1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenCLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclOpenMP.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Type.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 void CodeGenFunction::EmitDecl(const Decl &D) { 40 switch (D.getKind()) { 41 case Decl::BuiltinTemplate: 42 case Decl::TranslationUnit: 43 case Decl::ExternCContext: 44 case Decl::Namespace: 45 case Decl::UnresolvedUsingTypename: 46 case Decl::ClassTemplateSpecialization: 47 case Decl::ClassTemplatePartialSpecialization: 48 case Decl::VarTemplateSpecialization: 49 case Decl::VarTemplatePartialSpecialization: 50 case Decl::TemplateTypeParm: 51 case Decl::UnresolvedUsingValue: 52 case Decl::NonTypeTemplateParm: 53 case Decl::CXXMethod: 54 case Decl::CXXConstructor: 55 case Decl::CXXDestructor: 56 case Decl::CXXConversion: 57 case Decl::Field: 58 case Decl::MSProperty: 59 case Decl::IndirectField: 60 case Decl::ObjCIvar: 61 case Decl::ObjCAtDefsField: 62 case Decl::ParmVar: 63 case Decl::ImplicitParam: 64 case Decl::ClassTemplate: 65 case Decl::VarTemplate: 66 case Decl::FunctionTemplate: 67 case Decl::TypeAliasTemplate: 68 case Decl::TemplateTemplateParm: 69 case Decl::ObjCMethod: 70 case Decl::ObjCCategory: 71 case Decl::ObjCProtocol: 72 case Decl::ObjCInterface: 73 case Decl::ObjCCategoryImpl: 74 case Decl::ObjCImplementation: 75 case Decl::ObjCProperty: 76 case Decl::ObjCCompatibleAlias: 77 case Decl::PragmaComment: 78 case Decl::PragmaDetectMismatch: 79 case Decl::AccessSpec: 80 case Decl::LinkageSpec: 81 case Decl::Export: 82 case Decl::ObjCPropertyImpl: 83 case Decl::FileScopeAsm: 84 case Decl::Friend: 85 case Decl::FriendTemplate: 86 case Decl::Block: 87 case Decl::Captured: 88 case Decl::ClassScopeFunctionSpecialization: 89 case Decl::UsingShadow: 90 case Decl::ConstructorUsingShadow: 91 case Decl::ObjCTypeParam: 92 case Decl::Binding: 93 llvm_unreachable("Declaration should not be in declstmts!"); 94 case Decl::Function: // void X(); 95 case Decl::Record: // struct/union/class X; 96 case Decl::Enum: // enum X; 97 case Decl::EnumConstant: // enum ? { X = ? } 98 case Decl::CXXRecord: // struct/union/class X; [C++] 99 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 100 case Decl::Label: // __label__ x; 101 case Decl::Import: 102 case Decl::OMPThreadPrivate: 103 case Decl::OMPCapturedExpr: 104 case Decl::Empty: 105 // None of these decls require codegen support. 106 return; 107 108 case Decl::NamespaceAlias: 109 if (CGDebugInfo *DI = getDebugInfo()) 110 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 111 return; 112 case Decl::Using: // using X; [C++] 113 if (CGDebugInfo *DI = getDebugInfo()) 114 DI->EmitUsingDecl(cast<UsingDecl>(D)); 115 return; 116 case Decl::UsingPack: 117 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 118 EmitDecl(*Using); 119 return; 120 case Decl::UsingDirective: // using namespace X; [C++] 121 if (CGDebugInfo *DI = getDebugInfo()) 122 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 123 return; 124 case Decl::Var: 125 case Decl::Decomposition: { 126 const VarDecl &VD = cast<VarDecl>(D); 127 assert(VD.isLocalVarDecl() && 128 "Should not see file-scope variables inside a function!"); 129 EmitVarDecl(VD); 130 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 131 for (auto *B : DD->bindings()) 132 if (auto *HD = B->getHoldingVar()) 133 EmitVarDecl(*HD); 134 return; 135 } 136 137 case Decl::OMPDeclareReduction: 138 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 139 140 case Decl::Typedef: // typedef int X; 141 case Decl::TypeAlias: { // using X = int; [C++0x] 142 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 143 QualType Ty = TD.getUnderlyingType(); 144 145 if (Ty->isVariablyModifiedType()) 146 EmitVariablyModifiedType(Ty); 147 } 148 } 149 } 150 151 /// EmitVarDecl - This method handles emission of any variable declaration 152 /// inside a function, including static vars etc. 153 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 154 if (D.isStaticLocal()) { 155 llvm::GlobalValue::LinkageTypes Linkage = 156 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 157 158 // FIXME: We need to force the emission/use of a guard variable for 159 // some variables even if we can constant-evaluate them because 160 // we can't guarantee every translation unit will constant-evaluate them. 161 162 return EmitStaticVarDecl(D, Linkage); 163 } 164 165 if (D.hasExternalStorage()) 166 // Don't emit it now, allow it to be emitted lazily on its first use. 167 return; 168 169 if (D.getType().getAddressSpace() == LangAS::opencl_local) 170 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 171 172 assert(D.hasLocalStorage()); 173 return EmitAutoVarDecl(D); 174 } 175 176 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 177 if (CGM.getLangOpts().CPlusPlus) 178 return CGM.getMangledName(&D).str(); 179 180 // If this isn't C++, we don't need a mangled name, just a pretty one. 181 assert(!D.isExternallyVisible() && "name shouldn't matter"); 182 std::string ContextName; 183 const DeclContext *DC = D.getDeclContext(); 184 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 185 DC = cast<DeclContext>(CD->getNonClosureContext()); 186 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 187 ContextName = CGM.getMangledName(FD); 188 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 189 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 190 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 191 ContextName = OMD->getSelector().getAsString(); 192 else 193 llvm_unreachable("Unknown context for static var decl"); 194 195 ContextName += "." + D.getNameAsString(); 196 return ContextName; 197 } 198 199 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 200 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 201 // In general, we don't always emit static var decls once before we reference 202 // them. It is possible to reference them before emitting the function that 203 // contains them, and it is possible to emit the containing function multiple 204 // times. 205 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 206 return ExistingGV; 207 208 QualType Ty = D.getType(); 209 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 210 211 // Use the label if the variable is renamed with the asm-label extension. 212 std::string Name; 213 if (D.hasAttr<AsmLabelAttr>()) 214 Name = getMangledName(&D); 215 else 216 Name = getStaticDeclName(*this, D); 217 218 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 219 unsigned AddrSpace = 220 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 221 222 // Local address space cannot have an initializer. 223 llvm::Constant *Init = nullptr; 224 if (Ty.getAddressSpace() != LangAS::opencl_local) 225 Init = EmitNullConstant(Ty); 226 else 227 Init = llvm::UndefValue::get(LTy); 228 229 llvm::GlobalVariable *GV = 230 new llvm::GlobalVariable(getModule(), LTy, 231 Ty.isConstant(getContext()), Linkage, 232 Init, Name, nullptr, 233 llvm::GlobalVariable::NotThreadLocal, 234 AddrSpace); 235 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 236 setGlobalVisibility(GV, &D); 237 238 if (supportsCOMDAT() && GV->isWeakForLinker()) 239 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 240 241 if (D.getTLSKind()) 242 setTLSMode(GV, D); 243 244 if (D.isExternallyVisible()) { 245 if (D.hasAttr<DLLImportAttr>()) 246 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 247 else if (D.hasAttr<DLLExportAttr>()) 248 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 249 } 250 251 // Make sure the result is of the correct type. 252 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 253 llvm::Constant *Addr = GV; 254 if (AddrSpace != ExpectedAddrSpace) { 255 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 256 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 257 } 258 259 setStaticLocalDeclAddress(&D, Addr); 260 261 // Ensure that the static local gets initialized by making sure the parent 262 // function gets emitted eventually. 263 const Decl *DC = cast<Decl>(D.getDeclContext()); 264 265 // We can't name blocks or captured statements directly, so try to emit their 266 // parents. 267 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 268 DC = DC->getNonClosureContext(); 269 // FIXME: Ensure that global blocks get emitted. 270 if (!DC) 271 return Addr; 272 } 273 274 GlobalDecl GD; 275 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 276 GD = GlobalDecl(CD, Ctor_Base); 277 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 278 GD = GlobalDecl(DD, Dtor_Base); 279 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 280 GD = GlobalDecl(FD); 281 else { 282 // Don't do anything for Obj-C method decls or global closures. We should 283 // never defer them. 284 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 285 } 286 if (GD.getDecl()) 287 (void)GetAddrOfGlobal(GD); 288 289 return Addr; 290 } 291 292 /// hasNontrivialDestruction - Determine whether a type's destruction is 293 /// non-trivial. If so, and the variable uses static initialization, we must 294 /// register its destructor to run on exit. 295 static bool hasNontrivialDestruction(QualType T) { 296 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 297 return RD && !RD->hasTrivialDestructor(); 298 } 299 300 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 301 /// global variable that has already been created for it. If the initializer 302 /// has a different type than GV does, this may free GV and return a different 303 /// one. Otherwise it just returns GV. 304 llvm::GlobalVariable * 305 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 306 llvm::GlobalVariable *GV) { 307 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 308 309 // If constant emission failed, then this should be a C++ static 310 // initializer. 311 if (!Init) { 312 if (!getLangOpts().CPlusPlus) 313 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 314 else if (HaveInsertPoint()) { 315 // Since we have a static initializer, this global variable can't 316 // be constant. 317 GV->setConstant(false); 318 319 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 320 } 321 return GV; 322 } 323 324 // The initializer may differ in type from the global. Rewrite 325 // the global to match the initializer. (We have to do this 326 // because some types, like unions, can't be completely represented 327 // in the LLVM type system.) 328 if (GV->getType()->getElementType() != Init->getType()) { 329 llvm::GlobalVariable *OldGV = GV; 330 331 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 332 OldGV->isConstant(), 333 OldGV->getLinkage(), Init, "", 334 /*InsertBefore*/ OldGV, 335 OldGV->getThreadLocalMode(), 336 CGM.getContext().getTargetAddressSpace(D.getType())); 337 GV->setVisibility(OldGV->getVisibility()); 338 GV->setComdat(OldGV->getComdat()); 339 340 // Steal the name of the old global 341 GV->takeName(OldGV); 342 343 // Replace all uses of the old global with the new global 344 llvm::Constant *NewPtrForOldDecl = 345 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 346 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 347 348 // Erase the old global, since it is no longer used. 349 OldGV->eraseFromParent(); 350 } 351 352 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 353 GV->setInitializer(Init); 354 355 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 356 // We have a constant initializer, but a nontrivial destructor. We still 357 // need to perform a guarded "initialization" in order to register the 358 // destructor. 359 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 360 } 361 362 return GV; 363 } 364 365 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 366 llvm::GlobalValue::LinkageTypes Linkage) { 367 // Check to see if we already have a global variable for this 368 // declaration. This can happen when double-emitting function 369 // bodies, e.g. with complete and base constructors. 370 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 371 CharUnits alignment = getContext().getDeclAlign(&D); 372 373 // Store into LocalDeclMap before generating initializer to handle 374 // circular references. 375 setAddrOfLocalVar(&D, Address(addr, alignment)); 376 377 // We can't have a VLA here, but we can have a pointer to a VLA, 378 // even though that doesn't really make any sense. 379 // Make sure to evaluate VLA bounds now so that we have them for later. 380 if (D.getType()->isVariablyModifiedType()) 381 EmitVariablyModifiedType(D.getType()); 382 383 // Save the type in case adding the initializer forces a type change. 384 llvm::Type *expectedType = addr->getType(); 385 386 llvm::GlobalVariable *var = 387 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 388 389 // CUDA's local and local static __shared__ variables should not 390 // have any non-empty initializers. This is ensured by Sema. 391 // Whatever initializer such variable may have when it gets here is 392 // a no-op and should not be emitted. 393 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 394 D.hasAttr<CUDASharedAttr>(); 395 // If this value has an initializer, emit it. 396 if (D.getInit() && !isCudaSharedVar) 397 var = AddInitializerToStaticVarDecl(D, var); 398 399 var->setAlignment(alignment.getQuantity()); 400 401 if (D.hasAttr<AnnotateAttr>()) 402 CGM.AddGlobalAnnotations(&D, var); 403 404 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 405 var->setSection(SA->getName()); 406 407 if (D.hasAttr<UsedAttr>()) 408 CGM.addUsedGlobal(var); 409 410 // We may have to cast the constant because of the initializer 411 // mismatch above. 412 // 413 // FIXME: It is really dangerous to store this in the map; if anyone 414 // RAUW's the GV uses of this constant will be invalid. 415 llvm::Constant *castedAddr = 416 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 417 if (var != castedAddr) 418 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 419 CGM.setStaticLocalDeclAddress(&D, castedAddr); 420 421 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 422 423 // Emit global variable debug descriptor for static vars. 424 CGDebugInfo *DI = getDebugInfo(); 425 if (DI && 426 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 427 DI->setLocation(D.getLocation()); 428 DI->EmitGlobalVariable(var, &D); 429 } 430 } 431 432 namespace { 433 struct DestroyObject final : EHScopeStack::Cleanup { 434 DestroyObject(Address addr, QualType type, 435 CodeGenFunction::Destroyer *destroyer, 436 bool useEHCleanupForArray) 437 : addr(addr), type(type), destroyer(destroyer), 438 useEHCleanupForArray(useEHCleanupForArray) {} 439 440 Address addr; 441 QualType type; 442 CodeGenFunction::Destroyer *destroyer; 443 bool useEHCleanupForArray; 444 445 void Emit(CodeGenFunction &CGF, Flags flags) override { 446 // Don't use an EH cleanup recursively from an EH cleanup. 447 bool useEHCleanupForArray = 448 flags.isForNormalCleanup() && this->useEHCleanupForArray; 449 450 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 451 } 452 }; 453 454 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 455 DestroyNRVOVariable(Address addr, 456 const CXXDestructorDecl *Dtor, 457 llvm::Value *NRVOFlag) 458 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 459 460 const CXXDestructorDecl *Dtor; 461 llvm::Value *NRVOFlag; 462 Address Loc; 463 464 void Emit(CodeGenFunction &CGF, Flags flags) override { 465 // Along the exceptions path we always execute the dtor. 466 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 467 468 llvm::BasicBlock *SkipDtorBB = nullptr; 469 if (NRVO) { 470 // If we exited via NRVO, we skip the destructor call. 471 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 472 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 473 llvm::Value *DidNRVO = 474 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 475 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 476 CGF.EmitBlock(RunDtorBB); 477 } 478 479 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 480 /*ForVirtualBase=*/false, 481 /*Delegating=*/false, 482 Loc); 483 484 if (NRVO) CGF.EmitBlock(SkipDtorBB); 485 } 486 }; 487 488 struct CallStackRestore final : EHScopeStack::Cleanup { 489 Address Stack; 490 CallStackRestore(Address Stack) : Stack(Stack) {} 491 void Emit(CodeGenFunction &CGF, Flags flags) override { 492 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 493 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 494 CGF.Builder.CreateCall(F, V); 495 } 496 }; 497 498 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 499 const VarDecl &Var; 500 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 501 502 void Emit(CodeGenFunction &CGF, Flags flags) override { 503 // Compute the address of the local variable, in case it's a 504 // byref or something. 505 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 506 Var.getType(), VK_LValue, SourceLocation()); 507 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 508 SourceLocation()); 509 CGF.EmitExtendGCLifetime(value); 510 } 511 }; 512 513 struct CallCleanupFunction final : EHScopeStack::Cleanup { 514 llvm::Constant *CleanupFn; 515 const CGFunctionInfo &FnInfo; 516 const VarDecl &Var; 517 518 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 519 const VarDecl *Var) 520 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 521 522 void Emit(CodeGenFunction &CGF, Flags flags) override { 523 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 524 Var.getType(), VK_LValue, SourceLocation()); 525 // Compute the address of the local variable, in case it's a byref 526 // or something. 527 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 528 529 // In some cases, the type of the function argument will be different from 530 // the type of the pointer. An example of this is 531 // void f(void* arg); 532 // __attribute__((cleanup(f))) void *g; 533 // 534 // To fix this we insert a bitcast here. 535 QualType ArgTy = FnInfo.arg_begin()->type; 536 llvm::Value *Arg = 537 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 538 539 CallArgList Args; 540 Args.add(RValue::get(Arg), 541 CGF.getContext().getPointerType(Var.getType())); 542 auto Callee = CGCallee::forDirect(CleanupFn); 543 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 544 } 545 }; 546 } // end anonymous namespace 547 548 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 549 /// variable with lifetime. 550 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 551 Address addr, 552 Qualifiers::ObjCLifetime lifetime) { 553 switch (lifetime) { 554 case Qualifiers::OCL_None: 555 llvm_unreachable("present but none"); 556 557 case Qualifiers::OCL_ExplicitNone: 558 // nothing to do 559 break; 560 561 case Qualifiers::OCL_Strong: { 562 CodeGenFunction::Destroyer *destroyer = 563 (var.hasAttr<ObjCPreciseLifetimeAttr>() 564 ? CodeGenFunction::destroyARCStrongPrecise 565 : CodeGenFunction::destroyARCStrongImprecise); 566 567 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 568 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 569 cleanupKind & EHCleanup); 570 break; 571 } 572 case Qualifiers::OCL_Autoreleasing: 573 // nothing to do 574 break; 575 576 case Qualifiers::OCL_Weak: 577 // __weak objects always get EH cleanups; otherwise, exceptions 578 // could cause really nasty crashes instead of mere leaks. 579 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 580 CodeGenFunction::destroyARCWeak, 581 /*useEHCleanup*/ true); 582 break; 583 } 584 } 585 586 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 587 if (const Expr *e = dyn_cast<Expr>(s)) { 588 // Skip the most common kinds of expressions that make 589 // hierarchy-walking expensive. 590 s = e = e->IgnoreParenCasts(); 591 592 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 593 return (ref->getDecl() == &var); 594 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 595 const BlockDecl *block = be->getBlockDecl(); 596 for (const auto &I : block->captures()) { 597 if (I.getVariable() == &var) 598 return true; 599 } 600 } 601 } 602 603 for (const Stmt *SubStmt : s->children()) 604 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 605 if (SubStmt && isAccessedBy(var, SubStmt)) 606 return true; 607 608 return false; 609 } 610 611 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 612 if (!decl) return false; 613 if (!isa<VarDecl>(decl)) return false; 614 const VarDecl *var = cast<VarDecl>(decl); 615 return isAccessedBy(*var, e); 616 } 617 618 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 619 const LValue &destLV, const Expr *init) { 620 bool needsCast = false; 621 622 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 623 switch (castExpr->getCastKind()) { 624 // Look through casts that don't require representation changes. 625 case CK_NoOp: 626 case CK_BitCast: 627 case CK_BlockPointerToObjCPointerCast: 628 needsCast = true; 629 break; 630 631 // If we find an l-value to r-value cast from a __weak variable, 632 // emit this operation as a copy or move. 633 case CK_LValueToRValue: { 634 const Expr *srcExpr = castExpr->getSubExpr(); 635 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 636 return false; 637 638 // Emit the source l-value. 639 LValue srcLV = CGF.EmitLValue(srcExpr); 640 641 // Handle a formal type change to avoid asserting. 642 auto srcAddr = srcLV.getAddress(); 643 if (needsCast) { 644 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 645 destLV.getAddress().getElementType()); 646 } 647 648 // If it was an l-value, use objc_copyWeak. 649 if (srcExpr->getValueKind() == VK_LValue) { 650 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 651 } else { 652 assert(srcExpr->getValueKind() == VK_XValue); 653 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 654 } 655 return true; 656 } 657 658 // Stop at anything else. 659 default: 660 return false; 661 } 662 663 init = castExpr->getSubExpr(); 664 } 665 return false; 666 } 667 668 static void drillIntoBlockVariable(CodeGenFunction &CGF, 669 LValue &lvalue, 670 const VarDecl *var) { 671 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 672 } 673 674 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 675 LValue lvalue, bool capturedByInit) { 676 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 677 if (!lifetime) { 678 llvm::Value *value = EmitScalarExpr(init); 679 if (capturedByInit) 680 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 681 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 682 return; 683 } 684 685 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 686 init = DIE->getExpr(); 687 688 // If we're emitting a value with lifetime, we have to do the 689 // initialization *before* we leave the cleanup scopes. 690 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 691 enterFullExpression(ewc); 692 init = ewc->getSubExpr(); 693 } 694 CodeGenFunction::RunCleanupsScope Scope(*this); 695 696 // We have to maintain the illusion that the variable is 697 // zero-initialized. If the variable might be accessed in its 698 // initializer, zero-initialize before running the initializer, then 699 // actually perform the initialization with an assign. 700 bool accessedByInit = false; 701 if (lifetime != Qualifiers::OCL_ExplicitNone) 702 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 703 if (accessedByInit) { 704 LValue tempLV = lvalue; 705 // Drill down to the __block object if necessary. 706 if (capturedByInit) { 707 // We can use a simple GEP for this because it can't have been 708 // moved yet. 709 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 710 cast<VarDecl>(D), 711 /*follow*/ false)); 712 } 713 714 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 715 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 716 717 // If __weak, we want to use a barrier under certain conditions. 718 if (lifetime == Qualifiers::OCL_Weak) 719 EmitARCInitWeak(tempLV.getAddress(), zero); 720 721 // Otherwise just do a simple store. 722 else 723 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 724 } 725 726 // Emit the initializer. 727 llvm::Value *value = nullptr; 728 729 switch (lifetime) { 730 case Qualifiers::OCL_None: 731 llvm_unreachable("present but none"); 732 733 case Qualifiers::OCL_ExplicitNone: 734 value = EmitARCUnsafeUnretainedScalarExpr(init); 735 break; 736 737 case Qualifiers::OCL_Strong: { 738 value = EmitARCRetainScalarExpr(init); 739 break; 740 } 741 742 case Qualifiers::OCL_Weak: { 743 // If it's not accessed by the initializer, try to emit the 744 // initialization with a copy or move. 745 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 746 return; 747 } 748 749 // No way to optimize a producing initializer into this. It's not 750 // worth optimizing for, because the value will immediately 751 // disappear in the common case. 752 value = EmitScalarExpr(init); 753 754 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 755 if (accessedByInit) 756 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 757 else 758 EmitARCInitWeak(lvalue.getAddress(), value); 759 return; 760 } 761 762 case Qualifiers::OCL_Autoreleasing: 763 value = EmitARCRetainAutoreleaseScalarExpr(init); 764 break; 765 } 766 767 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 768 769 // If the variable might have been accessed by its initializer, we 770 // might have to initialize with a barrier. We have to do this for 771 // both __weak and __strong, but __weak got filtered out above. 772 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 773 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 774 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 775 EmitARCRelease(oldValue, ARCImpreciseLifetime); 776 return; 777 } 778 779 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 780 } 781 782 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 783 /// non-zero parts of the specified initializer with equal or fewer than 784 /// NumStores scalar stores. 785 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 786 unsigned &NumStores) { 787 // Zero and Undef never requires any extra stores. 788 if (isa<llvm::ConstantAggregateZero>(Init) || 789 isa<llvm::ConstantPointerNull>(Init) || 790 isa<llvm::UndefValue>(Init)) 791 return true; 792 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 793 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 794 isa<llvm::ConstantExpr>(Init)) 795 return Init->isNullValue() || NumStores--; 796 797 // See if we can emit each element. 798 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 799 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 800 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 801 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 802 return false; 803 } 804 return true; 805 } 806 807 if (llvm::ConstantDataSequential *CDS = 808 dyn_cast<llvm::ConstantDataSequential>(Init)) { 809 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 810 llvm::Constant *Elt = CDS->getElementAsConstant(i); 811 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 812 return false; 813 } 814 return true; 815 } 816 817 // Anything else is hard and scary. 818 return false; 819 } 820 821 /// emitStoresForInitAfterMemset - For inits that 822 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 823 /// stores that would be required. 824 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 825 bool isVolatile, CGBuilderTy &Builder) { 826 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 827 "called emitStoresForInitAfterMemset for zero or undef value."); 828 829 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 830 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 831 isa<llvm::ConstantExpr>(Init)) { 832 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 833 return; 834 } 835 836 if (llvm::ConstantDataSequential *CDS = 837 dyn_cast<llvm::ConstantDataSequential>(Init)) { 838 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 839 llvm::Constant *Elt = CDS->getElementAsConstant(i); 840 841 // If necessary, get a pointer to the element and emit it. 842 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 843 emitStoresForInitAfterMemset( 844 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 845 isVolatile, Builder); 846 } 847 return; 848 } 849 850 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 851 "Unknown value type!"); 852 853 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 854 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 855 856 // If necessary, get a pointer to the element and emit it. 857 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 858 emitStoresForInitAfterMemset( 859 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 860 isVolatile, Builder); 861 } 862 } 863 864 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 865 /// plus some stores to initialize a local variable instead of using a memcpy 866 /// from a constant global. It is beneficial to use memset if the global is all 867 /// zeros, or mostly zeros and large. 868 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 869 uint64_t GlobalSize) { 870 // If a global is all zeros, always use a memset. 871 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 872 873 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 874 // do it if it will require 6 or fewer scalar stores. 875 // TODO: Should budget depends on the size? Avoiding a large global warrants 876 // plopping in more stores. 877 unsigned StoreBudget = 6; 878 uint64_t SizeLimit = 32; 879 880 return GlobalSize > SizeLimit && 881 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 882 } 883 884 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 885 /// variable declaration with auto, register, or no storage class specifier. 886 /// These turn into simple stack objects, or GlobalValues depending on target. 887 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 888 AutoVarEmission emission = EmitAutoVarAlloca(D); 889 EmitAutoVarInit(emission); 890 EmitAutoVarCleanups(emission); 891 } 892 893 /// Emit a lifetime.begin marker if some criteria are satisfied. 894 /// \return a pointer to the temporary size Value if a marker was emitted, null 895 /// otherwise 896 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 897 llvm::Value *Addr) { 898 if (!ShouldEmitLifetimeMarkers) 899 return nullptr; 900 901 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 902 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 903 llvm::CallInst *C = 904 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 905 C->setDoesNotThrow(); 906 return SizeV; 907 } 908 909 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 910 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 911 llvm::CallInst *C = 912 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 913 C->setDoesNotThrow(); 914 } 915 916 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 917 /// local variable. Does not emit initialization or destruction. 918 CodeGenFunction::AutoVarEmission 919 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 920 QualType Ty = D.getType(); 921 922 AutoVarEmission emission(D); 923 924 bool isByRef = D.hasAttr<BlocksAttr>(); 925 emission.IsByRef = isByRef; 926 927 CharUnits alignment = getContext().getDeclAlign(&D); 928 929 // If the type is variably-modified, emit all the VLA sizes for it. 930 if (Ty->isVariablyModifiedType()) 931 EmitVariablyModifiedType(Ty); 932 933 Address address = Address::invalid(); 934 if (Ty->isConstantSizeType()) { 935 bool NRVO = getLangOpts().ElideConstructors && 936 D.isNRVOVariable(); 937 938 // If this value is an array or struct with a statically determinable 939 // constant initializer, there are optimizations we can do. 940 // 941 // TODO: We should constant-evaluate the initializer of any variable, 942 // as long as it is initialized by a constant expression. Currently, 943 // isConstantInitializer produces wrong answers for structs with 944 // reference or bitfield members, and a few other cases, and checking 945 // for POD-ness protects us from some of these. 946 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 947 (D.isConstexpr() || 948 ((Ty.isPODType(getContext()) || 949 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 950 D.getInit()->isConstantInitializer(getContext(), false)))) { 951 952 // If the variable's a const type, and it's neither an NRVO 953 // candidate nor a __block variable and has no mutable members, 954 // emit it as a global instead. 955 // Exception is if a variable is located in non-constant address space 956 // in OpenCL. 957 if ((!getLangOpts().OpenCL || 958 Ty.getAddressSpace() == LangAS::opencl_constant) && 959 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 960 CGM.isTypeConstant(Ty, true))) { 961 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 962 963 // Signal this condition to later callbacks. 964 emission.Addr = Address::invalid(); 965 assert(emission.wasEmittedAsGlobal()); 966 return emission; 967 } 968 969 // Otherwise, tell the initialization code that we're in this case. 970 emission.IsConstantAggregate = true; 971 } 972 973 // A normal fixed sized variable becomes an alloca in the entry block, 974 // unless it's an NRVO variable. 975 976 if (NRVO) { 977 // The named return value optimization: allocate this variable in the 978 // return slot, so that we can elide the copy when returning this 979 // variable (C++0x [class.copy]p34). 980 address = ReturnValue; 981 982 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 983 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 984 // Create a flag that is used to indicate when the NRVO was applied 985 // to this variable. Set it to zero to indicate that NRVO was not 986 // applied. 987 llvm::Value *Zero = Builder.getFalse(); 988 Address NRVOFlag = 989 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 990 EnsureInsertPoint(); 991 Builder.CreateStore(Zero, NRVOFlag); 992 993 // Record the NRVO flag for this variable. 994 NRVOFlags[&D] = NRVOFlag.getPointer(); 995 emission.NRVOFlag = NRVOFlag.getPointer(); 996 } 997 } 998 } else { 999 CharUnits allocaAlignment; 1000 llvm::Type *allocaTy; 1001 if (isByRef) { 1002 auto &byrefInfo = getBlockByrefInfo(&D); 1003 allocaTy = byrefInfo.Type; 1004 allocaAlignment = byrefInfo.ByrefAlignment; 1005 } else { 1006 allocaTy = ConvertTypeForMem(Ty); 1007 allocaAlignment = alignment; 1008 } 1009 1010 // Create the alloca. Note that we set the name separately from 1011 // building the instruction so that it's there even in no-asserts 1012 // builds. 1013 address = CreateTempAlloca(allocaTy, allocaAlignment); 1014 address.getPointer()->setName(D.getName()); 1015 1016 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1017 // the catch parameter starts in the catchpad instruction, and we can't 1018 // insert code in those basic blocks. 1019 bool IsMSCatchParam = 1020 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1021 1022 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1023 // if we don't have a valid insertion point (?). 1024 if (HaveInsertPoint() && !IsMSCatchParam) { 1025 // goto or switch-case statements can break lifetime into several 1026 // regions which need more efforts to handle them correctly. PR28267 1027 // This is rare case, but it's better just omit intrinsics than have 1028 // them incorrectly placed. 1029 if (!Bypasses.IsBypassed(&D)) { 1030 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1031 emission.SizeForLifetimeMarkers = 1032 EmitLifetimeStart(size, address.getPointer()); 1033 } 1034 } else { 1035 assert(!emission.useLifetimeMarkers()); 1036 } 1037 } 1038 } else { 1039 EnsureInsertPoint(); 1040 1041 if (!DidCallStackSave) { 1042 // Save the stack. 1043 Address Stack = 1044 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1045 1046 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1047 llvm::Value *V = Builder.CreateCall(F); 1048 Builder.CreateStore(V, Stack); 1049 1050 DidCallStackSave = true; 1051 1052 // Push a cleanup block and restore the stack there. 1053 // FIXME: in general circumstances, this should be an EH cleanup. 1054 pushStackRestore(NormalCleanup, Stack); 1055 } 1056 1057 llvm::Value *elementCount; 1058 QualType elementType; 1059 std::tie(elementCount, elementType) = getVLASize(Ty); 1060 1061 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1062 1063 // Allocate memory for the array. 1064 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 1065 vla->setAlignment(alignment.getQuantity()); 1066 1067 address = Address(vla, alignment); 1068 } 1069 1070 setAddrOfLocalVar(&D, address); 1071 emission.Addr = address; 1072 1073 // Emit debug info for local var declaration. 1074 if (HaveInsertPoint()) 1075 if (CGDebugInfo *DI = getDebugInfo()) { 1076 if (CGM.getCodeGenOpts().getDebugInfo() >= 1077 codegenoptions::LimitedDebugInfo) { 1078 DI->setLocation(D.getLocation()); 1079 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1080 } 1081 } 1082 1083 if (D.hasAttr<AnnotateAttr>()) 1084 EmitVarAnnotations(&D, address.getPointer()); 1085 1086 return emission; 1087 } 1088 1089 /// Determines whether the given __block variable is potentially 1090 /// captured by the given expression. 1091 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1092 // Skip the most common kinds of expressions that make 1093 // hierarchy-walking expensive. 1094 e = e->IgnoreParenCasts(); 1095 1096 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1097 const BlockDecl *block = be->getBlockDecl(); 1098 for (const auto &I : block->captures()) { 1099 if (I.getVariable() == &var) 1100 return true; 1101 } 1102 1103 // No need to walk into the subexpressions. 1104 return false; 1105 } 1106 1107 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1108 const CompoundStmt *CS = SE->getSubStmt(); 1109 for (const auto *BI : CS->body()) 1110 if (const auto *E = dyn_cast<Expr>(BI)) { 1111 if (isCapturedBy(var, E)) 1112 return true; 1113 } 1114 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1115 // special case declarations 1116 for (const auto *I : DS->decls()) { 1117 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1118 const Expr *Init = VD->getInit(); 1119 if (Init && isCapturedBy(var, Init)) 1120 return true; 1121 } 1122 } 1123 } 1124 else 1125 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1126 // Later, provide code to poke into statements for capture analysis. 1127 return true; 1128 return false; 1129 } 1130 1131 for (const Stmt *SubStmt : e->children()) 1132 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1133 return true; 1134 1135 return false; 1136 } 1137 1138 /// \brief Determine whether the given initializer is trivial in the sense 1139 /// that it requires no code to be generated. 1140 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1141 if (!Init) 1142 return true; 1143 1144 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1145 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1146 if (Constructor->isTrivial() && 1147 Constructor->isDefaultConstructor() && 1148 !Construct->requiresZeroInitialization()) 1149 return true; 1150 1151 return false; 1152 } 1153 1154 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1155 assert(emission.Variable && "emission was not valid!"); 1156 1157 // If this was emitted as a global constant, we're done. 1158 if (emission.wasEmittedAsGlobal()) return; 1159 1160 const VarDecl &D = *emission.Variable; 1161 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1162 QualType type = D.getType(); 1163 1164 // If this local has an initializer, emit it now. 1165 const Expr *Init = D.getInit(); 1166 1167 // If we are at an unreachable point, we don't need to emit the initializer 1168 // unless it contains a label. 1169 if (!HaveInsertPoint()) { 1170 if (!Init || !ContainsLabel(Init)) return; 1171 EnsureInsertPoint(); 1172 } 1173 1174 // Initialize the structure of a __block variable. 1175 if (emission.IsByRef) 1176 emitByrefStructureInit(emission); 1177 1178 if (isTrivialInitializer(Init)) 1179 return; 1180 1181 // Check whether this is a byref variable that's potentially 1182 // captured and moved by its own initializer. If so, we'll need to 1183 // emit the initializer first, then copy into the variable. 1184 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1185 1186 Address Loc = 1187 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1188 1189 llvm::Constant *constant = nullptr; 1190 if (emission.IsConstantAggregate || D.isConstexpr()) { 1191 assert(!capturedByInit && "constant init contains a capturing block?"); 1192 constant = CGM.EmitConstantInit(D, this); 1193 } 1194 1195 if (!constant) { 1196 LValue lv = MakeAddrLValue(Loc, type); 1197 lv.setNonGC(true); 1198 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1199 } 1200 1201 if (!emission.IsConstantAggregate) { 1202 // For simple scalar/complex initialization, store the value directly. 1203 LValue lv = MakeAddrLValue(Loc, type); 1204 lv.setNonGC(true); 1205 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1206 } 1207 1208 // If this is a simple aggregate initialization, we can optimize it 1209 // in various ways. 1210 bool isVolatile = type.isVolatileQualified(); 1211 1212 llvm::Value *SizeVal = 1213 llvm::ConstantInt::get(IntPtrTy, 1214 getContext().getTypeSizeInChars(type).getQuantity()); 1215 1216 llvm::Type *BP = Int8PtrTy; 1217 if (Loc.getType() != BP) 1218 Loc = Builder.CreateBitCast(Loc, BP); 1219 1220 // If the initializer is all or mostly zeros, codegen with memset then do 1221 // a few stores afterward. 1222 if (shouldUseMemSetPlusStoresToInitialize(constant, 1223 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1224 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1225 isVolatile); 1226 // Zero and undef don't require a stores. 1227 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1228 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1229 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1230 isVolatile, Builder); 1231 } 1232 } else { 1233 // Otherwise, create a temporary global with the initializer then 1234 // memcpy from the global to the alloca. 1235 std::string Name = getStaticDeclName(CGM, D); 1236 unsigned AS = 0; 1237 if (getLangOpts().OpenCL) { 1238 AS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 1239 BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS); 1240 } 1241 llvm::GlobalVariable *GV = 1242 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1243 llvm::GlobalValue::PrivateLinkage, 1244 constant, Name, nullptr, 1245 llvm::GlobalValue::NotThreadLocal, AS); 1246 GV->setAlignment(Loc.getAlignment().getQuantity()); 1247 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1248 1249 Address SrcPtr = Address(GV, Loc.getAlignment()); 1250 if (SrcPtr.getType() != BP) 1251 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1252 1253 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1254 } 1255 } 1256 1257 /// Emit an expression as an initializer for a variable at the given 1258 /// location. The expression is not necessarily the normal 1259 /// initializer for the variable, and the address is not necessarily 1260 /// its normal location. 1261 /// 1262 /// \param init the initializing expression 1263 /// \param var the variable to act as if we're initializing 1264 /// \param loc the address to initialize; its type is a pointer 1265 /// to the LLVM mapping of the variable's type 1266 /// \param alignment the alignment of the address 1267 /// \param capturedByInit true if the variable is a __block variable 1268 /// whose address is potentially changed by the initializer 1269 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1270 LValue lvalue, bool capturedByInit) { 1271 QualType type = D->getType(); 1272 1273 if (type->isReferenceType()) { 1274 RValue rvalue = EmitReferenceBindingToExpr(init); 1275 if (capturedByInit) 1276 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1277 EmitStoreThroughLValue(rvalue, lvalue, true); 1278 return; 1279 } 1280 switch (getEvaluationKind(type)) { 1281 case TEK_Scalar: 1282 EmitScalarInit(init, D, lvalue, capturedByInit); 1283 return; 1284 case TEK_Complex: { 1285 ComplexPairTy complex = EmitComplexExpr(init); 1286 if (capturedByInit) 1287 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1288 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1289 return; 1290 } 1291 case TEK_Aggregate: 1292 if (type->isAtomicType()) { 1293 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1294 } else { 1295 // TODO: how can we delay here if D is captured by its initializer? 1296 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1297 AggValueSlot::IsDestructed, 1298 AggValueSlot::DoesNotNeedGCBarriers, 1299 AggValueSlot::IsNotAliased)); 1300 } 1301 return; 1302 } 1303 llvm_unreachable("bad evaluation kind"); 1304 } 1305 1306 /// Enter a destroy cleanup for the given local variable. 1307 void CodeGenFunction::emitAutoVarTypeCleanup( 1308 const CodeGenFunction::AutoVarEmission &emission, 1309 QualType::DestructionKind dtorKind) { 1310 assert(dtorKind != QualType::DK_none); 1311 1312 // Note that for __block variables, we want to destroy the 1313 // original stack object, not the possibly forwarded object. 1314 Address addr = emission.getObjectAddress(*this); 1315 1316 const VarDecl *var = emission.Variable; 1317 QualType type = var->getType(); 1318 1319 CleanupKind cleanupKind = NormalAndEHCleanup; 1320 CodeGenFunction::Destroyer *destroyer = nullptr; 1321 1322 switch (dtorKind) { 1323 case QualType::DK_none: 1324 llvm_unreachable("no cleanup for trivially-destructible variable"); 1325 1326 case QualType::DK_cxx_destructor: 1327 // If there's an NRVO flag on the emission, we need a different 1328 // cleanup. 1329 if (emission.NRVOFlag) { 1330 assert(!type->isArrayType()); 1331 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1332 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1333 dtor, emission.NRVOFlag); 1334 return; 1335 } 1336 break; 1337 1338 case QualType::DK_objc_strong_lifetime: 1339 // Suppress cleanups for pseudo-strong variables. 1340 if (var->isARCPseudoStrong()) return; 1341 1342 // Otherwise, consider whether to use an EH cleanup or not. 1343 cleanupKind = getARCCleanupKind(); 1344 1345 // Use the imprecise destroyer by default. 1346 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1347 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1348 break; 1349 1350 case QualType::DK_objc_weak_lifetime: 1351 break; 1352 } 1353 1354 // If we haven't chosen a more specific destroyer, use the default. 1355 if (!destroyer) destroyer = getDestroyer(dtorKind); 1356 1357 // Use an EH cleanup in array destructors iff the destructor itself 1358 // is being pushed as an EH cleanup. 1359 bool useEHCleanup = (cleanupKind & EHCleanup); 1360 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1361 useEHCleanup); 1362 } 1363 1364 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1365 assert(emission.Variable && "emission was not valid!"); 1366 1367 // If this was emitted as a global constant, we're done. 1368 if (emission.wasEmittedAsGlobal()) return; 1369 1370 // If we don't have an insertion point, we're done. Sema prevents 1371 // us from jumping into any of these scopes anyway. 1372 if (!HaveInsertPoint()) return; 1373 1374 const VarDecl &D = *emission.Variable; 1375 1376 // Make sure we call @llvm.lifetime.end. This needs to happen 1377 // *last*, so the cleanup needs to be pushed *first*. 1378 if (emission.useLifetimeMarkers()) 1379 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1380 emission.getAllocatedAddress(), 1381 emission.getSizeForLifetimeMarkers()); 1382 1383 // Check the type for a cleanup. 1384 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1385 emitAutoVarTypeCleanup(emission, dtorKind); 1386 1387 // In GC mode, honor objc_precise_lifetime. 1388 if (getLangOpts().getGC() != LangOptions::NonGC && 1389 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1390 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1391 } 1392 1393 // Handle the cleanup attribute. 1394 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1395 const FunctionDecl *FD = CA->getFunctionDecl(); 1396 1397 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1398 assert(F && "Could not find function!"); 1399 1400 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1401 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1402 } 1403 1404 // If this is a block variable, call _Block_object_destroy 1405 // (on the unforwarded address). 1406 if (emission.IsByRef) 1407 enterByrefCleanup(emission); 1408 } 1409 1410 CodeGenFunction::Destroyer * 1411 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1412 switch (kind) { 1413 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1414 case QualType::DK_cxx_destructor: 1415 return destroyCXXObject; 1416 case QualType::DK_objc_strong_lifetime: 1417 return destroyARCStrongPrecise; 1418 case QualType::DK_objc_weak_lifetime: 1419 return destroyARCWeak; 1420 } 1421 llvm_unreachable("Unknown DestructionKind"); 1422 } 1423 1424 /// pushEHDestroy - Push the standard destructor for the given type as 1425 /// an EH-only cleanup. 1426 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1427 Address addr, QualType type) { 1428 assert(dtorKind && "cannot push destructor for trivial type"); 1429 assert(needsEHCleanup(dtorKind)); 1430 1431 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1432 } 1433 1434 /// pushDestroy - Push the standard destructor for the given type as 1435 /// at least a normal cleanup. 1436 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1437 Address addr, QualType type) { 1438 assert(dtorKind && "cannot push destructor for trivial type"); 1439 1440 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1441 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1442 cleanupKind & EHCleanup); 1443 } 1444 1445 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1446 QualType type, Destroyer *destroyer, 1447 bool useEHCleanupForArray) { 1448 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1449 destroyer, useEHCleanupForArray); 1450 } 1451 1452 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1453 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1454 } 1455 1456 void CodeGenFunction::pushLifetimeExtendedDestroy( 1457 CleanupKind cleanupKind, Address addr, QualType type, 1458 Destroyer *destroyer, bool useEHCleanupForArray) { 1459 assert(!isInConditionalBranch() && 1460 "performing lifetime extension from within conditional"); 1461 1462 // Push an EH-only cleanup for the object now. 1463 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1464 // around in case a temporary's destructor throws an exception. 1465 if (cleanupKind & EHCleanup) 1466 EHStack.pushCleanup<DestroyObject>( 1467 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1468 destroyer, useEHCleanupForArray); 1469 1470 // Remember that we need to push a full cleanup for the object at the 1471 // end of the full-expression. 1472 pushCleanupAfterFullExpr<DestroyObject>( 1473 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1474 } 1475 1476 /// emitDestroy - Immediately perform the destruction of the given 1477 /// object. 1478 /// 1479 /// \param addr - the address of the object; a type* 1480 /// \param type - the type of the object; if an array type, all 1481 /// objects are destroyed in reverse order 1482 /// \param destroyer - the function to call to destroy individual 1483 /// elements 1484 /// \param useEHCleanupForArray - whether an EH cleanup should be 1485 /// used when destroying array elements, in case one of the 1486 /// destructions throws an exception 1487 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1488 Destroyer *destroyer, 1489 bool useEHCleanupForArray) { 1490 const ArrayType *arrayType = getContext().getAsArrayType(type); 1491 if (!arrayType) 1492 return destroyer(*this, addr, type); 1493 1494 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1495 1496 CharUnits elementAlign = 1497 addr.getAlignment() 1498 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1499 1500 // Normally we have to check whether the array is zero-length. 1501 bool checkZeroLength = true; 1502 1503 // But if the array length is constant, we can suppress that. 1504 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1505 // ...and if it's constant zero, we can just skip the entire thing. 1506 if (constLength->isZero()) return; 1507 checkZeroLength = false; 1508 } 1509 1510 llvm::Value *begin = addr.getPointer(); 1511 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1512 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1513 checkZeroLength, useEHCleanupForArray); 1514 } 1515 1516 /// emitArrayDestroy - Destroys all the elements of the given array, 1517 /// beginning from last to first. The array cannot be zero-length. 1518 /// 1519 /// \param begin - a type* denoting the first element of the array 1520 /// \param end - a type* denoting one past the end of the array 1521 /// \param elementType - the element type of the array 1522 /// \param destroyer - the function to call to destroy elements 1523 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1524 /// the remaining elements in case the destruction of a single 1525 /// element throws 1526 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1527 llvm::Value *end, 1528 QualType elementType, 1529 CharUnits elementAlign, 1530 Destroyer *destroyer, 1531 bool checkZeroLength, 1532 bool useEHCleanup) { 1533 assert(!elementType->isArrayType()); 1534 1535 // The basic structure here is a do-while loop, because we don't 1536 // need to check for the zero-element case. 1537 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1538 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1539 1540 if (checkZeroLength) { 1541 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1542 "arraydestroy.isempty"); 1543 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1544 } 1545 1546 // Enter the loop body, making that address the current address. 1547 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1548 EmitBlock(bodyBB); 1549 llvm::PHINode *elementPast = 1550 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1551 elementPast->addIncoming(end, entryBB); 1552 1553 // Shift the address back by one element. 1554 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1555 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1556 "arraydestroy.element"); 1557 1558 if (useEHCleanup) 1559 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1560 destroyer); 1561 1562 // Perform the actual destruction there. 1563 destroyer(*this, Address(element, elementAlign), elementType); 1564 1565 if (useEHCleanup) 1566 PopCleanupBlock(); 1567 1568 // Check whether we've reached the end. 1569 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1570 Builder.CreateCondBr(done, doneBB, bodyBB); 1571 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1572 1573 // Done. 1574 EmitBlock(doneBB); 1575 } 1576 1577 /// Perform partial array destruction as if in an EH cleanup. Unlike 1578 /// emitArrayDestroy, the element type here may still be an array type. 1579 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1580 llvm::Value *begin, llvm::Value *end, 1581 QualType type, CharUnits elementAlign, 1582 CodeGenFunction::Destroyer *destroyer) { 1583 // If the element type is itself an array, drill down. 1584 unsigned arrayDepth = 0; 1585 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1586 // VLAs don't require a GEP index to walk into. 1587 if (!isa<VariableArrayType>(arrayType)) 1588 arrayDepth++; 1589 type = arrayType->getElementType(); 1590 } 1591 1592 if (arrayDepth) { 1593 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1594 1595 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1596 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1597 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1598 } 1599 1600 // Destroy the array. We don't ever need an EH cleanup because we 1601 // assume that we're in an EH cleanup ourselves, so a throwing 1602 // destructor causes an immediate terminate. 1603 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1604 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1605 } 1606 1607 namespace { 1608 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1609 /// array destroy where the end pointer is regularly determined and 1610 /// does not need to be loaded from a local. 1611 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1612 llvm::Value *ArrayBegin; 1613 llvm::Value *ArrayEnd; 1614 QualType ElementType; 1615 CodeGenFunction::Destroyer *Destroyer; 1616 CharUnits ElementAlign; 1617 public: 1618 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1619 QualType elementType, CharUnits elementAlign, 1620 CodeGenFunction::Destroyer *destroyer) 1621 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1622 ElementType(elementType), Destroyer(destroyer), 1623 ElementAlign(elementAlign) {} 1624 1625 void Emit(CodeGenFunction &CGF, Flags flags) override { 1626 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1627 ElementType, ElementAlign, Destroyer); 1628 } 1629 }; 1630 1631 /// IrregularPartialArrayDestroy - a cleanup which performs a 1632 /// partial array destroy where the end pointer is irregularly 1633 /// determined and must be loaded from a local. 1634 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1635 llvm::Value *ArrayBegin; 1636 Address ArrayEndPointer; 1637 QualType ElementType; 1638 CodeGenFunction::Destroyer *Destroyer; 1639 CharUnits ElementAlign; 1640 public: 1641 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1642 Address arrayEndPointer, 1643 QualType elementType, 1644 CharUnits elementAlign, 1645 CodeGenFunction::Destroyer *destroyer) 1646 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1647 ElementType(elementType), Destroyer(destroyer), 1648 ElementAlign(elementAlign) {} 1649 1650 void Emit(CodeGenFunction &CGF, Flags flags) override { 1651 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1652 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1653 ElementType, ElementAlign, Destroyer); 1654 } 1655 }; 1656 } // end anonymous namespace 1657 1658 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1659 /// already-constructed elements of the given array. The cleanup 1660 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1661 /// 1662 /// \param elementType - the immediate element type of the array; 1663 /// possibly still an array type 1664 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1665 Address arrayEndPointer, 1666 QualType elementType, 1667 CharUnits elementAlign, 1668 Destroyer *destroyer) { 1669 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1670 arrayBegin, arrayEndPointer, 1671 elementType, elementAlign, 1672 destroyer); 1673 } 1674 1675 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1676 /// already-constructed elements of the given array. The cleanup 1677 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1678 /// 1679 /// \param elementType - the immediate element type of the array; 1680 /// possibly still an array type 1681 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1682 llvm::Value *arrayEnd, 1683 QualType elementType, 1684 CharUnits elementAlign, 1685 Destroyer *destroyer) { 1686 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1687 arrayBegin, arrayEnd, 1688 elementType, elementAlign, 1689 destroyer); 1690 } 1691 1692 /// Lazily declare the @llvm.lifetime.start intrinsic. 1693 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1694 if (LifetimeStartFn) return LifetimeStartFn; 1695 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1696 llvm::Intrinsic::lifetime_start); 1697 return LifetimeStartFn; 1698 } 1699 1700 /// Lazily declare the @llvm.lifetime.end intrinsic. 1701 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1702 if (LifetimeEndFn) return LifetimeEndFn; 1703 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1704 llvm::Intrinsic::lifetime_end); 1705 return LifetimeEndFn; 1706 } 1707 1708 namespace { 1709 /// A cleanup to perform a release of an object at the end of a 1710 /// function. This is used to balance out the incoming +1 of a 1711 /// ns_consumed argument when we can't reasonably do that just by 1712 /// not doing the initial retain for a __block argument. 1713 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1714 ConsumeARCParameter(llvm::Value *param, 1715 ARCPreciseLifetime_t precise) 1716 : Param(param), Precise(precise) {} 1717 1718 llvm::Value *Param; 1719 ARCPreciseLifetime_t Precise; 1720 1721 void Emit(CodeGenFunction &CGF, Flags flags) override { 1722 CGF.EmitARCRelease(Param, Precise); 1723 } 1724 }; 1725 } // end anonymous namespace 1726 1727 /// Emit an alloca (or GlobalValue depending on target) 1728 /// for the specified parameter and set up LocalDeclMap. 1729 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1730 unsigned ArgNo) { 1731 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1732 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1733 "Invalid argument to EmitParmDecl"); 1734 1735 Arg.getAnyValue()->setName(D.getName()); 1736 1737 QualType Ty = D.getType(); 1738 1739 // Use better IR generation for certain implicit parameters. 1740 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1741 // The only implicit argument a block has is its literal. 1742 // We assume this is always passed directly. 1743 if (BlockInfo) { 1744 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1745 return; 1746 } 1747 1748 // Apply any prologue 'this' adjustments required by the ABI. Be careful to 1749 // handle the case where 'this' is passed indirectly as part of an inalloca 1750 // struct. 1751 if (const CXXMethodDecl *MD = 1752 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1753 if (MD->isVirtual() && IPD == CXXABIThisDecl) { 1754 llvm::Value *This = Arg.isIndirect() 1755 ? Builder.CreateLoad(Arg.getIndirectAddress()) 1756 : Arg.getDirectValue(); 1757 This = CGM.getCXXABI().adjustThisParameterInVirtualFunctionPrologue( 1758 *this, CurGD, This); 1759 if (Arg.isIndirect()) 1760 Builder.CreateStore(This, Arg.getIndirectAddress()); 1761 else 1762 Arg = ParamValue::forDirect(This); 1763 } 1764 } 1765 } 1766 1767 Address DeclPtr = Address::invalid(); 1768 bool DoStore = false; 1769 bool IsScalar = hasScalarEvaluationKind(Ty); 1770 // If we already have a pointer to the argument, reuse the input pointer. 1771 if (Arg.isIndirect()) { 1772 DeclPtr = Arg.getIndirectAddress(); 1773 // If we have a prettier pointer type at this point, bitcast to that. 1774 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1775 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1776 if (DeclPtr.getType() != IRTy) 1777 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1778 1779 // Push a destructor cleanup for this parameter if the ABI requires it. 1780 // Don't push a cleanup in a thunk for a method that will also emit a 1781 // cleanup. 1782 if (!IsScalar && !CurFuncIsThunk && 1783 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1784 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1785 if (RD && RD->hasNonTrivialDestructor()) 1786 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1787 } 1788 } else { 1789 // Otherwise, create a temporary to hold the value. 1790 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1791 D.getName() + ".addr"); 1792 DoStore = true; 1793 } 1794 1795 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1796 1797 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1798 if (IsScalar) { 1799 Qualifiers qs = Ty.getQualifiers(); 1800 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1801 // We honor __attribute__((ns_consumed)) for types with lifetime. 1802 // For __strong, it's handled by just skipping the initial retain; 1803 // otherwise we have to balance out the initial +1 with an extra 1804 // cleanup to do the release at the end of the function. 1805 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1806 1807 // 'self' is always formally __strong, but if this is not an 1808 // init method then we don't want to retain it. 1809 if (D.isARCPseudoStrong()) { 1810 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1811 assert(&D == method->getSelfDecl()); 1812 assert(lt == Qualifiers::OCL_Strong); 1813 assert(qs.hasConst()); 1814 assert(method->getMethodFamily() != OMF_init); 1815 (void) method; 1816 lt = Qualifiers::OCL_ExplicitNone; 1817 } 1818 1819 if (lt == Qualifiers::OCL_Strong) { 1820 if (!isConsumed) { 1821 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1822 // use objc_storeStrong(&dest, value) for retaining the 1823 // object. But first, store a null into 'dest' because 1824 // objc_storeStrong attempts to release its old value. 1825 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1826 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1827 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1828 DoStore = false; 1829 } 1830 else 1831 // Don't use objc_retainBlock for block pointers, because we 1832 // don't want to Block_copy something just because we got it 1833 // as a parameter. 1834 ArgVal = EmitARCRetainNonBlock(ArgVal); 1835 } 1836 } else { 1837 // Push the cleanup for a consumed parameter. 1838 if (isConsumed) { 1839 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1840 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1841 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1842 precise); 1843 } 1844 1845 if (lt == Qualifiers::OCL_Weak) { 1846 EmitARCInitWeak(DeclPtr, ArgVal); 1847 DoStore = false; // The weak init is a store, no need to do two. 1848 } 1849 } 1850 1851 // Enter the cleanup scope. 1852 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1853 } 1854 } 1855 1856 // Store the initial value into the alloca. 1857 if (DoStore) 1858 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1859 1860 setAddrOfLocalVar(&D, DeclPtr); 1861 1862 // Emit debug info for param declaration. 1863 if (CGDebugInfo *DI = getDebugInfo()) { 1864 if (CGM.getCodeGenOpts().getDebugInfo() >= 1865 codegenoptions::LimitedDebugInfo) { 1866 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1867 } 1868 } 1869 1870 if (D.hasAttr<AnnotateAttr>()) 1871 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1872 } 1873 1874 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1875 CodeGenFunction *CGF) { 1876 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1877 return; 1878 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1879 } 1880