1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Type.h"
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 void CodeGenFunction::EmitDecl(const Decl &D) {
43   switch (D.getKind()) {
44   case Decl::BuiltinTemplate:
45   case Decl::TranslationUnit:
46   case Decl::ExternCContext:
47   case Decl::Namespace:
48   case Decl::UnresolvedUsingTypename:
49   case Decl::ClassTemplateSpecialization:
50   case Decl::ClassTemplatePartialSpecialization:
51   case Decl::VarTemplateSpecialization:
52   case Decl::VarTemplatePartialSpecialization:
53   case Decl::TemplateTypeParm:
54   case Decl::UnresolvedUsingValue:
55   case Decl::NonTypeTemplateParm:
56   case Decl::CXXDeductionGuide:
57   case Decl::CXXMethod:
58   case Decl::CXXConstructor:
59   case Decl::CXXDestructor:
60   case Decl::CXXConversion:
61   case Decl::Field:
62   case Decl::MSProperty:
63   case Decl::IndirectField:
64   case Decl::ObjCIvar:
65   case Decl::ObjCAtDefsField:
66   case Decl::ParmVar:
67   case Decl::ImplicitParam:
68   case Decl::ClassTemplate:
69   case Decl::VarTemplate:
70   case Decl::FunctionTemplate:
71   case Decl::TypeAliasTemplate:
72   case Decl::TemplateTemplateParm:
73   case Decl::ObjCMethod:
74   case Decl::ObjCCategory:
75   case Decl::ObjCProtocol:
76   case Decl::ObjCInterface:
77   case Decl::ObjCCategoryImpl:
78   case Decl::ObjCImplementation:
79   case Decl::ObjCProperty:
80   case Decl::ObjCCompatibleAlias:
81   case Decl::PragmaComment:
82   case Decl::PragmaDetectMismatch:
83   case Decl::AccessSpec:
84   case Decl::LinkageSpec:
85   case Decl::Export:
86   case Decl::ObjCPropertyImpl:
87   case Decl::FileScopeAsm:
88   case Decl::Friend:
89   case Decl::FriendTemplate:
90   case Decl::Block:
91   case Decl::Captured:
92   case Decl::ClassScopeFunctionSpecialization:
93   case Decl::UsingShadow:
94   case Decl::ConstructorUsingShadow:
95   case Decl::ObjCTypeParam:
96   case Decl::Binding:
97     llvm_unreachable("Declaration should not be in declstmts!");
98   case Decl::Function:  // void X();
99   case Decl::Record:    // struct/union/class X;
100   case Decl::Enum:      // enum X;
101   case Decl::EnumConstant: // enum ? { X = ? }
102   case Decl::CXXRecord: // struct/union/class X; [C++]
103   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
104   case Decl::Label:        // __label__ x;
105   case Decl::Import:
106   case Decl::OMPThreadPrivate:
107   case Decl::OMPAllocate:
108   case Decl::OMPCapturedExpr:
109   case Decl::OMPRequires:
110   case Decl::Empty:
111   case Decl::Concept:
112   case Decl::LifetimeExtendedTemporary:
113     // None of these decls require codegen support.
114     return;
115 
116   case Decl::NamespaceAlias:
117     if (CGDebugInfo *DI = getDebugInfo())
118         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
119     return;
120   case Decl::Using:          // using X; [C++]
121     if (CGDebugInfo *DI = getDebugInfo())
122         DI->EmitUsingDecl(cast<UsingDecl>(D));
123     return;
124   case Decl::UsingPack:
125     for (auto *Using : cast<UsingPackDecl>(D).expansions())
126       EmitDecl(*Using);
127     return;
128   case Decl::UsingDirective: // using namespace X; [C++]
129     if (CGDebugInfo *DI = getDebugInfo())
130       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
131     return;
132   case Decl::Var:
133   case Decl::Decomposition: {
134     const VarDecl &VD = cast<VarDecl>(D);
135     assert(VD.isLocalVarDecl() &&
136            "Should not see file-scope variables inside a function!");
137     EmitVarDecl(VD);
138     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
139       for (auto *B : DD->bindings())
140         if (auto *HD = B->getHoldingVar())
141           EmitVarDecl(*HD);
142     return;
143   }
144 
145   case Decl::OMPDeclareReduction:
146     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
147 
148   case Decl::OMPDeclareMapper:
149     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
150 
151   case Decl::Typedef:      // typedef int X;
152   case Decl::TypeAlias: {  // using X = int; [C++0x]
153     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
154     QualType Ty = TD.getUnderlyingType();
155 
156     if (Ty->isVariablyModifiedType())
157       EmitVariablyModifiedType(Ty);
158 
159     return;
160   }
161   }
162 }
163 
164 /// EmitVarDecl - This method handles emission of any variable declaration
165 /// inside a function, including static vars etc.
166 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
167   if (D.hasExternalStorage())
168     // Don't emit it now, allow it to be emitted lazily on its first use.
169     return;
170 
171   // Some function-scope variable does not have static storage but still
172   // needs to be emitted like a static variable, e.g. a function-scope
173   // variable in constant address space in OpenCL.
174   if (D.getStorageDuration() != SD_Automatic) {
175     // Static sampler variables translated to function calls.
176     if (D.getType()->isSamplerT())
177       return;
178 
179     llvm::GlobalValue::LinkageTypes Linkage =
180         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
181 
182     // FIXME: We need to force the emission/use of a guard variable for
183     // some variables even if we can constant-evaluate them because
184     // we can't guarantee every translation unit will constant-evaluate them.
185 
186     return EmitStaticVarDecl(D, Linkage);
187   }
188 
189   if (D.getType().getAddressSpace() == LangAS::opencl_local)
190     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
191 
192   assert(D.hasLocalStorage());
193   return EmitAutoVarDecl(D);
194 }
195 
196 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
197   if (CGM.getLangOpts().CPlusPlus)
198     return CGM.getMangledName(&D).str();
199 
200   // If this isn't C++, we don't need a mangled name, just a pretty one.
201   assert(!D.isExternallyVisible() && "name shouldn't matter");
202   std::string ContextName;
203   const DeclContext *DC = D.getDeclContext();
204   if (auto *CD = dyn_cast<CapturedDecl>(DC))
205     DC = cast<DeclContext>(CD->getNonClosureContext());
206   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
207     ContextName = CGM.getMangledName(FD);
208   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
209     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
210   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
211     ContextName = OMD->getSelector().getAsString();
212   else
213     llvm_unreachable("Unknown context for static var decl");
214 
215   ContextName += "." + D.getNameAsString();
216   return ContextName;
217 }
218 
219 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
220     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
221   // In general, we don't always emit static var decls once before we reference
222   // them. It is possible to reference them before emitting the function that
223   // contains them, and it is possible to emit the containing function multiple
224   // times.
225   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
226     return ExistingGV;
227 
228   QualType Ty = D.getType();
229   assert(Ty->isConstantSizeType() && "VLAs can't be static");
230 
231   // Use the label if the variable is renamed with the asm-label extension.
232   std::string Name;
233   if (D.hasAttr<AsmLabelAttr>())
234     Name = getMangledName(&D);
235   else
236     Name = getStaticDeclName(*this, D);
237 
238   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
239   LangAS AS = GetGlobalVarAddressSpace(&D);
240   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
241 
242   // OpenCL variables in local address space and CUDA shared
243   // variables cannot have an initializer.
244   llvm::Constant *Init = nullptr;
245   if (Ty.getAddressSpace() == LangAS::opencl_local ||
246       D.hasAttr<CUDASharedAttr>())
247     Init = llvm::UndefValue::get(LTy);
248   else
249     Init = EmitNullConstant(Ty);
250 
251   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
252       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
253       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
254   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
255 
256   if (supportsCOMDAT() && GV->isWeakForLinker())
257     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
258 
259   if (D.getTLSKind())
260     setTLSMode(GV, D);
261 
262   setGVProperties(GV, &D);
263 
264   // Make sure the result is of the correct type.
265   LangAS ExpectedAS = Ty.getAddressSpace();
266   llvm::Constant *Addr = GV;
267   if (AS != ExpectedAS) {
268     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
269         *this, GV, AS, ExpectedAS,
270         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
271   }
272 
273   setStaticLocalDeclAddress(&D, Addr);
274 
275   // Ensure that the static local gets initialized by making sure the parent
276   // function gets emitted eventually.
277   const Decl *DC = cast<Decl>(D.getDeclContext());
278 
279   // We can't name blocks or captured statements directly, so try to emit their
280   // parents.
281   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
282     DC = DC->getNonClosureContext();
283     // FIXME: Ensure that global blocks get emitted.
284     if (!DC)
285       return Addr;
286   }
287 
288   GlobalDecl GD;
289   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
290     GD = GlobalDecl(CD, Ctor_Base);
291   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
292     GD = GlobalDecl(DD, Dtor_Base);
293   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
294     GD = GlobalDecl(FD);
295   else {
296     // Don't do anything for Obj-C method decls or global closures. We should
297     // never defer them.
298     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
299   }
300   if (GD.getDecl()) {
301     // Disable emission of the parent function for the OpenMP device codegen.
302     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
303     (void)GetAddrOfGlobal(GD);
304   }
305 
306   return Addr;
307 }
308 
309 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
310 /// global variable that has already been created for it.  If the initializer
311 /// has a different type than GV does, this may free GV and return a different
312 /// one.  Otherwise it just returns GV.
313 llvm::GlobalVariable *
314 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
315                                                llvm::GlobalVariable *GV) {
316   ConstantEmitter emitter(*this);
317   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
318 
319   // If constant emission failed, then this should be a C++ static
320   // initializer.
321   if (!Init) {
322     if (!getLangOpts().CPlusPlus)
323       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
324     else if (HaveInsertPoint()) {
325       // Since we have a static initializer, this global variable can't
326       // be constant.
327       GV->setConstant(false);
328 
329       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
330     }
331     return GV;
332   }
333 
334   // The initializer may differ in type from the global. Rewrite
335   // the global to match the initializer.  (We have to do this
336   // because some types, like unions, can't be completely represented
337   // in the LLVM type system.)
338   if (GV->getType()->getElementType() != Init->getType()) {
339     llvm::GlobalVariable *OldGV = GV;
340 
341     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
342                                   OldGV->isConstant(),
343                                   OldGV->getLinkage(), Init, "",
344                                   /*InsertBefore*/ OldGV,
345                                   OldGV->getThreadLocalMode(),
346                            CGM.getContext().getTargetAddressSpace(D.getType()));
347     GV->setVisibility(OldGV->getVisibility());
348     GV->setDSOLocal(OldGV->isDSOLocal());
349     GV->setComdat(OldGV->getComdat());
350 
351     // Steal the name of the old global
352     GV->takeName(OldGV);
353 
354     // Replace all uses of the old global with the new global
355     llvm::Constant *NewPtrForOldDecl =
356     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
357     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
358 
359     // Erase the old global, since it is no longer used.
360     OldGV->eraseFromParent();
361   }
362 
363   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
364   GV->setInitializer(Init);
365 
366   emitter.finalize(GV);
367 
368   if (D.needsDestruction(getContext()) && HaveInsertPoint()) {
369     // We have a constant initializer, but a nontrivial destructor. We still
370     // need to perform a guarded "initialization" in order to register the
371     // destructor.
372     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
373   }
374 
375   return GV;
376 }
377 
378 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
379                                       llvm::GlobalValue::LinkageTypes Linkage) {
380   // Check to see if we already have a global variable for this
381   // declaration.  This can happen when double-emitting function
382   // bodies, e.g. with complete and base constructors.
383   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
384   CharUnits alignment = getContext().getDeclAlign(&D);
385 
386   // Store into LocalDeclMap before generating initializer to handle
387   // circular references.
388   setAddrOfLocalVar(&D, Address(addr, alignment));
389 
390   // We can't have a VLA here, but we can have a pointer to a VLA,
391   // even though that doesn't really make any sense.
392   // Make sure to evaluate VLA bounds now so that we have them for later.
393   if (D.getType()->isVariablyModifiedType())
394     EmitVariablyModifiedType(D.getType());
395 
396   // Save the type in case adding the initializer forces a type change.
397   llvm::Type *expectedType = addr->getType();
398 
399   llvm::GlobalVariable *var =
400     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
401 
402   // CUDA's local and local static __shared__ variables should not
403   // have any non-empty initializers. This is ensured by Sema.
404   // Whatever initializer such variable may have when it gets here is
405   // a no-op and should not be emitted.
406   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
407                          D.hasAttr<CUDASharedAttr>();
408   // If this value has an initializer, emit it.
409   if (D.getInit() && !isCudaSharedVar)
410     var = AddInitializerToStaticVarDecl(D, var);
411 
412   var->setAlignment(alignment.getAsAlign());
413 
414   if (D.hasAttr<AnnotateAttr>())
415     CGM.AddGlobalAnnotations(&D, var);
416 
417   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
418     var->addAttribute("bss-section", SA->getName());
419   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
420     var->addAttribute("data-section", SA->getName());
421   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
422     var->addAttribute("rodata-section", SA->getName());
423   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
424     var->addAttribute("relro-section", SA->getName());
425 
426   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
427     var->setSection(SA->getName());
428 
429   if (D.hasAttr<UsedAttr>())
430     CGM.addUsedGlobal(var);
431 
432   // We may have to cast the constant because of the initializer
433   // mismatch above.
434   //
435   // FIXME: It is really dangerous to store this in the map; if anyone
436   // RAUW's the GV uses of this constant will be invalid.
437   llvm::Constant *castedAddr =
438     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
439   if (var != castedAddr)
440     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
441   CGM.setStaticLocalDeclAddress(&D, castedAddr);
442 
443   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
444 
445   // Emit global variable debug descriptor for static vars.
446   CGDebugInfo *DI = getDebugInfo();
447   if (DI &&
448       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
449     DI->setLocation(D.getLocation());
450     DI->EmitGlobalVariable(var, &D);
451   }
452 }
453 
454 namespace {
455   struct DestroyObject final : EHScopeStack::Cleanup {
456     DestroyObject(Address addr, QualType type,
457                   CodeGenFunction::Destroyer *destroyer,
458                   bool useEHCleanupForArray)
459       : addr(addr), type(type), destroyer(destroyer),
460         useEHCleanupForArray(useEHCleanupForArray) {}
461 
462     Address addr;
463     QualType type;
464     CodeGenFunction::Destroyer *destroyer;
465     bool useEHCleanupForArray;
466 
467     void Emit(CodeGenFunction &CGF, Flags flags) override {
468       // Don't use an EH cleanup recursively from an EH cleanup.
469       bool useEHCleanupForArray =
470         flags.isForNormalCleanup() && this->useEHCleanupForArray;
471 
472       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
473     }
474   };
475 
476   template <class Derived>
477   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
478     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
479         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
480 
481     llvm::Value *NRVOFlag;
482     Address Loc;
483     QualType Ty;
484 
485     void Emit(CodeGenFunction &CGF, Flags flags) override {
486       // Along the exceptions path we always execute the dtor.
487       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
488 
489       llvm::BasicBlock *SkipDtorBB = nullptr;
490       if (NRVO) {
491         // If we exited via NRVO, we skip the destructor call.
492         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
493         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
494         llvm::Value *DidNRVO =
495           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
496         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
497         CGF.EmitBlock(RunDtorBB);
498       }
499 
500       static_cast<Derived *>(this)->emitDestructorCall(CGF);
501 
502       if (NRVO) CGF.EmitBlock(SkipDtorBB);
503     }
504 
505     virtual ~DestroyNRVOVariable() = default;
506   };
507 
508   struct DestroyNRVOVariableCXX final
509       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
510     DestroyNRVOVariableCXX(Address addr, QualType type,
511                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
512         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
513           Dtor(Dtor) {}
514 
515     const CXXDestructorDecl *Dtor;
516 
517     void emitDestructorCall(CodeGenFunction &CGF) {
518       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
519                                 /*ForVirtualBase=*/false,
520                                 /*Delegating=*/false, Loc, Ty);
521     }
522   };
523 
524   struct DestroyNRVOVariableC final
525       : DestroyNRVOVariable<DestroyNRVOVariableC> {
526     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
527         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
528 
529     void emitDestructorCall(CodeGenFunction &CGF) {
530       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
531     }
532   };
533 
534   struct CallStackRestore final : EHScopeStack::Cleanup {
535     Address Stack;
536     CallStackRestore(Address Stack) : Stack(Stack) {}
537     void Emit(CodeGenFunction &CGF, Flags flags) override {
538       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
539       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
540       CGF.Builder.CreateCall(F, V);
541     }
542   };
543 
544   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
545     const VarDecl &Var;
546     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
547 
548     void Emit(CodeGenFunction &CGF, Flags flags) override {
549       // Compute the address of the local variable, in case it's a
550       // byref or something.
551       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
552                       Var.getType(), VK_LValue, SourceLocation());
553       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
554                                                 SourceLocation());
555       CGF.EmitExtendGCLifetime(value);
556     }
557   };
558 
559   struct CallCleanupFunction final : EHScopeStack::Cleanup {
560     llvm::Constant *CleanupFn;
561     const CGFunctionInfo &FnInfo;
562     const VarDecl &Var;
563 
564     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
565                         const VarDecl *Var)
566       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
567 
568     void Emit(CodeGenFunction &CGF, Flags flags) override {
569       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
570                       Var.getType(), VK_LValue, SourceLocation());
571       // Compute the address of the local variable, in case it's a byref
572       // or something.
573       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
574 
575       // In some cases, the type of the function argument will be different from
576       // the type of the pointer. An example of this is
577       // void f(void* arg);
578       // __attribute__((cleanup(f))) void *g;
579       //
580       // To fix this we insert a bitcast here.
581       QualType ArgTy = FnInfo.arg_begin()->type;
582       llvm::Value *Arg =
583         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
584 
585       CallArgList Args;
586       Args.add(RValue::get(Arg),
587                CGF.getContext().getPointerType(Var.getType()));
588       auto Callee = CGCallee::forDirect(CleanupFn);
589       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
590     }
591   };
592 } // end anonymous namespace
593 
594 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
595 /// variable with lifetime.
596 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
597                                     Address addr,
598                                     Qualifiers::ObjCLifetime lifetime) {
599   switch (lifetime) {
600   case Qualifiers::OCL_None:
601     llvm_unreachable("present but none");
602 
603   case Qualifiers::OCL_ExplicitNone:
604     // nothing to do
605     break;
606 
607   case Qualifiers::OCL_Strong: {
608     CodeGenFunction::Destroyer *destroyer =
609       (var.hasAttr<ObjCPreciseLifetimeAttr>()
610        ? CodeGenFunction::destroyARCStrongPrecise
611        : CodeGenFunction::destroyARCStrongImprecise);
612 
613     CleanupKind cleanupKind = CGF.getARCCleanupKind();
614     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
615                     cleanupKind & EHCleanup);
616     break;
617   }
618   case Qualifiers::OCL_Autoreleasing:
619     // nothing to do
620     break;
621 
622   case Qualifiers::OCL_Weak:
623     // __weak objects always get EH cleanups; otherwise, exceptions
624     // could cause really nasty crashes instead of mere leaks.
625     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
626                     CodeGenFunction::destroyARCWeak,
627                     /*useEHCleanup*/ true);
628     break;
629   }
630 }
631 
632 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
633   if (const Expr *e = dyn_cast<Expr>(s)) {
634     // Skip the most common kinds of expressions that make
635     // hierarchy-walking expensive.
636     s = e = e->IgnoreParenCasts();
637 
638     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
639       return (ref->getDecl() == &var);
640     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
641       const BlockDecl *block = be->getBlockDecl();
642       for (const auto &I : block->captures()) {
643         if (I.getVariable() == &var)
644           return true;
645       }
646     }
647   }
648 
649   for (const Stmt *SubStmt : s->children())
650     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
651     if (SubStmt && isAccessedBy(var, SubStmt))
652       return true;
653 
654   return false;
655 }
656 
657 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
658   if (!decl) return false;
659   if (!isa<VarDecl>(decl)) return false;
660   const VarDecl *var = cast<VarDecl>(decl);
661   return isAccessedBy(*var, e);
662 }
663 
664 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
665                                    const LValue &destLV, const Expr *init) {
666   bool needsCast = false;
667 
668   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
669     switch (castExpr->getCastKind()) {
670     // Look through casts that don't require representation changes.
671     case CK_NoOp:
672     case CK_BitCast:
673     case CK_BlockPointerToObjCPointerCast:
674       needsCast = true;
675       break;
676 
677     // If we find an l-value to r-value cast from a __weak variable,
678     // emit this operation as a copy or move.
679     case CK_LValueToRValue: {
680       const Expr *srcExpr = castExpr->getSubExpr();
681       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
682         return false;
683 
684       // Emit the source l-value.
685       LValue srcLV = CGF.EmitLValue(srcExpr);
686 
687       // Handle a formal type change to avoid asserting.
688       auto srcAddr = srcLV.getAddress();
689       if (needsCast) {
690         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
691                                          destLV.getAddress().getElementType());
692       }
693 
694       // If it was an l-value, use objc_copyWeak.
695       if (srcExpr->getValueKind() == VK_LValue) {
696         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
697       } else {
698         assert(srcExpr->getValueKind() == VK_XValue);
699         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
700       }
701       return true;
702     }
703 
704     // Stop at anything else.
705     default:
706       return false;
707     }
708 
709     init = castExpr->getSubExpr();
710   }
711   return false;
712 }
713 
714 static void drillIntoBlockVariable(CodeGenFunction &CGF,
715                                    LValue &lvalue,
716                                    const VarDecl *var) {
717   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
718 }
719 
720 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
721                                            SourceLocation Loc) {
722   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
723     return;
724 
725   auto Nullability = LHS.getType()->getNullability(getContext());
726   if (!Nullability || *Nullability != NullabilityKind::NonNull)
727     return;
728 
729   // Check if the right hand side of the assignment is nonnull, if the left
730   // hand side must be nonnull.
731   SanitizerScope SanScope(this);
732   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
733   llvm::Constant *StaticData[] = {
734       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
735       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
736       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
737   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
738             SanitizerHandler::TypeMismatch, StaticData, RHS);
739 }
740 
741 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
742                                      LValue lvalue, bool capturedByInit) {
743   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
744   if (!lifetime) {
745     llvm::Value *value = EmitScalarExpr(init);
746     if (capturedByInit)
747       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
748     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
749     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
750     return;
751   }
752 
753   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
754     init = DIE->getExpr();
755 
756   // If we're emitting a value with lifetime, we have to do the
757   // initialization *before* we leave the cleanup scopes.
758   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
759     enterFullExpression(fe);
760     init = fe->getSubExpr();
761   }
762   CodeGenFunction::RunCleanupsScope Scope(*this);
763 
764   // We have to maintain the illusion that the variable is
765   // zero-initialized.  If the variable might be accessed in its
766   // initializer, zero-initialize before running the initializer, then
767   // actually perform the initialization with an assign.
768   bool accessedByInit = false;
769   if (lifetime != Qualifiers::OCL_ExplicitNone)
770     accessedByInit = (capturedByInit || isAccessedBy(D, init));
771   if (accessedByInit) {
772     LValue tempLV = lvalue;
773     // Drill down to the __block object if necessary.
774     if (capturedByInit) {
775       // We can use a simple GEP for this because it can't have been
776       // moved yet.
777       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
778                                               cast<VarDecl>(D),
779                                               /*follow*/ false));
780     }
781 
782     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
783     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
784 
785     // If __weak, we want to use a barrier under certain conditions.
786     if (lifetime == Qualifiers::OCL_Weak)
787       EmitARCInitWeak(tempLV.getAddress(), zero);
788 
789     // Otherwise just do a simple store.
790     else
791       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
792   }
793 
794   // Emit the initializer.
795   llvm::Value *value = nullptr;
796 
797   switch (lifetime) {
798   case Qualifiers::OCL_None:
799     llvm_unreachable("present but none");
800 
801   case Qualifiers::OCL_Strong: {
802     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
803       value = EmitARCRetainScalarExpr(init);
804       break;
805     }
806     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
807     // that we omit the retain, and causes non-autoreleased return values to be
808     // immediately released.
809     LLVM_FALLTHROUGH;
810   }
811 
812   case Qualifiers::OCL_ExplicitNone:
813     value = EmitARCUnsafeUnretainedScalarExpr(init);
814     break;
815 
816   case Qualifiers::OCL_Weak: {
817     // If it's not accessed by the initializer, try to emit the
818     // initialization with a copy or move.
819     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
820       return;
821     }
822 
823     // No way to optimize a producing initializer into this.  It's not
824     // worth optimizing for, because the value will immediately
825     // disappear in the common case.
826     value = EmitScalarExpr(init);
827 
828     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
829     if (accessedByInit)
830       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
831     else
832       EmitARCInitWeak(lvalue.getAddress(), value);
833     return;
834   }
835 
836   case Qualifiers::OCL_Autoreleasing:
837     value = EmitARCRetainAutoreleaseScalarExpr(init);
838     break;
839   }
840 
841   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
842 
843   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
844 
845   // If the variable might have been accessed by its initializer, we
846   // might have to initialize with a barrier.  We have to do this for
847   // both __weak and __strong, but __weak got filtered out above.
848   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
849     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
850     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
851     EmitARCRelease(oldValue, ARCImpreciseLifetime);
852     return;
853   }
854 
855   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
856 }
857 
858 /// Decide whether we can emit the non-zero parts of the specified initializer
859 /// with equal or fewer than NumStores scalar stores.
860 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
861                                                unsigned &NumStores) {
862   // Zero and Undef never requires any extra stores.
863   if (isa<llvm::ConstantAggregateZero>(Init) ||
864       isa<llvm::ConstantPointerNull>(Init) ||
865       isa<llvm::UndefValue>(Init))
866     return true;
867   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
868       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
869       isa<llvm::ConstantExpr>(Init))
870     return Init->isNullValue() || NumStores--;
871 
872   // See if we can emit each element.
873   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
874     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
875       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
876       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
877         return false;
878     }
879     return true;
880   }
881 
882   if (llvm::ConstantDataSequential *CDS =
883         dyn_cast<llvm::ConstantDataSequential>(Init)) {
884     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
885       llvm::Constant *Elt = CDS->getElementAsConstant(i);
886       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
887         return false;
888     }
889     return true;
890   }
891 
892   // Anything else is hard and scary.
893   return false;
894 }
895 
896 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
897 /// the scalar stores that would be required.
898 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
899                                         llvm::Constant *Init, Address Loc,
900                                         bool isVolatile, CGBuilderTy &Builder) {
901   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
902          "called emitStoresForInitAfterBZero for zero or undef value.");
903 
904   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
905       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
906       isa<llvm::ConstantExpr>(Init)) {
907     Builder.CreateStore(Init, Loc, isVolatile);
908     return;
909   }
910 
911   if (llvm::ConstantDataSequential *CDS =
912           dyn_cast<llvm::ConstantDataSequential>(Init)) {
913     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
914       llvm::Constant *Elt = CDS->getElementAsConstant(i);
915 
916       // If necessary, get a pointer to the element and emit it.
917       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
918         emitStoresForInitAfterBZero(
919             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
920             Builder);
921     }
922     return;
923   }
924 
925   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
926          "Unknown value type!");
927 
928   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
929     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
930 
931     // If necessary, get a pointer to the element and emit it.
932     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
933       emitStoresForInitAfterBZero(CGM, Elt,
934                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
935                                   isVolatile, Builder);
936   }
937 }
938 
939 /// Decide whether we should use bzero plus some stores to initialize a local
940 /// variable instead of using a memcpy from a constant global.  It is beneficial
941 /// to use bzero if the global is all zeros, or mostly zeros and large.
942 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
943                                                  uint64_t GlobalSize) {
944   // If a global is all zeros, always use a bzero.
945   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
946 
947   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
948   // do it if it will require 6 or fewer scalar stores.
949   // TODO: Should budget depends on the size?  Avoiding a large global warrants
950   // plopping in more stores.
951   unsigned StoreBudget = 6;
952   uint64_t SizeLimit = 32;
953 
954   return GlobalSize > SizeLimit &&
955          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
956 }
957 
958 /// Decide whether we should use memset to initialize a local variable instead
959 /// of using a memcpy from a constant global. Assumes we've already decided to
960 /// not user bzero.
961 /// FIXME We could be more clever, as we are for bzero above, and generate
962 ///       memset followed by stores. It's unclear that's worth the effort.
963 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
964                                                 uint64_t GlobalSize,
965                                                 const llvm::DataLayout &DL) {
966   uint64_t SizeLimit = 32;
967   if (GlobalSize <= SizeLimit)
968     return nullptr;
969   return llvm::isBytewiseValue(Init, DL);
970 }
971 
972 /// Decide whether we want to split a constant structure or array store into a
973 /// sequence of its fields' stores. This may cost us code size and compilation
974 /// speed, but plays better with store optimizations.
975 static bool shouldSplitConstantStore(CodeGenModule &CGM,
976                                      uint64_t GlobalByteSize) {
977   // Don't break things that occupy more than one cacheline.
978   uint64_t ByteSizeLimit = 64;
979   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
980     return false;
981   if (GlobalByteSize <= ByteSizeLimit)
982     return true;
983   return false;
984 }
985 
986 enum class IsPattern { No, Yes };
987 
988 /// Generate a constant filled with either a pattern or zeroes.
989 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
990                                         llvm::Type *Ty) {
991   if (isPattern == IsPattern::Yes)
992     return initializationPatternFor(CGM, Ty);
993   else
994     return llvm::Constant::getNullValue(Ty);
995 }
996 
997 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
998                                         llvm::Constant *constant);
999 
1000 /// Helper function for constWithPadding() to deal with padding in structures.
1001 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1002                                               IsPattern isPattern,
1003                                               llvm::StructType *STy,
1004                                               llvm::Constant *constant) {
1005   const llvm::DataLayout &DL = CGM.getDataLayout();
1006   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1007   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1008   unsigned SizeSoFar = 0;
1009   SmallVector<llvm::Constant *, 8> Values;
1010   bool NestedIntact = true;
1011   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1012     unsigned CurOff = Layout->getElementOffset(i);
1013     if (SizeSoFar < CurOff) {
1014       assert(!STy->isPacked());
1015       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1016       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1017     }
1018     llvm::Constant *CurOp;
1019     if (constant->isZeroValue())
1020       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1021     else
1022       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1023     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1024     if (CurOp != NewOp)
1025       NestedIntact = false;
1026     Values.push_back(NewOp);
1027     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1028   }
1029   unsigned TotalSize = Layout->getSizeInBytes();
1030   if (SizeSoFar < TotalSize) {
1031     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1032     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1033   }
1034   if (NestedIntact && Values.size() == STy->getNumElements())
1035     return constant;
1036   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1037 }
1038 
1039 /// Replace all padding bytes in a given constant with either a pattern byte or
1040 /// 0x00.
1041 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1042                                         llvm::Constant *constant) {
1043   llvm::Type *OrigTy = constant->getType();
1044   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1045     return constStructWithPadding(CGM, isPattern, STy, constant);
1046   if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
1047     llvm::SmallVector<llvm::Constant *, 8> Values;
1048     unsigned Size = STy->getNumElements();
1049     if (!Size)
1050       return constant;
1051     llvm::Type *ElemTy = STy->getElementType();
1052     bool ZeroInitializer = constant->isZeroValue();
1053     llvm::Constant *OpValue, *PaddedOp;
1054     if (ZeroInitializer) {
1055       OpValue = llvm::Constant::getNullValue(ElemTy);
1056       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1057     }
1058     for (unsigned Op = 0; Op != Size; ++Op) {
1059       if (!ZeroInitializer) {
1060         OpValue = constant->getAggregateElement(Op);
1061         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1062       }
1063       Values.push_back(PaddedOp);
1064     }
1065     auto *NewElemTy = Values[0]->getType();
1066     if (NewElemTy == ElemTy)
1067       return constant;
1068     if (OrigTy->isArrayTy()) {
1069       auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1070       return llvm::ConstantArray::get(ArrayTy, Values);
1071     } else {
1072       return llvm::ConstantVector::get(Values);
1073     }
1074   }
1075   return constant;
1076 }
1077 
1078 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1079                                                llvm::Constant *Constant,
1080                                                CharUnits Align) {
1081   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1082     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1083       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1084         return CC->getNameAsString();
1085       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1086         return CD->getNameAsString();
1087       return getMangledName(FD);
1088     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1089       return OM->getNameAsString();
1090     } else if (isa<BlockDecl>(DC)) {
1091       return "<block>";
1092     } else if (isa<CapturedDecl>(DC)) {
1093       return "<captured>";
1094     } else {
1095       llvm_unreachable("expected a function or method");
1096     }
1097   };
1098 
1099   // Form a simple per-variable cache of these values in case we find we
1100   // want to reuse them.
1101   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1102   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1103     auto *Ty = Constant->getType();
1104     bool isConstant = true;
1105     llvm::GlobalVariable *InsertBefore = nullptr;
1106     unsigned AS =
1107         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1108     std::string Name;
1109     if (D.hasGlobalStorage())
1110       Name = getMangledName(&D).str() + ".const";
1111     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1112       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1113     else
1114       llvm_unreachable("local variable has no parent function or method");
1115     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1116         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1117         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1118     GV->setAlignment(Align.getAsAlign());
1119     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1120     CacheEntry = GV;
1121   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1122     CacheEntry->setAlignment(Align.getAsAlign());
1123   }
1124 
1125   return Address(CacheEntry, Align);
1126 }
1127 
1128 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1129                                                 const VarDecl &D,
1130                                                 CGBuilderTy &Builder,
1131                                                 llvm::Constant *Constant,
1132                                                 CharUnits Align) {
1133   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1134   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1135                                                    SrcPtr.getAddressSpace());
1136   if (SrcPtr.getType() != BP)
1137     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1138   return SrcPtr;
1139 }
1140 
1141 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1142                                   Address Loc, bool isVolatile,
1143                                   CGBuilderTy &Builder,
1144                                   llvm::Constant *constant) {
1145   auto *Ty = constant->getType();
1146   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1147   if (!ConstantSize)
1148     return;
1149 
1150   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1151                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1152   if (canDoSingleStore) {
1153     Builder.CreateStore(constant, Loc, isVolatile);
1154     return;
1155   }
1156 
1157   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1158 
1159   // If the initializer is all or mostly the same, codegen with bzero / memset
1160   // then do a few stores afterward.
1161   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1162     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
1163                          isVolatile);
1164 
1165     bool valueAlreadyCorrect =
1166         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1167     if (!valueAlreadyCorrect) {
1168       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1169       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1170     }
1171     return;
1172   }
1173 
1174   // If the initializer is a repeated byte pattern, use memset.
1175   llvm::Value *Pattern =
1176       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1177   if (Pattern) {
1178     uint64_t Value = 0x00;
1179     if (!isa<llvm::UndefValue>(Pattern)) {
1180       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1181       assert(AP.getBitWidth() <= 8);
1182       Value = AP.getLimitedValue();
1183     }
1184     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
1185                          isVolatile);
1186     return;
1187   }
1188 
1189   // If the initializer is small, use a handful of stores.
1190   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1191     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1192       // FIXME: handle the case when STy != Loc.getElementType().
1193       if (STy == Loc.getElementType()) {
1194         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1195           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1196           emitStoresForConstant(
1197               CGM, D, EltPtr, isVolatile, Builder,
1198               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1199         }
1200         return;
1201       }
1202     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1203       // FIXME: handle the case when ATy != Loc.getElementType().
1204       if (ATy == Loc.getElementType()) {
1205         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1206           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1207           emitStoresForConstant(
1208               CGM, D, EltPtr, isVolatile, Builder,
1209               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1210         }
1211         return;
1212       }
1213     }
1214   }
1215 
1216   // Copy from a global.
1217   Builder.CreateMemCpy(Loc,
1218                        createUnnamedGlobalForMemcpyFrom(
1219                            CGM, D, Builder, constant, Loc.getAlignment()),
1220                        SizeVal, isVolatile);
1221 }
1222 
1223 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1224                                   Address Loc, bool isVolatile,
1225                                   CGBuilderTy &Builder) {
1226   llvm::Type *ElTy = Loc.getElementType();
1227   llvm::Constant *constant =
1228       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1229   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1230 }
1231 
1232 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1233                                      Address Loc, bool isVolatile,
1234                                      CGBuilderTy &Builder) {
1235   llvm::Type *ElTy = Loc.getElementType();
1236   llvm::Constant *constant = constWithPadding(
1237       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1238   assert(!isa<llvm::UndefValue>(constant));
1239   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1240 }
1241 
1242 static bool containsUndef(llvm::Constant *constant) {
1243   auto *Ty = constant->getType();
1244   if (isa<llvm::UndefValue>(constant))
1245     return true;
1246   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1247     for (llvm::Use &Op : constant->operands())
1248       if (containsUndef(cast<llvm::Constant>(Op)))
1249         return true;
1250   return false;
1251 }
1252 
1253 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1254                                     llvm::Constant *constant) {
1255   auto *Ty = constant->getType();
1256   if (isa<llvm::UndefValue>(constant))
1257     return patternOrZeroFor(CGM, isPattern, Ty);
1258   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1259     return constant;
1260   if (!containsUndef(constant))
1261     return constant;
1262   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1263   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1264     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1265     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1266   }
1267   if (Ty->isStructTy())
1268     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1269   if (Ty->isArrayTy())
1270     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1271   assert(Ty->isVectorTy());
1272   return llvm::ConstantVector::get(Values);
1273 }
1274 
1275 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1276 /// variable declaration with auto, register, or no storage class specifier.
1277 /// These turn into simple stack objects, or GlobalValues depending on target.
1278 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1279   AutoVarEmission emission = EmitAutoVarAlloca(D);
1280   EmitAutoVarInit(emission);
1281   EmitAutoVarCleanups(emission);
1282 }
1283 
1284 /// Emit a lifetime.begin marker if some criteria are satisfied.
1285 /// \return a pointer to the temporary size Value if a marker was emitted, null
1286 /// otherwise
1287 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1288                                                 llvm::Value *Addr) {
1289   if (!ShouldEmitLifetimeMarkers)
1290     return nullptr;
1291 
1292   assert(Addr->getType()->getPointerAddressSpace() ==
1293              CGM.getDataLayout().getAllocaAddrSpace() &&
1294          "Pointer should be in alloca address space");
1295   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1296   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1297   llvm::CallInst *C =
1298       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1299   C->setDoesNotThrow();
1300   return SizeV;
1301 }
1302 
1303 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1304   assert(Addr->getType()->getPointerAddressSpace() ==
1305              CGM.getDataLayout().getAllocaAddrSpace() &&
1306          "Pointer should be in alloca address space");
1307   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1308   llvm::CallInst *C =
1309       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1310   C->setDoesNotThrow();
1311 }
1312 
1313 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1314     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1315   // For each dimension stores its QualType and corresponding
1316   // size-expression Value.
1317   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1318   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1319 
1320   // Break down the array into individual dimensions.
1321   QualType Type1D = D.getType();
1322   while (getContext().getAsVariableArrayType(Type1D)) {
1323     auto VlaSize = getVLAElements1D(Type1D);
1324     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1325       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1326     else {
1327       // Generate a locally unique name for the size expression.
1328       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1329       SmallString<12> Buffer;
1330       StringRef NameRef = Name.toStringRef(Buffer);
1331       auto &Ident = getContext().Idents.getOwn(NameRef);
1332       VLAExprNames.push_back(&Ident);
1333       auto SizeExprAddr =
1334           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1335       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1336       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1337                               Type1D.getUnqualifiedType());
1338     }
1339     Type1D = VlaSize.Type;
1340   }
1341 
1342   if (!EmitDebugInfo)
1343     return;
1344 
1345   // Register each dimension's size-expression with a DILocalVariable,
1346   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1347   // to describe this array.
1348   unsigned NameIdx = 0;
1349   for (auto &VlaSize : Dimensions) {
1350     llvm::Metadata *MD;
1351     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1352       MD = llvm::ConstantAsMetadata::get(C);
1353     else {
1354       // Create an artificial VarDecl to generate debug info for.
1355       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1356       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1357       auto QT = getContext().getIntTypeForBitwidth(
1358           VlaExprTy->getScalarSizeInBits(), false);
1359       auto *ArtificialDecl = VarDecl::Create(
1360           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1361           D.getLocation(), D.getLocation(), NameIdent, QT,
1362           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1363       ArtificialDecl->setImplicit();
1364 
1365       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1366                                          Builder);
1367     }
1368     assert(MD && "No Size expression debug node created");
1369     DI->registerVLASizeExpression(VlaSize.Type, MD);
1370   }
1371 }
1372 
1373 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1374 /// local variable.  Does not emit initialization or destruction.
1375 CodeGenFunction::AutoVarEmission
1376 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1377   QualType Ty = D.getType();
1378   assert(
1379       Ty.getAddressSpace() == LangAS::Default ||
1380       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1381 
1382   AutoVarEmission emission(D);
1383 
1384   bool isEscapingByRef = D.isEscapingByref();
1385   emission.IsEscapingByRef = isEscapingByRef;
1386 
1387   CharUnits alignment = getContext().getDeclAlign(&D);
1388 
1389   // If the type is variably-modified, emit all the VLA sizes for it.
1390   if (Ty->isVariablyModifiedType())
1391     EmitVariablyModifiedType(Ty);
1392 
1393   auto *DI = getDebugInfo();
1394   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1395                                  codegenoptions::LimitedDebugInfo;
1396 
1397   Address address = Address::invalid();
1398   Address AllocaAddr = Address::invalid();
1399   Address OpenMPLocalAddr =
1400       getLangOpts().OpenMP
1401           ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1402           : Address::invalid();
1403   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1404 
1405   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1406     address = OpenMPLocalAddr;
1407   } else if (Ty->isConstantSizeType()) {
1408     // If this value is an array or struct with a statically determinable
1409     // constant initializer, there are optimizations we can do.
1410     //
1411     // TODO: We should constant-evaluate the initializer of any variable,
1412     // as long as it is initialized by a constant expression. Currently,
1413     // isConstantInitializer produces wrong answers for structs with
1414     // reference or bitfield members, and a few other cases, and checking
1415     // for POD-ness protects us from some of these.
1416     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1417         (D.isConstexpr() ||
1418          ((Ty.isPODType(getContext()) ||
1419            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1420           D.getInit()->isConstantInitializer(getContext(), false)))) {
1421 
1422       // If the variable's a const type, and it's neither an NRVO
1423       // candidate nor a __block variable and has no mutable members,
1424       // emit it as a global instead.
1425       // Exception is if a variable is located in non-constant address space
1426       // in OpenCL.
1427       if ((!getLangOpts().OpenCL ||
1428            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1429           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1430            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1431         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1432 
1433         // Signal this condition to later callbacks.
1434         emission.Addr = Address::invalid();
1435         assert(emission.wasEmittedAsGlobal());
1436         return emission;
1437       }
1438 
1439       // Otherwise, tell the initialization code that we're in this case.
1440       emission.IsConstantAggregate = true;
1441     }
1442 
1443     // A normal fixed sized variable becomes an alloca in the entry block,
1444     // unless:
1445     // - it's an NRVO variable.
1446     // - we are compiling OpenMP and it's an OpenMP local variable.
1447     if (NRVO) {
1448       // The named return value optimization: allocate this variable in the
1449       // return slot, so that we can elide the copy when returning this
1450       // variable (C++0x [class.copy]p34).
1451       address = ReturnValue;
1452 
1453       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1454         const auto *RD = RecordTy->getDecl();
1455         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1456         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1457             RD->isNonTrivialToPrimitiveDestroy()) {
1458           // Create a flag that is used to indicate when the NRVO was applied
1459           // to this variable. Set it to zero to indicate that NRVO was not
1460           // applied.
1461           llvm::Value *Zero = Builder.getFalse();
1462           Address NRVOFlag =
1463             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1464           EnsureInsertPoint();
1465           Builder.CreateStore(Zero, NRVOFlag);
1466 
1467           // Record the NRVO flag for this variable.
1468           NRVOFlags[&D] = NRVOFlag.getPointer();
1469           emission.NRVOFlag = NRVOFlag.getPointer();
1470         }
1471       }
1472     } else {
1473       CharUnits allocaAlignment;
1474       llvm::Type *allocaTy;
1475       if (isEscapingByRef) {
1476         auto &byrefInfo = getBlockByrefInfo(&D);
1477         allocaTy = byrefInfo.Type;
1478         allocaAlignment = byrefInfo.ByrefAlignment;
1479       } else {
1480         allocaTy = ConvertTypeForMem(Ty);
1481         allocaAlignment = alignment;
1482       }
1483 
1484       // Create the alloca.  Note that we set the name separately from
1485       // building the instruction so that it's there even in no-asserts
1486       // builds.
1487       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1488                                  /*ArraySize=*/nullptr, &AllocaAddr);
1489 
1490       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1491       // the catch parameter starts in the catchpad instruction, and we can't
1492       // insert code in those basic blocks.
1493       bool IsMSCatchParam =
1494           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1495 
1496       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1497       // if we don't have a valid insertion point (?).
1498       if (HaveInsertPoint() && !IsMSCatchParam) {
1499         // If there's a jump into the lifetime of this variable, its lifetime
1500         // gets broken up into several regions in IR, which requires more work
1501         // to handle correctly. For now, just omit the intrinsics; this is a
1502         // rare case, and it's better to just be conservatively correct.
1503         // PR28267.
1504         //
1505         // We have to do this in all language modes if there's a jump past the
1506         // declaration. We also have to do it in C if there's a jump to an
1507         // earlier point in the current block because non-VLA lifetimes begin as
1508         // soon as the containing block is entered, not when its variables
1509         // actually come into scope; suppressing the lifetime annotations
1510         // completely in this case is unnecessarily pessimistic, but again, this
1511         // is rare.
1512         if (!Bypasses.IsBypassed(&D) &&
1513             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1514           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1515           emission.SizeForLifetimeMarkers =
1516               EmitLifetimeStart(size, AllocaAddr.getPointer());
1517         }
1518       } else {
1519         assert(!emission.useLifetimeMarkers());
1520       }
1521     }
1522   } else {
1523     EnsureInsertPoint();
1524 
1525     if (!DidCallStackSave) {
1526       // Save the stack.
1527       Address Stack =
1528         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1529 
1530       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1531       llvm::Value *V = Builder.CreateCall(F);
1532       Builder.CreateStore(V, Stack);
1533 
1534       DidCallStackSave = true;
1535 
1536       // Push a cleanup block and restore the stack there.
1537       // FIXME: in general circumstances, this should be an EH cleanup.
1538       pushStackRestore(NormalCleanup, Stack);
1539     }
1540 
1541     auto VlaSize = getVLASize(Ty);
1542     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1543 
1544     // Allocate memory for the array.
1545     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1546                                &AllocaAddr);
1547 
1548     // If we have debug info enabled, properly describe the VLA dimensions for
1549     // this type by registering the vla size expression for each of the
1550     // dimensions.
1551     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1552   }
1553 
1554   setAddrOfLocalVar(&D, address);
1555   emission.Addr = address;
1556   emission.AllocaAddr = AllocaAddr;
1557 
1558   // Emit debug info for local var declaration.
1559   if (EmitDebugInfo && HaveInsertPoint()) {
1560     Address DebugAddr = address;
1561     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1562     DI->setLocation(D.getLocation());
1563 
1564     // If NRVO, use a pointer to the return address.
1565     if (UsePointerValue)
1566       DebugAddr = ReturnValuePointer;
1567 
1568     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1569                                         UsePointerValue);
1570   }
1571 
1572   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1573     EmitVarAnnotations(&D, address.getPointer());
1574 
1575   // Make sure we call @llvm.lifetime.end.
1576   if (emission.useLifetimeMarkers())
1577     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1578                                          emission.getOriginalAllocatedAddress(),
1579                                          emission.getSizeForLifetimeMarkers());
1580 
1581   return emission;
1582 }
1583 
1584 static bool isCapturedBy(const VarDecl &, const Expr *);
1585 
1586 /// Determines whether the given __block variable is potentially
1587 /// captured by the given statement.
1588 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1589   if (const Expr *E = dyn_cast<Expr>(S))
1590     return isCapturedBy(Var, E);
1591   for (const Stmt *SubStmt : S->children())
1592     if (isCapturedBy(Var, SubStmt))
1593       return true;
1594   return false;
1595 }
1596 
1597 /// Determines whether the given __block variable is potentially
1598 /// captured by the given expression.
1599 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1600   // Skip the most common kinds of expressions that make
1601   // hierarchy-walking expensive.
1602   E = E->IgnoreParenCasts();
1603 
1604   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1605     const BlockDecl *Block = BE->getBlockDecl();
1606     for (const auto &I : Block->captures()) {
1607       if (I.getVariable() == &Var)
1608         return true;
1609     }
1610 
1611     // No need to walk into the subexpressions.
1612     return false;
1613   }
1614 
1615   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1616     const CompoundStmt *CS = SE->getSubStmt();
1617     for (const auto *BI : CS->body())
1618       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1619         if (isCapturedBy(Var, BIE))
1620           return true;
1621       }
1622       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1623           // special case declarations
1624           for (const auto *I : DS->decls()) {
1625               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1626                 const Expr *Init = VD->getInit();
1627                 if (Init && isCapturedBy(Var, Init))
1628                   return true;
1629               }
1630           }
1631       }
1632       else
1633         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1634         // Later, provide code to poke into statements for capture analysis.
1635         return true;
1636     return false;
1637   }
1638 
1639   for (const Stmt *SubStmt : E->children())
1640     if (isCapturedBy(Var, SubStmt))
1641       return true;
1642 
1643   return false;
1644 }
1645 
1646 /// Determine whether the given initializer is trivial in the sense
1647 /// that it requires no code to be generated.
1648 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1649   if (!Init)
1650     return true;
1651 
1652   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1653     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1654       if (Constructor->isTrivial() &&
1655           Constructor->isDefaultConstructor() &&
1656           !Construct->requiresZeroInitialization())
1657         return true;
1658 
1659   return false;
1660 }
1661 
1662 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1663                                                       const VarDecl &D,
1664                                                       Address Loc) {
1665   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1666   CharUnits Size = getContext().getTypeSizeInChars(type);
1667   bool isVolatile = type.isVolatileQualified();
1668   if (!Size.isZero()) {
1669     switch (trivialAutoVarInit) {
1670     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1671       llvm_unreachable("Uninitialized handled by caller");
1672     case LangOptions::TrivialAutoVarInitKind::Zero:
1673       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1674       break;
1675     case LangOptions::TrivialAutoVarInitKind::Pattern:
1676       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1677       break;
1678     }
1679     return;
1680   }
1681 
1682   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1683   // them, so emit a memcpy with the VLA size to initialize each element.
1684   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1685   // will catch that code, but there exists code which generates zero-sized
1686   // VLAs. Be nice and initialize whatever they requested.
1687   const auto *VlaType = getContext().getAsVariableArrayType(type);
1688   if (!VlaType)
1689     return;
1690   auto VlaSize = getVLASize(VlaType);
1691   auto SizeVal = VlaSize.NumElts;
1692   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1693   switch (trivialAutoVarInit) {
1694   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1695     llvm_unreachable("Uninitialized handled by caller");
1696 
1697   case LangOptions::TrivialAutoVarInitKind::Zero:
1698     if (!EltSize.isOne())
1699       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1700     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1701                          isVolatile);
1702     break;
1703 
1704   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1705     llvm::Type *ElTy = Loc.getElementType();
1706     llvm::Constant *Constant = constWithPadding(
1707         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1708     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1709     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1710     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1711     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1712     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1713         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1714         "vla.iszerosized");
1715     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1716     EmitBlock(SetupBB);
1717     if (!EltSize.isOne())
1718       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1719     llvm::Value *BaseSizeInChars =
1720         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1721     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1722     llvm::Value *End =
1723         Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1724     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1725     EmitBlock(LoopBB);
1726     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1727     Cur->addIncoming(Begin.getPointer(), OriginBB);
1728     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1729     Builder.CreateMemCpy(Address(Cur, CurAlign),
1730                          createUnnamedGlobalForMemcpyFrom(
1731                              CGM, D, Builder, Constant, ConstantAlign),
1732                          BaseSizeInChars, isVolatile);
1733     llvm::Value *Next =
1734         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1735     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1736     Builder.CreateCondBr(Done, ContBB, LoopBB);
1737     Cur->addIncoming(Next, LoopBB);
1738     EmitBlock(ContBB);
1739   } break;
1740   }
1741 }
1742 
1743 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1744   assert(emission.Variable && "emission was not valid!");
1745 
1746   // If this was emitted as a global constant, we're done.
1747   if (emission.wasEmittedAsGlobal()) return;
1748 
1749   const VarDecl &D = *emission.Variable;
1750   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1751   QualType type = D.getType();
1752 
1753   // If this local has an initializer, emit it now.
1754   const Expr *Init = D.getInit();
1755 
1756   // If we are at an unreachable point, we don't need to emit the initializer
1757   // unless it contains a label.
1758   if (!HaveInsertPoint()) {
1759     if (!Init || !ContainsLabel(Init)) return;
1760     EnsureInsertPoint();
1761   }
1762 
1763   // Initialize the structure of a __block variable.
1764   if (emission.IsEscapingByRef)
1765     emitByrefStructureInit(emission);
1766 
1767   // Initialize the variable here if it doesn't have a initializer and it is a
1768   // C struct that is non-trivial to initialize or an array containing such a
1769   // struct.
1770   if (!Init &&
1771       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1772           QualType::PDIK_Struct) {
1773     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1774     if (emission.IsEscapingByRef)
1775       drillIntoBlockVariable(*this, Dst, &D);
1776     defaultInitNonTrivialCStructVar(Dst);
1777     return;
1778   }
1779 
1780   // Check whether this is a byref variable that's potentially
1781   // captured and moved by its own initializer.  If so, we'll need to
1782   // emit the initializer first, then copy into the variable.
1783   bool capturedByInit =
1784       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1785 
1786   bool locIsByrefHeader = !capturedByInit;
1787   const Address Loc =
1788       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1789 
1790   // Note: constexpr already initializes everything correctly.
1791   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1792       (D.isConstexpr()
1793            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1794            : (D.getAttr<UninitializedAttr>()
1795                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1796                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1797 
1798   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1799     if (trivialAutoVarInit ==
1800         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1801       return;
1802 
1803     // Only initialize a __block's storage: we always initialize the header.
1804     if (emission.IsEscapingByRef && !locIsByrefHeader)
1805       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1806 
1807     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1808   };
1809 
1810   if (isTrivialInitializer(Init))
1811     return initializeWhatIsTechnicallyUninitialized(Loc);
1812 
1813   llvm::Constant *constant = nullptr;
1814   if (emission.IsConstantAggregate ||
1815       D.mightBeUsableInConstantExpressions(getContext())) {
1816     assert(!capturedByInit && "constant init contains a capturing block?");
1817     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1818     if (constant && !constant->isZeroValue() &&
1819         (trivialAutoVarInit !=
1820          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1821       IsPattern isPattern =
1822           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1823               ? IsPattern::Yes
1824               : IsPattern::No;
1825       // C guarantees that brace-init with fewer initializers than members in
1826       // the aggregate will initialize the rest of the aggregate as-if it were
1827       // static initialization. In turn static initialization guarantees that
1828       // padding is initialized to zero bits. We could instead pattern-init if D
1829       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1830       // behavior.
1831       constant = constWithPadding(CGM, IsPattern::No,
1832                                   replaceUndef(CGM, isPattern, constant));
1833     }
1834   }
1835 
1836   if (!constant) {
1837     initializeWhatIsTechnicallyUninitialized(Loc);
1838     LValue lv = MakeAddrLValue(Loc, type);
1839     lv.setNonGC(true);
1840     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1841   }
1842 
1843   if (!emission.IsConstantAggregate) {
1844     // For simple scalar/complex initialization, store the value directly.
1845     LValue lv = MakeAddrLValue(Loc, type);
1846     lv.setNonGC(true);
1847     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1848   }
1849 
1850   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1851   emitStoresForConstant(
1852       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1853       type.isVolatileQualified(), Builder, constant);
1854 }
1855 
1856 /// Emit an expression as an initializer for an object (variable, field, etc.)
1857 /// at the given location.  The expression is not necessarily the normal
1858 /// initializer for the object, and the address is not necessarily
1859 /// its normal location.
1860 ///
1861 /// \param init the initializing expression
1862 /// \param D the object to act as if we're initializing
1863 /// \param loc the address to initialize; its type is a pointer
1864 ///   to the LLVM mapping of the object's type
1865 /// \param alignment the alignment of the address
1866 /// \param capturedByInit true if \p D is a __block variable
1867 ///   whose address is potentially changed by the initializer
1868 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1869                                      LValue lvalue, bool capturedByInit) {
1870   QualType type = D->getType();
1871 
1872   if (type->isReferenceType()) {
1873     RValue rvalue = EmitReferenceBindingToExpr(init);
1874     if (capturedByInit)
1875       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1876     EmitStoreThroughLValue(rvalue, lvalue, true);
1877     return;
1878   }
1879   switch (getEvaluationKind(type)) {
1880   case TEK_Scalar:
1881     EmitScalarInit(init, D, lvalue, capturedByInit);
1882     return;
1883   case TEK_Complex: {
1884     ComplexPairTy complex = EmitComplexExpr(init);
1885     if (capturedByInit)
1886       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1887     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1888     return;
1889   }
1890   case TEK_Aggregate:
1891     if (type->isAtomicType()) {
1892       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1893     } else {
1894       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1895       if (isa<VarDecl>(D))
1896         Overlap = AggValueSlot::DoesNotOverlap;
1897       else if (auto *FD = dyn_cast<FieldDecl>(D))
1898         Overlap = getOverlapForFieldInit(FD);
1899       // TODO: how can we delay here if D is captured by its initializer?
1900       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1901                                               AggValueSlot::IsDestructed,
1902                                          AggValueSlot::DoesNotNeedGCBarriers,
1903                                               AggValueSlot::IsNotAliased,
1904                                               Overlap));
1905     }
1906     return;
1907   }
1908   llvm_unreachable("bad evaluation kind");
1909 }
1910 
1911 /// Enter a destroy cleanup for the given local variable.
1912 void CodeGenFunction::emitAutoVarTypeCleanup(
1913                             const CodeGenFunction::AutoVarEmission &emission,
1914                             QualType::DestructionKind dtorKind) {
1915   assert(dtorKind != QualType::DK_none);
1916 
1917   // Note that for __block variables, we want to destroy the
1918   // original stack object, not the possibly forwarded object.
1919   Address addr = emission.getObjectAddress(*this);
1920 
1921   const VarDecl *var = emission.Variable;
1922   QualType type = var->getType();
1923 
1924   CleanupKind cleanupKind = NormalAndEHCleanup;
1925   CodeGenFunction::Destroyer *destroyer = nullptr;
1926 
1927   switch (dtorKind) {
1928   case QualType::DK_none:
1929     llvm_unreachable("no cleanup for trivially-destructible variable");
1930 
1931   case QualType::DK_cxx_destructor:
1932     // If there's an NRVO flag on the emission, we need a different
1933     // cleanup.
1934     if (emission.NRVOFlag) {
1935       assert(!type->isArrayType());
1936       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1937       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1938                                                   emission.NRVOFlag);
1939       return;
1940     }
1941     break;
1942 
1943   case QualType::DK_objc_strong_lifetime:
1944     // Suppress cleanups for pseudo-strong variables.
1945     if (var->isARCPseudoStrong()) return;
1946 
1947     // Otherwise, consider whether to use an EH cleanup or not.
1948     cleanupKind = getARCCleanupKind();
1949 
1950     // Use the imprecise destroyer by default.
1951     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1952       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1953     break;
1954 
1955   case QualType::DK_objc_weak_lifetime:
1956     break;
1957 
1958   case QualType::DK_nontrivial_c_struct:
1959     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1960     if (emission.NRVOFlag) {
1961       assert(!type->isArrayType());
1962       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1963                                                 emission.NRVOFlag, type);
1964       return;
1965     }
1966     break;
1967   }
1968 
1969   // If we haven't chosen a more specific destroyer, use the default.
1970   if (!destroyer) destroyer = getDestroyer(dtorKind);
1971 
1972   // Use an EH cleanup in array destructors iff the destructor itself
1973   // is being pushed as an EH cleanup.
1974   bool useEHCleanup = (cleanupKind & EHCleanup);
1975   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1976                                      useEHCleanup);
1977 }
1978 
1979 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1980   assert(emission.Variable && "emission was not valid!");
1981 
1982   // If this was emitted as a global constant, we're done.
1983   if (emission.wasEmittedAsGlobal()) return;
1984 
1985   // If we don't have an insertion point, we're done.  Sema prevents
1986   // us from jumping into any of these scopes anyway.
1987   if (!HaveInsertPoint()) return;
1988 
1989   const VarDecl &D = *emission.Variable;
1990 
1991   // Check the type for a cleanup.
1992   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
1993     emitAutoVarTypeCleanup(emission, dtorKind);
1994 
1995   // In GC mode, honor objc_precise_lifetime.
1996   if (getLangOpts().getGC() != LangOptions::NonGC &&
1997       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1998     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1999   }
2000 
2001   // Handle the cleanup attribute.
2002   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2003     const FunctionDecl *FD = CA->getFunctionDecl();
2004 
2005     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2006     assert(F && "Could not find function!");
2007 
2008     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2009     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2010   }
2011 
2012   // If this is a block variable, call _Block_object_destroy
2013   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2014   // mode.
2015   if (emission.IsEscapingByRef &&
2016       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2017     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2018     if (emission.Variable->getType().isObjCGCWeak())
2019       Flags |= BLOCK_FIELD_IS_WEAK;
2020     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2021                       /*LoadBlockVarAddr*/ false,
2022                       cxxDestructorCanThrow(emission.Variable->getType()));
2023   }
2024 }
2025 
2026 CodeGenFunction::Destroyer *
2027 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2028   switch (kind) {
2029   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2030   case QualType::DK_cxx_destructor:
2031     return destroyCXXObject;
2032   case QualType::DK_objc_strong_lifetime:
2033     return destroyARCStrongPrecise;
2034   case QualType::DK_objc_weak_lifetime:
2035     return destroyARCWeak;
2036   case QualType::DK_nontrivial_c_struct:
2037     return destroyNonTrivialCStruct;
2038   }
2039   llvm_unreachable("Unknown DestructionKind");
2040 }
2041 
2042 /// pushEHDestroy - Push the standard destructor for the given type as
2043 /// an EH-only cleanup.
2044 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2045                                     Address addr, QualType type) {
2046   assert(dtorKind && "cannot push destructor for trivial type");
2047   assert(needsEHCleanup(dtorKind));
2048 
2049   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2050 }
2051 
2052 /// pushDestroy - Push the standard destructor for the given type as
2053 /// at least a normal cleanup.
2054 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2055                                   Address addr, QualType type) {
2056   assert(dtorKind && "cannot push destructor for trivial type");
2057 
2058   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2059   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2060               cleanupKind & EHCleanup);
2061 }
2062 
2063 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2064                                   QualType type, Destroyer *destroyer,
2065                                   bool useEHCleanupForArray) {
2066   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2067                                      destroyer, useEHCleanupForArray);
2068 }
2069 
2070 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2071   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2072 }
2073 
2074 void CodeGenFunction::pushLifetimeExtendedDestroy(
2075     CleanupKind cleanupKind, Address addr, QualType type,
2076     Destroyer *destroyer, bool useEHCleanupForArray) {
2077   // Push an EH-only cleanup for the object now.
2078   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2079   // around in case a temporary's destructor throws an exception.
2080   if (cleanupKind & EHCleanup)
2081     EHStack.pushCleanup<DestroyObject>(
2082         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2083         destroyer, useEHCleanupForArray);
2084 
2085   // Remember that we need to push a full cleanup for the object at the
2086   // end of the full-expression.
2087   pushCleanupAfterFullExpr<DestroyObject>(
2088       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2089 }
2090 
2091 /// emitDestroy - Immediately perform the destruction of the given
2092 /// object.
2093 ///
2094 /// \param addr - the address of the object; a type*
2095 /// \param type - the type of the object; if an array type, all
2096 ///   objects are destroyed in reverse order
2097 /// \param destroyer - the function to call to destroy individual
2098 ///   elements
2099 /// \param useEHCleanupForArray - whether an EH cleanup should be
2100 ///   used when destroying array elements, in case one of the
2101 ///   destructions throws an exception
2102 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2103                                   Destroyer *destroyer,
2104                                   bool useEHCleanupForArray) {
2105   const ArrayType *arrayType = getContext().getAsArrayType(type);
2106   if (!arrayType)
2107     return destroyer(*this, addr, type);
2108 
2109   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2110 
2111   CharUnits elementAlign =
2112     addr.getAlignment()
2113         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2114 
2115   // Normally we have to check whether the array is zero-length.
2116   bool checkZeroLength = true;
2117 
2118   // But if the array length is constant, we can suppress that.
2119   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2120     // ...and if it's constant zero, we can just skip the entire thing.
2121     if (constLength->isZero()) return;
2122     checkZeroLength = false;
2123   }
2124 
2125   llvm::Value *begin = addr.getPointer();
2126   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2127   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2128                    checkZeroLength, useEHCleanupForArray);
2129 }
2130 
2131 /// emitArrayDestroy - Destroys all the elements of the given array,
2132 /// beginning from last to first.  The array cannot be zero-length.
2133 ///
2134 /// \param begin - a type* denoting the first element of the array
2135 /// \param end - a type* denoting one past the end of the array
2136 /// \param elementType - the element type of the array
2137 /// \param destroyer - the function to call to destroy elements
2138 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2139 ///   the remaining elements in case the destruction of a single
2140 ///   element throws
2141 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2142                                        llvm::Value *end,
2143                                        QualType elementType,
2144                                        CharUnits elementAlign,
2145                                        Destroyer *destroyer,
2146                                        bool checkZeroLength,
2147                                        bool useEHCleanup) {
2148   assert(!elementType->isArrayType());
2149 
2150   // The basic structure here is a do-while loop, because we don't
2151   // need to check for the zero-element case.
2152   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2153   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2154 
2155   if (checkZeroLength) {
2156     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2157                                                 "arraydestroy.isempty");
2158     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2159   }
2160 
2161   // Enter the loop body, making that address the current address.
2162   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2163   EmitBlock(bodyBB);
2164   llvm::PHINode *elementPast =
2165     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2166   elementPast->addIncoming(end, entryBB);
2167 
2168   // Shift the address back by one element.
2169   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2170   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2171                                                    "arraydestroy.element");
2172 
2173   if (useEHCleanup)
2174     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2175                                    destroyer);
2176 
2177   // Perform the actual destruction there.
2178   destroyer(*this, Address(element, elementAlign), elementType);
2179 
2180   if (useEHCleanup)
2181     PopCleanupBlock();
2182 
2183   // Check whether we've reached the end.
2184   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2185   Builder.CreateCondBr(done, doneBB, bodyBB);
2186   elementPast->addIncoming(element, Builder.GetInsertBlock());
2187 
2188   // Done.
2189   EmitBlock(doneBB);
2190 }
2191 
2192 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2193 /// emitArrayDestroy, the element type here may still be an array type.
2194 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2195                                     llvm::Value *begin, llvm::Value *end,
2196                                     QualType type, CharUnits elementAlign,
2197                                     CodeGenFunction::Destroyer *destroyer) {
2198   // If the element type is itself an array, drill down.
2199   unsigned arrayDepth = 0;
2200   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2201     // VLAs don't require a GEP index to walk into.
2202     if (!isa<VariableArrayType>(arrayType))
2203       arrayDepth++;
2204     type = arrayType->getElementType();
2205   }
2206 
2207   if (arrayDepth) {
2208     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2209 
2210     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2211     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2212     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2213   }
2214 
2215   // Destroy the array.  We don't ever need an EH cleanup because we
2216   // assume that we're in an EH cleanup ourselves, so a throwing
2217   // destructor causes an immediate terminate.
2218   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2219                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2220 }
2221 
2222 namespace {
2223   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2224   /// array destroy where the end pointer is regularly determined and
2225   /// does not need to be loaded from a local.
2226   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2227     llvm::Value *ArrayBegin;
2228     llvm::Value *ArrayEnd;
2229     QualType ElementType;
2230     CodeGenFunction::Destroyer *Destroyer;
2231     CharUnits ElementAlign;
2232   public:
2233     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2234                                QualType elementType, CharUnits elementAlign,
2235                                CodeGenFunction::Destroyer *destroyer)
2236       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2237         ElementType(elementType), Destroyer(destroyer),
2238         ElementAlign(elementAlign) {}
2239 
2240     void Emit(CodeGenFunction &CGF, Flags flags) override {
2241       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2242                               ElementType, ElementAlign, Destroyer);
2243     }
2244   };
2245 
2246   /// IrregularPartialArrayDestroy - a cleanup which performs a
2247   /// partial array destroy where the end pointer is irregularly
2248   /// determined and must be loaded from a local.
2249   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2250     llvm::Value *ArrayBegin;
2251     Address ArrayEndPointer;
2252     QualType ElementType;
2253     CodeGenFunction::Destroyer *Destroyer;
2254     CharUnits ElementAlign;
2255   public:
2256     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2257                                  Address arrayEndPointer,
2258                                  QualType elementType,
2259                                  CharUnits elementAlign,
2260                                  CodeGenFunction::Destroyer *destroyer)
2261       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2262         ElementType(elementType), Destroyer(destroyer),
2263         ElementAlign(elementAlign) {}
2264 
2265     void Emit(CodeGenFunction &CGF, Flags flags) override {
2266       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2267       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2268                               ElementType, ElementAlign, Destroyer);
2269     }
2270   };
2271 } // end anonymous namespace
2272 
2273 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2274 /// already-constructed elements of the given array.  The cleanup
2275 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2276 ///
2277 /// \param elementType - the immediate element type of the array;
2278 ///   possibly still an array type
2279 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2280                                                        Address arrayEndPointer,
2281                                                        QualType elementType,
2282                                                        CharUnits elementAlign,
2283                                                        Destroyer *destroyer) {
2284   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2285                                                     arrayBegin, arrayEndPointer,
2286                                                     elementType, elementAlign,
2287                                                     destroyer);
2288 }
2289 
2290 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2291 /// already-constructed elements of the given array.  The cleanup
2292 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2293 ///
2294 /// \param elementType - the immediate element type of the array;
2295 ///   possibly still an array type
2296 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2297                                                      llvm::Value *arrayEnd,
2298                                                      QualType elementType,
2299                                                      CharUnits elementAlign,
2300                                                      Destroyer *destroyer) {
2301   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2302                                                   arrayBegin, arrayEnd,
2303                                                   elementType, elementAlign,
2304                                                   destroyer);
2305 }
2306 
2307 /// Lazily declare the @llvm.lifetime.start intrinsic.
2308 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2309   if (LifetimeStartFn)
2310     return LifetimeStartFn;
2311   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2312     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2313   return LifetimeStartFn;
2314 }
2315 
2316 /// Lazily declare the @llvm.lifetime.end intrinsic.
2317 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2318   if (LifetimeEndFn)
2319     return LifetimeEndFn;
2320   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2321     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2322   return LifetimeEndFn;
2323 }
2324 
2325 namespace {
2326   /// A cleanup to perform a release of an object at the end of a
2327   /// function.  This is used to balance out the incoming +1 of a
2328   /// ns_consumed argument when we can't reasonably do that just by
2329   /// not doing the initial retain for a __block argument.
2330   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2331     ConsumeARCParameter(llvm::Value *param,
2332                         ARCPreciseLifetime_t precise)
2333       : Param(param), Precise(precise) {}
2334 
2335     llvm::Value *Param;
2336     ARCPreciseLifetime_t Precise;
2337 
2338     void Emit(CodeGenFunction &CGF, Flags flags) override {
2339       CGF.EmitARCRelease(Param, Precise);
2340     }
2341   };
2342 } // end anonymous namespace
2343 
2344 /// Emit an alloca (or GlobalValue depending on target)
2345 /// for the specified parameter and set up LocalDeclMap.
2346 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2347                                    unsigned ArgNo) {
2348   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2349   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2350          "Invalid argument to EmitParmDecl");
2351 
2352   Arg.getAnyValue()->setName(D.getName());
2353 
2354   QualType Ty = D.getType();
2355 
2356   // Use better IR generation for certain implicit parameters.
2357   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2358     // The only implicit argument a block has is its literal.
2359     // This may be passed as an inalloca'ed value on Windows x86.
2360     if (BlockInfo) {
2361       llvm::Value *V = Arg.isIndirect()
2362                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2363                            : Arg.getDirectValue();
2364       setBlockContextParameter(IPD, ArgNo, V);
2365       return;
2366     }
2367   }
2368 
2369   Address DeclPtr = Address::invalid();
2370   bool DoStore = false;
2371   bool IsScalar = hasScalarEvaluationKind(Ty);
2372   // If we already have a pointer to the argument, reuse the input pointer.
2373   if (Arg.isIndirect()) {
2374     DeclPtr = Arg.getIndirectAddress();
2375     // If we have a prettier pointer type at this point, bitcast to that.
2376     unsigned AS = DeclPtr.getType()->getAddressSpace();
2377     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2378     if (DeclPtr.getType() != IRTy)
2379       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2380     // Indirect argument is in alloca address space, which may be different
2381     // from the default address space.
2382     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2383     auto *V = DeclPtr.getPointer();
2384     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2385     auto DestLangAS =
2386         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2387     if (SrcLangAS != DestLangAS) {
2388       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2389              CGM.getDataLayout().getAllocaAddrSpace());
2390       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2391       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2392       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2393                             *this, V, SrcLangAS, DestLangAS, T, true),
2394                         DeclPtr.getAlignment());
2395     }
2396 
2397     // Push a destructor cleanup for this parameter if the ABI requires it.
2398     // Don't push a cleanup in a thunk for a method that will also emit a
2399     // cleanup.
2400     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2401         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2402       if (QualType::DestructionKind DtorKind =
2403               D.needsDestruction(getContext())) {
2404         assert((DtorKind == QualType::DK_cxx_destructor ||
2405                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2406                "unexpected destructor type");
2407         pushDestroy(DtorKind, DeclPtr, Ty);
2408         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2409             EHStack.stable_begin();
2410       }
2411     }
2412   } else {
2413     // Check if the parameter address is controlled by OpenMP runtime.
2414     Address OpenMPLocalAddr =
2415         getLangOpts().OpenMP
2416             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2417             : Address::invalid();
2418     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2419       DeclPtr = OpenMPLocalAddr;
2420     } else {
2421       // Otherwise, create a temporary to hold the value.
2422       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2423                               D.getName() + ".addr");
2424     }
2425     DoStore = true;
2426   }
2427 
2428   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2429 
2430   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2431   if (IsScalar) {
2432     Qualifiers qs = Ty.getQualifiers();
2433     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2434       // We honor __attribute__((ns_consumed)) for types with lifetime.
2435       // For __strong, it's handled by just skipping the initial retain;
2436       // otherwise we have to balance out the initial +1 with an extra
2437       // cleanup to do the release at the end of the function.
2438       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2439 
2440       // If a parameter is pseudo-strong then we can omit the implicit retain.
2441       if (D.isARCPseudoStrong()) {
2442         assert(lt == Qualifiers::OCL_Strong &&
2443                "pseudo-strong variable isn't strong?");
2444         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2445         lt = Qualifiers::OCL_ExplicitNone;
2446       }
2447 
2448       // Load objects passed indirectly.
2449       if (Arg.isIndirect() && !ArgVal)
2450         ArgVal = Builder.CreateLoad(DeclPtr);
2451 
2452       if (lt == Qualifiers::OCL_Strong) {
2453         if (!isConsumed) {
2454           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2455             // use objc_storeStrong(&dest, value) for retaining the
2456             // object. But first, store a null into 'dest' because
2457             // objc_storeStrong attempts to release its old value.
2458             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2459             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2460             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2461             DoStore = false;
2462           }
2463           else
2464           // Don't use objc_retainBlock for block pointers, because we
2465           // don't want to Block_copy something just because we got it
2466           // as a parameter.
2467             ArgVal = EmitARCRetainNonBlock(ArgVal);
2468         }
2469       } else {
2470         // Push the cleanup for a consumed parameter.
2471         if (isConsumed) {
2472           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2473                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2474           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2475                                                    precise);
2476         }
2477 
2478         if (lt == Qualifiers::OCL_Weak) {
2479           EmitARCInitWeak(DeclPtr, ArgVal);
2480           DoStore = false; // The weak init is a store, no need to do two.
2481         }
2482       }
2483 
2484       // Enter the cleanup scope.
2485       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2486     }
2487   }
2488 
2489   // Store the initial value into the alloca.
2490   if (DoStore)
2491     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2492 
2493   setAddrOfLocalVar(&D, DeclPtr);
2494 
2495   // Emit debug info for param declarations in non-thunk functions.
2496   if (CGDebugInfo *DI = getDebugInfo()) {
2497     if (CGM.getCodeGenOpts().getDebugInfo() >=
2498             codegenoptions::LimitedDebugInfo &&
2499         !CurFuncIsThunk) {
2500       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2501     }
2502   }
2503 
2504   if (D.hasAttr<AnnotateAttr>())
2505     EmitVarAnnotations(&D, DeclPtr.getPointer());
2506 
2507   // We can only check return value nullability if all arguments to the
2508   // function satisfy their nullability preconditions. This makes it necessary
2509   // to emit null checks for args in the function body itself.
2510   if (requiresReturnValueNullabilityCheck()) {
2511     auto Nullability = Ty->getNullability(getContext());
2512     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2513       SanitizerScope SanScope(this);
2514       RetValNullabilityPrecondition =
2515           Builder.CreateAnd(RetValNullabilityPrecondition,
2516                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2517     }
2518   }
2519 }
2520 
2521 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2522                                             CodeGenFunction *CGF) {
2523   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2524     return;
2525   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2526 }
2527 
2528 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2529                                          CodeGenFunction *CGF) {
2530   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2531       (!LangOpts.EmitAllDecls && !D->isUsed()))
2532     return;
2533   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2534 }
2535 
2536 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2537   getOpenMPRuntime().checkArchForUnifiedAddressing(D);
2538 }
2539