 729 // hand side must be nonnull. 730 SanitizerScope SanScope(this); 731 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 732 llvm::Constant *StaticData[] = { 733 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 734 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 735 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 736 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 737 SanitizerHandler::TypeMismatch, StaticData, RHS); 738 } 739 740 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 741 LValue lvalue, bool capturedByInit) { 742 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 743 if (!lifetime) { 744 llvm::Value *value = EmitScalarExpr(init); 745 if (capturedByInit) 746 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 747 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 748 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 749 return; 750 } 751 752 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 753 init = DIE->getExpr(); 754 755 // If we're emitting a value with lifetime, we have to do the 756 // initialization *before* we leave the cleanup scopes. 757 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 758 enterFullExpression(fe); 759 init = fe->getSubExpr(); 760 } 761 CodeGenFunction::RunCleanupsScope Scope(*this); 762 763 // We have to maintain the illusion that the variable is 764 // zero-initialized. If the variable might be accessed in its 765 // initializer, zero-initialize before running the initializer, then 766 // actually perform the initialization with an assign. 767 bool accessedByInit = false; 768 if (lifetime != Qualifiers::OCL_ExplicitNone) 769 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 770 if (accessedByInit) { 771 LValue tempLV = lvalue; 772 // Drill down to the __block object if necessary. 773 if (capturedByInit) { 774 // We can use a simple GEP for this because it can't have been 775 // moved yet. 776 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 777 cast<VarDecl>(D), 778 /*follow*/ false)); 779 } 780 781 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 782 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 783 784 // If __weak, we want to use a barrier under certain conditions. 785 if (lifetime == Qualifiers::OCL_Weak) 786 EmitARCInitWeak(tempLV.getAddress(), zero); 787 788 // Otherwise just do a simple store. 789 else 790 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 791 } 792 793 // Emit the initializer. 794 llvm::Value *value = nullptr; 795 796 switch (lifetime) { 797 case Qualifiers::OCL_None: 798 llvm_unreachable("present but none"); 799 800 case Qualifiers::OCL_ExplicitNone: 801 value = EmitARCUnsafeUnretainedScalarExpr(init); 802 break; 803 804 case Qualifiers::OCL_Strong: { 805 value = EmitARCRetainScalarExpr(init); 806 break; 807 } 808 809 case Qualifiers::OCL_Weak: { 810 // If it's not accessed by the initializer, try to emit the 811 // initialization with a copy or move. 812 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 813 return; 814 } 815 816 // No way to optimize a producing initializer into this. It's not 817 // worth optimizing for, because the value will immediately 818 // disappear in the common case. 819 value = EmitScalarExpr(init); 820 821 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 822 if (accessedByInit) 823 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 824 else 825 EmitARCInitWeak(lvalue.getAddress(), value); 826 return; 827 } 828 829 case Qualifiers::OCL_Autoreleasing: 830 value = EmitARCRetainAutoreleaseScalarExpr(init); 831 break; 832 } 833 834 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 835 836 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 837 838 // If the variable might have been accessed by its initializer, we 839 // might have to initialize with a barrier. We have to do this for 840 // both __weak and __strong, but __weak got filtered out above. 841 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 842 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 843 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 844 EmitARCRelease(oldValue, ARCImpreciseLifetime); 845 return; 846 } 847 848 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 849 } 850 851 /// Decide whether we can emit the non-zero parts of the specified initializer 852 /// with equal or fewer than NumStores scalar stores. 853 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 854 unsigned &NumStores) { 855 // Zero and Undef never requires any extra stores. 856 if (isa<llvm::ConstantAggregateZero>(Init) || 857 isa<llvm::ConstantPointerNull>(Init) || 858 isa<llvm::UndefValue>(Init)) 859 return true; 860 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 861 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 862 isa<llvm::ConstantExpr>(Init)) 863 return Init->isNullValue() || NumStores--; 864 865 // See if we can emit each element. 866 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 867 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 868 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 869 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 870 return false; 871 } 872 return true; 873 } 874 875 if (llvm::ConstantDataSequential *CDS = 876 dyn_cast<llvm::ConstantDataSequential>(Init)) { 877 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 878 llvm::Constant *Elt = CDS->getElementAsConstant(i); 879 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 880 return false; 881 } 882 return true; 883 } 884 885 // Anything else is hard and scary. 886 return false; 887 } 888 889 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 890 /// the scalar stores that would be required. 891 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 892 llvm::Constant *Init, Address Loc, 893 bool isVolatile, CGBuilderTy &Builder) { 894 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 895 "called emitStoresForInitAfterBZero for zero or undef value."); 896 897 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 898 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 899 isa<llvm::ConstantExpr>(Init)) { 900 Builder.CreateStore(Init, Loc, isVolatile); 901 return; 902 } 903 904 if (llvm::ConstantDataSequential *CDS = 905 dyn_cast<llvm::ConstantDataSequential>(Init)) { 906 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 907 llvm::Constant *Elt = CDS->getElementAsConstant(i); 908 909 // If necessary, get a pointer to the element and emit it. 910 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 911 emitStoresForInitAfterBZero( 912 CGM, Elt, 913 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 914 isVolatile, Builder); 915 } 916 return; 917 } 918 919 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 920 "Unknown value type!"); 921 922 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 923 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 924 925 // If necessary, get a pointer to the element and emit it. 926 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 927 emitStoresForInitAfterBZero( 928 CGM, Elt, 929 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 930 isVolatile, Builder); 931 } 932 } 933 934 /// Decide whether we should use bzero plus some stores to initialize a local 935 /// variable instead of using a memcpy from a constant global. It is beneficial 936 /// to use bzero if the global is all zeros, or mostly zeros and large. 937 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 938 uint64_t GlobalSize) { 939 // If a global is all zeros, always use a bzero. 940 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 941 942 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 943 // do it if it will require 6 or fewer scalar stores. 944 // TODO: Should budget depends on the size? Avoiding a large global warrants 945 // plopping in more stores. 946 unsigned StoreBudget = 6; 947 uint64_t SizeLimit = 32; 948 949 return GlobalSize > SizeLimit && 950 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 951 } 952 953 /// Decide whether we should use memset to initialize a local variable instead 954 /// of using a memcpy from a constant global. Assumes we've already decided to 955 /// not user bzero. 956 /// FIXME We could be more clever, as we are for bzero above, and generate 957 /// memset followed by stores. It's unclear that's worth the effort. 958 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 959 uint64_t GlobalSize) { 960 uint64_t SizeLimit = 32; 961 if (GlobalSize <= SizeLimit) 962 return nullptr; 963 return llvm::isBytewiseValue(Init); 964 } 965 966 static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) { 967 // The following value is a guaranteed unmappable pointer value and has a 968 // repeated byte-pattern which makes it easier to synthesize. We use it for 969 // pointers as well as integers so that aggregates are likely to be 970 // initialized with this repeated value. 971 constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull; 972 // For 32-bit platforms it's a bit trickier because, across systems, only the 973 // zero page can reasonably be expected to be unmapped, and even then we need 974 // a very low address. We use a smaller value, and that value sadly doesn't 975 // have a repeated byte-pattern. We don't use it for integers. 976 constexpr uint32_t SmallValue = 0x000000AA; 977 // Floating-point values are initialized as NaNs because they propagate. Using 978 // a repeated byte pattern means that it will be easier to initialize 979 // all-floating-point aggregates and arrays with memset. Further, aggregates 980 // which mix integral and a few floats might also initialize with memset 981 // followed by a handful of stores for the floats. Using fairly unique NaNs 982 // also means they'll be easier to distinguish in a crash. 983 constexpr bool NegativeNaN = true; 984 constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull; 985 if (Ty->isIntOrIntVectorTy()) { 986 unsigned BitWidth = cast<llvm::IntegerType>( 987 Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) 988 ->getBitWidth(); 989 if (BitWidth <= 64) 990 return llvm::ConstantInt::get(Ty, LargeValue); 991 return llvm::ConstantInt::get( 992 Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue))); 993 } 994 if (Ty->isPtrOrPtrVectorTy()) { 995 auto *PtrTy = cast<llvm::PointerType>( 996 Ty->isVectorTy() ? Ty->getVectorElementType() : Ty); 997 unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth( 998 PtrTy->getAddressSpace()); 999 llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth); 1000 uint64_t IntValue; 1001 switch (PtrWidth) { 1002 default: 1003 llvm_unreachable("pattern initialization of unsupported pointer width"); 1004 case 64: 1005 IntValue = LargeValue; 1006 break; 1007 case 32: 1008 IntValue = SmallValue; 1009 break; 1010 } 1011 auto *Int = llvm::ConstantInt::get(IntTy, IntValue); 1012 return llvm::ConstantExpr::getIntToPtr(Int, PtrTy); 1013 } 1014 if (Ty->isFPOrFPVectorTy()) { 1015 unsigned BitWidth = llvm::APFloat::semanticsSizeInBits( 1016 (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) 1017 ->getFltSemantics()); 1018 llvm::APInt Payload(64, NaNPayload); 1019 if (BitWidth >= 64) 1020 Payload = llvm::APInt::getSplat(BitWidth, Payload); 1021 return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload); 1022 } 1023 if (Ty->isArrayTy()) { 1024 // Note: this doesn't touch tail padding (at the end of an object, before 1025 // the next array object). It is instead handled by replaceUndef. 1026 auto *ArrTy = cast<llvm::ArrayType>(Ty); 1027 llvm::SmallVector<llvm::Constant *, 8> Element( 1028 ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType())); 1029 return llvm::ConstantArray::get(ArrTy, Element); 1030 } 1031 1032 // Note: this doesn't touch struct padding. It will initialize as much union 1033 // padding as is required for the largest type in the union. Padding is 1034 // instead handled by replaceUndef. Stores to structs with volatile members 1035 // don't have a volatile qualifier when initialized according to C++. This is 1036 // fine because stack-based volatiles don't really have volatile semantics 1037 // anyways, and the initialization shouldn't be observable. 1038 auto *StructTy = cast<llvm::StructType>(Ty); 1039 llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements()); 1040 for (unsigned El = 0; El != Struct.size(); ++El) 1041 Struct[El] = patternFor(CGM, StructTy->getElementType(El)); 1042 return llvm::ConstantStruct::get(StructTy, Struct); 1043 } 1044 1045 static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D, 1046 CGBuilderTy &Builder, 1047 llvm::Constant *Constant, 1048 CharUnits Align) { 1049 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1050 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1051 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1052 return CC->getNameAsString(); 1053 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1054 return CD->getNameAsString(); 1055 return CGM.getMangledName(FD); 1056 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1057 return OM->getNameAsString(); 1058 } else if (isa<BlockDecl>(DC)) { 1059 return "<block>"; 1060 } else if (isa<CapturedDecl>(DC)) { 1061 return "<captured>"; 1062 } else { 1063 llvm::llvm_unreachable_internal("expected a function or method"); 1064 } 1065 }; 1066 1067 auto *Ty = Constant->getType(); 1068 bool isConstant = true; 1069 llvm::GlobalVariable *InsertBefore = nullptr; 1070 unsigned AS = CGM.getContext().getTargetAddressSpace( 1071 CGM.getStringLiteralAddressSpace()); 1072 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1073 CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1074 Constant, 1075 "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." + 1076 D.getName(), 1077 InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1078 GV->setAlignment(Align.getQuantity()); 1079 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1080 1081 Address SrcPtr = Address(GV, Align); 1082 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS); 1083 if (SrcPtr.getType() != BP) 1084 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1085 return SrcPtr; 1086 } 1087 1088 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1089 Address Loc, bool isVolatile, 1090 CGBuilderTy &Builder, 1091 llvm::Constant *constant) { 1092 auto *Ty = constant->getType(); 1093 bool isScalar = Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy() || 1094 Ty->isFPOrFPVectorTy(); 1095 if (isScalar) { 1096 Builder.CreateStore(constant, Loc, isVolatile); 1097 return; 1098 } 1099 1100 auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1101 auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext()); 1102 1103 // If the initializer is all or mostly the same, codegen with bzero / memset 1104 // then do a few stores afterward. 1105 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1106 auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize); 1107 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1108 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1109 isVolatile); 1110 1111 bool valueAlreadyCorrect = 1112 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1113 if (!valueAlreadyCorrect) { 1114 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1115 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1116 } 1117 return; 1118 } 1119 1120 llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); 1121 if (Pattern) { 1122 uint64_t Value = 0x00; 1123 if (!isa<llvm::UndefValue>(Pattern)) { 1124 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1125 assert(AP.getBitWidth() <= 8); 1126 Value = AP.getLimitedValue(); 1127 } 1128 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, 1129 isVolatile); 1130 return; 1131 } 1132 1133 Builder.CreateMemCpy( 1134 Loc, 1135 createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()), 1136 SizeVal, isVolatile); 1137 } 1138 1139 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1140 Address Loc, bool isVolatile, 1141 CGBuilderTy &Builder) { 1142 llvm::Type *ElTy = Loc.getElementType(); 1143 llvm::Constant *constant = llvm::Constant::getNullValue(ElTy); 1144 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1145 } 1146 1147 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1148 Address Loc, bool isVolatile, 1149 CGBuilderTy &Builder) { 1150 llvm::Type *ElTy = Loc.getElementType(); 1151 llvm::Constant *constant = patternFor(CGM, ElTy); 1152 assert(!isa<llvm::UndefValue>(constant)); 1153 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1154 } 1155 1156 static bool containsUndef(llvm::Constant *constant) { 1157 auto *Ty = constant->getType(); 1158 if (isa<llvm::UndefValue>(constant)) 1159 return true; 1160 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1161 for (llvm::Use &Op : constant->operands()) 1162 if (containsUndef(cast<llvm::Constant>(Op))) 1163 return true; 1164 return false; 1165 } 1166 1167 static llvm::Constant *replaceUndef(llvm::Constant *constant) { 1168 // FIXME: when doing pattern initialization, replace undef with 0xAA instead. 1169 // FIXME: also replace padding between values by creating a new struct type 1170 // which has no padding. 1171 auto *Ty = constant->getType(); 1172 if (isa<llvm::UndefValue>(constant)) 1173 return llvm::Constant::getNullValue(Ty); 1174 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1175 return constant; 1176 if (!containsUndef(constant)) 1177 return constant; 1178 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1179 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1180 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1181 Values[Op] = replaceUndef(OpValue); 1182 } 1183 if (Ty->isStructTy()) 1184 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1185 if (Ty->isArrayTy()) 1186 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1187 assert(Ty->isVectorTy()); 1188 return llvm::ConstantVector::get(Values); 1189 } 1190 1191 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1192 /// variable declaration with auto, register, or no storage class specifier. 1193 /// These turn into simple stack objects, or GlobalValues depending on target. 1194 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1195 AutoVarEmission emission = EmitAutoVarAlloca(D); 1196 EmitAutoVarInit(emission); 1197 EmitAutoVarCleanups(emission); 1198 } 1199 1200 /// Emit a lifetime.begin marker if some criteria are satisfied. 1201 /// \return a pointer to the temporary size Value if a marker was emitted, null 1202 /// otherwise 1203 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1204 llvm::Value *Addr) { 1205 if (!ShouldEmitLifetimeMarkers) 1206 return nullptr; 1207 1208 assert(Addr->getType()->getPointerAddressSpace() == 1209 CGM.getDataLayout().getAllocaAddrSpace() && 1210 "Pointer should be in alloca address space"); 1211 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1212 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1213 llvm::CallInst *C = 1214 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1215 C->setDoesNotThrow(); 1216 return SizeV; 1217 } 1218 1219 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1220 assert(Addr->getType()->getPointerAddressSpace() == 1221 CGM.getDataLayout().getAllocaAddrSpace() && 1222 "Pointer should be in alloca address space"); 1223 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1224 llvm::CallInst *C = 1225 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1226 C->setDoesNotThrow(); 1227 } 1228 1229 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1230 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1231 // For each dimension stores its QualType and corresponding 1232 // size-expression Value. 1233 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1234 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1235 1236 // Break down the array into individual dimensions. 1237 QualType Type1D = D.getType(); 1238 while (getContext().getAsVariableArrayType(Type1D)) { 1239 auto VlaSize = getVLAElements1D(Type1D); 1240 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1241 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1242 else { 1243 // Generate a locally unique name for the size expression. 1244 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1245 SmallString<12> Buffer; 1246 StringRef NameRef = Name.toStringRef(Buffer); 1247 auto &Ident = getContext().Idents.getOwn(NameRef); 1248 VLAExprNames.push_back(&Ident); 1249 auto SizeExprAddr = 1250 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1251 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1252 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1253 Type1D.getUnqualifiedType()); 1254 } 1255 Type1D = VlaSize.Type; 1256 } 1257 1258 if (!EmitDebugInfo) 1259 return; 1260 1261 // Register each dimension's size-expression with a DILocalVariable, 1262 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1263 // to describe this array. 1264 unsigned NameIdx = 0; 1265 for (auto &VlaSize : Dimensions) { 1266 llvm::Metadata *MD; 1267 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1268 MD = llvm::ConstantAsMetadata::get(C); 1269 else { 1270 // Create an artificial VarDecl to generate debug info for. 1271 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1272 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1273 auto QT = getContext().getIntTypeForBitwidth( 1274 VlaExprTy->getScalarSizeInBits(), false); 1275 auto *ArtificialDecl = VarDecl::Create( 1276 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1277 D.getLocation(), D.getLocation(), NameIdent, QT, 1278 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1279 ArtificialDecl->setImplicit(); 1280 1281 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1282 Builder); 1283 } 1284 assert(MD && "No Size expression debug node created"); 1285 DI->registerVLASizeExpression(VlaSize.Type, MD); 1286 } 1287 } 1288 1289 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1290 /// local variable. Does not emit initialization or destruction. 1291 CodeGenFunction::AutoVarEmission 1292 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1293 QualType Ty = D.getType(); 1294 assert( 1295 Ty.getAddressSpace() == LangAS::Default || 1296 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1297 1298 AutoVarEmission emission(D); 1299 1300 bool isEscapingByRef = D.isEscapingByref(); 1301 emission.IsEscapingByRef = isEscapingByRef; 1302 1303 CharUnits alignment = getContext().getDeclAlign(&D); 1304 1305 // If the type is variably-modified, emit all the VLA sizes for it. 1306 if (Ty->isVariablyModifiedType()) 1307 EmitVariablyModifiedType(Ty); 1308 1309 auto *DI = getDebugInfo(); 1310 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1311 codegenoptions::LimitedDebugInfo; 1312 1313 Address address = Address::invalid(); 1314 Address AllocaAddr = Address::invalid(); 1315 if (Ty->isConstantSizeType()) { 1316 bool NRVO = getLangOpts().ElideConstructors && 1317 D.isNRVOVariable(); 1318 1319 // If this value is an array or struct with a statically determinable 1320 // constant initializer, there are optimizations we can do. 1321 // 1322 // TODO: We should constant-evaluate the initializer of any variable, 1323 // as long as it is initialized by a constant expression. Currently, 1324 // isConstantInitializer produces wrong answers for structs with 1325 // reference or bitfield members, and a few other cases, and checking 1326 // for POD-ness protects us from some of these. 1327 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1328 (D.isConstexpr() || 1329 ((Ty.isPODType(getContext()) || 1330 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1331 D.getInit()->isConstantInitializer(getContext(), false)))) { 1332 1333 // If the variable's a const type, and it's neither an NRVO 1334 // candidate nor a __block variable and has no mutable members, 1335 // emit it as a global instead. 1336 // Exception is if a variable is located in non-constant address space 1337 // in OpenCL. 1338 if ((!getLangOpts().OpenCL || 1339 Ty.getAddressSpace() == LangAS::opencl_constant) && 1340 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1341 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1342 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1343 1344 // Signal this condition to later callbacks. 1345 emission.Addr = Address::invalid(); 1346 assert(emission.wasEmittedAsGlobal()); 1347 return emission; 1348 } 1349 1350 // Otherwise, tell the initialization code that we're in this case. 1351 emission.IsConstantAggregate = true; 1352 } 1353 1354 // A normal fixed sized variable becomes an alloca in the entry block, 1355 // unless: 1356 // - it's an NRVO variable. 1357 // - we are compiling OpenMP and it's an OpenMP local variable. 1358 1359 Address OpenMPLocalAddr = 1360 getLangOpts().OpenMP 1361 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1362 : Address::invalid(); 1363 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1364 address = OpenMPLocalAddr; 1365 } else if (NRVO) { 1366 // The named return value optimization: allocate this variable in the 1367 // return slot, so that we can elide the copy when returning this 1368 // variable (C++0x [class.copy]p34). 1369 address = ReturnValue; 1370 1371 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1372 const auto *RD = RecordTy->getDecl(); 1373 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1374 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1375 RD->isNonTrivialToPrimitiveDestroy()) { 1376 // Create a flag that is used to indicate when the NRVO was applied 1377 // to this variable. Set it to zero to indicate that NRVO was not 1378 // applied. 1379 llvm::Value *Zero = Builder.getFalse(); 1380 Address NRVOFlag = 1381 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1382 EnsureInsertPoint(); 1383 Builder.CreateStore(Zero, NRVOFlag); 1384 1385 // Record the NRVO flag for this variable. 1386 NRVOFlags[&D] = NRVOFlag.getPointer(); 1387 emission.NRVOFlag = NRVOFlag.getPointer(); 1388 } 1389 } 1390 } else { 1391 CharUnits allocaAlignment; 1392 llvm::Type *allocaTy; 1393 if (isEscapingByRef) { 1394 auto &byrefInfo = getBlockByrefInfo(&D); 1395 allocaTy = byrefInfo.Type; 1396 allocaAlignment = byrefInfo.ByrefAlignment; 1397 } else { 1398 allocaTy = ConvertTypeForMem(Ty); 1399 allocaAlignment = alignment; 1400 } 1401 1402 // Create the alloca. Note that we set the name separately from 1403 // building the instruction so that it's there even in no-asserts 1404 // builds. 1405 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1406 /*ArraySize=*/nullptr, &AllocaAddr); 1407 1408 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1409 // the catch parameter starts in the catchpad instruction, and we can't 1410 // insert code in those basic blocks. 1411 bool IsMSCatchParam = 1412 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1413 1414 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1415 // if we don't have a valid insertion point (?). 1416 if (HaveInsertPoint() && !IsMSCatchParam) { 1417 // If there's a jump into the lifetime of this variable, its lifetime 1418 // gets broken up into several regions in IR, which requires more work 1419 // to handle correctly. For now, just omit the intrinsics; this is a 1420 // rare case, and it's better to just be conservatively correct. 1421 // PR28267. 1422 // 1423 // We have to do this in all language modes if there's a jump past the 1424 // declaration. We also have to do it in C if there's a jump to an 1425 // earlier point in the current block because non-VLA lifetimes begin as 1426 // soon as the containing block is entered, not when its variables 1427 // actually come into scope; suppressing the lifetime annotations 1428 // completely in this case is unnecessarily pessimistic, but again, this 1429 // is rare. 1430 if (!Bypasses.IsBypassed(&D) && 1431 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1432 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1433 emission.SizeForLifetimeMarkers = 1434 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1435 } 1436 } else { 1437 assert(!emission.useLifetimeMarkers()); 1438 } 1439 } 1440 } else { 1441 EnsureInsertPoint(); 1442 1443 if (!DidCallStackSave) { 1444 // Save the stack. 1445 Address Stack = 1446 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1447 1448 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1449 llvm::Value *V = Builder.CreateCall(F); 1450 Builder.CreateStore(V, Stack); 1451 1452 DidCallStackSave = true; 1453 1454 // Push a cleanup block and restore the stack there. 1455 // FIXME: in general circumstances, this should be an EH cleanup. 1456 pushStackRestore(NormalCleanup, Stack); 1457 } 1458 1459 auto VlaSize = getVLASize(Ty); 1460 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1461 1462 // Allocate memory for the array. 1463 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1464 &AllocaAddr); 1465 1466 // If we have debug info enabled, properly describe the VLA dimensions for 1467 // this type by registering the vla size expression for each of the 1468 // dimensions. 1469 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1470 } 1471 1472 setAddrOfLocalVar(&D, address); 1473 emission.Addr = address; 1474 emission.AllocaAddr = AllocaAddr; 1475 1476 // Emit debug info for local var declaration. 1477 if (EmitDebugInfo && HaveInsertPoint()) { 1478 DI->setLocation(D.getLocation()); 1479 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1480 } 1481 1482 if (D.hasAttr<AnnotateAttr>()) 1483 EmitVarAnnotations(&D, address.getPointer()); 1484 1485 // Make sure we call @llvm.lifetime.end. 1486 if (emission.useLifetimeMarkers()) 1487 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1488 emission.getOriginalAllocatedAddress(), 1489 emission.getSizeForLifetimeMarkers()); 1490 1491 return emission; 1492 } 1493 1494 static bool isCapturedBy(const VarDecl &, const Expr *); 1495 1496 /// Determines whether the given __block variable is potentially 1497 /// captured by the given statement. 1498 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1499 if (const Expr *E = dyn_cast<Expr>(S)) 1500 return isCapturedBy(Var, E); 1501 for (const Stmt *SubStmt : S->children()) 1502 if (isCapturedBy(Var, SubStmt)) 1503 return true; 1504 return false; 1505 } 1506 1507 /// Determines whether the given __block variable is potentially 1508 /// captured by the given expression. 1509 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1510 // Skip the most common kinds of expressions that make 1511 // hierarchy-walking expensive. 1512 E = E->IgnoreParenCasts(); 1513 1514 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1515 const BlockDecl *Block = BE->getBlockDecl(); 1516 for (const auto &I : Block->captures()) { 1517 if (I.getVariable() == &Var) 1518 return true; 1519 } 1520 1521 // No need to walk into the subexpressions. 1522 return false; 1523 } 1524 1525 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1526 const CompoundStmt *CS = SE->getSubStmt(); 1527 for (const auto *BI : CS->body()) 1528 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1529 if (isCapturedBy(Var, BIE)) 1530 return true; 1531 } 1532 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1533 // special case declarations 1534 for (const auto *I : DS->decls()) { 1535 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1536 const Expr *Init = VD->getInit(); 1537 if (Init && isCapturedBy(Var, Init)) 1538 return true; 1539 } 1540 } 1541 } 1542 else 1543 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1544 // Later, provide code to poke into statements for capture analysis. 1545 return true; 1546 return false; 1547 } 1548 1549 for (const Stmt *SubStmt : E->children()) 1550 if (isCapturedBy(Var, SubStmt)) 1551 return true; 1552 1553 return false; 1554 } 1555 1556 /// Determine whether the given initializer is trivial in the sense 1557 /// that it requires no code to be generated. 1558 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1559 if (!Init) 1560 return true; 1561 1562 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1563 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1564 if (Constructor->isTrivial() && 1565 Constructor->isDefaultConstructor() && 1566 !Construct->requiresZeroInitialization()) 1567 return true; 1568 1569 return false; 1570 } 1571 1572 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1573 assert(emission.Variable && "emission was not valid!"); 1574 1575 // If this was emitted as a global constant, we're done. 1576 if (emission.wasEmittedAsGlobal()) return; 1577 1578 const VarDecl &D = *emission.Variable; 1579 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1580 QualType type = D.getType(); 1581 1582 bool isVolatile = type.isVolatileQualified(); 1583 1584 // If this local has an initializer, emit it now. 1585 const Expr *Init = D.getInit(); 1586 1587 // If we are at an unreachable point, we don't need to emit the initializer 1588 // unless it contains a label. 1589 if (!HaveInsertPoint()) { 1590 if (!Init || !ContainsLabel(Init)) return; 1591 EnsureInsertPoint(); 1592 } 1593 1594 // Initialize the structure of a __block variable. 1595 if (emission.IsEscapingByRef) 1596 emitByrefStructureInit(emission); 1597 1598 // Initialize the variable here if it doesn't have a initializer and it is a 1599 // C struct that is non-trivial to initialize or an array containing such a 1600 // struct. 1601 if (!Init && 1602 type.isNonTrivialToPrimitiveDefaultInitialize() == 1603 QualType::PDIK_Struct) { 1604 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1605 if (emission.IsEscapingByRef) 1606 drillIntoBlockVariable(*this, Dst, &D); 1607 defaultInitNonTrivialCStructVar(Dst); 1608 return; 1609 } 1610 1611 // Check whether this is a byref variable that's potentially 1612 // captured and moved by its own initializer. If so, we'll need to 1613 // emit the initializer first, then copy into the variable. 1614 bool capturedByInit = 1615 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1616 1617 Address Loc = 1618 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1619 1620 // Note: constexpr already initializes everything correctly. 1621 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1622 (D.isConstexpr() 1623 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1624 : (D.getAttr<UninitializedAttr>() 1625 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1626 : getContext().getLangOpts().getTrivialAutoVarInit())); 1627 1628 auto initializeWhatIsTechnicallyUninitialized = [&]() { 1629 if (trivialAutoVarInit == 1630 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1631 return; 1632 1633 CharUnits Size = getContext().getTypeSizeInChars(type); 1634 if (!Size.isZero()) { 1635 switch (trivialAutoVarInit) { 1636 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1637 llvm_unreachable("Uninitialized handled above"); 1638 case LangOptions::TrivialAutoVarInitKind::Zero: 1639 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1640 break; 1641 case LangOptions::TrivialAutoVarInitKind::Pattern: 1642 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1643 break; 1644 } 1645 return; 1646 } 1647 1648 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1649 // them, so emit a memcpy with the VLA size to initialize each element. 1650 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1651 // will catch that code, but there exists code which generates zero-sized 1652 // VLAs. Be nice and initialize whatever they requested. 1653 const VariableArrayType *VlaType = 1654 dyn_cast_or_null<VariableArrayType>(getContext().getAsArrayType(type)); 1655 if (!VlaType) 1656 return; 1657 auto VlaSize = getVLASize(VlaType); 1658 auto SizeVal = VlaSize.NumElts; 1659 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1660 switch (trivialAutoVarInit) { 1661 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1662 llvm_unreachable("Uninitialized handled above"); 1663 1664 case LangOptions::TrivialAutoVarInitKind::Zero: 1665 if (!EltSize.isOne()) 1666 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1667 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1668 isVolatile); 1669 break; 1670 1671 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1672 llvm::Type *ElTy = Loc.getElementType(); 1673 llvm::Constant *Constant = patternFor(CGM, ElTy); 1674 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1675 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1676 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1677 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1678 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1679 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1680 "vla.iszerosized"); 1681 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1682 EmitBlock(SetupBB); 1683 if (!EltSize.isOne()) 1684 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1685 llvm::Value *BaseSizeInChars = 1686 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1687 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1688 llvm::Value *End = 1689 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1690 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1691 EmitBlock(LoopBB); 1692 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1693 Cur->addIncoming(Begin.getPointer(), OriginBB); 1694 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1695 Builder.CreateMemCpy( 1696 Address(Cur, CurAlign), 1697 createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign), 1698 BaseSizeInChars, isVolatile); 1699 llvm::Value *Next = 1700 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1701 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1702 Builder.CreateCondBr(Done, ContBB, LoopBB); 1703 Cur->addIncoming(Next, LoopBB); 1704 EmitBlock(ContBB); 1705 } break; 1706 } 1707 }; 1708 1709 if (isTrivialInitializer(Init)) { 1710 initializeWhatIsTechnicallyUninitialized(); 1711 return; 1712 } 1713 1714 llvm::Constant *constant = nullptr; 1715 if (emission.IsConstantAggregate || D.isConstexpr()) { 1716 assert(!capturedByInit && "constant init contains a capturing block?"); 1717 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1718 if (constant && trivialAutoVarInit != 1719 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1720 constant = replaceUndef(constant); 1721 } 1722 1723 if (!constant) { 1724 initializeWhatIsTechnicallyUninitialized(); 1725 LValue lv = MakeAddrLValue(Loc, type); 1726 lv.setNonGC(true); 1727 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1728 } 1729 1730 if (!emission.IsConstantAggregate) { 1731 // For simple scalar/complex initialization, store the value directly. 1732 LValue lv = MakeAddrLValue(Loc, type); 1733 lv.setNonGC(true); 1734 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1735 } 1736 1737 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1738 if (Loc.getType() != BP) 1739 Loc = Builder.CreateBitCast(Loc, BP); 1740 1741 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1742 } 1743 1744 /// Emit an expression as an initializer for an object (variable, field, etc.) 1745 /// at the given location. The expression is not necessarily the normal 1746 /// initializer for the object, and the address is not necessarily 1747 /// its normal location. 1748 /// 1749 /// \param init the initializing expression 1750 /// \param D the object to act as if we're initializing 1751 /// \param loc the address to initialize; its type is a pointer 1752 /// to the LLVM mapping of the object's type 1753 /// \param alignment the alignment of the address 1754 /// \param capturedByInit true if \p D is a __block variable 1755 /// whose address is potentially changed by the initializer 1756 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1757 LValue lvalue, bool capturedByInit) { 1758 QualType type = D->getType(); 1759 1760 if (type->isReferenceType()) { 1761 RValue rvalue = EmitReferenceBindingToExpr(init); 1762 if (capturedByInit) 1763 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1764 EmitStoreThroughLValue(rvalue, lvalue, true); 1765 return; 1766 } 1767 switch (getEvaluationKind(type)) { 1768 case TEK_Scalar: 1769 EmitScalarInit(init, D, lvalue, capturedByInit); 1770 return; 1771 case TEK_Complex: { 1772 ComplexPairTy complex = EmitComplexExpr(init); 1773 if (capturedByInit) 1774 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1775 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1776 return; 1777 } 1778 case TEK_Aggregate: 1779 if (type->isAtomicType()) { 1780 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1781 } else { 1782 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1783 if (isa<VarDecl>(D)) 1784 Overlap = AggValueSlot::DoesNotOverlap; 1785 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1786 Overlap = overlapForFieldInit(FD); 1787 // TODO: how can we delay here if D is captured by its initializer? 1788 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1789 AggValueSlot::IsDestructed, 1790 AggValueSlot::DoesNotNeedGCBarriers, 1791 AggValueSlot::IsNotAliased, 1792 Overlap)); 1793 } 1794 return; 1795 } 1796 llvm_unreachable("bad evaluation kind"); 1797 } 1798 1799 /// Enter a destroy cleanup for the given local variable. 1800 void CodeGenFunction::emitAutoVarTypeCleanup( 1801 const CodeGenFunction::AutoVarEmission &emission, 1802 QualType::DestructionKind dtorKind) { 1803 assert(dtorKind != QualType::DK_none); 1804 1805 // Note that for __block variables, we want to destroy the 1806 // original stack object, not the possibly forwarded object. 1807 Address addr = emission.getObjectAddress(*this); 1808 1809 const VarDecl *var = emission.Variable; 1810 QualType type = var->getType(); 1811 1812 CleanupKind cleanupKind = NormalAndEHCleanup; 1813 CodeGenFunction::Destroyer *destroyer = nullptr; 1814 1815 switch (dtorKind) { 1816 case QualType::DK_none: 1817 llvm_unreachable("no cleanup for trivially-destructible variable"); 1818 1819 case QualType::DK_cxx_destructor: 1820 // If there's an NRVO flag on the emission, we need a different 1821 // cleanup. 1822 if (emission.NRVOFlag) { 1823 assert(!type->isArrayType()); 1824 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1825 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, 1826 emission.NRVOFlag); 1827 return; 1828 } 1829 break; 1830 1831 case QualType::DK_objc_strong_lifetime: 1832 // Suppress cleanups for pseudo-strong variables. 1833 if (var->isARCPseudoStrong()) return; 1834 1835 // Otherwise, consider whether to use an EH cleanup or not. 1836 cleanupKind = getARCCleanupKind(); 1837 1838 // Use the imprecise destroyer by default. 1839 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1840 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1841 break; 1842 1843 case QualType::DK_objc_weak_lifetime: 1844 break; 1845 1846 case QualType::DK_nontrivial_c_struct: 1847 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1848 if (emission.NRVOFlag) { 1849 assert(!type->isArrayType()); 1850 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1851 emission.NRVOFlag, type); 1852 return; 1853 } 1854 break; 1855 } 1856 1857 // If we haven't chosen a more specific destroyer, use the default. 1858 if (!destroyer) destroyer = getDestroyer(dtorKind); 1859 1860 // Use an EH cleanup in array destructors iff the destructor itself 1861 // is being pushed as an EH cleanup. 1862 bool useEHCleanup = (cleanupKind & EHCleanup); 1863 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1864 useEHCleanup); 1865 } 1866 1867 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1868 assert(emission.Variable && "emission was not valid!"); 1869 1870 // If this was emitted as a global constant, we're done. 1871 if (emission.wasEmittedAsGlobal()) return; 1872 1873 // If we don't have an insertion point, we're done. Sema prevents 1874 // us from jumping into any of these scopes anyway. 1875 if (!HaveInsertPoint()) return; 1876 1877 const VarDecl &D = *emission.Variable; 1878 1879 // Check the type for a cleanup. 1880 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1881 emitAutoVarTypeCleanup(emission, dtorKind); 1882 1883 // In GC mode, honor objc_precise_lifetime. 1884 if (getLangOpts().getGC() != LangOptions::NonGC && 1885 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1886 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1887 } 1888 1889 // Handle the cleanup attribute. 1890 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1891 const FunctionDecl *FD = CA->getFunctionDecl(); 1892 1893 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1894 assert(F && "Could not find function!"); 1895 1896 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1897 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1898 } 1899 1900 // If this is a block variable, call _Block_object_destroy 1901 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 1902 // mode. 1903 if (emission.IsEscapingByRef && 1904 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 1905 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 1906 if (emission.Variable->getType().isObjCGCWeak()) 1907 Flags |= BLOCK_FIELD_IS_WEAK; 1908 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 1909 /*LoadBlockVarAddr*/ false, 1910 cxxDestructorCanThrow(emission.Variable->getType())); 1911 } 1912 } 1913 1914 CodeGenFunction::Destroyer * 1915 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1916 switch (kind) { 1917 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1918 case QualType::DK_cxx_destructor: 1919 return destroyCXXObject; 1920 case QualType::DK_objc_strong_lifetime: 1921 return destroyARCStrongPrecise; 1922 case QualType::DK_objc_weak_lifetime: 1923 return destroyARCWeak; 1924 case QualType::DK_nontrivial_c_struct: 1925 return destroyNonTrivialCStruct; 1926 } 1927 llvm_unreachable("Unknown DestructionKind"); 1928 } 1929 1930 /// pushEHDestroy - Push the standard destructor for the given type as 1931 /// an EH-only cleanup. 1932 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1933 Address addr, QualType type) { 1934 assert(dtorKind && "cannot push destructor for trivial type"); 1935 assert(needsEHCleanup(dtorKind)); 1936 1937 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1938 } 1939 1940 /// pushDestroy - Push the standard destructor for the given type as 1941 /// at least a normal cleanup. 1942 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1943 Address addr, QualType type) { 1944 assert(dtorKind && "cannot push destructor for trivial type"); 1945 1946 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1947 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1948 cleanupKind & EHCleanup); 1949 } 1950 1951 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1952 QualType type, Destroyer *destroyer, 1953 bool useEHCleanupForArray) { 1954 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1955 destroyer, useEHCleanupForArray); 1956 } 1957 1958 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1959 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1960 } 1961 1962 void CodeGenFunction::pushLifetimeExtendedDestroy( 1963 CleanupKind cleanupKind, Address addr, QualType type, 1964 Destroyer *destroyer, bool useEHCleanupForArray) { 1965 // Push an EH-only cleanup for the object now. 1966 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1967 // around in case a temporary's destructor throws an exception. 1968 if (cleanupKind & EHCleanup) 1969 EHStack.pushCleanup<DestroyObject>( 1970 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1971 destroyer, useEHCleanupForArray); 1972 1973 // Remember that we need to push a full cleanup for the object at the 1974 // end of the full-expression. 1975 pushCleanupAfterFullExpr<DestroyObject>( 1976 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1977 } 1978 1979 /// emitDestroy - Immediately perform the destruction of the given 1980 /// object. 1981 /// 1982 /// \param addr - the address of the object; a type* 1983 /// \param type - the type of the object; if an array type, all 1984 /// objects are destroyed in reverse order 1985 /// \param destroyer - the function to call to destroy individual 1986 /// elements 1987 /// \param useEHCleanupForArray - whether an EH cleanup should be 1988 /// used when destroying array elements, in case one of the 1989 /// destructions throws an exception 1990 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1991 Destroyer *destroyer, 1992 bool useEHCleanupForArray) { 1993 const ArrayType *arrayType = getContext().getAsArrayType(type); 1994 if (!arrayType) 1995 return destroyer(*this, addr, type); 1996 1997 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1998 1999 CharUnits elementAlign = 2000 addr.getAlignment() 2001 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2002 2003 // Normally we have to check whether the array is zero-length. 2004 bool checkZeroLength = true; 2005 2006 // But if the array length is constant, we can suppress that. 2007 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2008 // ...and if it's constant zero, we can just skip the entire thing. 2009 if (constLength->isZero()) return; 2010 checkZeroLength = false; 2011 } 2012 2013 llvm::Value *begin = addr.getPointer(); 2014 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2015 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2016 checkZeroLength, useEHCleanupForArray); 2017 } 2018 2019 /// emitArrayDestroy - Destroys all the elements of the given array, 2020 /// beginning from last to first. The array cannot be zero-length. 2021 /// 2022 /// \param begin - a type* denoting the first element of the array 2023 /// \param end - a type* denoting one past the end of the array 2024 /// \param elementType - the element type of the array 2025 /// \param destroyer - the function to call to destroy elements 2026 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2027 /// the remaining elements in case the destruction of a single 2028 /// element throws 2029 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2030 llvm::Value *end, 2031 QualType elementType, 2032 CharUnits elementAlign, 2033 Destroyer *destroyer, 2034 bool checkZeroLength, 2035 bool useEHCleanup) { 2036 assert(!elementType->isArrayType()); 2037 2038 // The basic structure here is a do-while loop, because we don't 2039 // need to check for the zero-element case. 2040 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2041 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2042 2043 if (checkZeroLength) { 2044 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2045 "arraydestroy.isempty"); 2046 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2047 } 2048 2049 // Enter the loop body, making that address the current address. 2050 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2051 EmitBlock(bodyBB); 2052 llvm::PHINode *elementPast = 2053 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2054 elementPast->addIncoming(end, entryBB); 2055 2056 // Shift the address back by one element. 2057 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2058 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2059 "arraydestroy.element"); 2060 2061 if (useEHCleanup) 2062 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2063 destroyer); 2064 2065 // Perform the actual destruction there. 2066 destroyer(*this, Address(element, elementAlign), elementType); 2067 2068 if (useEHCleanup) 2069 PopCleanupBlock(); 2070 2071 // Check whether we've reached the end. 2072 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2073 Builder.CreateCondBr(done, doneBB, bodyBB); 2074 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2075 2076 // Done. 2077 EmitBlock(doneBB); 2078 } 2079 2080 /// Perform partial array destruction as if in an EH cleanup. Unlike 2081 /// emitArrayDestroy, the element type here may still be an array type. 2082 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2083 llvm::Value *begin, llvm::Value *end, 2084 QualType type, CharUnits elementAlign, 2085 CodeGenFunction::Destroyer *destroyer) { 2086 // If the element type is itself an array, drill down. 2087 unsigned arrayDepth = 0; 2088 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2089 // VLAs don't require a GEP index to walk into. 2090 if (!isa<VariableArrayType>(arrayType)) 2091 arrayDepth++; 2092 type = arrayType->getElementType(); 2093 } 2094 2095 if (arrayDepth) { 2096 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2097 2098 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2099 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2100 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2101 } 2102 2103 // Destroy the array. We don't ever need an EH cleanup because we 2104 // assume that we're in an EH cleanup ourselves, so a throwing 2105 // destructor causes an immediate terminate. 2106 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2107 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2108 } 2109 2110 namespace { 2111 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2112 /// array destroy where the end pointer is regularly determined and 2113 /// does not need to be loaded from a local. 2114 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2115 llvm::Value *ArrayBegin; 2116 llvm::Value *ArrayEnd; 2117 QualType ElementType; 2118 CodeGenFunction::Destroyer *Destroyer; 2119 CharUnits ElementAlign; 2120 public: 2121 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2122 QualType elementType, CharUnits elementAlign, 2123 CodeGenFunction::Destroyer *destroyer) 2124 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2125 ElementType(elementType), Destroyer(destroyer), 2126 ElementAlign(elementAlign) {} 2127 2128 void Emit(CodeGenFunction &CGF, Flags flags) override { 2129 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2130 ElementType, ElementAlign, Destroyer); 2131 } 2132 }; 2133 2134 /// IrregularPartialArrayDestroy - a cleanup which performs a 2135 /// partial array destroy where the end pointer is irregularly 2136 /// determined and must be loaded from a local. 2137 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2138 llvm::Value *ArrayBegin; 2139 Address ArrayEndPointer; 2140 QualType ElementType; 2141 CodeGenFunction::Destroyer *Destroyer; 2142 CharUnits ElementAlign; 2143 public: 2144 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2145 Address arrayEndPointer, 2146 QualType elementType, 2147 CharUnits elementAlign, 2148 CodeGenFunction::Destroyer *destroyer) 2149 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2150 ElementType(elementType), Destroyer(destroyer), 2151 ElementAlign(elementAlign) {} 2152 2153 void Emit(CodeGenFunction &CGF, Flags flags) override { 2154 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2155 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2156 ElementType, ElementAlign, Destroyer); 2157 } 2158 }; 2159 } // end anonymous namespace 2160 2161 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2162 /// already-constructed elements of the given array. The cleanup 2163 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2164 /// 2165 /// \param elementType - the immediate element type of the array; 2166 /// possibly still an array type 2167 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2168 Address arrayEndPointer, 2169 QualType elementType, 2170 CharUnits elementAlign, 2171 Destroyer *destroyer) { 2172 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2173 arrayBegin, arrayEndPointer, 2174 elementType, elementAlign, 2175 destroyer); 2176 } 2177 2178 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2179 /// already-constructed elements of the given array. The cleanup 2180 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2181 /// 2182 /// \param elementType - the immediate element type of the array; 2183 /// possibly still an array type 2184 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2185 llvm::Value *arrayEnd, 2186 QualType elementType, 2187 CharUnits elementAlign, 2188 Destroyer *destroyer) { 2189 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2190 arrayBegin, arrayEnd, 2191 elementType, elementAlign, 2192 destroyer); 2193 } 2194 2195 /// Lazily declare the @llvm.lifetime.start intrinsic. 2196 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 2197 if (LifetimeStartFn) 2198 return LifetimeStartFn; 2199 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2200 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2201 return LifetimeStartFn; 2202 } 2203 2204 /// Lazily declare the @llvm.lifetime.end intrinsic. 2205 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 2206 if (LifetimeEndFn) 2207 return LifetimeEndFn; 2208 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2209 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2210 return LifetimeEndFn; 2211 } 2212 2213 namespace { 2214 /// A cleanup to perform a release of an object at the end of a 2215 /// function. This is used to balance out the incoming +1 of a 2216 /// ns_consumed argument when we can't reasonably do that just by 2217 /// not doing the initial retain for a __block argument. 2218 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2219 ConsumeARCParameter(llvm::Value *param, 2220 ARCPreciseLifetime_t precise) 2221 : Param(param), Precise(precise) {} 2222 2223 llvm::Value *Param; 2224 ARCPreciseLifetime_t Precise; 2225 2226 void Emit(CodeGenFunction &CGF, Flags flags) override { 2227 CGF.EmitARCRelease(Param, Precise); 2228 } 2229 }; 2230 } // end anonymous namespace 2231 2232 /// Emit an alloca (or GlobalValue depending on target) 2233 /// for the specified parameter and set up LocalDeclMap. 2234 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2235 unsigned ArgNo) { 2236 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2237 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2238 "Invalid argument to EmitParmDecl"); 2239 2240 Arg.getAnyValue()->setName(D.getName()); 2241 2242 QualType Ty = D.getType(); 2243 2244 // Use better IR generation for certain implicit parameters. 2245 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2246 // The only implicit argument a block has is its literal. 2247 // This may be passed as an inalloca'ed value on Windows x86. 2248 if (BlockInfo) { 2249 llvm::Value *V = Arg.isIndirect() 2250 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2251 : Arg.getDirectValue(); 2252 setBlockContextParameter(IPD, ArgNo, V); 2253 return; 2254 } 2255 } 2256 2257 Address DeclPtr = Address::invalid(); 2258 bool DoStore = false; 2259 bool IsScalar = hasScalarEvaluationKind(Ty); 2260 // If we already have a pointer to the argument, reuse the input pointer. 2261 if (Arg.isIndirect()) { 2262 DeclPtr = Arg.getIndirectAddress(); 2263 // If we have a prettier pointer type at this point, bitcast to that. 2264 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2265 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2266 if (DeclPtr.getType() != IRTy) 2267 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2268 // Indirect argument is in alloca address space, which may be different 2269 // from the default address space. 2270 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2271 auto *V = DeclPtr.getPointer(); 2272 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2273 auto DestLangAS = 2274 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2275 if (SrcLangAS != DestLangAS) { 2276 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2277 CGM.getDataLayout().getAllocaAddrSpace()); 2278 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2279 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2280 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2281 *this, V, SrcLangAS, DestLangAS, T, true), 2282 DeclPtr.getAlignment()); 2283 } 2284 2285 // Push a destructor cleanup for this parameter if the ABI requires it. 2286 // Don't push a cleanup in a thunk for a method that will also emit a 2287 // cleanup. 2288 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2289 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2290 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 2291 assert((DtorKind == QualType::DK_cxx_destructor || 2292 DtorKind == QualType::DK_nontrivial_c_struct) && 2293 "unexpected destructor type"); 2294 pushDestroy(DtorKind, DeclPtr, Ty); 2295 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2296 EHStack.stable_begin(); 2297 } 2298 } 2299 } else { 2300 // Check if the parameter address is controlled by OpenMP runtime. 2301 Address OpenMPLocalAddr = 2302 getLangOpts().OpenMP 2303 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2304 : Address::invalid(); 2305 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2306 DeclPtr = OpenMPLocalAddr; 2307 } else { 2308 // Otherwise, create a temporary to hold the value. 2309 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2310 D.getName() + ".addr"); 2311 } 2312 DoStore = true; 2313 } 2314 2315 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2316 2317 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2318 if (IsScalar) { 2319 Qualifiers qs = Ty.getQualifiers(); 2320 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2321 // We honor __attribute__((ns_consumed)) for types with lifetime. 2322 // For __strong, it's handled by just skipping the initial retain; 2323 // otherwise we have to balance out the initial +1 with an extra 2324 // cleanup to do the release at the end of the function. 2325 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2326 2327 // 'self' is always formally __strong, but if this is not an 2328 // init method then we don't want to retain it. 2329 if (D.isARCPseudoStrong()) { 2330 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 2331 assert(&D == method->getSelfDecl()); 2332 assert(lt == Qualifiers::OCL_Strong); 2333 assert(qs.hasConst()); 2334 assert(method->getMethodFamily() != OMF_init); 2335 (void) method; 2336 lt = Qualifiers::OCL_ExplicitNone; 2337 } 2338 2339 // Load objects passed indirectly. 2340 if (Arg.isIndirect() && !ArgVal) 2341 ArgVal = Builder.CreateLoad(DeclPtr); 2342 2343 if (lt == Qualifiers::OCL_Strong) { 2344 if (!isConsumed) { 2345 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2346 // use objc_storeStrong(&dest, value) for retaining the 2347 // object. But first, store a null into 'dest' because 2348 // objc_storeStrong attempts to release its old value. 2349 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2350 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2351 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2352 DoStore = false; 2353 } 2354 else 2355 // Don't use objc_retainBlock for block pointers, because we 2356 // don't want to Block_copy something just because we got it 2357 // as a parameter. 2358 ArgVal = EmitARCRetainNonBlock(ArgVal); 2359 } 2360 } else { 2361 // Push the cleanup for a consumed parameter. 2362 if (isConsumed) { 2363 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2364 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2365 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2366 precise); 2367 } 2368 2369 if (lt == Qualifiers::OCL_Weak) { 2370 EmitARCInitWeak(DeclPtr, ArgVal); 2371 DoStore = false; // The weak init is a store, no need to do two. 2372 } 2373 } 2374 2375 // Enter the cleanup scope. 2376 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2377 } 2378 } 2379 2380 // Store the initial value into the alloca. 2381 if (DoStore) 2382 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2383 2384 setAddrOfLocalVar(&D, DeclPtr); 2385 2386 // Emit debug info for param declaration. 2387 if (CGDebugInfo *DI = getDebugInfo()) { 2388 if (CGM.getCodeGenOpts().getDebugInfo() >= 2389 codegenoptions::LimitedDebugInfo) { 2390 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2391 } 2392 } 2393 2394 if (D.hasAttr<AnnotateAttr>()) 2395 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2396 2397 // We can only check return value nullability if all arguments to the 2398 // function satisfy their nullability preconditions. This makes it necessary 2399 // to emit null checks for args in the function body itself. 2400 if (requiresReturnValueNullabilityCheck()) { 2401 auto Nullability = Ty->getNullability(getContext()); 2402 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2403 SanitizerScope SanScope(this); 2404 RetValNullabilityPrecondition = 2405 Builder.CreateAnd(RetValNullabilityPrecondition, 2406 Builder.CreateIsNotNull(Arg.getAnyValue())); 2407 } 2408 } 2409 } 2410 2411 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2412 CodeGenFunction *CGF) { 2413 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2414 return; 2415 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2416 } 2417 2418 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2419 getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D); 2420 } 2421