1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::Empty: 108 // None of these decls require codegen support. 109 return; 110 111 case Decl::NamespaceAlias: 112 if (CGDebugInfo *DI = getDebugInfo()) 113 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 114 return; 115 case Decl::Using: // using X; [C++] 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitUsingDecl(cast<UsingDecl>(D)); 118 return; 119 case Decl::UsingPack: 120 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 121 EmitDecl(*Using); 122 return; 123 case Decl::UsingDirective: // using namespace X; [C++] 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 126 return; 127 case Decl::Var: 128 case Decl::Decomposition: { 129 const VarDecl &VD = cast<VarDecl>(D); 130 assert(VD.isLocalVarDecl() && 131 "Should not see file-scope variables inside a function!"); 132 EmitVarDecl(VD); 133 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 134 for (auto *B : DD->bindings()) 135 if (auto *HD = B->getHoldingVar()) 136 EmitVarDecl(*HD); 137 return; 138 } 139 140 case Decl::OMPDeclareReduction: 141 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 142 143 case Decl::Typedef: // typedef int X; 144 case Decl::TypeAlias: { // using X = int; [C++0x] 145 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 146 QualType Ty = TD.getUnderlyingType(); 147 148 if (Ty->isVariablyModifiedType()) 149 EmitVariablyModifiedType(Ty); 150 } 151 } 152 } 153 154 /// EmitVarDecl - This method handles emission of any variable declaration 155 /// inside a function, including static vars etc. 156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 157 if (D.hasExternalStorage()) 158 // Don't emit it now, allow it to be emitted lazily on its first use. 159 return; 160 161 // Some function-scope variable does not have static storage but still 162 // needs to be emitted like a static variable, e.g. a function-scope 163 // variable in constant address space in OpenCL. 164 if (D.getStorageDuration() != SD_Automatic) { 165 // Static sampler variables translated to function calls. 166 if (D.getType()->isSamplerT()) 167 return; 168 169 llvm::GlobalValue::LinkageTypes Linkage = 170 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 171 172 // FIXME: We need to force the emission/use of a guard variable for 173 // some variables even if we can constant-evaluate them because 174 // we can't guarantee every translation unit will constant-evaluate them. 175 176 return EmitStaticVarDecl(D, Linkage); 177 } 178 179 if (D.getType().getAddressSpace() == LangAS::opencl_local) 180 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 181 182 assert(D.hasLocalStorage()); 183 return EmitAutoVarDecl(D); 184 } 185 186 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 187 if (CGM.getLangOpts().CPlusPlus) 188 return CGM.getMangledName(&D).str(); 189 190 // If this isn't C++, we don't need a mangled name, just a pretty one. 191 assert(!D.isExternallyVisible() && "name shouldn't matter"); 192 std::string ContextName; 193 const DeclContext *DC = D.getDeclContext(); 194 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 195 DC = cast<DeclContext>(CD->getNonClosureContext()); 196 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 197 ContextName = CGM.getMangledName(FD); 198 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 199 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 200 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 201 ContextName = OMD->getSelector().getAsString(); 202 else 203 llvm_unreachable("Unknown context for static var decl"); 204 205 ContextName += "." + D.getNameAsString(); 206 return ContextName; 207 } 208 209 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 210 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 211 // In general, we don't always emit static var decls once before we reference 212 // them. It is possible to reference them before emitting the function that 213 // contains them, and it is possible to emit the containing function multiple 214 // times. 215 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 216 return ExistingGV; 217 218 QualType Ty = D.getType(); 219 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 220 221 // Use the label if the variable is renamed with the asm-label extension. 222 std::string Name; 223 if (D.hasAttr<AsmLabelAttr>()) 224 Name = getMangledName(&D); 225 else 226 Name = getStaticDeclName(*this, D); 227 228 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 229 LangAS AS = GetGlobalVarAddressSpace(&D); 230 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 231 232 // OpenCL variables in local address space and CUDA shared 233 // variables cannot have an initializer. 234 llvm::Constant *Init = nullptr; 235 if (Ty.getAddressSpace() == LangAS::opencl_local || 236 D.hasAttr<CUDASharedAttr>()) 237 Init = llvm::UndefValue::get(LTy); 238 else 239 Init = EmitNullConstant(Ty); 240 241 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 242 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 243 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 244 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 245 246 if (supportsCOMDAT() && GV->isWeakForLinker()) 247 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 248 249 if (D.getTLSKind()) 250 setTLSMode(GV, D); 251 252 setGVProperties(GV, &D); 253 254 // Make sure the result is of the correct type. 255 LangAS ExpectedAS = Ty.getAddressSpace(); 256 llvm::Constant *Addr = GV; 257 if (AS != ExpectedAS) { 258 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 259 *this, GV, AS, ExpectedAS, 260 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 261 } 262 263 setStaticLocalDeclAddress(&D, Addr); 264 265 // Ensure that the static local gets initialized by making sure the parent 266 // function gets emitted eventually. 267 const Decl *DC = cast<Decl>(D.getDeclContext()); 268 269 // We can't name blocks or captured statements directly, so try to emit their 270 // parents. 271 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 272 DC = DC->getNonClosureContext(); 273 // FIXME: Ensure that global blocks get emitted. 274 if (!DC) 275 return Addr; 276 } 277 278 GlobalDecl GD; 279 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 280 GD = GlobalDecl(CD, Ctor_Base); 281 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 282 GD = GlobalDecl(DD, Dtor_Base); 283 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 284 GD = GlobalDecl(FD); 285 else { 286 // Don't do anything for Obj-C method decls or global closures. We should 287 // never defer them. 288 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 289 } 290 if (GD.getDecl()) { 291 // Disable emission of the parent function for the OpenMP device codegen. 292 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 293 (void)GetAddrOfGlobal(GD); 294 } 295 296 return Addr; 297 } 298 299 /// hasNontrivialDestruction - Determine whether a type's destruction is 300 /// non-trivial. If so, and the variable uses static initialization, we must 301 /// register its destructor to run on exit. 302 static bool hasNontrivialDestruction(QualType T) { 303 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 304 return RD && !RD->hasTrivialDestructor(); 305 } 306 307 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 308 /// global variable that has already been created for it. If the initializer 309 /// has a different type than GV does, this may free GV and return a different 310 /// one. Otherwise it just returns GV. 311 llvm::GlobalVariable * 312 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 313 llvm::GlobalVariable *GV) { 314 ConstantEmitter emitter(*this); 315 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 316 317 // If constant emission failed, then this should be a C++ static 318 // initializer. 319 if (!Init) { 320 if (!getLangOpts().CPlusPlus) 321 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 322 else if (HaveInsertPoint()) { 323 // Since we have a static initializer, this global variable can't 324 // be constant. 325 GV->setConstant(false); 326 327 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 328 } 329 return GV; 330 } 331 332 // The initializer may differ in type from the global. Rewrite 333 // the global to match the initializer. (We have to do this 334 // because some types, like unions, can't be completely represented 335 // in the LLVM type system.) 336 if (GV->getType()->getElementType() != Init->getType()) { 337 llvm::GlobalVariable *OldGV = GV; 338 339 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 340 OldGV->isConstant(), 341 OldGV->getLinkage(), Init, "", 342 /*InsertBefore*/ OldGV, 343 OldGV->getThreadLocalMode(), 344 CGM.getContext().getTargetAddressSpace(D.getType())); 345 GV->setVisibility(OldGV->getVisibility()); 346 GV->setDSOLocal(OldGV->isDSOLocal()); 347 GV->setComdat(OldGV->getComdat()); 348 349 // Steal the name of the old global 350 GV->takeName(OldGV); 351 352 // Replace all uses of the old global with the new global 353 llvm::Constant *NewPtrForOldDecl = 354 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 355 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 356 357 // Erase the old global, since it is no longer used. 358 OldGV->eraseFromParent(); 359 } 360 361 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 362 GV->setInitializer(Init); 363 364 emitter.finalize(GV); 365 366 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 367 // We have a constant initializer, but a nontrivial destructor. We still 368 // need to perform a guarded "initialization" in order to register the 369 // destructor. 370 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 371 } 372 373 return GV; 374 } 375 376 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 377 llvm::GlobalValue::LinkageTypes Linkage) { 378 // Check to see if we already have a global variable for this 379 // declaration. This can happen when double-emitting function 380 // bodies, e.g. with complete and base constructors. 381 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 382 CharUnits alignment = getContext().getDeclAlign(&D); 383 384 // Store into LocalDeclMap before generating initializer to handle 385 // circular references. 386 setAddrOfLocalVar(&D, Address(addr, alignment)); 387 388 // We can't have a VLA here, but we can have a pointer to a VLA, 389 // even though that doesn't really make any sense. 390 // Make sure to evaluate VLA bounds now so that we have them for later. 391 if (D.getType()->isVariablyModifiedType()) 392 EmitVariablyModifiedType(D.getType()); 393 394 // Save the type in case adding the initializer forces a type change. 395 llvm::Type *expectedType = addr->getType(); 396 397 llvm::GlobalVariable *var = 398 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 399 400 // CUDA's local and local static __shared__ variables should not 401 // have any non-empty initializers. This is ensured by Sema. 402 // Whatever initializer such variable may have when it gets here is 403 // a no-op and should not be emitted. 404 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 405 D.hasAttr<CUDASharedAttr>(); 406 // If this value has an initializer, emit it. 407 if (D.getInit() && !isCudaSharedVar) 408 var = AddInitializerToStaticVarDecl(D, var); 409 410 var->setAlignment(alignment.getQuantity()); 411 412 if (D.hasAttr<AnnotateAttr>()) 413 CGM.AddGlobalAnnotations(&D, var); 414 415 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 416 var->addAttribute("bss-section", SA->getName()); 417 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 418 var->addAttribute("data-section", SA->getName()); 419 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 420 var->addAttribute("rodata-section", SA->getName()); 421 422 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 423 var->setSection(SA->getName()); 424 425 if (D.hasAttr<UsedAttr>()) 426 CGM.addUsedGlobal(var); 427 428 // We may have to cast the constant because of the initializer 429 // mismatch above. 430 // 431 // FIXME: It is really dangerous to store this in the map; if anyone 432 // RAUW's the GV uses of this constant will be invalid. 433 llvm::Constant *castedAddr = 434 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 435 if (var != castedAddr) 436 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 437 CGM.setStaticLocalDeclAddress(&D, castedAddr); 438 439 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 440 441 // Emit global variable debug descriptor for static vars. 442 CGDebugInfo *DI = getDebugInfo(); 443 if (DI && 444 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 445 DI->setLocation(D.getLocation()); 446 DI->EmitGlobalVariable(var, &D); 447 } 448 } 449 450 namespace { 451 struct DestroyObject final : EHScopeStack::Cleanup { 452 DestroyObject(Address addr, QualType type, 453 CodeGenFunction::Destroyer *destroyer, 454 bool useEHCleanupForArray) 455 : addr(addr), type(type), destroyer(destroyer), 456 useEHCleanupForArray(useEHCleanupForArray) {} 457 458 Address addr; 459 QualType type; 460 CodeGenFunction::Destroyer *destroyer; 461 bool useEHCleanupForArray; 462 463 void Emit(CodeGenFunction &CGF, Flags flags) override { 464 // Don't use an EH cleanup recursively from an EH cleanup. 465 bool useEHCleanupForArray = 466 flags.isForNormalCleanup() && this->useEHCleanupForArray; 467 468 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 469 } 470 }; 471 472 template <class Derived> 473 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 474 DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) 475 : NRVOFlag(NRVOFlag), Loc(addr) {} 476 477 llvm::Value *NRVOFlag; 478 Address Loc; 479 480 void Emit(CodeGenFunction &CGF, Flags flags) override { 481 // Along the exceptions path we always execute the dtor. 482 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 483 484 llvm::BasicBlock *SkipDtorBB = nullptr; 485 if (NRVO) { 486 // If we exited via NRVO, we skip the destructor call. 487 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 488 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 489 llvm::Value *DidNRVO = 490 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 491 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 492 CGF.EmitBlock(RunDtorBB); 493 } 494 495 static_cast<Derived *>(this)->emitDestructorCall(CGF); 496 497 if (NRVO) CGF.EmitBlock(SkipDtorBB); 498 } 499 500 virtual ~DestroyNRVOVariable() = default; 501 }; 502 503 struct DestroyNRVOVariableCXX final 504 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 505 DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, 506 llvm::Value *NRVOFlag) 507 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), 508 Dtor(Dtor) {} 509 510 const CXXDestructorDecl *Dtor; 511 512 void emitDestructorCall(CodeGenFunction &CGF) { 513 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 514 /*ForVirtualBase=*/false, 515 /*Delegating=*/false, Loc); 516 } 517 }; 518 519 struct DestroyNRVOVariableC final 520 : DestroyNRVOVariable<DestroyNRVOVariableC> { 521 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 522 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} 523 524 QualType Ty; 525 526 void emitDestructorCall(CodeGenFunction &CGF) { 527 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 528 } 529 }; 530 531 struct CallStackRestore final : EHScopeStack::Cleanup { 532 Address Stack; 533 CallStackRestore(Address Stack) : Stack(Stack) {} 534 void Emit(CodeGenFunction &CGF, Flags flags) override { 535 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 536 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 537 CGF.Builder.CreateCall(F, V); 538 } 539 }; 540 541 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 542 const VarDecl &Var; 543 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 544 545 void Emit(CodeGenFunction &CGF, Flags flags) override { 546 // Compute the address of the local variable, in case it's a 547 // byref or something. 548 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 549 Var.getType(), VK_LValue, SourceLocation()); 550 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 551 SourceLocation()); 552 CGF.EmitExtendGCLifetime(value); 553 } 554 }; 555 556 struct CallCleanupFunction final : EHScopeStack::Cleanup { 557 llvm::Constant *CleanupFn; 558 const CGFunctionInfo &FnInfo; 559 const VarDecl &Var; 560 561 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 562 const VarDecl *Var) 563 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 564 565 void Emit(CodeGenFunction &CGF, Flags flags) override { 566 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 567 Var.getType(), VK_LValue, SourceLocation()); 568 // Compute the address of the local variable, in case it's a byref 569 // or something. 570 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 571 572 // In some cases, the type of the function argument will be different from 573 // the type of the pointer. An example of this is 574 // void f(void* arg); 575 // __attribute__((cleanup(f))) void *g; 576 // 577 // To fix this we insert a bitcast here. 578 QualType ArgTy = FnInfo.arg_begin()->type; 579 llvm::Value *Arg = 580 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 581 582 CallArgList Args; 583 Args.add(RValue::get(Arg), 584 CGF.getContext().getPointerType(Var.getType())); 585 auto Callee = CGCallee::forDirect(CleanupFn); 586 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 587 } 588 }; 589 } // end anonymous namespace 590 591 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 592 /// variable with lifetime. 593 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 594 Address addr, 595 Qualifiers::ObjCLifetime lifetime) { 596 switch (lifetime) { 597 case Qualifiers::OCL_None: 598 llvm_unreachable("present but none"); 599 600 case Qualifiers::OCL_ExplicitNone: 601 // nothing to do 602 break; 603 604 case Qualifiers::OCL_Strong: { 605 CodeGenFunction::Destroyer *destroyer = 606 (var.hasAttr<ObjCPreciseLifetimeAttr>() 607 ? CodeGenFunction::destroyARCStrongPrecise 608 : CodeGenFunction::destroyARCStrongImprecise); 609 610 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 611 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 612 cleanupKind & EHCleanup); 613 break; 614 } 615 case Qualifiers::OCL_Autoreleasing: 616 // nothing to do 617 break; 618 619 case Qualifiers::OCL_Weak: 620 // __weak objects always get EH cleanups; otherwise, exceptions 621 // could cause really nasty crashes instead of mere leaks. 622 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 623 CodeGenFunction::destroyARCWeak, 624 /*useEHCleanup*/ true); 625 break; 626 } 627 } 628 629 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 630 if (const Expr *e = dyn_cast<Expr>(s)) { 631 // Skip the most common kinds of expressions that make 632 // hierarchy-walking expensive. 633 s = e = e->IgnoreParenCasts(); 634 635 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 636 return (ref->getDecl() == &var); 637 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 638 const BlockDecl *block = be->getBlockDecl(); 639 for (const auto &I : block->captures()) { 640 if (I.getVariable() == &var) 641 return true; 642 } 643 } 644 } 645 646 for (const Stmt *SubStmt : s->children()) 647 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 648 if (SubStmt && isAccessedBy(var, SubStmt)) 649 return true; 650 651 return false; 652 } 653 654 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 655 if (!decl) return false; 656 if (!isa<VarDecl>(decl)) return false; 657 const VarDecl *var = cast<VarDecl>(decl); 658 return isAccessedBy(*var, e); 659 } 660 661 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 662 const LValue &destLV, const Expr *init) { 663 bool needsCast = false; 664 665 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 666 switch (castExpr->getCastKind()) { 667 // Look through casts that don't require representation changes. 668 case CK_NoOp: 669 case CK_BitCast: 670 case CK_BlockPointerToObjCPointerCast: 671 needsCast = true; 672 break; 673 674 // If we find an l-value to r-value cast from a __weak variable, 675 // emit this operation as a copy or move. 676 case CK_LValueToRValue: { 677 const Expr *srcExpr = castExpr->getSubExpr(); 678 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 679 return false; 680 681 // Emit the source l-value. 682 LValue srcLV = CGF.EmitLValue(srcExpr); 683 684 // Handle a formal type change to avoid asserting. 685 auto srcAddr = srcLV.getAddress(); 686 if (needsCast) { 687 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 688 destLV.getAddress().getElementType()); 689 } 690 691 // If it was an l-value, use objc_copyWeak. 692 if (srcExpr->getValueKind() == VK_LValue) { 693 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 694 } else { 695 assert(srcExpr->getValueKind() == VK_XValue); 696 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 697 } 698 return true; 699 } 700 701 // Stop at anything else. 702 default: 703 return false; 704 } 705 706 init = castExpr->getSubExpr(); 707 } 708 return false; 709 } 710 711 static void drillIntoBlockVariable(CodeGenFunction &CGF, 712 LValue &lvalue, 713 const VarDecl *var) { 714 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 715 } 716 717 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 718 SourceLocation Loc) { 719 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 720 return; 721 722 auto Nullability = LHS.getType()->getNullability(getContext()); 723 if (!Nullability || *Nullability != NullabilityKind::NonNull) 724 return; 725 726 // Check if the right hand side of the assignment is nonnull, if the left 727 // hand side must be nonnull. 728 SanitizerScope SanScope(this); 729 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 730 llvm::Constant *StaticData[] = { 731 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 732 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 733 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 734 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 735 SanitizerHandler::TypeMismatch, StaticData, RHS); 736 } 737 738 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 739 LValue lvalue, bool capturedByInit) { 740 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 741 if (!lifetime) { 742 llvm::Value *value = EmitScalarExpr(init); 743 if (capturedByInit) 744 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 745 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 746 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 747 return; 748 } 749 750 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 751 init = DIE->getExpr(); 752 753 // If we're emitting a value with lifetime, we have to do the 754 // initialization *before* we leave the cleanup scopes. 755 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 756 enterFullExpression(ewc); 757 init = ewc->getSubExpr(); 758 } 759 CodeGenFunction::RunCleanupsScope Scope(*this); 760 761 // We have to maintain the illusion that the variable is 762 // zero-initialized. If the variable might be accessed in its 763 // initializer, zero-initialize before running the initializer, then 764 // actually perform the initialization with an assign. 765 bool accessedByInit = false; 766 if (lifetime != Qualifiers::OCL_ExplicitNone) 767 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 768 if (accessedByInit) { 769 LValue tempLV = lvalue; 770 // Drill down to the __block object if necessary. 771 if (capturedByInit) { 772 // We can use a simple GEP for this because it can't have been 773 // moved yet. 774 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 775 cast<VarDecl>(D), 776 /*follow*/ false)); 777 } 778 779 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 780 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 781 782 // If __weak, we want to use a barrier under certain conditions. 783 if (lifetime == Qualifiers::OCL_Weak) 784 EmitARCInitWeak(tempLV.getAddress(), zero); 785 786 // Otherwise just do a simple store. 787 else 788 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 789 } 790 791 // Emit the initializer. 792 llvm::Value *value = nullptr; 793 794 switch (lifetime) { 795 case Qualifiers::OCL_None: 796 llvm_unreachable("present but none"); 797 798 case Qualifiers::OCL_ExplicitNone: 799 value = EmitARCUnsafeUnretainedScalarExpr(init); 800 break; 801 802 case Qualifiers::OCL_Strong: { 803 value = EmitARCRetainScalarExpr(init); 804 break; 805 } 806 807 case Qualifiers::OCL_Weak: { 808 // If it's not accessed by the initializer, try to emit the 809 // initialization with a copy or move. 810 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 811 return; 812 } 813 814 // No way to optimize a producing initializer into this. It's not 815 // worth optimizing for, because the value will immediately 816 // disappear in the common case. 817 value = EmitScalarExpr(init); 818 819 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 820 if (accessedByInit) 821 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 822 else 823 EmitARCInitWeak(lvalue.getAddress(), value); 824 return; 825 } 826 827 case Qualifiers::OCL_Autoreleasing: 828 value = EmitARCRetainAutoreleaseScalarExpr(init); 829 break; 830 } 831 832 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 833 834 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 835 836 // If the variable might have been accessed by its initializer, we 837 // might have to initialize with a barrier. We have to do this for 838 // both __weak and __strong, but __weak got filtered out above. 839 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 840 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 841 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 842 EmitARCRelease(oldValue, ARCImpreciseLifetime); 843 return; 844 } 845 846 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 847 } 848 849 /// Decide whether we can emit the non-zero parts of the specified initializer 850 /// with equal or fewer than NumStores scalar stores. 851 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 852 unsigned &NumStores) { 853 // Zero and Undef never requires any extra stores. 854 if (isa<llvm::ConstantAggregateZero>(Init) || 855 isa<llvm::ConstantPointerNull>(Init) || 856 isa<llvm::UndefValue>(Init)) 857 return true; 858 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 859 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 860 isa<llvm::ConstantExpr>(Init)) 861 return Init->isNullValue() || NumStores--; 862 863 // See if we can emit each element. 864 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 865 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 866 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 867 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 868 return false; 869 } 870 return true; 871 } 872 873 if (llvm::ConstantDataSequential *CDS = 874 dyn_cast<llvm::ConstantDataSequential>(Init)) { 875 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 876 llvm::Constant *Elt = CDS->getElementAsConstant(i); 877 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 878 return false; 879 } 880 return true; 881 } 882 883 // Anything else is hard and scary. 884 return false; 885 } 886 887 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 888 /// the scalar stores that would be required. 889 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 890 llvm::Constant *Init, Address Loc, 891 bool isVolatile, CGBuilderTy &Builder) { 892 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 893 "called emitStoresForInitAfterBZero for zero or undef value."); 894 895 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 896 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 897 isa<llvm::ConstantExpr>(Init)) { 898 Builder.CreateStore(Init, Loc, isVolatile); 899 return; 900 } 901 902 if (llvm::ConstantDataSequential *CDS = 903 dyn_cast<llvm::ConstantDataSequential>(Init)) { 904 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 905 llvm::Constant *Elt = CDS->getElementAsConstant(i); 906 907 // If necessary, get a pointer to the element and emit it. 908 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 909 emitStoresForInitAfterBZero( 910 CGM, Elt, 911 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 912 isVolatile, Builder); 913 } 914 return; 915 } 916 917 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 918 "Unknown value type!"); 919 920 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 921 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 922 923 // If necessary, get a pointer to the element and emit it. 924 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 925 emitStoresForInitAfterBZero( 926 CGM, Elt, 927 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 928 isVolatile, Builder); 929 } 930 } 931 932 /// Decide whether we should use bzero plus some stores to initialize a local 933 /// variable instead of using a memcpy from a constant global. It is beneficial 934 /// to use bzero if the global is all zeros, or mostly zeros and large. 935 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 936 uint64_t GlobalSize) { 937 // If a global is all zeros, always use a bzero. 938 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 939 940 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 941 // do it if it will require 6 or fewer scalar stores. 942 // TODO: Should budget depends on the size? Avoiding a large global warrants 943 // plopping in more stores. 944 unsigned StoreBudget = 6; 945 uint64_t SizeLimit = 32; 946 947 return GlobalSize > SizeLimit && 948 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 949 } 950 951 /// A byte pattern. 952 /// 953 /// Can be "any" pattern if the value was padding or known to be undef. 954 /// Can be "none" pattern if a sequence doesn't exist. 955 class BytePattern { 956 uint8_t Val; 957 enum class ValueType : uint8_t { Specific, Any, None } Type; 958 BytePattern(ValueType Type) : Type(Type) {} 959 960 public: 961 BytePattern(uint8_t Value) : Val(Value), Type(ValueType::Specific) {} 962 static BytePattern Any() { return BytePattern(ValueType::Any); } 963 static BytePattern None() { return BytePattern(ValueType::None); } 964 bool isAny() const { return Type == ValueType::Any; } 965 bool isNone() const { return Type == ValueType::None; } 966 bool isValued() const { return Type == ValueType::Specific; } 967 uint8_t getValue() const { 968 assert(isValued()); 969 return Val; 970 } 971 BytePattern merge(const BytePattern Other) const { 972 if (isNone() || Other.isNone()) 973 return None(); 974 if (isAny()) 975 return Other; 976 if (Other.isAny()) 977 return *this; 978 if (getValue() == Other.getValue()) 979 return *this; 980 return None(); 981 } 982 }; 983 984 /// Figures out whether the constant can be initialized with memset. 985 static BytePattern constantIsRepeatedBytePattern(llvm::Constant *C) { 986 if (isa<llvm::ConstantAggregateZero>(C) || isa<llvm::ConstantPointerNull>(C)) 987 return BytePattern(0x00); 988 if (isa<llvm::UndefValue>(C)) 989 return BytePattern::Any(); 990 991 if (isa<llvm::ConstantInt>(C)) { 992 auto *Int = cast<llvm::ConstantInt>(C); 993 if (Int->getBitWidth() % 8 != 0) 994 return BytePattern::None(); 995 const llvm::APInt &Value = Int->getValue(); 996 if (Value.isSplat(8)) 997 return BytePattern(Value.getLoBits(8).getLimitedValue()); 998 return BytePattern::None(); 999 } 1000 1001 if (isa<llvm::ConstantFP>(C)) { 1002 auto *FP = cast<llvm::ConstantFP>(C); 1003 llvm::APInt Bits = FP->getValueAPF().bitcastToAPInt(); 1004 if (Bits.getBitWidth() % 8 != 0) 1005 return BytePattern::None(); 1006 if (!Bits.isSplat(8)) 1007 return BytePattern::None(); 1008 return BytePattern(Bits.getLimitedValue() & 0xFF); 1009 } 1010 1011 if (isa<llvm::ConstantVector>(C)) { 1012 llvm::Constant *Splat = cast<llvm::ConstantVector>(C)->getSplatValue(); 1013 if (Splat) 1014 return constantIsRepeatedBytePattern(Splat); 1015 return BytePattern::None(); 1016 } 1017 1018 if (isa<llvm::ConstantArray>(C) || isa<llvm::ConstantStruct>(C)) { 1019 BytePattern Pattern(BytePattern::Any()); 1020 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { 1021 llvm::Constant *Elt = cast<llvm::Constant>(C->getOperand(I)); 1022 Pattern = Pattern.merge(constantIsRepeatedBytePattern(Elt)); 1023 if (Pattern.isNone()) 1024 return Pattern; 1025 } 1026 return Pattern; 1027 } 1028 1029 if (llvm::ConstantDataSequential *CDS = 1030 dyn_cast<llvm::ConstantDataSequential>(C)) { 1031 BytePattern Pattern(BytePattern::Any()); 1032 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 1033 llvm::Constant *Elt = CDS->getElementAsConstant(I); 1034 Pattern = Pattern.merge(constantIsRepeatedBytePattern(Elt)); 1035 if (Pattern.isNone()) 1036 return Pattern; 1037 } 1038 return Pattern; 1039 } 1040 1041 // BlockAddress, ConstantExpr, and everything else is scary. 1042 return BytePattern::None(); 1043 } 1044 1045 /// Decide whether we should use memset to initialize a local variable instead 1046 /// of using a memcpy from a constant global. Assumes we've already decided to 1047 /// not user bzero. 1048 /// FIXME We could be more clever, as we are for bzero above, and generate 1049 /// memset followed by stores. It's unclear that's worth the effort. 1050 static BytePattern shouldUseMemSetToInitialize(llvm::Constant *Init, 1051 uint64_t GlobalSize) { 1052 uint64_t SizeLimit = 32; 1053 if (GlobalSize <= SizeLimit) 1054 return BytePattern::None(); 1055 return constantIsRepeatedBytePattern(Init); 1056 } 1057 1058 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1059 /// variable declaration with auto, register, or no storage class specifier. 1060 /// These turn into simple stack objects, or GlobalValues depending on target. 1061 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1062 AutoVarEmission emission = EmitAutoVarAlloca(D); 1063 EmitAutoVarInit(emission); 1064 EmitAutoVarCleanups(emission); 1065 } 1066 1067 /// Emit a lifetime.begin marker if some criteria are satisfied. 1068 /// \return a pointer to the temporary size Value if a marker was emitted, null 1069 /// otherwise 1070 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1071 llvm::Value *Addr) { 1072 if (!ShouldEmitLifetimeMarkers) 1073 return nullptr; 1074 1075 assert(Addr->getType()->getPointerAddressSpace() == 1076 CGM.getDataLayout().getAllocaAddrSpace() && 1077 "Pointer should be in alloca address space"); 1078 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1079 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1080 llvm::CallInst *C = 1081 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1082 C->setDoesNotThrow(); 1083 return SizeV; 1084 } 1085 1086 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1087 assert(Addr->getType()->getPointerAddressSpace() == 1088 CGM.getDataLayout().getAllocaAddrSpace() && 1089 "Pointer should be in alloca address space"); 1090 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1091 llvm::CallInst *C = 1092 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1093 C->setDoesNotThrow(); 1094 } 1095 1096 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1097 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1098 // For each dimension stores its QualType and corresponding 1099 // size-expression Value. 1100 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1101 1102 // Break down the array into individual dimensions. 1103 QualType Type1D = D.getType(); 1104 while (getContext().getAsVariableArrayType(Type1D)) { 1105 auto VlaSize = getVLAElements1D(Type1D); 1106 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1107 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1108 else { 1109 auto SizeExprAddr = CreateDefaultAlignTempAlloca( 1110 VlaSize.NumElts->getType(), "__vla_expr"); 1111 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1112 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1113 Type1D.getUnqualifiedType()); 1114 } 1115 Type1D = VlaSize.Type; 1116 } 1117 1118 if (!EmitDebugInfo) 1119 return; 1120 1121 // Register each dimension's size-expression with a DILocalVariable, 1122 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1123 // to describe this array. 1124 for (auto &VlaSize : Dimensions) { 1125 llvm::Metadata *MD; 1126 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1127 MD = llvm::ConstantAsMetadata::get(C); 1128 else { 1129 // Create an artificial VarDecl to generate debug info for. 1130 IdentifierInfo &NameIdent = getContext().Idents.getOwn( 1131 cast<llvm::AllocaInst>(VlaSize.NumElts)->getName()); 1132 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1133 auto QT = getContext().getIntTypeForBitwidth( 1134 VlaExprTy->getScalarSizeInBits(), false); 1135 auto *ArtificialDecl = VarDecl::Create( 1136 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1137 D.getLocation(), D.getLocation(), &NameIdent, QT, 1138 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1139 ArtificialDecl->setImplicit(); 1140 1141 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1142 Builder); 1143 } 1144 assert(MD && "No Size expression debug node created"); 1145 DI->registerVLASizeExpression(VlaSize.Type, MD); 1146 } 1147 } 1148 1149 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1150 /// local variable. Does not emit initialization or destruction. 1151 CodeGenFunction::AutoVarEmission 1152 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1153 QualType Ty = D.getType(); 1154 assert( 1155 Ty.getAddressSpace() == LangAS::Default || 1156 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1157 1158 AutoVarEmission emission(D); 1159 1160 bool isByRef = D.hasAttr<BlocksAttr>(); 1161 emission.IsByRef = isByRef; 1162 1163 CharUnits alignment = getContext().getDeclAlign(&D); 1164 1165 // If the type is variably-modified, emit all the VLA sizes for it. 1166 if (Ty->isVariablyModifiedType()) 1167 EmitVariablyModifiedType(Ty); 1168 1169 auto *DI = getDebugInfo(); 1170 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1171 codegenoptions::LimitedDebugInfo; 1172 1173 Address address = Address::invalid(); 1174 Address AllocaAddr = Address::invalid(); 1175 if (Ty->isConstantSizeType()) { 1176 bool NRVO = getLangOpts().ElideConstructors && 1177 D.isNRVOVariable(); 1178 1179 // If this value is an array or struct with a statically determinable 1180 // constant initializer, there are optimizations we can do. 1181 // 1182 // TODO: We should constant-evaluate the initializer of any variable, 1183 // as long as it is initialized by a constant expression. Currently, 1184 // isConstantInitializer produces wrong answers for structs with 1185 // reference or bitfield members, and a few other cases, and checking 1186 // for POD-ness protects us from some of these. 1187 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1188 (D.isConstexpr() || 1189 ((Ty.isPODType(getContext()) || 1190 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1191 D.getInit()->isConstantInitializer(getContext(), false)))) { 1192 1193 // If the variable's a const type, and it's neither an NRVO 1194 // candidate nor a __block variable and has no mutable members, 1195 // emit it as a global instead. 1196 // Exception is if a variable is located in non-constant address space 1197 // in OpenCL. 1198 if ((!getLangOpts().OpenCL || 1199 Ty.getAddressSpace() == LangAS::opencl_constant) && 1200 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 1201 CGM.isTypeConstant(Ty, true))) { 1202 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1203 1204 // Signal this condition to later callbacks. 1205 emission.Addr = Address::invalid(); 1206 assert(emission.wasEmittedAsGlobal()); 1207 return emission; 1208 } 1209 1210 // Otherwise, tell the initialization code that we're in this case. 1211 emission.IsConstantAggregate = true; 1212 } 1213 1214 // A normal fixed sized variable becomes an alloca in the entry block, 1215 // unless: 1216 // - it's an NRVO variable. 1217 // - we are compiling OpenMP and it's an OpenMP local variable. 1218 1219 Address OpenMPLocalAddr = 1220 getLangOpts().OpenMP 1221 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1222 : Address::invalid(); 1223 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1224 address = OpenMPLocalAddr; 1225 } else if (NRVO) { 1226 // The named return value optimization: allocate this variable in the 1227 // return slot, so that we can elide the copy when returning this 1228 // variable (C++0x [class.copy]p34). 1229 address = ReturnValue; 1230 1231 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1232 const auto *RD = RecordTy->getDecl(); 1233 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1234 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1235 RD->isNonTrivialToPrimitiveDestroy()) { 1236 // Create a flag that is used to indicate when the NRVO was applied 1237 // to this variable. Set it to zero to indicate that NRVO was not 1238 // applied. 1239 llvm::Value *Zero = Builder.getFalse(); 1240 Address NRVOFlag = 1241 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1242 EnsureInsertPoint(); 1243 Builder.CreateStore(Zero, NRVOFlag); 1244 1245 // Record the NRVO flag for this variable. 1246 NRVOFlags[&D] = NRVOFlag.getPointer(); 1247 emission.NRVOFlag = NRVOFlag.getPointer(); 1248 } 1249 } 1250 } else { 1251 CharUnits allocaAlignment; 1252 llvm::Type *allocaTy; 1253 if (isByRef) { 1254 auto &byrefInfo = getBlockByrefInfo(&D); 1255 allocaTy = byrefInfo.Type; 1256 allocaAlignment = byrefInfo.ByrefAlignment; 1257 } else { 1258 allocaTy = ConvertTypeForMem(Ty); 1259 allocaAlignment = alignment; 1260 } 1261 1262 // Create the alloca. Note that we set the name separately from 1263 // building the instruction so that it's there even in no-asserts 1264 // builds. 1265 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1266 /*ArraySize=*/nullptr, &AllocaAddr); 1267 1268 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1269 // the catch parameter starts in the catchpad instruction, and we can't 1270 // insert code in those basic blocks. 1271 bool IsMSCatchParam = 1272 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1273 1274 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1275 // if we don't have a valid insertion point (?). 1276 if (HaveInsertPoint() && !IsMSCatchParam) { 1277 // If there's a jump into the lifetime of this variable, its lifetime 1278 // gets broken up into several regions in IR, which requires more work 1279 // to handle correctly. For now, just omit the intrinsics; this is a 1280 // rare case, and it's better to just be conservatively correct. 1281 // PR28267. 1282 // 1283 // We have to do this in all language modes if there's a jump past the 1284 // declaration. We also have to do it in C if there's a jump to an 1285 // earlier point in the current block because non-VLA lifetimes begin as 1286 // soon as the containing block is entered, not when its variables 1287 // actually come into scope; suppressing the lifetime annotations 1288 // completely in this case is unnecessarily pessimistic, but again, this 1289 // is rare. 1290 if (!Bypasses.IsBypassed(&D) && 1291 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1292 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1293 emission.SizeForLifetimeMarkers = 1294 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1295 } 1296 } else { 1297 assert(!emission.useLifetimeMarkers()); 1298 } 1299 } 1300 } else { 1301 EnsureInsertPoint(); 1302 1303 if (!DidCallStackSave) { 1304 // Save the stack. 1305 Address Stack = 1306 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1307 1308 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1309 llvm::Value *V = Builder.CreateCall(F); 1310 Builder.CreateStore(V, Stack); 1311 1312 DidCallStackSave = true; 1313 1314 // Push a cleanup block and restore the stack there. 1315 // FIXME: in general circumstances, this should be an EH cleanup. 1316 pushStackRestore(NormalCleanup, Stack); 1317 } 1318 1319 auto VlaSize = getVLASize(Ty); 1320 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1321 1322 // Allocate memory for the array. 1323 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1324 &AllocaAddr); 1325 1326 // If we have debug info enabled, properly describe the VLA dimensions for 1327 // this type by registering the vla size expression for each of the 1328 // dimensions. 1329 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1330 } 1331 1332 setAddrOfLocalVar(&D, address); 1333 emission.Addr = address; 1334 emission.AllocaAddr = AllocaAddr; 1335 1336 // Emit debug info for local var declaration. 1337 if (EmitDebugInfo && HaveInsertPoint()) { 1338 DI->setLocation(D.getLocation()); 1339 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1340 } 1341 1342 if (D.hasAttr<AnnotateAttr>()) 1343 EmitVarAnnotations(&D, address.getPointer()); 1344 1345 // Make sure we call @llvm.lifetime.end. 1346 if (emission.useLifetimeMarkers()) 1347 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1348 emission.getOriginalAllocatedAddress(), 1349 emission.getSizeForLifetimeMarkers()); 1350 1351 return emission; 1352 } 1353 1354 static bool isCapturedBy(const VarDecl &, const Expr *); 1355 1356 /// Determines whether the given __block variable is potentially 1357 /// captured by the given statement. 1358 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1359 if (const Expr *E = dyn_cast<Expr>(S)) 1360 return isCapturedBy(Var, E); 1361 for (const Stmt *SubStmt : S->children()) 1362 if (isCapturedBy(Var, SubStmt)) 1363 return true; 1364 return false; 1365 } 1366 1367 /// Determines whether the given __block variable is potentially 1368 /// captured by the given expression. 1369 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1370 // Skip the most common kinds of expressions that make 1371 // hierarchy-walking expensive. 1372 E = E->IgnoreParenCasts(); 1373 1374 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1375 const BlockDecl *Block = BE->getBlockDecl(); 1376 for (const auto &I : Block->captures()) { 1377 if (I.getVariable() == &Var) 1378 return true; 1379 } 1380 1381 // No need to walk into the subexpressions. 1382 return false; 1383 } 1384 1385 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1386 const CompoundStmt *CS = SE->getSubStmt(); 1387 for (const auto *BI : CS->body()) 1388 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1389 if (isCapturedBy(Var, BIE)) 1390 return true; 1391 } 1392 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1393 // special case declarations 1394 for (const auto *I : DS->decls()) { 1395 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1396 const Expr *Init = VD->getInit(); 1397 if (Init && isCapturedBy(Var, Init)) 1398 return true; 1399 } 1400 } 1401 } 1402 else 1403 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1404 // Later, provide code to poke into statements for capture analysis. 1405 return true; 1406 return false; 1407 } 1408 1409 for (const Stmt *SubStmt : E->children()) 1410 if (isCapturedBy(Var, SubStmt)) 1411 return true; 1412 1413 return false; 1414 } 1415 1416 /// Determine whether the given initializer is trivial in the sense 1417 /// that it requires no code to be generated. 1418 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1419 if (!Init) 1420 return true; 1421 1422 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1423 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1424 if (Constructor->isTrivial() && 1425 Constructor->isDefaultConstructor() && 1426 !Construct->requiresZeroInitialization()) 1427 return true; 1428 1429 return false; 1430 } 1431 1432 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1433 assert(emission.Variable && "emission was not valid!"); 1434 1435 // If this was emitted as a global constant, we're done. 1436 if (emission.wasEmittedAsGlobal()) return; 1437 1438 const VarDecl &D = *emission.Variable; 1439 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1440 QualType type = D.getType(); 1441 1442 // If this local has an initializer, emit it now. 1443 const Expr *Init = D.getInit(); 1444 1445 // If we are at an unreachable point, we don't need to emit the initializer 1446 // unless it contains a label. 1447 if (!HaveInsertPoint()) { 1448 if (!Init || !ContainsLabel(Init)) return; 1449 EnsureInsertPoint(); 1450 } 1451 1452 // Initialize the structure of a __block variable. 1453 if (emission.IsByRef) 1454 emitByrefStructureInit(emission); 1455 1456 // Initialize the variable here if it doesn't have a initializer and it is a 1457 // C struct that is non-trivial to initialize or an array containing such a 1458 // struct. 1459 if (!Init && 1460 type.isNonTrivialToPrimitiveDefaultInitialize() == 1461 QualType::PDIK_Struct) { 1462 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1463 if (emission.IsByRef) 1464 drillIntoBlockVariable(*this, Dst, &D); 1465 defaultInitNonTrivialCStructVar(Dst); 1466 return; 1467 } 1468 1469 if (isTrivialInitializer(Init)) 1470 return; 1471 1472 // Check whether this is a byref variable that's potentially 1473 // captured and moved by its own initializer. If so, we'll need to 1474 // emit the initializer first, then copy into the variable. 1475 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1476 1477 Address Loc = 1478 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1479 1480 llvm::Constant *constant = nullptr; 1481 if (emission.IsConstantAggregate || D.isConstexpr()) { 1482 assert(!capturedByInit && "constant init contains a capturing block?"); 1483 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1484 } 1485 1486 if (!constant) { 1487 LValue lv = MakeAddrLValue(Loc, type); 1488 lv.setNonGC(true); 1489 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1490 } 1491 1492 if (!emission.IsConstantAggregate) { 1493 // For simple scalar/complex initialization, store the value directly. 1494 LValue lv = MakeAddrLValue(Loc, type); 1495 lv.setNonGC(true); 1496 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1497 } 1498 1499 // If this is a simple aggregate initialization, we can optimize it 1500 // in various ways. 1501 bool isVolatile = type.isVolatileQualified(); 1502 1503 llvm::Value *SizeVal = 1504 llvm::ConstantInt::get(IntPtrTy, 1505 getContext().getTypeSizeInChars(type).getQuantity()); 1506 1507 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1508 if (Loc.getType() != BP) 1509 Loc = Builder.CreateBitCast(Loc, BP); 1510 1511 // If the initializer is all or mostly the same, codegen with bzero / memset 1512 // then do a few stores afterward. 1513 uint64_t ConstantSize = 1514 CGM.getDataLayout().getTypeAllocSize(constant->getType()); 1515 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1516 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1517 isVolatile); 1518 // Zero and undef don't require a stores. 1519 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1520 Loc = Builder.CreateBitCast(Loc, 1521 constant->getType()->getPointerTo(Loc.getAddressSpace())); 1522 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1523 } 1524 return; 1525 } 1526 1527 BytePattern Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); 1528 if (!Pattern.isNone()) { 1529 uint8_t Value = Pattern.isAny() ? 0x00 : Pattern.getValue(); 1530 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, 1531 isVolatile); 1532 return; 1533 } 1534 1535 // Otherwise, create a temporary global with the initializer then 1536 // memcpy from the global to the alloca. 1537 std::string Name = getStaticDeclName(CGM, D); 1538 unsigned AS = CGM.getContext().getTargetAddressSpace( 1539 CGM.getStringLiteralAddressSpace()); 1540 BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS); 1541 1542 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1543 CGM.getModule(), constant->getType(), true, 1544 llvm::GlobalValue::PrivateLinkage, constant, Name, nullptr, 1545 llvm::GlobalValue::NotThreadLocal, AS); 1546 GV->setAlignment(Loc.getAlignment().getQuantity()); 1547 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1548 1549 Address SrcPtr = Address(GV, Loc.getAlignment()); 1550 if (SrcPtr.getType() != BP) 1551 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1552 1553 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1554 } 1555 1556 /// Emit an expression as an initializer for an object (variable, field, etc.) 1557 /// at the given location. The expression is not necessarily the normal 1558 /// initializer for the object, and the address is not necessarily 1559 /// its normal location. 1560 /// 1561 /// \param init the initializing expression 1562 /// \param D the object to act as if we're initializing 1563 /// \param loc the address to initialize; its type is a pointer 1564 /// to the LLVM mapping of the object's type 1565 /// \param alignment the alignment of the address 1566 /// \param capturedByInit true if \p D is a __block variable 1567 /// whose address is potentially changed by the initializer 1568 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1569 LValue lvalue, bool capturedByInit) { 1570 QualType type = D->getType(); 1571 1572 if (type->isReferenceType()) { 1573 RValue rvalue = EmitReferenceBindingToExpr(init); 1574 if (capturedByInit) 1575 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1576 EmitStoreThroughLValue(rvalue, lvalue, true); 1577 return; 1578 } 1579 switch (getEvaluationKind(type)) { 1580 case TEK_Scalar: 1581 EmitScalarInit(init, D, lvalue, capturedByInit); 1582 return; 1583 case TEK_Complex: { 1584 ComplexPairTy complex = EmitComplexExpr(init); 1585 if (capturedByInit) 1586 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1587 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1588 return; 1589 } 1590 case TEK_Aggregate: 1591 if (type->isAtomicType()) { 1592 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1593 } else { 1594 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1595 if (isa<VarDecl>(D)) 1596 Overlap = AggValueSlot::DoesNotOverlap; 1597 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1598 Overlap = overlapForFieldInit(FD); 1599 // TODO: how can we delay here if D is captured by its initializer? 1600 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1601 AggValueSlot::IsDestructed, 1602 AggValueSlot::DoesNotNeedGCBarriers, 1603 AggValueSlot::IsNotAliased, 1604 Overlap)); 1605 } 1606 return; 1607 } 1608 llvm_unreachable("bad evaluation kind"); 1609 } 1610 1611 /// Enter a destroy cleanup for the given local variable. 1612 void CodeGenFunction::emitAutoVarTypeCleanup( 1613 const CodeGenFunction::AutoVarEmission &emission, 1614 QualType::DestructionKind dtorKind) { 1615 assert(dtorKind != QualType::DK_none); 1616 1617 // Note that for __block variables, we want to destroy the 1618 // original stack object, not the possibly forwarded object. 1619 Address addr = emission.getObjectAddress(*this); 1620 1621 const VarDecl *var = emission.Variable; 1622 QualType type = var->getType(); 1623 1624 CleanupKind cleanupKind = NormalAndEHCleanup; 1625 CodeGenFunction::Destroyer *destroyer = nullptr; 1626 1627 switch (dtorKind) { 1628 case QualType::DK_none: 1629 llvm_unreachable("no cleanup for trivially-destructible variable"); 1630 1631 case QualType::DK_cxx_destructor: 1632 // If there's an NRVO flag on the emission, we need a different 1633 // cleanup. 1634 if (emission.NRVOFlag) { 1635 assert(!type->isArrayType()); 1636 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1637 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, 1638 emission.NRVOFlag); 1639 return; 1640 } 1641 break; 1642 1643 case QualType::DK_objc_strong_lifetime: 1644 // Suppress cleanups for pseudo-strong variables. 1645 if (var->isARCPseudoStrong()) return; 1646 1647 // Otherwise, consider whether to use an EH cleanup or not. 1648 cleanupKind = getARCCleanupKind(); 1649 1650 // Use the imprecise destroyer by default. 1651 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1652 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1653 break; 1654 1655 case QualType::DK_objc_weak_lifetime: 1656 break; 1657 1658 case QualType::DK_nontrivial_c_struct: 1659 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1660 if (emission.NRVOFlag) { 1661 assert(!type->isArrayType()); 1662 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1663 emission.NRVOFlag, type); 1664 return; 1665 } 1666 break; 1667 } 1668 1669 // If we haven't chosen a more specific destroyer, use the default. 1670 if (!destroyer) destroyer = getDestroyer(dtorKind); 1671 1672 // Use an EH cleanup in array destructors iff the destructor itself 1673 // is being pushed as an EH cleanup. 1674 bool useEHCleanup = (cleanupKind & EHCleanup); 1675 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1676 useEHCleanup); 1677 } 1678 1679 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1680 assert(emission.Variable && "emission was not valid!"); 1681 1682 // If this was emitted as a global constant, we're done. 1683 if (emission.wasEmittedAsGlobal()) return; 1684 1685 // If we don't have an insertion point, we're done. Sema prevents 1686 // us from jumping into any of these scopes anyway. 1687 if (!HaveInsertPoint()) return; 1688 1689 const VarDecl &D = *emission.Variable; 1690 1691 // Check the type for a cleanup. 1692 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1693 emitAutoVarTypeCleanup(emission, dtorKind); 1694 1695 // In GC mode, honor objc_precise_lifetime. 1696 if (getLangOpts().getGC() != LangOptions::NonGC && 1697 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1698 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1699 } 1700 1701 // Handle the cleanup attribute. 1702 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1703 const FunctionDecl *FD = CA->getFunctionDecl(); 1704 1705 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1706 assert(F && "Could not find function!"); 1707 1708 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1709 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1710 } 1711 1712 // If this is a block variable, call _Block_object_destroy 1713 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 1714 // mode. 1715 if (emission.IsByRef && CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 1716 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 1717 if (emission.Variable->getType().isObjCGCWeak()) 1718 Flags |= BLOCK_FIELD_IS_WEAK; 1719 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 1720 /*LoadBlockVarAddr*/ false); 1721 } 1722 } 1723 1724 CodeGenFunction::Destroyer * 1725 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1726 switch (kind) { 1727 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1728 case QualType::DK_cxx_destructor: 1729 return destroyCXXObject; 1730 case QualType::DK_objc_strong_lifetime: 1731 return destroyARCStrongPrecise; 1732 case QualType::DK_objc_weak_lifetime: 1733 return destroyARCWeak; 1734 case QualType::DK_nontrivial_c_struct: 1735 return destroyNonTrivialCStruct; 1736 } 1737 llvm_unreachable("Unknown DestructionKind"); 1738 } 1739 1740 /// pushEHDestroy - Push the standard destructor for the given type as 1741 /// an EH-only cleanup. 1742 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1743 Address addr, QualType type) { 1744 assert(dtorKind && "cannot push destructor for trivial type"); 1745 assert(needsEHCleanup(dtorKind)); 1746 1747 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1748 } 1749 1750 /// pushDestroy - Push the standard destructor for the given type as 1751 /// at least a normal cleanup. 1752 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1753 Address addr, QualType type) { 1754 assert(dtorKind && "cannot push destructor for trivial type"); 1755 1756 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1757 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1758 cleanupKind & EHCleanup); 1759 } 1760 1761 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1762 QualType type, Destroyer *destroyer, 1763 bool useEHCleanupForArray) { 1764 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1765 destroyer, useEHCleanupForArray); 1766 } 1767 1768 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1769 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1770 } 1771 1772 void CodeGenFunction::pushLifetimeExtendedDestroy( 1773 CleanupKind cleanupKind, Address addr, QualType type, 1774 Destroyer *destroyer, bool useEHCleanupForArray) { 1775 // Push an EH-only cleanup for the object now. 1776 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1777 // around in case a temporary's destructor throws an exception. 1778 if (cleanupKind & EHCleanup) 1779 EHStack.pushCleanup<DestroyObject>( 1780 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1781 destroyer, useEHCleanupForArray); 1782 1783 // Remember that we need to push a full cleanup for the object at the 1784 // end of the full-expression. 1785 pushCleanupAfterFullExpr<DestroyObject>( 1786 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1787 } 1788 1789 /// emitDestroy - Immediately perform the destruction of the given 1790 /// object. 1791 /// 1792 /// \param addr - the address of the object; a type* 1793 /// \param type - the type of the object; if an array type, all 1794 /// objects are destroyed in reverse order 1795 /// \param destroyer - the function to call to destroy individual 1796 /// elements 1797 /// \param useEHCleanupForArray - whether an EH cleanup should be 1798 /// used when destroying array elements, in case one of the 1799 /// destructions throws an exception 1800 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1801 Destroyer *destroyer, 1802 bool useEHCleanupForArray) { 1803 const ArrayType *arrayType = getContext().getAsArrayType(type); 1804 if (!arrayType) 1805 return destroyer(*this, addr, type); 1806 1807 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1808 1809 CharUnits elementAlign = 1810 addr.getAlignment() 1811 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1812 1813 // Normally we have to check whether the array is zero-length. 1814 bool checkZeroLength = true; 1815 1816 // But if the array length is constant, we can suppress that. 1817 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1818 // ...and if it's constant zero, we can just skip the entire thing. 1819 if (constLength->isZero()) return; 1820 checkZeroLength = false; 1821 } 1822 1823 llvm::Value *begin = addr.getPointer(); 1824 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1825 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1826 checkZeroLength, useEHCleanupForArray); 1827 } 1828 1829 /// emitArrayDestroy - Destroys all the elements of the given array, 1830 /// beginning from last to first. The array cannot be zero-length. 1831 /// 1832 /// \param begin - a type* denoting the first element of the array 1833 /// \param end - a type* denoting one past the end of the array 1834 /// \param elementType - the element type of the array 1835 /// \param destroyer - the function to call to destroy elements 1836 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1837 /// the remaining elements in case the destruction of a single 1838 /// element throws 1839 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1840 llvm::Value *end, 1841 QualType elementType, 1842 CharUnits elementAlign, 1843 Destroyer *destroyer, 1844 bool checkZeroLength, 1845 bool useEHCleanup) { 1846 assert(!elementType->isArrayType()); 1847 1848 // The basic structure here is a do-while loop, because we don't 1849 // need to check for the zero-element case. 1850 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1851 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1852 1853 if (checkZeroLength) { 1854 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1855 "arraydestroy.isempty"); 1856 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1857 } 1858 1859 // Enter the loop body, making that address the current address. 1860 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1861 EmitBlock(bodyBB); 1862 llvm::PHINode *elementPast = 1863 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1864 elementPast->addIncoming(end, entryBB); 1865 1866 // Shift the address back by one element. 1867 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1868 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1869 "arraydestroy.element"); 1870 1871 if (useEHCleanup) 1872 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1873 destroyer); 1874 1875 // Perform the actual destruction there. 1876 destroyer(*this, Address(element, elementAlign), elementType); 1877 1878 if (useEHCleanup) 1879 PopCleanupBlock(); 1880 1881 // Check whether we've reached the end. 1882 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1883 Builder.CreateCondBr(done, doneBB, bodyBB); 1884 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1885 1886 // Done. 1887 EmitBlock(doneBB); 1888 } 1889 1890 /// Perform partial array destruction as if in an EH cleanup. Unlike 1891 /// emitArrayDestroy, the element type here may still be an array type. 1892 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1893 llvm::Value *begin, llvm::Value *end, 1894 QualType type, CharUnits elementAlign, 1895 CodeGenFunction::Destroyer *destroyer) { 1896 // If the element type is itself an array, drill down. 1897 unsigned arrayDepth = 0; 1898 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1899 // VLAs don't require a GEP index to walk into. 1900 if (!isa<VariableArrayType>(arrayType)) 1901 arrayDepth++; 1902 type = arrayType->getElementType(); 1903 } 1904 1905 if (arrayDepth) { 1906 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1907 1908 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1909 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1910 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1911 } 1912 1913 // Destroy the array. We don't ever need an EH cleanup because we 1914 // assume that we're in an EH cleanup ourselves, so a throwing 1915 // destructor causes an immediate terminate. 1916 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1917 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1918 } 1919 1920 namespace { 1921 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1922 /// array destroy where the end pointer is regularly determined and 1923 /// does not need to be loaded from a local. 1924 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1925 llvm::Value *ArrayBegin; 1926 llvm::Value *ArrayEnd; 1927 QualType ElementType; 1928 CodeGenFunction::Destroyer *Destroyer; 1929 CharUnits ElementAlign; 1930 public: 1931 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1932 QualType elementType, CharUnits elementAlign, 1933 CodeGenFunction::Destroyer *destroyer) 1934 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1935 ElementType(elementType), Destroyer(destroyer), 1936 ElementAlign(elementAlign) {} 1937 1938 void Emit(CodeGenFunction &CGF, Flags flags) override { 1939 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1940 ElementType, ElementAlign, Destroyer); 1941 } 1942 }; 1943 1944 /// IrregularPartialArrayDestroy - a cleanup which performs a 1945 /// partial array destroy where the end pointer is irregularly 1946 /// determined and must be loaded from a local. 1947 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1948 llvm::Value *ArrayBegin; 1949 Address ArrayEndPointer; 1950 QualType ElementType; 1951 CodeGenFunction::Destroyer *Destroyer; 1952 CharUnits ElementAlign; 1953 public: 1954 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1955 Address arrayEndPointer, 1956 QualType elementType, 1957 CharUnits elementAlign, 1958 CodeGenFunction::Destroyer *destroyer) 1959 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1960 ElementType(elementType), Destroyer(destroyer), 1961 ElementAlign(elementAlign) {} 1962 1963 void Emit(CodeGenFunction &CGF, Flags flags) override { 1964 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1965 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1966 ElementType, ElementAlign, Destroyer); 1967 } 1968 }; 1969 } // end anonymous namespace 1970 1971 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1972 /// already-constructed elements of the given array. The cleanup 1973 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1974 /// 1975 /// \param elementType - the immediate element type of the array; 1976 /// possibly still an array type 1977 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1978 Address arrayEndPointer, 1979 QualType elementType, 1980 CharUnits elementAlign, 1981 Destroyer *destroyer) { 1982 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1983 arrayBegin, arrayEndPointer, 1984 elementType, elementAlign, 1985 destroyer); 1986 } 1987 1988 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1989 /// already-constructed elements of the given array. The cleanup 1990 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1991 /// 1992 /// \param elementType - the immediate element type of the array; 1993 /// possibly still an array type 1994 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1995 llvm::Value *arrayEnd, 1996 QualType elementType, 1997 CharUnits elementAlign, 1998 Destroyer *destroyer) { 1999 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2000 arrayBegin, arrayEnd, 2001 elementType, elementAlign, 2002 destroyer); 2003 } 2004 2005 /// Lazily declare the @llvm.lifetime.start intrinsic. 2006 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 2007 if (LifetimeStartFn) 2008 return LifetimeStartFn; 2009 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2010 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2011 return LifetimeStartFn; 2012 } 2013 2014 /// Lazily declare the @llvm.lifetime.end intrinsic. 2015 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 2016 if (LifetimeEndFn) 2017 return LifetimeEndFn; 2018 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2019 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2020 return LifetimeEndFn; 2021 } 2022 2023 namespace { 2024 /// A cleanup to perform a release of an object at the end of a 2025 /// function. This is used to balance out the incoming +1 of a 2026 /// ns_consumed argument when we can't reasonably do that just by 2027 /// not doing the initial retain for a __block argument. 2028 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2029 ConsumeARCParameter(llvm::Value *param, 2030 ARCPreciseLifetime_t precise) 2031 : Param(param), Precise(precise) {} 2032 2033 llvm::Value *Param; 2034 ARCPreciseLifetime_t Precise; 2035 2036 void Emit(CodeGenFunction &CGF, Flags flags) override { 2037 CGF.EmitARCRelease(Param, Precise); 2038 } 2039 }; 2040 } // end anonymous namespace 2041 2042 /// Emit an alloca (or GlobalValue depending on target) 2043 /// for the specified parameter and set up LocalDeclMap. 2044 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2045 unsigned ArgNo) { 2046 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2047 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2048 "Invalid argument to EmitParmDecl"); 2049 2050 Arg.getAnyValue()->setName(D.getName()); 2051 2052 QualType Ty = D.getType(); 2053 2054 // Use better IR generation for certain implicit parameters. 2055 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2056 // The only implicit argument a block has is its literal. 2057 // This may be passed as an inalloca'ed value on Windows x86. 2058 if (BlockInfo) { 2059 llvm::Value *V = Arg.isIndirect() 2060 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2061 : Arg.getDirectValue(); 2062 setBlockContextParameter(IPD, ArgNo, V); 2063 return; 2064 } 2065 } 2066 2067 Address DeclPtr = Address::invalid(); 2068 bool DoStore = false; 2069 bool IsScalar = hasScalarEvaluationKind(Ty); 2070 // If we already have a pointer to the argument, reuse the input pointer. 2071 if (Arg.isIndirect()) { 2072 DeclPtr = Arg.getIndirectAddress(); 2073 // If we have a prettier pointer type at this point, bitcast to that. 2074 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2075 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2076 if (DeclPtr.getType() != IRTy) 2077 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2078 // Indirect argument is in alloca address space, which may be different 2079 // from the default address space. 2080 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2081 auto *V = DeclPtr.getPointer(); 2082 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2083 auto DestLangAS = 2084 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2085 if (SrcLangAS != DestLangAS) { 2086 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2087 CGM.getDataLayout().getAllocaAddrSpace()); 2088 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2089 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2090 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2091 *this, V, SrcLangAS, DestLangAS, T, true), 2092 DeclPtr.getAlignment()); 2093 } 2094 2095 // Push a destructor cleanup for this parameter if the ABI requires it. 2096 // Don't push a cleanup in a thunk for a method that will also emit a 2097 // cleanup. 2098 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2099 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2100 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 2101 assert((DtorKind == QualType::DK_cxx_destructor || 2102 DtorKind == QualType::DK_nontrivial_c_struct) && 2103 "unexpected destructor type"); 2104 pushDestroy(DtorKind, DeclPtr, Ty); 2105 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2106 EHStack.stable_begin(); 2107 } 2108 } 2109 } else { 2110 // Check if the parameter address is controlled by OpenMP runtime. 2111 Address OpenMPLocalAddr = 2112 getLangOpts().OpenMP 2113 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2114 : Address::invalid(); 2115 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2116 DeclPtr = OpenMPLocalAddr; 2117 } else { 2118 // Otherwise, create a temporary to hold the value. 2119 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2120 D.getName() + ".addr"); 2121 } 2122 DoStore = true; 2123 } 2124 2125 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2126 2127 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2128 if (IsScalar) { 2129 Qualifiers qs = Ty.getQualifiers(); 2130 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2131 // We honor __attribute__((ns_consumed)) for types with lifetime. 2132 // For __strong, it's handled by just skipping the initial retain; 2133 // otherwise we have to balance out the initial +1 with an extra 2134 // cleanup to do the release at the end of the function. 2135 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2136 2137 // 'self' is always formally __strong, but if this is not an 2138 // init method then we don't want to retain it. 2139 if (D.isARCPseudoStrong()) { 2140 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 2141 assert(&D == method->getSelfDecl()); 2142 assert(lt == Qualifiers::OCL_Strong); 2143 assert(qs.hasConst()); 2144 assert(method->getMethodFamily() != OMF_init); 2145 (void) method; 2146 lt = Qualifiers::OCL_ExplicitNone; 2147 } 2148 2149 // Load objects passed indirectly. 2150 if (Arg.isIndirect() && !ArgVal) 2151 ArgVal = Builder.CreateLoad(DeclPtr); 2152 2153 if (lt == Qualifiers::OCL_Strong) { 2154 if (!isConsumed) { 2155 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2156 // use objc_storeStrong(&dest, value) for retaining the 2157 // object. But first, store a null into 'dest' because 2158 // objc_storeStrong attempts to release its old value. 2159 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2160 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2161 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2162 DoStore = false; 2163 } 2164 else 2165 // Don't use objc_retainBlock for block pointers, because we 2166 // don't want to Block_copy something just because we got it 2167 // as a parameter. 2168 ArgVal = EmitARCRetainNonBlock(ArgVal); 2169 } 2170 } else { 2171 // Push the cleanup for a consumed parameter. 2172 if (isConsumed) { 2173 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2174 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2175 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2176 precise); 2177 } 2178 2179 if (lt == Qualifiers::OCL_Weak) { 2180 EmitARCInitWeak(DeclPtr, ArgVal); 2181 DoStore = false; // The weak init is a store, no need to do two. 2182 } 2183 } 2184 2185 // Enter the cleanup scope. 2186 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2187 } 2188 } 2189 2190 // Store the initial value into the alloca. 2191 if (DoStore) 2192 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2193 2194 setAddrOfLocalVar(&D, DeclPtr); 2195 2196 // Emit debug info for param declaration. 2197 if (CGDebugInfo *DI = getDebugInfo()) { 2198 if (CGM.getCodeGenOpts().getDebugInfo() >= 2199 codegenoptions::LimitedDebugInfo) { 2200 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2201 } 2202 } 2203 2204 if (D.hasAttr<AnnotateAttr>()) 2205 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2206 2207 // We can only check return value nullability if all arguments to the 2208 // function satisfy their nullability preconditions. This makes it necessary 2209 // to emit null checks for args in the function body itself. 2210 if (requiresReturnValueNullabilityCheck()) { 2211 auto Nullability = Ty->getNullability(getContext()); 2212 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2213 SanitizerScope SanScope(this); 2214 RetValNullabilityPrecondition = 2215 Builder.CreateAnd(RetValNullabilityPrecondition, 2216 Builder.CreateIsNotNull(Arg.getAnyValue())); 2217 } 2218 } 2219 } 2220 2221 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2222 CodeGenFunction *CGF) { 2223 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2224 return; 2225 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2226 } 2227